
Content-Based Retrieval of Music and Audio

Jonathan T. Foote

Institute of Systems Science

National University of Singapore

Heng Mui Keng Terrace, Kent Ridge

Singapore 119597

ABSTRACT

Though many systems exist for content-based retrieval of images, little work has been done on the audio portion

of the multimedia stream. This paper presents a system to retrieve audio documents by acoustic similarity. The

similaritymeasure is based on statistics derived from a supervised vector quantizer, rather than matching simple pitch

or spectral characteristics. The system is thus able to learn distinguishing audio features while ignoring unimportant

variation. Both theoretical and experimental results are presented, including quantitative measures of retrieval

performance. Retrieval was tested on a corpus of simple sounds as well as a corpus of musical excerpts. The system

is purely data-driven and does not depend on particular audio characteristics. Given a suitable parameterization,

this method may thus be applicable to image retrieval as well.

Keywords: Multimedia music audio content-based retrieval

1. INTRODUCTION

This paper presents an audio search engine that can retrieve sound �les from a large corpus based on similarity

to a query sound. Sounds are characterized by \templates" derived from a tree-based vector quantizer trained to

maximize mutual information (MMI). Audio similarity can be measured by comparing templates, which works both

for simple sounds and complex audio such as music. Discriminative training allows desired di�erences to be detected

while ignoring unimportant sources of variability. Similar measures have proved successful for talker identi�cation

and audio classi�cation.1,2 Unlike other approaches based on perceptual criteria,3{7 this technique is purely data-

driven and makes no attempt to extract subjective acoustic parameters (like \brightness" or \pitch"). Unlike hidden

Markov modeling, this method is computationally inexpensive, yet is robust even with only a small amount of data.

Thus it is inexpensive both in computation and storage requirements. These factors indicate that this technique

would probably scale quite well to extremely large audio collections. Because the method does not depend on any

particular audio characteristics, it should work on other similar problems such as image retrieval.

2. OVERVIEW

The basic operation of the retrieval system is as follows. First, a suitable corpus of audio examples must be accumu-

lated and parameterized into feature vectors. The corpus must contain examples of the kinds (classes) of audio to be

discriminated between, e.g. speech and music, or male and female talkers. Next, a tree-based quantizer is constructed

using the methods of Section 2.2. This is a \supervised" operation and requires requires the training data to be

labeled , i.e. each training example must be associated with a class. This is all the human input required. The tree

automatically partitions the feature space into regions (\cells") which have maximally di�erent class populations.

To generate an audio template for subsequent retrieval, parameterized data is quantized using the tree. An audio

�le can be characterized by �nding into which cells the input data vectors are most likely to fall. A template is

just an estimate of the vector counts for each cell; in other words a histogram. This template captures the salient

characteristics of the input audio, because sounds from di�erent classes will have very di�erent counts in the various

histogram bins, while similar audio �les should have similar counts. To retrieve audio by similarity, a template is

constructed for the query audio. Comparing the query template with corpus templates will yield a similaritymeasure

for each audio �le in the corpus. These can be sorted by similarity and the results presented as a ranked list as

in conventional text retrieval. Section 3.1 discusses distance measures that may be used to estimate the similarity

between templates, and thus between the corresponding audio �les. Section 4 presents experimental retrieval results

on a corpus of sounds and another of music. Quantitative measures of retrieval performance are shown, as well as

comparative results from another retrieval method on the same corpus.

.

via Tree
Quantize

Histogram Counts
Accumulate

Waveform

Window

Compute MFCCs

MFCCs

Figure 1. Audio template construction

2.1. Audio Parameterization

Before a tree can be trained and templates generated, audio �les are parameterized into mel-scaled cepstral coe�cients

(MFCCs) plus an energy term.8 The audio waveform, sampled at 16 kHz, is thus transformed into a sequence of

13-dimensional feature vectors (12 MFCC coe�cients plus energy). This parameterization has been shown to be

quite e�ective for speech recognition and speaker ID (though other methods might be better for more general audio,

like music). Figure 2 shows the steps in the parameterization. First, the audio is Hamming-windowed in overlapping

steps. Each window is 25 mS wide and are overlapped so there are 500 windows, hence feature vectors, in a second

of audio�. For each window, the log of the power spectrum is computed using a discrete Fourier transform (DFT).

