
(Ludger Hofmann-Engl, chapter 2 of PhD thesis, Department of  Psychology, Keele University, 2002)

Melodic similarity models: Background, Critique and Objectives

 It is a rather difficult issue trying to portrait existing approaches to the issue of melodic 

similarity in a systematic fashion. This is, some of the existing approaches are motivated by 

cognitive and psychological research, while others are simply algorithms which are constructed 

for specific purposes (such as music information retrieval). However, interesting enough, it 

seems possible to group all existing approaches into four classes. Two of these classes are 

rooted in the cognitive science. These are the models based on the contrast model as introduced 

by Tversky (1977) and the distance model as developed by Shepard (1987). A third approach 

known as dynamic programming, which was first proposed for the purpose of measuring 

similarity by Goad & Kanehisa (1982), has been used in many context, such as bio-informatics, 

chemistry and music and multimedia information retrieval. Most recently, transition matrices 

have been employed to measure melodic similarity by Hoos, Renz & Görg (2001). The author 

decided it would be most beneficial for the understanding of the text if we discussed each of 

the different approaches in general (except transition matrices as it appears that this is an 

approach used in music information retrieval only), and then discuss some critical remarks 

and the implementation of the approaches in music. The final section of this chapter will 

discuss some general critiques and an outlook of what a similarity model ought to deliver.

2.1. Contrast models

 Central to Tversky contrast model is the assumption that similarity is related to the 

weighted difference of measures of their common and distinct features. Thus, two objects A 
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and B will be the more similar the more features they have in common and the less similar the 

more features the objects do not have in common. The model is usually presented in the following 

form:

where S is the similarity, ϑ, α, β empirical constants, c the count of common features, a the count of features 

present in object A but not in B and b the count of features not present in object A but in B.

 Applying this model, we find, that a white door with 4 wooden panels (a), will be more 

similar when compared to a white door with two wooden panels (b), than it will be when 

compared to a white door with no wooden panels (c). This situation might change if additional 

features are considered. For instance if the white door with 4 wooden panels (a) is the same 

standard size as the door without wooden panels (b) and the white door with 2 wooden panels 

(c) is in fact part of a doll house. Still, whether this additional feature will effect a reversal in 

similarity, so that (a) is more similar to (c) than (a) to (b) will depend on the empirical constants 

ϑ, α, β.

 Apparently, Tversky did not, as pointed out by Bradshaw (1997), take any features into 

account which are not present in one of the compared objects. Although this critique might 

seem formalistic (i.e. to say: "we count features both objects have, features the first object has 

but not the second one and features the first object does not have but the second one, hence we 

also have to count the features neither object have”), but it is substantial in as much as it is 

related to a critique by Goodman (1972). According to Goodman the question whether an object 

X is similar to an object Y is meaningless if not stated in respect to a property Z. For instance, 

if the comparative property Y is color, than all three doors of our previous example have the 

bacS βαϑ ++= formula 2.1.
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same similarity status. However, setting the comparative property Y to be functionality, door 

(a) will be more similar to door (b) than to doll house door (c). Tversky justifies his approach 

by stating that, "when faced with a comparison or identification problem we extract a limited 

number of relevant features on the basis of which we perform the required task.” Although this 

might be the case, we still face the problem of identifying how and which are these features 

extracted. This is an issue raised by Barsalou (1982), who found that raccoon and snake are 

more similar when compared without further context specification than when compared in 

context of the category pets. We might argue that Barsalou’s similarity experiment investigates 

conceptual similarity, rather than cognitive similarity and that Tversky model is applicable to 

cognitive similarity and hence not adversely affected by Barsalou’s findings. However, Medin, 

Goldstone & Gennter (1993) demonstrated in an experiment that cognitive similarity is likely 

to be affected by context. These researchers found that when an object which has ambiguous 

features (a drawing which can be interpreted as either a 3 dimensional or a two dimensional 

representation) is compared with an unambiguous object (a drawing with can only be interpreted 

as 2 dimensional) participants of the experiments adopted the unambiguous feature to interpret 

both objects (both objects will be seen to be two dimensional). If such cross influences occur, 

it seems an unlikely assumption that similarity should be independent of context. It appears that 

context might pose a more serious difficulty to Tversky model than he seemed to confess.

 This deficiency is heightened by Tversky own discovery of asymmetrical similarity 

judgments. This is, an object A compared with an object B will not necessary produce the same 

similarity measure when the comparison order is reversed to comparing object B with object 

A. Thus for instance, Tversky found that the similarity between Tel Aviv and New York is 
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greater than the similarity between New York and Tel Aviv. A reason for such asymmetrical 

judgments is given by Nosofsky (1991). He argues that an object with high frequency presence 

(e.g., an object which we see often) is likely to be stored in the memory more strongly than is 

an object with low frequency (e.g., an object we see rarely). Further, he maintains that an object 

with higher memory strength (in this case New York) will be activated more by an object of low 

memory strength (in this case Tel Aviv) than vice versa. Although this seems to be a reasonable 

explanation, we also can explain asymmetries by referring to the previous paragraph: Comparing 

Tel Aviv to New York (both are multi cultural and have a beach) will produce the selection of 

different relevant features than comparing New York with Tel Aviv (New York is a metropolis, 

but not Tel Aviv). The advantage of this explanation is that it does not involve vague theoretical 

concepts. However, the point is that such asymmetries are seemingly in conflict with Tversky’s 

model. This conflict can only be resolved when we introduce the set A   consisting of all relevant 

features for a specific comparison task comparing object A and B, where we set A   to be a 

function of the comparison order with A (A,B) ≠A (B,A). Admitted, this is no elegant solution. 

