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This document provides a tutorial on performance characterization in computer

vision. It explains why learning to characterize the performances of vision tech-

niques is crucial to the discipline’s development. It describes the usual proce-

dure for evaluating vision algorithms and its statistical basis. The use of a soft-

ware tool, a so-called test harness, for performing such evaluations is described.

The approach is illustrated on an example technique.
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1 Introduction

The discipline variously known as Computer Vision, Machine Vision and Image

Analysis has its origins in the early artificial intelligence research of the late

1950s and early 1960s. Hence, roughly two generations of researchers have pit-

ted their wits against the problem. The pioneers of the first generation worked

with computers that were barely capable of handling image data — processing

had to be done line-by-line from backing store — and programs almost always

had to be run as batch jobs, ruling out any form of interaction. Even captur-

ing digital images was an impressive feat. Under such difficult conditions, the

techniques that were developed were inevitably based on the mathematics of

image formation and exploited the values of pixels in neighbouring regions. Im-

plementing them was a non-trivial task, so much so that pretty well any result

was an impressive achievement.

The second generation of researchers coincided with the birth of the work-

station. At last, an individual researcher could process images online, display

them, and interact with them. These extra capabilities allowed researchers to

develop algorithms that involved significant amounts of processing. A major

characteristic of many algorithms developed during this second generation was

the quest for optimality. By formulating and manipulating a set of equations

that described the nature of the problem, a solution can usually be obtained

by a least-squares method which, of course, is in some sense optimal. Conse-

quently, any number of techniques appeared with this ‘optimality’ tag. Sadly,

none of these papers were able to provide credible experimental evidence that

the results from the optimal technique was significantly better than existing

(presumably sub-optimal) ones.

We are now in the early years of the third generation. Computers, even

PCs, are so fast and so well-endowed with storage that it is entirely feasible to

process large datasets of images in a reasonable time — and this means it is

possible to quantify the performance of an algorithm. As a result, the vision

community has finally started to turn its attention to issues related to testing

and comparing algorithms: performance assessment. The most visible (no pun

intended) aspect of this is the competitions that are often organized in associ-

ation with major vision conferences. These essentially ask the question “which

algorithm is best?” Although a natural enough question to ask, it lacks subtlety

and is potentially rather dangerous: if the community as a whole adopts an al-

gorithm as “the standard” and concentrates on improving it further, that action

can stifle research into other algorithms.

A better approach is to make available a “strawman” algorithm which em-

bodies an approach that is known to work but does not represent the state of

the art. This might be, for example, the “eigenfaces” approach [1] without re-

finements for face recognition, the Canny edge detector, and so on. Authors can

use the strawman for comparison, and anything that out-performs it is a good

candidate for publication; conversely, anything that performs less well than the

strawman needs improvement.

If asking which algorithm is best is unsubtle, then what is a more appropri-

ate question? We believe researchers should be asking “why does one algorithm
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out-perform another?” To answer the latter question, one must explore what

characteristics of the inputs affect the algorithms’ performances and by how

much. In fact, one can carry this process out on an algorithm in isolation as

well as comparing algorithms. This is what is meant by performance characteri-

zation, the subject of this tutorial, and is a closer match to the way knowledge

and understanding are advanced in other areas of science and engineering.

It may seem from the above that performance assessment and characteri-

zation are intellectual exercises, divorced from the gritty realities of applying

vision techniques to real-world problems; but nothing could be further from

the truth. Vision techniques have a well-deserved reputation for being fragile,

working well for one developer but failing dismally for another who applies

them to imagery with slightly different properties. This should not come as a

surprise, for very few researchers have made any effort to assess how well dif-

ferent algorithms work on imagery as its properties differ — say as the amount

of noise present changes — never mind making the algorithms more robust to

them. So, far from being an abstract exercise, performance characterization is

absolutely essential if computer vision is to escape from the research laboratory

and be applied to the thousands of problems that would benefit from it.

