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Abstract. In the field of pattern recognition, multiple classifier systems based
on the combination of the outputs of a set of different classifiers have been
proposed as a method for the development of high performance classification
systems. Previous work clearly showed that multiple classifier systems are
effective only if the classifiers forming them make independent errors. This
achievement pointed out the fundamental need for methods aimed to design
ensembles of “independent” classifiers. However, the most of the recent work
focused on the development of combination methods. In this paper, an
approach to the automatic design of multiple classifier systems based on
unsupervised learning is proposed. Given an initial set of classifiers, such
approach is aimed to identify the largest subset of "independent" classifiers. A
proof of the optimality of the proposed approach is given. Reported results on
the classification of remote sensing images show that this approach allows one
to design effective multiple classifier systems.

1. Introduction

In the field of pattern recognition, multiple classifier systems (MCSs) based on the
combination of the outputs of a set of different classifiers have been proposed as a
method for the development of high performance classification systems. Typically,
the combination is based on voting rules, belief functions, statistical techniques,
Dempster-Shafer evidence theory, and other integration schemes [1, 2]. The most of
such combination methods assume that the classifiers forming the MCS make
independent classification errors. This assumption is necessary to guarantee an
increase of classification accuracy with respect to the accuracies provided by
classifiers forming the MCS. As an example, Hansen and Salamon showed that a
MCS based on a simple “majority” combination rule can provide very good increases
of accuracy if classifiers make independent errors [3]. Tumer and Ghosh pointed out
that accuracy increases depend on error uncorrelation much more that on the
particular combination method adopted [4].

The above-mentioned achievements pointed out the fundamental need for methods
aimed to design ensembles of independent classifiers. However, in the pattern
recognition field, the most of the work focused on the development of combination



methods. Some papers addressing the problem of the design of an ensemble of
independent nets appeared in the neural networks literature [5]. However, the results
of such work can be exploited only in part for the MCSs formed by different
classifiers (e.g., statistical and neural classifiers). An overview of the work related to
the design of MCSs is given in Section 2.

In this paper, an approach to the automatic design of MCSs formed by different
classification algorithms is proposed (Section 3). Instead of attempting to design a set
of "independent" classifiers directly, a large set, usually containing independent but
also correlated classifiers, is initially created (Section 3.1). Given such a set, our
approach is aimed to identify the largest subset of independent classifiers by an
unsupervised learning algorithm (Section 3.2). We also point out the rationale behind
the proposed approach and prove the optimality of our design method (Section 3.3).
Experimental results and comparisons are reported in Section 4. Conclusions are
drawn in Section 5.

2. Related Work

In the pattern recognition literature, to the best of our knowledge, no work directly
addressed the problem of designing ensembles of independent classifiers. Some
papers indirectly addressed it by proposing combination methods that that do not
need of the assumption of independent classifiers [6-8]. It is easy to see that such
methods exhibit advantages from the viewpoint of the design of the MCSs. However,
the related combination functions are much more complex than the ones based on the
“independence” assumption. In addition, the theory developed for ensembles of
independent classifiers cannot be exploited to evaluate the performances of the MCSs
based on these methods. As an example, it is not possible to assume that the error rate
is monotonically decreasing in the number of the combined classifiers [3].

Research work addressing the problem of designing an ensemble of "independent"
nets has been carried out in the neural networks field. Earlier studies investigated the
effectiveness of different “design parameters” for creating independent neural nets
[5]. In particular, Partridge quantified the relative impact of the major parameters
used in the design of a neural network and he found the following “ordering”: “net
type”, “training set structure”, “training set elements”, “number of hidden units”, and
“weight seed” [9]. Recently, it seems to the authors that two main strategies for
designing an ensemble of independent nets emerged from the neural networks
literature [5]. One, that can be named "overproduce and choose" strategy, is based on
the creation of an initial large set of nets and a subsequent choice of an "optimal"
subset of independent nets. The other strategy attempts to generate a set of
independent nets directly. Partridge and Yates described a design method for neural
network ensembles based on the "overproduce and choose" strategy [10]. They
introduced some interesting "diversity" measures that can be used for choosing an
"optimal" subset of independent classifiers. However, they did not propose a
systematic method for choosing such a set. Only an experimental investigation of
three possible techniques is described. In addition, the problem of the optimality of
such "choose" techniques is not addressed. Opitz and Shavlik presented and



algorithm called ADDEMUP that uses genetic algorithms to search actively for a set
of independent neural networks [11]. Rosen described a method that allows one to
train individual networks by backpropagation not only to reproduce a desired output,
but also to have their errors linearly decorrelated with the other networks [12].
Individual networks so trained are then linearly combined.

