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Introduction 

 In considering the effect of music on the emotional experiences of listeners, two 

methodological obstacles have impeded progress in emotion research for decades: 1) 

the ability to provide a potentially objective measure for the study of emotions felt by 

listeners, and 2) an analytical technique that can account for how emotions change 

dynamically over time. Indeed, the lack of agreement among psychologists even about 

how to define emotion underscores the extraordinary methodological difficulties faced 

by those researchers involved in operationalizing and empirically testing the experience 

of  emotions. A number of scholars studying music’s effects on emotion have 

sidestepped this problem completely by suggesting that phenomenal experiences like 

music simply don’t arouse emotions in listeners at all; instead, listeners merely 

recognize the emotions being expressed by the music. Known as the cognitivist 

position, this argument is at least partially the result of the prevalence in emotion 

research of subjective self-reports like adjective checklists, rating scales, and 

questionnaires (Sloboda & Juslin, 2001), none of which can provide any objective 

evidence for the position that listeners feel emotion (known as the emotivist position). 

 In an effort to provide such an objective measure, psychologists over the past 

century have frequently appealed to the sudden changes of psychophysiological 

mechanisms such as heart rate or respiration as necessary components of felt emotion. 
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Because these mechanisms are mediated by the sympathetic nervous system, a branch 

of the autonomic nervous system responsible for reacting to sudden changes in the 

external environment, psychologists as early as the 1880’s attempted to link measurable 

bodily responses with their concomitant emotions, even suggesting that bodily 

responses cause emotions, and not the other way around.1 Although scholars still 

disagree as to the actual role psychophysiological responses play in the experience of 

emotion, the application of these measures in emotion research remains a widespread 

method for inferring an objective emotional response in listeners. 

 While the difficulties relating to the objective measurement of emotions felt by 

listeners have a rich and well-documented history, the development of approaches to 

measure how emotions change dynamically over time, as well as to generate theories as 

to how these changes relate to a temporal phenomenal experience like music, has 

received little analytical treatment in the academic community until very recently. In 

the last twenty years, music scholars studying musical adopted statistical approaches 

related to forecasting in economics and meteorology as a way to correlate changes in 

musical/acoustic features with subjective measurements of tension and arousal. To this 

point, however, none of the studies adopting a time series analysis approach considered 

objective measures of emotion.   

                                                           
1
 Known as the James-Lange theory of emotion, William James claimed that physiological responses 

produce emotions (Sloboda & Juslin, 2001)  
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In the following study I attempt to fill the gap between objective measurement 

techniques and a time series analysis approach by applying a time series autoregressive 

model to the averaged psychophysiological responses of listeners as they listen to 

Romantic piano music. Using a time series model, I predict changes in 

psychophysiological responses by modeling changes in expressive performance 

features (dynamics, tempo variation) extracted from the acoustic stimuli. 

Background 

 Galvanic skin response (GSR), an electrodermal measure of psychologically-

induced sweat gland activity, indexes a number of processes: namely activation, 

attention, and the affective intensity of the stimulus (Dawson et al, 2007). Indeed, one 

author has noted a linear correlation between increasing arousal and increasing 

electrodermal activity (EDA), which suggests EDA is a more pure measure of emotional 

intensity than any other psychophysiological measure (Rickard, 2004). 

Psychophysiologists currently hold that GSRs represent "orienting responses" (ORs)—

nearly automatic, defensive responses caused by a failure to predict change(s) in an 

external stimulus. ORs measured by GSR reflect the primary nature of emotions as 

action dispositions that are mediated by sympathetic activity preparing the organism 

for fight, flight, and other appropriate appetitive and defensive behaviors (Bradley & 

Lang, 2007).  
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GSR is measured by passing a small current through a pair of electrodes placed 

on the surface of the medial or distal phalanges of the fingers. Upon perceiving audible 

or visible change(s) in the external environment, the eccrine (palmar) sweat glands 

increase sweat secretion, which is theorized to promote grasping behavior. The 

electrodes measure this increase in sweat gland activity as a decrease in electrical 

resistance, or as an increase in electrical conductivity. Of all the psychophysiological 

measures, skin conductance responses are the most reliable at indicating an objective 

change in the arousal of the listening individual (Rickard, 2004). It should therefore be 

conceivable to model changes in the musical stimuli in order to predict changes in the 

GSR profiles. 

Very few studies have actually considered analyzing GSR data over the period of 

an entire excerpt as a time series, instead preferring to use GSRs to record transient 

emotional events such as chills (Craig, 2005; Guhn et al, 2007, Rickard, 2004). Gomez & 

Danuser (2007) sought to determine the extent to which the relationships between 

musical features and experienced emotions correspond, using a number of 

physiological measures. They noted a linear correlation between tempo, accentuation, 

and rhythmic articulation with tonic arousal levels. They also reported a relationship 

between increases in sound intensity and increases in tonic arousal levels. However, 

they did not consider how musical features or physiological responses changed within 
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excerpts, instead comparing statistical differences in analyzed musical features and 

physiological measures across multiple excerpts varying in pleasantness and arousal. 

