
M US I C G EN R E R EC O GN I T I ON

Karin Kosina

D I P LOMAR BE IT

eingereicht am

Fachhochschul-Studiengang

M E D I E N TE C H N IK UN D - D E S I G N

in Hagenberg

im Juni 2002

c© Copyright 2002 Karin Kosina.

All rights reserved.

ii

Erklärung

Hiermit erkläre ich an Eides statt, dass ich die vorliegende Arbeit selbst-
ständig und ohne fremde Hilfe verfasst, andere als die angegebenen Quellen
und Hilfsmittel nicht benutzt und die aus anderen Quellen entnommenen
Stellen als solche gekennzeichnet habe.

Hagenberg, am 19. Juni 2002

Karin Kosina

iii

Contents

Erklärung iii

Preface vii

Abstract viii

Kurzfassung ix

1 Introduction 1
1.1 Motivation . 1
1.2 Scope of this work . 3

2 Music Genre Recognition 4
2.1 Overview . 4

2.1.1 Terminology . 4
2.1.2 Schematic Model . 5
2.1.3 Difficulties . 6

2.2 Human Sound Perception . 7
2.2.1 The Human Ear . 7
2.2.2 A Study of Human Music Genre Classification 8

2.3 Related Fields . 8
2.3.1 Speech Recognition . 9
2.3.2 Speaker Recognition 9
2.3.3 Music vs. Speech Classification 9
2.3.4 Video Content Analysis 9
2.3.5 Beat Tracking and Rhythm Detection 10
2.3.6 Query By Example . 10
2.3.7 Automatic Music Transcription 10
2.3.8 Auditory Scene Analysis 11
2.3.9 Image Recognition . 11

3 Feature Extraction 12
3.1 Overview . 12

3.1.1 Introduction . 12

iv

CONTENTS v

3.1.2 Formal Notation . 13
3.1.3 Choosing the Right Features 13

3.2 Background: Fourier Analysis 14
3.2.1 Sinusoid Superposition 15
3.2.2 Fourier Transform . 17
3.2.3 Short-Time Fourier Transform 17
3.2.4 Discrete Fourier Transform 18

3.3 Physical Features vs. Perceptual Features 19
3.4 Features Used in Music Genre Recognition 20

3.4.1 Frequency Spectrum 20
3.4.2 Mel-Frequency Cepstral Coefficients 21
3.4.3 Average Zero-Crossing Rate (ZCR) 23
3.4.4 Short-Time Energy . 25
3.4.5 Rhythm and Beat . 25
3.4.6 Timbre . 26

4 Classification 27
4.1 Overview . 27

4.1.1 Introduction . 27
4.1.2 Bayesian Decision Theory 30
4.1.3 Discriminant Functions 32
4.1.4 The Normal Density 33
4.1.5 Parameter Estimation 34
4.1.6 Nonparametric Methods 35
4.1.7 Distance Metrics . 36

4.2 Audio Classification Examples 37
4.2.1 Nearest Feature Line 37
4.2.2 Tree-based MMI Vector Quantiser 37
4.2.3 Hidden Markov Models 38
4.2.4 Others . 38

5 Prototype 39
5.1 Underlying Principles . 39
5.2 Feature Extraction Subsystem 42

5.2.1 History/Background 42
5.2.2 Musical Surface Features 43
5.2.3 Beat-Related Features 45
5.2.4 Design Overview . 48

5.3 Classification Subsystem . 49
5.4 Limitations . 50

CONTENTS vi

6 Experimental Results 53
6.1 Test Data . 53
6.2 Test Procedure . 54
6.3 Test Results . 55
6.4 Usage Example . 55

7 Conclusions 57
7.1 Where Do We Go From Here? 57
7.2 Contributions to the State of the Art 58
7.3 Final Remarks . 59

Bibliography 64

A Playlists 65
A.1 Rock . 65
A.2 Dance/Techno . 67
A.3 Classical . 69

B Listing of Classifier Training 72

C Contents Of The CD-ROM 74
C.1 Thesis . 74
C.2 MUGRAT Source Code . 75

Preface

This work is dedicated to the music of the universe, its fractal beauty ex-
pressing itself in the miracle of life, the laws of nature, the songs of the wind,
the rhythm of your heartbeat, the dance of the planets.

I would like to express my gratitude to:

My beloved mother, Marianne Kosina, for reminding me to stop hack-
ing every once in a while to eat, drink, take a break, or sleep, for
listening to all the geek talk about sampling rates and segmentation
faults, and for believing in me; but most of all, for teaching me that
questions are more important than answers.

Stephan Dreiseitl, my supervisor, for his constant encouragement, sup-
port and feedback, and especially for his enthusiasm for this project
from the very beginning.

George Tzanetakis, for sharing his knowledge and vision in a truly
inspiring exchange of thoughts.

My friends, especially Barbara, Eric, Lars, Niki, Petra, René, and
Roland, who have supported this work through (in no particular or-
der) proof-reading, encouragement, internet and printing services, sug-
gestions, criticism, access to their non-artificial neural nets, access to
their music collections, and blank CD-Rs.

The Free Software community, without whose amazing shared efforts
all of this would be unthinkable.

vii

Abstract

The present work describes a system for the automatic recognition of music
genres, based exclusively on the audio content of the signal. A comprehen-
sive overview of music genre classification is presented, including disquisi-
tions on the required background from fields such as human sound percep-
tion, pattern classification, and signal processing. A critical evaluation of
the tacit assumptions behind many existing approaches is made, resulting
in a number of conclusions about the design of a music genre recognition
system. A prototypical system (MUGRAT) that is based on these principles
is presented.

MUGRAT is based on extracting various features from the input sound
that are likely to also be important in human music genre recognition. These
features can roughly be distinguished into two categories: (a) features relat-
ed to the musical texture, and (b) features related to the rhythm/beatedness
of the sound. A k-nearest-neighbour classifier is trained with a set of sam-
ple data consisting of randomly chosen musical excerpts of 3 seconds length.
The system reaches a classification accuracy of 88 % for the three test genres
Metal, Dance, and Classical.

viii

Kurzfassung

Die vorliegende Arbeit stellt ein System zur automatischen Erkennung von
Musikrichtungen vor, das ausschließlich auf den Audiodaten des Signals ba-
siert. Sie bietet einen umfassenden Überblick über das Gebiet der auto-
matischen Erkennung von Musikrichtungen, inklusive einer Erörterung des
nötigen Hintergrundwissens aus Bereichen wie der menschlichen Wahrneh-
mung, Klassifizierung und Signalverarbeitung. Eine kritische Betrachtung
der Annahmen, die vielen bestehenden Systemen zu Grunde liegen, wird
präsentiert. Das Resultat ist eine Reihe von Schlußfolgerungen über das De-
sign eines Systems zur automatischen Erkennung von Musikrichtungen. Ein
prototypisches System (MUGRAT), das auf diesen Prinzipien basiert, wird
vorgestellt.

Die Grundlage von MUGRAT ist, dass verschiedene Features, die ver-
mutlich auch in der menschlichen Klassifizierung von Musik von Bedeu-
tung sind, aus dem Musikstück extrahiert werden. Diese Features können
grob in zwei Kategorien unterteilt werden: (a) Features, die die musikali-
sche Textur betreffen, und (b) Features, die sich auf den Rhythmus/Beat
des Songs beziehen. Zur Klassifizierung wird der k-Nearest-Neighbour Al-
gorithmus eingesetzt; dabei werden zufällig ausgewählte Ausschnitte von
3 Sekunden Dauer für das Training verwendet. Das System erreicht eine
Klassifizierungs-Genauigkeit von 88 % für die drei Test-Genres Metal, Dance
und Klassik.

ix

Chapter 1

Introduction

Distinguishing between music genres is a trivial task for human beings. A
few seconds of music usually suffice to allow us to do a rough classification,
such as identifying a song as rock or classical music. The question that
this thesis attempts to address is whether it is also possible for a machine
to make such a classification. I think that it is, within certain limits. The
present work investigates ways to automatically classify music files according
to genre, based exclusively on the audio content of the files.

1.1 Motivation

The idea for this work first crossed my mind when I issued the command
locate .mp31, and it returned a listing of 3125 files scattered all across my
hard drive, most of them having names such as 01A4029531-B.mp3. Most of
these files contained no indication whatsoever about artist, title, or at least
general musical category. I realised that this shows a grave problem in the
current handling of multimedia data in general, and music in particular2.
We do not deal with sound as sound; we describe sound, and then use this
meta-information as the basis for accessing, classifying, and sharing the
original data.

New Media on the Internet

The availability of fast connectivity and large bandwidth for acceptable
prices, together with advances in sound and video computer hardware, has
fundamentally transformed the Internet. The net used to be based on plain
ASCII text; other data such as images, sound, and movies were considered

1Locate is a UNIX command that lists all files matching a given pattern. In that case, I
was using it to look up all the files on my hard drive that contain “.mp3”, the suffix for
the popular compressed audio format MP3.

2The specific discussion here is concerned with the domain of audio data; however note
that most of the following issues apply to video and other multimedia data just as well.

1

1.1 Motivation 2

and handled as add-ons. Nowadays, the Internet has evolved to be a serious
exchange medium for multimedia data of all kinds. Experts believe that this
trend will continue, and even accelerate: While the main purpose of having
a personal computer used to be the ability to connect to the Internet, and
exchange information, this is no longer enough. In the future, the computer
will be regarded mainly as a digital hub that allows the user to browse, edit,
share, and experience multimedia from multiple sources [Job01]. Unfortu-
nately, the handling of this non-traditional content is still at a very primitive
stage. This is especially true with regards to searching and automatic in-
dexing and classification, which are essential capabilities for dealing with
large amounts of data.

Meta-Data

At present, multimedia data are usually classified based on textual meta-
information. The best-known example for this is probably ID3, an extension
to the popular MP3 format3. ID3 allows the user to add information such
as song title, artist, album name, release year, genre, etc. to the beginning
or the end of the file. These data are commonly referred to as tags.

Meta-data can be very useful for sorting, comparing, and getting quick
information. Unfortunately, this system has some important drawbacks:

1. The textual description of audio content is subjective and ambiguous.
This is especially true for music.

2. The meta-data have to be entered and updated manually, which means
a high degree of effort both in establishing and in maintaining a music
database. Such data are very likely to become outdated.

3. The formulation of non-ambiguous and clear search criteria is very
difficult. Due to the subjectivity mentioned above, search results will
depend not only on the content, but also on its interpretation by the
individuals that did the initial classification.

All of these problems are based on the fact that the meta-information is gen-
erated manually. Extracting the information from the actual data through
an automated, deterministic process would overcome these problems.

Advantages of Automatic Music Genre Recognition

The automatic classification of audio data according to music genres will aid
the creation of music databases. It will also allow users to generate personal
playlists on the fly, where the user specifies a general description such as

3For more information about ID3, refer to the ID3 homepage [Nil01]. A good introduction
can also be found in [Hac00].

1.2 Scope of this work 3

80s Synth-Pop, and the software does the actual file selection. Furthermore,
the features developed for automatic music genre recognition might also be
useful in related fields such as similarity-based searching.

Apart from these practical considerations, music genre recognition is a
very interesting field for other reasons as well. Our understanding of how
humans perceive music is still very limited and incomplete. The results
from research in computer-based music processing might well increase our
knowledge about the principles of our own perception.

1.2 Scope of this work

Overview

The thesis is a critical evaluation of the current state of automatic content-
based classification of music, and the principles, assumptions, and methods
of the field, and presents a prototype based on the conclusions drawn from
that evaluation. The work gives a general overview of music genre recogni-
tion as a special audio signal classification problem, and provides the neces-
sary background from areas such as signal analysis and supervised machine
learning. Special focus is put on discovering the features of a song that make
it possible for a computer to recognise a music genre. A set of principles that
should be kept in mind when designing a music genre recognitionn system
is proposed, and a prototype based on these features is presented.

Structure

The thesis is organised as follows: Chapter 2 gives a general overview of
the field, explaining the basic ideas, and giving some background in human
music perception. It also lists related fields, and discusses their relevance for
music genre recognition. Chapters 3 and 4 deal with the two major parts
of the problem, respectively feature extraction and automatic classification.
Chapter 3 contains a general overview of feature extraction, and a critical
discussion of important features for music genre recognition. The necessary
background from signal processing is presented as well. Chapter 4 gives
an introduction to classification, describing both its theoretical background
and the practical application to music classification. In Chapter 5, a detailed
description of the prototype I implemented is presented, including the basic
assumptions and hypotheses I made, and the limitations of the system. The
results I obtained are discussed in Chapter 6. Chapter 7 concludes the
thesis with suggestions for future work and a summary of the contributions
made by this thesis. In Appendix A the songs that were used to train and
test the prototype are listed. Appendix B shows how a classifier using the
features extracted by the prototype described in Chapter 5 can be trained
and evaluated. Appendix C lists the contents of the enclosed CD-ROM.

Chapter 2

Music Genre Recognition

2.1 Overview

2.1.1 Terminology

Like in every other field of science, a common definition of terms is necessary
for music genre recognition research. Unfortunately, such a definition does
not exist yet – the literature disagrees on even the most basic terminology,
and often uses expressions without defining them properly. Two reasons for
this can be identified:

1. Music is part of our daily life. Many terms have an intuitive meaning
that seems to be obvious, such as pitch or tempo of a song.

2. Human perception of sound in general, and music in particular, is
dependent on a variety of personal, cultural, and emotional aspects;
therefore its description also eludes clear definition. An example for
this is the notion of musical texture.

This lack of a common basis is one of the most serious obstacles that hinder
progress in audio signal classification. Hopefully a conscious effort will be
made in the future to establish a well-defined terminology. For this work, I
will at least try to define all technical terms when they are mentioned for
the first time, and be consistent throughout the thesis in how they are used.

Description of the Field

Music genre recognition is a subsection of the larger field of audio signal clas-
sification (ASC), which can be defined as extracting relevant features from
a sound, and using these features to identify into which of a set of classes
the sound is most likely to fit [Ger00]. Likewise, music genre recognition is
the extraction of information from music, and its classification into musical
classes (genres). Automatic music genre recognition refers to accomplishing

4

2.1 Overview 5

this task with the aid of machines. Since the subject of the present work
is music genre recognition by computers, the expressions automatic music
genre recognition and music genre recognition are used synonymously here.

Genres

The term genre comes from the Latin word genus, which means kind or class.
A genre might be described as a type or category, defined by structural,
thematic, or functional criteria [Bre01]. It is important to note that these
criteria are not determined by objective facts but are part of a dynamic
cultural process:

A genre is a patterning of communication created by a combi-
nation of the individual (cognitive), social, and technical forces
implicit in a recurring communicative situation. A genre struc-
tures communication by creating shared expectations about the
form and content of the interaction, thus easing the burden of
production and interpretation. [Eri99]

Genre classification is always subjective with regards to both the individual
listener and the socio-cultural environment. For this discussion, a music
genre can be considered as a specific class of music with a set of common
properties that in the perception of the average listener distinguish music
in that category from other songs. A specific genre is characterised by the
instrumentation and rhythmic structure of the kind of music it describes, but
there are many other factors that influence genre classification as done by
humans. One of the main challenges of automatic music genre classification
is to find out what these factors are.

Processing digital music with computers is easy. Music in a digital format is
nothing but a sequence of bits whose values correspond to the sound-pressure
levels in an analogue acoustic waveform. These bits can for instance easily
be interpreted by a machine to find out certain facts, such as the overall
amplitude of the signal at a given time. Understanding music, like humans
do it all the time without effort, is far more complex. The recognition of
music genres is one of these advanced tasks.

2.1.2 Schematic Model

As defined previously, music genre recognition is about classifying music into
certain pre-defined categories. The goal is therefore to develop a system with
the following properties: Input is a music signal1 in digital form. Output

1I am using the term music in its common connotation. Music genre recognition systems
try to imitate human skills, so if it sounds like music, then it is music.

2.1 Overview 6

signal meta-dataFX CL

Figure 2.1: Schematic overview of music genre recognition system.

is information about the input signal, describing how the input pertains to
the various music genre classes. The design of the black box that generates
this output from the input signal is the subject of music genre recognition
research.

When working on a complex problem, it is often desirable to see if it can
be split into invidual parts that can be tackled independently. Music genre
recognition is a classification problem, and as such consists of two basic steps
that have to be performed:

1. Feature Extraction

2. Classification

The goal of the first step, feature extraction, is to get the essential infor-
mation out of the input data. Feature extraction is discussed in detail in
Chapter 3. The second step is to find what combinations of feature val-
ues correspond to what categories, which is done in the classification part.
Classification is a relatively well understood problem; an overview is given
in Chapter 4. The two steps can be clearly separated: The output of the
feature extraction step is the input for the classification step. We can sub-
stitute this subsystem into the black box introduced above, resulting in the
model shown in Figure 2.1. This is the basic music genre recognition system
in its most simple representation.

