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Abstract

We present an approach to content-based sound re-
trieval using auditory models, self-organizing neural
networks, and string matching techniques. It addresses
the issues of spotting perceptually similar occurrences
of a particular sound event in an audio document. Af-
ter introducing the problem and the basic approach we
describe the individual stages of the system and give
references to additional literature. The third section of
the paper summarizes the preliminary experiments in-
volving auditory models and self-organizing maps we
carried out so far, and the final discussion reflects on
the overall concept and suggests further directions.
Keywords: content-based retrieval, sound classifi-
cation, auditory model, self-organizing map, string
matching

1 Introduction

1.1 Problem

The possibility of storing large quantities of sound or
video data on digital media has resulted in a growing
demand for content-based retrieval techniques to search
multimedia data for particular events without using an-
notations or other meta-data. This paper presents an
approach to a task that can be described assound spot-
ting: the detection of perceptually similar sounds in a
given document, using aquery by example, i. e. select-
ing a particular sound event and searching for ‘simi-
lar’ occurrences. The proposed system could be applied
to content-based retrieval of sound events from digital
recordings or broadcasting archives or to aid transcrip-

tion and analysis of non-notated music.
A special problem is posed by the definition ofper-

ceptual similarity: sound perception comprises so many
different aspects (such as loudness, pitch, timbre, lo-
cation, duration) that it is very hard to define a gen-
eral perceptual distance measure for a pair of sounds.
Even if the variability is restricted to timbre alone, it
is still largely uncertain how to define a timbre space
with respect to any underlying acoustical features (Ha-
jda et al., 1997). Therefore we decided to define ‘sim-
ilarity’ within the scope of our system as characterized
by a similar evolution of cochleagram frames.

1.2 Approach

Over the last ten years a number of researchers have
investigated various connectionist approaches to model
the perception of timbre (Cosi et al., 1994a; Feiten and
Günzel, 1994; De Poli and Prandoni, 1997; Toiviainen,
1997; Toiviainen et al., 1998) Sounds are preprocessed
with a simplified model of the auditory periphery, and
the resulting feature vectors are classified by means of
a self-organizing map, which projects multidimensional
input vectors onto a low-dimensional topological sur-
face. An introduction to this area including a brief liter-
ature survey has been given by Toiviainen (2000).

Our concept attempts to extend these models by deal-
ing with evolutions of timbre, pitch and loudness in a
dynamic, frame-based approach involving the follow-
ing three stages.

First the raw audio data is preprocessed with anau-
ditory modelto obtain a perceptually relevant represen-
tation (cochleagram). To reduce the amount of data the
signal is subsequently divided into short frames, each
of which is represented by a feature vector.
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Second aself-organizing map(SOM) is employed
to perform a topology-preserving mapping of the fea-
ture vectors onto a two-dimensional array of units. The
SOM assigns a best-matching unit to each input vec-
tor, so that a sound signal corresponds to a sequence of
best-matching units.

Finally a pattern matching algorithm is applied to
search the entire source for sequences ‘similar’ to a
selected pattern. For the time being we refer to the
SOM units simply by different symbols (e. g. their in-
dex numbers), disregarding the associated weight vec-
tors and topological relations, and perform anapproxi-
mate string matchingon the resulting sequences.

2 System components

2.1 Auditory model

A wealth of computational auditory models have been
developed to simulate and understand human audi-
tory system function. Comprehensive accounts of this
area have been provided by Hawkins et al. (1996) and
Greenberg and Slaney (2001). The models are usu-
ally limited to functions of the peripheral auditory sys-
tem, since knowledge about the neural representation of
sound signals in the central stages of the auditory sys-
tem remains speculative. The focus of attention is the
cochlea, where the basilar membrane acts as a broadly
tuned frequency analyzer, and hair cells convert its reso-
nant motion into neural impulses, which are propagated
along the auditory nerve fibres. The resulting represen-
tation is a time-frequency distribution, where informa-
tion is encoded both across different frequency bands
and within the temporal fine structure of the neural im-
pulses. Unfortunately the latter gets lost when the out-
put of the auditory model is decimated to average in-
tensity frames for the purpose of data reduction. The
average intensity representation can be visualized in the
form of acochleagram(Figure 1).

