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Abstract

In this report, we present an overview of existing literature about wavelet-based approaches
in music information retrieval (MIR). Indeed, we wants to analyze the possibilities of this novel
and popular transform in this particular field. in a first time, we look at general characteristics
of the wavelet theory that makes it suitable for such applications compared to state-of-the-art
research. Then, we give some examples of applications that were found in the MIR literature.

Introduction

Compared to the Fourier transform, the theory relative to the wavelet transform is very young and
its use is presently expanding across most of the domains where signal processing appears. In many
domains, this mathematical tool has been proved to be as efficient or even more efficient than the
traditional Fourier analysis. The first wavelet-like transform appears in the thesis of Haar in 1909.
It makes a second apparition on the work of Zweig in 1975 in his studies of the auditive perception
named as cochlear transform. The word wavelet (from the French ondelettes) is first used by
Grossman and Morlet in 1982 in the field of geophysics, when they develop the continuous wavelet
transform (CWT). In 1983, Stromberg introduces the discrete wavelet transform (DWT). Then,
Daubechies build her family of orthogonal wavelets in 1988, used in many domains (Daubechies
1988; Daubechies 1992). At last, Mallat (Mallat 1989) draws the fast wavelet transform to enable
fast computation in digital applications.

The wavelet approach is more and more widely used, and in many domains, it can now be used
in cooperation with or instead of traditional approach with very good result improvements. The
wavelet properties and the growing conviction of its link to some human perception mechanisms
brings new perspectives to research. Its use in the music domain has been relatively slow compared
to domains such as image processing or geophysics. The first articles referring to applications in
music are “old” (Kronland-Maninet, Morlet, and Grossmann 1987; Kronland-Maninet 1988), but
most of the applications presented in this report have been developed in the last decade.

Most of the domains in MIR have been explored with this new approach but, despite good
preliminary results, it remains not very popular. In this report, we present an overview of these
applications. In the first section, we introduces some basics about the wavelet theory. Next, we
presents the general advantages and downsides of this approach. In the third part, we give some
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Figure 1: Haar mother wavelet

observations about the different applications reviewed. At last, we provides some examples of
promising MIR applications where the wavelet transform was used.

1 The wavelet-transform

The wavelet theory is very similar to the Fourier analysis. They use the same approach which is to
project linearly the signal on a function base in order to extract meaningful information. However,
while the Fourier functions (sines and cosines) are oscillating infinitely, the wavelets are functions
with time localization. The two transforms enable perfect signal reconstruction with the continuous
and the discrete transform (thanks to the sampling theorem).

1.1 Wavelets

The wavelet transform is based on a mother wavelet 1)(t). A wavelet is a mathematical function
with particular properties such as a finite energy and zero mean. For convenience, the energy is
often normalized. Contractions and dilatations of this wavelet are used to tile the time-frequency
space. Mallat demonstrated (Mallat 1989) that a wavelet family can also be characterized by a
scaling function ¢(t), build from the quadratic mirror filter of the mother wavelet. They form a
high-pass/low-pass filter couple that is used for the FWT.

Haar wavelet They are the first known wavelets. They have some disadvantages such as their
non-differentiability but their simplicity have made them popular. The mother wavelet is the step
function (Fig. 1), which acts as numerical differentiation, and the scaling function is the constant
function on [0, 1], which acts as an averager.
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Figure 2: Examples of Daubechies wavelet (mother wavelet and scaling function) - db4, db12 and
db20

Daubechies wavelet The discrete wavelet family drawn by Daubechies (Daubechies 1988) is
widely used in wavelet applications. They have been proven to be very efficient to catch useful
information in signals. It is a family of orthogonal wavelets (what means that the contraction of
the mother wavelet are an orthogonal base of their subspace) with the highest possible number
of vanishing moments, and among the possible solutions, the one whose scaling function has the
extremal phase (Fig. 2). They are build recursively from the Daubechies db2 wavelet, which is
equal to the Haar wavelet. They are numbered with even numbers, the db2n wavelet (e.g., db2,
db4, db6,..., db20) has n vanishing moments.

Choice of wavelets As we will see further in this report, most of the applications use one of the
Daubechies wavelet which are widely used for image processing as well. Some applications prefer
the Haar one due to its simplicity and its low computation time. Many types of wavelet have
been explored in research, and the choice of the wavelet is an important criterion of efficiency in
applications. One can cite Gabor-complex (optimally located in time and frequency), the Simlet,
the Coifman, the Morlet or the cubic spline wavelets. In some applications, the choice of the
wavelets have been proven to have little or no effect (Didiot et al. 2010).