Still, if we consider the context where asymmetries have been reported (e.g., Medin, Goldstone 

& Gentner, 1993), we find that such asymmetries seem only to occur in conceptual similarity 

tasks and not in cognitive similarity tasks. Interpreting Tversky model as an exclusively cognitive 

model, we might safely ignore asymmetries.

 Tversky also demonstrated, in reference to his model, that the so called triangle inequality 

does not hold scrutiny in the context of similarity judgment tasks: The triangle inequality, until 

Tversky seen as a psychological fact, states that the psychological distance between two points 

a and c is lower than or equal to the sum of a to b plus b to c. Quite clearly, this law does not 
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hold when we consider the following example: Given shall be an object A (red triangle), an object 

B (blue triangle) and an object C (blue square). We find, that although A is close to B because 

of shape and B is close to C because of color, A and B are not close. This discovery is of crucial 

importance when similarity ratings are made on larger sets of objects necessitating the comparison 

of each object with each object.

 There have been several proposals on how to modify Tversky’s model, with the model 

by Markman & Gentner (1993, 1996, 1997) as possibly the most interesting one. They proposed 

a structure-based model. Here, feature commonalties and feature differences are replaced by 

alignable commonalties, alignable differences and non-alignable differences. When comparing 

two objects, an alignable commonality is a shared feature which does not only exist in both objects 

but is also structurally at the same position (isomorphic) in both objects. For instance the wheel 

on a bicycle is isomorphic to the wheel of a motor cycle, but not to the wheel on a sewing machine. 

Shared features which are not alignable are called non-alignable. Alignable differences are 

deviations in features at the same position (e.g., the bicycle has pedals instead of the engine on 

the motor bicycle). None-alignable differences are features at a position in one object while there 

are no features at all at the other object (e.g., the tank on a motor bicycle). The authors have been 

able to produce some evidence that alignable differences influence similarity judgments more 

than non-alignable differences do. This seems to confirm the validity of their approach. However, 

a major logical problem underlies their understanding of isomorphism. Even if Markman and 

Gentner understand the isomorphism in a more colloquial sense, it might be useful to consider a 

more formal definition of isomorphism. Mathematically speaking, two objects A and B are 

isomorphic, if all positions of A can be mapped onto a corresponding unequivocal position in B 
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by a function (generally written as: F(a1 + a2) = F(a1) + F(a2) with a1, a2 ∈ A and F(a1), F(a2), 

F(a1 + a2) ∈ B). Quite clearly, a bicycle and a motor bicycle do not fulfill this criterion, or 

generally speaking, isomorphism is not a requirement for us to consider two objects A and   

to be similar. The only way for Markman and Gentner to save the idea of isomorphism, requires 

the consideration of a local isomorphism by segmenting the objects into sections. Thus we 

might segment A into A1, A2 ... An and A’ 1, A’ 2 ... A’ n while B might be segmented into B1, B2 

... Bn and B’ 1, B’ 2 .. B’ n. An isomorphism might be established between A1 and B1, between 

A2 and B2 and so on (alignable segments), while some segments A’ 1, A’ 2 ... A’ n and B’ 1, B’ 2 ... 

B'n might remain without such an isomorphism (non-alignable segments). However, such a 

segmentation is already ambiguous and so is the question which segment to map onto which 

other segment (e.g. A1 onto B1 or A1 onto B2). For instance, the question is which metal bar 

on the bicycle should be mapped onto which metal bar on the motor bicycle. Another, maybe 

more obvious, example would be given by the comparison of a chair with four differently 

shaped legs with a chair with three differently shaped legs. The question which legs are to be 

aligned or are isomorphic and which leg is to remain non-aligned, might turn into an artful 

task. Moreover, such a segmentation will threaten the overall meaningfulness, as two features 

might show local isomorphism, and yet this local isomorphism might be accidental when 

considering the objects as a whole. Thus, the spinning wheel on a car might be aligned with 

the spinning disk of hard-drive in a PC, but whether there lies any meaning in doing so is 

another question. In fact, an appropriate aligning seems to imply that we understand the 

functionality of the compared objects. However, such understanding implies underlying theo-

retical constructs which themselves will have implications on similarity. Thus, the author 
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concludes that, although Markman and Gentner’s model might shed light onto some simple 

examples (e.g. comparing Motel with Hotel and Hotel with Motorcycle), their approach seems 

to produce more problems than it sets out to solve.

2.1.1. Contrast models in music

 There have also been several applications of Tversky’s model in the context of melodic 

similarity (e.g. Kluge, 1996; Uitdenbogerd & Zobel, 1998). However, it seems the most far 

reaching attempt was undertaken by Cambouropoulos (1998). Cambouropoulos considered 

similarity in the context of categorization in an effort to offer a computational model of melodic 

segmentation. The underlying principle is the idea to vary a threshold h so as to allow the 

similarity of motives to generate categories so that similar motives will be found in the same 

category. Cambouropoulos defines the following relations:

and

where d(x,y) is the distance between the entities (motives) x and y, wxi and wyi are weighting factors (which 

are under-defined in Cambouropoulos’s work), xi and yi the ith feature of the entities x and y respectively, 

ν the number of features, δxiyi the Kronecker delta (with δxiyi=1 for xi=yi and δxiyi=0 for xi≠yi), Sh(x,y) the 

similarity between the entities x and y (either similar or dissimilar) and h is the threshold (variable number).

)1(),(
iiii yxyx wwyxd δ−=∑ formula 2.2.

formula 2.3.
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 Once two entities x and y reach a level d(x,y) above the threshold h, they are considered 

dissimilar and if d(x,y) lies below h, they are considered similar, which then serves in his 

unscramble algorithm as the criterion to draw up categories. Unfortunately, the question which 

are the relevant entities (features) xi and yi is assumed to be answered without ever being asked. 

