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The Viterbi Algorithm

= Initidization (t = 0):
dy(i)=p;b(O,), OLIi£N-1

m Time Recursion

For LEt£T-1, O£ jEN-1
O££N [dt a”]b
Y(j) argmax[dt 6%,]

OEI£N-1
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The Viterbi Algorithm (cont.)

m Termination:

= o)

OEIEN-T

=argmax|d;_, (i)]

OEIEN-1

m State seguence backtracking:

Fort=T-2, T-3,...,0

A

I
It _ Yt+1(|t+l) F
|
J
d
I

aalada4a

EE 5345, SMU Electrical Engineering Department, © 1996 419




Backward Variable

b, (i) =Pr(0.;,0us,-.-, 0 4li, = Q.1 )

To understand this variable, assume that the current time
stepis“t”, the current state is“Q,”, and we know the
probabilities:

b..(i) j=0,..N-1

then it should be clear that:

N-1 .
b.(i)=a a;b;(On..)b..(j)) OEIEN-1 OL£tET- 2 g
j=0
Jd
since each of the N events: ]
O, Opare,Orliy =Q;, j=0,...,N-1 N
disio i
7 aredigoint. -
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Backward Variable (cont.)

The backward variable can be computed recursively,
moving backward in time.

1. initidizeatt=T- 1,

b,,(i)=1 i=0,..N-1
2.fort=T-2:-1:0 N
- . . 2
b.(i)=a a;b;(On.)pu.(j) OEIEN-1 4
j=0 d
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More Definitions

The probability of landing in state Q; at timet, given the
observation sequence O is.

g,(i) ° Pr(i, =QIO1 )

consider the previous definitions:
a,(i)=Pr(0,,0,,...,0,,i, =Ql) .
b, (i) =Pr(0.;,0.s,-.-, 0 4li, = Q.1 ) d
d
hence, for agiven moded! | : d
N/ _ J
a ()b, (i)=Pr(0,,0,,....0; , Ci, =Q;) I
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More Definitions (cont.)

Hence: g.(i1) = aPtr(EZ;It()I)

now consider the probability that we go from state Q. at time
t to state Q, at time t+1 given the observation O:

X,(i.])° Pr(i, = Qi =QlO,1 )

It follows that

-y _ai)ayb; (O )bua(i)
x{i-1) = Pr(O]l ) J
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More Definitions (cont.)

the average number of transitions made from Q:;:
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Solution to Problem 3: Baum-Welch

Algorithm
0. Initialize A, B, and P

1. Compute a (i), b,(i) and pr(O|l )

2. Compute (j, j) and ,(i)

x(i, ) = a,(i)a;b; (0.1)bes(i) () t(() ()

Pr(O]l ) )
3. Compute 0. =g (i) EN-1
4. Compute Té_z )
tT-2
gt() aEawaaaa

t=0
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Baum-Welch Algorithm (cont.)

5. Compute
To 1
a 9.(i)
OV,
bj (k) - T;-1 _
a g.(i)
t=0
/.gotostep 2

Lo .

Pr(O|l ) should continue to increase until A, B, and P convergeto i
optimum values, at which point the algorithm is terminated. d
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Case Study: Coast et al.

m Used continuous density for observations:

2

1 - V- m)/s;
h(v) — e 0'5(( 1)/ |)

\2PS;

This aters most of the formulas we looked at but

the basic ideas remain the same. N

m Observations consisted of actual ECG samples. :
®m Used severa rhythm HMM modelsin parallel "
m Viterbi algorithm was used to select the most likely J
__Sequence (and hence rhythm type). :
T U] QR
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