1.2 Wavelet transforms

Continuous wavelet transform The continuous wavelet transform is similar to the Fourier
transform (FT). However, since the wavelets are localized in time and frequency, while the sines
and cosines have infinite lengths, the wavelets have to be shifted in time to transform the whole
space. Thus, the coefficients are defined on a time/frequency space (while the FT coefficients are
only on the frequency axis) by the projection of the signal y(¢) on the contracted/dilated shifted
wavelets:
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The signal can be rebuilt perfectly from these coefficients with a double integration on time and
frequency axes. Thus, the coefficients are highly redundant.

Discrete wavelet transform The discrete wavelet transform (DWT) is directly derived from the
CWT. It consists in using only dyadic wavelets (contraction and dilatation of the mother wavelet
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Figure 3: Time/frequency tiling with FFT, STFT and DWT (Hughes 2006)

by powers of 2) with a sampling of the coefficients:
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It removes the redundancy of the CWT coefficients, and have an optimal compactness (if the
sampling theorem condition is verified, the reconstruction of the analog signal is possible). In
its expression, DWT is very similar to the short-time Fourier transform. The difference is that,
rather tiling uniformly the frequency and time axes, the wavelet transform uses dilatation of the
function so that we have low time resolution and high frequency resolution at low frequencies and
the opposite at low frequencies (Fig. 3). The calculation is based on the projection of the signal on
the base composed by the contracted wavelet and the scaling functions. An efficient implementation
was presented by Mallat (Mallat 1989) using a pyramidal algorithm and quadratic mirror filters. It
uses the filters associated with the mother wavelet and the scaling function and downsampling to
get the coefficients (Fig. 4). The wavelet output contains as many coefficients as the input signal.
The computation has a linear complexity.

Wavelet packet transform A slightly different algorithm is sometimes used in some music
applications. To increase the information available in the highest part of the frequency axis (where
the frequency resolution is the lowest), this subbands are also processed by a wavelet transform.
The result is often sorted in a binary tree. Each level of the tree contains as many coefficients as

the original signal.

Alternative wavelet transforms Noticing some recurrent weaknesses of the basic wavelet trans-
forms in music applications, Evangelista has worked during many years on alternative wavelet
transforms in order to improve some particular properties. The examples of such transforms are
the comb-filter wavelet transform, designed for onset detection, the multiplexed wavelet transform,
designed for pitch tracking (Evangelista 1994), the pitch-synchronous wavelet transform, designed
for audio compression (Evangelista 1993), and frequency-warped wavelet transform, designed to
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Figure 4: Three-level fast wavelet transform - § is the scaling function filter and h is the mother
wavelet filter (Lin et al. 2005)

enable user control on the time/frequency space tiling (Evangelista and Cavaliere 1998a; Evange-
lista and Cavaliere 1998b; Evangelista 2001). These transforms can be considered with the idea
that Lambrou has demonstrated that a classification efficiency can be improved by using adaptative
frequency subband definition (Lambrou et al. 1998). However, due to the novelty of the wavelet
transform in the music domain, basic transforms are preferred in current research to assess the
potential of this approach.

2 Interests of the wavelet transform

The wavelet appears to have some particular properties that make it useful to be used in cooperation
with or instead of usual techniques such as the Fourier analysis for many applications in many
domains such as MIR.

2.1 Advantages

Compactness With as many coefficients as the initial signal, the wavelet transform conveys a
wide range of information due to the multi-scale analysis. It is so interesting for applications where
the number of stored information is a concern.

Robustness On the contrary to the Fourier analysis, the wavelet transform is more robust to non-
stationarity or distortions present in the signal. This difference is due to the fact that the Fourier
analysis is based on the hypothesis of quasi-stationary signals (locally in the case of STFT). The
wavelet-transform also appears to be very robust to noise and bitrate difference (Kobayakawa,
Hoshi, and Onishi 2005). The robustness to noise is particularly important due to the vanishing
moment property of the wavelet that focuses on the important information and discard noisy signal.



Logarithmic frequency scale The interest of having a logarithmic scale are obvious in music
applications. First, the music notes are also define on a logarithmic scale (Azizi, Faez, and Delui
2009). That means that wavelets can isolate the different octaves in independent subbands. Fur-
thermore, the human perception mechanism is also based on logarithmic scales. For an example,
the subbands of the auditive mechanism are roughly organized with this scheme. Other percep-
tive systems such as vision are considered as performing wavelet-like processing to detect edges on
images.

Computation time The wavelet transform appears to be faster to compute than the Fourier
one. Indeed, for a signal of n samples, the FFT requires O(nlogn) operations while the wavelet
transform requires only O(n). This is no longer the case for wavelet packet transform, which has
the same complexity than the FFT. In some cases, the implementation of wavelets such as the
simple Haar one can enable real-time implementation (Fitch and Shabana 1999).

