Performance Analysis of Audio-Based Similarity Queries

Using Clustering

Latifur Khan, Mohammad Alshayeji, Ning Jiang, Cyrus Shahabi and Dennis McLeod
Integrated Media Systems Center and
Computer Science Department
University of Southern California
Los Angeles, California 90089

[latifurk, malshaye, ningjian, cshahabi, mcleod]@cs.usc.edu

Abstract

Many multimedia applications require the storage and retrieval of non-traditional data types
such as audio, video and images. One important functionality required by these applications is the
capability to find objects in a database that are similarto a given object. The comparison algorithms
for multimedia data types are typically computationally expensive. Therefore, the performance of
similarity queries can be improved significantly by reducing the number of invocations of these
comparison algorithms. In this paper, we propose the utilization of clustering techniques in order
to reduce the number of invocations of comparison algorithms.

Although clustering improves the performance of similarity queries, 1t might introduce inac-
curacy in the results. We propose a family of similarity query execution techniques to strike a
compromise between accuracy and performance. To evaluate the performance (i.e., query response
time) and accuracy (i.e., precision and recall) of our similarity query execution techniques, we built
an experimental setup using Informix OR-DBMS and AIR audio content-extraction algorithm. Our
results demonstrate a significant improvement in performance while the accuracy of the results is
maintained at a reasonable level.

1 Introduction

For decades, access methods such as index structures have been used to improve the performance
of traditional database systems. B-+-trees, for example, can significantly improve the performance of
queries containing equality and/or linear range predicates. However, non-traditional (multimedia) data
types such as image, audio or video, introduce new challenges that can not be met by conventional
indexing techniques. These challenges can be addressed, however by designing new access methods
specific to each new data type (e.g., R-trees for spatial data types). The problem with this approach is

that whenever a new data type is introduced, the DBMS vendor not only needs to develop a new access

*This research was supported in part by gifts from Informix, Intel, NASA /JPL Contract no. 961518 and NSF grants EEC-9529152
(IMSC ERC) and MRI-9724567.

method (e.g., a tree structure) but also must integrate it with concurrency control, crash recovery and
other database primitives. To remedy that, a Generalized Search Tree (GiST) has been proposed
n [17]. GiST provides a unified data structure that can be extended to meet the requirement of new
data types. In some cases, access methods are needed to improve the performance of systems employing
black-box functions. However, it is not possible to build an effective index structure without knowing
the details of these functions. In this paper, we investigate clustering as an alternative access method

for such systems.

One of the most common methods to support multimedia data within conventional database systems
is to extend the system with third party components in order to facilitate the access and evaluation
of multimedia data types (more on this in Sec. 3). The Musclefish Audio Information Retrieval (AIR)
DataBlade module [1, 6], for example, can be used with the Informix Universal Server in order to
integrate sound as a new data type into the database system. AIR can support the search and retrieval
of digitized sound in very large databases based on the characteristics of the audio rather than keywords.

In general, this type of environment can be characterized as follows:

a: The third party component provides for a similarity function (i.e., a function that can take two
objects and estimate how similar they are to each other).

b: The similarity function is computationally expensive.

c: The details of the similarity function are not provided.

Without knowing the details of the similarity function it is virtually impossible to implement an
effective indexing structure that can improve the performance of similarity queries. Moreover, the
AIR DataBlade provides a representation function (termed makemodel) that given a set of audio
objects can generate a model that represents these objects. We propose to utilize these two black-box
functions to cluster database objects [22]. Access methods can then utilize these clusters to reduce the
need to invoke the computationally expensive similarity function thus improving the performance of
similarity queries. Although we focus on audio similarity queries, all the techniques we present here

are generalizable to other media types (e.g., image, video) with minor modifications.

To illustrate our approach, suppose a database contains n multimedia objects. To support a
selection query (i.e., finding all the objects similar to a target object o), the system requires to invoke
the similarity function n times. Now suppose we can partition the database (off-line) into m clusters
of k objects' (n = m x k) where the objects in a cluster are more similar to each other than to those
belonging to other clusters. Note that we can use the same provided similarity function to perform

this clustering. Now, to support the selection query, we can compare o with only the representative

'To simplify, here we assume a uniform distribution of objects into clusters.

of each cluster. Therefore, the expensive similarity function is invoked m times as opposed to n times
(a factor of k improvement). Trivially, we are sacrificing accuracy in order to improve performance.
In this paper, hence, we describe a family of similarity query execution techniques to compromise
between accuracy and performance depending on the requirements of an application domain. It is
important to point out that none of these algorithms can fully guarantee accurate results. Therefore,
these techniques are targeted toward applications that can tolerate some inaccuracy in their results, a

fair assumption in multimedia applications.

The remainder of this paper is organized as follows. Sec. 2 provides an overview of some related
works in the areas of clustering and multimedia query processing. In Sec. 3, we describe our multimedia
database system architecture. In addition, we describe a couple of motivating applications (utilizing
our system) that require efficient support of multimedia selection and join queries. Sec. 4 provides
an overview of the clustering techniques evaluated in this paper. The family of our similarity query
execution algorithms are presented in Sec. 5. In Sec. 6, two alternative implementations of multimedia
join operation based on our similarity query execution algorithms are discussed. The performance of
these techniques is evaluated in Sec. 7. Finally, Sec. 8 concludes the paper and provides an overview

of our future plans.