The log spectral coe�cients are perceptually weighted by a non-linear map of the frequency scale. This operation,

called Mel-scaling, emphasizes mid-frequency bands in proportion to their perceptual importance. The �nal stage

is to further transform the Mel-weighted spectrum (using another DFT) into \cepstral" coe�cients. This results

in features that are reasonably dimensionally uncorrelated, thus the �nal DFT is a good approximation of the

Karhunen-Loeve transformation for the mel spectra. The audio waveform, sampled at 16 kHz, is thus transformed

into 13-dimensional feature vectors (12 MFCC coe�cients plus energy) at a 500 Hz rate.

2.2. Tree-structured Quantization

A tree-structured quantizer9 is at the heart of the distance measure. Once data has been parameterized, a quan-

tization tree (Q tree) is grown o�-line using as much training data as practical. Such a tree is a vector quantizer;

discriminative training ensures that it attempts to label feature vectors from di�erent classes with a di�erent label.

Section 2.3 discusses tree construction in more detail.

Unlike the more common K-means vector quantization (VQ), the tree-based quantization is supervised, which

means the feature space may be pro�tably discretized into many more regions than the conventional minimum-

distortion vector quantizers. Supervised training means the quantizer is able to learn the critical distinctions between

classes, while ignoring other variability. For example, in speaker identi�cation, the system learns to discriminate

the subtle vocal-tract di�erences between speakers while ignoring the huge (though unimportant) variations between

spoken phones (e.g. vowels vs. fricatives).

The tree structure presented here can arguably handle the \curse of dimensionality" better than many other

methods, because only one dimension is considered at each decision node. Dimensions that do not help class

�This is a more rapid rate than for speech processing; the advantage is that more data is available for very short audio �les.

Audio

DFT IDFTLog Melwindow MFCCs

Figure 2. Audio parameterization into mel-frequency cepstral coe�cients

discrimination are ignored, in contrast to other measures which must be computed for all dimensions. Another

advantage of handling high-dimensional feature spaces is the ability to explicitly model time variation: if adjacent

feature vectors are concatenated into a \super-vector," the tree can discover time-dependent features such as slopes

or trends. For music retrieval, this means the technique can �nd similarity between similar slides, intervals or scales,

despite lumping all the time-dependent feature vectors into one (time-independent) template.

2.3. Tree construction

A quantization tree partitions the feature space into a number of discrete regions (analogous to the Voronoi polygons

surrounding VQ reference vectors). Each decision in the tree involves comparing the vector with a �xed threshold,

and going to the left or right child depending on whether the value is greater or lesser. Each threshold is chosen to

maximize the mutual information I(X;C) between the data X and the associated class labels C that indicate the

class of each datum.

Because the construction of optimal decision trees is NP-hard, they are typically grown using a greedy strategy.10

The �rst step of the greedy algorithm is to �nd the decision hyperplane that maximizes the mutual information

metric. While other researchers have searched for the best general hyperplane using a gradient-ascent search,11 the

approach taken here is to consider only hyperplanes normal to the feature axes, and to �nd the maximum mutual

information (MMI) hyperplane from the optimal one-dimensional split. This is computationally reasonable, easily

optimized, and has the advantage that the search cost increases only linearly with dimension.