Event detection The multi-scale aspect of the wavelet is an obvious advantages of the wavelet
compared to the STFT. Indeed, while the increasing of the time resolution in STFT makes im-
possible to keep an acceptable frequency resolution, the wavelet can combine the two precisions.
However, the resolution of a wavelet could still be too constraining to obtain satisfactory preci-
sion on both axes. That’s why for some applications (Grimaldi, Cunningham, and Kokaram 2002;
Grimaldi, Cunningham, and Kokaram 2003) require to use two different scales.

Knowledge-free transform In numerous applications, the wavelet transform seems to outper-
form the existing features on knowledge-free applications. That means that for all the application
non based on models, what is quite common in MIR where few knowledge about the audio pieces
is known, the wavelet transform should appear as efficient.

Decorrelated coefficients In the case of orthogonal DWT, the different output coefficients
are statistically independent from each other. That’s means that there is no overlapping in the
information contained in each coeflicients. It is also the proof that the temporal correlation of the
original signal is reduced in its wavelet representation.

2.2 Drawbacks

Intuitiveness The wavelet transform, on the contrary to the FFT, lacks of intuitiveness for the
user. Furthermore, the wide range of available wavelets can make the research of the optimal one
quite difficult. There is no notion equivalent to the spectrum to represent the wavelet results. The
derivation of usual features such as the centroid is also less intuitive, and the definition of high-level
features equivalent to brightness is more complex.

Feature dimension The wavelet transform coefficients are often unsuitable to be used as features
due to their number and their low-level meaning. In most of the cases, high-level features were
derived from these coefficients, often discriminating the different subbands of the transform, or
common dimension reduction techniques were used (Lukasik 2005) to keep only meaningful wavelet



coefficients. This last approach has very low intuitiveness due to the non obvious meanings of the
different wavelet-transform coefficients.

Periodicity attenuation As we said before, the wavelet transform doesn’t assess the pseudo-
periodicity of the signal. It is closer to the hypothesis of signal composed by pieces of polynomial
functions, with a degree lower than the last non-vanishing moments of the mother wavelet. That is
the reason why some information relative to the periodicity of the signal can be lost in the transform
process.

Frequency resolution Despite the multi-resolution property of the wavelet transform, the fre-
quency resolution of the DW'T, based on the octave, is often too coarse to enable proper audio
analysis of sounds. That is one of the reason of the development by Evangelista of the frequency-
warped wavelet transform (Evangelista and Cavaliere 1998a).

3 Applications of the wavelet transform in MIR

3.1 Image recognition extension

The wavelet transform has been used for a long time in image processing. Applications were drawn
by Mallat in his first papers about this new transform (Mallat 1989). Numerous applications
exist in image compression (e.g., JPEG2000), noise removing and edge/object detection. This last
application has an immediate application in MIR for optical music recognition (OMR). The removal
of specific objects such as stavelines is a crucial point in this domain and the use of the wavelet,
in cooperation with or instead of existing methods, could bring interesting results compared to the
literature. Unfortunately, this opportunity seems to be mostly unexplored and only few examples
can be found (George 2004).

3.2 Digital watermarking

The applications of watermarking are numerous (Li and Xue 2003) including annotation, authenti-
cation, broadcast monitoring or tamper proofing. But the most critical one is certainly the copyright
protection. To build a proper watermarking, it should be imperceptible (the watermarked signal has
an equivalent quality), non-complex (the algorithm is simple), robust (the watermark is not much
modified by usual processing and attacks on the signal), deterministic, and safe. The particular
properties of the wavelet transform fit well these requirements and that is the reason why research
in MIR have been done in that direction.

Some studies have been conducted on music scores watermarking. Actually, since a music score
is primarily an image, wavelet-based techniques found in image processing can be used (Kundur
and Hatzinakos 1998). But the most interesting approaches are in the field of audio files. The fact
that some information about the original file, such as its time length or its quality, are difficult to
know, some particular challenges are present in this domain.



Audio watermarking on wavelet coefficients Many watermarking methods are based on
the modification of the larger wavelet-transform coefficients. These coefficients are chosen because
a slight modification on them insure that the audio modification will be added on loud parts
rather than on silent parts. In the study of Fu (Fu, Ma, and Song 2005), the coefficients are
chosen in intermediate subbands of a wavelet transform with Daubechies db6 wavelets to insure
robustness to high-pass and low-pass filtering. The watermark is a defined signal independent
from the audio signal. In the study of Kim (Kim, Lee, and Lee 2007), a much more complex
implementation is proposed in order to improve robustness to audio lossy compression and time-
scaling. A communication channel approach is chosen with error detection and redundancy. On
both examples, conclusive experiments prove the robustness of the two algorithms.