2 Related Work

Clustering has been used in a number of areas such as statistics [18, 11], pattern recognition [14, 10] and
machine learning [12], to name a few. In addition, there has been a significant amount of work in the
area of content-based extraction [15, 1]. In this paper, we attempt to merge these two areas to develop
techniques to improve the performance of similarity queries in multimedia databases without sacrificing
the accuracy of the results. The goal of this work is not to investigate every clustering algorithm nor
it is to propose new content-based extraction techniques. Rather, the goal is to show how to employ
clustering algorithms that can utilize functionalities available in the content-based extraction arena to

reduce the cost of the expensive similarity queries.

A number of studies [5, 16, 19] extend some indexing techniques to improve the performance of
similarity queries for multimedia data with high-dimensional features. In [20], for example, algorithms
for processing join over two collections of documents with attributes of textual types are presented.
Similar to our work, each object (document) is represented by a vector which is compared in the text
(similarity) join. However, in our environment, with a black-box similarity function, it is not possible
to assign proper weights to each of the features in the feature vector representing a multimedia object.

Without these weights, generating an effective high dimensional index (e.g., SS tree [26]) is not possible

making clustering the natural substitute.

Recently, in [25], different hierarchical clustering techniques are described to facilitate similarity
query efficiently in an image database system. They assume interpretation of feature vector is available
to the system in order to generate the clusters. This assumption is not valid within our ORDBMS
environment. In addition, they do not address query processing issues at the database level to support

similarity and join queries.

3 System Architecture and Motivating Applications

There are three main approaches to develop multimedia database systems with content-based query
capabilities. The first trend is to utilize an object-relational database system and extend it to support
query and access to non-traditional data types such as images, audio and video. This can be achieved for
example by using Datablades of Informix Universal Server, UDF's of NCR Teradata Object Relational
database system, Cartridges of Oracle 8, or Extenders of IBM DB2. The second trend is to build special
purpose systems from scratch to support content-based queries for only a single media type, such as
QBIC [13] and Virage[3] for images, [21, 27, 9, 8, 23] for video, and [1, 6] for audio to name a few.
Finally, the third approach is to develop special purpose systems for a specific application which might
support content-based queries on multiple media types transparently from the user (e.g., Informedia
[7] project at CMU). At the USC Integrated Media System Center (IMSC), we are building a system
following the first approach.

We started with an object-relational database system, namely Informix Universal Server (IUS) v9.12
and then extended it with content-extraction algorithms developed by IMSC investigators (e.g., image
content extraction, face recognition, semi-structured wrappers) as well as others (e.g., PPM image
library, Musclefish audio content extraction, and CMU JANUS voice recognition toolkit). Finally, we
designed and built the conceptual schema and the user interface required by a specific application
(namely, Media Immersion Environment or MIE for short) to integrate all these and hide the details
from users. Our system can be reshaped, with little effort, to be utilized for supporting query and

access to other multimedia applications.

MIE database system is currently being used to store and retrieve tele-conferencing sessions. Its
current architecture provides access to three organizational repositories: a database server (IUS v9.12),
an MIE Real-Time File Server (to support storage and retrieval of continuous media), and an Informa-
tion Mediator [4]. This distributed repository can support the storage, query and retrieval of different
media types such as audio, video, images and text. A middleware is used to glue these repositories in

order to provide a unified access from the client to these sources. This middleware is implemented in

User Interface

e TR -

Fhgaod Alakues | Pe.qu:umﬂ
bosfoens =

o | Garex

Figure 1: User Interface

Java language and it is loaded to the client space at run-time. The main advantage of this design is
that the system operates in 2-tier mode at every instance of time and hence makes the performance

superior to 3-tier architectures employed by industry.

To search for a stored tele-conferencing session, a user can submit queries to MIE database system
such as: find all the sessions that the IMSC director, “Nikias”, participated in. The user interface
(Fig. 1) can be used to submit such a query. To support this query, the system utilizes three relations
of the MIE database schema: Samples, C'lips and Sessions relations. The Samples relation contains
the names of all the IMSC staff, students and faculty and a sample audio clip for each participant.
The Clips relation stores the audio clips for each participant in the actual tele-conferencing sessions
where each audio clip is associated with a session_id to which the clip belongs. Finally, the Sessions
relation contains information about each session such as time, date, duration and topic of a session.
Fig. 2 shows the SQL equivalent of the above query (the AudioCompare function will be discussed
later in Sec. 3.1). The system displays the result of the query in the manner shown in Fig. 1. The user

can then select and play the session that she is interested in.

We plan to use the MIE database system in other applications such as those in the entertainment
industry. The database may store a library of sound effects in a relation Sound_Effects that contains
a textual description of each sound effect such as “door slam” or “gun shot” as well as audio samples
of these sound effects. Subsequently, a relation Terminator may store all the sound effects used in
the movie “Terminator”. MIE database can then be used to answer a query of the form: what is the
number of gun shots in “Terminator”. Since the sound effects are not unique (i.e., there might be more
than one sample gun shot in the relation Sound_Effects), the above query can be executed by joining
the two relations on the clip-mode attribute as shown in Fig. 3. In order for the system to execute such

queries as in Figs. 2 and 3, it has to invoke the computationally expensive AudioCompare function

select s.*
from Sessions s
where s.session_id in
(select distinet c.session_id
from Clips ¢
where AudioCompare((select m.clip_-Model
from Samples m
where m.Participant=*‘Nikias’),
c.clip-analysis)< QT)

Figure 2: Tele-conferencing Example

many times.