To build a tree, the best MMI split for all the training data is found by considering all possible thresholds in all

possible dimensions. The MMI split threshold is a hyperplane parallel to all feature axes except dimension d, which

it intercepts at value t. This hyperplane divides the set of N training vectors X into two sets X = fXa;Xbg, such
that

Xa : xd � td (1)

Xb : xd < td: (2)

This �rst split corresponds to the root node in the classi�cation tree. The left child then inherits Xb, the set of

training samples less than the threshold, while the right child inherits the complement, Xa. The splitting process

is repeated recursively on each child, which results in further thresholds and nodes in the tree. Each node in

the tree corresponds to a hyper-rectangular region or \cell" in the feature space, which is in turn subdivided by its

descendants. Cells corresponding to the leaves of the tree completely partition the feature space into non-overlapping

regions, as shown in Figure 3.

To calculate the mutual information I(X;C) of a split, consider a threshold t in dimension d. The mutual

information from the split is easily estimated from the training data in the following manner. Over the volume of

the current cell, count the relative frequencies:

Nij = Number of data points in cell j from class i

Nj = Total number of data points in cell j

=
X
i

Nij

Ai = Number of data points from class i : xd � td

In the region of cell j, de�ne Pr(ci) to be the probability of class i and Pr(ai) as the probability that a member of

class i is above the given threshold. These probabilities are easily estimated as follows:

Pr(ci) �
Nij

Nj

; Pr(ai) �
Ai

Nij

: (3)

1

2

Figure 3. nearest-neighbor VQ (left) and MMI tree (right) feature space partitions

With these probabilities, the mutual information given the threshold may be estimated in the following manner

(for clarity of notation, conditioning on the threshold is not indicated):

I(X;C) = H(C)�H(CjX) (4)

= �
X
i

Pr(ci) log2Pr(ci) +
X
i

Pr(ci)H2 (Pr(ai)) (5)

� �
X
i

Nij

Nj

log2
Nij

Nj

+
X
i

Nij

Nj

H2

�
Ai

Nij

�
; (6)

where H2 is the binary entropy function

H2(x) = �x log2(x)� (1� x) log2(1� x): (7)

Equation 6 is a function of the (scalar) threshold t, and may be quickly optimized by either an exhaustive or

region-contraction search.

This splitting process is repeated recursively on each child, which results in further thresholds and nodes in

the tree. At some point, a stopping rule decides that further splits are not worthwhile and the splitting process is

stopped. The MMI criterion works well for �nding good splits, but is a poor stopping condition because it is generally

non-decreasing. (Imagine a tiny cell containing only two data points from di�erent classes: any hyperplane between

the points will yield an entire bit of mutual information. Bigger cells with overlapping distributions generally have

less mutual information.) Also, if the number of training points in a cell is small, the probability estimates for that

cell may be unreliable. This motivates a stopping metric where the best-split mutual information is weighted by the

probability mass inside the cell lj to be split:

stop(lj) =

�
Nj

N

�
Ij(X;C) (8)

where N is the total number of available training points. Further splits are not considered when this metric falls

below some threshold. This mass-weighted MMI criterion thus insures that splitting is not continued if either the

split criterion is small, or there is insu�cient probability mass in the cell to reliably estimate the split threshold.

3. TREE-BASED TEMPLATE GENERATION

The tree partitions the feature space into L non-overlapping regions or \cells," each of which corresponds to a leaf

of the tree. Though the tree can be used as a classi�er, by labeling each leaf with a particular class. Such a classi�er

. . .

X

Compute Distance Metric

Sort

D(X,A), D(X,B), ..., D(X,n)Distance measures:

Query template

Corpus templates:

List of corpus files ranked by similarity to query

A B n

Figure 4. Audio classi�cation using histogram templates

will not be robust, as in general classes will overlap such that a typical leaf will contain data from many di�erent

classes. A better way to capture class attributes is to look at the the ensemble of leaf probabilities from the quantized

class data. Two hundred milliseconds of data will result in 100 feature vectors (ignoring window e�ects), and thus

100 di�erent leaf labels. If a histogram is kept of the leaf probabilities, such that if, say, 14 of the 100 unknown

vectors are classi�ed at leaf j then leaf j is given a value of 0.14 in the histogram. The resulting histogram captures

essential class qualities, and thus serves as a reference template against which other histograms may be compared.