Audio watermarking on wavelet coefficient statistics Another approach is presented in the
work of Li (Li and Xue 2003). To improve robustness of his algorithm to time-scaling and random-
cropping attacks, he chooses to embed the watermark in the mean of signal-frame lowest-subband
coefficients. Extensive experiments on many processing attack classes prove the robustness of these
implementation.

3.3 Feature extraction

Many applications in MIR are based on the feature extraction performed on audio files. One can cite
classification, similarity, pitch-detection, beat-tracking, indexing problems. In all these categories,
wavelet transform has been used and compared to usual techniques such as Fourier analysis or
Mel-frequency cepstrum coefficients (MFCCs).

As expected when we explained the lack of intuitiveness of the wavelet transform, very few
high-level features derived from the low-level coefficients and they are only for pitch and rhythm
measurement. No timbre features equivalent to brightness has been found in the reviewed papers.

3.3.1 Feature extraction requirements

A good feature extraction requires to have the following characteristics (Li, Ogihara, and Li 2003).
it should be comprehensive (representing the music very well), compact (requiring little storage
space) and effective (low extraction computational cost). The wavelet transform appears to bring
interesting perspective considering these three conditions. Indeed, the transform is already more
compact and effective that Fourier analysis (FFT/STFT) or MFCCs. And we expect it to be more
comprehensive considering the improvements obtained in the reviewed papers and in other fields.

3.3.2 Feature categories

Here, we use a feature classification derived from the one introduced by Tzatenakis (Tzanetakis
2002; Tzanetakis and Cook 2002). This work is widely considered as fundamental in the introduc-
tion of the wavelet as music features. The classification is aimed to classify features in musically
meaningful sets in order to improve the development of automatic genre classification of music.



Statistical features The statistical features are popular due to their simplicity and their com-
pactness. However, it is often hard to tell if they are really meaningful, since it is always possible
to tell which high-level characteristics they could represent. The statistical features are numerous:

e 1st order statistics: Mean (1st moment), variance (2nd moment), standard deviation, skew-
ness (3rd moment), kurtosis, minimum, maximum, median

e 2nd order statistics: Angular second moment, correlation, entropy

The 1st and 2nd order statistics have been extended in many papers to the wavelet transform coef-
ficients, and they are the main wavelet-based features present in literature. Most of the time, they
are calculated for each subband of the transform (which represents one octave in the case of DWT).
The basic features such as mean or variance are particularly popular due to their simplicity in the
first studies based on the wavelet transform (Khan, Al-Khatib, and Moinuddin 2004; Ntalampiras
and Fakotakis 2008; Kapur, Bening, and Tzanetakis 2004; Li and Khokhar 2000; Lambrou et al.
1998). In some similarity applications (Rein and Reisslein 2004), these features appeared to be too
broad to allow satisfying efficiency.

In his work, Tzatenakis presents some wavelet-based statistical features (Tzanetakis 2002;
Tzanetakis, Essl, and Cook 2001). He tries to characterize them as high-level features related
to the texture of the piece:

e The mean of the absolute value of the coefficients in each subband that characterizes the
frequency distribution

e The standard deviation in each subband that characterizes the amount of change of the
frequency distribution

e The ratios of the mean values between adjacent subbands that increase the information about
frequency distribution

Timbral features The typical timbral features used (Li, Ogihara, and Li 2003) are statistics of
the STFT coefficients or MFCCs. The last ones are particularly popular due to their demonstrated
efficiency in speech recognition. The usual features are spectral centroid, spectral rolloff, spectral
flux, energy, zero crossings, linear prediction coefficients

Classical features such as subband energy have also been explored with the wavelet transform
(Lin et al. 2005). This approach is particularly developed in the study of Didiot (Didiot et al.
2010). In this paper, the author uses the traditional subband energy definition, but develops also
new features called the teager energy and the hierarchical energy, which have already been used in
speech recognition. These derived energy appears in the experiments as being better than the basic
energy and the MFCC features for speech/music discrimination. In particular, the derived energies
appeared to be more noise-robust and more comprehensive. Furthermore, the wavelet appears to
outperform significantly MFCCs in the case of music/non-music discrimination, and in the case
of detection of speech super-imposed on music. This last observation demonstrates the ability of
wavelet-based features to deal with non-periodic signals.

Two examples of specific wavelet-based timbral features have been found in the reviewed litera-
ture. The first one is the Daubechies wavelet coefficient histograms (DWCHs), which were developed
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Figure 5: DWCHs of 10 blues songs. The feature representations are similar. (Li, Ogihara, and Li
2003)

by Li (Li, Ogihara, and Li 2003) to improve music classification. With this new features, they ex-
plored genre and emotion classification. The feature consists in building the histograms associated
with the wavelet coefficients of each subband of the wavelet transform, and then taking the first
three moments of these distributions as features. The intuition was that the underlying distribution
of these histograms (Fig. 5) could be meaningful genre characteristics.

