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ABSTRACT

In this paper, a system for pitch independent musical instrument
recognition is presented. A wide set of features covering both
spectral and temporal properties of sounds was investigated, and
their extraction algorithms were designed. The usefulness of the
features was validated using test data that consisted of 1498 sam-
ples covering the full pitch ranges of 30 orchestral instruments
from the string, brass and woodwind families, played with differ-
ent techniques. The correct instrument family was recognized
with 94% accuracy and individual instruments in 80% of cases.
These results are compared to those reported in other work. Also,
utilization of a hierarchical classification framework is consid-
ered.

1.  INTRODUCTION

Music content analysis in general has many practical applications,
including e.g. structured coding, database retrieval systems, auto-
matic musical signal annotation, and musicians’ tools. A subtask
of this, automatic musical instrument identification, is of signifi-
cant importance in solving these problems, and is likely to pro-
vide useful information also in other sound source identification
applications, such as speaker recognition. However, musical sig-
nal analysis has has not been able to attain as much commercial
interest as, for instance, speaker and speech recognition. This is
because the topics around speech processing are more readily
commercially applicable, although both areas are considered as
being highly complicated.

First attempts in musical instrument recognition operated with a
very limited number of instruments and note ranges. De Poli and
Prandoni used mel-frequency cepstrum coefficients calculated
from isolated tones as an inputs to a Kohonen self-organizing
map, in order to construct timbre spaces [2]. Kaminsky and
Materka used features derived from an rms-energy envelope and
used a neural network or a k-nearest neighbour classifier to clas-
sify guitar, piano, marimba and accordion tones over a one-octave
band [5].

The recent systems have already shown a considerable level of
performance, but have still been able to cope with only a quite
limited amount of test data. In [7], Martin reported a system that
operates on single isolated tones played over the full pitch ranges
of 15 orchestral instruments and uses a hierarchical classification
framework. Brown [1] and Martin [8] have managed to build clas-
sifiers that are able to operate on test data that include samples
played by several different instruments of a particular instrument
class, and recorded in environments which are noisy and reverber-

ant. However, even the recent systems are characterized eithe
a limited application context or by a rather unsatisfactory pe
formance.

In this paper, we aim at utilizing a widest range of features cha
acterizing the different properties of sounds. This is done in ord
to handle a certain defect in the earlier proposed systems: fail
to make simultaneous and effective use of both spectral and te
poral features, which is suggested by the work in psychoaco
tics. Signal processing methods were implemented that attemp
extract cues about the temporal development, modulation prop
ties, irregularities, formant structure, brightness, and spectral s
chronicity of sounds. Although all the factors in sound sourc
identification, and especially their interrelations are not known,
large number of them have been proposed. Thus it looked parti
larly attractive for us to utilize as much as possible of that info
mation simultaneously in a recognition system, and to see if th
would allow us to build a more robust instrument recognition sy
tem than described in experiments so far.

Our current implementation handles the isolated tone conditi
well, and we are hoping that it will generalize to still more realis
tic contexts. A practical goal of our research is to build an instr
ment recognition module that can be integrated to an automa
transcription system [6].

This paper is organized as follows. In Section 2, we short
review the literature in sound source identification and perceptio
In Section 3, we first take a look at the features used in instrum
recognition systems and discuss the approach taken in this pa
Then we describe our feature extraction algorithms. In Section
the selected features are validated with thorough simulations a
the classification results are compared to those of earlier studi

2.  DIMENSIONS OF TIMBRE

A considerable amount of effort has been done in order to find t
perceptual dimensions oftimbre, the ‘colour’ of a sound. Often
these studies have involved multidimensional scaling expe
ments, where a set of sound stimuli is presented to subjects, w
then give a rating to their similarity or dissimilarity. On the basi
of these judgements a low-dimensional space, which best acco
modates the similarity ratings, is constructed and a perceptua
acoustic interpretation is searched for these dimensions.

Two of the main dimensions described in these experiments h
usually been spectral centroid and rise time [3][9]. The first mea
ures the spectral energy distribution in the steady state portion
a tone, which corresponds to perceived brightness. The secon
the time between the onset and the instant of maximal amplitu
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The psychophysical meaning of the third dimension has varied,
but it has often related to temporal variations or irregularity in the
spectral envelope. A good review over the enormous body of tim-
bre perception literature can be found in [4]. These available
results provide a good starting point for the search of features to
be used in musical instrument recognition systems.

3.  CALCULATION OF FEATURES

Traditionally, the features provided by the timbre research can be
divided into spectral and temporal ones. In instrument recognition
systems reported so far, only features of either type have been
used. For instance, Kaminsky and Materka used temporal features
derived from a short time rms-energy envelope [5]. In the research
of Martin [7][8], a selection of temporal features calculated from
the outputs of a log-lag correllogram was used, but the spectral
shape was not considered at all. Brown reports good results been
achieved with cepstral coefficients calculated from oboe and sax-
ophone samples [1]. She used mel-frequency cepstrum coeffi-
cients from 23 ms frames, which were then grouped into one or
three clusters.