A tree-structured quantizer is especially practical because it may be pruned to di�erent sizes depending on the

amount of data. Because there is one histogram bin for each leaf in the tree, the tree size directly determines the

size of the histogram template. If data is sparse, a large histogram will be suboptimal as many bin counts will be

zero. Pruning the tree will result in fewer bins, which may be able to better characterize the data. In this fashion

the number of free parameters can be adjusted to suit the application. Also, quantization is extremely rapid: for a

N -leaf tree, quantizing a vector takes only log(N) 1-dimensional compares.

3.1. Distance Metrics

Once templates have been computed for di�erent audio sources, measuring the similarity between the templates

yields a measure of acoustic similarity. Though it is not obvious how to choose an appropriate distance measure

to compare the templates, simple approaches work well in practice. Several distance measures have been used in

implementation, including symmetric relative entropy1 (the Kullback-Liebler metric). Two distance measures were

investigated in the experiments of Section 4:

� Euclidean distance

D2
E (p; q) =

NX
i=1

[p(i) � q(i)]
2

(9)

This measure treats the histograms as vectors in N -dimensional space, and computes the L2 (Euclidean)

distance between them. Though there is no true probabilistic justi�cation for this measure, it is closely related

to to the �2 (chi-squared) measure, and has been used successfully for speaker ID.2

� Cosine distance

DC(p; q) =

PN

i=1 p(i)q(i)qPN

i=1 p(i)
2 �
PN

i=1 q(i)
2

(10)

This measure again treats the histograms as N -dimensional vectors, and computes the cosine of the angle

between them.12 It is thus insensitive to the relative magnitudes of the vectors, which are a function of the

audio �le length. This measure, along with weighted variations, has been used quite successfully for measuring

the similarity of text documents.13

4. EXPERIMENTS

Two sets of retrieval experiments were performed. The �rst involves retrieving audio �les from a corpus of sounds

that can be considered \simple," that is, from only once source. Examples include laughter, musical and percussive

instrument notes played individually, spoken words, animal cries, and thunder. Another experiment attempts to

retrieve sounds from a corpus of musical clips. This is a more di�cult task because the audio consists of multiple

notes coming from (usually) multiple sources, often with singing, reverberation, and/or distortion. Analyses used

for simple sounds (such as estimates of pitch or brightness) are less appropriate for music because of its inherently

greater complexity.

4.1. Measuring Retrieval Performance

The output of the retrieval process is a list of audio �les, ranked by their similarity to the query �le. (This will be

familiar to anyone who has used AltaVista or other web search engines.) Ideally, the most similar �les will be at the

head of the ranked list: if one's query is an oboe sound, other oboe sounds should be highly ranked, while dissimilar

sounds, such as bells or thunder, should be lower. Quantitatively measuring retrieval performance requires relevance

assessments, that is, judgments by a human of how relevant (similar) each �le in the corpus is to a particular query.

For audio, of course, this is a rather subjective area (see Section 4.3); my approach has been to use the �lenames

as a restrictive, though quasi-objective, indication of similarity. Thus the �les oboe23 and oboe19 are regarded as

relevant to each other (as are all �les of the form oboe*); all other �les are regarded as irrelevant (dissimilar).

Once relevance classes have been de�ned, retrieval performance is can be measured by precision, the proportion

of retrieved messages that are relevant to a particular query at a certain position in the ranked list. An accepted

single-number performance �gure is the average precision or AP. For each query, the precision values are averaged

for each relevant document in the ranked list. The results are then averaged across the query set, resulting in the

average precision. For example, given only one �le relevant (similar) to the query, an AP of 1.0 means that the

retrieval system ranked it �rst. The AP can be loosely interpreted as the percentage of top-ranked �les that are

actually relevant, e.g. an AP of 0.3 means roughly 3 out of the 10 top-ranked �les are indeed relevant. The average

precision �gures presented here were calculated using the TREC evaluation software14 developed for evaluating the

performance of text retrieval systems.