2.1.3 Difficulties

Music genre recognition has turned out to be a difficult task for computers
to perform. Several reasons for this can be identified.

First of all, music is generally very complex. An amazing amount of work
has been done in the area of audio signal classification in the last ten years,
and advances are impressive. Still, most of this work focuses on simple
monophonic signals – sounds that do not appear in real-world situations,
and most notably not in music. Only recently has the study of real-world
polyphonic sounds become more active, and the field is still in its infancy.

Secondly, music is a perceptual phenomenon. The physical signals (pe-
riodic oscillations of air pressure) that hit our ears are well understood, but
how we actually perceive them is still mostly in the dark. The knowledge
that we have is not sufficient to explain many phenomena, and by far too

2.2 Human Sound Perception 7

incomplete to allow us to model a computer system that perfectly simulates
human music perception.

Finally, it has to be granted that the problem might be inherently diffi-
cult. Music genre recognition often seems trivial to humans, but this does
not mean that the results are always correct, or even objective, as the fol-
lowing example shows. I obtained MP3 files containing music by the band
Sisters of Mercy from three different sources. I myself would have labelled
the songs as Gothic Metal. Checking the ID3 tags of the files revealed the
classifications Industrial, Heavy Metal, and Other/Unclassified.

To evaluate a classification system, it might be interesting to see if it
makes the right mistakes – errors that also a human in that situation would
be likely to make, such as classifying slow parts of Symphonic Rock songs
as classical music.

2.2 Human Sound Perception

2.2.1 The Human Ear

Perhaps the most fundamental thing that has to be understood is that music
is sound. Music perception happens through the interaction of physical
objects that produce sound (musical instruments) with our auditory system.
Therefore, it has to be treated as a psychoacoustical phenomenon, not a
purely physical one.

The way we hear sound determines how we perceive music, so in order
to understand music-listening, it is important to know how human auditory
perception works. A short overview of the setup of the human ear follows.
More information can be found in any biology textbook; a good summary
is also given in [Rub01].

The human ear consists of three main regions: the outer ear, the mid-
dle ear, and the inner ear. The outer ear collects sound waves in the air,
and channels them to the inside. The middle ear transforms the acousti-
cal vibrations of the sound wave into mechanical vibrations. It contains
three interconnected movable bones called the ossicles – hammer, anvil, and
stirrup – which act as a lever to bridge the eardrum with the oval window
opening of the inner ear. In the fluid-filled inner ear, whose most impor-
tant part is the snail-shaped cochlea containing the organ of Corti with the
basilar membrane, a compressional wave is generated by the movements.
As the fluid in the cochlea moves back and forth, it causes motions in the
basilar membrane. This organ is lined with approximately twenty-thousand
hair-like nerve cells, each of which has a natural sensitivity to a particular
resonant frequency. When the hair cells are excited by vibration, a nerve
impulse is generated, and transmitted to the brain. Only the hair cells that
respond to the frequencies present at a given moment are activated. Thus,
the cochlea basically performs a frequency analysis of sound.

2.3 Related Fields 8

The connection between the physical properties of the sound signal and
our perception is still not totally clear. This will again be discussed in
Section 3.3.

2.2.2 A Study of Human Music Genre Classification

Human listeners have remarkable music genre recognition abilities. This was
shown in a study conducted by R.O. Gjerdigen and D. Perrot [PG99]. They
used ten different genres, namely Blues, Classical, Country, Dance, Jazz,
Latin, Pop, R&B, Rap, and Rock. Eight sample songs for each genre were
downloaded from the web in MP3 format. The songs had been classified
by leading web-based CD vendors. Half of the eight songs for each style
contained vocals, and half of them contained instrumental music only. Five
excerpts were taken from each song, with durations of 3000 ms, 475 ms, 400
ms, 325 ms, and 250 ms.

The subjects of the study were 52 college students enrolled in their first
year of psychology. The average time per week that they spent listening to
music was around 24 hours, according to their own statements. They were
presented with the short excerpts in a random order, and asked to decide
on one of the ten genres for each excerpt.

The accuracy of the genre prediction for the 3000 ms samples was around
70%, compared to the CD companies’ original classification. Taking into ac-
count that music genres are a relatively fuzzy concept, and that even the
music industry is sometimes contradicting in assigning genres, this percent-
age is unexpectedly high. The accuracy for the 250 ms samples still was
around 40%, and the agreement between the 250 ms classification and the
3000 ms classification was around 44 %. For each time interval, the classifi-
cation was slightly more accurate for the instruments-only excerpts.

The results of the study are especially interesting, since they show that
it is possible to accurately recognise music genres without using any higher-
level abstractions. 250 ms are much too short to hear the rhythm, melody or
conceptual structure of a song, so apparently classification is possible based
on spectral and timbral2 characteristics alone.

2.3 Related Fields

The following is a short overview of related research domains. This list is by
no means complete, nor does it try to be. An outline of the general area of
audio signal classification is presented here because many issues, problems,
and ideas are also relevant for music genre recognition.

2Timbre is discussed in Section 3.4.6.

2.3 Related Fields 9

2.3.1 Speech Recognition

Speech recognition is perhaps the most fundamental audio classification
problem: giving a computer the ability to analyse and understand speech.
This task is generally difficult due to the large number of ambiguities in
spoken language. It only seems easy to humans because we have years of
practice in understanding phonetically identical utterances by deriving clues
from environmental context, information about the speaker and subject, etc.

The basic functionality of speech recognition is as follows: The system
has to decide what phoneme is being spoken at any time, which can be done
through spectral analysis and the use of pattern matching algorithms. It has
turned out that temporal shifting algorithms such as Hidden Markov Models
(see also Section 4.1.5) produce the best results. After this, the phonemes
are assembled into words based on likelihood estimations.

For further information, please refer to one of the many excellent books
and publications on the subject, for instance [BR99]. Johnathan Foote dis-
cusses speech recognition as a specific audio classification problem in [Foo99].

2.3.2 Speaker Recognition

Speaker recognition is of special interest for security applications where ac-
cess rights are granted by analysing a voice sample. This is used to determine
whether the speaker belongs to a list of authorised people.

There are two problems that make speaker recognition difficult. (1) It
is hard to find features that uniquely identify individual speakers, allowing
for variations in the speech patterns, for instance due to a cold, but making
voice imitation impossible. (2) Dealing with environmental noise is often a
challenge.

2.3.3 Music vs. Speech Classification

Speech recognition systems work well on speech input, but do not provide
usable results when music is fed into the system. Likewise, it does not
make much sense to try and determine the music genre of a phone conver-
sation. The ability to distinguish between music and speech is important
as a front-end to a generic sound-analysis system that is able to process
real-world input data, passing the signals on to the specific back-end audio
signal classification program that can handle them appropriately. Recent
work in that area includes [ZK98a] and [Foo97b]. Besides this, separating
music and speech is also very useful in video content analysis.

2.3.4 Video Content Analysis

The audio part of a video signal can be a valuable element in video content
analysis. Its importance has long been underestimated, but it has recently

2.3 Related Fields 10

started to get the attention of researchers. Often it is even easier to classify
scenes by the audio component than by the visual part. For instance, there
are many ways (elements in the take, perspective, camera angle, editing
sequence, etc.) to visualise a shoot-out, but in all such scenes, the soundtrack
will contain the noise of a shot.

Audio features were used in automatic violence detection by trying to
recognise typical sounds, such as cries or shots in [PFE96]. [LWC98] uses
audio features to discriminate five types of TV programmes, namely com-
mercials, basketball games, football games, news reports, and weather fore-
casts, with an accuracy of about 75%. It is likely that by combining video
and audio information even better results can be reached.

2.3.5 Beat Tracking and Rhythm Detection

Tapping their foot along with a musical performance is an easy thing to do
even for non-musicians, but has been found to be a challenging problem for
automatic systems. Rhythm seems to be one of the key elements of musical
information. Beat tracking systems are therefore an important part in music
genre recognition. A more detailed discussion of the subject can be found
in Section 3.4.5.

2.3.6 Query By Example

The emergence of audio databases makes new query mechanisms necessary.
One intuitive way to search for a specific tune is to hum the song, and have
the system search for similar pieces of music. The classic description of this
concept can be found in [GLCS95]. The system proposed in this paper uses
approximate pattern matching to find similar tunes; the basic assumption is
that melodic contour, defined as the sequence of relative differences in pitch
between successive notes, can be used to discriminate between melodies.
This work suffers from one important drawback. The audio data have to be
in a parameterised format such as MIDI; the system cannot be used on a
database of e.g. MP3 files. [SSNY97] solves the problem of similarity-based
searching for audio data in WAVE format by using transform-based index-
ing. Each file is divided into small blocks, and a discrete cosine transform
(DCT) is applied to each of those, yielding a set of coefficients in the fre-
quency domain. These coefficients are used for matching against the (equally
transformed) query data.

2.3.7 Automatic Music Transcription

The purpose of music transcription is to produce a fully notated musical
score from audio input. This is trivial for monophonic signals, since here
the quality of the solution depends only on the accuracy of the pitch de-
tection algorithm. Polyphonic transcription is much more complicated, as

2.3 Related Fields 11

the system has to identify several concurrent pitches. To further complicate
things, there is no clear one-dimensional sequence: a note might begin before
a previous note finishes, making it hard to identify sequences [Pic01]. Most
work in this area at the moment tries to simplify the problem by separating
the audio stream into monophonic components, and then transcribing those.

Rodger J. McNab has developed a system that accepts acoustic in-
put, typically sung by the user, and displays it in standard music nota-
tion [MSW96]. A system for the automatic transcription of polyphonic
music is presented in Keith D. Martin’s paper [Mar96], which also contains
an excellent introduction into the subject.

2.3.8 Auditory Scene Analysis

At any given moment, we are surrounded by sound that generally contains
more than just one auditory event. The physical signal that hits our ears
does not contain any information on the individual parts that have con-
tributed to it, but still we are able to distinguish and separate between
sound events. For instance, it is easy for me to follow a conversation in a
crowded room with a lot of background noise, even though the frequency
and intensity of the voice I am listening to are changing.

The question how this is possible is addressed by the research field called
auditory scene analysis (ASA). ASA usually needs to be performed as a first
step in all computer-listening systems that work in a real-world environment
in order to filter out the relevant part of the signal. Most existing ASA
systems are limited by the fact that they use only data-driven processing,
while the human ability to understand complex sound environment is based
strongly on context-dependent inferences. A prediction-driven approach to
ASA that is better able to cope with complex sound scenes is presented
in [Ell96].

2.3.9 Image Recognition

Transforming the data from the auditory to the visual domain, e.g. by using
spectrograms (plots of the spectral analysis of a sound signal) makes it pos-
sible to draw from the well-understood domain of image recognition, and use
the techniques employed in that area. Promising results have been obtained
by researchers from Stanford University [DNS01]. The use of spectrograms
for music genre recognition is discussed further in Section 3.4.1.

Chapter 3

Feature Extraction

3.1 Overview

This chapter provides an introduction to the key concepts in feature ex-
traction, gives some necessary signal processing background, and discusses
features that are often used in music analysis. Please refer to Chapter 5,
Section 5.2 for a detailed description of the actual features used in the pro-
totype developed for this thesis.

3.1.1 Introduction

One of the challenges in music genre recognition is to find out what it is
that allows us to differentiate between music styles. The problem is that
we want to make observations about the similarity or dissimilarity of two
objects (in our case: music clips) that are not directly comparable1. To
make comparison (and therefore classification) possible, we must transform
the data first in order to be able to access the essential information contained
in them, a process referred to as feature extraction: computing a numerical
representation that characterises a segment of audio.

Feature extraction is one of two commonly used preprocessing techniques
in classification; it means that new features are generated from the raw data
by applying one or more transformations. The other possible technique is
feature selection – the process of identifying a subset of features within the
input data that can be used for effective classification. Feature selection can
be applied to the original data set or to the output of a feature extraction
process. A classification system might use both or either of these techniques.
Theoretically, it is also possible to use the raw data, if these are already
in a format suitable for classification. In reality, this is hardly ever the
case, though. The dimensionality of the datasets is often too high, the data

1This is not strictly true. It is possible to compare two music files, but such a comparison
would be limited to observations that are not relevant to the problem at hand, such as
the sampling rate or length of the files.

12

3.1 Overview 13

extraction selectionraw data feature vector

Figure 3.1: Generating a feature vector from an input data set.

contain a lot of redundancy, or are generally not suited for direct comparison.
This is especially true in the area of audio signal classification, where we are
dealing with long streams of redundant, noisy signals. A schematic overview
of the connection between features selection and feature extraction is shown
in Figure 3.1.

3.1.2 Formal Notation

A feature vector (also referred to as pattern or observation) x is a single data
item used by the classification algorithm, constisting of d measurements:
x = (x1, . . . , xd). The individual scalar components xi of the feature vector
x are called features or attributes, and the dimensionality of the feature
space is denoted by d. Each feature vector can be thought of as a point in
the feature space. A pattern set containing n elements is denoted as

X = {x1, . . . ,xn}

and the ith feature vector in X is written as

xi = (xi1, . . . , xid)

In most cases, a pattern set can be viewed as an n × d pattern matrix
[JMF99].

3.1.3 Choosing the Right Features

Using the right features is crucial for the classification process. A classifi-
cation algorithm will always come up with some kind of result, but a poor
feature representation will lead to a result that does not reflect the true
nature of the underlying data. The choice of features needs to fullfill two
basic criteria:

1. Objects that we perceive as similar must map to nearby points in
feature space, and the distance between the regions marked by the
decision boundaries2 should be as large as possible. This is referred to
as small intra-category scatter vs. high inter-category scatter [DNS01].
Proximity is not necessary in all cases, though. Depending on the

2Decision boundaries are explained in Chapter 4, which gives an introduction into classifi-
cation.

3.2 Background: Fourier Analysis 14

classifier, it might be enough that the points representing one category
lie in a region of feature space that can be clearly separated from the
regions for the other categories.

2. The features should preserve all important information that is con-
tained in the data. This has strong implications on what transforms
are allowed in the feature extraction process: the data should be sim-
plified without losing information. In the best case, the transform is
reversible, meaning that the original data can be reconstructed from
the transformed data. One of the properties of the Fourier transform
(described in Section 3.2) is full invertability, which makes it well-
suited for the problem at hand.

A simple example that demonstrates the importance of choosing the right
features can be seen in Figure 3.2. The data consists of points in 2D space,
which all have approximately the same distance from the origin. If Cartesian
coordinates – (x, y); see Figure 3.2(a) – are used as features, most classifica-
tion algorithms will have problems finding the correct decision boundaries.
On the other hand, if polar coordinates – (r, φ), where r is the radius and
φ is the angle; see Figure 3.2(b) – are chosen as feature representation, it
is easy to separate the two regions in feature space because of the radius
coordinate. Note that the dimensionality of the feature space is d = 2 in
both cases. This shows that even a simple transformation can often greatly
improve classification results.

Finding the best features is a very difficult task, and it often can only
be accomplished through a trial-and-error process. An overview of many of
the associated problems, such as how to rule out irrelevant features, is given
in [JKP94]. In general, the following can be said: Usually it is desirable
to reduce the dimensionality of the input data to improve performance and
increase computational efficiency, and in many cases this can be achieved by
applying suitable transformations. In the audio domain, a well-known and
useful technique is the Fourier transform, discussed in Section 3.2.

3.2 Background: Fourier Analysis

Fourier analysis is the generic name for a group of mathematical techniques
that are used for decomposing signals into sine and cosine waves. Looking
at the waveform (the time-amplitude plot) of a sound signal does not tell
us much about the contents. The information is encoded in the frequency,
phase and amplitude of the spectral components that make up the signal. To
be able to examine this information, it is necessary to calculate the signal’s
frequency spectrum, similar to processes that happen in the human auditory
system (see Section 2.2.1).

3.2 Background: Fourier Analysis 15

x

y

(a) Cartesian coordinates

φ

r

(b) polar coordinates

Figure 3.2: Example that illustrates how the choice of features influences
classification. In these two representations of the same data set, polar co-
ordinates are likely to yield better results than Cartesian coordinates. The
data in each region have different x and y values, but share a similar radius,
which makes it possible to separate the regions by a straight line in the polar
representation.