We wanted to test if combining the two types of features, cepstral
coefficients and temporal features, would yield the necessary

extra discriminating power needed for instrument recognitio
with a wider set of instruments. The feature set we used is p
sented in Table 1.

3.1 Feature extraction methods
The short-time rms-energy envelope contains information es
cially about the duration of excitation. We estimated rise-tim
decay-time, strenght and frequency of amplitude modulatio
crest factor and detected exponential decay from the rms-ene
curve calculated in 50% overlapping 10ms frames.

The spectral centroid of the signal is calculated over time in 20m
windows. At each window, the rms-energy of the spectrum is es
mated using logarithmic frequency resolution. After that, th
spectral centroid is calculated. We use both the absolute value
spectral centroid and a normalized value, which is the absol
value divided by the fundamental frequency. The fundamen
frequency estimation method used here is the one presented
Klapuri in [6].

Sinusoid track representation provides many useful temporal f
tures. We first calculate the harmonic amplitude on each of Ba
scale bands, which resemble the frequency resolution of the co
lea. Knowledge about the fundamental frequency is applied

Table 1: Feature descriptions

1 Rise time, i.e., the duration of attack

2 Slope of line fitted into rms-energy curve after attack

3 Mean square error of line fit in 2

4 Decay time

5 Time between the end of attack and the maximum of
rms-energy

6 Crest factor, i.e.,max / rms of amplitude

7 Maximum of normalized spectral centroid

8 Mean of normalized spectral centroid

9 Mean of spectral centroid

10 Standard deviation of spectral centroid

11 Standard deviation of normalized spectral centroid

12 Frequency of amplitude modulation, range 4-8Hz

13 Strength of amplitude modulation, range 4-8Hz

14 Heuristic strength of the amplitude modulation in
range 4-8Hz

15 Frequency of amplitude modulation, range 10-40Hz

16 Strength of amplitude modulation, range 10-40Hz

17 Standard deviation of rise times at each Bark band

18 Mean error of the fit between each of steady state
intensities and mean steady state intensity

19 Mean error of fit between each of onset intensities
and mean onset intensity

20 Overall variation of intensities at each band

21 Fundamental frequency

22 Standard deviation of fundamental frequency

23-33 Average cepstral coefficients during onset

34-44 Average cepstral coefficients after onset
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Figure 2. Clarinet tone: intensities as a function of Bark fre-
quency plot. At the low end of clarinet playing range the
odd partials are much stronger than the even partials.

Figure 1.Flute tone: intensities as a function of Bark fre-
quency. Especially amplitude modulation can be seen clear
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order to resolve whether any harmonics are found on each band.
The amplitude envelopes of single harmonic frequencies can be
calculated efficiently with anO(n) algorithm, wheren is the sam-
ple length. If more than one harmonic frequencies are found, then
amplitude envelopes are calculated separately and the resulting
band-amplitude is the mean of these. The band-wise intensity is
calculated by multiplying the amplitude by the center frequency
of the band.

The intensities are decimated by a factor of about 5ms to ease the
following computations and smoothed by convolving with a 40ms
half-hanning (raised-cosine) window. This window preserves sud-
den changes, but masks rapid modulation. Figures 1 and 2 display
intensity versus Bark frequency plots for 261Hz tones produced
by flute and clarinet, respectively.

When the intensity matrix is calculated, a number of features can
be easily extracted. The similarity of shape between intensity
envelopes is measured by fitting the envelopes into a mean enve-
lope and calculating the mean of mean squre errors. This is done
separately for the onset period and the rest of the waveform. The
error value of the onset period, accompanied with the standard
deviation of bandwise rise times, can be considered as a measure
of onset asynchrony. Another measure that can be extracted from
the intensity envelope curves is the overall variation of intensities
at each band.

The spectral shape of tones is modelled with cepstral coefficients,
which are calculated with a method adapted from an automatic
speech recognition system described in [11]. Calculation proce-
dure is done in 25% overlapping windowed frames of size
approximately 20ms. Autocorrelation sequence is calculated first
and then used for LPC coefficient calculation with Levinson-
Durbin algorithm. LPC coefficients are then converted into ceps-
tral coefficients, which have been found to be a robust feature set
for use in speech and instrument recognition [1]. We used two sets
of 11 coefficients, averaged over the onset and the rest of the sam-
ple.

4.  CLASSIFICATION

Musical instruments form a natural hierarchy, which includes dif-
ferent instrument families. In many applications, classification
down to the level of instrument families is sufficient for practical
needs. For example, searching a database to find string music
would make sense. In addition to that, a classifier may utilize a
hierarchical structure algorithmically while assigning a sound into
a lowest level class, individual instrument. This has been pro-
posed and used by Martin in [7][8]. In the following, we give a
short review of his principles. At the top level of the taxonomy,
instruments are divided into pizzicato and sustained. Second level
comprises instrument families, and the bottom level individual
instruments. Classification occurs at each node, applying knowl-
edge of the best features to distinguish between possible sub-
classes. This way of processing is suggested to have some
advantages over direct classification at the lowest end of the tax-
onomy, because the decision process may be simplified to take
into account only the small number of possible subclasses.