One possible reason for the dearth of time series studies of electrodermal activity 

lies in a fundamental disagreement as to whether the sympathetic nervous system 

attenuates arousal levels. Figure 1 depicts the principal components of electrodermal 

activity. While the response latency, rise time, and amplitude of the response are all 

considered primary components of electrodermal activity, physiologists disagree as to 

the importance of half-recovery time. Edelberg (1972) has argued that variations in 

electrodermal activity are not the result of an on-off switch in the sympathetic nervous 

system, whereby the sympathetic nervous system activates an increase in sweat gland 

activity as a response to a change in an auditory stimulus, after which it simply 

deactivates, resulting in a gradual decrease in arousal levels; the body therefore doesn’t 

control the rate or amount of decrease in arousal levels. Instead, Edelberg has suggested 

that both increases and decreases in autonomic arousal levels are regulated by the 

sympathetic nervous system. Results from a time series model of galvanic skin response 

should therefore provide evidence as to whether or not decreases in autonomic arousal 

(from the maximum to the minimum of a waveform) reflect a response to change (or a 

lack thereof) in the auditory stimulus. Positive results will suggest that such decreases 

provide evidence of physiological regulation, while negative results will provide 

evidence that the body does not control the rate or amount of decrease in arousal levels.   
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Although no study to date has considered a time series approach to physiological 

measurements within a musical excerpt, a number of studies have considered 

continuous behavioral measurements of tension, resemblance or emotional force, in 

which subjects move a slider in response to their own experience (Nielsen, 1987; 

McAdams et al, 2004; Schubert, 2001, 2004). Thimm & Fischer (2003) extracted 

psychoacoustical features such as loudness and roughness from a number of musical 

stimuli, and compared each of these features independently with the real-time 

continuous behavioral ratings of arousal and valence provided by participants. Because 

both physiological and behavioral responses occur at a variable period of time after the 

onset of the musical features eliciting the reaction, the authors chose to compare the 

features to the behavioral ratings using cross-correlation to determine the appropriate 

time it takes to respond (referred to as lag). By using a cross-correlation technique, 

however, Thimm & Fischer could not provide an estimate for the relative contribution 

of all of the multiple features to the arousal and valence ratings within a single excerpt.  

Farbood (2006) proposed a quantitative parametric model of musical tension, in 

which she regressed tension profiles using musical features like harmonic tension and 

melodic expectation as predictors.2 Her multiple regression method indicated the 

relative salience of each measure over the entirety of each excerpt, but it could not 

                                                           
2
 Devised by Fred Lerdahl and Elizabeth Margulis, respectively, both harmonic Tension and melodic 

expectation attempt to quantify changes in perceived tension or expectation based on music-theoretical 

rules concerning tonality (i.e., effects of modulation and chromaticism on perceived tension).  See Lerdahl 

(1988) & Margulis (2005) for more details.  
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account for effects of serial correlation among all of the variables, one of the most 

serious difficulties time series analysis attempts to address. Emery Schubert (1999, 2001, 

2002, 2004) was the first scholar to apply time series methods to music in order to rectify 

the problems associated with the regression modeling of continuous data. 

 Known as ordinary least squares (OLS) linear regression, a common statistical 

approach for determining the relationship between a dependent variable (behavioral or 

physiological data) and a number of independent variables (musical features) is to find 

a straight line (or surface if more than one musical feature) that best predicts the 

relationship. The line or surface approximates a hypothesized true relationship between 

musical features and the emotional response and is positioned so as to minimize the 

variability between the predicted relationship and the actual data points (Schubert, 

1999). OLS regression can be written as: 

GSR = b0 + b1 x MF1 + b2 x MF2 + … + et 

Each b is a coefficient that measures the amount of increase or decrease in GSR for a 

one-unit increase in the musical feature. Each regression coefficient is therefore 

determined in such a way as to best explain variability in GSR. In a successful 

regression model, the error term et will be small and will vary randomly. If the error 

term is too large and/or it doesn’t vary randomly, the musical features implemented in 

the model don’t adequately reflect changes in GSR, or there aren’t enough musical 

features to represent the variations present in the musical stimulus. Unfortunately, 
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these properties of the error term are often the case in time series analysis, a problem 

often exacerbated by the presence of serial correlation.  

Perhaps the greatest difficulty in applying OLS regression to musical stimuli is 

that it is necessary that every event in the sample is independent (or context-free): each 

individual event can be compared with musical features at the same moment without 

any regard for the events preceding the event under examination. Because a time series 

is a set of data points that are ordered in time, the introduction of time necessarily 

violates the assumption of independence in the OLS regression method. Musical context 

is in fact music theory’s equivalent to serial correlation (or autocorrelation). Statistical 

techniques like OLS regression attempt to remove effects of serial correlation from 

experimental design in order to determine the true relationship between the dependent 

variable and the independent variable(s). If left unexamined, a regression model can 

falsely attribute a greater relationship between these variables, when in fact it is also 

being affected by past values of itself.  

 Figure 2 provides a typical example of the degree of serial correlation in a 

musical feature such as loudness. Serial correlation can be assessed with an 

autocorrelation function (ACF), a measure of the degree of correlation when a musical 

feature is compared against itself moved forward in time at a pre-determined number 

of lags (1 lag=.5s). In this example, the first 3 lags (1.5s) are significantly serially 

correlated. Schubert explains that serial correlation may be thought of as memory. 
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When we reach a loud moment in the music, we won’t simply respond to the absolute 

value of the event at that time, but to the degree of change between that event and the 

preceding events in time. Changes in musical features and emotional responses 

generally occur very gradually, providing a context in which listeners (and our model) 

predict(s) a specifically loud moment, not in terms of other features in the music, but in 

terms of the preceding few seconds (e.g., a crescendo). Autocorrelation acknowledges 

the effect of context, but OLS linear regression does not “know” this, and assumes that 

the high correlation of the features with the response is entirely related to the predictive 

power of the musical features, rather than to the preceding context (Schubert, 1999).  