The process conventionally adopted for performance assessment and char-

acterization has not yet been expounded; that is done in Section 2. Section 3

and Section 4 then describe the underlying statistical principles and describes

those statistical tests, displays and graphs in common use for characterizing an

individual algorithm and for comparing algorithms respectively. As testing is

an onerous task when carried out manually, Section 5 describes a software tool

that can be used to automate much of the work. These tests and tools are put

to good work in Section 6, which shows how a simple image analysis technique

can be characterized. Finally, Section 7 gives some concluding remarks.

2 The Performance Assessment and Characterization

Processes

There are few occasions when it is possible to predict the performance of an

algorithm analytically: there are normally too many underlying assumptions,

or the task is just too complicated (but see [2] for a rare exception). So per-

formance is almost universally assessed empirically, by running the program on

a large set of input data whose correct outputs are known and counting the

number of cases in which the program produces correct and incorrect results.

Each individual test that is performed can yield one of four possible results:

True positive: (also known as true acceptance or true match) occurs when a

test that should yield a correct result does so.

True negative: (also known as true rejection or true non-match) occurs when a

test that should yield an incorrect result does so.

False negative: (also known as false rejection, false non-match or type I error)

occurs when a test that should yield a correct result actually yields an
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(a) Original

image

(b) Corresponding

template

(c) Ambiguity at

edge of template

Figure 1: An object against a plain background

incorrect one.

False positive: (also known as false acceptance, false match, false alarm or

type II error) occurs when a test that should yield an incorrect result ac-

tually yields a correct one.

There is occasionally some confusion in the literature over the terms “false

negative” and “false positive,” which is why their meanings have been given

here. “False negative,” for example, can be thought of as a case in which a test

should have given a true negative but failed to do so. The testing procedure

involves keeping track of these four quantities. Performance assessment work

normally uses them with little additional consideration: the algorithm with the

highest true rate (or, equivalently, the lowest false rate) is normally taken in

comparisons and competitions to be the best.

To be able to perform testing in this way, each individual test requires three

pieces of information:

1. the input to the program under test;

2. the corresponding expected output from the program under test;

3. whether this output corresponds to a success or a failure.

Vision researchers rarely test explicitly for failures, e.g. by running a vision

algorithm on an image whose pixels are all set to the same value.

To fix these ideas in our minds, let us consider the example of using a proce-

dure to try detecting in an image an object surrounded by a plain background.

Specifically, Figure 1(a) shows a vase against a plain background. A template

image, Figure 1(b), can be constructed to determine which pixels are to be re-

garded as ‘vase’ pixels; the rest would be regarded as ‘background’. On applying
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the procedure, if a pixel is classed as ‘vase’ and it is known from the template

to be part of the vase, then this pixel is a true positive. If a pixel is classed as

‘background’ and it is known to be part of the background (i.e., not vase), then

this pixel is a true negative. If a pixel is classed as ‘vase’ but it is known to be

part of the background, then this pixel is a false positive. If a pixel is classed

as ‘background’ but it is known to be part of the vase, then this pixel is a false

negative.

While it is obvious that the performance depends on how accurately the

template has been determined, these values give a measure of algorithm perfor-

mance. In particular, we should expect both false positives and false negatives

to occur most frequently in the region where the object meets the background

because there will be pixels where there are contributions from both the object

and its background, as illustrated in Figure 1(c). It would be wise to weight

errors in this region less than errors elsewhere in the image.

It must be appreciated that there is always a trade-off between true positive

and false positive detection. If a procedure is set to detect all the true positive

cases then it will also tend to give a larger number of false positives. Conversely,

if the procedure is set to minimize false positive detection then the number

of true positives it detects will be greatly reduced. However, tables of true

positives etc. are difficult to analyze and compare, so results are frequently

shown graphically using ROC or DET curves (see Section 3).

It should in principle be possible to compare the success rates of algorithms

obtained using different datasets; but in practice this does not work. This is, in

effect, the same as saying that the datasets used in performing the evaluations

are not large and comprehensive enough, for if they were it would be possible

simply to compare success rates. The number of ways in which image data may

vary is probably so large that it is not feasible to encompass all of them in a

dataset, so it is currently necessary to use the same datasets when evaluating

algorithms — and that means using the same training data as well as the same

test data. Sadly, little effort has been expended on the production of standard

datasets for testing vision algorithms until recently; the FERET dataset (e.g.,

[3]) is probably the best example to date.