Thus, Cambouropoulos uses the features: exact pitch intervals, contour and durations. As this 

thesis intends to demonstrate, these features alone are insufficient to describe melodic similarity 

(in fact, as we will see contour is not a predictor at all). Moreover, this model seems to imply 

complexity, but de facto it is a reduced form of Tversky’s model, only considering commonalties 

and not taken into account differences and appears to be an inferior version. Clearly, a model 

of similarity will have to refer to pitch (or some correlate of pitch), duration and dynamics. 

Still, a model could for instance count how many pitches two melodies A and B have in 

common, how many pitches are in A, in case A has different length than B, which are not in 

B and how many pitches are in B which are not in A. Additionally, higher level features such 

as tone repetitions or symmetries (e.g. sequences) are features which will allow for counting 

differences. Finally, the findings by Egmond, Povel, & Maris (1996) are in contrast to this 

model. These researchers found that similarity judgments decreased with increasing transpo-

sition interval. According to the above described model, however, we find that all transpositions 

are treated as equivalent.

2.2. The distance model

 The second approach towards a similarity measure was put forward by Shepard (1987). 

Here, similarity is ultimately related to the distance between all the points of the objects’ 
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attributes. Thus, if the attributes of two objects A and B fall into five categories (for instance: 

weight, color, volume, shape, sound characteristics), we will obtain a 5-dimensional attribute 

vector for each object. The similarity then is a function of the distance between the attribute 

vector of object A and object B. We give a physical example: Object A is a cube (12 sides), 5 

kg, red (let us say wavelength is 660 nm) and produces a low frequency of 200 Hz. Object B 

is a pyramid with square base (8 sides), 3 kg, blue (let us say wavelength is 460 nm) and 

produces a high frequency of 2000 Hz. Now, difference in sides is 12 - 8 = 4, in weight 5 kg 

- 4 kg = 1 kg, in color 660 nm - 460 nm = 200 nm and in frequency 2000 Hz - 200 Hz = 1800 

Hz. Thus the similarity will be a function of the mean difference. Although the author used a 

physical example for the purpose of clearness, Shepard constructs for the similarity measure 

an “abstract psychological space”. However, he discerns various dimensions of this abstract 

space as being approximated by physical dimensions (e.g., psychological space distance as 

measured by a Euclidean metric, or in the case of pitch by the frequency ratios). Referring to 

this model, we find that the above mentioned experiment by van Egmond, Povel & Maris (1996) 

can be easily explained in form of a 1-dimensional distance similarity measure. If we form the 

distance between the first pitch pa of melody A and the first pitch pb of melody B, we obtain 

the transposition interval I = pa - pb. Thus similarity S will be proportional to I:

S ∝ I

where S is the similarity and I the transposition interval between two melodies.

 Shepard’s model is usually written in the form:

formula 2.4.
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where d(x,y) is the generalized distance of the objects x and y within the psychological space of dimension 

D, xk and yk are the psychological quantities of object x and y along the kth dimension, p is an empirical 

constant.

 Applying this model to the similarity to Egmond, Povel & Maris’s study concerning 

the transposition interval, we get p = 1 and D = 1. This metric (p = 1) is called city-block 

metric in contrast to a metric with p = 2 which is called Euclidean metric. 

 This model is not only supported by this study, but by several studies conducted by 

Shepard (for instance that the length of time it takes participants to make same/different 

judgments about pairs of shapes, one in standard position and the other rotated, is proportional 

to the degree of rotation). However, it seems there are two major problems with Shepard’s 

model. Firstly, as observed by some researchers (e.g. Cardie & Howe 1997) the model does 

not incorporate the weighting of specific dimensions, although it seems highly unlikely that 

all psychological dimensions will weigh the same (for instance the loudness dimension versus 

the pitch dimension). However, this is easily fixed by introducing a weighting factor wk for 

each attribute (as we will see, this is exactly what O’Maidín in 1998 proposed). More serious 

might seem the second issue: The asymmetries as found in Tversky's experiments are not built 

into the model. The minimal expense required to solve this problem will call for a weighting 

factor which is dependent on the comparison order, possibly in the form wkxy for comparison 
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of the object x with object y and wkyx for comparison of the object y with the object x. Note, 

this is admitted an unpleasantly as it increases the complexity of the model substantially, at 

least Shepard’s model is able to incorporate asymmetries directly in contrast to Tversky’s 

model. Still, if we understand both models as cognitive and not as conceptual similarity models 

such weighting might not be necessary.

2.2.1 Distance models in music

 A modification of Shepard’s model has been put forward by Kluge (1996), who is 

apparently unaware of Shepard’s model, for application to music analysis. Hereby, Kluge 

proposes a city-block matrix. However, he sees that the similarity distance should be weighted 

by the amount of attributes. Thus we get:

where d(x,y) is the generalized distance of the objects x and y within the psychological space, xk and yk 

are the psychological quantities of object x and y along the kth dimension and n the amount of attributes.

 However, Kluge does not specify the attributes of a melody which will have to be taken 

into account. Thus his model remains abstract and how to apply the model to music analysis 

remains unclear. The omission of p as found in Shepard’s model also seems to weaken this 

model as there is no means of adapting this model to empirical data.
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 A more elaborate model was put forward by O’Maidín (1998). He proposed the 

following model:

where p1k is the pitch of the note from the first segment at the kth window, p2k is the pitch of the note from 

the second segment at the kth window, wk is the width of the kth window, wsk is the weight derived from 

metrical stress for the window k and n is the amount of windows.