In our system, at each node a Gaussian or a k-NN classifier w
used with a fixed set of features. The Gaussian classifier turn
out to yield the best results at the highest level, where the num
of classes is two. At the lower levels, k-NN classifier was use
Bad features are likely to decrease classifying performan
which makes evaluating the salience of each feature essential.
features used at a node were selected manually by monitoring
ture values of possible subclasses. This was done one feature
time, and only the features making clear distinction were includ
into the feature set of the node.

We implemented a classification hierarchy similar to that pr
sented by Martin in [7], with the exception that his samples an
taxonomy did not include piano. In our system the piano w
assigned to an own family node because of having a unique se
some features, especially cepstral coefficients. According to M
tin, classification performance was better if the reeds and t
brass were first processed as one family and separated at the
stage. We wanted to test this with our own feature set and test d
and tried the taxonomy with and without the Brass or Reeds no
which is marked with a ‘*’ in Figure 3.

5.  RESULTS

Our validation database consisted of 1498 solo tones covering
entire pitch ranges of 30 orchestral instruments with several ar
ulation styles (e.g. pizzicato, martele, bowed, muted, flutter),
illustrated in Figure 3. All tones were from the McGill Maste
Samples collection [10], except the piano and quitar tones wh
were played by amateur musicians and recorded with a D
recorder. In order to achieve comparable results to those descri
by Martin in [7], similar way of cross validation with 70% / 30%
splits of train and test data was used. A difference to the meth
of Martin was to estimate the fundamental frequency of the te
sample before classification, which was then compared to
pitch ranges of different instruments, taking only the possib
ones into classification.

In Table 2, we present the classification results made in the th
different ways. Hierarchy 1 is the taxonomy of Figure 6 withou
the Brass or Reeds node. In the No-hierarchy experiment class
cation was made separately for each classification level. The H
archy 2 proved out to yield slightly better results, like Martin
reported in [7]. But interestingly, in our experiments, the dire
classification at each level performed best at both tasks, wh
was not the case in Martin’s experiments where the Hierarchy
yielded the best results. At the current implementation, classific
tion result at the lower level of hierarchy is totally dependent o
the results of the higher levels, and the error cumulates as the c
sification proceeds.

Table 2: Classification results

Hierarchy 1 Hierarchy 2
No

hierarchy

Pizzicato / sustained 99.0% 99.0% 99.0%

Instrument families 93.0% 94.0% 94.7%

Individual
instruments

74.9% 75.8% 80.6%
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No significant advantage was achieved with hierarchical classifi-
cation. Perhaps the biggest benefit of hierarchical approach would
be got if more than one possible choises at each node were taken
into account and the salience of the features was automatically
evaluated. Classification of this kind has been used in [8].

The achieved performance both in instrument family and individ-
ual instrument classification was better than reported by Martin in
[7]. His system’s classification accuracies were approximately
90% in instrument family and 70% with individual instruments,
while the data set consisted 1023 samples of 15 different instru-
ments, being a subset of our data. Comparison to other systems is
not reasonable because of the different amount of instruments or
different method of performance evaluation used [1][5][8].

6.  CONCLUSIONS

A system for musical instrument recognition was presented that
uses a wide set of features to model the temporal and spectral
charactreristics of sounds. Signal processing algorithms were
designed to measure these features in acoustic signals. Using this
input data, a classifier was constructed and the usefulness of the
features was verified. Furthermore, experiments were carried out
to investigate the potential advantage of a hierarchically struc-
tured classifier.

The achieved performance and comparison to earlier results dem-
onstrates that combining the different types of features succeeded
in capturing some extra knowlege about the instrument properties.
Hierarchical structure could not bring further benefits, but its full
potential should be reconsidered when a wider data set including
more instruments, as well as different examples from a particular
instrument class is available. Future work will concentrate on
these areas, and on integrating the recognizer into a system that is
able to process more complex sound mixtures.
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Instrument

SustainedPizzicato

Strings Reeds BrassPiano Strings Flute or

Brass or *
Reeds

Guitar
Violin
Viola
Cello
Double

Violin
Viola
Cello
Double

Bass Flute
Alto Flute
Flute
Piccolo

Contra Bassoon
Bassoon
Contrabass Clarinet
Bass Clarinet
Bb Clarinet
Eb Clarinet
Oboe

English Horn
French Horn
Bass Trombone
Alto Trombone
Tenor Trombone
Trumpet
Bach Trumpet
Tuba
Bass Sax
Baritone Sax
Tenor Sax
Alto Sax
Soprano Sax

Piano

Piccolo

Figure 3.The taxonomy presented by Martin in [7] with the exception that the Piano node is added.
Instrument families are bolded, and individual instruments are listed at the bottom level.
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