When the performances of algorithms are compared, it is not enough simply

to see which has the better success rate, for this takes no account of the number

of tests that has been performed: the size of the dataset may be sufficiently

small that any difference in performance could have arisen purely by chance.

Instead, a standard statistical test, McNemar’s test (see Section 4), should be

used as it takes this into account. McNemar’s test requires that the results of

applying both algorithms on the same dataset are available, so this fits in well

with the comments in the previous paragraph.

An argument that is often put forward is that vision algorithms are designed

to perform particular tasks, so it only makes sense to test an algorithm on data

relating precisely to the problem, i.e. on real rather than simulated imagery.

While this is true to a certain extent — the range of applications of vision tasks is

indeed vast — it ignores the fact that there are generic algorithms that underlie

practically all problem-specific techniques, e.g. edge detection. Indeed, this

really illustrates the distinction between two different types of testing:
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technology evaluation: the response of an algorithm to factors such as adjust-

ment of its tuning parameters, noisy input data, etc.;

application evaluation: how well an algorithm performs a particular task;

where the terminology has been adapted from [4]. Technology evaluation is

one example of performance characterization.

To illustrate the distinction between technology and application evaluation,

let us consider an example that will be familiar to most computer vision re-

searchers, namely John Canny’s edge detector [5]. Technology evaluation in-

volves identifying any underlying assumptions (e.g., additive noise) and assess-

ing the effects of varying its tuning parameters (e.g., its thresholds, the size of

its Gaussian convolution mask). This is best done using simulated data, as it

provides the only way that all characteristics of the data can be known. Con-

versely, application evaluation assesses the effectiveness of the technique for a

particular task, such as locating line-segments in fMRI datasets. This second

task must, of course, be performed using real data. If the former is performed

well, the researcher will have some idea of how well the algorithm is likely to

perform on the latter simply by estimating the characteristics of the fMRI data

— how much and what type of noise, and so on.

3 Assessing an Individual Algorithm

Tables of true positives etc. are difficult to analyse and compare. Hence, re-

searchers have introduced methods of presenting the data graphically. We shall

consider two of these, the receiver operating characteristic (ROC) curve and the

detection error trade-off (DET) curve. We shall also consider a display that is

frequently used in describing the performance of classification studies, namely

the confusion matrix. Other measures and displays do exist, of course; many of

them are described in [6].

3.1 The Receiver Operating Characteristic Curve

A ROC curve is a plot of false positive rate against true positive rate as some

parameter is varied. ROC curves were developed to assess the performance of

radar operators during the second World War. These operators had to make

the distinction between friend or foe targets, and also between targets and

noise, from the blips they saw on their screens. Their ability to make these vital

distinctions was called the receiver operating characteristic. These curves were

taken up by the medical profession in the 1970s, who found them useful in

bringing out the sensitivity (true positive rate) versus specifity (1− false positive

rate) of, for example, diagnosis trials. ROC curves are as interpreted as follows

(see Figure 2):

• the closer the curve approaches the top left-hand corner of the plot, the

more accurate the test;

• the closer the curve is to a 45◦ diagonal, the worse the test;
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Figure 2: Examples of ROC Curves

• the area under the curve is a measure of the accuracy of the test;

• the plot highlights the trade-off between the true positive rate and the

false positive rate: an increase in true positive rate is accompanied by an

increase in false positive rate.

It should be noted that there does not appear to be a convention as to the orien-

tation of the plot, so one encounters a variety of orientations in the literature;

in such cases, the above interpretation must be adjusted accordingly.

Figure 2 shows ROC curves for a very good, a good and a very poor (worth-

less) test. As stated above, the area under each curve gives a measure of accu-

racy. An area of unity represents a perfect test, while a measure of 0.5 (e.g., a

45◦ diagonal) represents a failed test (random performance). Various methods

of estimating the area under the curves have been suggested, including using

a maximum likelihood estimator to fit the data points to a smooth curve, us-

ing Simpson’s rule, and fitting trapezoids under the curve. There are, however,

more effective ways of assessing the overall accuracy of an algorithm, as we

shall see.