 Before we will interpret this formula, we can see some improvements and some 

impoverishment when compared to both Kluge’s and Shepard’s model: Firstly, this model 

does not contain the empirical constant p as in Shepard’s model, which will imply a reduced 

empirical adaptability. It also does not divide the sum by the amount of summands n in contrast 

to Kluge’s model. This again seems problematic as it implies that the longer two melodies, 

the less similar they are regardless of any other features. However, his model shows some 

strength by introducing two weighting factors. O’Maidín suggested to use a weighting factor 

wk, which basically gives more weight to notes of longer durations (duration of a “window”). 

Thus a crotchet might fetch the value wk = 1, while a minim might fetch the value wk = 2. The 

second factor wsk gives weight according to metrical stress. Thus, an upbeat note might fetch 

the value wsk = 4, while a down beat might fetch the value wsk = 2. However, the choice of 

the weights is, according to O’Maidín, arbitrary. This seems to be an unsatisfactory point of 

view as the choice of the weights can affect the order of similarity of three motives. For 

instance, let us assume we have three motives Ma, Mb and Mc. All motives consist of four 

crotchet notes, written in a 34 time and starting on the first beat of bar 1 and lasting to the 

formula 2.7.
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first beat of bar 2. With motive Ma = [c, d, e, d], motive Mb = [c#, d, e, d] and Mc = [c, d#, c, 

d], we obtain the difference for ∆(Ma,Mb) = 2 + 0 + 1 + 0 = 3 and ∆(Ma,Mc) = 0 + 1 + 3 + 0 

= 4 for wsk = 2 for the first beat of a bar and wsk = 1 for any other beat and with 1 semitone 

= 1 as pitch unit. Thus we find that motive Ma is more similar to Mb than to Mc. However, if 

we change wsk = 4 for the first beat of a bar and wsk = 1 for any other beat, we obtain: ∆(Ma,Mb) 

= 4 + 0 + 1 + 0 = 5 and ∆(Ma,Mc) = 0 + 1 + 3 + 0 = 4. Hence, motive Ma is now more similar 

to motive Mc than to motive Mb. This renders the proposed algorithm an arbitrary tool with 

low reliability. Surely, weights will have to be adjusted empirically. O’Maidín also suggested 

to integrate the variable m into the model, where we obtain:

where p1k is the pitch of the note from the first segment at the kth window, p2k is the pitch of the note 

from the second segment at the kth window, wk is the width of the kth window, wsk is the weight derived 

from metrical stress for the window k and n is the amount of windows and m an integer.

 He suggests to vary the value m, until the difference takes a minimum value. The purpose 

of this is clear: Should the second fragment be a transposition of the first fragment, we obtain 

for all p1k - p2k = a with a as a constant. Setting m = a, we obtain a difference of 0 between 

the two fragments (maximum similarity). Thus the introduction of m renders the model 

transpositional invariant. However, the meaning of m becomes more obscure when the two 

fragments are not identical; an issue surely to be investigated. True, by varying m, we might 

obtain a minimal difference, but whether this minimal difference implies maximum similarity 

is questionable. For instance, the model regards all differences according to a city-block metric 

formula 2.8.
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without considering whether other metrics might be more appropriate (e.g., Euclidean metric, 

which might produce different minimal values). A second objection against this model is based 

on its computational implications. Assuming we are comparing just five motives with each other 

(all in all 15 comparisons) and assuming these motives are not more than two octaves apart from 

each other, we will have to compute 15 times 24 (= 360) differences, which will have to be 

compared and evaluated. This is surely no elegant solution. However, the main objection arises 

when considering the findings by Egmond & Povel & Maris (1996), who demonstrated that 

transposition is a factor in certain conditions of melodic similarity. Thus, an algorithm will have 

to be able to accommodate such conditions.

2.3. Dynamic Programming

 A more recent approach to similarity seems to have emerged from the biological sciences, 

where scientist endeavor to analyze the similarity between different DNA proteins (Goad & 

Kanehisa, 1982). An example might be given by the comparison of the first 11 amino acids of 

human Alpha hemoglobin to the first 11 amino acids of the human beta hemoglobin:

  Alpha Hb human: g s a q v k g h g k k ...

  Beta Hb human:  g n p k v k a h g k k ...

where the letters a, g, h, k, n, p, q, s, v represent specific amino acids

 Both sequences match at places 1, 5, 6, 8, 9, 10 and 11. Additionally, they show similar 

amino acids at place 2 and 4. Thus, the alpha is supposed to be similar to the beta hemoglobin. 
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In order to measure the degree of similarity, dynamic programming is used. That is, one sequence 

(like the alpha sequence) is transformed into another sequence (like the beta sequence). Then 

the editing steps are counted (edit distance). The longer the edit distance the less similar the 

sequences. Three different edit operations are used: Insertion, deletion and substitution. In our 

example above, we might substitute s for n (2nd place), a for p (3rd place), q for k (4th place) 

and g for a (7th place) in the beta sequence in order to transform the beta sequence into the 

alpha sequence. Thus, we performed four edit operations (edit distance 4). We might have 

chosen to delete s, a, q and g in the alpha sequence and n, p, k, and a in the beta sequence, 

resulting in an overall 8 edit operation (edit distance 8). This shows that the edit distance depends 

on which edit operations we choose to perform. This also implies that we can at best obtain a 

minimal edit distance only through a trial and error procedure (hence the name dynamic 

programming). Generally, the similarity will be rated according to an algorithm of the form:

S = am - bi - cs

where S is the similarity rating, a, b, and c are weighting factors, m is the amount of matching places, i the 

amount indels (delete or addition) and s amount of substitutions.