We carried out a number experiments to investi-
gate the suitability of different auditory representations
within the framework of our system. The corresponding
models are briefly described in the following sections.

2.1.1 Auditory filterbank and inner hair cell model

This model combines an auditory filterbank (Patterson
et al., 1992; Slaney, 1993) with an inner hair cell model
(Meddis, 1986). The filterbank converts the audio data

into a sixty-four channel representation of basilar mem-
brane motion, and the inner hair cell model simulates
mechanical to neural transduction in each filter chan-
nel. Its output represents the instantaneous spike prob-
ability in an auditory nerve fibre, showing features such
as adaptation (initial increase of the spike rate after the
onset of a stimulus), masking, and phase locking to low
frequency periodic stimuli.

2.1.2 Lyon’s cochlear model

Lyon’s passive cochlear model (Lyon, 1982; Slaney,
1988) is functionally similar to the above model, but
is based on different signal processing techniques. It
comprises a preemphasis filter to simulate the frequency
response of the middle and outer ear, a broadly tuned
cascade of ninety-six lowpass filters to model the basi-
lar membrane response, half wave rectifiers to imple-
ment the detection nonlinearity of the inner hair cells,
and automatic gain control to simulate adaptation and
masking.

2.1.3 Mel-frequency cepstral coefficients (MFCC)

Mel-frequency cepstral coefficients, introduced by
Davis and Mermelstein (1980), constitute a parametric
sound representation widely used in automatic speech
recognition systems. MFCC have also been applied to
timbre analysis (Cosi et al., 1994b) and music repre-
sentation (Logan, 2000). To obtain the coefficients the
signal is passed through a mel-spaced filterbank1., con-
verted to a logarithmic scale, and then submitted to a
cosine transform. MFCC provide a substantial data re-
duction, because a dozen coefficients often suffice to
characterize the acoustic signal.

2.2 Self-organizing map

Self-organizing maps constitute a particular class of
artificial neural networks, which is inspired by brain
maps forming reduced representations of relevant facts
(e. g. the tonotopic map of pitch in the auditory cortex).
The SOM was developed and formalized by Kohonen
(1982), and has meanwhile been utilized in a wide range
of fields (Kohonen, 2000). Applications include visual-
ization and clustering of multidimensional data as well
as statistical pattern recognition.

1Mel is a psychological measure of pitch magnitude derived from
subjective estimates of half-pitch (Warren, 1999, pp. 108-110)
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Figure 1: Waveform and cochleagram representation of a sound sample consisting of short tone and noise bursts.
The cochleagram was produced by the AF/IHC model. The 44,000 samples of the waveform representation are
reduced to approximately 200 frames in the cochleagram.

A self-organizing map can be imagined as a latticed
array of neurons, each of which is associated with a
multidimensional weight vector. The weight vectors
must have the same number of components as the input
vectors to enable a mapping of the input data onto the
lattice. Self-organization takes place during the training
phase, where the preprocessed data is repeatedly pre-
sented to the network. For each input vector, abest-
matching unitis determined and its weight vector ad-
justed towards the input vector. By adapting not only
the best-matching unit, but also its neighbours, the net-
work ‘learns’ the global topology of the input data and
forms a set ofordered discrete reference vectors. These
reference vectors can be regarded as a reduced repre-
sentation of the original data.

To enable an efficient pattern matching process in the
third stage of the system we represent the vectors by
their index numbers only and disregard their mutual re-
lations except for the binary distinction between ‘equal’
and ‘different’. This reduces the self-organizing map to
a vector quantization device. A sound sample then cor-
responds to a string of symbols, which can be further
processed with efficient string matching techniques.