Error considerations can be indicated on these plots. For example, if a single

test is run on many different sets of images, then the mean false-positive rate

can be plotted against the mean true-positive rate. The assessed confidence

limits can then be plotted as error bars or error ellipses around the points.

3.2 The Detection Error Trade-off Curve

A DET curve is a plot of false positive rate versus false negative rate and thus

gives equal emphasis to both types of error; see Figure 3. The plot usually has

logarithmic scales on both axes, so DET curves tend to be more spread out than

ROC curves, making it easier to distinguish individual algorithms’ results. The
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Figure 3: Examples of DET Curves

curves also tend to be close to linear. DET curves can be used to plot match-

ing error rates and decision error rates as well as confidence intervals/boxes.

Figure 3 shows an example of a DET curve plot for three tests.

The DET curve plot highlights the trade-off between the false-positive and

false-negative rates, which is useful in areas where trade-offs between the two

error types are important. If a ‘curve’ is a straight line then this shows that

the underlying likelihood distributions from the procedure are Normal: a bell-

shaped curve plotted on linear axes results in a straight line when plotted on

logarithmic axes. Also, the diagonal y = −x on the Normal deviate scale (i.e.,

plotted on linear axes) represents a failed test (random performance).

Some researchers refer to the equal error rate (EER) of a particular test. The

EER is the point at which the false positive rate is equal to the false negative

rate. This may be of use in applications where the cost of each type of error

is equal. The smaller the EER, the better. However, in general the whole DET

curve is considered.

We have seen that ROC and DET curves are useful in assessing how different

parameters applied to an algorithm affect performance. The following section

describes how algorithms can be compared.

3.3 Confusion Matrices

A confusion matrix [7] contains information on the actual and predicted clas-

sifications performed by a system. For example, for the digit-recognition task

described in Section 6, a confusion matrix like that in Table 1 might arise.

Numbers along the leading diagonal of the table represent digits that have

been classified correctly, while off-diagonal values show the number of mis-

classifications. Hence, small numbers along the leading diagonal show cases in

which classification performance has been poor, as with ‘8’ in the table. Here,

the actual digit ‘0’ has been mis-classified as ‘8’ ten times and as ‘6’ once, while
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actual predicted

0 1 2 3 4 5 6 7 8 9

0 20 0 0 6 0 0 1 0 10 0

1 0 25 0 0 0 0 0 6 0 0

2 0 0 31 0 0 0 0 0 0 0

3 0 0 21 0 0 0 0 0 10 0

4 0 0 0 31 0 0 0 0 0 0

5 0 0 0 0 0 22 0 0 9 0

6 1 0 0 1 0 2 23 0 3 1

7 0 8 0 0 0 0 0 23 0 0

8 4 0 1 3 2 1 3 0 13 4

9 0 0 0 2 0 0 0 3 1 27

Table 1: Confusion Matrix for a Digit Recognition Task

the digit ‘1’ mis-classified as ‘7’ six times. Conversely, the digit ‘2’ has never

been mis-classified. There is no reason, of course, why the matrix should be

symmetric.

In the particular case that there are two classes, success and failure, the

confusion matrix just reports the number of true positives, etc. as shown below.

predicted predicted

negative positive

actual TN FP

negative

actual FN TP

positive

4 Comparing Algorithms

4.1 Using ROC and DET curves

The most common way that algorithms are compared in the literature is by

means of their ROC or DET curves. This is acceptable to some extent; but the

problem is that researchers hardly ever indicate the accuracy of the points in

the curve using error bars or equivalent, and hence one cannot tell whether any

differences in performance are significant.

ROC curves tend not to be as straightforward as those shown in Figure 2.

Often the curves to be compared cross each other, and then it is up to the user

to decide which curve represents the best method for their application. For

example, Figure 4, shows that alg1may be superior to alg2 when a high true-

positive rate is required but alg2 may be preferred when a low false-positive

rate is required.

As the accuracy of vision algorithms tends to be highly data-dependent,

comparisons of curves obtained using different data sets should be treated with

suspicion. Hence, the only viable way to compare algorithms is to run them
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Figure 4: Crossing ROC Curves

on the same data. In principle, one could generate ROC or DET curves for any

number of algorithms, plot them with error bars, and perform visual compar-

isons. Even in this case, however, it is usually difficult to be sure whether one

algorithm out-performs another significantly.

