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ABSTRACT

A system for the automatic transcription of music is described.
Signal processing methods are introduced that solve different fac-
ets of the overall problem. Main emphasis is laid on finding the
multiple pitches of concurrent musical sounds. Sound onset
detection and musical meter estimation are described to some
extent. Other topics discussed are noise robustness, estimation of
the number of concurrent voices, sound separation, and musical
instrument recognition. The presented system is evaluated using a
database of musical sounds, synthesized MIDI-songs, and CD-
recordings. Also, the performance of the system is compared to
that of human listeners.

1.  INTRODUCTION

Transcription of music is defined to be the act of listening to a
piece of music and of writing down the musical notation for the
sounds that constitute the piece. In other terms, this means trans-
forming an acoustic signal into a symbolic representation, which
comprises musical events and their parameters. The scope of this
paper is the automatic transcription of the harmonic and melodic
parts on real-world musical recordings.

A person without a musical education is usually not able to
transcribe polyphonic music. The richer is the complexity of a
musical composition, the more experience is needed in musical
ear training, instruments involved, and in music theory. However,
skilled musicians are able to resolve even rich polyphonies with
such a flexibility and accuracy that computational transcription
systems fall clearly behind humans in performance.

Attempts toward polyphonic transcription date back to 1970s.
However, the earliest systems were severely limited in regard to
the number of simultaneous sounds, pitch range, or variety of
sound sources involved [1,2,3]. Relaxation of these constraints
was first tried by limiting to a one carefully modeled instrument
[4,5], or by allowing some more errors to occur in the output [6].

More recently, Kashino et al. applied psychoacoustic process-
ing principles in the framework of a Bayesian probability net-
work, where bottom-up signal analysis could be integrated with
temporal and musical predictions [7]. Martin proposed a system
that was able to utilize musical rules in transcribing four-voice
piano compositions [8]. Brown and Cooke addressed the auditory
grouping and streaming of musical sounds according to common
acoustic properties [9]. Godsmark and Brown proposed a black-
board architecture to integrate evidence from different auditory
organization principles and demonstrated that the model could
segregate melodic lines from polyphonic music [10]. Goto intro-
duced the first pitch analysis method that works quite reliably for
real-world complex musical signals, finding the melody and bass
lines from complex audio signals [11].

2.  SYSTEM OVERVIEW

Figure 1 shows the overview of the system to be presented in t
paper. Transformation of an acoustic signal into a musical sco
goes through data representations of increasing level of abst
tion from left to right. Processing takes place in two parallel line
one for the rhythmic issues (top) and another for the harmony a
melody (bottom). The partial results of these two lines are com
bined to yield the results of the bottom-up transcription: a ra
musical score.

The implementation to be described here addresses only
issues of bottom-up signal analysis, up to the point of music
score. Beyond that line of abstraction, there are still higher-lev
musical constructs which represent the “internal state” of a mu
cal performance. By implementing musicological and statistic
models governing the progression of these musical paramet
predictions of the internal model can be used as a source of inf
mation along with the acoustic input signal. Analogous to aut
matic speech recognition, a “language model” for music seems
be indispensable to achieve reliable transcription. However, th
issues are above the scope of this paper.

The different parts of the system are now described in mo
detail.

3.  SOUND ONSET DETECTION

The termonset detectionrefers to the detection of the beginning
of discrete events in acoustic signals. A percept of an onse
caused by a noticeable change in the intensity, pitch or timbre o
sound [12]. A fundamental problem in the design of an ons
detection system is distinguishing genuine onsets from grad
changes and modulations that take place during the ringing o
sound. Robust one-by-one detection of onsets has proved to
hard to attain without significantly limiting the target signals.

Only few published systems have set out to solve the proble
of one-by-one onset detection [12,13,14]. Instead, most syste

Fig. 1.Overview of the system.
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aim directly at higher-level information, such as the perceived
beat of a musical signal [15,16,17,18], in which case the longer-
term regularities of music can be used to remove single errors and
to tune the sensitivity of the low-level detection process.

For us, it was appropriate to detect onsets one-by-one and to
use that information along with the acoustic signal to find the
musical meter later on. This approach has the advantage of pro-
viding information whether events occur at the different positions
of the meter or not, and of indicating events which are ornamental
or otherwise deviate from the regular temporal framework.