The following section outlines in brief the principles behind one of the
basic techniques to do this. For a more detailed discussion, consult any
book on signal processing, for instance [Smi98], an excellent disquisition on
digital signal processing that I recommend to everybody who seeks in-depth
understanding of the subject. Extended information on the mathematical
backgrounds can be found in [Wei02]. Unless stated otherwise, the informa-
tion in the following section is taken from these references.

3.2.1 Sinusoid Superposition

Jean Baptiste Joseph Fourier (1768 – 1830), a French mathematician and
physicist, was the first to discover that any continuous periodic signal can
be represented as the sum of properly chosen sinusoidal components.

A sinusoid is a mathematical function that describes a simple harmonic
oscillator: Let θ be an angle measured counterclockwise from the x-axis
along the arc of the unit circle. Then sin(θ) is the vertical coordinate of the
arc endpoint. By definition, it is periodic with period 2π. θ can be expressed
as 2πf , resulting in the sine function:

y(t) = A sin(2πft + φ) (3.1)

where A is the amplitude of the wave, f is the frequency of the signal
and φ is the phase angle of the wave. All signals, no matter how complex

3.2 Background: Fourier Analysis 16

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Time

A
m

pl
itu

de

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Time

A
m

pl
itu

de

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Time

Figure 3.3: Superposition of sine waves: The topmost two plots show two
sine waves with frequencies 50 Hz and 120 Hz, a = sin(2π50t) and b =
0.5 sin(2π120t). Combining those two signals by addition, c = a + b, results
in the signal displayed in the lowermost plot.

they appear, can be composed by adding such sine functions with different
frequency, amplitude and phase. This also applies (without restrictions) to
sound, which propagates through waves. The composition of a signal by
superposition of sinusoids is called Fourier synthesis. A simple example for
the generation of a more complex signals by adding sinusoids is shown in
Figure 3.3.

3.2 Background: Fourier Analysis 17

3.2.2 Fourier Transform

The opposite of Fourier synthesis is to split a signal into its sinusoidal com-
ponents; this is called Fourier analysis. Fourier analysis allows us to see
what frequencies are present in the signal, and how strong the influence of
each spectral component is. The mathematical transform3 to calculate the
Fourier analysis – called the Fourier transform – is given as:

X(f) =
∫ ∞

−∞
x(t)e−j2πftdt, (3.2)

and the inverse transform as

x(t) =
∫ ∞

−∞
X(f)ej2πftdf . (3.3)

In this equation, x(t) is the function in time, and X(f) is the corresponding
frequency function. j is the square root of -1 and e denotes the natural
exponent

ejφ = cos(φ) + j sin(φ).

Applying the Fourier transform to a signal converts it from its time domain
representation into the frequency domain representation. Note that these
are equivalent alternative ways of representing the same signal; modifying a
signal in one domain also changes it in the other. (For instance, performing
a convolution on time domain signals results in a multiplication of their
frequency spectra, and vice versa.) Figure 3.4 shows the frequency spectrum
of the example signal from Figure 3.3, obtained by calculating the Fourier
transform of the signal.

The Fourier transform operates on a signal of theoretically infinite length.
It provides information about the spectral content of the whole signal, and
totally lacks time resolution. This is not a problem for periodic signals (such
as the ones in the example above), but in the case of aperiodic signals (such
as music), a different solution is needed.

3.2.3 Short-Time Fourier Transform

The short-time Fourier transform (STFT) breaks the input data into short
sequential frames and performs the Fourier transform on each of them,
analysing how the signal changes over time. While this solves the problem
of taking temporal changes into account, it also generates new difficulties.
Since the Fourier transform requires the input signal to be infinite, each

3The mathematical term transform describes a procedure that changes an input vector into
an output vector, the difference to a function being that functions can have multiple input
values but only one output value, whereas the number of input and output values of a
transform are arbitrary.

3.2 Background: Fourier Analysis 18

0 20 40 60 80 100 120 140 160 180 200
0

50

100

150

200

250

300

350

400

450

500

Figure 3.4: Fourier Analysis of the signal c in Figure 3.3. Two peaks at 50
Hz and 120 Hz can be observed, which correspond to the two sine waves that
made up the signal: a = sin(2π50t) and b = 0.5 sin(2π120t).

frame has to be expanded into a signal of infinite length. The sudden break
at the frame boundaries introduces spectral components that are not present
in the original signal.

A workaround for this problem is to multiply each frame with a win-
dowing function, which scales the signal to zero at each end. The artefacts
cannot be totally eliminated by this, but can be significantly reduced by
choosing the right window function. A very common function is the Ham-
ming window [Smi98, Ch. 16], which features a good trade-off between com-
puting efficiency and good results. Note that windowing leads to loss of
information near the window boundaries, which is why the windows have to
overlap. The STFT can be calculated as follows4:

X(f, t) =
∫ ∞

−∞
h(t′ − t)x(t)e−j2πftdt (3.4)

3.2.4 Discrete Fourier Transform

The techniques discussed so far (see Equation 3.2) work on continuous sig-
nals. The equivalent in the digital domain is the discrete Fourier transform
(DFT). Consider the case of a discrete function, f(t) → f(tk), by letting

4h(t) is the window function in this equation.

3.3 Physical Features vs. Perceptual Features 19

fk ≡ f(tk), where tk ≡ k∆, with k = 0, . . . , N − 1. Choose the frequency
step such that

vn =
n

N∆
with n = −N/2, . . . , 0, . . . , N/2. The standard DFT is then given by

Fn =
1
N

N−1∑
k=0

fke
−j2πnk/N (3.5)

and the inverse transform by

fk =
N−1∑
n=0

Fnej2πnk/N . (3.6)

Note that the frequency response obtained from the DFT is often complex,
even though the original signal is completely real.

There are several ways to calculate the DFT, such as solving simulta-
neous linear equations or correlation [Smi98, Ch. 8], a discussion of which
would go beyond the scope of this thesis. The most efficient and most widely
used of these algorithms is the Fast Fourier Transform (FFT), described in
detail in [Smi98, Ch. 12].

3.3 Physical Features vs. Perceptual Features

Usually, the features used in audio signal classification systems are divided
into two categories: physical and perceptual. Physical features are based
on a mathematical and statistical analysis of the properties of the sound
signal. Examples for physical features are fundamental frequency, energy,
zero-crossing rate etc. Perceptual features are based on how humans hear
sound, for instance pitch, timbre and rhythm.

Obviously, all perceptual features are related to the physical features
in some way, since our perception is based on the physical sound signal.
Some of these connections are relatively straightforward: The amplitude
of the signal corresponds to the perceived loudness, and the fundamental
frequency is related to the pitch of a sound. However, taking a closer look
at these connections reveals that they are only rough approximations. For
instance, the subjective loudness depends on the spectral content of the
signal. Many perceptual features are very hard to describe in mathematical
terms altogether, since they are based on an intricate combination of physical
properties.

I am, for two reasons, not going to follow the strict separation between
physical and perceptual features in this thesis.

3.4 Features Used in Music Genre Recognition 20

First of all, as stated above, all perceptual features are based on the
physical aspects of the signal. Likewise, all physical properties of the sound
signal are subjected to the human perceptual mechanism when we hear the
sound, and are thus turned into perceptual features. We cannot hear “true”
sounds, as little as we can see “true” colours. An interesting phenomenon
that illustrates this fact is the reconstruction of the fundamental frequency
if it is missing from a signal. For example, the fundamental frequency of
a male adult’s voice is around 120 Hz, but many phone systems transmit
only frequencies between 300 and 3400 Hz. While in this case we do hear
that the quality of the signal is bad, we do not realise that the fundamental
frequency is lacking; the auditory system constructs and fills in the missing
frequency from the frequencies that are present [PFE96].

Secondly, I am sceptical about using the term perceptual. There are
many setups that try to integrate perceptual features, e.g. pitch, but do so
by modelling the physical properties of the signal that are thought to be
important in pitch perception. They are, hence, physical models using a
specific set of physical features. A truly perceptual system would have to
use a perceptual model for the feature extraction, i.e. model the way sounds
are perceived by humans through their auditory system. Such an approach
would probably produce the best results in audio signal classification, but
so far our understanding of perceptual processes is too limited to make this
work.

The distinction between physical and perceptual features can be useful
in some contexts; but for the reasons given above I will avoid using it in the
rest of this chapter.

3.4 Features Used in Music Genre Recognition

3.4.1 Frequency Spectrum

The frequency distribution of a signal can be calculated through the Fourier
transform (described in Section 3.2). Similar processes also happen in the
auditory perception system of humans and other vertebrates, which indicates
that the spectral composition of a signal is indeed the primary carrier of
information. The frequency spectrum is one of the essential features for
music genre recognition, and is used as the basis for deriving many other
features.

An interesting and intuitive way of working with spectral information is
to transform the FFT output to the visual domain by using spectrograms.
A spectrogram is a time-frequency plot of the FFT results. The x-axis shows
increasing time t, while the y-axis displays the frequency f (low frequencies
on top). The colour of a point (t, f) indicates the amplitude (black being ze-
ro, and using a linear scale for converting from amplitude values to greyscale
values).

3.4 Features Used in Music Genre Recognition 21

500 1000 1500 2000 2500 3000 3500 4000 4500

5

10

15

20

25

30

(a) Classical

500 1000 1500 2000 2500 3000 3500 4000 4500

5

10

15

20

25

30

(b) Heavy Metal

500 1000 1500 2000 2500 3000 3500 4000 4500

5

10

15

20

25

30

(c) Dance

Figure 3.5: Spectrograms for music samples from three genres. Time is
shown on the x-axis, frequency on the y-axis (increasing from the top), grey
values indicate power.

Figure 3.5 shows example spectrograms5 for randomly chosen samples
from three songs, all sampled at 22050 Hz with a time window of 64 sam-
ples. The songs can be considered typical for their respective genres: Für
Elise by Ludwig van Beethoven (Classical, Figure 3.5(a)), I just want you
by Ozzy Osbourne (Heavy Metal, Figure 3.5(b)), and The X-Files (Remix)
by DJ Dado (Techno/Dance, Figure 3.5(c)). A number of important obser-
vations can be made by looking at the spectrograms: The Beethoven piece
is distinctly different from the other two, since there is only one instrument
(a piano). The Dance clip has a strong beat that is clearly visible: high
energy in many frequencies for short periodic time intervals. The Metal
song is characterised by the electrical guitar, which produces high energy in
a certain frequency band over a more or less continuous time.

Spectrograms have been used in an attempt to solve the problem of mu-
sic genre recognition with image analysis techniques. A group of researchers
from Stanford University proposed a system that transforms the data from
the audio domain (waveform) to the visual domain (spectrogram), and then
applies the Texture-of-Textures algorithm, a fairly new technique for edge
detection in images [DNS01]. They reached a classification accuracy of ap-
proximately 75% in distinguishing Rock, Classic and Jazz.

3.4.2 Mel-Frequency Cepstral Coefficients

Human perception of the frequency content of sounds does not follow a linear
scale but uses a logarithmic distribution. Mel-frequency cepstral coefficients
(MFCCs) are based on the spectral information of a sound, but are modelled

5The spectrograms were generated using the Auditory Toolbox for Matlab, written by
Malcolm Slaney [Sla98].

3.4 Features Used in Music Genre Recognition 22

100 200 300 400 500 600 700 800 900

2

4

6

8

10

12

Figure 3.6: Plot of mel-frequency cepstral coefficients for the sample from
Figure 3.5(a), approximately 9 seconds at 22050 Hz. The sound is sampled at
100 Hz in the MFCC calculation, resulting in the 910 samples on the x-axis.
The y-axis shows the 13 MFCC features in increasing order, C0 on top.

to capture the perceptually relevant parts of the auditory spectrum6. The
sequence of processing is as follows [Sla98]:

1. Window the data (e.g. with a Hamming window);

2. calculate the magnitude of the FFT;

3. convert the FFT data into filter bank outputs;

4. calculate the log base 10;

5. calculate the cosine transform.

The filter bank is what makes MFCCs unique. It is constructed using 13
linearly spaced filters and 27 log-spaced filters, following a common model for
human auditory perception. The distance between the centre frequencies of
the linearly spaced filters is 133,33 Hz; the log-spaced filters are separated
by a factor of 1.071 in frequency. The final cosine transform (step 5) is
applied to reduce the dimensionality of the output, typically to the 12 most
important coefficients. Additionally, the power of the signal for each frame
is calculated, resulting in a feature vector of d = 13.

MFCCs are commonly used in speech recognition systems, and seem to
capture the perceptually relevant part of the spectrum better than other
techniques. They have successfully been applied to the content-based re-
trieval of audio samples [Foo97a] and also used in music genre recognition
systems [Li00].

6The term cepstrum refers to a transform of the spectrum, and is a pun on itself: cepstrum
is the word spectrum with the first syllable reversed.

3.4 Features Used in Music Genre Recognition 23

0 1 2 3 4 5 6 7
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

(a) 0.8sin(x).

0 1 2 3 4 5 6 7
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(b) 0.8sin(x) + 0.2sin(20x).

Figure 3.7: Example showing that fundamental frequency determination
is not always possible through the ZCR. Note how the signal on the right
crosses the x-axis more than twice in one cycle (after [Roa96]).

The results of calculating the MFCCs for the music clip used in Figure
3.5(a) is shown in Figure 3.6. The MFCC plot is harder to interpret visually
than the spectrogram, but has been found to yield better results in computer
sound analysis.

3.4.3 Average Zero-Crossing Rate (ZCR)

A zero-crossing occurs when successive samples in a digital signal have dif-
ferent signs. Therefore, the rate of zero-crossings can be used as a simple
measure of a signal’s frequency content.

For simple signals, the ZCR is directly related to the fundamental fre-
quency (f0). A sinusoid will cross the zero line twice per cycle, and therefore
its frequency can be determined by dividing the ZCR by 2. At first sight,
this might be a very simple and effective method of finding the fundamental
frequency of a sound signal. This is not possible in all cases, though: As
shown by [Roa96], signals that contain partials with frequencies that are
much higher than the fundamental frequency will cross the zero line many
more times per cycle (see Figure 3.7).

The reason why finding the fundamental frequency is so important is
that it is crucial for pitch detection, which in turn is essential in music
transcription and melody recognition systems.

In music genre recognition, the fundamental frequency is not as impor-
tant. This is due to several reasons. First of all, it is very hard to determine
the fundamental frequency of a complex auditory scene containing several
sound sources (instruments, voices, sound effects). Actually, it is not only
hard, but it does not really make sense. The question is, what should be
considered as the primary signal in such a scene? In most cases, the answer

3.4 Features Used in Music Genre Recognition 24

would be arbitrary. Secondly, even if we overcome the problem of how to
find a pitch in our music sample, what does this accomplish? We can derive
the melody contour for a given song, but this as such does not tell us what
genre this song belongs to. As an illustration, consider the song Fade To
Black by Metallica, a fairly typical Heavy Metal song. The EBM/Synth
remix by Apoptygma Berzerk still has the same main melody, but definitely
sounds different, and no human would classify the EBM song as Metal based
on that melody.

The observation that pitch- (and fundamental frequency-) based features
are of limited relevance is also reported in [LWC98], where several audio
features for video scene segmentation and classification7 are evaluated.

Even though it cannot reliably be used for fundamental frequency deter-
mination, the zero-crossing rate is popular in audio signal classification. It is
a time-domain feature, and as such very fast to calculate. The ZCR can been
used as a statistical measure of spectral characteristics in music vs. speech
determination by analysing the changes of ZCR over time. This feature is
sometimes called the ZCR contour [Sau96]. The ZCR also makes it possi-
ble to differentiate between voiced and unvoiced speech components: voiced
components have much smaller ZCR values than unvoiced ones [ZK98b].
The average short-time zero-crossing rate can also be useful in combina-
tion with other features in general audio signal classification systems. Tong
Zhang and C.-C. Kuo used ZCR curves to distinguish environmental sounds
based on regularity, periodicity, and range of amplitude [ZK98a]. The ZCR
curves are calculated as follows:

Zn =
∑
m

|sgn[x(m)]− sgn[x(m− 1)]|w(n−m), (3.7)

where

sgn[x(n)] =
{

1 x(n) ≥ 0
−1 x(n) < 0

and

w(n) =
{

1/2 0 ≤ n ≤ N − 1
0 otherwise.

m is the window size in this short-time function. The ZCR curve of music
has a lower variance and average amplitude than that of speech, since music
tends to be more “stable” during a certain period. Similar observations can
be made about environmental sounds such as footsteps, chirping birds, etc.
The zero-crossing rate is also used in the prototype described in Chapter 5.