However, the results of the above research work can be exploited only in part for
MCSs formed by different classifiers (e.g., statistical and neural classifiers). As an
example, the "diversity" measures proposed by Partridge and Yates can be exploited
in general, while the work of Rosen is tailored to neural network ensembles. In
addition, to the best of our knowledge, no work addressed the problem of the
optimality of the design method proposed.

3. Automatic Design of MCSs by Unsupervised Learning

3.1 Background and Basic Concepts of the Proposed Approach

First of all, let us formulate briefly the task of the design of a MCS. In general, such
task can be subdivided into two subtasks: the design of the "members" of the MCS,
and the design of the combination function.

It is worth remarking that, in this paper, we address the problem of the design for
MCSs based on combination functions that assume the independence of classifiers.
Therefore, the design task basically consists of finding a set of independent classifiers
as large as possible. Given such a set, a simple majority rule is sufficient to design an
effective MCS. (Hansen and Salamon showed that the error rate of such a MCS goes
to zero in the limit of infinite set size [3]).

Among the two main design strategies recently defined in the neural networks
literature, our approach follows the so called “overproduce and choose” strategy (see
Section 2). The rationale behind this choice is that we think that the direct design of
only independent classifiers is a very difficult problem that is beyond the current state
of the theory of MCSs. In addition, the overproduce and choose strategy seems to fit
well with the novel paradigm of “weak” classifiers (i.e., the creation of very large sets
of classifiers which can do a little better than making random guesses [13]). Also the
interesting paradigm of “reusable” classifiers recently introduced by Bollacker and
Ghosh might be exploited for the creation of large sets of classifiers [14]. Finally, the
overproduce and choose strategy is successfully used in other fields (e.g., in the field
of the software engineering  [15].).

With regard to the overproduction phase, we basically extended to MCSs the
conclusions of Partridge concerning the design parameters that maximize the
independence for neural network ensembles [9]. In particular, we basically create the
initial set of classifiers using different classification algorithms, as the “classifier
type” is the best design parameter according to Partridge.

Concerning the choose phase, first of all, let C be the set of the N classifiers
generated by the overproduction phase:



C = {c1, c2,….,cN). (1)

The rationale behind our approach is based on the following assumptions on such
set C (equations 2, 3, and 4).

Let us assume that C is formed by the following union of M subsets Ci:

 
C C   i

i 1

M

=
=
U (2)

where the subsets Ci meet the following assumption:

∀ ≠ = ∅i, j i j C C  i jI (3)

and the classifiers forming the above subsets satisfy the following requirements:

∀ ∈ ∀ ∈ ∀ ≠c ,c C c C i, j i j prob(c  fails,  c  fails) > prob(c  fails,  c  fails)l m i n j l m l n, , . (4)

In the above equation, the terms prob(cl fails, cm fails) and prob(cl fails, cn fails)
state for the compound error probabilities of the related classifier couples. Such error
probabilities can be estimated by the number of coincident errors made by the
couples of classifiers on a validation set.

Equation 4 simply states that the compound error probability between any two
classifiers belonging to the same subset is higher than the one between any two
classifiers belonging to different subsets. Consequently, theoretically speaking, the M
subsets forming C can be identified by any “clustering” algorithm grouping the
classifiers on the basis of the compound error probability [16].

After the identification of the subsets Ci, i=1...M, our approach takes one classifier
from each subset in order to create the largest subset C*={c*1, c*2,….,c*M)
containing only independent classifiers. (Or the subset C* of the most independent
classifiers, if the complete independence cannot be obtained).

It can be seen that the creation of the “optimal” subset C* is as much difficult as
the number of the possible subsets to be considered is large. (In Section 3.3, some
additional hypotheses that allows one to guarantee the creation of the optimal subset
C* are given).

According to the above hypotheses, the subset C* is the best solution for our
design task, as it contains the largest subset of independent classifiers, or the subset of
the most independent classifiers, contained into the initial set C.

