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ABSTRACT Tat " sis !
atum grid analysis
A system for the automatic transcription of music is (_jescribed. dgtg:t?(t)n Beat induction—>| Meter
Signal processing methods are introduced that solve different fac it Measures
ets of the overall problem. Main emphasis is laid on finding the ac_:oustl r | Patterns,
multiple pitches of concurrent musical sounds. Sound onset| '"PY ;
- . . . . S|gna| | eXpeCtatlons

detection and musical meter estimation are described to some |
extent. Other topics discussed are noise robustn(_ass, estimatio_n f Multipitch Sound separation Harmony
the number of concurrent voices, sound separation, and musical estimatioT—> Onset/offset—
instrument recognition. The presented system is evaluated using a Streaming |
database of musical sounds, synthesized MIDI-songs, and CD- L
recordings. Also, the performance of the system is compared to musica
that of human listeners. score

Fig. 1. Overview of the system.
1. INTRODUCTION

Transcription of music is defined to be the act of listening to a 2. SYSTEM OVERVIEW
piece of music and of writing down the musical notation for the Figure 1 shows the overview of the system to be presented in this
sounds that constitute the piece. In other terms, this means transpaper. Transformation of an acoustic signal into a musical score
forming an acoustic signal into a symbolic representation, which goes through data representations of increasing level of abstrac-
comprises musical events and their parameters. The scope of thision from left to right. Processing takes place in two parallel lines,
paper is the automatic transcription of the harmonic and melodic one for the rhythmic issues (top) and another for the harmony and
parts on real-world musical recordings. melody (bottom). The partial results of these two lines are com-
A person without a musical education is usually not able to bined to yield the results of the bottom-up transcription: a raw
transcribe polyphonic music. The richer is the complexity of a musical score.
musical composition, the more experience is needed in musical  The implementation to be described here addresses only the
ear training, instruments involved, and in music theory. However, issues of bottom-up signal analysis, up to the point of musical
skilled musicians are able to resolve even rich polyphonies with score. Beyond that line of abstraction, there are still higher-level
such a flexibility and accuracy that computational transcription musical constructs which represent the “internal state” of a musi-
systems fall clearly behind humans in performance. cal performance. By implementing musicological and statistical
Attempts toward polyphonic transcription date back to 1970s. models governing the progression of these musical parameters,
However, the earliest systems were severely limited in regard to predictions of the internal model can be used as a source of infor-
the number of simultaneous sounds, pitch range, or variety of mation along with the acoustic input signal. Analogous to auto-
sound sources involved [1,2,3]. Relaxation of these constraintsmatic speech recognition, a “language model” for music seems to
was first tried by limiting to a one carefully modeled instrument be indispensable to achieve reliable transcription. However, these
[4,5], or by allowing some more errors to occur in the output [6]. issues are above the scope of this paper.
More recently, Kashino et al. applied psychoacoustic process-  The different parts of the system are now described in more
ing principles in the framework of a Bayesian probability net- detail.
work, where bottom-up signal analysis could be integrated with
temporal and musical predictions [7]. Martin proposed a system 3. SOUND ONSET DETECTION

that was able_t.o utilize musical rules 'E tre:jndscrlblng Lour-vg_lce The termonset detectionefers to the detection of the beginnings
piano compositions [8]. Brown and Cooke addressed the au o1y ot discrete events in acoustic signals. A percept of an onset is

groupirjg and str_eaming of musical sounds according to commMon caused by a noticeable change in the intensity, pitch or timbre of a
acoustic prppertles [9].' Godsmark_and Brown pdr_(?fposed a g!aCk'sound [12]. A fundamental problem in the design of an onset
board. arthtectyrg to integrate evidence from different auditory detection system is distinguishing genuine onsets from gradual
organization prln_C|p_Ies and demonstra_ted th‘f"t the model_ could changes and modulations that take place during the ringing of a
segregate ’.“e'o‘?"c lines frqm polyphonic music [10_]' GO'FO INtro- s6und. Robust one-by-one detection of onsets has proved to be
duced the first pitch analysis method that works quite reliably for . oo without significantly limiting the target signals.

r_eal-world complex mus_ica! signals, finding the melody and bass Only few published systems have set out to solve the problem
lines from complex audio signals [11]. of one-by-one onset detection [12,13,14]. Instead, most systems



pulse tends to remain the most regular and aurally prominent

G_Mw Das:ed line: through music [20]Tatum the temporally shortest and perceptu-
s M i (A®) ally lowest level pulse, is another well-defined and important met-

Solid line: rical level for computational processing of music. It acts dma

d guartum, integer multiples of which appear as pulse intervals on

g; (09(A®) the other metrical levels. A third important metrical level in West-
ern music is theneasureaate, which can often be deduced from
the rate of harmonic changes and the length of a rhythmic pattern.