4.2. Experiment 1: retrieving simple sounds

For this experiment, a corpus of 409 sounds was used. The sounds were in \.au" format consisting of 8-bit (com-

panded) samples at a sampling rate of 8kHz. These were up-sampled to 16kHz and 16-bit linear format for the

MFCC parameterization described above in Section 2.2. Two basic experiments were performed. The �rst was

\quasi-unsupervised": each sound was taken as an instance of a separate audio class, hence the tree was trained to

di�erentiate between the 409 di�erent audio samples. Note that though the tree training is still supervised, there is no

real meaning to the class labels (other than that the �les were di�erent), hence the designation \quasi-unsupervised."

A large tree was grown using \supervectors" of 5 concatenated feature vectors for a total dimensionality of 65. This

tree was pruned to the various sizes used in the experiments. For the second supervised experiment, audio �les were

grouped into 41 di�erent classes on the basis of their �le names. (For example, all oboe samples having a �lename of

the form oboe* were grouped into one class.) A second tree was similarly trained to separate these classes. Though it

can be argued that this is not good experimental practice, as it involves training on testing data, it can be justi�ed for

several reasons: it allows direct comparison with the Muscle Fish results4; there was no obvious additional training

corpus available; there was insu�cient data for meaningful cross-validation experiments; and it probably reects the

\real-world" application where one would wish to use all the data available (including any prior knowledge about

classes). Certainly additional experiments are warranted to determine how well the retrieval works on unseen �les.

Retrieval results were measured for 6 of the 409 sounds, using both cosine and Euclidean distance measures, and

both supervised and quasi-unsupervised trees. The chosen six sounds come from the examples on the Muscle Fish

0 100 200 300 400 500 600
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Tree Size (leaves)

R
et

rie
va

l A
ve

ra
ge

 P
re

ci
si

on
 (

A
P

)

cosine

Euclidian

Figure 5. Retrieval performance vs. tree size (number of histogram bins) for cosine and Euclidean distance measures

demonstration pagey, and can thus be expected to show at least the Muscle Fish retrieval approach in reasonable

form. Figure 5 shows retrieval performance versus tree size for both distance metrics. The cosine distance measure

performed better than the Euclidean for all experiments, though it is not clear why. The cosine measure was

reasonably insensitive to the number of histogram bins, though performance su�ers at the extremes: too few bins,

and dissimilar vectors are lumped into the same bin, hurting performance, while too many bins similar vectors are

placed into di�erent bins, which also hurts retrieval. Muscle Fish retrieval results (from their web demonstration) were

also analyzed for comparison. Table 1 summarizes the results from experiments using 500-bin templates. (Euclidean

results are not shown because the cosine distance measure consistently outperformed the Euclidean measure by

10%{20%)

4.3. Comparative Results

It is interesting to compare the performance of the Muscle Fish retrieval results with those from the quantization (Q)

tree. The Muscle Fish results are not supervised, though they do make use of statistics from the entire databasez.

The Muscle Fish retrieval system includes additional weighting by duration, pitch, and loudness. Results in the

columns marked \no DPL" and \+ DPL" respectively ignore and include the additional weighting. The \no DPL"

column is probably a better comparison with the Q tree results, as the latter method does not explicitly try to match

any of these quantities. Simple duration or loudness matching would be a relatively straightforward addition to

the algorithm and would doubtless improve performance (especially on tasks like the oboe sounds as these are very

similar in duration and loudness). The Muscle Fish results, which are based on psychoacoustically-derived measures,

seem to do a better job of capturing the timbre of a particular sound. This is particularly apparent in the retrieval

of oboe sounds, especially when duration, pitch, and loudness are taken into account. The Q tree approach, on