Finally, it is worth doing the following remarks on the proposed approach:
• The above hypotheses on the set C are in agreement with real cases related to the

“production” of classifier ensembles. As an example, a neural network ensemble
obtained by trainings with different weight seeds is likely to meet the assumptions
of equations 1-4 due to the common problem of “local minima”. (We can assume
that the subsets Ci are formed by nets related to the different local minima);

•  The rationale behind the “clustering-based” approach to the identification of the
set C* is analogous to the one behind the “region-based” approach to image
segmentation. It can be convenient to group “similar” pixels in order to identify
the most “independent” ones (i.e., the edge pixels);



•  The identification of classifier “clusters” allows one to highlight cases of
“unbalanced” ensembles where, for example, there is a majority of “correlated”
classifiers that negatively influences the ensemble performances.

3.2 The Proposed Approach

As described in the previous section, the proposed approach is constituted by two
main phases: the overproduction and the choose phases. In this section, we give
further details on the choose phase. With regard to the overproduction phase, let us
assume that the set C has been generated according to the strategy outlined in Section
3.1.

The choose phase is subdivided into the following main stages:
• Unsupervised learning for identifying the subsets Ci, i=1...M
• Creation of the subset C*

Unsupervised Learning for Subsets Identification
This stage is implemented by an unsupervised learning algorithm that, according to
equation 4, basically groups the classifiers belonging to the set C on the basis of the
compound error probability. In particular, a hierarchical agglomerative clustering
algorithm is used [16]. Such algorithm starts assigning each of the N classifiers to an
individual cluster. Then, two or more of these trivial clusters are merged, thus nesting
the trivial clustering into a second partition. The process is repeated to form a
sequence of nested clusters. The stop criterion is based on the analysis of the so called
“dendogram”. The reader interested in more details about hierarchical agglomerative
clustering is referred to [16].

In order to understand better this stage of our approach, it is worth remarking the
analogy with the well known problem of “data clustering” [16]. The classifiers
belonging to the set C play the roles of the “data” and the subsets Ci represent the
data “clusters”. Analogously, the compound error probability among couples of
classifiers plays the role of the distance measure used in data clustering. In particular,
in order to perform such a clustering of classifiers, it is easy to see that two “distance”
measures are necessary: a distance measure between two classifiers and a distance
measure between two clusters of classifiers. We defined the first measure on the basis
of the compound error probability:

∀ ∈ c ,  c   C  d(c ,  c ) =  1 -  prob(c  fails,  c  fails)s t s t s t . (5)

According to equation 5, two classifiers are as more distant as more they do not
make coincident errors. Therefore, the above distance measure groups classifiers that
make coincident errors and assigns independent classifiers to different clusters.

The “distance” between two clusters was defined as the maximum “distance”
between two classifiers belonging to such clusters:

∀ ≠
∈ ∈

 C ,  C  i = 1...M,  j = 1...M i j    d(C ,  C ) = max {d(c ,  c )}i j i j
c   C ,  c   C

s t
s i t j

. (6)



The rationale behind equation 6 can be seen by observing that two clusters
containing two independent classifiers must not be merged (even if the other
classifiers belonging to such clusters are very correlated), as the subset C* is formed
by extracting one classifiers from each cluster. (It is worth also noticing that the same
kind of distance measure is also used for data clustering purposes [16]).

It is easy to see that equation 6 can be used also for measuring the distance
between a classifier and a cluster previously formed.

Finally, it is worth also noticing that our method computes all the above distance
measures with respect to a validation set in order to avoid “overfitting” problems.

Creation of the Subset C*
The subset C* is created by taking one classifier from each cluster Ci. In particular,
for each classifier of a given cluster, the average distance from all the other clusters is
computed. The classifier characterized by the maximum distance is chosen. The set
C* is formed by repeating this procedure for each subset Ci.

3.3 Optimality of the Proposed Approach

Given the above defined set C, let us assume that:

∀ ∈ =c C,  i = 1...N,  prob(c  fails) p, p < 0.5i i (7)

∀ =C ,i = 1...M,  C {c ,c ,...,c },n < N   prob(c  fails,c  fails,...,c fails) = pi i i1 i2 in i i1 i2 ini i (8)

∀ ∈ ∀ ∈ ∀ ∈ =c C ,  c C ,..., c C prob(c  fails,  c  fails,...,c  fails) p1 1 2 2 M M   1 2 M
M . (9)

Equation 7 assumes that all the classifiers belonging to the set C exhibit the same
error probability. Equations 8 implies that the classifiers belonging to a given subset
make exactly the same errors (i.e., they are completely correlated with respect to the
classification errors). According to equation 9, classifiers belonging to different
subsets are independent.