 The resemblance of this model with Tversky’s model is striking. Equating the amount 

of matches with the count of common features, we find that indels (amount of operations) 

corresponds to features present in one object but not the other, whereas substitutions are a cross 

between common features (both sequences have an item at the place of substitution) and features 

present in one but not the other (the items at the place of substitution differ). This means that 

formula 2.9.
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the critique brought forth against Tversky (e.g., that his model does not consider structural 

similarities), applies to this model.

2.3.1. Dynamic Programming in music

 The dynamic programming approach has been utilized by Mongeau and Sankoff (1990) 

for melodic comparison, although they present their model in slightly different form (separating 

the indels into the components delete and addition). In order to apply dynamic programming 

the authors have to regard a melody as a sequence of tones t1, t2, ..., tn, where a tone is seen as 

possessing the two features pitch (p) and duration (d). Thus, we might compare a sequence 

given as S1 = t11, t12, ..., t1n = (p11, d11), (p12, d12) ... (p1n, d1n) with a sequence S2 = t21, t22, ..., 

t2n = (p21, d21), (p22, d22) ... (p2n, d2n). The authors then produce a matrix calculating the distance 

Iij between each tone from S1 with each tone from S2, where the distance Iij between two tones 

t1i and t2j with t1i ∈ S1 and t2j ∈ S2 is given as: Iij = (p1i - p2j + d1i - d2j) /2, where the pitch 

p is measured in semitones and the durations as multiples of a basic beat (e.g., in case the basic 

beat is measured in semi-quavers a quaver receives the value 2, a crotchet the value 4 etc.). 

Thus, the authors produce a matrix of the following format:

     I11 I12 ... In

     I21 I22 ... I2n

     ... ... ... ...

     Im1 Im2 ... Imn
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 Starting with a distance Ii1 in the first column a sequence of distance is constructed and 

summated to an overall distance D = Ii1 + Ij2 + ... + Ikp + Il(p+1) ... + ... Imn, with i ≤ j ≤ k ≤ p ≤ 

l ≤ p+1 ≤ m ≤ n. The starting point Ii1 and all possible combinations for the subsequent summands 

will be varied until a minimal value for Dmin is found. We will give an example:

 

 Sequence 1 is: S1 = (d, 3/8), (b, 1/8), (c, 1/4) and sequence 2 is: S2 = (e, 1/4), (d, 1/4), 

(c, 1/4). We obtain the matrix comprising the following elements (with one semitone and one 

quaver fetching the value 1): I11 = 1.5, I12 = 0.5 I13 = 1.5, I21 = 3, I22 = 2, I23 = 1, I31 = 2, I32 = 

1, I33 = 0, written in matrix form:

     1.5 0.5 1.5

     3 2 1

     2 1 0

 As we can see, the minimal distance is given by Dmin = I11 + I12 + I33 = 2. Seemingly, 

this approach has little to do with dynamic programming except the need for variation. However, 

as we will see, there exists a strong link: Assuming, that a tone t1i of S1 has the same value as 

a tone t2j of S2, we have a match. In case there is a difference between these two tones, one 

tone will have to be substituted where the weight of this edit operation will depend on the 

distance between these two tones (this is reminiscent of Shepard’s model). In case S1 contains 

one more tone than S2, dynamic programming requires that either a tone of S1 will have to be 

sequence 1 sequence 2
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deleted or another tone will have to be added to S2. However, this is not exactly what Sankoff 

and Kruskal do. If, for instance, we “delete” the last tone tn of S1, without any further deletion 

or addition, this will mean that tone t1n-1 will be edited to equal t2m as well as tone t1n; the two 

last tones of S1 will be mapped onto the last tone of S2. For our example above, we find that 

tone t1 = (d, 3/8) of S1 was mapped onto tone t1 = (e, 1/4) as well as onto the first quaver time 

of the tone t2 = (d, 1/4) of S2, while the tone t2 = (b, 1/8) of S1 was mapped onto the second 

half of the tone t2 = (d, 1/4). Tone t3 proved to be a match. Although this is, strictly speaking 

no deletion, it can be interpreted as such, where the distance between t1n and t2m will be 

interpreted as the weight of deletion.

 There is no doubt in the mind of the author that this is a powerful approach combining 

elements from other models (it is Tverskian in as much as dynamic programming is Tverskian 

and it is Shepardian in as much as its weighting factors are determined). However, there are a 

number of serious problems with the model. The main issue was addressed by Smith, McNab 

& Witten (1998): The model produces a number of possible sequences of edit operation, all 

producing minimal edit distance. Further, some of these edit sequences might, in the words of 

Smith, McNab & Witten, “not make sense”. This implies, in case none of the edit sequences 

which make sense produce minimal edit distance, that the similarity rating is overrated. The 

fact that results will have to be evaluated on the basis of musical judgment decreases its 

application and value significantly. However, the main problem with this model appears to be 

its missing support through empirical data. For instance, the implementation which gives more 

weight to pitch than to duration (Iij = (p1i - p2j + d1i - d2j) /2), is entirely arbitrary, and 
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yet similarity ratings will crucially depend on the adjustment of these weights. Clearly, the 

model will classify retrogrades and inversions generally not as being similar, although this 

might be, as will be shown later, in favor of this model from a cognitive point of view.