The mentioned three relatively well-defined metrical levels
together span the rest of the hierarchy. Thus we have taken a four-
stage approach to estimating musical meter. Onsets are first
detected one-by-one, and that information is then used along with
the acoustic signal to estimate the tatum, tactus, and measures.

These span the musical meter.
aim directly at higher-level information, such as the perceived

beat of a musical signal [15,16,17,18], in which case the longer-
term regularities of music can be used to remove single errors andA system for finding the tatum grid from acoustic musical signals
to tune the sensitivity of the low-level detection process. has been proposed in [21]. The tatum period turned out to be best
For us, it was appropriate to detect onsets one-by-one and todetermined fromevent timingnformation only. The problem can
use that information along with the acoustic signal to find the be seen as finding the greatest common divisor for inter-onset
musical meter later on. This approach has the advantage of protime intervals.
viding information whether events occur at the different positions The analysis consists of the following steps. First, inter-onset
of the meter or not, and of indicating events which are ornamental intervals (101) are causally accumulated into a histogram. Robust-
or otherwise deviate from the regular temporal framework. ness against tempo changes is built into the system by letting the
The onset detector has been originally proposed in [19]. The histogram values have an exponential decay through time. 10I's
algorithm employs bandwise processing, building upon the idea are computed between all onset pairs, not adjacent only. In the
that incoming energy at some frequency band indicates the begin-second step, we try to find the tatum period, i.e., the largest inter-
ning of a physical event that is producing the energy. The problem val which divides all IOI's exactly. A problem in doing this is that
of distinguishing genuine onsets from modulations during the 10I's are contaminated with noise. This is solved by evaluating a
ringing of a sound was solved by processing the relative differ- remainder error function, resulting in an “approximate greatest
ence functions of the amplitude envelopes at each frequencycommon divisor” [21].
band, i.e., by differentiating the logarithm of the amplitude enve- . .
lopes at each band instead of the amplitude envelope as such. I#‘z Beat induction
this case, oscillations in the amplitude envelope do not matter tooBeat induction is the most studied subproblem of musical meter
much after the sound has set on, as illustrated in Fig. 2. Theestimation [15,16,17,18]. Beat (tactus) induction embodies the
method is able to perform reliable onset detection in musical sig- part of rhythm which is most useful for musical interaction. Due
nals without assuming regularity in the onset positions. to its close connection to movement along with music, absolute
Up-to-date version of the algorithm is merely a simplified ver- speed is one criterion in choosing the tactus. It varies between 40
sion of that described in [19]. The basic structure is important: and 160 beats per minute, and is often close to 70 beats per
detecting onsets in the logarithmic amplitude envelopes at distinct minute.
frequency bands, and then combining the results across channels. The concept oficcentis central in defining tactus: accentu-
On the contrary, most psychoacoustic details in the original article ated events, i.e., moments of musical stress, should preferably
turned out to be less critical. The current version uses only eight coincide with the beat. Beat induction is the result of perceiving
octave-wide frequency channels between 45 Hz and 19 kHz andaccentuated musical events and discovering underlying periodici-
replaces perceptual models of loudness with an ERB-frequencyties in them. Contrary to tatum, timing information is not suffi-

whereA(t) denotes
the amplitude enve-
lope function.

Fig. 2. Onset of a piano sound. First orddysolute(dashed)
andrelative (solid) difference functions of the amplitude
envelopes at six different frequency channels.

4.1 Tatum grid analysis

scale integral over log-magnitude spectrum. cient for determining the tactus. Thus a model for an accent is
needed: what does a musical accent or stress mean in terms of
4., MUSICAL METER ESTIMATION acoustic features?