Given the above hypotheses, we can prove that the following equation is satisfied:

∀ ⊆ ≠ ≥S C,S C *  p(MCS(S) fails)  p(MCS(C*) fails) (10)

where p(MCS(S) fails) and p(MCS(C*) fails) state for the error probabilities of the
MCSs based on the sets S and C*, respectively. C* is the subset of C extracted by our
design approach, that is, the set formed by one classifier for each subset Ci (Section
3.2). The majority rule combination function is assumed for such MCSs. (Hereafter
the majority rule is always assumed).

The optimality of our design method is proved by equation 10, as such equation
states that any subset of C different from C* exhibits a higher error probability.
Consequently, C* is the largest subset of independent classifiers contained into the
set C.



Proof of Equation 10
Without loosing in generality, we can assume that the subset S mentioned in equation
10 is formed according to one of the following ways:
• by subtracting some classifiers from C*;
• by adding to C* some classifiers taken from the set (C - C*);
• by using both of the two previous ways.

(It is worth noticing that any subset S can be formed according to the above
strategy).

Firstly, let us consider the case that the subset S is formed by subtracting some
classifiers from the set C*. In this case, the proof comes directly from the following
achievement of Hansen and Salamon:  the error rate of a MCS based on the majority
rule is monotonically decreasing in the number of the independent classifiers
combined [3]. Consequently, as the set C* is formed by a number of independent
classifiers, subtracting some classifiers from C* surely increases the error rate.

Secondly, let us consider the case that the subset S is formed by adding to C* some
classifiers taken from the set (C - C*).

First of all, let us point out that, according to Hansen and Salamon, the error
probability of the MCS based on the set C* can be computed as follows:

p MCS C fails
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Without loosing in generality, let us assume to add some classifiers to the set C*
so that the cardinality of the set S is “m”, M<m≤N.

It should be remarked that the classifiers added to the set C* necessarily belong to
the subsets Ci. Consequently, the set S can be regarded as formed by M clusters. It is
worth noticing that the set C* can be also regarded as formed by M clusters. The
basic difference with respect to the set S is that such clusters can contain only one
classifier. It should be also remarked that equation 8 still holds for the clusters of the
set S obtained from C* by adding classifiers.

In order to compute the value of the p(MCS(S) fails), we can still use equation 11
by observing that the set S is constituted by M clusters of classifiers completely
correlated. This implies that, from the viewpoint of the error probability, any cluster
can be regarded as a single classifier with a value of the error probability equal to
“p”.  On the other hand, different clusters are independent according to equation 9.
However, with respect to equation 11, it should be noticed that not all the
combinations of M/2 clusters belonging to the set S contain a number of classifiers
higher than m/2. In particular, the “majority”, that is, m/2, can be obtained by
numbers of clusters lower and higher than M/2.

Consequently, the value of the p(MCS(S) fails) can be computed as follows:
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where the terms αK state for the number of the combinations of “K” clusters that do
not contain a number of classifiers higher than m/2 (i.e., they do not contain a
“majority”).



It is easy to see that, for any combination of K clusters that do not contain a
“majority”,  the remaining M-K clusters forming the set S necessarily contain a
“majority”.  This is the reason for the term αK

M K K
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p p−

>

−∑ ( )1

2

 in equation 12.

Equation 12 can be rewritten as follows:
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As p<0.5, then p<1-p. In addition, 2K-M>0, as K>M/2. Consequently, the error
probability in equation 12 is higher, or equal, than the one in equation 10.

Finally, let us consider the last possible way of forming the set S. The proof of
equation 10 for this case is straightforward. We have already proved that the
p(MCS(S) fails) increases by subtracting classifiers from C*. According to equation
13, it is also proved that such error probability further increases if classifiers taken
from the set (C - C*) are then added.

This completes the proof of equation 10.
It is worth noticing that the assumptions of equations 7-9 are likely to be

completely or partially met in many real cases of classifier ensembles. As an
example, in neural network ensembles obtained by trainings with different weight
seeds (see the remarks at the end of Section 3.1). The same holds for the ensembles of
k-nearest neighbour classifiers, as subsets of very correlated classifiers are related to
different ranges of the “k” parameter.

