Sound spotting—an approach to content-based sound retrieval

Christian Spevak, Richard Polfreman Music Department University of Hertfordshire College Lane, Hatfield, AL10 9AB {c.spevak, r.p.polfreman}@herts.ac.uk

Abstract

We present an approach to content-based sound retrieval using auditory models, self-organizing neural networks, and string matching techniques. It addresses the issues of spotting perceptually similar occurrences of a particular sound event in an audio document. After introducing the problem and the basic approach we describe the individual stages of the system and give references to additional literature. The third section of the paper summarizes the preliminary experiments involving auditory models and self-organizing maps we carried out so far, and the final discussion reflects on the overall concept and suggests further directions.

Keywords: content-based retrieval, sound classification, auditory model, self-organizing map, string matching

1 Introduction

1.1 Problem

The possibility of storing large quantities of sound or video data on digital media has resulted in a growing demand for content-based retrieval techniques to search multimedia data for particular events without using annotations or other meta-data. This paper presents an approach to a task that can be described as *sound spotting*: the detection of perceptually similar sounds in a given document, using a *query by example*, i. e. selecting a particular sound event and searching for 'similar' occurrences. The proposed system could be applied to content-based retrieval of sound events from digital recordings or broadcasting archives or to aid transcrip-

tion and analysis of non-notated music.

A special problem is posed by the definition of *perceptual similarity*: sound perception comprises so many different aspects (such as loudness, pitch, timbre, location, duration) that it is very hard to define a general perceptual distance measure for a pair of sounds. Even if the variability is restricted to timbre alone, it is still largely uncertain how to define a timbre space with respect to any underlying acoustical features (Hajda et al., 1997). Therefore we decided to define 'similarity' within the scope of our system as characterized by a similar evolution of cochleagram frames.

1.2 Approach

Over the last ten years a number of researchers have investigated various connectionist approaches to model the perception of timbre (Cosi et al., 1994a; Feiten and Günzel, 1994; De Poli and Prandoni, 1997; Toiviainen, 1997; Toiviainen et al., 1998) Sounds are preprocessed with a simplified model of the auditory periphery, and the resulting feature vectors are classified by means of a self-organizing map, which projects multidimensional input vectors onto a low-dimensional topological surface. An introduction to this area including a brief literature survey has been given by Toiviainen (2000).

Our concept attempts to extend these models by dealing with evolutions of timbre, pitch and loudness in a dynamic, frame-based approach involving the following three stages.

First the raw audio data is preprocessed with an *auditory model* to obtain a perceptually relevant representation (cochleagram). To reduce the amount of data the signal is subsequently divided into short frames, each of which is represented by a feature vector. Second a *self-organizing map* (SOM) is employed to perform a topology-preserving mapping of the feature vectors onto a two-dimensional array of units. The SOM assigns a best-matching unit to each input vector, so that a sound signal corresponds to a sequence of best-matching units.

Finally a pattern matching algorithm is applied to search the entire source for sequences 'similar' to a selected pattern. For the time being we refer to the SOM units simply by different symbols (e. g. their index numbers), disregarding the associated weight vectors and topological relations, and perform an *approximate string matching* on the resulting sequences.

2 System components

2.1 Auditory model

A wealth of computational auditory models have been developed to simulate and understand human auditory system function. Comprehensive accounts of this area have been provided by Hawkins et al. (1996) and Greenberg and Slaney (2001). The models are usually limited to functions of the peripheral auditory system, since knowledge about the neural representation of sound signals in the central stages of the auditory system remains speculative. The focus of attention is the cochlea, where the basilar membrane acts as a broadly tuned frequency analyzer, and hair cells convert its resonant motion into neural impulses, which are propagated along the auditory nerve fibres. The resulting representation is a time-frequency distribution, where information is encoded both across different frequency bands and within the temporal fine structure of the neural impulses. Unfortunately the latter gets lost when the output of the auditory model is decimated to average intensity frames for the purpose of data reduction. The average intensity representation can be visualized in the form of a cochleagram (Figure 1).

We carried out a number experiments to investigate the suitability of different auditory representations within the framework of our system. The corresponding models are briefly described in the following sections.

2.1.1 Auditory filterbank and inner hair cell model

This model combines an auditory filterbank (Patterson et al., 1992; Slaney, 1993) with an inner hair cell model (Meddis, 1986). The filterbank converts the audio data

into a sixty-four channel representation of basilar membrane motion, and the inner hair cell model simulates mechanical to neural transduction in each filter channel. Its output represents the instantaneous spike probability in an auditory nerve fibre, showing features such as adaptation (initial increase of the spike rate after the onset of a stimulus), masking, and phase locking to low frequency periodic stimuli.

