
MUMT611: MUSIC INFORMATION AQUISITION, PRESERVATION AND RETREIVAL 1

Implementation of Hidden Markov Model to Weka
Alexandre Savard

Schulich School of Music - McGill University
555 Sherbrooke St. West

Montreal, QC Canada H3A 1E3

I. INTRODUCTION

THE goal of this project is to include an Hidden Markov
Model to Weka, an open source data mining and

machine learning algorithms software. Version 3.4.7 of Weka
has been explored. A Java HMM library written by Jean-Marc
Franois has been found. Version 0.5.0 will be discussed here.
It presents a very important non-compatible feature. NetBeans
IDE 5.0 has been used for compilation.

II. WEKA

A. Architecture of Weka

Weka can be used at different levels. It provides command-
line and graphical interfaces that make easier comparison
between different classifiers. However, what makes it so
powerful is that it can be easily adapted and used in our
own Java code. Weka source code is divided in three main
packages : the core, the classifiers, and the filters.

The core is composed of all classes that allow the user to
manipulate data and files. One of the most important classes
is the class Attribute that contains numeric, nominal, or string
description of the data. The class Instance stores data values
related to one element as floating points. It represents a line
in the ARFF file format while the header of the file gives
informations for the attributes. A third important class is
Instances, this last one hold a set of instances.

The classifier package contains actually all the machines
learning algorithm. Each of them needs to implement
two required method : the buildClassier() method and the
classifyInstance() method. The buildClassier() method is
called to generate the classifier while the classifyInstance()
method processes data to be categorized. The first one takes,
as an argument, a set of trainning instences. The second
one, needs a set of instance to classify. For HMM, the
buildClassier() method should contain all methods that,
in a first step, preprocess the data in order to make them
compatible to sequential observation. The second step should
be the initialization of the HMM using the Baulm-Welch
learning algorithm.

The classifyInstance() method is the one that needs to
perform the Viterbi algorithm and to calculate the probability
of an observation sequence in order to get useful information
to classify the input instance given a trainned HMM. The
classification process using HMM needs as many models as

there is class. Each model is trainned with Then, hopefully,
the two previous become characteristic features for the class.

B. The ARFF file format
Weka is optimized to handle non-sequential data sets.

Integration of Hidden Markov Model to Weka is problematic
due to this constraint. Considering the ARFF file format, since
that for each columns is specified a particular attribute, we
are restricted to use a limited number of column. Otherwise
the header of the file becomes quickly very extended and
hard to manipulate.

It has been chosen that the data should be written on two
columns using this file format. The first column represents the
observation while the second column is a flag The file is read
from up to down. See /DynamicHmm/Dist/obsrvSet.arff for an
exemple.

III. JAHMM

Jahmm is a library written in the Java language that
implements HMM related lagorithims. Its primary feature is
probably the fact that it can be applied on many different
types of observation. It has been meant to read and write
simple file within the jUnit environment containing only
observation separated by semi-colons.

The main class is obviously Hmm class that contains all the
information about a given HMM: transition probability matrix,
initial probability distribution, and observation probability
distribution for each state. The class Observation is the
building block of the library and is mostly extended by all
the other classes. Both the Hmm and the BaulmWelchLearner
are instantiated by specifying a particular Observation classe
and its appropriate OpdfFactory. The letters Opdf stand
for observation probability distribution function. These two
classes are used internally to specify to calculators what datas
are going to be handled.

The BaulmWelchLearner class implements the learning al-
gorithm needs to be instantiated while specifying a given set
of sequences of observation in argument. Then the learning
process is applied by iteration returning a new updated HMM
given the previous one.

IV. HMM FUNDAMENTAL PROBLEMS

A. Generic Programming
BaulmWelchLearner is generic, as well as the whole library

and needs to be instantiated specifying the datatypes to be



MUMT611: MUSIC INFORMATION AQUISITION, PRESERVATION AND RETREIVAL 2

handled. The Constructor needs as a second argument a
List(). List() is an interface That handles collection. In Java,
generics type correctness are checked at compile time. An
important drawback is that the generic type information is
not known at runtime. So, List<ObservatioDiscrete> and a
List()Listt<ObservationVectort> are seen as the same class:
List(). It is not possible to create an array of generic type
since it is impossible to evaluate its type. Then, once created,
an observation sequence cannot be modified. Errors may
occur when instantiate the Learner with a different type than
the one expected.

To be used in an environment such as Weka, the Li-
brary needs to be modified. ”DynamicHmm” is a try
to make the BaulmWelchLearner dynamic replacing all
Listt<Listt<Observation>> by ArrayList. ArrayList is a di-
rect extension of the List interface.

B. Solution

To be used in an environment such as Weka, the
Library needs to be modified. ”DynamicHmm” is a try
to make the BaulmWelchLearner dynamic replacing all
Listt<Listt<Observation>> by ArrayList(). ArrayList()
extends List() interface so that a sequence of observation can
be dynamically modified. ArrayList() can contain any type
(even boaleen) and type is checked at runtime.

V. CONCLUSION

Version 0.6.1 of Jahmm that presents a non-generic Baum-
Welch Learner have been released in april. This version
presents a lot of change compared to version 0.5.0 and version
a first version 0.6.0 was not compatible with Java 1.5.0 on mac
OSX. It is for this reason that Jahmm version 0.5.0 have been
prefered first. Next try should be using this later version of
Jahmm. Hopefully a new library that can be include in Weka
won’t have to be written.

REFERENCES

[1] Baum L. and T. Petrie. 1966. Statistical inference for probabilistic
functions of finite state Markov chains. The Annals of Mathematical
Statistics. 37. 1554–63.

[2] Rabiner, L. 1989. A tutorial on hidden Markov models and selected
applications in speech recognition. Proceedings of the IEEE 77. 257–85.

[3] Witten, I. and E. Frank. 2000. Practical machine mearning tools and
techniques with Java implementations. San Francisco: Morgan Kaufmann.
265–320.


