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Abstract. We present a comparative evaluation of automatic classification of a 
sound database containing more than six hundred drum sounds (kick, snare, 
hihat, toms and cymbals). A preliminary set of fifty descriptors has been refined 
with the help of different techniques and some final reduced sets including 
around twenty features have been selected as the most relevant. We have then 
tested different classification techniques (instance-based, statistical-based, and 
tree-based) using ten-fold cross-validation. Three levels of taxonomic 
classification have been tested: membranes versus plates (super-category level), 
kick vs. snare vs. hihat vs. toms vs. cymbals (basic level), and some basic 
classes (kick and snare) plus some sub-classes –i.e. ride, crash, open-hihat, 
closed hihat, high-tom, medium-tom, low-tom- (sub-category level). Very high 
hit-rates have been achieved (99%, 97%, and 90% respectively) with several of 
the tested techniques.  

 

1. INTRODUCTION 
Classification is one of the processes involved in audio content description. Audio 
signals can be classified according to miscellaneous criteria. A broad partition into 
speech, music, sound effects (or noises), and their binary and ternary combinations is 
used for video soundtrack descriptions. Sound category classification schemes for this 
type of materials have been recently developed [1], and facilities for describing sound 
effects have even been provided in the MPEG-7 standard [2]. Usually, music streams 
are broadly classified according to genre, player, mood, or instrumentation. In this 
paper, we do not deal with describing which instruments appear in a musical mixture. 
Our interest is much more modest as we focus only in deriving models for 
discrimination between different classes of isolated percussive sounds and, more 
specifically in this paper, of acoustic “standard” drum kit sounds (i.e. not electronic, 
not Latin, not brushed, etc.). Automatic labelling of instrument sounds has some 
obvious applications for enhancing sampling and synthesis devices’ operating systems 
in order to help sound designers to categorize (or suggesting names for) new patches 
and samples. Additionally, we assume that some outcomes of research on this subject 
will be used for the more ambitious task of describing the instrumentation in a 
musical recording, at least of the “rhythm loop” type.  



Previous research in automatic classification of sound from music instruments has 
focused in instruments with definite pitch. Classification of string and wind 
instrument sounds has been attempted using different techniques and features yielding 
to varying degrees of success (see [3] for an exhaustive review). Classification of 
percussive instruments, on the other hand, has attracted little interest from 
researchers. In one of those above cited studies with pitched sounds, Kaminskyj [4] 
included three pitched percussive categories (glockenspiel, xylophone and marimba) 
and obtained good classification results (ranging from 75% to 100%) with a K-NN 
algorithm.  Schloss [5] classified the stroke type of congas using relative energy from 
selected portions of the spectrum. He was able to differentiate between high-low 
sounds and open, muffled, slap and bass sounds. Using a K-means clustering 
algorithm, Bilmes [6] also was able to differentiate between sounds of three different 
congas. McDonald [7] used spectral centroid trajectories as classificatory features of 
sounds from percussive instruments. Sillanpää [8] used a representation of spectral 
shape for identification of the basic five categories of a drum kit: bass drum, snares, 
toms, hihats, and cymbals. His research was oriented towards transcription of rhythm 
tracks and therefore he additionally considered the case of identification of several 
simultaneous sounds. A database of 128 sounds was identified with 87% of accuracy 
for the case of isolated sounds. Performance dramatically dropped when there were 
two or three simultaneous sounds (respectively 49% and 8% for complete 
identification, though at least one of the sounds in the mixture was correctly identified 
all the times). In a subsequent study [9], the classification method used energy, Bark-
frequency and log-time resolution spectrograms, and a fuzzy-c clustering of the 
original feature vectors into four clusters for each sound class. Weighted RMS-error 
fitting and an iterative spectral subtraction of models was used to match the test 
sounds against learnt models. Unfortunately, no systematic evaluation was presented 
this time. Goto and Murakoa [10] also studied drum sound classification in the 
context of source separation and beat tracking [11]. They implemented an “energy 
profile”-based snare-kick discriminator, though no effectiveness evaluation was 
provided. As a general criticism, in the previous research there is a lack of systematic 
evaluation of the different factors involved in automatic classification, and the 
databases are small to draw robust conclusions. A more recent study on this subject in 
the context of basic rhythmic pulse extraction [12] intended to be systematic, but also 
used a small database and a reduced set of descriptors.  