2.1.2 Lyon's cochlear model

Lyon's passive cochlear model (Lyon, 1982; Slaney, 1988) is functionally similar to the above model, but is based on different signal processing techniques. It comprises a preemphasis filter to simulate the frequency response of the middle and outer ear, a broadly tuned cascade of ninety-six lowpass filters to model the basilar membrane response, half wave rectifiers to implement the detection nonlinearity of the inner hair cells, and automatic gain control to simulate adaptation and masking.

2.1.3 Mel-frequency cepstral coefficients (MFCC)

Mel-frequency cepstral coefficients, introduced by Davis and Mermelstein (1980), constitute a parametric sound representation widely used in automatic speech recognition systems. MFCC have also been applied to timbre analysis (Cosi et al., 1994b) and music representation (Logan, 2000). To obtain the coefficients the signal is passed through a mel-spaced filterbank¹., converted to a logarithmic scale, and then submitted to a cosine transform. MFCC provide a substantial data reduction, because a dozen coefficients often suffice to characterize the acoustic signal.

2.2 Self-organizing map

Self-organizing maps constitute a particular class of artificial neural networks, which is inspired by brain maps forming reduced representations of relevant facts (e. g. the tonotopic map of pitch in the auditory cortex). The SOM was developed and formalized by Kohonen (1982), and has meanwhile been utilized in a wide range of fields (Kohonen, 2000). Applications include visualization and clustering of multidimensional data as well as statistical pattern recognition.

 $^{^{1}}Mel$ is a psychological measure of pitch magnitude derived from subjective estimates of half-pitch (Warren, 1999, pp. 108-110)

Figure 1: Waveform and cochleagram representation of a sound sample consisting of short tone and noise bursts. The cochleagram was produced by the AF/IHC model. The 44,000 samples of the waveform representation are reduced to approximately 200 frames in the cochleagram.

A self-organizing map can be imagined as a latticed array of neurons, each of which is associated with a multidimensional weight vector. The weight vectors must have the same number of components as the input vectors to enable a mapping of the input data onto the lattice. Self-organization takes place during the training phase, where the preprocessed data is repeatedly presented to the network. For each input vector, a *bestmatching unit* is determined and its weight vector adjusted towards the input vector. By adapting not only the best-matching unit, but also its neighbours, the network 'learns' the global topology of the input data and forms a set of *ordered discrete reference vectors*. These reference vectors can be regarded as a reduced representation of the original data.

To enable an efficient pattern matching process in the third stage of the system we represent the vectors by their index numbers only and disregard their mutual relations except for the binary distinction between 'equal' and 'different'. This reduces the self-organizing map to a vector quantization device. A sound sample then corresponds to a string of symbols, which can be further processed with efficient string matching techniques.

2.3 String matching

Researchers working in the recent field of music information retrieval discovered that string searching algorithms usually applied to text retrieval or molecular sequence matching can also be employed to detect musical similarity or retrieve melodies from a database (Crawford et al., 1998; Lemström, 2000). A crucial prerequisite is a suitable encoding of the music, which yields the searchable representation (Selfridge-Field, 1997).

The task of the string matching module in our system is to find similar occurrences of a selected pattern in a long string of symbols. In computer science terminology this is referred to as *k*-difference inexact matching—the problem of inexactly matching a pattern to a text with the number of differences being at most k (Gusfield, 1997). A number of algorithms that tackle this problem have been described by Ukkonen (1985) and Stephen (1994).

3 Preliminary experiments

This section summarizes experiments that have investigated different combinations of auditory representations and self-organizing maps by means of a small set of synthesized test sounds. A more detailed discussion of the procedures and results can be found in previous publications (Spevak and Polfreman, 2000; Spevak et al., 2001).

3.1 Methodology

3.1.1 Overview

A neural network experiment usually requires two main processes: *training* and *simulation*. In this case the training phase involved the preprocessing of the complete sound set with one of the auditory models and the decimation to a lower frame rate (100 Hz), the initialization and training of a SOM, and finally a quality and cluster analysis. The simulation phase served to determine the trajectory of a particular sound by tracing the corresponding sequence of best-matching units and producing a suitable visualization.