Musical signals usually exhibit temporal regularitymneter Per- We took a statistical approgch tq find a modt_el for a mu5|_cal
ceiving musical meter is characterized as the process of detectingaccem' A number of 395 musical pieces from different musical
and filtering musical events so as to discover underlying periodic- genres were collected, an_d beat was tapped manuall_y_ for one-
ities [20]. Musical meter is a hierarchical structure which consists mlnute‘ sections of each piece, recording the .t?ea‘ positions. The
of pulse sensations at different levels (different rates). Moments acoustic features of the events at the beat positions were then ana-

of musical stress serve as cues from which the listener attempts tdyzed, with the assumption that they are likely to be more accen-

extrapolate a regular pattern. Perceiving meter is an essential parEuated than other events. The statistical distribution of different

of making sense of music. features: cepstrum coefficients, delta cepstrum coefficients, spec-

The most prominent pulse sensation in the metrical hierarchy Lral_centr(?d,hbassflevel, attack t'mﬁ’ etc. were St(;)rfd' The d|s;[]r|-
is tactus often called beat, or the “foot tapping rate”. The beat utions of those ieatures were then compared for event that
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Fig. 3. The magnitude spectrum of a single harmonic sound  system, the number of concurrent voices must be estimated
(top) and that of four sounds (bottom). together with the extracted pitch values. Somewhat surprisingly,
the difficulty of estimating the number of voices is comparable to
coincide with the beat, and for those that do not. This resulted in athat of finding the pitch values themselves. Huron has studied
model which is able to discriminate events that should be aligned musician’s ab|||ty to |dent|fy the number of Concurrenﬂy sound-
with the tactus grid. ing voices in polyphonic textures [27]. According to his report,
4.3 Measure level the accuracy in performing the task drops markedly already in
) N ) ] ] four-voice polyphony, where the test subjects underestimated the
At the time of ertlng this paper, metrlca_l gnaly5|s at t_he Measure nymber of voices present in more than half of the cases. Musical
level was not yet implemented. Multipitch analysis provides mixtures often blend well enough to virtually bury one or two
material from which harmonic changes could be detected. The gq.,nds under the others.
rate and positions of these change;, in turn, proyide acue fqr find- Again, we took a statistical approach to solve the problem.
ing the measures. Another potential source of information is the \we ran the iterative multipitch estimation system for generated
length of rhythmic patterns in music. mixtures of known polyphonies and measured different character-
istics of the signal in the course of the iteration — in search for a
5. MULTIPITCH ESTIMATION feature which would indicate the stopping of the iteration after all
Pitch perception plays an essential part in experiencing andsounds have been extracted. A number of features was measured,
understanding music. As human listeners, we are able to perceivereflecting the level of the extracted sound, residual spectrum, esti-
the pitches of several simultaneous sounds and make efficient us@nated signal-to-noise ratio etc. The found model for polyphony
of the pitch to “hear out” a sound in a mixture [22]. Computa- estimation is described in detail in [26].
tional modeling of this function, multipitch estimation, has been Noise suppression is a final necessary part which is needed to
relatively little explored in comparison to the availability of algo- apply the multipitch estimation system to the analysis of real
rithms for single pitch estimation in monophonic speech signals musical recordings. Here, “noise” refers to all signal components
[23]. It is generally admitted that single pitch estimation methods that do not belong to the harmonic and melodic parts. This defini-
are not appropriate as such for multipitch estimation. The com- tion differs considerably from that in speech processing. Modern
plexity difference between the spectrum of a single harmonic musical recordings practically never have continuous noise that
sound and that of four sounds is illustrated in Fig. 3. could be estimated over a longer period of time. Instead, non-har-
Different parts of the multipitch estimation system have been monic parts are due to drums and percussive instruments which
originally proposed by us in [24,25,26]. The method finds the are transient-like in nature and short in duration.
pitches and separates the spectra of concurrent musical sounds at Due to the non-stationary nature of the noise, we employed an
the level of a single time frame, without temporal features availa- algorithm which estimates and removes noise independently in
ble. The method operates at a wide pitch range and does notach analysis frame. Successful noise suppression was achieved
requirea priori knowledge of the sound sources involved. by removing both additive and convolutive noise simultaneously,
Overview of the multipitch estimation system is shown in following the lines of RASTA spectral processing [28]. Details of
Figure 4. The algorithm consists of two main parts that are the process are given in [26].

applied in an iterative succession, as illustrated in Fig. 1. The first
part, predominant pitch estimation, refers to the crucial stage 6. SOUND SEPARATION AND STREAMING

where the pitch of the most prominent sound is estimated in the \ytipitch estimation and sound separation are intimately linked.
interference of other harmonic and noisy sounds. This is achieveds {he pitch of a sound can be determined without getting con-
by utilizing the harmonic concordance of simultaneous spectral f,5¢q by other co-occurring sounds, the pitch information can be
components [24]. In the second part, the spectrum of the detected,sed to organize spectral components to their sources of produc-
sound is estimated and linearly subtracted from the mixture. This tion Or. vice versa. if the spectral components of a source can be

stage utilizes the fact that the spectral envelopes of real soundseparated from the mixture, multipitch estimation reduces to sin-
sources tend to be continuous [25]. The estimation and subtrac-yje pitch estimation.

store the pitch

Jd

L

Fig. 4. Parts of the multipitch estimation method.