Research on perceptual similarity of sounds is another area that provides useful 
information for addressing the problem of automatic classification of drum sounds. In 
perceptual studies, dis-similarity judgments between pairs of sounds are elicited from 
human subjects. With multidimensional scaling techniques, researchers find the 
dimensions that underlie to dis-similarity judgments. Even further, with proper 
comparison between those dimensions and physical features of sounds, it is possible 
to discover the links between perceptual and physical dimensions of sounds [13], 
[14], [15], [16]. A three dimensional perceptual space for percussive instruments (not 
including bells) has been hypothesized by Lakatos [17] (but also see [18]). This 
percussive perceptual space spans three related physical dimensions: log-attack time, 
spectral centroid and temporal centroid. Additional evidence supporting them has 
been gathered during the multimedia content description format standardization 
process (MPEG-7) and, consequently, they have been included in MPEG-7 as 



descriptors for timbres [19]. Graphical interactive testing environments that are linked 
to specific synthesis techniques [20] seem to be a promising way for building higher-
dimensional perceptual spaces. 

From another area of studies, those focusing on characteristics of beaten objects, it 
seems that information about the way an object is hit is conveyed by the attack 
segment, whereas the decay or release segment conveys information about the shape 
and material of the beaten object [21]. Repp [22] found that different hand-clapping 
styles (palm-to-palm versus fingers-to-palm) correlated with different spectral 
envelope profiles. Freed [23] observed that the attack segment conveyed enough 
information for the subjects to evaluate the hardness of a mallet hit.  Four features 
were identified as relevant for this information: energy, spectral slope, spectral 
centroid and the time-weighted average centroid of the spectrum. Kaltzky et al. [24] 
have got experimental results supporting the main importance of the decay part 
(specifically the decay rate) of a contact sound in order to identify the material of the 
beaten object. 

In the next sections we will present the method and results of our study on automatic 
identification of drum sounds. First we will discuss the features we initially selected 
for the task and the ways for using the smallest set without compromising 
classification effectiveness. Some techniques consider relevance of descriptors 
without considering the classification algorithm in which they are being issued, but 
there are also attribute selection techniques that are linked to specific classification 
algorithms. We will compare both approaches with three different classification 
approaches: instance-based, statistical-based, and tree-based. Classification results for 
three taxonomic levels (super-category, basic level classes, and sub-categories) of 
drum-kit instruments will then be presented and discussed. 
 

2. METHOD 

2.1 Selection of sounds 
A database containing 634 sounds was set up for doing this study. Distribution of 
sounds into categories is shown in Table 1. Sounds were drawn from different 
commercial sample CD’s and CD-ROMs. The main selection criteria were that they 
belonged to acoustic drums with as little reverberation as possible, and without any 
other effect applied to them. Also different dynamics and different physical 
instruments were looked for. Specific playing techniques yielding dramatic timbral 
deviations from a  “standard sound” such as brushed hits or rim-shots were discarded. 



Table 1. Categories used and number of sounds (inside parentheses) included in each 
category 

Super-category Basic-level  Sub-category 
Kick (115) Kick (115) 
Snare (150) Snare (150) 

Low (42) 
Medium (44) 

Membranes (380) 

Tom (115) 

High (29) 
Open (70) Hihat (142) 
Closed (72) 
Ride (46) 

Plates (263) 

Cymbal (121) 
Crash (75) 

2.2 Descriptors 
We considered descriptors or features belonging to different categories: attack-related 
descriptors, decay-related descriptors, relative energies for selected bands and, finally, 
Mel-Frequency Cepstral Coefficients and variances. An amplitude-based segmentator 
was implemented in order to get an estimation of the attack-decay boundary position, 
for then computing those descriptors that used this distinction. Analysis window size 
for the computation of descriptors was estimated after computation of Zero-Crossing 
Rate. 