 Given that serial correlation is a necessary effect of considering a temporal 

stimulus like music, Schubert employed two techniques for minimizing serial 

correlation without dismissing a time series approach altogether3. The first method 

applies a first order difference transformation to the time series of both the musical 

features and the emotion response (in our case GSR), where the difference between the 

current value of a series and the immediately preceding value is used to produce the 

current value of the series. The series 15, 8, 22, 16, for example, produces a difference 

series of -7, 14, -6. A time series like music that can be understood, at least in part, as an 

additive process (adding previous values of itself) is described as a first order 

                                                           
3
 Many scholars in music research often resolve the problem of serial correlation by simply extracting the 

events under examination from the music and submitting them to statistical tests without regard for the 

context in which those events took place. Schubert explains that this method isn’t ecologically valid.  
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integrated process. By removing the integrated component of a time series through 

differencing, we end up with a series that fluctuates more randomly than the original 

series, thereby removing some of the effects of serial correlation (Schubert, 1999). The 

other significant advantage in comparing the differenced time series over the integrated 

time series is that we are comparing the event to event change in each of the variables, 

rather than in the absolute values themselves.  

 The second approach to removing serial correlation is an autoregressive 

adjustment. When the error term of an OLS regression model doesn’t vary randomly, 

either the musical features haven’t adequately reflected the musical stimulus, or the 

error term is serially correlated. If differencing the variables still hasn’t removed the 

effects of serial correlation in the error term, a common approach is to treat the error 

term as having two components—a true error component and a serially correlated 

component. A first order autoregressive model writes the error term as: 

et = a1et-1 + vt 

where et-1 is the error term from the previous point in time and vt is a true random 

variable, as et was in the initial OLS regression model. The coefficient a1 indicates the 

proportion of the previous error term that is carried forward in the next point in time. 

In effect, the a1 coefficient indicates a type of serial correlation process known as first 

order autoregressive. 
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    To account for effects of serial correlation in the musical features, the GSR 

profiles, and the error component of the model, I have applied a first order difference 

transformation to all of the variables and a first order autoregressive adjustment to the 

OLS multiple regression model. To best predict the GSR signal, I have modeled changes 

in expressive performance features (dynamics and tempo variation). Clarke (1999) has 

suggested that these features are important for conveying structural and emotional 

information to the listener, and several researchers have attempted to model the rule 

systems that govern expressive performance parameters (Todd, 1985; Palmer, 1996). 

Gomez and Danuser (2007) suggested that tempo and rhythmic articulation are the 

features most strongly correlated with psychophysiological measures, and a number of 

studies have noted a correlation between stimulus intensity and skin conductance 

response (Turpin & Siddle, 1979; Guhn et al, 2007). 

Method 

Participants 

 20 participants (10 male) with more than 8 years of musical training participated 

in the experiment. The average age of the participants was 22 + 2.5 years and the 

average number of years of musical training was 11 + 2.6. The participants were 

screened for at least 8 years of musical training, no hearing loss, no history of any 

emotional or anxiety disorder, and finally a maximum of 4 years of piano training, in 

order to minimize the potential effects of familiarity on their physiological responses. 
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Stimuli 

 To ensure that emotional responses not only varied within pieces, but just as 

crucially, between pieces, a pre-study was conducted to determine the degree of 

variation between pieces using the Russell valence/arousal space as a theoretical 

foundation. Russell’s (1980) space is an example of a dimensional approach to the study 

of emotion, in which emotions are characterized by two orthogonal dimensions: 

pleasantness (valence), and arousal4. The dimensional approach provides a method by 

which to quantify differences between stimuli using behavioral responses. In the pre-

study, 30 musicians (15 males), screened with the same conditions as the present 

experiment, listened to 40 Romantic piano excerpts that exhibited a small ternary 

structure (either ABA or AABAA) and lasted between 50 and 90 s. While listening, the 

participants indicated their valence of emotion and excitation/arousal on a seven point 

Likert-scale. Participants’ responses for each scale were averaged over the four emotion 

quadrants and then the arousal and valence measures for each piece were analyzed 

using a k-means clustering solution. Shown in figure 3, 19 excerpts were finally chosen 

for the present experiment to optimally represent the four emotion quadrants and to 

minimize familiarity of the excerpts within each quadrant. For the time series analysis, 1 

excerpt was selected from each of the 4 quadrants of the emotion space.  

                                                           
4
 This is not to suggest that researchers haven’t considered a greater number of axes in the study of 

emotion. The first dimensional approach, adopted by Spencer in 1890, employed 3 dimensions: valence, 

arousal, and potency. (Sloboda & Juslin, 2001) 
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406 + valence, + arousal 

108 + valence, - arousal 

402 - valence, + arousal 

304 - valence, - arousal 

 

See table 1 for details about these stimuli. For details about the experimental procedures 

used in acquiring the physiological data, see Mattson (2009).  

  In order to maintain the ecological validity of the stimuli, recordings were taken 

from acoustic performances (rather than using mechanical midi performances). 

Although such a decision reflects a desire to study the effects of “real” music on 

listeners, it also poses the significant challenge of extracting performance features from 

the acoustic signal. In order to derive loudness information directly from the audio file, 

I employed the Moore & Glasberg (1997) model, an auditory filter model of the 

loudness of steady state sounds, measured in sones. As a psychoacoustic model, it 

attempts to account for the perceptual constraints of the human auditory system. 