In this section, we consider the separation of the time domain NER (6)
waveform of an individual musical event from the mixture. This is 20 ‘
useful for determining the onset and offset times of that particular 151
event, and for streaming events according to their recognized

sources of production. 10 1

6.1 Sound separation - ! g

In [29], we have presented a method for the separation of concur- 0 ‘ L L] !

rent harmonic sounds. The method is based on a two-stage ! 2 ° 6

approach, where the described multipitch estimator is applied to

find initial sound parameters, and in a second stage, more accu- Fig. 5.Note error rates for multipitch estimation in different

rate and time-varying sinusoidal parameters are estimated. polyphonies. Bars represent the overall NERs, and the differ-
For real musical signals, sound separation is significantly ~ ent shades of gray the error cumulation in iteration.

more difficult than for artificial mixtures of clean harmonic

sounds. However, provided that the correct sounds are detected by Table 1:Note error rates (%) in the presence of drum sounds.

al

3 4
polyphony

the multipitch estimator and that drums do not dominate a musi-
cal signal too badly, separation works rather well. Analysis Polyphony

Determination of the onset and offset of each individual frame size| 1 2 3 4 5 6
sound is based on sound separation. The parameters are estimate
in two “sweeps”. The first sweep proceeds forwards and tracks 190 ms 6.9 11 14 20 29 39
the sound until its amplitude envelope indicates the offset. The 93 ms 14 20 29 41 51 61

second sweep goes backwards in time and estimates the onset in a

similar manner. single time frame.

6.2 Streaming N.ote error rgte (NER)metric was takep |n§0 use to measure
T _ the pitch estimation accuracy. A correct pitch is defined to deviate

The termstreamings here used to refer to the process of classify- |ass than half a semitoned %) from the correct value, making it

ing separated sounds into distinct streams according to their com-,gund” to a correct note in a western musical scale. NER is

mon sources of production. A preliminary attempt towards stream gefined as the sum of the pitches in error divided by the number of
formation from the separated notes was performed by utilizing pitches in the reference transcription.

acoustic features used in musical instrument recognition research  Regults for multipitch estimation in different polyphonies are

[30]. Mel-frequency cepstral coefficients, the fundamental fre- spown in Fig. 5. Random mixtures of one to six sounds were gen-
quency, the spectral centroid, and features describing the modulagrated. five hundred instances of each. The estimator was then
tion properties of notes were used to form 17-dimensional feature requested to findN pitches in a single 190 ms time frame 100 ms
vectors, which were then k-means clustered. _ after the onset of the sounds. Here the number of sounds to
Based on the observations in simulation experiments, stréaMeytract, i.e., the number of iterations to run, was given along with
formation according to sources is possible provided that the tim- tne acoustic mixture signal. In Figure 5, the bars represent the
bres of concurrently active sound sources are different enough,qoyerall NERs as a function of the polyphony, where e.g. the NER
and that the distinctive characteristics do not get lost in the sepa-for random four-voice polyphonies is 8.1 % on average. The dif-
ration process. A successful separation and streaming procesgerent shades of grey in each bar indicate the error cumulation in
enables musically meaningful manipulation and remixing of poly- the iteration, errors occurred in the first iteration at the bottom,
phonic and multitimbral music. and errors of the last iteration at the top.
As a general impression, the system works quite reliably and
7. SIMULATION RESULTS exhibits graceful degradation in increasing polyphony, with no
7.1 Multipitch estimation abrupt breakdown in any point. Analysis of the error cumulation
reveals that the errors occurred in the last iteration account for