3.1.2 Tools

The experiments were carried out in $Matlab^{\mathbb{R}}$, an integrated environment for numeric computation, visualization and programming. The simulation of auditory models and neural networks was facilitated by the use of specialized 'toolboxes' in addition to the main program, in particular the *Auditory Toolbox* (Slaney, 1998) and the *SOM Toolbox for Matlab 5* (Vesanto et al., 2000).

3.1.3 Sound set

The set of test sounds comprised 23 monophonic synthesized signals of two seconds duration, sampled at 22.05 kHz. Each sample consisted of a one second sound event framed by half a second of silence. The set included white and band-limited noise, steady sine, triangle and square wave signals at various frequencies, a sine pitch sweep, sine octaves, sine and square waves with increasing and decreasing amplitude respectively, and a sample of quickly alternating tone and noise bursts.

3.1.4 Visualizations

We produced different kinds of visualizations to analyze the structure of the self-organized network and the mapping of the sounds. The *unified distance matrix (U-matrix)*, a graphical representation of the vector space distances between adjacent map units, was used to visually inspect the SOM and analyze its cluster structure once the training was completed (Figure 2).

The sequence of best-matching units corresponding to a particular sound sample can be visualized as a *trajectory* on the SOM lattice. We developed an animated

Figure 2: U-matrix of a SOM comprising 20×17 units. The SOM was trained with the test sounds preprocessed by the AF/IHC model. Different shades of grey represent the weight space distances between adjacent units on the lattice; cluster borders are indicated by darker colours.

representation, where the trajectory is built up frame by frame in slow motion. It includes a waveform picture of the sound with a moving pointer indicating the current position (Figure 3). This representation allowed us to assess the temporal response of the system to sudden changes in the signal.

3.2 Results

3.2.1 Auditory models

The functional similarity of the two auditory models— AF/IHC and Lyon's cochlea model—as opposed to the MFCC representation was clearly reflected in the organization of the SOMs and the course of the trajectories. The trajectories produced by the auditory models were generally smoother than those obtained with MFCC, which was mainly caused by the lowpass filtering in the data reduction stage. The MFCC trajectories reacted immediately to changes in the sound signal and tended to oscillate between two or more units even for perceptually steady sounds.

MFCC proved to be the computationally most efficient representation, while the AF/IHC model produced the most convincing results on the SOM: perceptually different sounds were mapped to distinct units, and tones sharing the same pitch (e. g. sine, trian-

Figure 3: Still frame from a film visualizing the trajectory produced by a sequence of quickly alternating tone and noise bursts on a 7×12 SOM. The sound was preprocessed with Lyon's cochlear model.

gle and square wave with common fundamental frequency) were grouped into local clusters. Sound intensity played only a minor role. In the MFCC representation it was even deliberately excluded by discarding coefficient C_0 because of its disproportionately large variability.

3.2.2 Self-organizing maps

We evaluated the performance of different selforganizing maps-varying in size, dimensionality, type of lattice, and shape-in combination with the AF/IHC model. The experiments showed that larger SOMs (relative size with respect to the amount of training data) develop a distinct cluster structure, where groups of adjacent neurons have very similar weight vectors (see Figure 2). This is not desirable within the framework of our system, because the string matching algorithm does not distinguish between very similar units within a cluster and distinctly different units in separate clusters. However, if the size of the network is reduced, the clusters decrease as well-eventually to single units. The optimal size has to be determined empirically with respect to the amount and variability of the data. The investigation of dimensionality, lattice and shape suggested that for our sound data a two-dimensional SOM based on a hexagonal, sheet-shaped (as opposed to cylindric or toroidal) lattice would be the preferable solution. The different sounds were clearly separated on the map and grouped according to their pitch (if applicable). However, even with the 'optimal' SOM the *global* organization of the sounds on the map was far from perfect when compared to our perception: pairs of sounds having the same distance, but different locations on the map could be either very similar or entirely different, depending on the respective cluster structure.

A self-organizing map can be a powerful visualization tool, but it seems to be less suitable to actually quantify 'similarity'. Because of the inhomogeneous distribution of weight vectors the distance between best-matching units on the map does not constitute a valid distance measure for the corresponding sounds, which is why we decided not to make use of the topological organization of the SOM in the last stage of our system.