2.4 Transition matrices

 The most recent approach to modeling melodic similarity is based on a concept which 

was firstly introduced by Fucks (1965). Fucks intended to find a measurement to describe 

historical musical development. He produced transition matrices for melodies and found that 

while for instance 17th century music displayed low entropy, 20th century music displayed 

high entropy. Hoos, Renz & Görg (2001) presented a melodic similarity model where transition 

probabilities are obtained for melodies, and where two melodies are rated similar if they produce 

the same transition matrices. We will give an example: The melody: e, d, c, d, e, e ,e, d, d, d, 

e, g, g, e, d, c, d, e, e, e, e, d, d, e, d, c (Marry had a little lamb) produces the following transition 

matrix:

 If we now changed, let us say the first d to a c, the transition matrices would largely 

remain the same.

c d e f g
c 0 1 0 0 0
d 0.3 0.4 0.4 0 0
e 0 0.45 0.45 0 0.1
f 0 0 0 0 0
g 0 0 0.5 0 0.5
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 Although it might appear that this model captures changes sufficiently, we find that 

this is not the case, for several reasons: The main problem might be that melodies which are 

different can produce the same matrices (e.g., c, d, d, e, d, e, c, e and c, d, d, e, c, e, d, e). This 

means that ratings according to this model will produce erratic material because it is based on 

a misconception. Further, we find that changing a tone within the melody will effect changes 

in the transition matrix in three places, while changing the last note will effect two changes 

only. Considering the recency/primacy effect, we would expect the last note to be of greater 

importance rather than smaller importance. Thus, the model seems to disregard cognitive 

principles. Finally, it is entirely unclear how to rate changes within the transition matrix, as 

there are no empirical data available to determine values of possible parameters. The author 

concludes that this model has no future.

2.5. Critiques on the conception of similarity

 Summarizing the features of the three above discussed models, we find particularly one 

critique recurring throughout: It seems none of the authors writing on melodic similarity are 

considering that an appropriate model, should such a model be available, will at least have to 

include some empirical constants. Instead, these authors seem to imply that we already know 

c d e f g
c 0.33 0.67 0 0 0
d 0.3 0.4 0.4 0 0
e 0.1 0.35 0.45 0 0.1
f 0 0 0 0 0
g 0 0 0.5 0 0.5
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the relevant features of melodic similarity which they then input into a model. Although the 

author is aware that there are some empirical studies available (e.g., Cuddy, Cohen & Miller 

1979; Dowling & Harwood, 1986; van Egmond & Povel & Maris 1996; Francès, 1988 

Gabriellson, 1973; White, 1960) there is still not enough empirical information available in 

order to identify the relevant features. Thus, even if the models did not show deficiencies and 

inconsistencies, they still would remain purely speculative. For instance, none of the models 

incorporated dynamics, although it seems extremely unlikely that dynamic variations will not 

influence similarity judgments. In fact, the difficulties with all these models are so substantial 

that we might ask the question whether a model on melodic similarity is attainable or at least 

desirable.

 This question, whether similarity measures are attainable and desirable, was challenged 

by Clarke & Dibben (1997), who posed the question: “Does it really make sense to ask whether 

musical event X is more similar to Y than Z. Is this a judgment anyone often (or ever) makes”. 

Their argument, so they claim, is supported by the fact that so far nobody, referring to Nattiez 

(who, in the opinion of these authors, should have been able by now to deliver a more formalized 

method of identifying and classifying motivic material) has yet been able to deliver a useful 

model. Although the exposition of several existing models above renders such a claim an 

over-generalization, the none-existence of a tool does neither mean that such a tool is unattain-

able nor that the development of such a tool is not desirable. However, Clarke and Dibben are 

right to bring the question to our attention of what we are actually seeking. True, if these authors 

are correct with  their opinion that similarity judgments are hardly ever made, then there is no 

need for the development of a model, indeed. However, this seems not to be the case. The 
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author will give eight examples which will involve some form of similarity judgment: (a) The 

comparison of different interpretations of a specific composition, (b) a student trying to 

reproduce just the sound the teacher produces on her/his instrument, (c) a musician working 

out a specific interpretation of a composition for performance based on melodic comparisons, 

(d) an analyst performing a motivic analysis, (e) an ethnomusicologist tracing the origin of 

melodic material, (d) the classification and retrieval of melodic material in a data base, (e) a 

composer producing a variation of a theme, and (f) a judge deciding whether a copyright 

infringement suit over a motive should be granted or not. True, a composer might produce a 

variation according to some abstract algorithm without considering cognitive implications, the 

judge just wants to find the liar and similarity is one means to this end, the student is probably 

not aware of any similarity judgment, while the ethnomusicologist is or should be interested 

in cognitive processes. Admitted, the strategy and result of similarity judgments might depend 

on context, but the author hopes that the examples given are sufficient to disprove Clarke’s & 

Dibben’s claim as unsubstantiated. Surely, a model is desirable, but is it attainable and if so in 

what form seems to be the question. We will commence with the investigation of the first part 

of the question of whether a model might be attainable.

 A major issue raised in the context of similarity is the issue of categorization. A seemingly 

popular theory (e.g., Posner & Keele, 1968; Reed, 1972; Rosch & Mervis, 1975) understands 

the relationship between similarity and categorization in the following manner: an object a is 

more likely to be classified as belonging to the category A than belonging to the category B, 

if object a is more similar to all the objects in category A than it is to all the objects in category 

B. This link between categorization and similarity can be expected to hold true in a reversed 
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relationship: Once two objects are assigned to two different categories, they will also be seen 

as less similar than two objects from the same category, even if they should share more relevant 

common features to a stronger degree. However, Goodman (1972) remarks that this approach 

implies a philosophical weakness. He argues that, for instance, assigning the letter A to the 

category of As, because of its similarity to this category, requires the existence of the category 

of As and thus similarity does not explain categorization. It seems that Goodman is referring 

to existing categories, and no doubt similarity is insufficient in explaining the assignment of 

elements to existing categories. However, the question whether similarity is a factor in the 

ontogenesis of categories is unaffected by his argument. Moreover, the above formulated 

argument will also imply that an appropriate similarity model would ideally consider catego-

rization. Without going into lengthily discussion, it seems that existing approaches to melodic 

categorization have been found unsatisfactory. For instance, Adams (1976) suggested to classify 

material according to contour features, but his approach was subsequently refuted by Marvin 