The second specific feature is the wavelet dispersion vector developed by Rein (Rein and
Reisslein 2006) with the CWT coefficients. After having notice the weaknesses of traditional fea-
tures such as wavelet coefficient envelope or wavelet coefficient statistics, he experimented a new
feature measuring the dispersion of high coefficients on the CWT coefficient 2D-plane in his im-
plementation for classical music composition identification, where the aim is to identify the piece
played in an unknown performance among a set of pieces (which may not contain this particular
performance).

Rhythmic features The particular ability of wavelet to detect onset events makes it suitable for
beat-tracking applications. In his feature list, Tzanetakis (Tzanetakis and Cook 2002) presents an
algorithm for building beat histograms from the DWT coefficients. Their construction is explained
further in Sec. 4.2. These features have been used in the query-by-beating study of Kapur (Kapur,
Bening, and Tzanetakis 2004). Actually, even if the histograms seem to quite properly detect the
tempo of the audio signal, this feature has been demonstrated as inefficient for genre classification
compared to traditional timbre features such as MFCCs.

Further studies on beat and onset detection can be found in other papers of our bibliography
(Daudet 2001; Bello et al. 2005).
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Pitch features Some very efficient pitch detection methods have been developed using the
wavelet transform. We have examples in our bibliography. The first one is the Fitch’s algorithm
(Fitch and Shabana 1999), which presents a very simple method. He experiments several different
wavelets on his algorithm and tests its robustness to noise. The algorithm looks for simultaneous
maxima in several subbands and then calculate the distance between two consecutive peaks as
being the signal period. This technique allows the detection of the fundamental frequency and of
the more energetic frequency. The results are robust to noise, and the algorithm detect pitch with
frames significantly lower than the autocorrelation function. The experiments on different instru-
ments are promising and the algorithm is even capable of identifying non-harmonic instruments.
The algorithm seems also not to be sensitive to the size of the used frame. At last, the simplicity
of the Haar wavelet transform makes a real-time implementation possible.

The second technique is the Specmurt algorithm developed by Sagayama (Sagayama et al.
2005). It is derived from the cepstrum technique which evaluates the pitch with the inverse Fourier
transform of the logarithmic magnitude spectrum of the signal. This new technique is based on
the inverse Fourier transform of the wavelet-transform of the signal and seems to be capable of
detecting pitches on monophonic and also on multi-pitched signals.

In his paper, Ghias (Ghias et al. 1995) underlines that he planes to include a wavelet-based
pitch tracking to his query-by-humming system to improve the results and, what’s most important
in this case, the computational time of the algorithm.

Other recent wavelet-based pitch-tracking techniques can also be found in our bibliography
(Paradzinets et al. 2007; Kondo and Tanaka 2008).

Feature encoding A very interesting approach is presented in the work of Woojay (Woojay,
Changxue, and Yan 2009). Rather than using wavelet-based features, he chooses to use wavelet-
based encoding of his features (fundamental frequency envelopes). This choice is due to the fast
retrieval time in the wavelet representation, since the wavelet coefficients are easy to index on a
binary tree, and the the distance between two features are easy to compute. The experiments are
promising but the results stays comparable to state-of-the-art algorithms.

3.3.3 Auditory model

The similarity between human perception models and the wavelet transform is used in some ap-
plications. It is used in the multi-timbre chord classification developed by Su (Su and Jeng 2001)
where the recognition is performed with a wavelet processing, to simulate the cochlea processing,
and a neural network, to simulate the brain functioning. The used wavelet is the Gabor-complex
wavelet, which offer the optimal time and frequency localization. These wavelets are considered
as being the closest one to the human vision so their extension to audition seems interesting. The
authors present few experiments, but the preliminaries results are promising. In particular, a strong
robustness to noise is demonstrated, with a successful recognition at a SNR of 0dB.

3.4 Source separation

Two papers use a similar approach for source separation (Moussaoui, Rouat, and Lefebvre 2006;
Lampropoulou, Lampropoulos, and Tsihrintzis 2008). Both of them use the wavelet packet trans-
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form in order to pre-process the input signal. The aim is to minimize the mutual information
present in the signals by projecting them on a proper base. In (Moussaoui, Rouat, and Lefebvre
2006), the lowest-entropy coefficients are chosen. The reconstructed signal is then used to build
the inverse mixing filter which separates the different sources. Experiments on artificial and real
signals have shown promising results in both articles.