7This field is comparable to music genre recognition since it also deals with complex non-
speech audio signals.

3.4 Features Used in Music Genre Recognition 25

3.4.4 Short-Time Energy

The short-time energy of an audio signal is defined as

En =
1
N

∑
m

[x(m)w(n−m)]2, (3.8)

where x(m) is the discrete time audio signal, n is the time index of the
short-time energy, and w(m) is a rectangle window, i.e.

w(n) =
{

1/2 0 ≤ n ≤ N − 1
0 otherwise.

The short-time energy function shows the amplitude variation over time.
The energy value is usually calculated around every 100 samples. The short-
time energy can be used to measure silence, and to distinguish between
voiced and unvoiced speech components in speech recognition. (En values
for unvoiced parts are significantly smaller [ZK98a].)

3.4.5 Rhythm and Beat

Tapping their foot along with a piece of music is a trivial task for human
listeners, yet it has turned out to be remarkably difficult for automated
systems. Beat tracking and rhythm detection is a large and rapidily evolving
research area in itself. An in-depth discussion is not possible within the
limitations of this work. Refer to [Dix99] for an overview of beat tracking
methods; a system for tracking musical beats in real time is proposed in
[AD90]. An introduction into the even more complex subject of musical
rhythm can be found in [Bil92].

There are a number of factors that make beat tracking difficult, but that
are no problem for the human auditory perception system. For instance, we
can easily determine the beat if tempo and metrical structure are not explic-
itly specified in the beginning of the song, something that most commercially
available beat tracking systems depend on. If the tempo changes throughout
the song, we can easily adapt to this within seconds, while most current au-
tomatic systems are unable to adjust. Furthermore, beat tracking systems
usually cope poorly with noise, i.e. deviations from the expected timing. An-
other important issue is dealing with syncopation – sections where salient
events occur between the beats and not on the beat [Dix99]. Note that all
of these factors are usually present in music and make up much of what we
find interesting in it (improvisation, unexpected change, drama).

Fortunately, accurate beat detection is not necessary for music genre
recognition. We are not interested in the exact beat, but more in the per-
ceived tempo of the song and the beatedness. Tempo can be described as
the perceptual sense that the sound is recurrent in time at regular inter-
vals, with the length of this interval between 250 ms and 2s [MSV98]. It

3.4 Features Used in Music Genre Recognition 26

should be noted that tempo is a subjective feature – a sound does not have
a real tempo that can be measured exactly. Beatedness is a measure of the
strength of the signal’s beat, given by determining a periodic strong peak in
the signal, and measuring the relative amplitude of this beat compared to
the average amplitude of the signal. This feature is used in the prototype
developed for this work and will be described in more detail in Section 5.2.

3.4.6 Timbre

Timbre is generally defined as “the quality which allows one to tell the differ-
ence between sounds of the same level and loudness when made by different
musical instruments or voices” [ZK98b]. It depends on the spectrum, the
sound pressure, the frequency location of the spectrum, and the temporal
characteristics of the stimulus. In music, timbre is thought to be determined
by the number and relative strengths of the instruments partials.

Timbre is one of the most subjective audio features, and so far no systems
have been developed that model it in a satisfactory manner: It is common to
use only the spectrograms of sounds for timbre information. More advanced
and truly perceptual timbre modelling would be a significant improvement
to many areas of audio signal classification.

Chapter 4

Classification

4.1 Overview

The feature extractor (see Chapter 3) computes feature vectors representing
the data to be classified. These feature vectors are then used to assign each
object to a specific category. This is the classification part, which constitutes
the second basic building block of a music genre recognition system.

There is a large variety of classification techniques to choose from. The
fact that many of these can be used as black-box algorithms makes it tempt-
ing to just apply one without understanding it. However, I believe that a
basic understanding of the subject is essential in order to choose the right
classifier, and I will provide a short overview in the next section, includ-
ing the general concepts, mathematical background, and basic ideas behind
the most widely used classifiers. The actual classification system used in
the prototype developed for this thesis is described in detail in Chapter 5,
Section 5.3.

It is of course impossible to cover all interesting aspects of the topic here.
There are many excellent books on classification to which I would like to
refer the interested reader, for instance [DHS01]. Unless stated otherwise,
the information in the following section is taken from this publication. A
good review of pattern recognition and classification techniques is also given
in [JDM99].

4.1.1 Introduction

Classification is a subfield of decision theory. It relies on the basic assump-
tion that each observed pattern belongs to a category, which can be thought
of as a prototype for the pattern. Regardless of the differences between the
individual patterns, there is a set of features that are similar in patterns
belonging to the same class, and different between patterns from different
classes. These features can be used to determine class membership.

27

4.1 Overview 28

Consider the example of music genre recognition. Music can be of arbi-
trary complexity, songs from one genre differ in many ways. Still, humans
are able to categorise them easily. This seems to support our assumption
that there are certain fundamental properties shared by pieces belonging to
one genre.

Classification can also be understood by approaching it in geometrical
terms. As stated before, the feature vectors can be regarded as points in
feature space. The goal of the classifier is to find decision boundaries that
partition the feature space into regions that correspond to the individual
classes. New data items are then classified based on what region they lie in.
This depends on a feature representation of the data in which feature vectors
from the same category can easily be distinguished from feature vectors
from other categories. (The importance of finding a good representation is
discussed in Section 3.1.3, and illustrated in Figure 3.2 on page 15.)

Domain Independence

Finding a good feature representation requires in-depth knowledge of the
data and context; feature extractors must be adapted to the specific prob-
lem and are highly domain-dependent. Classification techniques, on the
other hand, are basically domain-independent. This can be explained by
the fact that feature extraction is also an abstraction step, transforming
domain-specific data into a more general numerical representation that can
be processed by a generic classifier. Note that this is an important difference:
The feature extraction part is where knowledge of music, psychoacoustics,
signal processing, and many other fields is required; it is an area that has
only recently started to receive the attention it deserves, and there is a lim-
ited basis of previous work to build on. Classification, on the other hand, is
an advanced field that has been studied for many years, and that provides us
with many fast, elegant and well-understood solutions that can be adopted
for use in music genre recognition.

Design aspects

The most critical aspects in designing a classification system are the choice
of features, the number of features used, the quantification of distance, the
robustness of the system, the complexity in terms of speed and memory
usage when implemented in software, and scalability.

Difficulties

The main difficulty in classification arises from the fact that in addition
to the dissimilarities caused by the different underlying models, the feature
values for objects belonging to the same category often also vary consider-
ably. If all objects from one class were perfectly equal, classification would

4.1 Overview 29

be trivial. This is of course never the case; but it should be noted that the
classifier never sees the actual data, only the feature vectors. Therefore, the
following is equally true: A feature representation that extracts exactly the
information that differentiates the categories would also eliminate the need
for a complex classification step. (Likewise, a perfect classifier would not
need any feature extraction at all, but would be able to uncover the true
class membership from the raw data. In reality, neither feature extractors
nor classifiers are perfect, but may be combined to produce working results.)

The variation in patterns belonging to the same category can be due to
two factors: First, the underlying model might generate that complexity: A
relatively simple model can create seemingly random output, which cannot
trivially be detected by an observer who does not know the model1. Sec-
ondly, considerable variation can be caused by noise. Noise can be defined
as any property of the pattern that is not due to the true underlying model
but instead to randomness in the world or the sensors. As is obvious from
this definition, noise is present in all objects in nature.

The challenge is to distinguish the two kinds of differences between fea-
ture values: Are they caused by different models, which means that the
objects belong to different categories, or are they due to noise or the com-
plexity of the model, meaning that the objects belong to the same category?

Training and Learning

Creating a classifier usually means specifying its general form, and estimat-
ing its unknown parameters through training. Training can be defined as
the process of using sample data to determine the parameter settings of the
classifier, and is essential in virtually all real-world classification systems.

Classification is often called supervised learning. Supervised learning
consists of using labelled feature vectors to train classifiers that automati-
cally assign class labels to new feature vectors. Another variant of learning
is unsupervised learning or clustering, which does not use any label informa-
tion; the system tries to form “natural” groupings. Reinforcement learning,
a third type, refers to a technique where the feedback to the system is only
right or wrong – no information about the correct result is given in case of
a wrong categorisation.

Generalisation and Overfitting

An important concept in connection with the training process is overfitting:
If the system is tuned too closely to the training data, it might perform
perfectly on these samples, but is unlikely to work well on new patterns.

1As a side note, this is also the basis of many cryptographical algorithms: Encrypted
ciphertext contains all the information of the plain text message, but looks like random
noise to the casual observer.

4.1 Overview 30

(a) Decision boundary fit too
closely to the training data.

(b) More general decision bound-
ary.

Figure 4.1: Example that demonstrates the problem of overfitting. In the
left image, the system perfectly classifies all the training samples, but is
unlikely to perform well on new data. The decision boundary in the right
image is less complex and probably better reflects the true nature of the
data. While some of the training data are misclassified by this system, the
overall performance on unknown input is better.

Figure 4.1 illustrates this idea. If the decision boundary is fit too closely to
the training data, the system will obtain 100% decision accuracy on these
samples; but the decision boundaries in that case do not reflect the true
model behind the data. New, unknown patterns are likely to be misclassified
by such a system. A more general representation using less complex decision
boundaries is often favourable. The challenge is to find the right trade-off for
the generalisation: having a system that is complex enough to capture the
differences in the underlying models, but simple enough to avoid overfitting.

4.1.2 Bayesian Decision Theory

Classification means taking a decision about the class membership of an
object. Such a decision can be correct or incorrect; informally speaking,
the goal is to maximise the chance of making the right decision. One of
the formal approaches to this problem is Bayesian decision theory, which
quantifies the tradeoffs between possible decisions by using probabilities. A
short discussion of Bayesian decision theory follows.

4.1 Overview 31

Bayes Formula

The state of nature is denoted by ω. This is the variable that needs to
be described probabilistically and describes the real state of an object. In
our case, the music genres used by the system form a finite set of c states of
nature {ω1, . . . , ωc}.

The prior probability P (ωj) describes the prior knowledge that we have
before actually seeing any data. It is sometimes also called a priori proba-
bility. For instance, suppose that a user’s online music collection has been
encoded from 35 EBM CDs and 15 Metal CDs, each CD containing 10 songs.
If we let ω1 denote the genre EBM and ω2 be Metal, the prior probility that a
randomly chosen song will belong to the EBM category is then P (ω1) = 0.7.

The class-conditional probability density function p(x|ωj) denotes the
probability that a feature vector x is observed given that the state of nature
is ωj .

Suppose that both the prior probilities P (ωj) and the conditional densities
p(x|ωj) for j = 1, . . . , n are known. If a value x is measured, we can calculate
the probability of the state ωj given x by using Bayes formula

P (ωj |x) =
p(x|ωj)P (ωj)

p(x)
, (4.1)

where

p(x) =
c∑

j=1

p(x|ωj)P (ωj).

P (ωj |x) is called the posterior probability and it denotes the probability
that the state of nature is ωj given that feature value x has been measured.
Obviously, in order to minimise the probability of error, the system must
decide on the ωj for a given x for which P (ωj |x) is highest. This is called
the Bayesian decision rule, and can be expressed as

decide ωi if P (ωi|x) > P (ωj |x) for all i 6= j.

Risk

In many classification problems, there are different losses associated with
taking certain decisions. In these cases, the posterior probabilities must be
weighted according to the costs associated with taking that decision, the goal
of a classifier being to minimise the expected loss. The rest of this discussion
assumes that the zero-one loss function is used, which means that all errors
are equally costly, i.e.

4.1 Overview 32

classification

x1 x2 x3 xd...input

g1(x) g2(x) gc(x)...discriminant
functions

Figure 4.2: Structure of a classifier with d inputs xi and c discriminant
functions gi(x). For each input, the discriminant functions are evaluated.
Each of the discriminant functions is associated with a category ωi; the
system chooses the category for which gi(x) is at a maximum.

λ(αi|ωj) =
{

0 i = j
1 i 6= j

i, j = 1, . . . , c

where {α1, . . . , αa} is the finite set of a possible actions (i.e. classifications),
and λ(αi|ωj) is the loss function that describes the loss incurred for taking
action αi when the state of nature is ωj . The expected loss is called risk in
decision theory, and is calculated as

R(αi|x) =
c∑

j=1

λ(αi|ωj)P (ωj |x). (4.2)

The risk corresponding to the zero-one loss function is the average proba-
bility of error

R(αi|x) = 1− P (ωi|x). (4.3)

This is also referred to as minimum error rate classification.

4.1.3 Discriminant Functions

Bayes formula and the theoretical principles outlined in the previous sec-
tion can be applied to many fields. The connection to classification can be
described as follows:
A classifier can be represented as a network that computes c discriminant
functions of the form gi(x) where i = 1, . . . , c, and selects the category

4.1 Overview 33

corresponding to the largest discriminant. The classifier assigns a feature
vector x to a class ωi if gi(x) > gj(x) for all i 6= j. A schematic overview of
this functional structure is presented in Figure 4.2.

In the case of a minimum error rate Bayes classifier2, the maximum
discriminant function corresponds to the maximum posterior probability;
we can therefore set gi(x) = P (ωi|x). The discriminant functions are then
given by

gi(x) = p(x|ωi)P (ωi). (4.4)

4.1.4 The Normal Density

As explained in previous sections, a Bayes classifier is determined by the
prior probabilities P (ωj) and the conditional probability density functions
p(x|ωj). One of the most common density functions is the normal density.
The normal density models the case when all feature vectors x for a given
class ωj are based on a prototype vector µj, but are corrupted by normally
distributed noise. Many objects in nature can be described by this model.
The normal density in d dimensions can be expressed as

p(x) =
1

(2π)
d
2 |Σ|

1
2

e−
1
2
(x−µ)T Σ−1(x−µ), (4.5)

where x is a d-component column vector, µ is the d-component mean vector,
Σ is the d-by-d covariance matrix, and |Σ| and |Σ−1| are its determinant
and inverse. (x − µ)T denotes the transpose of (x − µ). Equation 4.5 is
often written in the simplified form

p(x) ∼ N(µ,Σ). (4.6)

The expected value E is given as

E [x] =
∫

xp(x)dx ≡ µ, (4.7)

and the covariance matrix as

E [(x− µ)(x− µ)T] =
∫

(x− µ)(x− µ)T p(x)dx ≡ Σ. (4.8)

If the data are normally distributed and µ and Σ are known, the conditional
density function p(x|ωi) in the classifier discriminant function (see Equation
4.4) can be substituted by the normal density as defined in Equation 4.5,
resulting in a fully specified classifier.

The normal density is an elegant and powerful model. It can, of course,
only be used if the data to be classified are actually normally distributed,

2A Bayes classifier is an ideal classifier that obeys the principles outlined in Section 4.1.2.

4.1 Overview 34

which is often not the case.

The typical situation in a real classification problem is one of the following:

1. The full probability structure is unknown, but the general form of the
distribution can be assumed to follow one of the standard distributions,
such as the normal density. In this case, we need to determine the
unknown parameters of the conditional probability density function,
for instance the mean vector µ. This is called parameter estimation
and is described in Section 4.1.5.

2. There is no knowledge about the underlying structure, not even the
general form of the probability densities. The classification has to be
based on the information gained from the training data alone. Such
non-parametric techniques are discussed in Section 4.1.6.

4.1.5 Parameter Estimation

In most classification problems, the conditional densities are not known.
However, in many cases, a reasonable assumption can be made about their
general form. This makes the problem significantly easier, since we need
only estimate the parameters of the functions, not the functions themselves.

The unknown probability densities are usually estimated in a training
process, using sample data. For instance it might be assumed that p(x|ωi)
is a normal density. We then need to find the values of the mean µ and the
covariance Σ.

Maximum-Likelihood Parameter Estimation

There are several approaches to parameter estimation. One of the most
common ones is maximum-likelihood parameter estimation, which views the
parameters as quantities that are fixed but unknown. The best estimate
is then the one that maximises the probability of obtaining the training
samples. For instance, the maximum-likelihood estimate for the mean µ is
the sample mean µ̂, calculated as

µ̂ =
1
n

n∑
k=1

xk, (4.9)

i.e. the arithmetic average of the training samples. It can be shown that the
accuracy of the estimate will increase with the number samples. Recalling
that the samples can be thought of as a cloud of points in feature space, the
sample mean corresponds to the centroid of that cloud.