select count (m.movie.id)

from Sound_Effects s, Terminator m

where s.description = 'gun shot’

and AudioCompare(m.clip-mode, s.clip-mode)< QT

Figure 3: Entertainment Industry Example

3.1 AIR

In order for the MIE database system to support the audio-based queries discussed in Sec. 5, it utilizes
the Musclefish Audio Information Retrieval (AIR) DataBlade module [1, 6]. AIR can support the
search and retrieval of digitized sound based on its content. To achieve this, audio clips are statistically
analyzed by AIR via the function AudioAnalyze and an Analysis record is generated for each clip. The
Analysis record is basically a set of 141 important features extracted from the clip. A useful function
of AIR for our clustering purpose is its AudioM akeM odel that can take a set of one or more Analysis
records as input and generate a representative for their corresponding clips. The representative, termed
Model, can then be used along with the clip analysis in the AudioCompare function to perform content-
based comparisons. AudioCompare returns a floating point number indicating the level of similarity

between audio clips (smaller values determine higher levels of similarity).

4 Overview of Some Clustering Techniques

The first step in our approach is to partition n (audio) objects into m clusters where m < n. There are
many clustering techniques proposed in the literature for achieving this objective. We have decided to

evaluate the effectiveness of a number of these clustering algorithms for our approach. Due to lack of

space and since the focus of this paper is not on a comprehensive evaluation of clustering algorithms,
we report on one or more representative techniques that we chose to incorporate into our approach for

each of the following three main classes.

4.1 General Clustering Algorithms

In general, all clustering techniques employ a similarity measure to evaluate the distance among objects
to be clustered. The objects which are closer in distance are then grouped into a cluster. Since each
object has a number of attributes or features, the distance computation should take these attributes
into account when evaluating the similarity between objects. Most of the clustering techniques, in their
basic form, assign equal weights to each attribute when calculating/estimating the similarity between
two objects. As one of the representatives of this class of algorithms, we selected the well known
K-means clustering algorithm. K-means uses the Euclidean distance as a similarity measure. The
K-means strives to generate a nearly optimal partition taken the number of clusters as input. First,
an initial partition for the given cluster number is built. Later, the partition is improved iteratively

keeping the same number of clusters.

Our second representative is the Clique [2] algorithm. Clique is known to be an effective high-
dimensional clustering technique, appropriate for most of the multimedia data types, including audio,
where each object is identified by a large number of attributes/features (e.g., 147 features with AIR).
However, out of the many attributes associated with each audio clip, only a small set is used in the
similarity measurement. Therefore, as we will show, a more effective clustering can be obtained by

considering only the attributes that are actually used in the similarity measurement.

4.2 Similarity-Based Clustering Algorithms

One problem with general clustering techniques is that they treat attributes equally, that is, they assign
equal weights (or importance) to all the features. However, some of these techniques can be tailored to
the needs of a specific application by assigning different weights to different features. We classify these
adjustable clustering algorithms into the class of similarity-based clustering techniques. Although this
class seems like an attractive solution to be incorporated into our approach, it is inconsistent with
the characteristics of our assumed environment (see Sec. 1). Recall that we are looking for a general
purpose technique to improve the performance of similarity queries at the database system level for any
third-party provided similarity function. Hence, the information about the weights of the attributes
considered in the third-party similarity function (e.g., Musclefish AIR DataBlade) is not available
to us, making it impossible to assign proper weights to these attributes for clustering purposes. To
overcome this limitation, however, we altered the K-means algorithm to use the AudioCompare function
provided by Musclefish, instead of its basic Euclidean distance function, as the similarity measure. It
is important to note that this alteration is only applicable to those clustering techniques that employ

some stand-alone similarity (distance) functions in their algorithms.

4.3 Threshold-Based Clustering Algorithms

We also decided to investigate a threshold based clustering algorithm. Threshold-based clustering
limits the size of a cluster (i.e., the maximum similarity /distance among the members of a cluster) to
a known value. Limiting the distance among cluster members allows us to develop efficient algorithms

to execute similarity queries as we show in Sec. 5.

We altered a threshold-based clustering algorithm proposed in [24] to incorporate AudioCompare
as the distance function used by the algorithm (similar to the modification we made to K-means in
Sec. 4.2). Given a set of N sample clips z1, g, -+ ,zx and a nonnegative cluster threshold CT, the
algorithm, termed Simple Threshold Clustering (STC'), starts by randomly selecting the first cluster
representative z; from the N sample clips. For convenience, we may choose zy = xy. Next, STC
computes the AudioCompare distance Dy; between xo and z;. If this distance exceeds C'T, a new
cluster with zo = z9, is created. Otherwise, x5 is assigned to the domain of cluster z;. If the latter is
true, when considering z3, the AudioCompare distances Dz and D3y (between z3 and z; as well as
x5 and zp) are computed. If both Ds; and Dsq are greater than CT, a new cluster with z3 = 3, is
created. Otherwise, z3 is assigned to the domain of the cluster to which it is closest. This procedure

repeats until all N clips are exhausted.

5 Support of Selection Queries under Clusters

Once we employ one of the techniques described in Sec. 4 to cluster a set of multimedia objects (or a
relation), there are alternative ways to execute a selection query on those clusters. We define selection
query to have the general form of: “Find objects similar to a reference object within a threshold QT”.
This query is analogous to a selection operation performed on relational databases with a graded level

match.