2.2.1 Attack-related descriptors 
Attack Energy (1), Temporal Centroid (2), which is the temporal centre of gravity of 
the amplitude envelope, Log Attack-Time (3), which is the logarithm of the length of 
the attack, Attack Zero-Crossing Rate (4), and TC/EA (5), which is the ratio of the 
Temporal Centroid to the length of the attack. 
 
2.2.2 Decay-related descriptors 
Decay Spectral Flatness (6) is the ratio between the geometrical mean and the 
arithmetical mean (this gives an idea of the shape of the spectrum, if it’s flat, the 
sound is more “white-noise”-like; if flatness is low, it will be more “musical”); Decay 
Spectral Centroid (7), which is the centre of gravity of the spectrum; Decay Strong 
Peak (8), intended to reveal whether the spectrum presents a very pronounced peak 
(the thinner and the higher the maximum of the spectrum is, the higher value takes 
this parameter); Decay Spectral Kurtosis (9), the 4th order central moment (it gives 
clues about the shape of the spectrum: “peaky” spectra have larger kurtosis than 
scattered or outlier-prone spectra.), Decay Zero-Crossing Rate (10); “Strong Decay” 
(11), a feature built from the non-linear combination of the energy and temporal 
centroid of a frame (a frame containing a temporal centroid near its left boundary and 
strong energy is said to have a “strong decay”); Decay Spectral Centroid Variance 
(12); Decay Zero-Crossing Rate Variance (13); and Decay Skewness (14), the 3rd 
order central moment (it gives indication about the shape of the spectrum in the sense 
that asymmetrical spectra tend to have large skewness values). 
 



2.2.3 Relative energy descriptors 
By dividing the spectrum of the decay part into 8 bands of frequency, the energy lying 
in them was calculated, and then the relative energy percent for each band was 
computed. These bands were basically chosen empirically, according to the 
observations of several spectra from relevant instruments. The boundaries were fixed 
after several trials in order to get significant results, and were the following: 40-70 
Hz. (15), 70-110 Hz. (16), 130-145 Hz. (17), 160-190 Hz. (18), 300-400 Hz. (19), 5-7 
KHz. (20), 7-10 KHz. (21), and 10-15 KHz. (22).  
 
2.2.4 Mel-Frequency Cepstrum Coefficients 
MFCC’s have been usually used for speech processing applications, though they have 
shown usefulness in music applications too [25]. As they can be used as a compact 
representation of the spectral envelope, their variance was also recorded in order to 
keep some time-varying information. 13 MFCC’s were computed over the whole 
signal, and their means and variances were used as descriptors. In order to interpret 
the selected sets of features in section 3, we will use the numeric ID’s 23-35 for the 
MFCC means, and 36-48 for the MFCC variances. 

 

2.3 Classification techniques 
We have selected three different families of techniques to be compared1: instance-
based algorithms, statistical modelling with linear functions, and decision tree 
building algorithms. The K-Nearest Neighbors (K-NN) technique is one of the most 
popular for instance-based learning and there are several papers on musical 
instrument sound classification using K-NN [26], [27], [28] [4].  As a novelty in this 
research context, we have also tested another instance-based algorithm called K* 
(pronounced “K-star”), which classifies novel examples by retrieving the nearest 
stored example using an entropy measure instead of an Euclidean distance. 
Systematic evaluations of this technique using standard test datasets [29] showed a 
significant improvement of performance over the traditional K-NN algorithm. 

Canonical discriminant analysis is a statistical modelling technique that classifies 
new examples after deriving a set of orthogonal linear functions that partition the 
observation space into regions with the class centroids separated as far as possible, 
but keeping the variance of the classes as low as possible. It can be considered like an 
ANOVA (or MANOVA) that instead of continuous to-be-predicted variables uses 
discrete (categorical) variables. After a successful discriminant function analysis, 
"important" variables can be detected. Discriminant analysis has been successfully 
used by [30] for classification of wind and string instruments. 