the other hand, doesn't retrieve oboe sounds nearly as well. One reason for this is the Q tree retrieval tends to

rank similar-pitched sounds higher than sounds with similar timbres but di�erent pitches. There are many other

instrument sounds in the database (trombone, 'cello, etc.) and samples of these with pitches near the query oboe

pitch were ranked higher in the Q tree results than other oboe samples. Because these similar-pitch sounds were

not considered relevant (while all oboe samples were), the Muscle Fish retrieval scored much better. This underlines

the subjective nature of audio similarity: it is not clear which criterion is more important|the appropriate choice

is probably application-dependent. (Similarly for image retrieval, the relative importance of shape vs. color is not

clear.)

yThese sounds may be heard at the Muscle Fish web site http://www.musclefish.com/cbrdemo.html
zErling Wold, personal communication.

Distance Q Tree (DC) Q Tree (DC) Muscle Fish Muscle Fish

\unsupervised" supervised (no DPL) (+ DPL)

Laughter (M) 0.68 0.82 1.00 1.00

Oboe 0.11 0.43 0.69 0.94

Agogo 1.00 1.00 0.53 0.58

Speech (F) 0.77 0.87 0.69 0.94

Touchtone 0.61 1.00 0.44 0.73

Rain/thunder 0.22 0.35 0.30 0.42

Mean AP 0.580 0.772 0.608 0.768

Table 1. Retrieval Average Precision (AP) for di�erent retrieval schemes. Quantization tree results used unweighted

cosine distance measure (DC) with 500-bin histogram templates.

4.4. Experiment 2: retrieving music

The Q tree approach has the advantage that it can handle very complicated data, essentially by ignoring variation

not germane to the classi�cation task. As a demonstration, another retrieval experiment was performed on a corpus

of recorded music. The corpus consisted of 255 7-second clips of recorded music; roughly �ve clips apiece from each

of 40 artists or styles (a few styles, apparently from compilation albums, had 10 clips). Representative genres include

jazz, pop, rock, rap, and techno, as well as Brazilian music, plainsong, solo piano, guitar, and \easy listening." All

music from each artist was considered a class. For retrieval assessment, all clips from each artist were considered

relevant to that artist only. (This assumption is almost certainly too narrow: songs by the same artist can sound

less similar than other songs by di�erent artists.) Table 2 summarizes some preliminary results. As in the previous

experiment, the supervised cosine distance measure performed the best. Though the actual Average Precision values

appear low in comparison, this is to be expected given the unrealistic relevance assessments. In practice the music

retrieval seems quite e�ective. It is interesting to examine the system's errors, which are usually sensible: for

example reggae is often ranked similar to blues, as both are rhythmic, bass-heavy, and have relatively clean guitar

accompanying a prominent male vocal. The reader is invited to judge the performance of the retrieval system: an

on-line demonstration is availablex.

A further extension to the distance measures of Section 3.1 was investigated. To motivate the discussion, consider

the following thought experiment. Imagine a two templates trained on di�erent classes of audio. To emphasize the

di�erence, let's use classical music for one class and heavy metal for another. Any arbitrary audio �le can then be

characterized by a two-element vector consisting of its similarity to each template. This vector can then serve as

a \second-level" template: similar �les should hopefully have similar distance vectors, regardless of classicality or

heaviness. For experimental veri�cation, each music �le was given a vector consisting of the Euclidean distances to

all other �les (one element of which will be zero). File similarity was calculated as the Euclidean distance between

distance vectors, and retrieval performance, shown in the last column of Table 2, was respectably close to that of

the unsupervised Euclidean template measure. This approach might be appropriate for a large corpus of music �les,

for example maintained by an on-line music vendor. Given good templates of musical genres, users would be able

to query the archive based not only on audio similarity but by genre as well, and �les could be easily added to the

corpus without additional tree training. Again, more experiments are needed to see how performance extends to

unseen �les or larger corpora.