4 Application examples

4.1 Optical music recognition (George 2004)

As said before, the wavelet transform has been used for a long time in image processing. Its
efficiency has been proven in knowledge-free applications. Thus, testing this approach for optical
music recognition (OMR) was an obvious way to apply this perspective. George made preliminaries
experiments of the wavelet transform as a tool to remove super-imposed objects on music scores, or
at least to pre-process the image to make that task easier. The two kind of objects studied were on
the one hand the stavelines, and on the other hand the other kind of extra symbols. This approach
is very interesting since it brings a lot of questions such as:

e if it is possible to segregate specific objects with a general purpose filtering technique.
e if it is possible to find wavelet adapted to each family of symbols.
e if it is possible to evaluate objectively the efficiency of the algorithms.

e if the choice of the parameters of scanning (e.g., image definition) influences the results.

In her experiments, the wavelet tested are chosen among the Daubechies and the Coifman
wavelets. Three tests have been done: Staveline location, image segmentation between the symbols
and the stavelines with different scanning parameters, and visualization of the transform with
different wavelets.

The conclusions of the study are that:

e the pre-processing with the wavelet transform is a good way to make stavelines easier to
detect.

e filtering images emphasizes non-stavelines objects on the score

e the best wavelet depends on the kind of aimed symbols

This study demonstrates clearly the potential of such approach but further work is needed to
bring proper algorithms in the OMR domain.

4.2 Wavelet-based beat histograms (Tzanetakis and Cook 2002)

The wavelet-based beat histogram is a feature presented by Tzatenakis in 2002. The purpose is
to use the property of multi-resolution of the wavelet transform to improve the results compared
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to algorithms based on less fine frequency-resolution representations such as STFT. The wavelet is
intended to be able to catch the sharp variation of the signal due to the onset of notes, and to use
the fact that in western music, a majority of the notes are played on the tempo beats.

In his implementation, the beat histogram extraction is performed in four steps (Fig. 4.2):

1.

The envelope extraction from a subband z[n] is a common technique based on full wave recti-
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Figure 6: Beat histogram calculation flow diagram (Tzanetakis and Cook 2002)
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. Autocorrelation on the sum of the envelopes: y[k] = + >, z[n]z[n — k]

. Multiple peak picking and histogram calculation: the first three peaks of the autocorrelation
in the appropriate range (40-200 beats-per-minute) are selected and added to the histogram.

fication:
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The experiments showed that on most of the case (18/20), the piece tempo correspond to one
of the two highest histogram peaks. Examples of beat histograms extracted on 30 ms samples from

. Full wave rectification: y[n] = |z[n]

. Low pass filtering with a one-pole filter: y[n] = (1 — a)z[n| + ay[n] with o = 0.99

. Downsampling: y[n] = x[kn] with k = 16

. Mean removal: y[n] = z[n] — E [z[n]]

13




st CLASSICAL 1 st ROCK

Beat Strength
@

Beat Strength
©

o
[N
T
e

"

|
i | ji

. | | | ,_ i J‘ J i ‘l
0 N \}\ j}‘}“ A/A!‘\\ d;kJ\’\’Wﬁ.\)"\ /‘J\\/'\IA\/\ NN L/l\ \\ NVSViVS \ Aaltte oMt Rl lan AL ;\WA\ w‘“«\f"‘f\‘\

|

60 100 120 140 160 180 200 60 80 100 120 140 160 180 200
BPM BPM
6 T 6
st JAZZ ] sk HIP-HOP
4 4
s £
e S
g g
&3 Est
T © \
§ £
Lil
2 2|
| |
! 1 | |
| | : |
U i) I I
i 1 A |
I f\/\ /\\ C /J T ‘;\/ !\ | [\
Viad { hoA A i ! i i
o N/W\f YW W L4 VT 0\\1’*\/‘f\ oAl A AT bl ATANE AW
60 80 100 120 140 160 180 200 60 80 100 120 140 160 180 200
BPM BPM

Figure 7: Beat histogram examples (Tzanetakis and Cook 2002)

pieces of four different genres are provided in the paper (Fig. 7) and show some basic properties
such as the fact that regular beats are more present on certain types of music (e.g., hip-hop) than
other ones (e.g., classical). However, the evaluation presented in the paper shows that this feature is
not a very efficient one for genre classification. This conclusion doesn’t imply that the beat-tracking
is not enough accurate, but that the tempo features are meaningless in genre discrimination. The
beat histogram is part of MARSYAS, the software framework for evaluation of computer audition
applications developed by Tzatenakis.