The onset detector has been originally proposed in [19]. The
algorithm employs bandwise processing, building upon the idea
that incoming energy at some frequency band indicates the begin-
ning of a physical event that is producing the energy. The problem
of distinguishing genuine onsets from modulations during the
ringing of a sound was solved by processing the relative differ-
ence functions of the amplitude envelopes at each frequency
band, i.e., by differentiating the logarithm of the amplitude enve-
lopes at each band instead of the amplitude envelope as such. In
this case, oscillations in the amplitude envelope do not matter too
much after the sound has set on, as illustrated in Fig. 2. The
method is able to perform reliable onset detection in musical sig-
nals without assuming regularity in the onset positions.

Up-to-date version of the algorithm is merely a simplified ver-
sion of that described in [19]. The basic structure is important:
detecting onsets in the logarithmic amplitude envelopes at distinct
frequency bands, and then combining the results across channels.
On the contrary, most psychoacoustic details in the original article
turned out to be less critical. The current version uses only eight
octave-wide frequency channels between 45 Hz and 19 kHz and
replaces perceptual models of loudness with an ERB-frequency
scale integral over log-magnitude spectrum.

4.  MUSICAL METER ESTIMATION

Musical signals usually exhibit temporal regularity, ameter. Per-
ceiving musical meter is characterized as the process of detecting
and filtering musical events so as to discover underlying periodic-
ities [20]. Musical meter is a hierarchical structure which consists
of pulse sensations at different levels (different rates). Moments
of musical stress serve as cues from which the listener attempts to
extrapolate a regular pattern. Perceiving meter is an essential part
of making sense of music.

The most prominent pulse sensation in the metrical hierarchy
is tactus, often called beat, or the “foot tapping rate”. The beat

pulse tends to remain the most regular and aurally promine
through music [20].Tatum, the temporally shortest and perceptu
ally lowest level pulse, is another well-defined and important me
rical level for computational processing of music. It acts as atime
quantum, integer multiples of which appear as pulse intervals o
the other metrical levels. A third important metrical level in Wes
ern music is themeasurerate, which can often be deduced from
the rate of harmonic changes and the length of a rhythmic patte

The mentioned three relatively well-defined metrical leve
together span the rest of the hierarchy. Thus we have taken a fo
stage approach to estimating musical meter. Onsets are
detected one-by-one, and that information is then used along w
the acoustic signal to estimate the tatum, tactus, and measu
These span the musical meter.

4.1   Tatum grid analysis

A system for finding the tatum grid from acoustic musical signa
has been proposed in [21]. The tatum period turned out to be b
determined fromevent timinginformation only. The problem can
be seen as finding the greatest common divisor for inter-on
time intervals.

The analysis consists of the following steps. First, inter-ons
intervals (IOI) are causally accumulated into a histogram. Robu
ness against tempo changes is built into the system by letting
histogram values have an exponential decay through time. IO
are computed between all onset pairs, not adjacent only. In
second step, we try to find the tatum period, i.e., the largest int
val which divides all IOI’s exactly. A problem in doing this is tha
IOI’s are contaminated with noise. This is solved by evaluating
remainder error function, resulting in an “approximate greate
common divisor” [21].

4.2   Beat induction

Beat induction is the most studied subproblem of musical me
estimation [15,16,17,18]. Beat (tactus) induction embodies t
part of rhythm which is most useful for musical interaction. Du
to its close connection to movement along with music, absolu
speed is one criterion in choosing the tactus. It varies between
and 160 beats per minute, and is often close to 70 beats
minute.

The concept ofaccentis central in defining tactus: accentu
ated events, i.e., moments of musical stress, should prefera
coincide with the beat. Beat induction is the result of perceivin
accentuated musical events and discovering underlying period
ties in them. Contrary to tatum, timing information is not suffi
cient for determining the tactus. Thus a model for an accent
needed: what does a musical accent or stress mean in term
acoustic features?