In this section, we describe three techniques to execute a selection query on clusters. With these
techniques, we attempt to strike a compromise between the performance of the query (i.e., the number
of operations required to execute the query), and the accuracy/quality of the results (i.e., how close is
the result to a regular selection query executed in the absence of clusters). The first technique is the

most efficient and the last is the most accurate.

To evaluate the accuracy of each technique, we employ standard Information Retrieval accuracy

measures such as Recall and Precision which are defined as follows:

t l
Recall = ReR% (1)
) Ret () Rel
Preci = —— 2
recision Ret (2)

Where Rel is the set of relative objects (i.e., objects that would be retrieved by a regular selection

query) and Ret is the set of retrieved object (i.e., objects that are actually retrieved by the clustered

selection query).

To describe the alternative query execution techniques, the audio database is described with the
following self-explanatory schema: Sound_Clips(clip_id, clip_model, clip_analysis, file location). To
assign clips to clusters, a new attribute cluster_id is added to the Sound_Clips relation. Moreover, a
new relation Clusters(cluster_id, cluster_model) is created to facilitate the comparison of the query

reference to the clusters’ representatives.

5.1 Compare Algorithm

select S.clip_id
from Sound _Clips S, Clusters C
where S.cluster_id = C.cluster_id
and AudioCompare
(C.cluster_model, Reference_Analysis) < QT

Figure 4: Compare

Depending on the type of application, the user may be more concerned with the turn-around time
and willing to sacrifice accuracy in favor of performance. The Compare algorithm(Fig. 4), in this case,
can execute a selection query by comparing the analysis of the reference provided by the query to the
model of each cluster in the database. When the similarity between the two is less than or equal to the
threshold, Compare outputs all the cluster elements. By comparing the reference only to the clusters’
models, as opposed to comparing it to every element in the database, C'ompare significantly reduces

the number of invocations of the expensive AudioCompare operation.

Figure 5: Selection Query with Clustering (Example 1)

Compare, however, suffers from serious limitations when it comes to the accuracy of the query
results. Briefly, Compare might result in false hits, that is it might wrongly identify an object as
a match with the reference object. To illustrate consider Iig. 5 which depicts a clustered database.
In Fig. 5, clip C1 is a member of cluster C'LS1 whose model is M1. Similarly, clips C'2 and C8 are
members of cluster C'L.S2 whose model is M2. Here, QR is the reference object and QT is the query
threshold for a selection query). Since the models of both clusters C'LS1 and C'LS2 fall within the

query threshold QT boundary, C'ompare identifies all the elements of both C'LS1 and C'LS?2 as matches
with Q R. Note that even though clip C2 does not fall within the boundary of the query threshold, its

cluster model does. Therefore, it is incorrectly identified by Compare as a match resulting in a false

hit.

select distinet Sl.clip_id
from Sound_Clips S1
where exists (select * from Clusters C
where Sl1.cluster_id = C.cluster_id
and AudioCompare
(C.cluster_model, Reference_Analysis) <QT
and exists
(select * from Sound_Clips S2
where Sl.clip_id = S2.clip_id
and S2.cluster_id=C.cluster_id
and AudioCompare
(S2.clip_-model, Reference_Analysis) <QT))

Figure 6: Compare& Fzpand

5.2 Compare& FExpand Algorithm

To improve the accuracy of Compare by eliminating false hits, we propose the Compare& Ezpand
algorithm (Fig. 6). Instead of blindly identifying all the elements of the clusters that fall inside the
boundary of the query threshold as matches, Compare& Fxpand expands each of the matched clusters
and compares all of their elements to the reference object. As a result, when expanding cluster C'LS2
in Fig. 5, Compare& Fxzpand recognizes that clip C2 is outside the query threshold boundary thus
dropping it from the query result. By Comparing the SQL queries in Fig. 4 and 6, it is obvious that
the performance of Compare& Ezpand is worse than that of Compare due to the extra invocations
of AudioCompare in Fig. 6. However, Compare& Fxpand eliminates false hits thus improving the

accuracy (precision) of the result.

5.3 Compare*& Expand Algorithm

Even though it eliminates false hits, Compare& Fxpand may result in false drops, that is, it may
fail to identify all the objects that match the reference object. To illustrate, in Fig. 7, M3 which
is the model of cluster C'LS3 falls outside the boundary of QT. As a result, the members of C'LS3,
are not considered as matches, thus resulting in a false drop (i.e., C3). To reduce the number of
false drops, we propose Compare*& Expand. To reduce the probability of missing an object due its
cluster’s model falling outside the boundary of QT, we extend the domain of clusters considered by

the similarity query by a constant L. Subsequently, we expand all those clusters whose model fall

10

Figure 7: Selection Query with Clustering (Example 2)

within the boundary of Q7' = QT + L, instead of QT. The objects of these clusters, however, are not
identified as matches unless they fall within the boundary of T. In this case, a proper value of L
results into the consideration of C'LS3, in Fig. 7, hence including €3 in the result. In this example,
the value of I was large enough to avoid an otherwise false drop. In general, however, selecting the
value of L is not a trivial task. Selecting a large value of L results in considering a larger number of
clusters and thus defeating the purpose of clustering. A small value of L, on the other hand, may not

be effective enough in reducing the number of false drops.

select distinct S1.clip_id
from Sound_Clips S1
where exists
(select * from Clusters C
where Sl1.cluster_id = C.cluster_id
and AudioCompare
(C.cluster_model, Reference_Analysis) <QT+L
and exists
(select * from Sound_Clips S2
where Sl.clip_id = S2.clip_id
and S2.cluster_id=C.cluster_id
and AudioCompare
(S2.clip-model, Reference_Analysis <QT))