Cabrera (1999) created a program implemented in Matlab that applies the Moore & 

Glasberg model to 16-bit, 44.1kHz audio files. It analyzes the files in a succession of 

overlapping 93 ms windows and records the results as time series data.  

To obtain tempo variation information, I employed Simon Dixon’s BeatRoot 

software (2001), which provides a means of manually extracting the inter-onset-interval 

(IOI) at an experimenter-selected metrical level. Although his beat extraction algorithms 

are generally very reliable at automatically extracting tempo information (91% accuracy 

across multiple styles), I manually extracted the IOI between beats, using his software 
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to facilitate data acquisition and analysis. The equation to compute tempo as beats per 

minute (bpm) as a time series can be written as: 

bpm = (60*bi)/(IOIt – IOIt-1)  

where bi represents the number of beats in a bar (for ex., common time would receive a 

score of 4), and IOIt – IOIt-1 refers to the IOI subtracted from the IOI that directly 

preceded it. 

Analysis 

 The task of adequately comparing time series of independent features (GSR, 

loudness in sones, tempo in bpm) is admittedly complex, since each feature was 

sampled at a different rate, and a number of different filtering methods are common to 

both GSR and psychoacoustic features like loudness. To further complicate matters, it’s 

essential in a time series approach to minimize the sampling rate, as too high a 

sampling rate results in a spuriously high p value.5 In order to minimize this problem, a 

minimum alpha of .01 will be necessary to report significance, but the number of 

samples within a stimulus must still be carefully controlled.  

To narrow the range of filtering possibilities, a common filtering method for GSR 

was applied to loudness. GSR signals measured at a sampling rate of 256 Hz were sent 

through a fourth-order Butterworth low-pass filter with a cutoff frequency of 0.3 Hz. 

The butterworth filter is ideal in a time series analysis because it is a maximally smooth 

                                                           
5
 In any parametric statistical measure, the larger the N, the higher the likelihood of obtaining a p value 

below .05. 
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filter, providing the possibility to downsample GSR and loudness (originally sampled 

at 51Hz) without losing much information (i.e., it doesn’t violate the Nyquist theorem). 

In the case of tempo, a filtering method wasn’t necessary, since the sampling rate for 

each stimulus was very close to the final sampling rate selected for the final analysis.  

After filtering, each of the features was resampled to 2Hz and normalized to 

between 0-1. The normalized GSR time series for each participant were then averaged. 

As a last step in the pre-processing stage, each of the features were first-order 

differenced to minimize effects of serial correlation. Figure 4 provides an example of the 

processing stages for loudness in excerpt 108. 

Model 

    Before implementing the 1st-order Autoregressive model with 1st order 

differenced features, one crucial obstacle still remains. The simplest regression model 

regresses a single musical feature to predict changes in the emotional response (GSR). 

However, changes in the musical features necessarily precede the onset of the 

physiological response. Galvanic skin response literature refers to the difference 

between the onset of the external stimulus and the onset of the physiological response 

response latency. Typically, the response latency lasts between 1-4 seconds (Dawson et al, 

2007). Unfortunately, this latency, or lag, in the response, is variable rather than fixed. A 

more sudden increase in a salient external stimulus can decrease the latency between 

the initial event and the physiological response, and vice versa. Physiologists have yet 
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to find a quantitative relationship to predict the variability in the lag in physiological 

response.  

 The solution in time series analysis to the problem of lag is to move the time 

series for each feature forward at regular intervals for the length of time the latency 

window is expected to last. For example, the time series for loudness is moved forward 

1 second, 2 seconds, 3 seconds, and 4 seconds, resulting in a total of 5 time series (5 

variables) for loudness. The ensuing model therefore regresses 10 features against GSR,  

and the equation can be written as: 

∆GSR = b0 + b1 x ∆Loudness0 + b2 x ∆Loudness1 … +a1et-1 + vt 

where ∆ indicates that the variable has been first order differenced, and Loudness0 

indicates that the feature has not been moved forward. The coefficient a1 represents the 

autoregressive adjustment of the error term to minimize the effect of serial correlation. 

There are a number of techniques for determining the order of entry of each of 

the predictor variables into the model. Because this analysis involves the application of 

10 features (loudness, tempo, and 4 time series of each moved forward at 1, 2, 3, and 4 

s), many of which will be excluded in the final model, stepwise regression was adopted 

because it automates the criteria for variable selection. Stepwise regression uses a 

predetermined criterion for selecting whether each of a list of variables should be 

included in, or excluded from, the final model (qtd. in Schubert, 1999). This process 

ultimately maximizes the goodness of fit (R2) such that the model only includes 
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variables that significantly contribute to the fit of the model. The following model 

therefore attempts to predict changes in GSR by including all of the lagged time series 

for loudness and tempo, and allowing the algorithm to determine which of these 

features will make a significant contribution to explaining variability in GSR.  

Results 

406 (+ valence, + arousal) 

   For the mean GSR response across all participants to  Drei Klavierstücke, D 946, 

No. 1 in E flat minor by Franz Schubert, the 1st order Autoregressive model (AR1) was: 

∆GSR = -.301 x ∆Loud0 + .289 x ∆Loud6 

The coefficient for the first order autoregressive component of the model (AR1) was 

.892, and all of the features listed in the model were statistically significant (p<.001). 

None of the other variables reached significance, and were excluded in the model by the 

stepwise regression algorithm. Figure 5 presents the model statistics generated by SPSS. 

