Audio Segmentation

Presented by Shi Yong March. 1, 2007 Music Tech @ McGill University

Outline

Introduction
What
Why
How
Approaches
Example

Introduction

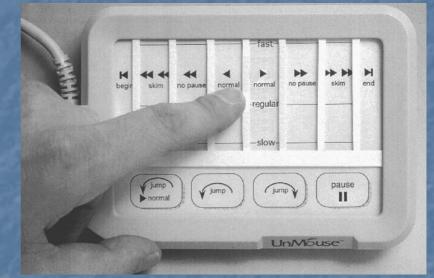
What is Audio Segmentation?

- Segmenting the audio stream into homogeneous regions
- Rule of homogeneity is up to the task, the purpose is to handle regions of different nature differently
 - Music/Noise
 - Speech/Non-speech
 - Male/Female
 - Etc.

Often use in conjunction with clustering

Introduction

Why we need Audio Segmentation? Often used as a pre-processor for further classification of the segments Speaker identification/verification/tracking Automatic speech recognition (ASR) Automatic transcription Segmentation in broadcast news Automatic music analysis, style identification **Etc.**


Applications

SpeechSkimmer (Arons97) Allow a user to quickly find what he want to hear Implemented by perceptual segmentation technique and an interactive listener

IBM Viavoice (Tritschler99)

control

 Real-time broadcast news transcription and speaker identification SpeechSkimmer (Arons97)

Introduction

How to do Audio Segmentation?

- Two steps
 - Features extraction information need for further processing
 - Temporal domain: ZCR, RMS, etc.
 - Frequency domain: Spectral centroid, Spectral flux, MFCC, LPC, etc.
 - How to find the "best" feature set is an open question.
 - Statistical tools to find the segment boundaries out
 - GMM, BIC, HMM, etc.
 - What statistical tools shall be chosen? Another open question.
- Typical methods
 - Energy-based segmentation
 - Model-based segmentation
 - Metric-based segmentation
 - Hybrid methods
 - ... maybe more?

Approaches - I

Energy-based segmentation

- Detecting silence periods in the audio stream
 - By the location information generated by decoder, such as silences, gender information, etc.
 - By measuring and thresholding the audio energy
- Segment boundaries are hypothesized in such periods
- Noise-gate is a very simple example of this approach

Pros:

- Easy to implement
 - For commercial products, simple, low-cost, robust are what product developers most concern

Cons:

- The boundaries have no direct connection with the acoustic changes
- E.g., how can we tell a silence period is the pause between the signal of two person or just the pause by one person?
- E.g., how can we know when a person begin to speak in a continuous music background?

Approaches - II

Model-based segmentation

- Modeling: a set of statistical models are defined for each acoustic classes
 - Models: multivariate Gaussian Mixture Model is widely used
 - Classes: speak, music, background noise, silence, telephone speech, etc.
- Training: model parameters are estimated from the training data
 - For multivariate Gaussian model, the parameters are mean average (mu) and covariance matrix (Sigma).
 - Different solutions have been developed to estimate these parameters: Maximum Likelihood Estimation (MLE), Expectation Maximization (EM), etc.
 - We do not have to dig into all the mathematical details, we can directly use some developed closed-form expression to calculate the parameters
- Segmentation:
 - Segmentation boundaries are assumed by the boundaries between classes
 - This can be determined by a model selection criterion, such as Bayesian Information Criterion (BIC)

Pros:

- Theoretically, acoustic features are connected with the segmentation boundaries
- Cons:
 - Complex (need to use more complex statistical tools)
 - Computational cost (increase the product cost)
 - Due to the statistical nature, the "correct" segmentation is still not guaranteed.

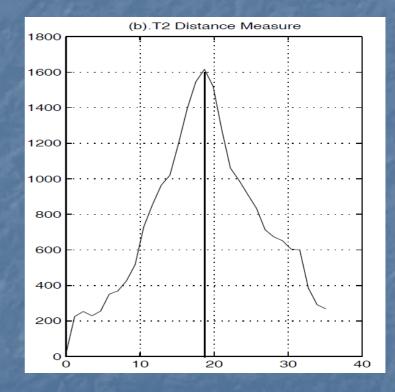
Approaches - III

Metric-based segmentation

- Segment boundaries are determined by the contents similarity/distance between two continuing moving adjacent windows
 - We have two neighboring windows (modeled by multivariate Gaussian distributions)
 - Let the two windows move over the audio stream
 - Compute the similarity of the contents of the two windows
 - Segment boundaries are determined by the local maxima and a predefined threshold
- Algorithms to compute the similarity are called "distance function"
 - Kullback-Leibler Distance
 - Gish Distance
 - Entropy Loss
 - T² Distance
 - T² mean Distance
 - Etc.
- **Thing to be considered for designing the metric-based algorithm:**
 - Selection of distance function
 - Window size
 - Windows moving speed (time increment)
 - Threshold
 - Etc.
- Pros and Cons:
 - Like approach II, with a little difference

Approaches - III

A glance at T² distance


Two audio segments modeled by multivariate Gaussian distributions:

 $N(\mu_1,\Sigma_1)$ and $N(\mu_2,\Sigma_2)$

■ T² distance is:

$$T^{2} = \frac{ab}{a+b}(\mu_{1} - \mu_{2})^{T}\Sigma^{-1}(\mu_{1} - \mu_{2})$$

a, b are frames numbers within each segments

Huang04

Evaluation Metrics

How to evaluate the performance of different methods/ models/feature set?