& Laprade (1987). Much of Nattiez’s (1975) analytical technique is based on melodic com-

parison and melodic classification. However, Clarke & Dibben (1997) expressed their concern 

that Nattiez has failed to bring his method into a cohesive system. Lerdahl’s and Jackendoff’s 

hierarchical structuring (1983) produces a segmentation of melodic material, which implies 

categorization (as utilized by Cambouropoulos, 1998). However, their methods have been so 

widely criticized (e.g., Rosner, 1984; Clarke, 1986, Cross, 1998) that even a summary of these 

critiques exceeds the framework of this thesis. It seems apparent that there does not exist a 

sound understanding of melodic categorization. Hence, a model of melodic similarity cannot 

be built upon a theory of melodic categorization. However, building a melodic similarity model 

(admitted of limited validity), we might enhance the investigation into issues of categorization. 
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For instance, assuming we developed a functional model which has been shown to be 

operational in various contexts and assuming further that we then find that the predictions of 

the model do not coincide with empirical data in a new context, we might be able to explain 

this deviation as a result of categorization. Such new knowledge itself then would lead to a 

modification of a similarity model and so on. Thus, the author concludes at this point that the 

absence of a theory of melodic categorization increases the need for a  melodic similarity 

model initially independent of categorization. However, in order to establish other features 

this model should incorporate, we will consider a second critique by Goodman.

 We considered earlier in the context of Tversky’s similarity model Goodman’s critique 

where he stated that a comparison of two items requires a frame of reference (i.e., similar 

according to a specific measure). It seems that researchers consider six main factors which 

influence or determine the frame of reference. These factors are: context, culture/language, 

expertise, age and experimental method.

 There seems to be strong empirical evidence, that similarity judgments are context 

dependent (Goldstone, 1997), and we referred earlier to Barsalou’s (1982) experiment, who 

found that raccoon and snake are less similar if no context is given than when compared in 

context of pets. Barsalou (1983) also showed that seemingly highly dissimilar objects receive 

a high similarity rating when put into specific context (e.g., jewelry and children in context 

of “things to retrieve from a burning house”). However, this argument seems to indicate that 

context changes the absolute scale but not necessarily the relative scale. To give an example 

50 cents is half of $1, which can seem a lot more. However, if we see this in context of 

30



$1,000,000 there does not seem to be much of a difference between 50 cents and $1. 

Nevertheless 50 cents is still just half of $1. Thus, it seems we are dealing here with a 

measurement issue (influence of experimental method) rather than an issue concerning context. 

There is however, a second possibility of how to interpret Barsalou’s findings. While our 

example involves a one-dimensional quantity comparison, the comparison of children and 

jewelry involves far less clear defined features. In fact, it seems an almost infinite amount of 

quantitative and qualitative features can be assigned to both children and jewelry, so that 

context is desperately needed to select the relevant features. If no context is given, we might 

speculate that participants in an experiment will create their own context. Still, it remains an 

unsolved issue how relevant this observation will be in the context of melodic similarity. 

Comparing two melodies is supposed to be a cognitive and perceptual and almost automatic 

process, while the comparison of children and jewelry is a judgment of conceptual similarity. 

Finally, the comparison of two melodies seems to involve a limited number of features (such 

as pitch, dynamics, tone-color and rhythm), hence we would expect that context will be far 

less important in the selection of the relevant features. Still, we might argue that it seems 

unlikely that a transformation of a transitional passage of a composition will be as significant 

as is the transformation of the main theme of a composition. Similarly, we might expect that 

the change of a specific rhythm such as √≈ might be more significant if the same rhythm 

surrounds the specific rhythm such as √≈ √≈ √≈. However, it seems to the author that at this 

point a contextual melodic similarity model is unattainable. True, that this will put some 

constraints onto a model, but a context free model will at least produce some testable hypotheses. 

Still, even if we developed a context free model disregarding harmonic implications, Goodman’s 

argument holds true in as much that a frame of reference will be required and also that this 
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frame of reference could depend on the features of - let us say - two isolated non-harmonic 

melodies Thus, a model will have to be developed so that there is scope for adaptability, not 

just in form of empirical constants but on a more fundamental level.

 In a classic text by Whorf (1941), we find as Goldstone (1994) reports, a rather intriguing 

Wittgensteinian offshoot on language and similarity. During his studies of the Shawnee Native 

American language, Whorf seemed to have confirmed that language and culture are strongly 

interlinked, not just the vocabulary but even the syntactic organization of language (for instance 

the temporal structure). Consequently, we would also expect that such interdependency of 

language and culture will affect similarity judgments. Indeed, Whorf gives us an example. He 

argues that for a Shawnee Native American the two sentences: “I pull the branch aside” and: 

“I have an extra toe on my foot” are highly similar sentences. This is, more literally translated, 

the first sentence takes the from: "I pull it (something like the branch of a tree) more open or 

apart where it forks", while the second sentence becomes, "I have an extra toe forking out like 

a branch from the normal toe”. However interesting this example, it does not demonstrate as 

Goldstone (1994) seems to imply, that syntactic similarities will induce semantic similarities 

which then evokes cognitive similarities. However, we might argue in a Shepardian fashion, 

that cultural difference will lead to difference in categorization, which will then be reflected 

somehow in the user’s language and hence similarity judgments and language are expected if 

not to be causally related so still to be correlated. Consequently, we would expect a melodic 

similarity model to be sensitive towards culture and possibly sensitive towards language. 