We took a statistical approach to find a model for a music
accent. A number of 395 musical pieces from different music
genres were collected, and beat was tapped manually for o
minute sections of each piece, recording the beat positions. T
acoustic features of the events at the beat positions were then
lyzed, with the assumption that they are likely to be more acce
tuated than other events. The statistical distribution of differe
features: cepstrum coefficients, delta cepstrum coefficients, sp
tral centroid, bass level, attack time, etc. were stored. The dis
butions of those features were then compared for event t
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Fig. 2.Onset of a piano sound. First orderabsolute(dashed)
andrelative (solid) difference functions of the amplitude
envelopes at six different frequency channels.
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coincide with the beat, and for those that do not. This resulted in a
model which is able to discriminate events that should be aligned
with the tactus grid.

4.3   Measure level

At the time of writing this paper, metrical analysis at the measure
level was not yet implemented. Multipitch analysis provides
material from which harmonic changes could be detected. The
rate and positions of these changes, in turn, provide a cue for find-
ing the measures. Another potential source of information is the
length of rhythmic patterns in music.

5.  MULTIPITCH ESTIMATION

Pitch perception plays an essential part in experiencing and
understanding music. As human listeners, we are able to perceive
the pitches of several simultaneous sounds and make efficient use
of the pitch to “hear out” a sound in a mixture [22]. Computa-
tional modeling of this function, multipitch estimation, has been
relatively little explored in comparison to the availability of algo-
rithms for single pitch estimation in monophonic speech signals
[23]. It is generally admitted that single pitch estimation methods
are not appropriate as such for multipitch estimation. The com-
plexity difference between the spectrum of a single harmonic
sound and that of four sounds is illustrated in Fig. 3.

Different parts of the multipitch estimation system have been
originally proposed by us in [24,25,26]. The method finds the
pitches and separates the spectra of concurrent musical sounds at
the level of a single time frame, without temporal features availa-
ble. The method operates at a wide pitch range and does not
requirea priori knowledge of the sound sources involved.

Overview of the multipitch estimation system is shown in
Figure 4. The algorithm consists of two main parts that are
applied in an iterative succession, as illustrated in Fig. 1. The first
part, predominant pitch estimation, refers to the crucial stage
where the pitch of the most prominent sound is estimated in the
interference of other harmonic and noisy sounds. This is achieved
by utilizing the harmonic concordance of simultaneous spectral
components [24]. In the second part, the spectrum of the detected
sound is estimated and linearly subtracted from the mixture. This
stage utilizes the fact that the spectral envelopes of real sound
sources tend to be continuous [25]. The estimation and subtrac-

tion steps are then repeated for the residual signal.
To control the stopping of the iterative multipitch detectio

system, the number of concurrent voices must be estima
together with the extracted pitch values. Somewhat surprising
the difficulty of estimating the number of voices is comparable
that of finding the pitch values themselves. Huron has studi
musician’s ability to identify the number of concurrently sound
ing voices in polyphonic textures [27]. According to his repor
the accuracy in performing the task drops markedly already
four-voice polyphony, where the test subjects underestimated
number of voices present in more than half of the cases. Musi
mixtures often blend well enough to virtually bury one or tw
sounds under the others.

Again, we took a statistical approach to solve the problem
We ran the iterative multipitch estimation system for generat
mixtures of known polyphonies and measured different charact
istics of the signal in the course of the iteration – in search for
feature which would indicate the stopping of the iteration after a
sounds have been extracted. A number of features was measu
reflecting the level of the extracted sound, residual spectrum, e
mated signal-to-noise ratio etc. The found model for polyphon
estimation is described in detail in [26].

Noise suppression is a final necessary part which is neede
apply the multipitch estimation system to the analysis of re
musical recordings. Here, “noise” refers to all signal componen
that do not belong to the harmonic and melodic parts. This defi
tion differs considerably from that in speech processing. Mode
musical recordings practically never have continuous noise t
could be estimated over a longer period of time. Instead, non-h
monic parts are due to drums and percussive instruments wh
are transient-like in nature and short in duration.

Due to the non-stationary nature of the noise, we employed
algorithm which estimates and removes noise independently
each analysis frame. Successful noise suppression was achi
by removing both additive and convolutive noise simultaneous
following the lines of RASTA spectral processing [28]. Details o
the process are given in [26].

