
SEMEX – An Efficient Music Retrieval Prototype

Kjell Lemström and Sami Perttu
Department of Computer Science

University of Helsinki
{klemstro,perttu}@cs.helsinki.fi

The origins of music information retrieval (MIR) are in manual collections of incipits, short
melodic fragments obtained from the beginning of pieces of music. The collections were
manually compiled and usually covered a narrow field of music. Recently, computerized content-
based MIR systems have appeared. They apply standard methods from general string matching.

The applied techniques are based on the assumption that music is representable symbolically.
This is the case for most music; consider, e.g., the score notation of western music or MIDI.
These are not, however, ideal representations; the score notation requires a conversion into a
computer-readable form, and MIDI contains a lot of irrelevant information. Instead, music is
represented by sequences of symbols (or strings), where the symbols are taken from an alphabet
corresponding to some particular attribute of music, such as the duration or the pitch of a note.

The choice for the representation in current MIR systems is a string of pitches (or pitch
intervals). This is because of a pitch string of a melody is easy to remember, and a pitch string
has a good discrimination ability. Although such a representation loses some characteristics of
music, there are many reasons to do so. First, it facilitates the modeling of music (in particular
polyphonic music) and the modeling of distortions in the pattern. Moreover, when a piece of
music has been performed in another musical genre, very often only the rhythmic pattern has
been subject to a rearrangement. Therefore, in a MIR application it can be advantageous to rely
the query only on the pitch information.

Features of SEMEX
Our MIR prototype, SEMEX (Search Engine for Melodic Excerpts), performs queries on pitch
sequences. It is capable of locating transposition invariant matches of monophonic query patterns
in both monophonic and polyphonic music databases. The current version allows approximate
matching in the monophonic case, but not in the polyphonic one.

In order to take into account transposition invariance, SEMEX calculates intervals when
accessed. Such an arrangement is useful because the interval representation has certain
drawbacks: In the case of a distortion where an extra interval has been inserted (or a proper
interval has been deleted), the resulting sequence does not anymore represent the original piece
of music (because the distortion forces a modulation to take a place). SEMEX offers various
reductions for the accessed intervals. This is a useful feature when an extra amount of proximity
is needed, as e.g. in the case of query-by-humming. First, the queries can be based on the musical
contour, which gives only the direction of the intervals. This method, however, requires long
query patterns to reach good discrimination ability. A better discrimination, still maintaining
tolerance to errors, is obtained by using the QPI classification [Lemström and Laine, 98].

To perform the queries SEMEX applies bit-parallelism, a particularly efficient algorithmic
technique. Bit-parallel algorithms do not require excessive amount of the main memory (which

happens with the indexing techniques at times). Still they can achieve a good performance; in the
case of short enough patterns, they achieve a linear time running complexity. These properties
are of crucial importance since music databases can be very large. For monophonic database
SEMEX employs Myers’ approximate bit-parallel algorithm [Myers, 98]. The fast scanning
phase is succeeded by verification where a separate metrics is used for ranking matches. For
searching exact occurrences of a “distributed” melody within a polyphonic database, SEMEX
applies the MonoPoly filtering algorithm [Lemström and Tarhio, 2000], which comprises a bit-
parallel marking phase and a somewhat slower checking phase.

About the Performance
Let us compare the estimated performances of the bit-parallel approach and an indexing approach
using suffix trees. The estimations are based on two databases described in [Bainbridge et.al,
1999]. When using suffix structures, exact pattern matching can be performed in a time
depending only on the length of the pattern. The main drawback is the large amount of space that
such a structure needs. In practice, even the most space-efficient implementation needs a space
(of the main memory) that is at least 10 times the length of the database while, as already
mentioned, the bit-parallel techniques can usually be executed without any, or with only a small
amount of extra space. However, their running times are dependent on the length of the database.

Let us first consider the moderate sized database comprising nearly 10,000 folksongs, having an
average length of just under 60 notes. Assuming that one note fits in one computer byte,
concatenating the whole database in a single sequence would result in a sequence of around
600,000 notes needing a space of 0.6 MB. In this case, the indexing structure would take at least
6 MB of the main memory, while the efficient online algorithm scans through such a database
within 0.05 seconds if run with present efficient Pentium III computers. The superiority of the bit
parallel implementation becomes obvious in the second case. Now, the database contains the
MIDI files (easily) available on the Internet (the exact duplicates have been removed). The
database, containing 99,000 files having a total of 528 million notes, would require a suffix tree
taking around 5 GB of the main memory! The bit parallel implementation, however, would scan
through it in approximately 50 seconds. Although the performance of the online method is not
particularly fast anymore, the approach could still be used. This is not the case with the excessive
amount of space needed by the indexing approach.

References and Suggested Readings
Bainbridge, David; Nevill-Manning, Graig; Witten, Ian; Smith, Lloyd and McNab, Rodger. 1999. Towards

a Digital Library of Popular Music. In: Proc. ACM Conference on Digital Libraries, pp. 161-169.
Crawford, Tim; Iliopoulos, Costas and Raman, Rajeev. 1998. String Matching Techniques for Musical

Similarity and Melodic Recognition. Computing in Musicology, 11, pp. 71-100.
Downie, J. Stephen. 1999. Evaluating a Simple Approach to Music Information Retrieval: Conceiving

Melodic n-grams as Text. PhD thesis, Univ of Western Ontario, Faculty of Inf. and Media Studies.
Lemström, Kjell and Laine, Pauli. 1998. Musical Information Retrieval Using Musical Parameters. In:

Proc. 1998 International Computer Music Conference (ICMC'98), pp. 341-348.
Lemström, Kjell and Tarhio, Jorma. 2000. Searching Monophonic Patterns within Polyphonic Sources. In:

Proc. Content-Based Multimedia Information Access (RIAO'2000), pp. 1261-1279 (vol 2).
Lemström, Kjell. 2000. String Matching Techniques for Music Retrieval. PhD thesis, Univ of Helsinki ,

Dept of Computer Science, (to appear).
Myers, Gene. 1998. A Fast Bit-Vector Algorithm for Approximate String Matching Based on Dynamic

Programming. In: Proc. Combinatorial Pattern Matching, pp. 1-13.
Perttu, Sami. 2000. Combinatorial Pattern Matching in Musical Sequences. MSc thesis, Univ of Helsinki,

Dept of Computer Science (http://www.cs.helsinki.fi/u/perttu/mscthesis.ps).