4.3 Daubechies wavelet coefficient histograms for genre and emotion classifica-
tion (Li, Ogihara, and Li 2003)

In his paper, Li notices that the traditional feature extraction, such as the one developed by
Tzatenakis (Tzanetakis and Cook 2002) capture incomplete information. That’s why he develops
a very interesting wavelet-based timbral features called Daubechies wavelet coefficient histograms
(DWCH). His aim is to obtain characteristic features of the distribution of the amplitude of the
signal over the time, and histograms are a good way to identify distribution attributes. However,
in order to extract the information of the frequency domain, he chooses to first represent the signal
with its DWT. Considering that the information present in each octave is unique, he uses the
logarithmic scale property of wavelets to extract one histogram for each subband. Each histogram
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Figure 8: DWCHs of 10 music signals in different genre. (Li, Ogihara, and Li 2003)

is build using the rounded wavelet coefficients. The final features consist in the three first moments
of the subband histogram distribution and the subband energy. Examples of histograms for ten
music signals in different genre are given (Fig. 8).

This new features are aimed to be used on genre classification, in cooperation with classical
features (e.g. MFCCs) from the Tzanetakis’ MARSYAS framework (Tzanetakis 2002). Several
classifiers (e.g., support vector machines, k-nearest neighbor) are experimented on the same ten-
genre classification dataset used by Tzanetakis. In the experiments, Li uses a Daubechies db8
wavelet with 7 levels of decomposition. After the preliminary experiments with classifiers, he
decides to keep only the features corresponding to four selected subbands. The final feature vector
has a size of 35.

The feature vectors tested on a one-versus-the-rest support vector machine classify accurately
78.5% of the pieces. It is significantly better than the results obtain with the Tzanetakis’ feature
vector (71.9%) or than the results of the same ten-genre classification made with trained collee
students (70%) (Tzanetakis 2002).

5 Discrete wavelet tranform with Daubechies wavelets for jAudio

In the frame of this project, a class implementing the calculation of the discrete wavelet tranform
with Daubechies wavelets have been implemented in jAudio. The source code is provided in App.

A.

5.1 General features

Available wavelets All the Daubechies wavelets from db2 (Haar) to db20 are stored.
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Algorithm The implementation uses the pyramidal algorithm of the FWT.

Remark on computation efficiency A binary re-ordering of the coefficients of the input signal
could enable to perform the algorithm by self-processing the output vector. Anyway, the cur-
rent implementation can be comparable in computation time, and the use of the input vector as
temporary buffer implies that no additional storage space is needed.

5.2 Class overview

Package The class DWT_db is inserted in the jAudioFeatureFExtractor.jAudioTools package as
the FFT transform algorithm.

Constructor The constructor performs the wavelet transform and stores the result. Its inputs
are the signal to be processed, the index of the desired Daubechies wavelet, and the number of
levels of the transform. Input signals are zero-padded if they do not have a length equal to a power
of 2. It stores the result in a vector of the same length as the modified input. Errors are thrown if
the number of levels and the signal length are incompatible, or if the Daubechies index is not valid.

Private fields The class contains two private fields. The first one output is the wavelet trans-
form coefficients computed by the constructor. The second one nb_levels is the number of levels
computed.

Static fields Two 2-dimension arrays stores the coefficients of the low-pass and high-pass filters
associated respectively with the scaling and the wavelet functions for each Daubechies wavelet.
They are respectively called scaling and wavelet.

Public methods Two public methods are provided in the class. The first one getSubband returns
the octave (or subband) specified in input as a vector. The second one getSubbandLabels returns a
vector containing the subband boundaries corresponding to the sampling rate specified in input.

Conclusion

We have seen in this report that many promising MIR research has been carried with wavelet-based
approaches. However, one can notice that the popularity of this technique stays quite low compared
to classical techniques such as STF'T or MFCCs. On the one hand, I think that this is due to the fact
that this theory is quite recent (about 20 years old now) and so most applications are preliminary
studies, and extensive experiments are missing to evaluate accurately the possibilities of the wavelet
transform. Furthermore, we can see in the references that most of the papers have been written
in the last decade. On the other hand, the wavelet transform is one of the first technique that is
appearing at the same time in speech and music research. Historically, works on speech processing
were done earlier since this field is more critical. And many MIR applications are derived from
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speech processing literature. This is no longer the case for the wavelet transform. However, we saw
that in many papers, the approaches are still derived from previous work on speech.

A class implementing the wavelet transform with Daubechies wavelets have been implemented
for the jAudio framework. It enables to include in this software wavelet-based features such as the
ones presented in this report (e.g., DWCHS, beat histograms) for classification purpose.

The wavelet transform will probably strongly improved the processing capacity in many domains

thanks to its very useful properties. One can only hope that further studies will be made in MIR
to improve knowledge on this technique and enable a wider use of the wavelets.

References

Azizi, A., K. Faez, and A. Delui. 2009. Emerging Intelligent Computing Technology and Appli-
cations, Chapter Automatic music transcription based on wavelet transform, 158-65. Heidel-
berg: Springer Berlin.