Figure 8: Compare*& Ezpand

Using a threshold based clustering technique (see Sec. 4.2), in this case, can be advantageous.
Knowing that the distance between the representative of a cluster and all of its members is less than
or equal to the cluster threshold CT', provides us with a good default value for L. = CT. Although
using this value for L does not guarantee the elimination of false drops, it can significantly reduce the
probability of their occurrences. An L value that can guarantee the elimination of false drops can only
be computed through the full knowledge of the details of similarity function AudioCompare, which

is inconsistent with our assumed environment. Note that using other non-threshold based clustering

11

algorithms can further complicate this problem since these algorithms do not have a bound on the
distance between the model of a cluster and its members. We are currently investigating more so-
phisticated methods to compute the value of L without knowing the details of the similarity function

AudioCompare.

6 Support of Join Queries under Clusters

Two out of the three selection query execution algorithms we described in Sec. 5 require an extra
expansion step in order to eliminate false hits. In case of join queries, it becomes important to
execute the expansion step in an efficient manner. The idea is that an expanded cluster can be kept
in memory while all the tuples in the first relation are compared with the objects belonging to the
expanded cluster. In this section, we present two algorithms for the implementation of clustered audio
join. Here, page based algorithm is considered. Since 1/O cost is the dominating cost, we focus on

minimizing the number of random 1/O access as our optimization criteria.

6.1 Nested Loop (NL)

In this section, we describe the basic clustered join which is similar to the classical nested loop join
algorithm. To assist in the discussion of the algorithm, we start by stating our assumptions. Suppose
that we are interested in joining the two relations, Iy and Rs. Let the audio clips of Ry be clustered into
m clusters, and hence we denote the clustered relation R, as a set of clusters, i.e., R. = {z1, 22, -, 2 }.
Since we are focusing on page based algorithms, let K be the size (in pages) of the available memory
buffer (output buffer page(s) are excluded from K), and Ny, N3, N., are the sizes in number of pages
of the relations Ry, Ry and R., respectively. Moreover, assume that Ry, R, and R, use K;, K5 and
K, buffer pages respectively where K1 < Ny, Ky < Ny, and K. < N.. Without loss of generality, we

also assume K > 3.

R R2
— [cpL R
P2 K aLsi
Ky CLP3 ¢ asz Ko
cLP4
R« Rx2
KXL apL Kx[are
CLP3 CLP4

Figure 9: Join operation with clusters

Fig. 10 depicts the NL algorithm. In the algorithm, R, is used in the outermost loop?. As a result,

2By the end of this section we also discuss the case where R; is the outer relation.

12

R, is read only once. To minimize 1/O cost, the algorithm compares the memory resident tuples of R,
with all the tuples of Ry. Therefore, for each K. pages of R. residing in memory, the entire R; needs
to be read. However, since it is a page based nested loop, for each Ky pages of Ry containing at least
one tuple matching a cluster in R,, the entire R needs to be read (the expansion step). The 1/O cost

of this nested loop algorithm can hence be computed as:

ZVC

I/Onr, = N, + [K

N.
-‘XNl—I— Z hriX[I(-‘Xleiwg (3)
r;E€ER. ¢

Where h;; is the hit ratio of N; for z; which is the number of pages out of N; which contain at least

one tuple similar to the cluster z;.

for each K. pages () of R,
for each K pages P of R,
for each tuple z; in @)
let flag = false
for each tuple y in P
compute similarity between y & z;
if similarity within the threshold
then flag = true break
if (lag=true)
then
for each Ky pages S of Ry
compute similarity
between tuples from P & S
if similarity within the threshold
then output tuples

Figure 10: Nested Loop(NL)

It can be shown that the lower bound of 1/O cost in Eq. 3 is K1 = min(N,, K — 2). In other
words, the outer relation should use as many buffer pages as needed (no more than N. buffer pages).

Similarly, when R; is the outer relation, the 1/O cost is:

N N
I/Ont, = Ny + [K—i] X Nod 3 hyy % [K—,ﬂ X N, x Ny (4)
l'ieRc

The lower bound of I/O cost in Eq. 4 is K1 = min(Ny, K — 2).
6.2 Staged Nested Loop (SNL)

In this section, we present an alternative clustered join algorithm termed Staged Nested Loop (SNL).
This algorithm attempts to minimize the 1/O cost by introducing a preparation stage (Fig. 11). The

NL algorithm suffers from what we term as the multiple expansions problem. In Fig 9, for example, if

13

for each K. pages Q of R,
for each K pages P of Ry
for each tuple z; in)
for each tuple y in P
compute similarity between z; & y
if similarity within the threshold
then insert tuple y into R,
for each K, pages X of I,
for each Ky pages S of Ry
for each tuple y in X
for each tuple z in S
compute similarity between y & z
if similarity is within the threshold
then output tuple (y,z)
delete all tuples from R,

Figure 11: Staged Nested Loop (SNL)

a clip in Ky (say CLP1) is identified to be similar to a cluster in K. (say z1), the algorithm expands
x1 resulting to a full pass on Ry. Another clip in Ky matching z1 may use the result of this expansion,
that may be resident in K3, and hence avoiding another pass on Rs. Since page based algorithms
are geared toward minimizing 1/0, the algorithm will exhaust the content of Ky before replacing it.
Therefore, cluster z; will be compared to all the clips in K before considering xz5. Subsequently, when
considering 9, it is possible that another clip (say CLP2) is found to be similar to z resulting in the
expansion of x5 and another pass on Ry. This expansion may result in the replacement of the pages
containing the member clips of cluster z; in Ky with that of z5. After exhausting all the clips in K7,
K is replaced. Once again a z1 is compared to the new clips in K;. A clip-cluster match may result in
the replacement of the pages containing the member clips of cluster 25 with that of zy. This multiple
expansions is possible for every cluster in K. and for every replacement of K;. Clearly this will result

in a high 1/O cost (m * [(N1/K1)] cluster expansions in the worst case).