T_her?;st S|fr;1uli|;1tr:)nne:1per|m?n(tj |sn?rtlﬁlogouts rt: .thertaSKn;Jsduall.i/happroximately half of the errors in all polyphonies, and the proba-
given 1o a freshman music student. the system 1S presented wi bility of error increases rapidly in the course of iteration. Besides

isolated musical chords to be transcribed. Acoustic material CON- i dicating that the iterative analysis does not work perfectly, con-

sisted of a database of sung vowels plus 26 musical INSrUMentSy, 1eq listening tests suggest that this is a feature of the problem

comprising plucked and bowed string instruments, flutes, and itself, rather than only a symptom of the algorithms used. In most

brass and reed instruments. These introduce several Ollfferenénixtures, there is a sound or two that are very difficult to hear out

sound product_lon mechanisms, and a "a”‘?ty of spe_ctra. ng'ran'because their spectrum is virtually buried under the other sounds.
dom sound mixtures were generated by first allotting an instru-

h ; ; hole blavi Table 1 shows the statistical error rate of the overall multip-
2100 Hz, A desireg nunfber of simultaneous sounds was allotted estimation parts were mtegrated to |t._ The r_esults have been aver-
T . - 'aged over three different signal-to-noise ratios: 23 dB, 13 dB, and
and then mixed with equal mean square levels. Acoustic input

L . . . .7~ 3 dB. The test cases were randomly generated as described above,
was fed to the multipitch algorithm that estimated the pitches in a but now interfering drum sounds were randomized and mixed



from Roland R-8 mk Il drum machine. Also, the number of con- CER Qo)

current sounds was not told to the system. 100

The error rates in Table 1 have been calculated by summing o CHORD ERROR RATES
together inserted, deleted (missing), or erroneously transcribed 801 & +— all 10 subjects
notes, and dividing the sum by the number of notes in reference. ;| :
Among the errors, about two thirds were deletions, which is the / o — two weakest
least disturbing error type. The amount of inserted notes stays 4ot
around 1 % in all cases. The rest are erroneous notes. The bias X = two most skilled
towards underestimating the number of concurrent voices was 20|
deliberately implemented, since insertion errors are far more dis- - H bars — computer model

- : . . . o
turbing than deletion errors. Noise suppression enabled reliable 2m 2h 2| 3m 3h 3| 4m 4h 5m
pitch estimation still in 3 dB SNRs. stimulus category

7.2 Comparison to human performance Fig. 6. Chord error rates of the human listeners and of the com-

. . . . utational model for different stimulus categories.
Listening tests were conducted to measure the human pitch identi- P g

fication ability, particularly the ability of trained musicians to Same software code that produced samples to the listening test.
transcribe polyphonic sound mixtures. These were fed to the described multipitch system without tailor-
Test stimuli consisted of computer generated mixtures of iNg its code or parameters. The CER metric was used as a per-
simultaneously onsetting sounds that were reproduced using samformance measure.
pled Steinway grand piano sounds from McGill University Mas- The results are illustrated with bars in Fig. 6. As a general
ter Samples collection. The number of co-occurring sounds variedimpression, only the two most skilled subjects perform better than
from two to five. The gap between the highest and the lowest the computational model. However, performance differences in
pitch in each individual mixture was never wider than 16 semi- high and low registers are quite revealing. The devised algorithm
tones in order to make the task feasible for those subjects that didS able to resolve combinations of low sounds that are beyond
not have absolute pitch, i.e., the rare ability to name the pitch of a chance for human listeners. This seems to be due to the good fre-
sound without a reference tone. Mixtures were generated from sixduency resolution applied. On the other hand, human listeners
partly overlapping pitch ranges. Here results are reported for threePerform relatively well in the high register. This is likely to be due
different ranges. The low register extended from 33 Hz to 130 Hz, t0 an efficient use of the temporal features, onset asynchrony and
the middle register from 130 Hz to 520 Hz, and the high register different decay rates, of high piano tones. These were not availa-
from 520 Hz to 2100 Hz. In total, the test comprised 200 stimuli ble in the single time frame given to the multipitch estimator.
from 20 different categories. o 7.3 Continuous musical signals
The task was to write down the musical intervals, i.e., pitch . . - )
relations, of the presented sound mixtures. Absolute pitch values©OmMbining the multipitch estimation part with the temporal
were not asked, and the number of sounds in each mixture wagProcessing modules, the system is applicable to the transcription

told in beforehand. Thus the test resembles the musical interval©f continuous musical recordings. Since exact musical scores
and chord identification tests that are part of the basic musical Were not available for musical recordings, no statistics on the per-
training in western countries. formance are provided. Instead, excerpts from the original signals