Hence, comparisons of algorithms tend to be performed with a specific set

of tuning parameter values. (Running them with settings that correspond to

the equal error rate is probably the most sensible.) When this is done, perhaps

under the control of a test harness such as the one described in Section 5, an

appropriate statistical test can be employed. This must take into account not

only the number of false positives etc. but also the number of tests: if one

algorithm obtains 50 more false positives than another in 100,000 tests, the

difference is not likely to be significant; but the same difference in 100 tests

almost certainly is.

4.2 McNemar’s Test

The appropriate test to employ for this type of comparison is McNemar’s test.

This is a form of chi-square test for matched paired data. Consider the following

2 × 2 table of results for two algorithms:

Algorithm A Algorithm A

Failed Succeeded

Algorithm B Nff Nsf

Failed

Algorithm B Nfs Nss

Succeeded

McNemar’s test is:

χ2 =
(|Nsf − Nfs| − 1)2

(Nsf + Nfs)
(1)
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Z value Degree of confidence Degree of confidence

Two-tailed prediction One-tailed prediction

1.645 90% 95%

1.960 95% 97.5%

2.326 98% 99%

2.576 99% 99.5%

Table 2: Converting Z Scores onto Confidence Limits

where the −1 is a continuity correction. We see that McNemar’s test employs

both false positives and false negatives, rather than just one of them.

If the number of tests is greater than about 30 then central limit theorem

applies. The central limit theorem states that if the sample size is moderately

large and the sampling fraction is small to moderate, then the distribution is

approximately Normal. In such a case, the Z score (standard score) is obtained

from (1) as:

Z =
(|Nsf − Nfs| − 1)

√

Nsf + Nfs

(2)

If Algorithm A and Algorithm B give very similar results then Z will tend to

Z = 0. As their results, diverge Z will increase. Confidence limits can be

associated with the Z value as shown in Table 2. Values for two-tailed and one-

tailed predictions are shown in the table as either may be needed depending on

the hypothesis used: if we assessing whether two algorithms differ, a two-tailed

test should be used; and if we are determining whether one algorithm is better

than another, a one-tailed test should be used.

Further information can also be gleaned from Nsf and Nfs: if these values

are both large, then tends to Algorithm A succeed where Algorithm B fails and

vice versa. This is valuable to know, as we can devise a new algorithm that uses

both in parallel and takes the value of Algorithm B where Algorithm A fails,

and vice versa — this should yield an overall improvement in accuracy. This

is actually a rather significant statement with regard to the design of vision

systems: rather than combining the results from algorithms in the rather ad hoc

manner that usually takes place, McNemar’s test provides a principled approach

that tells us not only how to do it but also when it is appropriate to do it on the

basis of technology evaluation — in other words, technology evaluation needs

to be an inherent part of the algorithm design process.

5 Automating the Testing Process

As performance characterization involves running an algorithm on hundreds,

and perhaps even thousands, of test cases, it is obviously not feasible to carry

it out by hand. Consequently, individual researchers tend to write software

to automate the process, often in the form of a short “script” for one of the

Unix shells, or in the Perl, Python or Tcl programming languages. Such scripts

typically do little more than execute the program, saving the result in a file

11



for separate analysis. If one is performing such tests in isolation, this is fine;

but when the test results are to be used for comparison, perhaps as part of a

competition, then care is needed. Although competitions frequently (though

not always) specify a text “protocol,” such protocols are described in words,

and there are inevitable differences in ambiguities and interpretation, such as

the “false positive” interpretation alluded to above. Hence, the best way to

perform testing, especially when the results are to be used for comparison, is to

use specially-designed software: a “test harness.”

The problem with a test harness for performance characterization is that it

must be possible for researchers spread around the world to use it with their

own software, and that is difficult to achieve. There are two basic ways in

which it can be achieved:

• researchers upload their software to a central site, where it is executed

and the results made available;

• researchers download the test harness and use it locally.