4. Experimental Results

4.1 The Data Set

The data set used for our experiments consists of a set of multisensor remote-sensing
images related to an agricultural area near the village of Feltwell (UK). The images
(each of 250 x 350 pixels) were acquired by two imaging sensors installed on an
airplane: a multi-band optical sensor (an Airborne Thematic Mapper sensor) and a
multi-channel radar sensor (a Synthetic Aperture Radar). More details about the
selected data set can be found in [17, 18]. For our experiments, six bands of the
optical sensors and nine channels of the radar sensor were selected. Therefore, we
used a set of fifteen images. As the image classification process was carried out on a
“pixel basis”, each pixel was characterised by a fifteen-element “feature vector”
containing the brightness values in the six optical bands and over the nine radar
channels considered. For our experiments, we selected 10944 pixels belonging to five



agricultural classes (i.e., sugar beets, stubble, bare soil, potatoes, carrots) and
randomly subdivided them into a training set (5124 pixels), a validation set (582
pixels), and a test set (5238 pixels). We used a small validation set in order to
simulate real cases where validation data are difficult to be obtained. (Validation data
are extracted from the training sets. Consequently, strong reductions of training sets
are necessary to obtain large validation sets).

4.2 Experimentation Planning

Our experiments were mainly aimed to:
• evaluate the effectiveness of the proposed design approach;
• compare our approach with other design approaches proposed in the literature.

Concerning the first aim, we performed different “overproduction” phases, so
creating different sets C. Such sets were formed using the following classification
algorithms: a k-nearest neighbour (k-nn) classifier, a multilayer perceptron (MLP)
neural network, a Radial Basis Functions (RBF) neural network, and a Probabilistic
Neural Network (PNN). For each algorithm, a set of classifiers was created by
varying the related design parameters (e.g., the network architecture, the “weight
seed”, the value of the “k” parameter for the k-nn classifier, and so on). In the
following, for the sake of brevity, we report the results related to some of such sets C
(here referred as C1, C2, C3, and C4):
•  the set C1 was formed by fifty MLPs. Five architectures with one or two hidden

layers and various numbers of neurons per layer were used. For each architecture,
ten trainings with different weight seeds were performed. All the networks had
fifteen input units and five output units as the numbers of input features and data
classes, respectively (Section 4.1);

•  the set C2 was formed by the same MLPs belonging to C1 and by fourteen k-nn
classifiers. The k-nn classifiers were obtained by varying the value of the “k”
parameter in the following two ranges: (15, 17, 19, 21, 23, 25, 27) and (75, 77, 79,
81, 83, 85, 87);

•  the set C3 was formed by nineteen MLPS and one PNN. Two different
architectures were used for the MLPSs (15-7-7-5 and 15-30-15-5). For the PNN,
an a priori fixed value of the smoothing parameter equal to 0.1 was selected [19].

•  the set C4 was formed by the same MLPs belonging to C3, three RBF neural
networks, and one PNN.
With regard to the second aim of our experimentation, we compared our design

method with two methods proposed by Partridge and Yates [10]. One is the “choose
the best” method that, given an a priori fixed size of the set C*, choose the classifiers
with the highest accuracies in order to form C*. The other is the so called “choose
from subspaces” method that, for each classification algorithm, choose the classifier
with the highest accuracy. (The term “subspace” is therefore referred to the subset of
classifiers related to a given classification algorithm).



4.3 Results and Comparisons

Experimentation with the Set C1

The main aim of this experiment was to evaluate the effectiveness of our approach for
the design of neural network ensembles formed by a single kind of net. It is worth
noticing that this is a difficult design task, as nets of the same type are poorly
independent according to the Partridge results [9]. Our algorithm created a set C*
formed by 7 MLPs belonging to three different architectures. This is a not obvious
result, as the most obvious set C* should be formed by taking one net from each of
the five architectures. Table 1 reports the performances of the MCS based on the set
C* designed by our algorithm. For comparison purposes, the performances of the
MCSs based on the initial set C1 and on the other two design methods are also
reported. A size of the set C* equal to five was fixed for the “choose the best”
method. The performances are measured in terms of the percentage of classification
accuracy, the rejection percentage, and the difference between accuracy and rejection.
All the values are referred to the test set. The performances of all the three design
methods are similar. (Our method is slightly better, but the difference is very small).
This can be seen by observing that the initial set C1 also provides similar
performances. This means that the set C1 does not contain classifiers very
“uncorrelated” that can be extracted by a design method in order to improve
performances.