A total of ten subjects participated the test. All of them were and synthesized transcriptions for them are available for listening

trained musicians in the sense of having taken several years oftt hitp://www.cs.wtfi/~klap/. o _
musical ear training. Seven subjects were students of musicology ~ AAccurate and realistic evaluation of a transcription system is
at a university level. Two were more advanced musicians, pos- Pest achieved by transcribing synthesized MIDI-songs. These
sessing absolute pitch and distinguished pitch identification abili- Nave the advantage that the exact reference score is available in
ties. One subject was an amateur musician of similar musical the MIDI-data. Also, high-quality MIDI-songs are available that
ability as the seven students. are complex enough to simulated real performances. A simulation

Figure 6 shows the results of the listening test. Chord error environment was created which allows reading MIDI-files into
rates (CER) are plotted for different stimulus categories. CER is the Matlab environment and synchronizing them with an acoustic
the percentage of sound mixtures where one or more pitch identi-Signal synthesized from the MIDI.

fication error occurred. The labels of the categories consist of a _ Figure 7 illustrates the results for two MIDI-songs, a jazz
number which signifies the polyphony, and of a letter which tells Piano performance, and Mozart's clarinet quintet. These pieces do
the pitch register used. Letter “m” refers to the middle, “h” to the not have drums and thus represent relatively easy transcription
high, and “I” for the low register. Performance curves are aver- tasks. In these examples, the results are presented in the form of a
aged over three different groups. The lowest curve represents the fundamental-frequency gram” (FO-gram, lending the term from
two most skilled subjects, the middle curve the average of all sub- SPectrogram). Original score is plotted with circles and the mul-
jects, and the highest curve two clearly weakest subjects. tipitch estimation results in successive time frames with black
For the sake of comparison, the stimuli and performance cri- dots. Ideally, the train of dots should cover the time span of each
teria used in the listening test were used to re-evaluate the pro-NOte: However, this is not the case even in these relatively easy
posed computational model. Five hundred instances wereCaS€s: SOME notes remain undetected, most of them are detected

generated from each category included in Fig. 6, using exactly theOnly part of their lifetime, and some extraneous notes appear.



40 41 42 43 44 45
Fig. 8. Transcription of a synthesized MIDI-song, “Waterloo”.

Circles denote the original score and crosses the transcription.
The piece has regular rock drums, not shown in the score.

music. Indeed, musical knowledge or rules were not utilized at
all. The system does not even utilize the context, it simply looks
at each segment of the input signal at a time and finds the musical
notes in it. This is not likely to correspond to the experience of a
human listener, but instead, resembles the long-ago abandoned

O = “phonetic typewriter” approach to speech recognition without
P A - . . - language models.
b Among different types of musical input, acoustic music

turned out to be best transcribed. In the absense of drums, even
rich polyphonies yield harmonically satisfactory transcriptions.
This may be a side-product of the inability to use musical models:
Fig. 7.FO-grams calculated for synthesized MIDI-songs: a jazz the system is at its best when using its musical ear, without having
piano performance (top) and Mozart's clarinet quintet (bot-  to resort to musical predictions which it is not able to make. The
tom). Circles denote the original score and black dots the tran-current system as such is already applicable to the chord-level
scription. Time axes are in seconds. See text for details. transcription of acoustic music.
An essential challenge in the area of automatic transcription
Figure 8 shows the transcription result for a MIDI-version of  of music is to formalize musical knowledge and statistics of musi-
Abba’s song “Waterloo”. Here temporal processing has been ca| material to models which can be used to co-operate with, and
included by applying multpitch estimation only at the beginnings direct the attention of, bottom-up signal analysis. Such models
of each detected event. As a result, the transcription is tempora"ycouk‘j inc|ude, for examp|e, the induction and matching of musi-
discrete, although duration values have not been included. A Iargecal patternsl the predictions of which he|p in otherwise ambigu_
portion of notes remain undetected, a phenomenon typical togys situations. A detected musical scale or harmonic state should
musical pieces with percussive instruments together with other, affect thea priori probabilities of different note events. The pro-
relatively soft instruments. In many pieces, even half of the notes gressjon of such harmonic states, in turn, could be statistically
remain undetected. Another typical defect is that onset/offset mgdeled in the form of chorbl-grams, provided that the musical
determination fails, resulting in multiple detections of a single trajining data is available in a suitable format. Also, the closer the
long-duration note at successive metrical points. Also, there wererea| applications get, the more pragmatic and heuristic rules are
several pieces which the system hardly made sense at all. How4jkely to appear in order to adapt to users’ special cases.
ever, when listening to pieces that were synthesized from the tran-
scribed versions, the harmonic progression and musical key often REFERENCES
remained comprehensible even after such messy transcriptions.
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