The first of these is certainly easier and has the advantage that comparisons

may include execution time, memory usage etc. in addition to performance. It

also avoids problems in releasing to the public datasets that may be sensitive

(e.g., medical imagery). An excellent example of this approach is Algoval [8],

though that is restricted to class libraries written in Java. The largest problem

with this approach is that researchers may not be happy for their software,

even in compiled form, to be “given out.” This is especially true for industrial

researchers and out-weighs the technical advantages of the approach. As a

result, distributed testing, in which researchers execute the tests on their own

computers, is likely to gain more acceptance in the vision research community.

The particular test harness that we shall consider here is HATE [9].

5.1 The HATE Test Harness

HATE is an acronym for Harness for algorithm Testing and Exploration, though its

name perhaps describes more accurately the emotion people feel when faced

with having to perform tests. It was designed with the requirements of dis-

tributed performance characterization in mind and, as a result, has several

unique features:

• it allows tests to be specified independently of the software being tested

in a test script;

• it allows software written in any programming language to be used with

the harness by means of an interface script;

• it is Internet-friendly, able to download test scripts and datasets as re-

quired.

This separation of the interface to the program under test, the test script, and

the harness itself means that they can be written by different people — which
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is both desirable and what happens in practice. HATE is written in Perl, so both

interface and test scripts must also be written in Perl; however, interface scripts

are typically only a few lines, while test scripts are straightforward and often

generated by software. The algorithm developer writes the interface script, so

he or she can use his or her algorithm with HATE. The test developer writes the

test script independently of any particular piece of software that may be tested,

effectively expressing the test protocol as software. The test harness provides

the software “glue” that brings these parts together; and, as it works out what

is a true positive etc., there is a consistent interpretation of terminology.

HATE can, of course, be used with test scripts written locally. Its true power,

however, is when it is used with scripts that are designed specifically for charac-

terizing and comparing algorithms. Such scripts are made available at a central

site (its URL is built into HATE) and can be downloaded and executed simply

by specifying their name. HATE will also download data files needed by the test

if they are not already available locally.

In its most straightforward form, HATE executes the series of tests specified

in the test script and reports the number of true positives etc. obtained from the

program under test. However, as we have seen, such information is of limited

value. So HATE can be told to generate data for plotting ROC or DET curves

(in forms compatible with Gnuplot [10], R [11] and most spreadsheets). In-

deed, HATE can systematically vary not just one but any number of parameters,

though plotting the result may prove difficult.

HATE can also generate a “transcript” in which it reports the result of each

individual test in an easy-to-parse form. Transcript files obtained from different

algorithms can then be compared, and such comparisons are performed in a

statistically-valid way using McNemar’s test, and the output tells the researcher

whether any difference in success or failure rates is statistically significant.

6 An Illustrative Example

The easiest to see how HATE works is to show how it is used. To do so, let us

consider the classification of images of handwritten digits. One of the simplest

algorithms for this kind of task is WISARD. An outline of the algorithm and

some features of the particular implementation we shall consider are given in

Appendix A. (The software may be downloaded from the HATE web-site.) As-

suming HATE is installed on your computer, which is connected to the Internet,

you find out whether there is an appropriate test already available by typing

the command

hate -mode list-tests

This tells HATE to give the name and a one-line synopsis for each test that it

knows about, either locally or on the central HATE web-site. You will find there

is a script called hdigits.hate for precisely the kind of algorithm you have

developed. You then type the command

hate -mode describe hdigits
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to receive a description of the test. (HATE downloads the test script and caches

it for subsequent use.) HATE outputs a description the dataset that should be

used for training your algorithm, so you download it and train WISARD appro-

priately. The final step of preparation is to write an interface routine, stored

in the file interface.pl in the directory in which you intend to perform the

tests.

The series of tests described in the script is executed by the command

hate hdigits

which results in the following output

# tests TP TN FP FN
1434 450 320 300 364

Here, TP stands for “true positive” etc., so for 1434 tests, 450 of them resulted

in true positives, etc..