To remedy this, we propose the SNL algorithm. With SNL, an aggregation stage is employed to
gather all the clips of R; that are similar to a cluster z;. In this stage, a temporary relation R, is
created for each cluster z; in K, (Fig. 9). When the algorithm determines that a clip in K is similar to
a cluster z; in K the clip is inserted into R;,. After exhausting the clusters in K., R;; is joined with Rs.
The content of K. is then replaced and the temporary relations R, are deleted to make space for new
temporary relations. As a result of grouping matched clips and delaying the expansion, each cluster in
R, can at most observe one expansion (assuming that the members of a cluster can fit in memory, a
realistic assumption in this case), hence eliminating the multiple expansions problem. Therefore, SNL
needs only m expansions to perform the join. However, to achieve this, the algorithm incurs the extra
cost of inserting these clips into the temporary relations. Note that the cost of a cluster expansion
can be improved by indexing Ro on cluster_id to avoid a full pass for every expansion. However, this

improvement contributes equally to both algorithms and thus is not considered here.

14

In the general case, the 1/O cost of SNL can be calculated as:

N, N,
I/Osnp = N+ ffl X Ni4+ > (I/OinserT(Se; R1) + [K | X Ng; x Na) (5)
¢ z;ER. ¢
Where s, the selection factor between relation R; and z;, equals to the ratio of tuples of R; that are

similar to z; over the total number of tuples in ;. N, is the size of the relation R,,.

6.3 Analysis

We show analytically for what cases SNL is better than NL. For this, let B;, be the number of blocks

of Ry where clips are similar to cluster, z; and hence, 7, is defined by,

1
= —— 6
"= B (6)

Where B, is the number of blocks of R; where clips are similar to tuple, z;. Here, 7;, controls the
distribution of similar tuples among the Ny /K blocks of R;. When similar tuples are concentrated in
one block then 7., = 1. Moreover, if n,, < 1 (i.e., hy, > 1), then similar tuples are scattered among
the blocks of Nj. It is important to note that s, can be defined in terms of N.,. We assume selected

tuples of Ry which are similar to z; constitute N,, pages. Therefore,

N.,

hy, = ——Ti
Nz X N1

(7)

The write operation is usually 2 to 3 times as expensive as the read operation. I/OrnsErT(Sz,;, R1)

is characterized by writing N, pages into disk. Therefore, the cost of insertion can be calculated as:

1/O1NSERT(Sz;y R1) = w X N, (8)

Replacing for Eq. 7, and 8 into Eq. 3, and 5, Eq. 3 becomes

N, ><NII.><N1><N2

I/ONLINC—I-fN61 xNi+ > [

K. & K. o X N1

N, N, N.. X Ny

=N, a N i Dag A V2
‘HKJX 1+I§%[KC]X o

Moreover, Eq. 5 becomes,

x|

N,
X N1+ Y (wx Ng 4[] x Ny, x Ny)

I/Osng, = No+ | -
r;€ER. IXC

15

From Eqs. 9 and 10, we can conclude that an 7,, < 1 favors the SNL algorithm. On the other hand,
a 7y; = 1 favors the NL algorithm. However, for SNL to be computationally effective, the value of 7,

must be small enough to compensate for the cost of inserting similar tuples into temporary relations.

7 Performance Analysis

We start by describing our experimental setup and then we present our preliminary results. We have
conducted a number of experiments to evaluate the effectiveness of our different algorithms as compared
to traditional join. It is important to note that so far we have discussed selection queries for similarity.
In contrast, results were reported for join queries. This is because we may consider a number of
reference objects for selection queries as a separate relation. We also evaluated the performance of one
of these algorithms (Compare*& Fzpand) when applied to the three clustering techniques we discuss in
this paper. First, we verified that our algorithms observe less response time as compared to traditional
join for particular cluster and join thresholds. We reported the results only for SNL in order to avoid

the multiple expansions problem (see Sec. 6).

Our experimental setup consists of an Informix Universal Server (IUS) which is an object-relational
DBMS running on dual processor SUN Ultra Server 450. Each processor is 300 MHZ Ultra sparc 11
with 1 GB RAM. To support audio data type, AIR DataBlade module is incorporated into IUS. Each
audio clip’s analysis and model are inserted into the relation during the population of the relation.
For the experimental purposes, we considered two relations, named Sound_Clips and Sample Clips
which consist of 206 and 4 audio clips, respectively. A relation C'lusters is created from the relation

Sound_Clips using our variation of the ST'C clustering technique (see Sec. 4.3)

