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Abstract— This paper introduces the fundamental concepts
surrounding Hidden Markov Model. Readers who have never
been introduced to this theory will find particularly useful the
information provided by this short introduction before getting
involved in more extensive explanations. It is in fact a summary of
a paper written by Rabiner (1989) that is strongly recommended
by the author. Markov process will first be explained before
being extendd to the class of hidden Markov model. Finally, the
three fundamental problems that can be solved by HMM will be
presented.

Index Terms— Hidden Markov Model, HMM

I. INTRODUCTION

PEOPLE concerned in physics and engineering are
probably more used to think about signal in terms

of continuous function as audio or electromagnetic waves.
However, the definition of signal appears to be larger,
including discrete codes as alphabet or traditional music
notation. Any types of signal can be represented using a
model.

Models are very powerful tools used mostly for prediction
or identification task but also for recognition systems. These
models can be divided into two different classes: the determin-
istic models and the statistical models. The first class are the
ones that we are the more use to deal with in sciences. Two
well-known applications of this modeling approach are the one
dimensional wave equation as well as the harmonic pendulum
equation. The other type of model involves stochastic process
including Gaussian process, Poisson process, Markov process
and hidden Markov model. What make this last one very
specific is that it handle sequences of consecutive observations
while most of the other types of model don’t.

II. DISCRETE MARKOV PROCESS

Consider a set of N distinct states {S1, S2, ...SN}. The
system undergoes a change of state according to a set of
probabilities. Each change corresponds to a time instant t =
1, 2, ... The actual state at time t is denoted qt. Such a model is
described by figure 1. The key element of the Markov process
is the definition of the probabilities of changes for an new state
in function of previous states. A first order Markov chain is
a probabilistic description involving the actual state and the
previous one.

aij = P [qt = Sj |qt−1 = Si] 1 ≤ i, j ≤ N

aij are the state transition probabilities with condition:

aij ≥ 0

N∑
j=1

aij = 1.

As an example, let consider the weather. We assume three
different states corresponding to rainy, cloudy and sunny
meteorological conditions. The transition probabilities matrix
describes how the weather changes.

A = {aij} =

 0.4 0.3 0.3
0.2 0.6 0.2
0.1 0.1 0.8


The values on the primary diagonal describe the prob-

abilities to get the exact same weather two successive
days. If you provide an observation sequence O =
{S3, S3, S3, S1, S1, S3, S2, S3, }, you can calculate the proba-
bility to get this specific set of observation according to the
model as following:

P (O|Model) = P [S3, S3, S3, S1, S1, S3, S2, S3]
= P [S3] • P [S3|S3] • P [S3|S3] • ... • P [S3, S2]
= π3 • a33 • a33 • a31 • a11 • a11 • a13 • a32 • a23

= 1 • (0.8)(0.8)(0.1)(0.4)(0.3)(0.1)(0.2)
= 1.536× 10−4
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III. EXTENSION TO HIDDEN MARKOV MODEL

So far we considered Markov models that only that only
take into account states that were easily associated to observ-
able physical events. An extension to hidden Markov model
includes the cases where the observations are function of the
state. We then obtain two different levels of stochastic process,
the first one for the states, the other of the observations at each
states.

The urn ball model shown in figure 2 depicts this situation.
We pick up balls of different colors from different urns. Each
urn corresponds to a specific state. Different observation
probabilities coresponding to the color of the balls are
associated to states.

However, and here is the key idea behind hidden Markov
model, the observation doesn’t provide us the state. The states
are actually the hidden part of the model.

O = {green, red, blue, ...}

To be completely defined, the number of states N of the
model has to be given as well as the number of observa-
tion symbols M per state. Also, transition state probability
distribution A = {ai,j} and observation symbol probability
distribution B = {bj} have to be specified. Finally, to
complete the model, we need the initial state distribution
π = {πi}where πi = P [q1 = Si]. The model is then
represented by λ = {A,B, π}.

IV. HMM FUNDAMENTAL PROBLEMS

There is mostly three problems that can be solved using
hidden Markov models :

1) Given the observation sequence O and a model λ, how
do we efficiently compute P (O|λ), the probability of
the observation sequence according to the model ?

2) Given the observation sequence O and a model λ, how
do we choose a corresponding state sequence Q which
is optimal in some meaningful sense (best explains the
observations) ?

3) How do we adjust the model parameters λ to maximize
P (O|λ) ?

V. CONCLUSION

Hopefully, this paper will make easier the understanding of
more extended and advanced papers related to hidden Markov
model. This model is very important in the field machine

learning algorithm and is commonly encountered. Its extension
to musical application is recent. However, its use for audio
analysis is appropriate since it has been first designed for this
task in the field of speech recognition.
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