To generate the data for an ROC curve, one would type the command

hate -mode roc -param "threshold=0,1,2,3,4" hdigits

which causes the series of tests to be performed several times, each with the

value of some symbol called threshold being set to the successive values

listed. (The value of a symbol defined on the command line can be picked up

in the interface script.) In the context of WISARD, the threshold is the amount

by which the highest score must exceed all other scores on a particular test in

order to be deemed a success. The resulting output is

# tests TP TN FP FN
1434 450 320 300 364
1434 140 100 594 600
1434 15 14 700 705
1434 1 1 706 726
1434 0 0 706 728

which can be fed into Gnuplot, for example, to produce an ROC or DET curve.

The information from a single run of HATE, or an ROC curve produced

by varying a parameter, is useful during the algorithm development process

as one can see in a few minutes whether or not an “improvement” actually

does improve performance. Similarly, we would like to see if an algorithm

under development out-performs existing ones developed by other researchers.

Although one can do this manually, a far better way is to use HATE to perform

the comparison.

Let us imagine there are two other digit-classification algorithms, WARLOCK

and WITCH, with which we would like to compare WISARD. To do this, one first

tells HATE to record a “transcript” during execution, saving the output in a file.

hate -format transcript hdigits > wisard.out

Similar command lines are used to produce transcripts from WARLOCK and

WITCH. The three transcripts are then compared with a single command
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hate -mode compare wisard.out warlock.out witch.out

As with other files, warlock.out and witch.out may be downloaded over

the Internet by HATE if they do not exist locally. HATE checks that the same

version of the same test script was used in all cases; if it does, it performs case-

by-case comparisons and produces a series of tables in textual or LATEX format;

the specific output for the above comparison is listed in Figure 5.

The first table summarizes how well each algorithm performed. In this

example WISARD gave better results than WITCH in 1254 cases but was only

better than WARLOCK in 130 cases. WITCH was better than WISARD and

WARLOCK in 180 cases. In no case was WARLOCK better than WISARD but it

did manage to be better than witch in 1124 cases.

Following this are tables where pairs of algorithms are compared in the

style described in Section 4. In this example, the first pair to be compared

are WISARD and WITCH. We can see that in no case did both WISARD and

WITCH fail for the same test. WISARD succeeded in 1254 cases where WITCH

failed while WITCH succeeded in 180 cases where WISARD failed. In no case

did both WITCH and WISARD succeed. Tables for comparison of WISARD and

WARLOCK and WITCH and WARLOCK are then given.

If we consider the 2 × 2 table for the comparison of WISARD and WITCH

then:

Z =
(|1254 − 180| − 1)√

1254 + 180
= 28.34

We can look up this Z score in Table 2 to find the associated confidence limit.

As 28.34 > 2.576 we can say with more than 99% confidence that algorithm A

(WISARD) and algorithm B (WITCH) do not give equivalent results. As algo-

rithm A (WISARD) gave a larger number we can say with more than 99.5%

confidence that algorithm A (WISARD) was indeed superior to algorithm B

(WITCH) for these tests.

7 Concluding Remarks

This document has given an overview of performance characterization. It started

with a discussion of why this topic has received little attention by the computer

vision research community to date and explains that more effort must be put

into it if the discipline is to mature. The motivation for carrying out perfor-

mance characterization studies should hence be clear.

The document goes on to describe how performance is currently assessed,

by accumulating performance against a set of test data, and distinguished be-

tween technology evaluation, the performance of an algorithm in isolation, and

application evaluation, the performance of an algorithm on a specific type of

data with a particular problem in mind. Those measures and graphics most

commonly used to display performance results were then presented, both for

an individual algorithm and for the comparison of algorithms.

The use of test harnesses for taking the hard work out of performance stud-

ies was then considered and the benefits, not all of which are obvious, noted.
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WORSE

wisard.out witch.out warlock.out
BETTER wisard.out xxxxxxxxxx 1254 130

witch.out 180 xxxxxxxxxx 180

warlock.out 0 1124 xxxxxxxxxx

wisard.out wisard.out
failed succeeded

witch.out 0 1254

failed

witch.out 180 0

succeeded

Z score is 28.335

99% confident that wisard.out and witch.out do not give equivalent

results

99.5% confident that wisard.out was superior to witch.out

wisard.out wisard.out
failed succeeded

warlock.out 180 130

failed

warlock.out 0 1124

succeeded

Z score is 11.314

99% confident that wisard.out and warlock.out do not give equivalent

results

99.5% confident that wisard.out was superior to warlock.out

witch.out witch.out
failed succeeded

warlock.out 130 180

failed

warlock.out 1124 0

succeeded

Z score is 26.114

99% confident that witch.out and warlock.out do not give equivalent

results

99.5% confident that warlock.out was superior to witch.out

Figure 5: Example Output from HATE in Compare Mode
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The use of the HATE test harness was then described in assessing a simple vision

algorithm and comparing it with two others. This can reduce the time required

literally to ten minutes and represents the state of the testing art at the time of

writing.