4 Discussion

The preliminary experiments summarized above gave us a realistic impression of the possibilities and the limitations of our 'holistic' approach to sound retrieval based on an auditory model and a self-organizing neural network. We have largely dismissed our original idea of using the network as a topological *map*, where distances correspond to perceptual dissimilarity, because the projection of the multidimensional feature vectors onto a two-dimensional lattice inevitably leads to a distortion of metrical relationships (Toiviainen, 1996). Therefore we decided to use the SOM as a vector quantization tool and regard the reference vectors as an abstract symbolic representation of the sound data, which can then be subjected to efficient string searching techniques.

The question whether such a system will be able to retrieve perceptually valid matches remains unanswered yet. After implementing the string matching stage we will address that issue by comparing the system's performance with similarity ratings from human listeners. The vague definition of 'sound similarity' clearly introduces an element of uncertainty, because different listeners will presumably pay attention to different kinds of similarity. A possible way out of this dilemma would be a more analytic approach, in which the preprocessing extracts a set of well-defined sound features (such as sound level, spectral centroid and periodicity) that can be related to particular perceptual dimensions (loudness, brightness and pitch). Important contributions in that direction have been made e. g. by Wold et al. (1999), McAdams et al. (1995) and Peeters et al. (2000).

References

- Piero Cosi, Giovanni De Poli, and Giampaolo Lauzzana. Auditory modelling and self-organizing neural networks for timbre classification. *Journal of New Music Research*, 23(1):71–98, 1994a.
- Piero Cosi, Giovanni De Poli, and Paolo Prandoni. Timbre characterization with mel-cepstrum and neural nets. In *Proceedings of the International Computer Music Conference (ICMC)*, pages 42–45, Aarhus, Denmark, 1994b.
- Tim Crawford, Costas S. Iliopoulos, and Rajeev Raman. String-matching techniques for musical similarity and melodic recognition. In Walter B. Hewlett and Eleanor Selfridge-Field, editors, *Melodic Similarity: Concepts, Procedures, and Applications*, volume 11 of *Computing in Musicology*, chapter 3, pages 73–100. The MIT Press, Cambridge, MA, 1998. ISBN 0262581752.
- Stephen B. Davis and Paul Mermelstein. Comparison of parametric representations for monosyllabic word recognition in continuous spoken sentences. *IEEE Transactions on Acoustics, Speech, and Signal Processing*, 28(4):357–366, 1980. Reprinted in Waibel and Lee (1990).
- Giovanni De Poli and Paolo Prandoni. Sonological models for timbre characterization. *Journal of New Music Research*, 26(2):170–197, 1997.
- Bernhard Feiten and Stefan Günzel. Automatic indexing of a sound database using self-organizing neural nets. *Computer Music Journal*, 18(3):53–65, 1994.
- Stephen Greenberg and Malcolm Slaney. Computational Models of Auditory Function, volume 312 of NATO Science Series: Life Sciences. IOS Press, Amsterdam, 2001. ISBN 9051994575.
- Dan Gusfield. Algorithms on String, Trees, and Sequences: Computer Science and Computational Biology. Cambridge University Press, Cambridge, 1997. ISBN 0521585198.

- John M. Hajda, Roger A. Kendall, Edward C. Carterette, and Michael L. Harshberger. Methodological issues in timbre research. In Irène Deliège and John Sloboda, editors, *Perception and Cognition* of Music, chapter 12, pages 253–306. Psychology Press, Hove, UK, 1997. ISBN 0863774520.
- Harold L. Hawkins, Teresa A. McMullen, Arthur N. Popper, and Richard A. Fay, editors. *Auditory Computation*, volume 6 of *Springer Handbook of Auditory Research*. Springer-Verlag, Berlin, New York, 1996.
- Teuvo Kohonen. Self-organized formation of topologically correct feature maps. *Biological Cybernetics*, 43:59–69, 1982.
- Teuvo Kohonen. *Self-Organizing Maps*, volume 30 of *Springer Series in Information Sciences*. Springer, Berlin, 3rd edition, 2000. 1st edition 1995.
- Kjell Lemström. *String Matching Techniques for Music Retrieval*. Report A-2000-04. PhD thesis, University of Helsinki, Department of Computer Science, Helsinki, Finland, November 2000.
- Beth Logan. Mel frequency cepstral coefficients for music modeling. In *Proceedings of the International Symposium on Music Information Retrieval*, Plymouth, MA, October 2000. URL http://ciir.cs.umass.edu/music2000.
- Richard F. Lyon. A computational model of filtering, detection and compression in the cochlea. In *Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing*, Paris, May 1982.
- Stephen McAdams, Suzanne Winsberg, Sophie Donnadieu, Geert De Soete, and Jochen Krimphoff. Perceptual scaling of synthesized musical timbres: Common dimensions, specificities, and latent subject classes. *Psychological Research*, 58:177–192, 1995.
- Ray Meddis. Simulation of mechanical to neural transduction in the auditory receptor. *Journal of the Acoustical Society of America*, 79(3):702–711, March 1986.
- Roy D. Patterson, K. Robinson, John Holdsworth, Denis McKeown, C[elia] Zhang, and Mike Allerhand. Complex sounds and auditory images. In Y. Cazals,