4.1 Overview 35

Hidden Markov Models (HMMs)

Hidden Markov Models [RJ86] solve the problem of making a sequence of
decisions, instead of just a single one. In many classification problems, we
are dealing with a series of states, where the state at time t is influenced
by previous states. A simplifying assumption (called Markov assumption) is
that previous states influence the state at time t only via the state at time
t−1. An example is speech recognition, where words must be generated from
a sequence of spoken sounds. Speech recognition is the main application
domain of HMMs.

One of the main concepts in Markov Models are transition probabilities.
The transition probability aij = P (ωj(t + i)|ωi(t)) is the probability that
the state at time t + 1 is ωj given that the state at t was ωi. The transition
probabilites need not be symmetric, and states may be visited more than
once. In many cases, the states ω(t) are not accessible directly; only visible
symbols can be measured. This leads to the concept of Hidden Markov
Models, where at each time t the system is in state ω(t) and emits a symbol
v(t). Therefore, we have a probabily bjk = P (vk(t)|ωj(t)), which is the
probability that symbol vk(t) is emitted given that the system is in state
ωj(t). The term hidden refers to the fact that the true states ωj cannot be
accessed directly and are hidden from observation.

It is possible to determine the probabilities aij and bjk given the structure
of a HMM (i.e. the number of states and visible symbols) and a number of
training samples by using an iterative approach that updates the estimates
for the probabilites so that they fit the training samples more closely (i.e. the
training samples are more likely to have been generated by the HMM).
A detailed explanation of Hidden Markov Model training can be found in
[DHS01, pp. 137–138].

4.1.6 Nonparametric Methods

Parameter estimation techniques rely on a knowledge or reasonable assump-
tion of the underlying probability structure of the conditional probability
densities. There are at least two possible cases where this does not work:

1. There might be no knowledge about the form of the probability density
functions at all.

2. The densities might be multimodal (i.e. have more than one local max-
imum), while most theoretical parametric densities are unimodal. The
normal density discussed in Section 4.1.4 has its single local maximum
at the mean µ, for instance.

In these cases, maximum-likelihood estimation as described above does not
work. There are several alternatives, depending on the structure of the

4.1 Overview 36

data and our knowledge of that structure. For instance, if we know that
the distribution is a combination of several unimodal densities for which
we know the functional form, the parameters can be estimated by using a
technique called Expectation-Maximisation (see [DHS01, pp. 124–128]).

If we have do not know anything about the model behind the data, the
classifier must be trained based on the information from the training samples
alone. Such nonparametric estimation techniques can be divided into two
groups, (1) estimating the density functions p(x|ωi)3, and (2) estimating the
posterior probabilities P (ωj |x) directly.

The Nearest-Neighbour Rule

One of the most widely used approaches to estimate the posterior probabil-
ity is the nearest-neighbour rule. The labelled training data form a set of
prototypes D = {x1, . . . ,xn}. If we want to classify a point x, the nearest-
neighbour rule states that it is assigned the same class label as x′ ∈ D, where
x′ represents the prototype which is nearest to x.

The k-Nearest-Neighbour Rule

The k-nearest-neighbour rule is an extension of the nearest-neighbour rule
outlined above. According to this rule, the labels associated with the k
nearest prototypes of a point x are examined, and the relative frequencies of
the labels are taken as P (ωi|x). This is necessary since the neighbour points
may not all have the same label. x is then assigned the label associated
with the class ωi with the greatest P (ωi|x), which is the label that is most
frequent among its k neighbours. The challenge here is to find the best value
for k: The neighbours that are used for the estimate should be close to x so
that P (ωi|x′) ≈ P (ωi|x), but the value of k must be large enough to get a
reliable estimate.

4.1.7 Distance Metrics

Algorithms such as the nearest-neighbour rule rely on computing the dis-
tance of feature vectors in feature space. A common distance measure is the
Minkowski metric

dp(xi,xj) = p

√√√√ d∑
k=1

(|xi,k − xj,k|)p = ‖xi − xj‖p. (4.10)

The most widely used distance metric for continuous features is the Eu-
clidean distance, which is commonly used to calculate the distance between

3This method is not discussed here any further; refer to [DHS01, pp. 161–177] for details.

4.2 Audio Classification Examples 37

objects in 2D or 3D space. The Euclidean distance is a special case of the
Minkowski metric with p = 2:

d2(xi,xj) =

√√√√ d∑
k=1

(xi,k − xj,k)2 = ‖xi − xj‖2 (4.11)

There are many other ways to calculate the similarity between feature vec-
tors, a discussion of which would be beyond the scope of this thesis.

4.2 Audio Classification Examples

The following section gives some examples from the audio signal classifica-
tion domain; the purpose is to show how different classifiers are used for
different classification problems.

4.2.1 Nearest Feature Line

An audio classification and retrieval system that uses the nearest feature line
(NFL) method was described by Stan Z. Li in [Li00]. NFL is a nonpara-
metric classification technique that works similar to the nearest-neighbour
rule, with one important difference: Instead of comparing a test vector x
with each of the prototypes individually, NFL uses information from mul-
tiple prototypes at once. This is achieved as follows: A feature line is the
line passing through two prototypes xi,xj, i 6= j, for a class. The feature
lines for all possible pairs of prototypes for each class are generated. The
classification is then done by using the minimum distance between the point
x and the feature lines.

Nearest feature line classification has been found to perform significantly
better than nearest-neighbour classification. Li obtained an error rate of
9.78% for NFL and 13.94% for NN, using the same set of features. This
can be explained by the fact that the feature line can be understood as a
generalisation of the two prototypes it connects, representing an unlimited
number of possible prototypes that lie on that line.

4.2.2 Tree-based MMI Vector Quantiser

Jonathan T. Foote has developed a system for the content based retrieval of
audio [Foo97a] that uses tree-based quantisation4. The same classifier has
also been used to distinguish between speech and music [Foo97b].

The system proposed by Foote uses a supervised tree-based vector quan-
tiser trained to maximise mutual information (MMI). The feature space is

4Tree-based quantisation is related to k-means vector quantisation, which is an unsuper-
vised learning technique. Tree-based quantisation is supervised, and it scales better to
high dimensionality.

4.2 Audio Classification Examples 38

automatically partitioned into discrete regions by a decision tree; the de-
cisions are taken according to a threshold that maximises the mutual in-
formation I(X ; C) between the training data set X = {x1, . . . ,xn} and the
associated classes C = {ω1, . . . , ωc}. Mutual information is defined as the
difference in entropy

I(X ; C) = H(C)−H(C|D). (4.12)

The splitting process is repeated recursively until a stop criterion is met.
At this point, the feature space is divided into a number of regions, each of
which corresponds to a leaf of the tree. The tree is then used to generate a
template using a histogram of leaf probabilities. This is necessary since one
second of audio might be split up into n sections by appropriate windowing,
meaning that n feature vectors are generated, resulting in n leaf labels.
These are tracked in a histogram: if i of the vectors are classified as leaf j,
then leaf j is given a value of i/n in the histogram. The resulting histogram
can be used as a reference template for the probability distribution, against
which unknown data can be matched.

4.2.3 Hidden Markov Models

A hierarchical system for the audio classification and retrieval using Hidden
Markov Models was proposed by Tong Zhang and C.-C. Jay Kuo in [ZK98b].
Their system consists of a coarse-level and a fine-level classification step;
HMMs are used in the latter to represent timbre and rhythm. Timbre
is expressed by the states of a Hidden Markov Model, while the rhythm
information is denoted by the duration and transition parameters.

4.2.4 Others

Many other classifiers have been applied to audio signal classification prob-
lems, and all of them have their advantages and disadvantages. In many
cases, a classifier that is well-suited to one specific problem will not perform
well in another. For instance, Hidden Markov Models are used in virtual-
ly all speech recognition systems (see Section 2.3.1), but some researchers
doubt their usefulness in music classification. Other, perhaps more flexible
techniques, are often suggested, such as neural networks [SSW98] or the
Fisher Kernel method [MR00, MK98]. Another interesting approach is to
use unsupervised learning: To just state one example, Andreas Rauber and
Markus Fruhwirth developed a system for music style recognition that uses
a self-organizing map [RF01].

Chapter 5

Prototype

Based upon my evaluation of various approaches to music classification,
I developed a prototypical music genre recognition system, drawing con-
clusions from what I consider to be the respective flaws and merits of
these approaches. The software is called MUGRAT1, and it is available
as Free Software under the GNU General Public License (GPL)2. The full
source code for MUGRAT can be obtained from the official webpage at
http://kyrah.net/mugrat/. This site will also host the full API and user doc-
umentation and precompiled binaries for various platforms as soon as the
system reaches a stable 1.0 version. I intend to continue working on MU-
GRAT, finally developing it into a fully functional end-user system. More
information about the future of MUGRAT is given in Section 7.1.

5.1 Underlying Principles

MUGRAT is based on a number of principles. In some respects, these ideas
are in contrast to common approaches in machine listening. Nevertheless,
I have reason to believe that the principles described below are a good
foundation for a music genre recognition system. To my mind, there are too
many tacit assumptions in current music content analysis systems, and in
a way MUGRAT is also a criticism of these assumptions. A paper of great
interest in this context is [MSV98], which also questions many of the current
approaches, and presents a number of case studies showing the importance
of working with complex real audio signals.

All of the assumptions I made are somehow connected, and may be
summarised informally as assume as little as possible, and deal with the
real situation. Since each of them represents a contrast to an idea generally
used in music classification, I will discuss them separately in the following
section.

1MUGRAT is an acronym for Music Genre Recognition by Analysis of Texture.
2http://www.fsf.org/licenses/gpl.txt

39

5.1 Underlying Principles 40

The system has to work with real-world data.

Many systems are designed to work with extremely simplified test cases
that do not resemble the real situation. However, music is very complex. A
system that is meant to be actually usable therefore must work with real
data, i.e. arbitrary polyphonic musical signals. I do not doubt that test
systems designed for an idealised laboratory setup can be very useful to
explore one specific aspect of a problem. However, I am convinced that
the complexity of real music cannot be tackled by using overly simplified
systems, not even by a combination of such systems. This complexity is
a fundamental and important property in itself, and the system must be
designed from ground up to deal with it. Therefore, instead of using “toy
data”, the MUGRAT prototype works on real music, i.e. samples obtained
from the author’s regular music collection.

The system must not rely on the skills of expert listeners.

Some parts of music psychology are based on features that can only be
perceived by expert listeners, who have been trained in music perception
for years, such as musicians and graduate music students. It is not valid
to assume these abilities in average humans. For instance, most untrained
listeners do not perceive the advanced musical structures that are often
used in music classification systems. They cannot determine the key of a
music piece, or clearly perceive pitch similarity. This does not mean that
these people have no musical abilities. On the contrary, naive listeners can
extract a lot of information from music. Apparently, music understanding
is possible without the use of advanced concepts.

I believe that a music genre recognition system must not rely on features
that are not accessible to average human listeners. Even if such information
was useful (and I am not convinced that this is the case), it would distort
the results obtained by the system in comparison with the average listener’s
perspective3.

Music theory is not necessary for music genre recognition.

Music theory is a scientific field that studies the structure of music. It might
seem logical to use the findings from this field for music genre recognition.
After all, if there is a theoretical way to describe music, why not use it?
Initially, I intended to do this. There are two reasons why I changed my
mind about the importance of music theory. Both of them are related to
how human listeners understand music.

Firstly, in music theory, high-level information such as the sequence of
repeating patterns, the overall structure of the song, etc. is very important.

3It has to be kept in mind that these naive listeners are going to be the majority of the
user base for a music genre recognition system.

5.1 Underlying Principles 41

A model is abstracted from the actual sound data, and this model is used
instead. Human listeners do not rely on this kind of information for classifi-
cation. Most of us do not have any theoretical knowledge about music, nor
do we need it to recognise genres.

Secondly, most parts of music theory are concerned with the piece of
music as a whole, or definable parts of it. Humans do not need to listen
to a whole song in order to classify it. We do not need to split it into seg-
ments, either. A short excerpt is enough for a human listener to accurately
determine the genre of a song4. This implies that the information can be
extracted from no more than a short sample, which is what the MUGRAT
system tries to do as well.

Transcription is not necessary for music genre recognition.

According to our knowledge about the workings of the human sound percep-
tion system (see also Section 2.2.1), we do not hear individual notes. On the
contrary, we often hear groups of notes (chords) as single entitites. Music
transcription is a hard and unsolved problem for precisely the same reason:
If several notes are played at once, it is difficult to find the individual pitch-
es. I believe that there is no point in trying to transcribe the music signal
before analysis. Instead, the sound signal itself should be used as the input
to the feature extraction system.

Our understanding of human perception is very limited.

The arguments listed above seem to favour a system that tries to model the
human perception system. In a way, this is true: I want to avoid as many
abstract concepts as possible, and use the same input that is also used by
humans, namely only the musical sound signal itself.

I am, however, aware that our present understanding of the human per-
ceptual system is very limited, that our knowledge of how we perceive sound
can at best be regarded as a working model, and that it is dangerous and
error-prone to make assumptions based on this model. As explained in Sec-
tion 3.3, I am very suspicious of existing so-called perceptual systems. I
believe that we do not have enough understanding of the human perceptual
system in general, and the sound perception mechanisms in particular, to
model them accurately.

Therefore, MUGRAT does not concentrate on specific details that might,
or might not, be important for certain aspects of our perception. It tries
to use features that are likely to be important in human music genre recog-
nition, but it does not try to simulate how these features are important to
us.

4Refer to Section 2.2.2 for a discussion of a study about human music genre classification
accuracy.

5.2 Feature Extraction Subsystem 42

Genres can best be defined in terms of typical members.

Music genres are hard to define. The easiest way to think of a music genre is
in terms of a number of typical songs or artists. For instance, I would have
trouble describing what EBM5 is. If asked to describe it, I would probably
say, “music that sounds like Nitzer Ebb, DAF, Dupont and so on”, and
provide example songs. I believe that this is not an individual thinking
pattern of mine, but has its roots in the nature of music genres itself. Music
genres are so hard to describe because there is no simple set of features that
define each genre.

Making any assumptions about the probability distribution of the genres
would be akin to trying to describe the genres, and I doubt the viability of
this approach. Instead, I think that the best we can do is to find a number
of representative examples for each genre, and use these for comparison.
Classification then means looking for songs that sound like the song to be
classified, just like human listeners do it. The genre label that is associated
with the majority of these songs should be attributed to the new song.
This is why I chose a non-parametric classification method for MUGRAT,
namely k-nearest-neighbour classification. (The classification subsystem is
described in Section 5.3.)

5.2 Feature Extraction Subsystem

The MUGRAT feature extractor reads input music files and calculates a
number of features that allow the classification subsystem to distinguish the
genres. The choice of features follows the principles outlined above, and
will be explained in detail later in this section. Before doing this, I would
like to make a couple of general comments about the history of the feature
extraction system used in MUGRAT.

5.2.1 History/Background

Following the idea that all information needed for music genre recognition
is contained in the sound signal itself, I initially intended to base MUGRAT
on spectral attributes alone. My naive approach was to calculate the FFT
coefficients for a number of frequency bands, and use these for the classifi-
cation. I soon realised that this idea is bound to fail, since (1) the amount
of data per song is too large and (2) the temporal influence is too strong. A
salient event (such as a downbeat) occuring in the beginning of the sample
would be represented differently in this system than if it occurred in the
middle or the end. This is clearly not a good solution.

The next idea that occurred to me was to use the arithmetic mean over
all windows for each frequency bin. This reduced the dimensionality to the

5Electronic Body Music

5.2 Feature Extraction Subsystem 43

number of frequency bins, but it also blurred the results. Assuming that
essential information is contained in short-time spectral change, simply using
average energy values does not seem like a satisfying solution.

I began to look for alternative features, and discovered the set of features
proposed by George Tzanetakis in [TEC01]. The assumptions underlying
George Tzanetakis’ work6 are very similar to mine, and the final feature
extractor used in MUGRAT is based on the features described in the cited
paper.

There are two types of features used in MUGRAT: features related to the
musical surface of the song, and features related to the beat of the song.

5.2.2 Musical Surface Features

Humans can determine the music genre of a song from a very short sample,
as was shown in the study discussed in Section 2.2.2. In such a short time,
the only possible indication about the music genre has to be derived from
the spectral distribution over time, from the instrumentation, the timbre,
and the musical texture. A term often used in connection with these features
is musical surface, and even though there is no good definition for it, I will
– for lack of a better term – use it too. What exactly is meant by musical
surface in the current context will become clearer through an examination
of the actual features used in MUGRAT.

Feature 1: Spectral Centroid

The spectral centroid is the balancing point of the spectrum. It is a mea-
sure of spectral shape, and is often associated with the notion of spectral
brightness. The spectral centroid can be calculated as

C =
∑N

n=1 Mt[n] · n∑N
n=1 Mt[n]

, (5.1)

where Mt[n] is the magnitude of the Fourier transform at frame t and fre-
quency bin n.