2.3 String matching

Researchers working in the recent field of music infor-
mation retrieval discovered that string searching algo-
rithms usually applied to text retrieval or molecular se-

quence matching can also be employed to detect mu-
sical similarity or retrieve melodies from a database
(Crawford et al., 1998; Lemström, 2000). A crucial
prerequisite is a suitable encoding of the music, which
yields the searchable representation (Selfridge-Field,
1997).

The task of the string matching module in our sys-
tem is to find similar occurrences of a selected pattern
in a long string of symbols. In computer science termi-
nology this is referred to ask-difference inexact match-
ing—the problem of inexactly matching a pattern to a
text with the number of differences being at mostk
(Gusfield, 1997). A number of algorithms that tackle
this problem have been described by Ukkonen (1985)
and Stephen (1994).

3 Preliminary experiments

This section summarizes experiments that have inves-
tigated different combinations of auditory representa-
tions and self-organizing maps by means of a small set
of synthesized test sounds. A more detailed discussion
of the procedures and results can be found in previ-
ous publications (Spevak and Polfreman, 2000; Spevak
et al., 2001).

3



3.1 Methodology

3.1.1 Overview

A neural network experiment usually requires two main
processes:training and simulation. In this case the
training phase involved the preprocessing of the com-
plete sound set with one of the auditory models and the
decimation to a lower frame rate (100 Hz), the initial-
ization and training of a SOM, and finally a quality and
cluster analysis. The simulation phase served to deter-
mine the trajectory of a particular sound by tracing the
corresponding sequence of best-matching units and pro-
ducing a suitable visualization.

3.1.2 Tools

The experiments were carried out inMatlabR©, an in-
tegrated environment for numeric computation, visual-
ization and programming. The simulation of auditory
models and neural networks was facilitated by the use
of specialized ‘toolboxes’ in addition to the main pro-
gram, in particular theAuditory Toolbox(Slaney, 1998)
and theSOM Toolbox for Matlab 5(Vesanto et al.,
2000).

3.1.3 Sound set

The set of test sounds comprised 23 monophonic syn-
thesized signals of two seconds duration, sampled at
22.05 kHz. Each sample consisted of a one second
sound event framed by half a second of silence. The
set included white and band-limited noise, steady sine,
triangle and square wave signals at various frequen-
cies, a sine pitch sweep, sine octaves, sine and square
waves with increasing and decreasing amplitude respec-
tively, and a sample of quickly alternating tone and
noise bursts.

3.1.4 Visualizations

We produced different kinds of visualizations to ana-
lyze the structure of the self-organized network and the
mapping of the sounds. Theunified distance matrix (U-
matrix), a graphical representation of the vector space
distances between adjacent map units, was used to vi-
sually inspect the SOM and analyze its cluster structure
once the training was completed (Figure 2).

The sequence of best-matching units corresponding
to a particular sound sample can be visualized as atra-
jectoryon the SOM lattice. We developed an animated

Figure 2: U-matrix of a SOM comprising20×17 units.
The SOM was trained with the test sounds preprocessed
by the AF/IHC model. Different shades of grey repre-
sent the weight space distances between adjacent units
on the lattice; cluster borders are indicated by darker
colours.

representation, where the trajectory is built up frame by
frame in slow motion. It includes a waveform picture
of the sound with a moving pointer indicating the cur-
rent position (Figure 3). This representation allowed us
to assess the temporal response of the system to sudden
changes in the signal.

3.2 Results

3.2.1 Auditory models

The functional similarity of the two auditory models—
AF/IHC and Lyon’s cochlea model—as opposed to the
MFCC representation was clearly reflected in the or-
ganization of the SOMs and the course of the trajec-
tories. The trajectories produced by the auditory mod-
els were generally smoother than those obtained with
MFCC, which was mainly caused by the lowpass filter-
ing in the data reduction stage. The MFCC trajectories
reacted immediately to changes in the sound signal and
tended to oscillate between two or more units even for
perceptually steady sounds.