We are a long way from solving all the problems associated with perfor-

mance characterization. The major technical problems lie in automating the

production of histograms that show how algorithms react to changes in the

properties of their inputs, and in optimizing parameter settings for an algo-

rithm. Both topics are being worked on by the developers of the HATE test

harness and will appear in due course.

Characterizing the performance of algorithms is now feasible. The charac-

terization may not be perfect but will undoubtedly be a vast improvement on

having no idea how algorithms react to the properties of the data presented

to them. A valuable resource would be a “data sheet” for popular algorithms,

somewhat analogous to the data books that describe electronic components. A

major problem then is in devising a methodology that describes how algorithms

can be joined together in a way that is statistically valid. A start to this problem

has been made [4] but there is far to go.

However, by far the greatest short-term problem is in convincing the com-

puter vision community as a whole of the importance of evaluation and char-

acterization. We encourage you to help do so, and there are several ways you

can contribute:

• use existing test scripts when evaluating your algorithms, and say so in

publications;

• make available transcript files of the results of test for your algorithms;

• make the code and interface file for your algorithms available;

• if there isn’t a test script for your particular research, make available one

and its accompanying data;

• encourage others to participate in performance studies too.

Together we can really crack the vision problem.

A The WISARD Neural Network

WISARD is a simple pattern recognition scheme, devised in the 1970s by Wilkie,

Stonham and Aleksander; the name stands for Wilkie, Stonham and Aleksander’s

Recognition Device [12]. It is usually described as a neural network, though

some do not regard so as it is weightless and can be trained by a single data

presentation. It is occasionally described as an “associative memory,” which

is closer to how it actually works, and as an “n-tuple” network. However, we

don’t need to get ourselves bogged down in such pedantry here; WISARD is an

approach to pattern recognition and there is an implementation of it that needs

to be examined and assessed.
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Figure 6: Illustration of the Operation of a WISARD Network

The operation of WISARD is illustrated in Figure 6. The system consists of

a frame buffer, a register or discriminator element and a 1-bit RAM. (The sim-

plicity of the architecture is because WISARD was designed to be implemented

in hardware.) WISARD is intended to operate on binary images, i.e.ones whose

pixels may take only the values zero and unity.

Initially, every element of the RAM is cleared (set to zero). Several pixel

locations, four in Figure 6, are chosen at random and connected to the bits of

the register. When an image is loaded into the frame buffer, the values held

in those four locations determine the value in the register. What happens next

depends on whether WISARD is being trained or tested (used for recognition):

• when being trained, the value in the RAM addressed by the register is set;

• when being tested, the value in the RAM addressed by the register is

compared with unity.

Fairly obviously, when the test pattern is identical to the training pattern, at

least in the selected locations, a match will be found.

Of course, if WISARD used only four samples from an image, it would not be

particularly robust; hence, several other sets of four randomly-chosen pixels are

used in the same way. The number of comparisons from groups of four pixels

that produce a match are added up, resulting in a “score” that determines how

close the overall match is.

The particular implementation that we shall consider is used in one of two

ways:

Training. To train a network you execute the program as follows:

wisard train wiz1.net <data>train/1-*.ppm
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Here, train is a keyword that tells the program to run in training mode,

wiz1.net is the file in which the trained network is saved, and the files

on the remainder of the command line are used for training.

Testing. To test a network you execute the program as follows:

wisard test wiz1.net <data>test/1-*.ppm

Here, test is a keyword that tells the program to run in testing mode,

wiz1.net is the file from which a trained network is loaded, and the

files on the remainder of the command line are used for testing.

In both cases, <data> is the top of the directory tree in which the training and

test data are kept.
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