5. CONCLUSIONS AND FUTURE DIRECTIONS

Preliminary experiments suggest there is some value in \bin weighting." This idea is motivated by text-based

information retrieval, where query words are typically weighted according to their frequency in the corpus. A word

occurring in many documents is assumed to have less information and is accordingly weighted less. Though a

histogram bin is not a good analogue to a word, there may be a similar e�ect: certain bins may be more \important"

xhttp://repulse.iss.nus.sg:8080/cgi-bin/audio-cbr

Distance: Euclidean (DE) Euclidean (DE) Cosine (DC) Vector

supervised \unsupervised" supervised distance

AP 0.35 0.32 0.40 0.31

Table 2. Retrieval Average Precision (AP) for music retrieval experiment

for discrimination and might usefully be weighted higher in the distance measure. If the distribution of counts in

a bin is reasonably uniform across the corpus, then that bin may be less important than another bin having many

counts for certain �les and few for others. The entropy of the cross-corpus bin counts might be a good way to measure

uniformity (the entropy of a uniform distribution is maximum); experiments weighting bins by inverse entropy are

underway.

This technique o�ers perhaps a way to measure subjective perceptual qualities of sounds, often described in terms

like \brightness" and \harmonicity." Rather having to de�ne and compute an actual measure of these relatively

subjective terms, it is possible to train a template with a number of example �les deemed to have (or not have) the

given quality. The resultant distance from that template may be used as a measure of the particular quality, without

having to explicitly de�ne or calculate it.

Another more di�cult application is to automatically segment multimedia sources by audio changes, such as

between di�erent speakers,15{17 pauses, musical interludes, fade-outs, etc. Because the identi�cation technique

works well enough on a sub-second time scale, it could be used to detect these changes simply by looking at the

histogram generated by a short running window over a longer audio stream. Comparing the window histogram with

pre-trained templates would allow detection and segmentation of speech, particular speakers, music, and silence.

Another approach would be to compute the distance between the histogram of a short window with a longer window,

which might yield a measure of audio novelty by the degree that short-term statistics di�er from a longer-term

average.

An interesting side-e�ect of tree construction is that the relative importance of features can be estimated. The

relative \importance" of each feature dimension can be judged by looking at the structure of the tree. If a dimension

is never used for a split, it gives no information and may be safely ignored. Conversely, a dimension used for many or

most of the splits must carry important information about the class distributions. This allows other parameterizations

to be easily investigated by adding extra feature dimensions and looking at the structure of the resulting tree. There

is probably room for experiments of this sort because the MFCC parameterization has been tweaked for speech

recognition and there is no real evidence it is optimal for general audio.

A large motivation for using MFCC parameterization is because the resulting features are reasonably uncorrelated.

Since the tree quantizer can usefully model correlation, it may be possible to �nd parameterizations that better

capture speaker-dependent features, especially when the importance of additional features can be judged by the tree.

Additional features such as pitch or zero-crossing rate (as in 18) would probably aid classi�cation. An interesting

possibility, yet unexplored, is to use compressed audio (for example MPEG encoded parameters) directly. This would

eliminate the need for the parameterization step as well as decoding and would thus be extremely rapid.

An e�ective method for audio retrieval has been presented, showing that useful retrieval can be performed even

for complex audio. Moreover, audio retrieval is very modest in computation and storage requirements. Given the

very modest storage requirements (a few hundred integer bin counts per template), this method should be practical

for even extremely large archives. One can imagine an \AudioVista{" application, where a web spider roams the net

searching for audio �les. Once located, suitable �les are downloaded, and templates are computed. A large collection

of templates can then be amassed in reasonable storage space, because the actual audio can be discarded provided

the source URL is saved with the template.

{Apologies to Digital Equipment Corporation.

ACKNOWLEDGEMENTS

This work was primarily funded by a J. William Fulbright research fellowship, administrated by the Committee

for the International Exchange of Scholars. Thanks to the sta� at the Institute for Systems Science for additional

support, and to Erling Wold at Muscle Fish for discussions and permission to use portions of the Muscle Fish audio

corpus.