MFCC proved to be the computationally most ef-
ficient representation, while the AF/IHC model pro-
duced the most convincing results on the SOM: percep-
tually different sounds were mapped to distinct units,
and tones sharing the same pitch (e. g. sine, trian-
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Figure 3: Still frame from a film visualizing the trajec-
tory produced by a sequence of quickly alternating tone
and noise bursts on a7× 12 SOM. The sound was pre-
processed with Lyon’s cochlear model.

gle and square wave with common fundamental fre-
quency) were grouped into local clusters. Sound inten-
sity played only a minor role. In the MFCC representa-
tion it was even deliberately excluded by discarding co-
efficientC0 because of its disproportionately large vari-
ability.

3.2.2 Self-organizing maps

We evaluated the performance of different self-
organizing maps—varying in size, dimensionality, type
of lattice, and shape—in combination with the AF/IHC
model. The experiments showed that larger SOMs (rel-
ative size with respect to the amount of training data)
develop a distinct cluster structure, where groups of ad-
jacent neurons have very similar weight vectors (see
Figure 2). This is not desirable within the framework
of our system, because the string matching algorithm
does not distinguish between very similar units within a
cluster and distinctly different units in separate clusters.
However, if the size of the network is reduced, the clus-
ters decrease as well—eventually to single units. The
optimal size has to be determined empirically with re-
spect to the amount and variability of the data. The
investigation of dimensionality, lattice and shape sug-
gested that for our sound data a two-dimensional SOM
based on a hexagonal, sheet-shaped (as opposed to

cylindric or toroidal) lattice would be the preferable so-
lution. The different sounds were clearly separated on
the map and grouped according to their pitch (if applica-
ble). However, even with the ’optimal’ SOM theglobal
organization of the sounds on the map was far from per-
fect when compared to our perception: pairs of sounds
having the same distance, but different locations on the
map could be either very similar or entirely different,
depending on the respective cluster structure.

A self-organizing map can be a powerful visual-
ization tool, but it seems to be less suitable to actu-
ally quantify ‘similarity’. Because of the inhomoge-
neous distribution of weight vectors the distance be-
tween best-matching units on the map does not con-
stitute a valid distance measure for the corresponding
sounds, which is why we decided not to make use of the
topological organization of the SOM in the last stage of
our system.

4 Discussion

The preliminary experiments summarized above gave
us a realistic impression of the possibilities and the
limitations of our ‘holistic’ approach to sound retrieval
based on an auditory model and a self-organizing neural
network. We have largely dismissed our original idea of
using the network as a topologicalmap, where distances
correspond to perceptual dissimilarity, because the pro-
jection of the multidimensional feature vectors onto a
two-dimensional lattice inevitably leads to a distortion
of metrical relationships (Toiviainen, 1996). Therefore
we decided to use the SOM as a vector quantization tool
and regard the reference vectors as an abstract symbolic
representation of the sound data, which can then be sub-
jected to efficient string searching techniques.

The question whether such a system will be able
to retrieve perceptually valid matches remains unan-
swered yet. After implementing the string matching
stage we will address that issue by comparing the sys-
tem’s performance with similarity ratings from human
listeners. The vague definition of ’sound similarity’
clearly introduces an element of uncertainty, because
different listeners will presumably pay attention to dif-
ferent kinds of similarity. A possible way out of this
dilemma would be a more analytic approach, in which
the preprocessing extracts a set of well-defined sound
features (such as sound level, spectral centroid and pe-
riodicity) that can be related to particular perceptual di-
mensions (loudness, brightness and pitch). Important
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contributions in that direction have been made e. g. by
Wold et al. (1999), McAdams et al. (1995) and Peeters
et al. (2000).
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