 Approximately 81% of the variance was explained by the model. This unusually 

good fit suggests that the model successfully explains changing GSR in terms of 

loudness. The negative sign for loudness0 indicates that as loudness decreased, GSR 

increased. Conversely, as Loudness6 (sampled at 2Hz, a lag of 6 = 3 seconds), increased, 

GSR increased 3 seconds later.  

 To determine if the AR(1) model successfully removed effects of serial 

correlation from the model, an autocorrelation of the residual (the error term) was 
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performed. Unfortunately, the AR(1) did not remove all effects of serial correlation, as is 

indicated in figure 6. Although the model explains changing GSR in terms of loudness 

(lag 0 and 3) and a first order autoregressive process, its validity is still compromised by 

the presence of serial correlation. 

 108 (+ valence, - arousal) 

 For the mean GSR response across all participants to  Lyriske Stykker, Vol. 1, Op. 

12, No. 1, Arietta by Edvard Grieg, the 1st order Autoregressive model (AR1) revealed 

no significant results for any of the entered features. According to the model, variations 

in tempo and loudness had no effect in explaining the within-excerpt variance in GSR. 

402 (- valence, + arousal) 

 For the mean GSR response across all participants to 8 Piano Pieces, Op.76, No. 5, 

Capriccio in C sharp minor, by Johannes Brahms, the 1st order Autoregressive model 

was:  

∆GSR = .260 x ∆Loud6 

The coefficient for the first order autoregressive component of the model (AR1) was 

.824, and Loud6 was statistically significant (p = .007). None of the other variables 

reached significance, and were excluded in the model by the stepwise regression 

algorithm. Figure 7 presents the model statistics generated by SPSS. 

 Approximately 79.7% of the variance was explained by the model. In this model, 

as loudness increased, GSR increased 3 seconds later. However, like the previous 
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models, an ACF performed on the residual of the AR(1) model revealed significant 

effects of serial correlation at lags 1, 3, and 4, thereby compromising the validity of the 

model. 

304 (- valence, - arousal) 

 For the mean GSR response across all participants to Etudes symphoniques, Op. 13, 

Thema, by Robert Schumann, the 1st order Autoregressive model was:  

∆GSR = -.139 x ∆Tempo2 + *-.107 x ∆Tempo8 + *-.137 x ∆Loud46 

The coefficient for the first order autoregressive component of the model (AR1) was 

.792, and Tempo2 was statistically significant (p=.003). Two of the other variables 

reached marginal significance: Tempo8 (p=.019) and Loud4 (p=.043). None of the other 

variables reached significance, and were excluded in the model by the stepwise 

regression algorithm. Figure 9 presents the model statistics generated by SPSS. 

 Approximately 72.2% of the variance was explained by the model. In this model, 

as tempo decreased, GSR increased 1 second later and 4 seconds later. However, like the 

previous models, an ACF performed on the residual of the AR(1) model revealed 

significant effects of serial correlation at lags 1, 3, and 4, thereby compromising the 

validity of the model. 

 

 

                                                           
6
 * denotes marginal significance. 
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Discussion 

 For 3 of the 4 excerpts, a 1st order Autoregressive model found significant effects 

of loudness and tempo on GSR, a finding which supports prior work concerning the 

effect of performance variables on both behavioral (Schubert, 2001; Farbood, 2006) and 

physiological (Gomez & Danuser, 2007) responses. However, the failure to sufficiently 

remove effects of serial correlation reduces the model’s validity.  

 Consider a plot of the residual for the AR(1) model of 108, shown in figure 11. In 

a successful regression model, the time series produced from the residual (proportion of 

the variance the model could not account for) should demonstrate no serial correlation; 

in effect, every data point in the series should be random. In the case of the residual in 

108, and for all of the excerpts, these residual time series are still somewhat serial 

correlated (see figures 6, 8, and 10). The most likely explanation for the continued 

presence of serial correlation is that the variables of loudness and tempo do not 

adequately represent the amount of variation within the musical excerpts that could be 

eliciting a change in GSR. The time series shown in figure 11 could be explained by 

changes in a number of other features such as harmony, melody, onset density, etc. In 

order to remove serial correlation, a future model needs to quantify other aspects of the 

music to more adequately represent the multidimensional nature of the musical 

stimulus. 



22 

 

   This criticism of the model should not diminish the significant role 

performances variables play in physiological responses, however. Although modeling 

the within-excerpt variance in GSR is an extraordinarily difficult task, particularly when 

only considering the variables of loudness and tempo, an analysis of the between-

excerpt variance in GSR reveals the significance of these two features in physiological 

responses. Figure 12 provides a correlation matrix of the average loudness, tempo, GSR, 

and heart rate (HR) across all 19 excerpts. The matrix reveals significant effects of 

loudness with GSR (r=.755, p<.0001) and HR (r=.706, p=.001), and tempo with GSR 

(r=.622, p=.004) and HR (r=.601, p=.006). These data indicate that as GSR and HR 

increase between pieces, both loudness and tempo increase significantly.  

 From between-excerpt analyses, the effect of performance features on the 

physiological responses of listeners is unambiguous. However, the application of time 

series analysis on physiological response data is less transparent, as the number of 

factors both intrinsic and extrinsic to the music that can account for variation in 

physiological responses over the course of a short period of time is extraordinarily 

difficult to control, quantify, and model. Although the continued presence of serial 

correlation in this model should provide cause for concern, it most likely points to the 

failure of these 2 features to adequately represent variation in the musical stimulus, 

rather than to the failure of time series analysis as a tool for analyzing the temporal 

dynamics of musical listening.     
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Figure 1—Dawson et al, 2007, pg. 165 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2—The top left graph is a plot of normalized loudness in sones for excerpt 108. 