In our experiments, we varied cluster threshold from 0.1 to 0.4. Clearly, smaller values of CT
generate larger number of clusters, and hence increasing the response time of Compare. On the other
hand, higher values of CT generate smaller number of clusters. Consequently, Compare& Fxpand and
Compare*& Fxpand may observe higher response time by expanding the matched clusters which may
now have more clips. We only report the result for CT=0.3. This is because at CT=0.3, 19 clusters
are generated, among which 206 clips are partitioned almost uniformly thus creating a very suitable
testing environment. We assume the schema of Sample Clip to be identical to that of Sound_Clips

(see Sec. 5) and the primary key clip_id is indexed for both relations. The assumed join query is:

select Sl.clip_id, S2.clip_id
from Sample_Clips S1, Sound_Clips S2

where AudioCompare
(S2.clip-model, S1.clip-Analysis) <QT

16

7.1 Results

For the first set of experiments, we compared the query response time of different query execution
algorithms with CT=0.3. In Fig. 12, the X-axis represents QT which is varied from 0.1 to 0.9
while the Y-axis represents the query response time in millisecond. Compare, Compare& Expand
and Compare*& Fxpand and traditional join are represented by solid, dotted, dashed, and star lines

respectively.

1600

1400

1200

nd)

8
$ 10001

800

Response Time (m

600

400

L L L L L L
01 02 03 04 05 06 07 08 09
Join Threshold

Figure 12: Response time of different algorithms for Audio-Based Join Queries

As discussed earlier, the three query execution algorithms compromise between accuracy and re-
sponse time. Fig 12 shows the response time of the three algorithms as compared with traditional
join. As expected, C'ompare observed the best response time since it only considers clusters’ represen-
tatives (i.e., no expansion stage). Compare outperforms traditional join by a factor of 30. Moreover,
both Compare& Ezpand and Compare*& EFxpand outperform the traditional join. However, unlike
Compare and the traditional join and the response time of Compare& Fxpand and Compare*& Ezpand
is a function of QT. In general, as the value of QT increases, the response time of Compare& Ezpand
and Compare*& Fzpand increase due to higher number of matched clusters and hence an explosion
of the expansion step. This explains why the performance of C'ompare is almost independent of the
value of QT. Moreover, the number of invocations of AudioCompare is always equal to the product

of the cardinalities of relations Sample Clips and Sound C'lips with traditional join and hence, is
independent of QT.

Compare& Fxpand and Compare*& Fxpand compensate for the higher response time by improving
the accuracy of the results. As expected Compare never achieved a 100% precision due to the presence
of false hits. This is because all the member clips of the selected clusters are projected into the
result, even though some of these member clips may not be similar to the sample clip. These false
hits, however, are discarded in the expansion phase of Compare& Fxpand and Compare*& Ezpand
algorithms. Therefore, the latter two algorithms both achieved a 100% precision for all values of QT
(Fig 13).

17

6——=o Traditional Join

+——+ Compare*&Expand

04l G—a Compare&Expand

#——* Compare

L L L L L L
01 02 03 04 05 06 07 08 09
Join Threshold

Figure 13: Precision of different algorithms for Audio-Based Join Queries

Both Compare and Compare& Fxpand suffer from false drops. Compare*& Fzpand attempt to
eliminate this problem by increasing the number of clusters considered in the expansion phase. After
experimenting with different values of . for Compare*& Fxpand, we observed that a L=CT guarantees
100% recall for our dataset. This is because at QT+L, all relevant clusters (and, clips) are retrieved
(i.e., no false drops). While this cannot be generalized to all datasets, it shows that L=CT is a good
heuristic. Clearly, L. has an impact on query response time. Larger L selects more relevant clusters
and consequently, the ezpansion cost will increase. The recall of the three algorithms as compared to

traditional join is shown in Fig. 14.

Due to lack of space, we do not report the detail results of the comparison between different
clustering techniques. Our results showed our variation of STC to be the most appropriate clustering
technique. Even though, STC observed response time higher than both Clique and K-means, it showed
a much better recall. STC had a perfect 100% recall, with about 40% and 60% recall for Clique and K-
means respectively when employing Compare*& Fxpand. The member of the clusters generated by STC
has a known maximum distance from the cluster representative which enabled C'ompare*& Fxzpand to
reach maximum recall with L=CT. The same, however, can not be said about the other two clustering

techniques.

8 Conclusion and Future Research

We proposed clustering as an alternative access method in the absence of effective indexing structures
for some non-traditional data types such as audio. We proposed the utilization of clustering tech-
niques in order to reduce the number of invocations of comparison algorithms for similarity queries.
Our approach is flexible enough to take advantage of any black-box comparison algorithm provided
by a third-party vendor for object-relational database systems. We described three similarity query

execution techniques to strike a compromise between accuracy and performance of clustered selection

18

L L L L L L
01 02 03 04 05 06 07 08 09
Join Threshold

Figure 14: Recall of different algorithms for Audio-Based Join Queries

queries. Using our experimental setup, we demonstrated that while C'ompare results in the best per-
formance in query response time, Compare*& Fxpand generates the most accurate results with 100%
precision and recall. This accuracy which matches that of regular audio join, can be achieved with a

significantly lower response time.

While the Compare*& Expand outperforms the traditional join by a factor of 3 (see Sec. 7 for
the case where CT' = 0.3, JT = 0.1, and L = 0.2). We also investigated clustered join queries for
multimedia data types. Two alternative implementations were proposed and analytical models were

provided to show when one is superior to the other.

We intend to extend this work in two directions. First, we plan to evaluate our techniques with
other content-extraction algorithms for other media types such as image, voice and face matching
functions. Second, we intend to investigate the extension of our approach in order to combine it with

other clustering (hierarchical) and indexing methods.