REFERENCES

1. J. T. Foote and H. F. Silverman, \A model distance measure for talker clustering and identi�cation," in Proc.

ICASSP '94, vol. S1, pp. 317{32, IEEE, (Adelaide, Australia), Apr. 1994.

2. J. T. Foote, \Rapid speaker ID using discrete MMI feature quantisation," in Proc. Paci�c Asian Conference on

Expert Systems, (Singapore), Feb. 1997.

3. S. Pfei�er, S. Fischer, and W. E�elsberg, \Automatic audio content analysis," Tech. Rep. TR-96-008, Uni-

versity of Mannheim, D-68131 Mannheim, Germany, April 1996. ftp://pi4.informatik.uni-mannheim.de/-

pub/techreports/1996/TR-96-008.ps.gz.

4. E. Wold, T. Blum, D. Keslar, and J. Wheaton, \Content-based classi�cation, search, and retrieval of audio,"

IEEE Multimedia , pp. 27{36, Fall 1996.

5. T. Blum, D. Keslar, J. Wheaton, and E. Wold, \Audio analysis for content-based retrieval,"

tech. rep., Muscle Fish LLC, 2550 Ninth St., Suite 207B, Berkeley, CA 94710, USA, May 1996.

http://www.musclefish.com/cbr.html.

6. L. Wyse and S. Smoliar, \Toward content-based audio indexing and retrieval and a new speaker discrimination

technique," in Proc. ICJAI '95, (Montreal), 1995.

7. B. Feiten and S. G�unzel, \Automatic indexing of a sound database using self-organizing neural nets," Computer

Music Journal 18(3), pp. 53{65, 1994.

8. L. R. Rabiner and B. H. Juang, Fundamentals of Speech Recognition, Prentice-Hall, Englewood Cli�s, NJ, 1993.

9. J. T. Foote, Decision-Tree Probability Modeling for HMM Speech Recognition. Ph.D. thesis, Brown University,

Providence, RI, 1993.

10. L. Breiman, J. Friedman, R. Olshen, and C. Stone, Classi�cation and Regression Trees, Wadsworth International

Group, Belmont, Calif., 1984.

11. M. Anikst et al., \The SSI large-vocabulary speaker-independent continuous-speech recognition system," in

Proc. ICASSP '91, pp. 337{340, IEEE, (Toronto, Canada), 1991.

12. G. Salton and C. Buckley, \Term weighting approaches in automatic text retrieval," Tech. Rep. TR87-

881, Department of Computer Science, Cornell University, Ithaca, New York 14853-7501, November 1987.

http://cs-tr.cs.cornell.edu/Dienst/UI/2.0/Describe/ncstrl.cornell%2fTR87-881.

13. W. Frakes and R. Baeza-Yates, Information Retrieval: data structures and algorithms, Prentice Hall, New Jersey,

1992.

14. G. Salton and C. Buckley, \TREC evaluation software distribution." ftp://ftp.cs.cornell.edu/pub/smart,

1991.

15. L. Wilcox, F. Chen, and V. Balasubramanian, \Segmentation of speech using speaker identi�cation," in Proc.

ICASSP 94, vol. S1, pp. 161{164, Apr. 1994.

16. D. Kimber and L. Wilcox, \Acoustic segmentation for audio browsers," in Proc. Interface Conference, (Sydney,

Australia), July 1996. http://www.fxpal.xerox.com/abstracts/kim96.htm.

17. D. Roy and C. Malamud, \Speaker identi�cation based text to audio alignment for an audio retrieval system,"

in Proc. ICASSP 97, IEEE, (Munich, Germany), Apr. 1997.

18. J. Saunders, \Real-time discrimination of broadcast speech/music," in Proc. ICASSP '96, vol. II, pp. 993{996,

IEEE, (Atlanta), May 1996.