The table to the right represents the degree of auto-correlation at each lag, where each 

lag=.5s. The figure in the bottom left is a plot of the auto-correlation function. In this 

example, the first 3 lags are significantly autocorrelated.  

 

Autocorrelations 

Series:loud108     

Lag 

Autocorrelati

on 

Std. 

Errora 

Box-Ljung Statistic 

Value df Sig.b 

1 .912 .096 90.738 1 .000 

2 .682 .095 142.002 2 .000 

3 .392 .095 159.078 3 .000 

4 .133 .094 161.069 4 .000 

5 -.027 .094 161.155 5 .000 

6 -.070 .093 161.714 6 .000 

7 -.019 .093 161.755 7 .000 

8 .075 .093 162.413 8 .000 

9 .159 .092 165.415 9 .000 

10 .201 .092 170.223 10 .000 

a. The underlying process assumed is independence 

(white noise). 

b. Based on the asymptotic chi-square 

approximation. 
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Figure 3. Kmeans clustering solution for the valence and arousal ratings of the excerpts 

in the pre-study. The excerpt points are color coded to indicate those that best represent 

each emotion quadrant as determined by the kmeans technique. The green bars indicate 

the center of each clustering per quadrant as determined by the kmeans technique. The 

red circles isolate each of the 4 stimuli examined in the present analysis. 
 

Code Composer Piece & CD Form Duration 

406 (+,+) Franz Schubert Drei Klavierstücke, D 946, 
No. 1 in E flat minor 
 
Harmonic Records, 
H/CD 8610 
Paul Badura-Skoda, 1986 

a a b a a 
 

0:52 
 
B: 0:11.49 
A: 0:41.48 

108 (+,-) Edvard Grieg Lyriske Stykker, Vol. 1, Op. 
12, No. 1, Arietta 
 
Victoria VCD 19025 
Geir Henning Braaten, 1990 

a a b a a 
 

0:52 
 
fade out 
 
B: 0:11.75 
A: 0:41.14 

402 (-,+) Johannes Brahms 8 Piano Pieces, Op.76, No. 5, 
Capriccio in C sharp minor, 
Agitato, ma non troppo 
presto 
 
London Records, 
430 053-2 
Julius Katchen, 1990 

a a b a a 
 

1:17  
 
fade out 
 
B: 0:28.03 
A: 0:53.79 

304 (-,-) 
 

Robert Schumann Etudes symphoniques, Op. 
13, Thema 
 
EMI Classics,  
5 69521 2 
Dimitri Alexeev, 1996 

a b a 1:03 
 
0:22-1:25 
 
B: 0:18.72 
A: 0:40.30 

Table 1—The 4 excerpts used in the time series analysis.  
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Figure 4—Comparison of loudness in raw scores with loudness with a Butterworth 4th 

order low-pass filter, resampled from 51Hz to 2Hz, and range normalized (0-1), and 

loudness after applying a 1st-order difference transformation. 
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Figure 5—406 AR(1) Model 
 

This table indicates the order of entries  

determined by the stepwise regression 

algorithm. 

 

Parameter Estimates 

  Estimat

es 

Std 

Error t 

Approx 

Sig 

Rho (AR1) .892 .050 17.936 .000 

Regression 

Coefficients 

loud -.301 .088 -3.434 .001 

tempo -.001 .018 -.059 .953 

LAGS(loud

,2) 
.102 .078 1.300 .197 

LAGS(tem

po,2) 
-.004 .022 -.189 .850 

LAGS(loud

,4) 
-.085 .096 -.881 .381 

LAGS(loud

,6) 
.289 .078 3.686 .000 

LAGS(loud

,8) 
-.004 .085 -.049 .961 

LAGS(tem

po,4) 
-.014 .024 -.599 .551 

LAGS(tem

po,6) 
-.012 .022 -.549 .585 

LAGS(tem

po,8) 
.000 .018 -.009 .993 

Constant .005 .022 .241 .810 

    

Model Description 

Model Name 406 

Dependent Series gsr 

Independent 

Series 

1 loud 

2 tempo 

3 LAGS(loud,2) 

4 LAGS(tempo,2) 

5 LAGS(loud,4) 

6 LAGS(loud,6) 

7 LAGS(loud,8) 

8 LAGS(tempo,4) 

9 LAGS(tempo,6) 

10 LAGS(tempo,8) 

Constant Included 

AR 1 

Applying the model specifications from MOD_16 

Iteration History 

 

Rho 

(AR1) 

Regression Coefficients 

Cons

tant 

Adjuste

d Sum 

of 

Square

s 

Marqua

rdt 

Consta

nt 

 

loud 

temp

o 

LAGS(l

oud,2) 

LAGS(t

empo,2

) 

LAGS(l

oud,4) 

LAGS(l

oud,6) 

LAGS(l

oud,8) 

LAGS(t

empo,4

) 

LAGS(t

empo,6

) 

LAGS(t

empo,8

) 

0 .000 -.341 .053 .137 .026 -.084 .350 .018 -.054 -.076 -.041 .003 .201 .001 

1 .870 -.301 .000 .103 -.004 -.084 .290 -.005 -.015 -.012 .000 .005 .048 .001 

2 .891 -.301 -.001 .102 -.004 -.085 .289 -.004 -.014 -.012 .000 .005 .048a .000 

        

a. The estimation terminated at this iteration, because the 

sum of squares decreased by less than .001%. 
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The AR Model 1 was entered into an OLS linear regression model to determine the R2, 

which indicates the AR 1 Model accounted for 81.1% of the variance in GSR. 