However, the development of such a model would appear as rather overambitious at this point. 

This is not to say that a more abstract model will not be valuable in a cross-cultural setting. 
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Should, for instance, such a model lead to predictions which will deviate from measured data in 

a given culture, we might be able to generate a better understanding of this given culture in 

reference to these deviations.

 It has been argued that similarity judgments are dependent on expertise. For instance 

Suzuki, Ohnishi & Shigemasu (1992) found that experts when asked to compare various stages 

of the Hanoi puzzle with the completed puzzle judged similarity by assessing how many steps 

were needed to complete the task, while novices rated similarity according to shared features 

between the various stages and the completed puzzle. However, this result seems to suggest that 

experts and novices interpreted the question of how similar two items are in a different fashion. 

While expert understood the question as, “How many steps are needed to complete the puzzle”, 

novices interpreted the question as, “How similar are the looks of two visual images.” From this 

point of view, we might argue that experts interpreted the question differently by rating similarity 

to how much work they would have to do. Thus, it appears to the author that this experiment 

cannot support the hypothesis that there is a significant difference in similarity judgments 

depending on expertise. However, it is such a common feature of music psychological experiments 

(compare Deutsch, 1999) to generate expertise dependent data, that we might suspect that the 

same might hold true for melodic similarity. Further, we might expect that musical experts will 

deliver more accurate similarity judgments, meaning data with smaller variance, than musical 

novice do. Thus, the model will have to include some empirical constant which can be adjusted 

according to the level of expertise.

 It also has been observed that similarity is age dependent (e.g., Shepp & Schwartz, 1976, 

Smith & Kemler, 1977, Smith 1989a). It seems to be the general view that young children judge 
33



similarity according to an overall similarity, while older children may choose a specific dimension 

in order to compare objects in reference to this one specific dimension ignoring other dimensions. 

Typically, a sample of preschool children is compared with a sample of school children. Similarity 

is rated on shapes which differ in size and color. While preschool children rate similarity along 

both dimensions (size and color), school children tend to regard two items as similar if they are 

identical along one dimension (e.g., size) without any consideration for the second dimension 

(e.g., color). Further, when asked, young children find it difficult to identify in what respect two 

objects are similar. This age dependency has been challenged by Smith (1989b) who found that 

not only preschool children use overall-similarity judgments but adults as well when the stimuli 

are more complex (varied over more than two dimensions). This is what Medin & Ortony (1989) 

seem to refer to as heuristic similarity. Putting similarity into an evolutionary context, they propose 

that information (such as ‘this is a lion’) will be analyzed according to overall similarity in order 

to derive competent decisions (such as running away, instead of petting). Quite clearly this also 

implies a certain amount of context independence. It seems a strong argument and has been 

juxtaposed by Goldstone (1994), who pointed out that we will behave cautiously if confronted 

with a snake which resembles a rattlesnake and the fact that snake rimes with snowflake will be 

of no significance. He further points out that where context dependency of similarity measures 

occur, they seem to be systematic rather them random. Thus, they can be integrated in a wider 

model.

2.6. Features of a desirable melodic similarity model

 Summarizing, we conclude that a melodic similarity model is desirable, will be context 

34



independent, will have to identify relevant features, will have to include empirical constants and 

will have to incorporate some conceptual flexibility. The author further hopes to have to demonstrate 

that all the reviewed models are characterized by a series of deficiencies in one form or another. 

Moreover, all models do not provide conceptual flexibility. This inflexibility seems to stem from 

a distinct absence of a theoretical framework: as long as the issue of melodic similarity is not 

approached more systematically, it seems unlikely that we will find more than some models which 

incorporate heavy theoretical assumption (such as transpositional invariance) without reasoning 

as the authors seem to be unaware of these theoretical assumptions. The author feels, that if we 

asked the question, what are the relevant features and how are these features compared when rating 

the similarity between two melodies, seems far more promising. Such a questioning will necessitate 

a systematic identification of the relevant features and their precise definitions. It also will require 

a conceptual analysis of the cognitive process involved in similarity ratings. The author also argues 

in favor of a proposals as put forward by Palmer (1983), to consider similarity as related to the 

complexity of the transformation process required in mapping a given object onto another object. 

Such an assumption seems reasonable in the context of experiments involving classification tasks, 

and where similarity is correlated to reaction time (Goldstone & Medin, 1994): Decreasing 

similarity between objects increases the reaction time it takes to classify these objects, as the 

complexity of the task increases. Palmer’s approach seems also well motivated from an evolutionary 

point of view: in the situation of identifying an animal (like the rattle snake) fast and one-

dimensional decisions are required (yes or no). Thus, we might assume that cognitive similarity 

should be integrated into the comparison process. In case the complexity of the comparison process 

exceeds a certain threshold the animal will be classified as harmless (just a slowworm) and if the 

complexity undercuts the threshold the animal will be classified as dangerous (it is a rattle snake). 

Lower complexity also increases reaction time, which is needed in such a dangerous situation. 
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Investigating complexity of a comparison requires on a formal level a transformation mechanism 

which maps one object onto the other object. Thus, relating this approach to melodic similarity, 

we will have to establish a transformation mechanism, mapping any melody onto any other melody. 

It is our goal to establish such a similarity transformation as the conceptual framework for a 

possible similarity model. However, we propose not to establish one specific model but a family 

of models which are all related to this framework. This will guarantee the adaptability which has 

been made clear is necessary. Finally, a specific model will be put to the test in an experimental 

situation where it can be compared with existing models and approaches.
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