L. Demany, and K. Horner, editors, Auditory Physiology and Perception: Proceedings of the 9th International Symposium on Hearing, volume 83 of Advances in the Biosciences, pages 429–445. Pergamon Press, Oxford, 1992.

- Geoffroy Peeters, Stephen McAdams, and Perfecto Herrera. Instrument sound description in the context of MPEG-7. In *Proceedings of the International Computer Music Conference (ICMC)*, pages 166–169, Berlin, Germany, 2000.
- Eleanor Selfridge-Field, editor. *Beyond MIDI: The Handbook of Musical Codes*. The MIT Press, Cambrige, MA, 1997. ISBN 0262193949.
- Malcolm Slaney. Lyon's cochlear model. Apple Technical Report 13, Apple Computer, 1988. URL www.slaney.org/malcolm/pubs.html.
- Malcolm Slaney. An efficient implementation of the Patterson-Holdsworth auditory filter bank. Apple Computer Technical Report 35, Apple Computer, 1993. URL www.slaney.org/malcolm/pubs.html.
- Malcolm Slaney. Auditory Toolbox Version 2. Interval Technical Report 1998-010, Interval Research Corporation, Palo Alto, CA, 1998.
- Christian Spevak and Richard Polfreman. Analyzing auditory representations for sound classification with self-organizing neural networks. In *Proceedings of the COST-G6 Conference on Digital Audio Effects* (*DAFx-00*), pages 119–124, Verona, Italy, December 2000. http://www.sci.univr.it/~dafx/.
- Christian Spevak, Richard Polfreman, and Martin Loomes. Towards detection of perceptually similar sounds: investigating self-organizing maps. In Proceedings of the AISB'01 Symposium on Artificial Intelligence and Creativity in Arts and Science, pages 45–50, York, March 2001. Society for the Study of Artificial Intelligence and the Simulation of Behaviour. ISBN 1902956189.
- Graham A. Stephen. *String Searching Algorithms*, volume 3 of *Lecture Notes Series on Computing*. World Scientific Publishing, Singapore, 1994.
- Petri Toiviainen. Optimizing auditory images and distance metrics for self-organizing timbre maps. *Journal of New Music Research*, 25(1):1–30, 1996.

- Petri Toiviainen. Optimizing self-organizing timbre maps: Two approaches. In Marc Leman, editor, *Music, Gestalt, and Computing: Studies in Cognitive and Systematic Musicology*, pages 337–350. Springer-Verlag, Berlin, Heidelberg, 1997.
- Petri Toiviainen. Symbolic AI versus connectionism in music research. In Eduardo Reck Miranda, editor, *Readings in Music and Artificial Intelligence*, volume 20 of *Contemporary Music Studies*, chapter 4, pages 47–67. Harwood Academic Publishers, Amsterdam, 2000.
- Petri Toiviainen, Mari Tervaniemi, Jukka Louhivuori, Marieke Saher, Minna Huotilainen, and Risto Näätänen. Timbre similarity: Convergence of neural, behavioral, and computational approaches. *Music Perception*, 16(2):223–242, 1998.
- Esko Ukkonen. Algorithms for approximate string matching. *Information and Control*, 64:100–118, 1985.
- Juha Vesanto, Johan Himberg, Esa Alhoniemi, and Juha Parhankangas. SOM Toolbox for Matlab 5. Technical Report A57, Helsinki University of Technology, April 2000.
- Alex Waibel and Kai-Fu Lee, editors. *Readings in Speech Recognition*. Morgan Kaufmann Publishers, San Mateo, CA, 1990. ISBN 1558601244.
- Richard M. Warren. Auditory Perception. A New Analysis and Synthesis. Cambridge University Press, Cambridge, UK, 1999. ISBN 0521587832.
- Erling Wold, Thom Blum, Douglas Keislar, and James Wheaton. Classification, search, and retrieval of audio. In Borko Furht, editor, *Handbook of Multimedia Computing*, chapter 10. CRC Press, 1999. ISBN 0849318254.