Feature 2: Rolloff

Like the centroid, rolloff is also a measure of spectral shape. It is defined as
the frequency R corresponding to r% of the magnitude distribution, so that

6George Tzanetakis has released a general and very powerful Free Software framework
for music analysis, which is called MARSYAS. It is available online at http://www.cs.
princeton.edu/∼gtzan/marsyas.html.

5.2 Feature Extraction Subsystem 44

R∑
n=1

Mt[n] = r ·
N∑

n=1

Mt[n]. (5.2)

It can be seen as a generalisation of the spectral centroid; the spectral cen-
troid is the rolloff for r = 50%. In the MUGRAT prototype, a rolloff value
of r = 80% is used.

Feature 3: Flux

Flux is a measure of local spectral change, and it is defined as

F =
N∑

n=1

(Nt[n]−Nt−1[n])2, (5.3)

where Nt[n] is the normalised magnitude of the Fourier transform at window
t.

Feature 4: Zero-crossing Rate

A zero-crossing occurs when successive samples in a digital signal have dif-
ferent signs. The zero-crossing rate is a simple measure of the noisiness of a
signal. It can be calculated as

Z =
N∑

n=1

|s(x[n])− s(x[n− 1])|, (5.4)

where x[n] is the time domain signal, and s is a function that is 1 for positive
arguments and 0 for negative arguments. Unlike spectral centroid, rolloff,
and flux, which are frequency-domain features, the zero-crossing rate is a
time-domain feature.

Mean and Variance

Following the suggestions by George Tzanetakis, these feature values are
not used directly. The notion of musical surface is created by a series of
spectral states that vary slightly over a short period of time. To capture
this important information, the mean and variance of the features listed
above are calculated over a number of windows. A value between 35 and 45
windows7 turned out to provide the best results here.

7The final prototype uses 40 windows.

5.2 Feature Extraction Subsystem 45

Feature 5: Low Energy

There is one additional feature, called low energy. This, too, is calculated
over a number of windows like the mean and variance, and not separately
for each window like the other features. The low energy feature is defined
as the percentage of windows that have less energy than the average energy
of all 40 windows. Music that contains silent parts will have a larger low
energy value than continuous sounds.

This results in a nine-dimensional feature vector consisting of (1) mean-
centroid, (2) std-centroid, (3) mean-rolloff, (4) std-rolloff, (5) mean-flux, (6)
std-flux, (7) mean-zerocrossing, (8) std-zerocrossings, (9) low-energy.

5.2.3 Beat-Related Features

The beat and rhythmic structure of a song is often a good indication of the
genre. For instance, Dance songs tend to have a very strong and distinctive
main beat. Classical music, on the other hand, generally does not have a
clear dominant and regular beat, due to the complexity of the arrangement.
Like all beat detection systems, the MUGRAT beat feature extractor tries to
find the main beat of the song and its period in BPM (beats-per-minute). In
addition to this, MUGRAT also calculates the second-strongest beat, and a
number of features concerning the relationship between the first and second
beat. The feature set used in MUGRAT was originally proposed by George
Tzanetakis, so more detailed information can also be found in [Tza02].

The MUGRAT beat extraction system is explained in the rest of this section.
An overview of the individual steps is shown in Figure 5.1.

Wavelet Decomposition

First, the signal is decomposed into a number of frequency bands using the
discrete wavelet transform (DWT). The wavelet transform is an alternative
to the short-time Fourier transform. It was developed as a solution to the
STFT’s resolution problems8, and can be used for decomposing a signal into
a number of octave-spaced frequency bands.

A full discussion of wavelet techniques would be beyond the scope of this
thesis. Implementation details can be found in the MUGRAT source code.
For general information about the DWT, refer to [SP93] and [Coi90]. A
more practical tutorial on how to use wavelet techniques is given in [Ngu95].

8It provides high time resolution and low frequency resolution for high frequencies, and low
time resolution and high frequency resolution for low frequencies.

5.2 Feature Extraction Subsystem 46

DWT

EE EE EE EE EE

AC

BH

FC

+

(a) Beat feature extraction module

FWR

LP

DS

MR

(b) EE

Figure 5.1: An overview of the steps necessary to extract the beat-related
features in MUGRAT. The individual steps are: discrete wavelet transform
(DWT), envelope extraction (EE), autocorrelation (AC), beat histogram calcula-
tion (BH), feature calculation (FC). The envelope extraction (EE) step, shown
in detail in the figure on the right, consists of full wave rectification (FWR),
low-pass filtering (LP), downsampling (DS), and mean removal (MR).

Envelope Extraction

After this decomposition, a series of steps for the extraction of the time do-
main amplitude envelope is applied to each band. These steps are full wave
rectification, low pass filtering, downsampling, and mean removal.

Full Wave Rectification

y[n] = |x[n]| (5.5)

Full wave rectification is a standard envelope extraction step, usually fol-
lowed by a low pass filter. It is used to convert the time domain signal into
its temporal envelope.

Low Pass Filtering

y[n] = (1− α)x[n] + αy[n− 1] (5.6)

For low pass filtering, a One Pole filter9 with an α value of 0.99 is used. It re-
9A One Pole filter is a filter with the characteristics given by Equation 5.6.

5.2 Feature Extraction Subsystem 47

sults in a smoother envelope, and is also a standard envelope extraction step.

Downsampling

y[n] = x[kn] (5.7)

Downsampling is not an algorithmic requirement. It is applied to reduce
the computation time for the autocorrelation step. The loss of precision is
presumed to be negligible due to the large periodicities used in beat analyis.
MUGRAT uses a value of k = 16.

Mean Removal

y[n] = x[n]− E[x[n]], (5.8)

where E[x[n]] is the expected value of x[n]]. This step centers the signal to
zero. It is necessary for the autocorrelation step.

Autocorrelation and Beat Histogram Generation

After the envelope extraction step, the envelopes of each band are summed
together, and the autocorrelation of the resulting envelope is calculated.

y[k] =
1
N

∑
n

x[n]x[n− k] (5.9)

The result is an autocorrelation function where the dominant peaks cor-
respond to the time lags where the signal has the strongest self-similarity.
The actual autocorrelation function used in MUGRAT is an enhanced ver-
sion of the standard autocorrelation function, following the ideas proposed
in [TK00].

The first three peaks of the autocorrelation function are added to a beat
histogram. Each bin in the histogram corresponds to a beat period in BPM.
For each of the three selected peaks, the peak amplitude is added to the
histogram. This is repeated for each analysis window. The strongest peaks
in the final histogram correspond to the strongest beats in the signal.

Feature Calculation

MUGRAT uses a six-dimensional feature vector to model various features
that are calculated from the beat histogram. The six features are:

• The relative amplitude (i.e. the amplitude divided by the sum of am-
plitudes) of the first and second peak in the beat histogram. This a
measurement of how distinctive the beat is compared to the rest of
the signal.

5.2 Feature Extraction Subsystem 48

• The ratio of the amplitude of the second peak divided by the amplitude
of the first peak. It expresses the relation between the main beat and
the first subbeat. In songs with a strong, regular rhythm, this feature
will be close to 2.0 or 0.5.

• The period of the first and second peak in BPM, indicating how fast
the song is.

• The sum of the histogram, which is an indication of beat strength.
Since the autocorrelation peaks are added by amplitude, and the am-
plitude is dependent on the self-similarity, the sum of the histogram
bins is a measure of the strength of self-similarity between the beats,
which in turn is a factor in how rhythmic a song feels.

5.2.4 Design Overview

Figure 5.2 gives an overview of MUGRAT’s structure. The main classes are
FeatureExtractor, Signal and System, and classes that are derived from
these classes. A short discussion of these main classes follows. Please refer
to the MUGRAT source code10 for implementation details.

Signal

The actual data in MUGRAT are stored as vectors of floating point num-
bers (vFloat data type). The Signal class takes input in a specific format
and passes it, converted to vFloat[], to other classes that call Signal’s
get() method. The classes for reading data from file are all derived from
FileReader, which in turn is derived from Signal. Classes derived from
Signal provide a number of utility methods for checking the plausibility of
the data. As an example, WavFileReader – the class for reading WAVE
input – checks if the file exists, if it is not empty, if the magic number in the
header is correct, if the sampling rate is 8 bit or 16 bit, etc.

System

System is a very general class that takes an input vector and produces an
output vector. The dimensionality of input vector and output vector may
differ. The System can be applied by calling its void process(vFloat& in,
vFloat& out) method. Most classes in the MUGRAT feature extraction
module inherit from the System class. Fast Fourier Transform (FFT), Ham-
ming windowing (Hamming), Discrete Wavelet Transform (WaveletPyramid,
WaveletStep, D4), and all the individual features are all implemented as
subclasses of System.

10The full source code is available for download at the official MUGRAT website http:
//kyrah.net/mugrat/download.html.

5.3 Classification Subsystem 49

FeatureExtractor

Signal System PostProcessor
processes

Figure 5.2: MUGRAT feature extraction module design overview.

The most interesting property of Systems (i.e. classes derived from the
System class) is that they can be regarded and used as black boxes that
transform an input vector into an output vector. Therefore, Systems can be
arbitrarily combined into larger Systems. For instance, there is a class called
TextureFeatures, derived from System. Calling the process() method of
this class calculates a number of features related to the musical surface.
It accomplishes this by calling process() on its data members, which are
other Systems that represent the actual features.

FeatureExtractor

FeatureExtractor is a generic class that is constructed with a Signal, a
System and a PostProcessor. The System and PostProcessor define the
feature set that is examined by the FeatureExtractor, and the Signal
contains the input data.

The FeatureExtractor iterates over the Signal’s windows, applying the
System to each frame. The Postprocessor is then applied to the output
of this process, resulting in the final feature vector. This feature vector can
then be written to a disk file by using the << operator of the vFloat class.

5.3 Classification Subsystem

The actual classification is done using WEKA, the Waikato Environment
for Knowledge Analysis. WEKA is an excellent software framework devel-
oped by a project team from the University of Waikato, New Zealand. It
contains a collection of standard machine learning techniques, and is re-
leased under the GNU General Public License (GPL). The official website
for WEKA, which contains the full source code for the library and extensive
documentation, is http://www.cs.waikato.ac.nz/∼ml/weka/index.html.

WEKA expects the input data to be in ARFF (Attribute-Relation File
Format) files. ARFF files are ASCII text files that contain two distinct sec-
tions: a Header section and a Data section. The Header contains the name
of the relation, a list of the attributes, and their types. The list of attributes

5.4 Limitations 50

is ordered, and indicates the attribute’s position (column number) in the
Data section of the file. The type can be either numeric (real or integer), an
arbitrary string, or a nominal value (one of a list of possible values). More
information about ARFF files can be found in [Tea02].

The ARFF definition for MUGRAT is as follows:

@RELATION genres

@ATTRIBUTE MeanCentroid REAL

@ATTRIBUTE MeanRolloff REAL

@ATTRIBUTE MeanFlux REAL

@ATTRIBUTE MeanZerocrossings REAL

@ATTRIBUTE StdCentroid REAL

@ATTRIBUTE StdRolloff REAL

@ATTRIBUTE StdFlux REAL

@ATTRIBUTE StdZerocrossings REAL

@ATTRIBUTE LowEnergy REAL

@ATTRIBUTE RelAmplitude1 REAL

@ATTRIBUTE RelAmplitude2 REAL

@ATTRIBUTE AmplitudeRatio REAL

@ATTRIBUTE BPM1 REAL

@ATTRIBUTE BPM2 REAL

@ATTRIBUTE Sum REAL

@ATTRIBUTE class {Metal,Dance,Classical}

@DATA

The ARFF Data section is generated by the MUGRAT feature extractor.
It consists of one line per song that contains the extracted features in the
order specified in the ARFF header, separated by ’,’. A typical entry for a
song would be for instance (all in one line):

15.0061,17.9659,157.074,17.9604,2.65913,3.1901,111.073,4.88643,
0.0700521,0.137994,0.123342,0.893821,234,159,1.65178,Classical

WEKA contains a k-nearest-neighbour classifier implementation called IBk
in the weka.classifiers package. The system performs automatic input
normalisation, and can try a range of nearest neighbours k in order to de-
termine the value which yields the best classification result. A detailed
discussion of the results I obtained is provided in Chapter 6.

5.4 Limitations

The prototype is intended to serve as a proof of concept, showing that it is
possible to automatically determine the music genre of a song according to
the principles listed in Section 5.1. As a demonstration implementation, the
system naturally has several limitations. The most notable ones are listed
in the rest of this chapter.

5.4 Limitations 51

Limited Number Of Genres

Firstly, and perhaps most imporantly, the MUGRAT prototype uses only
three genres: Classical, Metal and Dance. I chose these three genres because
they are relatively well-defined and in most (though not all) cases, a human
listener can easily categorise a typical song from one of them.

A real system will need to use a much more sophisticated genre topol-
ogy, probably using a hierarchical structure of genres. In this context, it
may be advisable to have specialised feature extraction subsystems for the
various genre subtrees. The classification is then done in two steps, (1)
performing a coarse-level classification into rough categories, and (2) doing
a fine-grained classification. The first part is comparable to the function-
ality of the MUGRAT prototype. The second step uses methods that are
specifically designed for and adapted to the genre subset. Presumably, this
approach makes a very detailed and accurate classification possible, since
sub-genre-specific features can be taken into account.

No Special Handling of Ambiguous Input

The prototype does not handle borderline cases well. For instance, if the
system tries to classify a certain song and finds that the probability that it
belongs to the Metal genre is 50.1%, and the probability that it is a Classical
song is 49.9%, the system will label the song as Metal.

An easy solution to this problem is to do a fuzzy classification instead
of deciding on a single label. The output in the example above would then
be Metal: 50.1%, Classical: 49.9%, clearly telling the user that the song in
question contains strong elements from both genres. Unfortunately, this ap-
proach also has an important drawback. ID3 and other systems for handling
meta-data expect a decision on one genre label. Therefore, not deciding on
a genre (but using relative percentages) makes some input from the user –
i.e. a final decision – necessary to be able to use MUGRAT for automatic
classification in connection with such systems. In the MUGRAT prototype,
a decision on one genre label is taken, but as additional information, the
probability associated with it (i.e. the system’s confidence in the predici-
tion) is output as well.

There is another interesting aspect to this problem: Should it be possible
for the system to not make a classification at all? This would be a typical
human behaviour. If we are asked a question that we are unable to answer,
we say that we are not sure, rather than just making the most likely guess.
It might make sense to allow the system to leave songs unclassified, if the
probability values resulting from evaluating the features are below a certain
threshold.

5.4 Limitations 52

File Format and Platform Support

Currently, MUGRAT can read only 8 bit and 16 bit WAVE Files. Adding
support for other input formats such as Ogg Vorbis or MP3 should be
straightforward, though, since the input to the MUGRAT feature extrac-
tor are just windows of floating point vectors. For instance, implementing
an MP3 reader will consist in extending the FileReader class, so that the
subclass decodes the MP3 file and passes the output to the feature extractor
as floating point values when requested.

MUGRAT currently works only on little-endian architectures. This is
not a limitation of the feature extraction or classification system itself, but
only of the WAVE file input class. Adding big-endian support will be trivial
to do. MUGRAT has been developed on GNU/Linux, but a port to Windows
and Mac OS X is planned.

Chapter 6

Experimental Results

6.1 Test Data

General Information

The MUGRAT prototype uses three different genres: Metal, Dance, and
Classical1. I collected 189 test songs from the three genres: 63 Metal songs,
65 Dance tracks, and 61 Classical pieces2. The songs were all taken from
regular music collections, using a sample rate of 44.1 kHz and a bit rate of
128 or 160 kbps. These are common settings for non-professional purposes.
They were chosen according to the principle that MUGRAT should work
with real music data.

Song Selection

Special attention was paid to having enough variance in the selection. For
instance, the Metal collection contains songs from the Trash Metal, Speed
Metal, Classic Metal, Hardrock, Gothic Metal, Black Metal, Punk, Grunge,
and Death Metal categories. The same is true for the Dance genre, which
covers a spectrum from Eurodance to Rave. The input data for the classical
genre is somewhat more limited. This is due to the fact that classical music
is based on different concepts than popular music. It requires the listener to
actively pay attention in order to fully appreciate a piece. A four-year-old
child without any understanding of the musical structures used in classical
music can only make a rough distinction between violin, piano, orchestral,
or vocal music. This highly oversimplifying viewpoint is also taken by MU-
GRAT – the system is not able to hear the difference between e.g. a piano
piece by Frédéric Chopin and one by Robert Schumann.