C4.5 [31] is a decision tree technique that tries to focus on relevant features and 
ignores irrelevant ones for partitioning the original set of instances into subsets with a 
                                                 
1 The discriminant analysis was run with SYSTAT (http://www.spssscience.com/SYSTAT/), 

and the rest of analyses with the WEKA environment (www.cs.waikato.ac.nz/~ml/).  



strong majority of one of the classes. Decision trees, in general, have been pervasively 
used for different machine learning and classification tasks. Jensen and Arnspang [32] 
or Wieczorkowska [33] have used decision trees for musical instrument classification. 
An interesting variant of C4.5, that we have also tested, is PART (partial decision 
trees). It yields association rules between descriptors and classes by recursively 
selecting a class and finding a rule that "covers" as many instances as possible of it. 

 

2.4 Cross-validation 
For the forthcoming experiments the usual ten-fold procedure was followed: 10 
subsets containing a 90% randomly selected sample of the sounds were selected for 
learning or building the models, and the remaining 10% was kept for testing them. 
Hit-rates presented below have been computed as the average value for the ten runs. 
 

3. RESULTS 

3.1 Selection of relevant descriptors 
Two algorithm-independent methods for evaluating the relevance of the descriptors in 
the original set have been used: Correlation-based Feature Selection (hence CFS) and 
ReliefF. CFS evaluates subsets of attributes instead of evaluating individual attributes. 
A “merit” heuristic is computed for every possible subset, consisting of a ratio 
between how predictive a group of features is and how much redundancy or inter-
correlation there is among those features [34]. Table 2 shows the CFS-selected 
features in the three different contexts of classification we are dealing with. Note that 
a reduction of more than fifty percent can be achieved in the most difficult case, and 
that the selected sets for basic level and for sub-category classification show an 
important overlap.  

 
Table 2. Features selected by the CFS method 

Super-category [21, 4, 22] 
Basic-level [2, 4, 5, 6, 7, 9, 10, 14, 15, 16, 17, 18, 20, 

21, 22, 26, 27, 30, 39] 

Sub-category [1, 2, 3, 4, 5, 6, 7, 9, 10, 14, 15, 16, 17, 18, 
19, 20, 21, 22, 26, 30, 39] 

ReliefF evaluates the worth of an attribute by repeatedly sampling an instance and 
considering the value of the given attribute for the nearest instance of the same and 
for the nearest different class [34]. Table 3 shows the ReliefF-selected features in the 
three different contexts. Note that the list is a ranked one –from most to least relevant- 
and that we have matched the cardinality of this list to the one yielded by the previous 
method, in order to facilitate their comparisons.  



Table 3. Features selected by the ReliefF method 

Super-category [9, 14, 7] 
Basic-level [9, 14, 7, 19, 10, 17, 4, 25, 18, 6, 15, 21, 20, 

16, 24, 26, 30, 31, 13] 
Sub-category [9, 14, 19, 7, 17, 10, 4, 25, 16, 15, 18, 6, 21, 

20, 24, 30, 26, 31, 13, 28, 2] 

Comparing the two methods it can be seen that all selected subsets for basic-level or 
for sub-category share more than 60% of features (but surprisingly they do not 
coincide at all when the target is the super-category). It is also evident that they 
include quite a heterogeneous selection of descriptors (some MFCC’s, some energy 
bands, some temporal descriptors, some spectral descriptors…). 

Contrasting with the previous “filtering” approaches, we also tested a “wrapping” 
approach for feature selection [35]. This means that features are selected in 
connection with a given classification technique which acts as a wrapper for the 
selection. Canonical Discriminant Analysis provides numerical indexes in order to 
decide about the relevance of a feature (but after analysis, not prior to it) as for 
example the F-to-remove value, or the descriptor’s coefficients inside the canonical 
functions. For feature selection inside CDA it is usual to follow a stepwise (usually 
backwards) procedure. This strategy, however, only grants a locally optimal solution, 
so that an exhaustive (but sometimes impractical) search of all the combinations is 
recommended [36]. In our case, we have proceeded with a combination of backward 
stepwise plus some heuristic search. Table 4 shows the selected subsets, with the 
features ranked according the F-to-remove value (the most relevant first). A 
difference related to the filtering approaches is that with CDA the selected sets are 
usually larger. A large proportion of the selected features, otherwise, match those 
selected with the other methods. 