Table 1. Results provided by different design methods applied to the set C1.

MCS based on %Accuracy %Rejection %(Accuracy-Rejection)
Our design method 90.52 0.82 89.70
C1 89.83 1.20 88.63
Choose the best 90.10 0.49 89.60
Choose from subspaces 89.98 0.49 89.48

Experimentation with the Set C2

Our algorithm extracted a set C* formed by 5 MLPs and two k-nn classifiers. The
five MLPs belonged to the same three architectures of the previous experiment. The
two k-nn classifiers corresponded to values of the “k” parameter equal to 21 and 77,
respectively. It is worth noticing that such values are quite distant. (This result is in
agreement with the expected correlation of the k-nn classifiers for close values of the
“k” parameter). Table 2 reports the performances of the MCS based on the set C*
designed by our algorithm. For comparison purposes, the performances of the MCSs
based on the initial set C2 and on the other two design methods are also reported. All
the values are referred to the test set. A size of the set C* equal to seven was fixed for
the “choose the best” method. The performances of all the three design methods are
similar. Therefore, conclusions similar to the ones of the previous experiment can be
drawn.



Table 2. Results provided by different design methods applied to the set C2.

MCS based on %Accuracy %Rejection %(Accuracy-Rejection)
Our design method 91.59 1.14 90.45
C2 90.49 1.01 89.48
Choose the best 90.27 0.11 90.16
Choose from subspaces 91.32 0.97 90.35

Experimentation  with the Set C3

This experiment was aimed to evaluate the capability of our design method of
exploiting the “uncorrelation” of a set of “weak” classifiers in order to improve the
performances of the initial set C3. Therefore, we created a set of nineteen MLPs
whose performances were not good (ranging from 80.41% to 85.05%). However,
such MLPs were based on two different architectures and different weight seeds in
order to assure a reasonable degree of error uncorrelation. In addition, we used a PNN
that can be expected to be “independent” from the MLPs. Our algorithm extracted a
set C* formed by two MLPs, characterized by two different architectures, and the
PNN.

Table 3 reports the performances of the MCSs based on the different classifier
sets. All the values are referred to the test set. A size of the set C* equal to three was
fixed for the “choose the best” method. The results show that our design method is
able to choose classifiers more independent than the ones selected by the other
methods. This achievement can be explained by observing that a  detailed analysis of
error uncorrelation is necessary in order to choose effective classifiers from a set of
weak classifiers. This kind of analysis is not carried out by the other methods.

Table 3. Results provided by different design methods applied to the set C3.

MCS based on %Accuracy %Rejection %(Accuracy-Rejection)
Our design method 91.31 2.20 89.11
C3 87.87 2.37 85.50
Choose the best 88.78 1.65 87.13
Choose from subspaces 89.35 1.57 87.78

Experimentation  with the Set C4

The aim of this experiment is basically similar to the previous one. Our algorithm
extracted a set C* formed by one MLPs, one RBF neural network, and the PNN.
Table 4 reports the performances of the MCSs based on the different classifier sets.
All the values are referred to the test set. A size of the set C* equal to three was fixed
for the “choose the best” method. It is easy to see that conclusions similar to the ones
of the previous experiment can be drawn.



Table 4. Results provided by different design methods applied to the set C4.

MCS based on %Accuracy %Rejection %(Accuracy-Rejection)
Our design method 94.83 4.71 90.11
C4 90.46 3.05 87.41
Choose the best 88.78 1.65 87.13
Choose from subspaces 89.35 1.57 87.78

5. Conclusions

In this paper, an approach to the automatic design of MCSs formed by different
classification algorithms has been described. To the best of our knowledge, in the
pattern recognition field, no previous work directly addressed such a problem. Some
work was carried out by neural network researchers. However, the results of such
research work can be exploited only in part for MCSs formed by different classifiers.
The experimental results reported in this paper showed the effectiveness of the
proposed design approach. In addition, a proof of the optimality of our approach has
been provided. It is worth noticing that the assumptions required by such proof are
completely or partially met in many real cases of classifier ensembles.
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