1These genre names are intentionally unspecific. They pertain to the ideas that average
music listeners have about the respective kind of music, rather than the definitions used
by the music industry.

2A listing of the songs can be found in Appendix A.

53

6.2 Test Procedure 54

Influence of Lossy Compression

The input files were all in MP3 format3. One of the main applications for
automatic music genre classification will be to structure music collections
obtained through the Internet. It is common to use compressed file formats
for online distribution of audio data, such as Ogg Vorbis or MP3. In most
of these cases, the compression is lossy; the goal of such compression algo-
rithms is to make it impossible for a human listener to hear the difference.
Nevertheless, the sound signal obtained by decoding an MP3 file is not ex-
actly the same as the original signal. To music genre recognition software,
which does not follow the perceptual criteria that such encodings take ad-
vantage of, the two signals do sound different. By using compressed input
to train the classifier, it can be made sure that the system does not rely on
features that are only present in the original, uncompressed sound file.

6.2 Test Procedure

Feature Extraction

From each file, an randomly chosen sample of three seconds length was used
as input to the feature extraction module. The idea that three seconds are
enough for accurate classification is based on a study of human music genre
classification4, and is one of the key principles of MUGRAT. A perl script
was used to automatically process all input files.

Classification

The ARFF file that was generated by the feature extractor, and contained
the feature representation for all music files, was used to train a k-nearest-
neighbour classifier5, weighting the influence of the neighbours by the inverse
of their distance to the test instance. This classifier was evaluated using
stratified ten-fold cross-validation. Cross-validation is a standard evaluation
technique in pattern classification, in which the dataset is split into n parts
(folds) of equal size. n − 1 folds are used to train the classifier. The nth

fold that was held out is then used to test it. This is done n times, once for
each fold. The figures are added to generate the final statistics. Stratified
means that it is guaranteed that the different classes are equally distributed
in the test and training sets. Stratified cross-validation is useful for getting
reasonable estimates on future performance of the classifier, while only using
the available training data.

3Note: Since MUGRAT currently supports only WAVE input, the actual input was gener-
ated by decoding the MP3 files.

4See Section 2.2.2 for a discussion of the study in question.
5A complete listing can be found in Appendix B.

6.3 Test Results 55

6.3 Test Results

Using 3 nearest neighbours for the classification (k = 3), a classification ac-
curacy of 88.3598% was reached in ten-fold stratified cross-validation. This
is comparable to human music genre recognition capabilities. The confusion
matrix for k = 3 is shown in figure 6.3.

The performance of the classification was slightly worse for other values of
k. k = 4 resulted in 86.2434% and k = 2 in 84.127%.

Metal Dance Classical
56 6 1 Metal
13 50 2 Dance
0 0 61 Classical

Figure 6.1: MUGRAT genre classification confusion matrix

6.4 Usage Example

The following example assumes that a classifier has been trained as shown
in Appendix B. The working directory is /Users/kyrah/mugrat/. The ex-
ample song is recorded in mono with a bit rate of 128 kbps and a sampling
rate of 44.1 kHz.

The system can be used to classify a new song Shalala (La La) as follows:

(1) Extracting the Features

Run the feature extractor:

mugrat "Shalala (La La).wav"

This generates a file called Shalala (La La).arff, which contains the fea-
ture representation of the song Shalala (La La).

(2) Classifying the Song

Determine the genre of Shalala (La La):

> java weka.classifiers.IBk -p -l /Users/kyrah/mugrat/genre_knn_classifier

-T "/Users/kyrah/mugrat/Shalala (La La).arff"

0 Dance 0.724637682530215 Unclassified

6.4 Usage Example 56

This command reconstructs a KNN classifier from the model saved in the
file genre knn classifier. It uses the ARFF file generated in the previous
step as test data, specified by the -T option. The option -p tells WEKA to
output information about the individual data items – in our case, the single
data item Shalala (La La) – instead of displaying only statistics about the
classification performance, which is the default.

The first entry in the output is the song number. (MUGRAT can also
be used for batch processing.) The second entry is the system’s prediction
of the genre, in this case Dance, and the third entry is the confidence of the
classification. This value reflects the posterior probability for the predicted
genre. The fourth entry is the known genre of the song, and is mainly for
testing and debugging purposes. In the case of a new song, it is set to
Unclassified.

Chapter 7

Conclusions

7.1 Where Do We Go From Here?

The prototype described in Chapter 5 will be used as the basis for a complete
implementation of an automatic music genre recognition system. The goal of
this project is to develop a production-level system for end-users, preferably
with an easy-to-use graphical user interface in addition to the command-
line version. The system will be fully modular, so that the genre hierarchy
can be easily expanded in width and depth. It will also be possible to
use alternative feature extraction methods and classifiers through plug-ins.
More information about this system can be found on the official project
website http://kyrah.net/mugrat/. Some of the most interesting things to
look at in the near future are:

Extend the Genre Topology

The genre topology should be extended both in width and depth. This is
discussed in more detail in Section 5.4.

Additional Features

In addition to the features used by MUGRAT, there are many other possible
feature combinations that might improve the classification results, such as
pitch-based features. It might also be interesting to use MFCCs (see Section
3.4.2) instead of the STFT-based spectral features.

Different Classifiers

MUGRAT uses KNN classification. While it is one of my fundamental
assumptions that non-parametric methods are superior to parametric ap-
proaches in music genre recognition, it might be interesting to try out other,
more advanced classification techniques.

57

7.2 Contributions to the State of the Art 58

Segmentation

At present, randomly chosen excerpts from the songs are used for the clas-
sification. It might be useful to segment the songs to make sure that the
sample does not include a significant change in musical texture.

Real Time Classification

Some features, such as the features based on the music surface, can probably
also be used for the classification of music genres in real time.

Direct Handling of Ogg/MP3 Input

Some popular formats for the distribution of music files are based on spec-
tral transforms that are similar to the steps used in music genre recognition.
Using e.g. MP3-encoded files directly could greatly increase the feature ex-
traction speed.

7.2 Contributions to the State of the Art

The work presents a comprehensive critical overview of music genre recog-
nition, including disquisitions on the necessary background. It fills a gap in
the existing literature, which either focusses on signal processing and music
perception, or on the pattern classification aspect of the problem. Read-
ers with a background in sound analysis get a thorough introduction into
classification theory and practice, and researchers from the field of pattern
recognition find a discussion of music perception, Fourier analysis, and fea-
tures that are important for music classification.

The state of the art in music genre recognition, and machine listening in
general, is evaluated in a critical way. Widely-used assumptions and foun-
dations are challenged, such as the use of concepts from music theory and
features that can only be perceived by music experts, and the distinction be-
tween physical and perceptual features. It is explained why non-parametric
classification methods can be presumed to be more suitable for use in music
genre recognition than parameterised techniques. A set of foundations that
a music genre recognition system should be based on is proposed. These
foundations include the demand for working with arbitrary polyphonic sig-
nals, and using only the information available from the sound signal.

Finally, a prototype based on these principles is presented. While limited
in functionality, it shows that these principles are indeed a good foundation
for a music genre recognition system.

7.3 Final Remarks 59

7.3 Final Remarks

At present, the musical capabilities of computers are not even at the level
of a four-year-old child. There is much work to be done, many mistakes to
be made, many things to be learnt.

Music is a central element in many people’s lives, including mine. Teaching
our computers to understand music, maybe we will come closer to under-
standing the magic, power, and beauty of music ourselves.

Ohne Musik wäre das Leben ein Irrtum. (Friedrich Nietzsche)

Bibliography

[AD90] Paul E. Allen and Roger B. Dannenberg. Tracking musical beats
in real time. In S. Arnold and G. Hair (editor), ICMC Glasgow
1990 Proceedings, pages 140–143. International Computer Music
Association, 1990.

[Bil92] Jeff Bilmes. A model for musical rhythm. In ICMC Proceedings,
pages 207–210. Computer Music Association, 1992.

[BR99] Claudio Becchetti and Lucio Prina Ricotti. Speech Recognition,
Theory and C++ Implementation. John Wiley & Sons, 1999.

[Bre01] Leen Breure. Development of the genre concept. URL, http://
www.cs.uu.nl/people/leen/GenreDev/GenreDevelopment.htm, Au-
gust 2001.

[Coi90] R. R. Coifman. Wavelet analysis and signal processing. In Louis
Auslander, Tom Kailath, and Sanjoy K. Mitter, editors, Sig-
nal Processing, Part I: Signal Processing Theory, pages 59–68.
Springer-Verlag, New York, NY, 1990.

[DHS01] Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern
Classification. John Wiley & Sons, Inc., New York, 2001.

[Dix99] Simon Dixon. A beat tracking system for audio signals. In Pro-
ceedings of the Diderot Forum on Mathematics and Music, pages
101–110. Austrian Computer Society, 1999.

[DNS01] Hrishikesh Deshpande, Unjung Nam, and Rohit Singh. Mugec:
Automatic music genre classification. Technical report, Stanford
University, June 2001.

[Ell96] Daniel P. W. Ellis. Prediction-driven computational auditory
scene analysis for dense sound mixtures. Technical report, Inter-
national Computer Science Institute, Berkeley CA, 1996.

[Eri99] T. Erickson. Rhyme and punishment: The creation and enforce-
ment of conventions in an on-line participatory limerick genre.

60

BIBLIOGRAPHY 61

In Proceedings of the 32nd Hawaii International Conference on
System Sciences (HICSS ’99), 1999.

[Foo97a] Jonathan Foote. Content-based retrieval of music and audio.
In Multimedia Storage and Archiving Systems II, Proceedings of
SPIE Corpora, pages 138–147, 1997.

[Foo97b] Jonathan Foote. A similarity measure for automatic audio clas-
sification. In Proc. AAAI 1997 Spring Symposium on Intelligent
Integration and Use of Text, Image, Video, and Audio Corpora,
March 1997.

[Foo99] Jonathan Foote. An overview of audio information retrieval. Mul-
timedia Systems, 7(1):2–10, 1999.

[Ger00] David B. Gerhard. Audio signal classification. Technical report,
School of Computing Science, Simon Fraser University, February
2000.

[GLCS95] Asif Ghias, Jonathan Logan, David Chamberlin, and Brian C.
Smith. Query by humming: Musical information retrieval in an
audio database. In ACM Multimedia, pages 231–236, 1995.

[Hac00] Scot Hacker. MP3: The Definitive Guide. O’Reilly & Associates,
Inc., Sebastopol, 2000.

[JDM99] Anil K. Jain, Robert P.W. Duin, and Jianchang Mao. Statistical
pattern recognition: A review. IEEE Transactions On Pattern
Analysis and Machine Intelligence, 22(1):4–37, 1999.

[JKP94] George H. John, Ron Kohavi, and Karl Pfleger. Irrelevant fea-
tures and the subset selection problem. In International Confer-
ence on Machine Learning, pages 121–129, 1994.

[JMF99] Anil K. Jain, M. Narasimha Murty, and Patrick J. Flynn. Data
clustering: A review. ACM Computing Surveys, 31(3):264–323,
1999.

[Job01] Steve Jobs. Macworld keynote. Keynote at the Macworld Expo,
QuickTime movie available at http://www.apple.com/quicktime/
qtv/mwsf01/, 2001.

[Li00] Stan Z. Li. Content-based classification and retrieval of audio
using the nearest feature line method. IEEE Transactions on
Speech and Audio Processing, 9(5):619–615, September 2000.

[LWC98] Z. Liu, Y. Wang, and T. Chen. Audio feature extraction and
analysis for scene segmentation and classification. Journal of
VLSI Signal Processing System, 20:61–79, 1998.

BIBLIOGRAPHY 62

[Mar96] Keith D. Martin. Automatic transcription of simple polyphon-
ic music: Robust front end processing. Technical Report 399,
Massachusetts Institute of Technology, The Media Laboratory,
December 1996.

[MK98] Keith D. Martin and Y. E. Kim. Musical instrument identifica-
tion: A pattern-recognition approach. In Proc. of 136th meeting
of the Acoustical Society of America, 1998.

[MR00] Pedro J. Moreno and Ryan Rifkin. Using the fisher kernel method
for web audio classification. In International Conference on
Acoustics, Speech and Signal Processing (ICASSP), June 2000.

[MSV98] Keith D. Martin, Eric D. Scheirer, and Barry L. Vercoe. Mu-
sic content analysis through models of audition. In Proc. 1998
ACM Multimedia Workshop on Content Processing of Music for
Multimedia Applications, Bristol, UK, September 1998.

[MSW96] R. McNab, L. Smith, and I. Witten. Signal processing for
melody transcription. In Proc. 19th Australasian Computer Sci-
ence Conf., pages 301–307, Melbourne, January 1996.

[Ngu95] Truong Q. Nguyen. A tutorial on filter banks and wavelets. Tech-
nical report, University of Wisconsin, ECE Dptm., 1995.

[Nil01] Martin Nilsson. ID3v2. URL, http://www.id3.org/, December
2001.

[PFE96] Silvia Pfeiffer, Stephan Fischer, and Wolfgang Effelsberg. Au-
tomatic audio content analysis. In ACM Multimedia 96, pages
21–30, Boston, November 1996.

[PG99] D. Perrot and R. O. Gjerdigen. Scanning the dial: An exploration
of factors in the identification of musical style. In Proceedings of
the 1999 Society for Music Perception and Cognition, 1999.

[Pic01] Jeremy Pickens. A survey of feature selection techniques for music
information retrieval. Technical report, Center for Intelligent In-
formation Retrieval, University of Massachusetts, Amherst, MA,
2001.

[RF01] Andreas Rauber and Markus Fruhwirth. Automatically analyzing
and organizing music archives. In European Conference on Digital
Libraries, pages 402–414, 2001.

[RJ86] L. R. Rabiner and B. H. Juang. An introduction to hidden
Markov models. IEEE ASSP Magazine, 3(1):4–16, January 1986.

BIBLIOGRAPHY 63

[Roa96] Curtis Roads. The Computer Music Tutorial. MIT Press, 1996.

[Rub01] Wilfried Rubin. Automatisierte Suche nach Audiosignalen in
großen Datenbeständen. Master’s thesis, Fachhochschule Hagen-
berg (Medientechnik und -design), Juli 2001.

[Sau96] John Saunders. Real-time discrimination of broadcast
speech/music. In International Conference on Acoustics, Speech
and Signal Processing, vol. II, pages 993–996, 1996.

[Sla98] Malcolm Slaney. Auditory toolbox, version 2. Technical Report
1998-010, Interval Research Corporation, 1998.

[Smi98] Steven W. Smith. Scientist and Engineer’s Guide to Digital Sig-
nal Processing. California Technical Publishing, San Diego, CA,
1998.

[SP93] W. Sweldens and R. Piessens. Wavelet sampling techniques. In
1993 Proceedings of the Statistical Computing Section, pages 20–
29. American Statistical Association, 1993.

[SSNY97] S. R. Subramanya, Rahul Simha, Bhagirath Narahari, and Abdou
Youssef. Transform-based indexing of audio data for multimedia
databases. In International Conference on Multimedia Comput-
ing and Systems, pages 211–218, 1997.

[SSW98] Hagen Soltau, Tanja Schultz, and Martin Westphal. Recognition
of music types. In Proceedings of the 1998 IEEE International
Conference on Acoustics, Speech and Signal Processing, ICASSP,
Seattle, WA., 1998.

[Tea02] WEKA Project Team. ARFF. URL, http://www.cs.waikato.ac.
nz/∼ml/weka/arff.html, April 2002.

[TEC01] George Tzanetakis, Georg Essl, and Perry Cook. Automatic mu-
sical genre classification of audio signals. In Proceedings Inter-
national Symposium for Audio Information Retrieval (ISMIR),
Princeton, NJ, October 2001.

[TK00] T. Tolonen and M. Karjalainen. A computationally efficient mul-
tipitch model. IEEE Transactions on Speech and Audio Process-
ing, 8(6):708–716, November 2000.

[Tza02] George Tzanetakis. Manipulation, Analysis and Retrieval Sys-
tems for Audio Signals. PhD thesis, Princeton University, June
2002.

[Wei02] Eric Weisstein. World of mathematics. URL, http://mathworld.
wolfram.com/, March 2002.

BIBLIOGRAPHY 64

[ZK98a] T. Zhang and C. Kuo. Content-based classification and retrieval
of audio. In SPIE’s 43rd Annual Meeting - Conference on Ad-
vanced Signal Processing Algorithms, Architectures, and Imple-
mentations VIII, San Diego, July 1998.