References

[1] MuscleFish Audio Information Retrieval (AIR) Datablade Module User’sGuide, Version 1.4. In-
formix Software, Inc., Menlo Park, California, July 1997.

[2] Rakesh Agrawal, Johannes Gehrke, Dimitrios Gunopulos, and Prabhakar Raghavan. Automatic
Subspace Clustering of High Dimensional Data for Data Mining Applications. In Proceedings of
ACM SIGMOD International Conference on the Management of Data, June 1998.

[3] J.R. Bach, C. Fuller, A. Gupta, A. Hampapur, B. Horowitz, R. Humphrey, F. Jain, and C. Shu.
The virage image search engine: An open frame work for image management. In SPIFE Storage
and Retrieavl for Image and Video Databases I'V, volume SPIE 2670, pages 76-87, Feb 1996.

19

[4] G. Barish, C. Knoblock, Y. Chen, S. Minton, A. Philpot, and C. Shahabi. Theaterloc: A case study
in building an information integration application. To appear in [JCAI Workshop on Intelligent
Information Integration.

[5] N. Beckmann, H.-P.Kriegel, R. Schneider, and B. Seeger. The R*-tree: an efficient and robust ac-
cess method for points and rectangles. In Proceedings of ACM SIGMOD International Conference
on the Management of Data, pages 322-331, May 1990.

[6] T. Blum, D. Keislar, J. Wheaton, and E. Wold. Audio Analysis for Content-Based Retrieval.
MuscleFish, 1996.

[7] M. G. Christel, T. Kanade, M. Mauldin, R. Reddy, M. Sirbu, S. M. Stevens, and H. D. Wactlar.
Informedia digital video library. CACM, 38(4):57-58, 1995.

[8] N. Dimitrova and F. Gholshani. Rx for semantic video database retrieval. ACM Multimedia, pages
219-226, 1994.

[9] N. Dimitrova and F. Gholshani. Video and image content representation and retrieval. In Handbook
of Multimedia Information Management, 1997.

[10] R. Duda and P. Hart. Pattern Classification and Scene Analysis. New York: John Wiley ans Sons,
1973.

[11] U. Fayyad, D. Haussler, and P. Stolorz. Mining Science Data. Communications of the ACM,
39(11), 1996.

[12] D. Fisher. Knowledge Acquision via Incremental Conceptual Clustering. Machine Learning,
2(11):1987, 139-172.

[13] M. Flickner, H. Sawhney, W. Niblack, J. Ashley, Q. Huang, B. Dom, M. Gorkani, J. Hafner,
D. Lee, D. Petkovic, D. Steele, and P. Yanker. Query by image and video content: The gbic
system. IFFE Computer, 28(9):23-32, September 1995.

[14] K. Fukunaga. [Introduction to Statistical Pattern Recognition. San Diego, CA: Academic Press,
1990.

[15] V. N. Gudivada and V. Raghavan. Content-based Image Retrieval Systems. [EEE Computer,
28:18-22, 1996.

[16] J. Hafner, H. Sawhney, W. Equitz, M. Flickner, and et al. Efficient color histogram indexing
for quadratic form distance functions. In IFEE Transactions on Pattern Analysis and Machine
Intelligence, pages 729-736, July 1995.

[17] J.M. Hellerstein, J.F. Naughton, and A. Pfeffer. Generalized search trees for database systems. In
VLDB, September 1995.

[18] L. Kaufman and P. Rousseeuw. Finding Groups in Data. John Wiley ans Sons, 1989.

[19] K.-I. Lin, H. Jagadish, and C. Faloutsos. The TV-tree - an index structure for high-dimentional
data. In VLDB Journal, pages 517-542, Oct. 1994.

[20] W. Meng, C. Yu, W. Wang, and N. Rishe. Performance Analysis of Several Algorithms for
Processing Joins between Textual Attributes. In Proc. of the 12th IEFFE International Conference
on Data Fngineering, pages 636-644, February 1996.

20

[21] H. Zhang Q. Wei and Y. Zhong. Robust approach to video segmentation using compressed data
storage and retrieval for image and video databases. In SPIF, pages 448-456, 1997.

[22] C. Shahabi, M. Alshayeji, N. Jiang, and L. Khan. Improving the Performance of Audio-based
Similarity Queries with Clustering. In Aem First International Wprkshop on Multimedia Intelligent
Storage and Retrieval Management, Oct. 1999.

[23] B. Shahraray. Scene change detection and content based sampling of video sequences: Digital
video compression, algorithms and technologies. In SPIE 2419, Feb. 1995.

[24] Julius T. Tou and Rafael Gonzalez. Pattern Recognitio Principles, chapter 3, pages 75-109.
Addison-Wesley Publishing Company, 1981.

[25] Asha Vellaikal and C.-C. Jay Kuo. Hierarchical Clustering Techniques for Image Database Organi-
zation and Summarization. In SPIE Multimedia Storage and Archiving Systems IIl, pages 68-79,
November 1998.

[26] David White and Ramesh Jain. Similarity Indexing with the SS-tree. In Proc. of the 12th IEEFE
International Conference on Data FEngineering, pages 516-523, February 1996.

[27] H. Zhang, C. Y. Low, S. W. Smoliar, and D. Zhang. Video parsing;retrieval and browsing: An
integrated and content-based solution. ACM Multimedia, pages 1524, 1995.

21