 
Table 4. Features selected after Canonical Discriminant Analyses 

Super-category [4, 13, 19, 20, 37, 39] 
Basic-level [15, 9, 4, 20, 14, 2, 13, 26, 27, 3, 19, 

8, 21, 39, 6, 11, 38] 
Sub-category [16, 15, 3, 9, 2, 17, 20, 13, 14, 19, 27, 

26, 39, 7, 12, 10, 8, 37, 38, 4, 21, 22, 
25, 33, 30, 29, 5, 24, 28, 45, 36, 34] 

 

3.1 Classification results 
We tested the three algorithms using the different subsets discussed in the previous 
section. Three different levels of classification were tested: super-category (plates 
versus membranes), basic-level (the five instruments) and sub-category (kick and 
snare plus some variations of the other three instruments: open and closed hihat, low, 
mid and high tom, crash and ride cymbal). Tables 5, 6 and 7 summarize the main 
results regarding hit rates for the three different classification schemes we have tested. 
Rows contain the different algorithms and columns contain the results using the 
different sets of features that were presented in the previous section. For the C4.5, the 



number of leaves appears inside parentheses. For PART, the number of rules appears 
inside parentheses.  The best method for each feature set has been indicated with bold 
type and the best overall result appears with grey background. 
 

Table 5. Super-category classification hit rates for the different techniques and feature 
selection methods  

 All features CFS ReliefF CDA
K-NN (k=1) 99.2 97.9 93.7 96.7
K* 98.6 97.8 94.8 96.7
C4.5 97.2 (8) 98.6 (8) 94.8 (12) 95.1(14)
PART 98.4 (5) 98.2 (6) 94.4 (6) 95.1(9)
CDA 99.1 94.7 88.1 99.3

 
Table 6. Basic-level classification hit rates for the different techniques and feature 

selection methods 

 All features CFS ReliefF CDA
K-NN (k=1) 96.4 95 95.6 95.3
K* 97 96.1 97.4 95.8
C4.5 93 (20) 93.3(21) 92.2(23) 94.2(18)
PART 93.3 (12) 93.(11) 93.1(11) 93.6(12)
CDA 92 93 91 95.7

 
Table 7. Sub-category classification hit rates for the different techniques and feature 

selection methods 

 All features CFS ReliefF CDA
K-NN (k=1) 89.9 87.7 89.4 87.9
K* 89.9 89.1 90.1 90.7
C4.5 82.6 (40) 83 (38) 81 (45) 85(43)
PART 83.3 (24) 84.1(27) 81.9 (29) 84.3(27)
CDA 82.8 86 82 86.6

 

A clear interaction effect between feature selection strategy and algorithm family can 
be observed: for instance-based algorithms ReliefF provides the best results while for 
the decision-trees the best results have been obtained with CFS. In the case of 
decision trees, selecting features with CFS is good not only for improving hit-rates 
but also for getting more compact trees,  (i.e. with a small number of leaves and 
therefore smaller in size).  As expected, the CDA-selected features have yielded the 
best hit-rates for the CDA, but surprisingly they have also yielded the best hit-rates 
for most of the decision-trees.  

It is interesting to compare the results obtained using feature selection with those 
obtained with the whole set of features. For the super-category classification it seems 



that all the selection procedures have operated an excessive deletion and performance 
has degraded up to 4% when using a selected subset. Note however that in this 
classification test the best overall result (CDA features with CDA classification) 
outperforms any of the figures obtained with the whole subset. For the basic-level and 
sub-category tests, the reduction of features degrades the performance of instance-
based methods (but less than 1%), whereas it improves the performance of the rest. 

After comparing families of algorithms it is clear that differences between them 
increase as the task difficulty increases. It is also evident that the best performance is 
usually found in instance-based ones (and specifically K* yields slightly better results 
than a simple K-NN), whereas tree-based yield the worst figures and CDA lies in 
between. Although decision trees do not provide the best overall performance, they 
have an inherent advantage over instance-based: expressing relationships between 
features and classes in terms of conditional rules. Table 8 exemplifies the type of rules 
that we get after PART derivation. 
 