[ZK98b] T. Zhang and C. Kuo. Hierarchical system for content-based
audio classification and retrieval. Technical report, University of
Southern California, Los Angeles, CA, 1998.

Appendix A

Playlists

A.1 Rock

1. Paradise Lost – Say Just Words

2. Blind Guardian – Into The Storm

3. Nightwish – Elvenpath

4. Rage Against The Machine – Killing In The Name Of

5. HIM – Poison Girl

6. Metallica – The Unforgiven II

7. Sepultura – Subtraction

8. White Zombie – El Phantasmo And The Chicken Run Blast-o-Rama

9. Slipknot – Purity

10. Nirvana – Smells Like Teen Spirit

11. Bad Religion – Punk Rock Song

12. The Sisters Of Mercy – Vision Thing

13. Offspring – Get A Job

14. The Bates – Independent Love Song

15. Blink 182 – Mutt

16. Nightwish – Sacrament Of Wilderness

17. Slipknot – Me Inside

18. Guano Apes – Lords Of The Boards

19. Marilyn Manson – I Don’t Like The Drugs (But The Drugs Like Me)

20. Samael – Together

21. White Zombie – I Zombie

22. Amorphis – Divinity

65

A.1 Rock 66

23. Lacuna Coil – Circle

24. Samsas Traum – Aber die Liebe stirbt nie

25. Metallica – Prince Charming

26. White Zombie – Super-Charger Heaven

27. Die Boehsen Onkelz – Falsche Propheten

28. Rammstein – Sonne

29. Slipknot – (sic)

30. The Atomic Fireballs – Man With The Hex

31. AC/DC – Highway To Hell

32. Blind Guardian – Mirror Mirror

33. Iron Maiden – Blood On The World’s Hand

34. HIM – Bury Me Deep Inside Your Heart

35. Dream Theatre – Metropolis II, Chapter 2

36. Motorhead – Killed By Death

37. Accept – Restless And Wild

38. Tristania – Angellore

39. Bloodhound Gang – Along Comes Mary

40. The Sisters Of Mercy – Doctor Jeep

41. Nightwish – Wishmaster

42. Metallica – Carpe Diem Baby

43. Antichrisis – Her Orphaned Throne

44. Weeser – My Name Is Jonas

45. Ministry – N.W.O.

46. Skinny Puppy – Cult

47. Ecstatic Fear – A Sombre Dance, Chapter 3

48. The Sisters Of Mercy – Dominion

49. Green Day – Basket Case

50. U2 – Who’s Gonna Ride Your Wild Horses

51. Die Ärzte – Alleine In Der Nacht

52. Bloodhound Gang – Firewaterburn

53. Tristania – Wasteland’s Caress

54. Rammstein – Links 2 3 4

55. Paradise Lost – Blood Of Another

A.2 Dance/Techno 67

56. Ozzy Osbourne – I Just Want You

57. Darkness – Dead Squad

58. Tyrant – Up The Hammer

59. Stiltskin – Inside

60. Slipknot – Prosthetics

61. Nightwish – The Riddler

62. Blind Guardian – Nightfall

63. Molotov – Volatino

A.2 Dance/Techno

1. RMB – Experience

2. Capella – U Got 2 Let The Music

3. 2 Unlimited – Let The Beat Control Your Body

4. BBE – 7 Days And 1 Week

5. Chicane – Offshore

6. Eiffel 65 – Blue

7. Space – Magic Fly

8. General Base – Poison

9. Future Breeze – Keep The Fire Burning

10. Dance 2 Trance – Power Of American Natives

11. Cult Of Bass – Endless Love

12. Chemical Brothers – Hey Boys Hey Girls

13. Bedrock Band – (Meet) the Flintstones

14. Forward – You Make Me Feel

15. DJ Sammy & Yanou Feat. DO – Heaven

16. Eagle J. & Played P.N.M. – Living for The Night

17. Lovers – 7 Seconds 136 bpm

18. ATC – I’m In Heaven (When You Kiss Me)

19. Mascara – Dance Faith

20. Lasgo – Something

21. Gigi D’Agostino – L’Amour Toujours

22. Barthezz – Infected

23. Brooklyn Bounce – Club Bizarre

A.2 Dance/Techno 68

24. Charly Lownoise & Mental Theo – Wonderful Days (2001 Remix)

25. Mark’Oh – Never Stop That Feeling 2001

26. Dj Bobo – Take Control

27. Jam & Spoon – Right In The Night

28. Tag Team – Whoomp!

29. Culture Beat – Anything

30. M.C. Sar & The Real McCoy – Automatic Lover

31. Loft – Hold On

32. Magic Affair – Omen III

33. Twenty 4 Seven – Is It Love?

34. Technotronic – Hey Yoh, Here We Go

35. Maxx – Get-A-Way

36. 2 Unlimited – Let The Beat Control Your Body

37. Ann Lee – 2 Times

38. Mellow Trax – Outa Space

39. Passion Fruit – The Rigga-Ding-Dong-Song

40. Vengaboys – We Are Going To Ibiza

41. T Seven – Hey Mr. President

42. Pfaffendorf – Rhythm and Sex

43. R.B.A. – No Alternative

44. Cosmic Gate – Exploration of Space

45. Storm – Stormanimal

46. Masterboy – Porque Te Vas

47. Music Instructor – Electric City

48. Wamdue Project – King Of My Castle

49. Mark’Oh Vs. John Davies – The Sparrows And The Nightingales

50. Lightforce – Take Your Time (The Riddle ’99)

51. Central Seven – Missing

52. Martha Williams – Don’t Leave Me This Way

53. Quik Feat. Charlotte – Need You Tonite

54. Loona – Latin Lover

55. Gigi D’Agostino – The Riddle

56. Suco E Sol – Ylarie

A.3 Classical 69

57. M.A.D.R.A.S. – Woodoorave

58. DJ Red 5 Vs. DJs @ Work – Rhythm & Drums 2001

59. Dj Andrea Boari – Da Da Da

60. Melba – Mabel

61. Reactor Bass – My Name Is Bass

62. DJ R.P.M. – Pussy Pussy

63. Voodoo & Serano – Blood Is Pumpin

64. Axel Konrad – R.U.F.F. Cuts

65. Azzido Da Bass – Dooms Night

A.3 Classical

1. Johann S. Bach – Brandenburgisches Konzert Nr. 1 F-Dur (BWV
1046), 1. Satz (Allegro)

2. Johann S. Bach – Brandenburgisches Konzert Nr. 1 F-Dur (BWV
1046), 2. Satz (Adagio)

3. Johann S. Bach – Brandenburgisches Konzert Nr. 1 F-Dur (BWV
1046), 3. Satz (Allegro)

4. Johann S. Bach – Brandenburgisches Konzert Nr. 1 F-Dur (BWV
1046), 4. Satz (Menuetto)

5. Johann S. Bach – Brandenburgisches Konzert Nr. 5 D-Dur (BWV
1050), 1. Satz (Allegro)

6. Johann S. Bach – Brandenburgisches Konzert Nr. 5 D-Dur (BWV
1050), 2. Satz (Afettuoso)

7. Johann S. Bach – Brandenburgisches Konzert Nr. 5 D-Dur (BWV
1050), 3. Satz (Allegro)

8. Johann S. Bach – Brandenburgisches Konzert Nr. 6 B-Dur (BWV
1051), 1. Satz (Allegro)

9. Johann S. Bach – Brandenburgisches Konzert Nr. 6 B-Dur (BWV
1051), 2. Satz (Adagio ma non tanto)

10. Johann S. Bach – Brandenburgisches Konzert Nr. 6 B-Dur (BWV
1051), 3. Satz (Allegro)

11. Ludwig van Beethoven – Violinkonzert D-Dur (op. 61), 1. Satz (Allegro
ma non troppo)

12. Ludwig van Beethoven – Violinkonzert D-Dur (op. 61), 2. Satz (Larghet-
to)

A.3 Classical 70

13. Ludwig van Beethoven – Violinkonzert D-Dur (op. 61), 3. Satz (Rondo,
Allegro)

14. Ludwig van Beethoven – Romanze für Violine und Orchester Nr. 1
G-Dur (op. 40)

15. Ludwig van Beethoven – Romanze für Violine und Orchester Nr. 2
F-Dur (op. 50)

16. Ludwig van Beethoven – Konzert für Klavier und Orchester Nr. 3 C-
Moll (op. 37), 1. Satz (Allegro con brio)

17. Ludwig van Beethoven – Konzert für Klavier und Orchester Nr. 3 C-
Moll (op. 37), 3. Satz (Rondo: Allegro)

18. Ludwig van Beethoven – Fantasie für Klavier, Chor und Orchester,
C-Moll (op. 80)

19. Robert Schumann – Konzert für Klavier und Orchester, A-Moll (op. 54),
1. Satz (Allegro affettuoso)

20. Robert Schumann – Konzert für Klavier und Orchester, A-Moll (op. 54),
2. Satz (Andantino grazioso)

21. Robert Schumann – Konzert für Klavier und Orchester, A-Moll (op. 54),
3. Satz (Allegro vivace)

22. Frédéric Chopin – Fantasie F-Moll (Op. 49)

23. Frédéric Chopin – Impromptu As-Dur (Op. 29)

24. Frédéric Chopin – Impromptu Fis-Dur (Op. 36)

25. Frédéric Chopin – Impromptu Ges-Dur (Op. 51)

26. Frédéric Chopin – Impromptu Cis-Moll (Op. 66)

27. Frédéric Chopin – Nocturne Cis-Moll (Op. 27.1)

28. Frédéric Chopin – Nocturne Des-Dur (Op. 27.2)

29. Frédéric Chopin – Nocturne G-Moll (Op. 37.1)

30. Frédéric Chopin – Nocturne G-Dur (Op. 37.2)

31. Frédéric Chopin – Polonaise Cis-Moll (Op. 36.1)

32. Frédéric Chopin – Walzer A-Moll (Op. 34.2)

33. Frédéric Chopin – Walzer Des-Dur (Op. 64.1)

34. Frédéric Chopin – Walzer F-Moll (Op. 70.2)

35. Frédéric Chopin – Nocturne B-Moll (Op. 9.1)

36. Frédéric Chopin – Prélude G-Dur (Op. 28.3)

37. Frédéric Chopin – Prélude Fis-Moll (Op. 28.8)

38. Frédéric Chopin – Prélude Des-Dur (Op. 28.15)

A.3 Classical 71

39. Frédéric Chopin – Prélude As-Dur (Op. 28.17)

40. Frédéric Chopin – Mazurka A-Moll (Op. 68.2)

41. Frédéric Chopin – Mazurka F-Dur (Op. 68.3)

42. Frédéric Chopin – Ballade G-Moll (Op. 23)

43. Johann S. Bach – Ouverture No. 1 C-Dur (BWV 1066), 1. Ouverture

44. Johann S. Bach – Ouverture No. 1 C-Dur (BWV 1066), 2. Courante

45. Johann S. Bach – Ouverture No. 1 C-Dur (BWV 1066), 3. Gavotte

46. Johann S. Bach – Ouverture No. 1 C-Dur (BWV 1066), 4. Forlane

47. Johann S. Bach – Ouverture No. 1 C-Dur (BWV 1066), 5. Menuet

48. Johann S. Bach – Ouverture No. 1 C-Dur (BWV 1066), 6. Bourrée

49. Johann S. Bach – Ouverture No. 1 C-Dur (BWV 1066), 7. Passepied

50. Johann S. Bach – Ouverture No. 2 H-Moll (BWV 1067), 1. Ouverture

51. Johann S. Bach – Ouverture No. 2 H-Moll (BWV 1067), 2. Rondeau

52. Johann S. Bach – Ouverture No. 2 H-Moll (BWV 1067), 3. Sarabande

53. Johann S. Bach – Ouverture No. 2 H-Moll (BWV 1067), 4. Bourrée

54. Johann S. Bach – Ouverture No. 2 H-Moll (BWV 1067), 5. Polonaise
– Double

55. Johann S. Bach – Ouverture No. 2 H-Moll (BWV 1067), 6. Menuet

56. Johann S. Bach – Ouverture No. 2 H-Moll (BWV 1067), 7. Badinerie

57. Johann S. Bach – Ouverture No. 4 D-Dur (BWV 1069), 1. Ouverture

58. Johann S. Bach – Ouverture No. 4 D-Dur (BWV 1069), 2. Bourrée

59. Johann S. Bach – Ouverture No. 4 D-Dur (BWV 1069), 3. Gavotte

60. Johann S. Bach – Ouverture No. 4 D-Dur (BWV 1069), 4. Menuet

61. Johann S. Bach – Ouverture No. 4 D-Dur (BWV 1069), 5. Rejouissance

Appendix B

Listing of Classifier Training

The following listing shows how to train a MUGRAT classifier. The results
presented in Chapter 6 were obtained using this classifier. As described in
Section 5.3, the WEKA framework is used for the classification subsystem.
More information about WEKA can be found at http://www.cs.waikato.ac.
nz/∼ml/.

Options

The training dataset is specified by the -t option. The feature represen-
tations for the example songs are contained in the ARFF file out.arff in
the directory /Users/kyrah/mugrat/. IBk is WEKA’s implementation of a
k-nearest-neighbour classifier. The option -K specifies the number of nearest
neighbours to use. In the example, the labels of the three nearest neighbours
are taken into account. The location where the trained classifier is stored is
given by the -d option.

Explanation of the Output

The system evaluates the classifier’s performance in two ways. First, a pre-
diction based on the training data is made. This is an optimistic estimation,
and shows the upper bound of the classifier’s performance. Secondly, strat-
ified ten-fold cross-validation is performed. For both cases, the confusion
matrices are displayed.

Listing

> java weka.classifiers.IBk -K 3 -d /Users/kyrah/mugrat/genre_knn_classifier

-t /Users/kyrah/mugrat/out.arff

Options: -K 3

IB1 instance-based classifier

using 3 nearest neighbour(s) for classification

72

73

=== Error on training data ===

Correctly Classified Instances 167 91.2568 %

Incorrectly Classified Instances 16 8.7432 %

Mean absolute error 0.0737

Root mean squared error 0.1919

Total Number of Instances 183

=== Confusion Matrix ===

a b c <-- classified as

56 5 0 | a = Metal

9 52 2 | b = Dance

0 0 59 | c = Classical

=== Stratified cross-validation ===

Correctly Classified Instances 161 87.9781 %

Incorrectly Classified Instances 22 12.0219 %

Mean absolute error 0.1186

Root mean squared error 0.2834

Total Number of Instances 183

=== Confusion Matrix ===

a b c <-- classified as

54 7 0 | a = Metal

13 48 2 | b = Dance

0 0 59 | c = Classical

Refer to Section 6.4 for a description of how to use MUGRAT to classify a
new song.

Appendix C

Contents Of The CD-ROM

File System: Joliet/Rock-Ridge, Mode: Single-Session

All material on the CD-ROM is c© Copyright 2002 Karin Kosina, except
where stated otherwise. All rights reserved.

C.1 Thesis

Path: /

thesis.pdf This document as PDF

Path: /tex/

thesis.tex LATEX main document
appendix a.tex Appendix A: Playlists
appendix b.tex Appendix B: Listing of Classifier Training
appendix c.tex Appendix C: Contents of the CD
ch1.tex Chapter 1: Introduction
ch2.tex Chapter 2: Music Genre Recognition
ch3.tex Chapter 3: Feature Extraction
ch4.tex Chapter 4: Classification
ch5.tex Chapter 5: Prototype
ch6.tex Chapter 6: Experimental Results
ch7.tex Chapter 7: Conclusion
pre abstract.tex Abstract
pre kurzfassung.tex . . Kurzfassung (german abstract)
pre preface.tex Preface
literature.bib Collection of relevant literature
∗.sty LATEX style files (c© FHS Hagenberg)

74

C.2 MUGRAT Source Code 75

Path: /tex/images/

∗.pdf graphics and images

C.2 MUGRAT Source Code

The source code on the CD-ROM is a snapshot from 19th June 2002. The
latest version can be downloaded from the official MUGRAT website http:
//kyrah.net/mugrat/.

Path: /src/

Makefile GNU Makefile for GNU/Linux i386
defs.h common definitions
main.cpp mugrat feature extraction program
d ∗.[h|cpp] data types used in MUGRAT
io ∗.[h|cpp] input/output classes
x ∗.[h|cpp] classes concerning feature extraction
readme README file
copying GNU General Public License, version 2

Path: /src/scripts/

run mugrat.pl script to run mugrat in batch mode
cmd.txt list of command lines used to generate the

example samples