6.  SOUND SEPARATION AND STREAMING

Multipitch estimation and sound separation are intimately linke
If the pitch of a sound can be determined without getting co
fused by other co-occurring sounds, the pitch information can
used to organize spectral components to their sources of prod
tion. Or, vice versa, if the spectral components of a source can
separated from the mixture, multipitch estimation reduces to s
gle pitch estimation.

Fig. 3.The magnitude spectrum of a single harmonic sound
(top) and that of four sounds (bottom).
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In this section, we consider the separation of the time domain
waveform of an individual musical event from the mixture. This is
useful for determining the onset and offset times of that particular
event, and for streaming events according to their recognized
sources of production.

6.1   Sound separation

In [29], we have presented a method for the separation of concur-
rent harmonic sounds. The method is based on a two-stage
approach, where the described multipitch estimator is applied to
find initial sound parameters, and in a second stage, more accu-
rate and time-varying sinusoidal parameters are estimated.

For real musical signals, sound separation is significantly
more difficult than for artificial mixtures of clean harmonic
sounds. However, provided that the correct sounds are detected by
the multipitch estimator and that drums do not dominate a musi-
cal signal too badly, separation works rather well.

Determination of the onset and offset of each individual
sound is based on sound separation. The parameters are estimated
in two “sweeps”. The first sweep proceeds forwards and tracks
the sound until its amplitude envelope indicates the offset. The
second sweep goes backwards in time and estimates the onset in a
similar manner.

6.2   Streaming

The termstreamingis here used to refer to the process of classify-
ing separated sounds into distinct streams according to their com-
mon sources of production. A preliminary attempt towards stream
formation from the separated notes was performed by utilizing
acoustic features used in musical instrument recognition research
[30]. Mel-frequency cepstral coefficients, the fundamental fre-
quency, the spectral centroid, and features describing the modula-
tion properties of notes were used to form 17-dimensional feature
vectors, which were then k-means clustered.

Based on the observations in simulation experiments, stream
formation according to sources is possible provided that the tim-
bres of concurrently active sound sources are different enough,
and that the distinctive characteristics do not get lost in the sepa-
ration process. A successful separation and streaming process
enables musically meaningful manipulation and remixing of poly-
phonic and multitimbral music.

7.  SIMULATION RESULTS

7.1   Multipitch estimation

The first simulation experiment is analogous to the task usually
given to a freshman music student: the system is presented with
isolated musical chords to be transcribed. Acoustic material con-
sisted of a database of sung vowels plus 26 musical instruments
comprising plucked and bowed string instruments, flutes, and
brass and reed instruments. These introduce several different
sound production mechanisms, and a variety of spectra. Semiran-
dom sound mixtures were generated by first allotting an instru-
ment, and then a random note from its whole playing range,
however, restricting the pitch over five octaves between 65 Hz and
2100 Hz. A desired number of simultaneous sounds was allotted,
and then mixed with equal mean square levels. Acoustic input
was fed to the multipitch algorithm that estimated the pitches in a

single time frame.
Note error rate (NER)metric was taken into use to measur

the pitch estimation accuracy. A correct pitch is defined to devia
less than half a semitone ( %) from the correct value, making
“round” to a correct note in a western musical scale. NER
defined as the sum of the pitches in error divided by the number
pitches in the reference transcription.

Results for multipitch estimation in different polyphonies ar
shown in Fig. 5. Random mixtures of one to six sounds were ge
erated, five hundred instances of each. The estimator was t
requested to findN pitches in a single 190 ms time frame 100 m
after the onset of the sounds. Here the number of sounds
extract, i.e., the number of iterations to run, was given along w
the acoustic mixture signal. In Figure 5, the bars represent
overall NERs as a function of the polyphony, where e.g. the NE
for random four-voice polyphonies is 8.1 % on average. The d
ferent shades of grey in each bar indicate the error cumulation
the iteration, errors occurred in the first iteration at the bottom
and errors of the last iteration at the top.