Table 8. Some of the PART rules for classification at the "basic-level". Correctly and 
wrongly classified instances are shown inside parentheses. We have left out some less 

general rules for clarity 
SKEWNESS > 4.619122 AND 
B40HZ70HZ > 7.784892 AND 
MFCC3 <= 1.213368: Kick (105.0/0.0) 
 
KURTOSIS > 26.140138 AND 
TEMPORALCE <= 0.361035 AND 
ATTZCR > 1.478743: Tom (103.0/0.0) 
 
B710KHZ <= 0.948147 AND 
KURTOSIS <= 26.140138 AND 
ATTZCR <= 22.661397: Snare (133.0/0.0) 

 
 
 
SPECCENTROID > 11.491498 AND 
B1015KHZ > 0.791702: HH (100.0/2.0) 
 
SKEWNESS <= 4.485531 AND 
B160HZ190HZ <= 5.446338 AND 
MFCC3VAR > 0.212043 AND 
MFCC4 > -0.435871: Cymbal (110.0/3.0) 

 

Regarding CDA, an examination of the canonical scores plots provides some 
graphical hints about the performance of the four canonical discriminant functions 
needed for the basic-level case: the first one separates toms+kicks from 
hihats+cymbals, the second one separates the snare from the rest, the third one 
separates cymbals from hihats, and the fourth one separates toms from kicks. It should 
be noted that in the other cases it is more difficult to assign them a clear role. 

Inspecting the confusion matrix for the instrument test, most of the errors consist in 
confusing cymbals with hihat, and tom with kick (and their inverse confusions, 
though with a lesser incidence).  For the sub-instrument test, 60% of the 
misclassifications appear to be intra-category (i.e. between crash and ride, between 
open and closed hihat, etc.), and they are evenly distributed.   
 

4. DISCUSSION 
We have achieved very high hit rates for the automatic classification of standard drum 
sounds into three different classification schemes. The fact that, in spite of using three 



very different classification techniques, we have obtained quite similar results could 
mean that the task is quite an easy one. It is true that the number of categories we 
have used has been small even for the most complex classification scheme. But it 
should also be noted that there are some categories that, at least from a purely 
perceptual point of view, do not seem to be easily separated (for example, low-toms 
from some kicks, or some snares from mid-toms or from some crash cymbals). 
Therefore, a contrasting additional interpretation for this good performance is to 
consider that our initial selection of descriptors was good. This statement gets support 
by the fact that the all-feature results are not much worse than results after feature 
selection. In the case of having a bad initial set, those bad features would have 
contributed to worsen the performance. As it has not been the case, we can conclude 
that from a good set of initial features, some near-optimal sets have been identified 
with the help of filtering or wrapping techniques. Most of the best features found can 
be considered as spectral descriptors: skewness, kurtosis, centroid, MFCC’s. We 
included a very limited number of temporal descriptors, but, as expected, apart from 
ZCR, they do not seem to be needed for precise instrument classification.  

In the section of improvements for subsequent research we may list the following: (1) 
A more systematic approach to description in terms of energy bands (for example, 
using Bark measures); (2) Evaluation of whole-sound descriptors against attack-decay 
decomposed descriptors (i.e. the ZCR); (3) Non-linear scaling of some feature 
dimensions; (4) Justified deletion of some observations (after analyzing the models, it 
seems that some outliers that contribute to the increment of the confusion rates should 
be considered as “bad” examples for the model because of audio quality or wrong 
class adscription). 

 

5. CONCLUSIONS 
In this study, we have performed a systematic study of the classification of standard 
drum sounds. After careful selection of descriptors and its refinement with different 
techniques, we have achieved very high hit-rates in three different classification tasks: 
super-category, basic-level category, and sub-category. In general, the most relevant 
descriptors for them seem to be ZCR, kurtosis, skewness, centroid, relative energy in 
specific bands, and some low-order MFCC’s. Performance measures classification 
techniques have not yielded dramatic differences between classification techniques 
and therefore selecting one or another is clearly an application-dependent issue. We 
believe, though, that relevant performance differences will arise when more classes 
are included in the test, as we have planned for a forthcoming study. Regarding 
classification of mixtures of sounds, even if it is not yet clear if the present results will 
be useful, we have gathered interesting and relevant data in order to characterize 
different classes of drum sounds. 
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