- Strictly speaking, there is no objective stardard for evaluating the errors in different segmentation methods, because segmentation is very subjective
- However, by compare the automatic segmentation results with the manual segmentation, we can have some criteria

Evaluation Criteria (Kemp00)

- Type I errors (deletion):
 - RCL = number of correctly found boundaries / total number of boundaries
- Type II erors (false alarm):
 - PRC = number of correctly found boundaries / number of hypothesized boundaries
- Hybrid measure (combine two number into one)
 - F = (2*PRC*RCL)/(PRC+RCL)

Now we can have a basic idea of the performance of each method (Kemp00)

- Energy-based: F = 0.58
- Model-based: F = 0.62
- Metric-based (Gish-distance): F = 0.70

Example

Task: detecting the speaker changes in a continuous audio stream (e.g., in a teleconference). Let's try the model-based method.

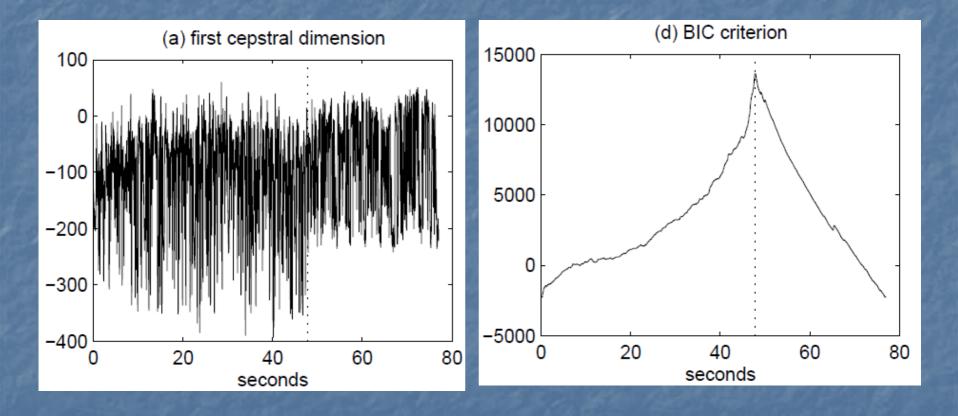
- First we extract the sequence of feature vectors x (say, ceptral coefficients, $x_i = x_1, x_2, ..., x_N$) from the entire audio stream, and assume they are modeled by multivariate Gaussian distribution, denoted as $x_i \sim N(\mu_i, \Sigma_i)$
- Let's begin with the simplest problem: assume only one changing point in the stream, so what is more likely to happen: x as one Gaussian distribution, or x be divided into two part and as two Gaussian distribution?
- Mathematically speaking, we get to testing the two hypothesis:

 $H_0: x_1 \cdots x_N \sim N(\mu, \Sigma) \qquad H_1: x_1 \cdots x_i \sim N(\mu_1, \Sigma_1); x_{i+1} \cdots x_N \sim N(\mu_2, \Sigma_2)$

The changing point is estimated at index i that corresponding to the maximum likelihood ratio R(i)

 $R(i) = Nlog|\Sigma| - N_1log|\Sigma_1| - N_2log|\Sigma_2|$

Using BIC


Alternately, we can use Bayesian Information Criterion (BIC) value to make our decision: the data is modeled as one Gaussian or two Gaussians?

$$BIC(i) = R(i) - \lambda P$$
 $P = \frac{1}{2}(d + \frac{1}{2}d(d + 1))\log N$

The segment boundary is decided at the point corresponding to the positive maximum BIC value

Chen98

Depiction

Multiple Changing Points

Multiple changing points detection algorithm is based on the aforementioned method

```
(1) initialize the interval [a, b]: a = 1; b = 2.
```

```
(2) detect if there is one changing point in [a, b] via BIC.
```

```
(3) if (no change in [a, b])
```

```
let b = b + 1;
```

else

let \hat{t} be the changing point detected;

```
set a = \hat{t} + 1; b = a + 1;
```

 $\begin{array}{c} \text{end} \\ (4) \text{ go to } (2). \end{array}$

Reference

- [Arons97] SpeechSkimmer: a system for interactively skimming recorded speech. ACM Transactions on Computer-Human Interaction (TOCHI), ACM Press New York, NY, USA.
- [Chen98] Speaker, Environment and Channel Change Detection and Clustering via the Bayesian Information Criterion, IBM T.J. Watson Research Center: 127-32.
- [Huang04] Unsupervised Audio Segmentation and Classification for Robust Spoken Document Retrieval. IEEE ICASSP-2004: Inter. Conf. on Acoustics, Speech, and Signal Processing.
- [Kemp00] Strategies for automatic segmentation of audio data. IEEE International Conference on Acoustics, Speech, and Signal Processing.
- [Tritschler99] Improved Speaker Segmentation and Segments Clustering Using the Bayesian Information Criterion, IBM T.J. Watson Research Center.