 
 

 

  

 

 
 
 

 
Figure 6—An ACF of the residual of the AR(1) model indicates that, though serial 

correlation has been dramatically reduced, effects of serial correlation are still present in 

the model at lag 1 and marginally at lag 4. 

Variables Entered/Removedb 

Model 

Variables 

Entered 

Variables 

Removed Method 

1 Fit for gsr 

from AREG, 

MOD 1a 

. Enter 

a. All requested variables entered.  

b. Dependent Variable: gsr  

Model Summary 

Model R 

R 

Square 

Adjusted R 

Square 

Std. Error of 

the Estimate 

1 
.902a .813 .811 

.023975256

565536 

a. Predictors: (Constant), Fit for gsr from AREG, 406 

Autocorrelations 

Series:Residual     

Lag 

Autocorrelati

on Std. Errora 

Box-Ljung Statistic 

Value df Sig.b 

1 .603 .102 34.928 1 .000 

2 .109 .101 36.089 2 .000 

3 -.222 .101 40.922 3 .000 

4 -.275 .100 48.442 4 .000 

5 -.231 .100 53.817 5 .000 

6 -.224 .099 58.901 6 .000 

7 -.213 .099 63.543 7 .000 

8 -.151 .098 65.913 8 .000 

9 -.058 .098 66.272 9 .000 

10 .010 .097 66.284 10 .000 

a. The underlying process assumed is independence (white 

noise). 

b. Based on the asymptotic chi-square 

approximation. 
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Figure 7—402 AR(1) Model 

The table above indicates the order of 

entry determined by the stepwise 

regression algorithm. 
 
 

Parameter Estimates 

  Estimat

es 

Std 

Error t 

Approx 

Sig 

Rho (AR1) .825 .048 17.097 .000 

Regression 

Coefficients 

loud -.106 .103 -1.033 .304 

tempo -.027 .041 -.663 .509 

LAGS(loud

,2) 
-.145 .101 -1.427 .156 

LAGS(tem

po,2) 
-.024 .042 -.573 .568 

LAGS(loud

,4) 
.033 .122 .268 .789 

LAGS(loud

,6) 
.260 .095 2.737 .007 

LAGS(loud

,8) 
.233 .102 2.289 .024 

LAGS(tem

po,4) 
.002 .045 .040 .968 

LAGS(tem

po,6) 
-.054 .044 -1.224 .223 

LAGS(tem

po,8) 
.039 .043 .904 .368 

Constant -.003 .012 -.237 .813 

    

Model Description 

Model Name 402 

Dependent Series gsr 

Independent 

Series 

1 loud 

2 tempo 

3 LAGS(loud,2) 

4 LAGS(tempo,2) 

5 LAGS(loud,4) 

6 LAGS(loud,6) 

7 LAGS(loud,8) 

8 LAGS(tempo,4) 

9 LAGS(tempo,6) 

10 LAGS(tempo,8) 

Constant Included 

AR 1 

 

Iteration History 

 

Rho 

(AR1) 

Regression Coefficients 

Cons

tant 

Adjuste

d Sum 

of 

Square

s 

Marqua

rdt 

Consta

nt 

 

loud 

temp

o 

LAGS(l

oud,2) 

LAGS(t

empo,2

) 

LAGS(l

oud,4) 

LAGS(l

oud,6) 

LAGS(l

oud,8) 

LAGS(t

empo,4

) 

LAGS(t

empo,6

) 

LAGS(t

empo,8

) 

0 .000 .028 -.001 -.214 -.044 .233 .197 .463 .004 -.102 .037 -.004 .240 .001 

1 .790 -.096 -.027 -.141 -.025 .047 .266 .247 .003 -.055 .040 -.003 .082 .001 

2 .821 -.105 -.027 -.144 -.024 .034 .261 .234 .002 -.054 .039 -.003 .082 .000 

3 .824 -.106 -.027 -.145 -.024 .033 .260 .233 .002 -.054 .039 -.003 .082a .000 
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AR 402 was entered into an OLS linear regression model to determine the R2, which 

indicates the AR 1 Model accounted for 79.7% of the variance in GSR. 

 
 

 

 
 

 

 

 

Figure 8—An ACF of the residual of the AR(1) model indicates that, though serial 

correlation has been dramatically reduced, effects of serial correlation are still present in 

the model at lag 1, 3 and 4. 

Variables Entered/Removedb 

Model 

Variables 

Entered 

Variables 

Removed Method 

1 Fit for gsr 

from AREG, 

MOD_12a 

. Enter 

a. All requested variables entered.  

b. Dependent Variable: gsr  

Model Summary 

Model R 

R 

Square 

Adjusted R 

Square 

Std. Error of 

the Estimate 

1 
.893a .798 .797 

.024560108

059410 

a. Predictors: (Constant), Fit for gsr from AREG, 402 

Autocorrelations 

Series:Residual     

Lag 

Autocorrelati

on Std. Errora 

Box-Ljung Statistic 

Value df Sig.b 

1 .554 .084 43.260 1 .000 

2 -.060 .084 43.764 2 .000 

3 -.406 .084 67.403 3 .000 

4 -.376 .083 87.799 4 .000 

5 -.101 .083 89.280 5 .000 

6 .106 .083 90.935 6 .000 

7 .123 .082 93.149 7 .000 

8 .027 .082 93.255 8 .000 

9 -.100 .082 94.763 9 .000 

10 -.164 .081 98.822 10 .000 

a. The underlying process assumed is independence (white 

noise). 

b. Based on the asymptotic chi-square 

approximation. 
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Figure 9—304 AR(1) Model 

 

The table above indicates the order of entry 

determined by the stepwise regression 

algorithm. 
 