As a general impression, the system works quite reliably a
exhibits graceful degradation in increasing polyphony, with n
abrupt breakdown in any point. Analysis of the error cumulatio
reveals that the errors occurred in the last iteration account
approximately half of the errors in all polyphonies, and the prob
bility of error increases rapidly in the course of iteration. Beside
indicating that the iterative analysis does not work perfectly, co
ducted listening tests suggest that this is a feature of the prob
itself, rather than only a symptom of the algorithms used. In mo
mixtures, there is a sound or two that are very difficult to hear o
because their spectrum is virtually buried under the other soun

Table 1 shows the statistical error rate of the overall multi
itch estimation system after the noise suppression and polyph
estimation parts were integrated to it. The results have been av
aged over three different signal-to-noise ratios: 23 dB, 13 dB, a
3 dB. The test cases were randomly generated as described ab
but now interfering drum sounds were randomized and mix

3±

1 2 3 4 5 6
0

5

10

15

20

Fig. 5.Note error rates for multipitch estimation in different
polyphonies. Bars represent the overall NERs, and the diffe
ent shades of gray the error cumulation in iteration.

polyphony

NER (%)

Table 1:Note error rates (%) in the presence of drum sounds

Analysis
frame size

Polyphony

1 2 3 4 5 6

190 ms 6.9 11 14 20 29 39

93 ms 14 20 29 41 51 61
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from Roland R-8 mk II drum machine. Also, the number of con-
current sounds was not told to the system.

The error rates in Table 1 have been calculated by summing
together inserted, deleted (missing), or erroneously transcribed
notes, and dividing the sum by the number of notes in reference.
Among the errors, about two thirds were deletions, which is the
least disturbing error type. The amount of inserted notes stays
around 1 % in all cases. The rest are erroneous notes. The bias
towards underestimating the number of concurrent voices was
deliberately implemented, since insertion errors are far more dis-
turbing than deletion errors. Noise suppression enabled reliable
pitch estimation still in 3 dB SNRs.

7.2   Comparison to human performance

Listening tests were conducted to measure the human pitch identi-
fication ability, particularly the ability of trained musicians to
transcribe polyphonic sound mixtures.

Test stimuli consisted of computer generated mixtures of
simultaneously onsetting sounds that were reproduced using sam-
pled Steinway grand piano sounds from McGill University Mas-
ter Samples collection. The number of co-occurring sounds varied
from two to five. The gap between the highest and the lowest
pitch in each individual mixture was never wider than 16 semi-
tones in order to make the task feasible for those subjects that did
not have absolute pitch, i.e., the rare ability to name the pitch of a
sound without a reference tone. Mixtures were generated from six
partly overlapping pitch ranges. Here results are reported for three
different ranges. The low register extended from 33 Hz to 130 Hz,
the middle register from 130 Hz to 520 Hz, and the high register
from 520 Hz to 2100 Hz. In total, the test comprised 200 stimuli
from 20 different categories.

The task was to write down the musical intervals, i.e., pitch
relations, of the presented sound mixtures. Absolute pitch values
were not asked, and the number of sounds in each mixture was
told in beforehand. Thus the test resembles the musical interval
and chord identification tests that are part of the basic musical
training in western countries.

A total of ten subjects participated the test. All of them were
trained musicians in the sense of having taken several years of
musical ear training. Seven subjects were students of musicology
at a university level. Two were more advanced musicians, pos-
sessing absolute pitch and distinguished pitch identification abili-
ties. One subject was an amateur musician of similar musical
ability as the seven students.

Figure 6 shows the results of the listening test. Chord error
rates (CER) are plotted for different stimulus categories. CER is
the percentage of sound mixtures where one or more pitch identi-
fication error occurred. The labels of the categories consist of a
number which signifies the polyphony, and of a letter which tells
the pitch register used. Letter “m” refers to the middle, “h” to the
high, and “l” for the low register. Performance curves are aver-
aged over three different groups. The lowest curve represents the
two most skilled subjects, the middle curve the average of all sub-
jects, and the highest curve two clearly weakest subjects.

For the sake of comparison, the stimuli and performance cri-
teria used in the listening test were used to re-evaluate the pro-
posed computational model. Five hundred instances were
generated from each category included in Fig. 6, using exactly the

same software code that produced samples to the listening t
These were fed to the described multipitch system without tailo
ing its code or parameters. The CER metric was used as a p
formance measure.

The results are illustrated with bars in Fig. 6. As a gener
impression, only the two most skilled subjects perform better th
the computational model. However, performance differences
high and low registers are quite revealing. The devised algorith
is able to resolve combinations of low sounds that are beyo
chance for human listeners. This seems to be due to the good
quency resolution applied. On the other hand, human listen
perform relatively well in the high register. This is likely to be du
to an efficient use of the temporal features, onset asynchrony
different decay rates, of high piano tones. These were not ava
ble in the single time frame given to the multipitch estimator.