Parameter Estimates 

  Estimat

es 

Std 

Error t 

Approx 

Sig 

Rho (AR1) .792 .059 13.407 .000 

Regression 

Coefficients 

loud -.051 .057 -.889 .376 

tempo -.016 .044 -.376 .707 

LAGS(loud

,2) 
.060 .056 1.056 .293 

LAGS(tem

po,2) 
-.139 .046 -2.997 .003 

LAGS(loud

,4) 
-.137 .067 -2.046 .043 

LAGS(loud

,6) 
.074 .058 1.278 .204 

LAGS(loud

,8) 
.050 .059 .853 .395 

LAGS(tem

po,4) 
.017 .047 .365 .716 

LAGS(tem

po,6) 
.019 .047 .393 .695 

LAGS(tem

po,8) 
-.107 .045 -2.385 .019 

Constant .000 .009 -.105 .917 

    

Model Description 

Model Name 304 

Dependent Series gsr 

Independent 

Series 

1 loud 

2 tempo 

3 LAGS(loud,2) 

4 LAGS(tempo,2) 

5 LAGS(loud,4) 

6 LAGS(loud,6) 

7 LAGS(loud,8) 

8 LAGS(tempo,4) 

9 LAGS(tempo,6) 

10 LAGS(tempo,8) 

Constant Included 

AR 1 

Applying the model specifications from MOD_8 

Iteration History 

 

Rho 

(AR1) 

Regression Coefficients 

Cons

tant 

Adjuste

d Sum 

of 

Square

s 

Marqua

rdt 

Consta

nt 

 

loud 

temp

o 

LAGS(l

oud,2) 

LAGS(t

empo,2

) 

LAGS(l

oud,4) 

LAGS(l

oud,6) 

LAGS(l

oud,8) 

LAGS(t

empo,4

) 

LAGS(t

empo,6

) 

LAGS(t

empo,8

) 

0 .000 -.051 .040 .091 -.166 -.123 .109 .074 -.011 -.014 -.187 .000 .105 .001 

1 .777 -.051 -.016 .060 -.139 -.136 .075 .051 .016 .017 -.109 .000 .040 .001 

2 .792 -.051 -.016 .060 -.139 -.137 .074 .050 .017 .019 -.107 .000 .040a .000 

           

a. The estimation terminated at this iteration, because the 

sum of squares decreased by less than .001%. 

       



31 

 

 

 

 
 

 
 

 
 

 

 

AR 304 was entered into an OLS linear regression model to determine the R2, which 

indicates the AR 1 Model accounted for 72.2% of the variance in GSR. 
 

 

 

 

 

 

 

 
Figure 10—An ACF of the residual of the AR(1) model indicates that, though serial 

correlation has been dramatically reduced, effects of serial correlation are still present in 

the model at lag 1, 3 and 4. 

 

Variables Entered/Removedb 

Model 

Variables 

Entered 

Variables 

Removed Method 

1 Fit for gsr 

from AREG, 

304a 

. Enter 

a. All requested variables entered.  

b. Dependent Variable: gsr  

Model Summary 

Model R 

R 

Square 

Adjusted R 

Square 

Std. Error of 

the Estimate 

1 
.851a .724 .722 

.018812665

828458 

a. Predictors: (Constant), Fit for gsr from AREG, 304 

Autocorrelations 

Series:Residual     

Lag 

Autocorrelati

on Std. Errora 

Box-Ljung Statistic 

Value df Sig.b 

1 .531 .092 33.333 1 .000 

2 -.080 .092 34.087 2 .000 

3 -.436 .091 56.921 3 .000 

4 -.423 .091 78.576 4 .000 

5 -.201 .090 83.500 5 .000 

6 .065 .090 84.016 6 .000 

7 .222 .090 90.159 7 .000 

8 .194 .089 94.874 8 .000 

9 .048 .089 95.169 9 .000 

10 -.104 .088 96.553 10 .000 

a. The underlying process assumed is independence (white 

noise). 

b. Based on the asymptotic chi-square 

approximation. 
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Figure 11—Plot of the residual for the AR(1) Model of 108. This time series represents 

the proportion of the variance not accounted for by the model. An ACF of this time 

series revealed autocorrelation at lags 1 and 2. 

 

 
 
 

 

 

 
 

 

 

 

 

 

 

 

 
 
 

Figure 12—A correlation matrix for the mean values of loudness, tempo, GSR, and HR 

across all 19 excerpts. 
 

Correlations 

  loudness tempo gsr hr 

loudness Pearson Correlation 1 .502* .755** .706** 

Sig. (2-tailed)  .029 .000 .001 

N 19 19 19 19 

tempo Pearson Correlation .502* 1 .622** .601** 

Sig. (2-tailed) .029  .004 .006 

N 19 19 19 19 

gsr Pearson Correlation .755** .622** 1 .767** 

Sig. (2-tailed) .000 .004  .000 

N 19 19 19 19 

hr Pearson Correlation .706** .601** .767** 1 

Sig. (2-tailed) .001 .006 .000  

N 19 19 19 19 

*. Correlation is significant at the 0.05 level (2-tailed).   

**. Correlation is significant at the 0.01 level (2-tailed).  
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