7.3   Continuous musical signals

Combining the multipitch estimation part with the tempora
processing modules, the system is applicable to the transcript
of continuous musical recordings. Since exact musical sco
were not available for musical recordings, no statistics on the p
formance are provided. Instead, excerpts from the original sign
and synthesized transcriptions for them are available for listen
at  http://www.cs.tut.fi/~klap/.

Accurate and realistic evaluation of a transcription system
best achieved by transcribing synthesized MIDI-songs. The
have the advantage that the exact reference score is availabl
the MIDI-data. Also, high-quality MIDI-songs are available tha
are complex enough to simulated real performances. A simulat
environment was created which allows reading MIDI-files int
the Matlab environment and synchronizing them with an acous
signal synthesized from the MIDI.

Figure 7 illustrates the results for two MIDI-songs, a jaz
piano performance, and Mozart’s clarinet quintet. These pieces
not have drums and thus represent relatively easy transcript
tasks. In these examples, the results are presented in the form
“fundamental-frequency gram” (F0-gram, lending the term fro
spectrogram). Original score is plotted with circles and the mu
tipitch estimation results in successive time frames with bla
dots. Ideally, the train of dots should cover the time span of ea
note. However, this is not the case even in these relatively e
cases: some notes remain undetected, most of them are dete
only part of their lifetime, and some extraneous notes appear.

  2m 2h 2l 3m 3h 3l 4m 4h 5m   
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CHORD ERROR RATES

   − all 10 subjects*
   − two weakesto

   − two most skilledx
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Fig. 6.Chord error rates of the human listeners and of the co
putational model for different stimulus categories.
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Figure 8 shows the transcription result for a MIDI-version of
Abba’s song “Waterloo”. Here temporal processing has been
included by applying multpitch estimation only at the beginnings
of each detected event. As a result, the transcription is temporally
discrete, although duration values have not been included. A large
portion of notes remain undetected, a phenomenon typical to
musical pieces with percussive instruments together with other,
relatively soft instruments. In many pieces, even half of the notes
remain undetected. Another typical defect is that onset/offset
determination fails, resulting in multiple detections of a single
long-duration note at successive metrical points. Also, there were
several pieces which the system hardly made sense at all. How-
ever, when listening to pieces that were synthesized from the tran-
scribed versions, the harmonic progression and musical key often
remained comprehensible even after such messy transcriptions.

8.  CONCLUSIONS

The performance of the presented system was shown to be com-
parable to that of trained musicians in chord identification tasks.
As a striking contrast to that, the system performs essentially
worse in the case of real-world musical recordings. This leads to
the most obvious conclusion of this paper: the system has an
applicable musical ear, but it does not understand anything about

music. Indeed, musical knowledge or rules were not utilized
all. The system does not even utilize the context, it simply loo
at each segment of the input signal at a time and finds the mus
notes in it. This is not likely to correspond to the experience of
human listener, but instead, resembles the long-ago abando
“phonetic typewriter” approach to speech recognition witho
language models.

Among different types of musical input, acoustic musi
turned out to be best transcribed. In the absense of drums, e
rich polyphonies yield harmonically satisfactory transcription
This may be a side-product of the inability to use musical mode
the system is at its best when using its musical ear, without hav
to resort to musical predictions which it is not able to make. Th
current system as such is already applicable to the chord-le
transcription of acoustic music.

An essential challenge in the area of automatic transcripti
of music is to formalize musical knowledge and statistics of mus
cal material to models which can be used to co-operate with, a
direct the attention of, bottom-up signal analysis. Such mod
could include, for example, the induction and matching of mus
cal patterns, the predictions of which help in otherwise ambig
ous situations. A detected musical scale or harmonic state sho
affect thea priori probabilities of different note events. The pro
gression of such harmonic states, in turn, could be statistica
modeled in the form of chordN-grams, provided that the musica
training data is available in a suitable format. Also, the closer t
real applications get, the more pragmatic and heuristic rules
likely to appear in order to adapt to users’ special cases.
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