Baluja, S., and M. Covell. 2006. Content fingerprinting using wavelets. Proceedings of the 3rd
European Conference on Visual Media Production: 198-207.

Baluja, S., and M. Covell. 2007. Audio fingerprinting: Combining computer vision & data stream
processing. Proceedings of the International Conference on Acoustics, Speech, and Signal
Processing 2: 213-16.

Bello, J., L. Daudet, S. Abdallah, C. Duxbury, M. Davies, and M. Sandler. 2005. A tutorial on
onset detection in music signals. IEEE Transactions on Speech and Audio Processing 13 (5):
1035-47.

Busch, C., E. Rademer, M. Schmucker, and S. Wolthusen. 2000. Concepts for an watermarking
technique for music scores. Proceedings of the International Conference on Visual Computing.

Cai, R., L. Lu, H. Zhang, and L. Cai. 2004. Improve audio representation by using feature
structure patterns. Proceedings of the International Conference on Acoustics, Speech and
Signal Processing 4: 345-8.

Chien, Y., and S. Jeng. 2002. An automatic transcription system with octave detection. Proceed-
ings of the International Conference on Acoustics, Speech and Signal Processing 2: 1865-8.

Daubechies, I. 1988. Orthonormal bases of compactly supported wavelets. Communications on
Pure and Applied Mathematics 41: 909-96.

Daubechies, 1. 1992. Philadelphia: Society for Industrial and Applied Mathematics.

Daudet, L. 2001. Transients modeling by pruned wavelet trees. Proceedings of the International
Computer Music Conference: 18-21.

Didiot, E., I. Illina, D. Fohr, and O. Mella. 2010. A wavelet-based parameterization for
speech/music discrimination. Computer Speech and Language 24 (2): 341-57.

Dinh, P.; C. Dorai, and S. Venkatesh. 2002. Video genre categorization using audio wavelet
coefficients. Proceedings of the 5th Asian Conference on Computer Vision.

Dordevic, V., N. Reljin, and I. Reljin. 2005. Identifying and retrieving of audio sequences by using
wavelet descriptors and neural network with users assistance. Proceedings of the International
Conference on Computer as a Tool 1: 167-T70.

17



Endelt, L., and A. la Cour-Harbo. 2004. Wavelets for sparse representation of music. Proceedings
of the 4th International Conference on Web Delivering of Music: 10-4.

Evangelista, G. 1993. Pitch synchronous wavelet representations of speech and music signals.
IEEE Transactions on Signal Processing 41 (12): 3313-30.

Evangelista, G. 1994. Comb and multiplexed wavelet transforms and their applications to signal
processing. IEEE Transactions on Signal Processing 42 (2): 292-303.

Evangelista, G. 2001. Flexible wavelets for music signal processing. Journal of New Music Re-
search 30 (1): 13-22.

Evangelista, G., and S. Cavaliere. 1998a. Discrete frequency warped wavelets: Theory and ap-
plications. IEEE Transactions on Signal Processing 46 (4): 874-85.

Evangelista, G., and S. Cavaliere. 1998b. Frequency warped filter banks and wavelet transform:
A discrete-time approach via laguerre expansions. IEEE Transactions on Signal Processing 46
(10): 2638-50.

Evangelista, G., and S. Cavaliere. 2005a. Event synchronous thumbnails: Experiments. Proceed-
ings of the SMC05 Sound and Music Computing (4).

Evangelista, G., and S. Cavaliere. 2005b. Event synchronous thumbnails: Statistical properties.
Proceedings of the 5th International Conference Understanding and Creating Music (4).

Evangelista, G., and S. Cavaliere. 2005c. Event synchronous wavelet transform approach to the
extraction of musical thumbnails. Proceedings of the 8th international Conference on Digital
Audio Effects (4): 232-6.

Fitch, J., and W. Shabana. 1999. A wavelet-based pitch detector for musical signals. Proceedings
of 2nd Workshop on Digital Audio Effects: 101-4.

Fu, Y., Z. Ma, and G. Song. 2005. A robust audio watermarking algorithm based on wavelet
transform. Journal of Information and Computational Science 2 (1): 7-11.

George, S. 2004. Visual perception of music notation: On-line and off line recognition. Hershey,
PA: IRM Press.

Ghias, A., J. Logan, D. Chamberlin, and B. Smith. 1995. Query by humming: Musical informa-
tion retrieval in an audio database. Proceedings of the 8rd ACM International Conference on
Multimedia: 231-36.

Grimaldi, M., P. Cunningham, and A. Kokaram. 2002. Discrete wavelet packet transform and
ensembles of lazy and eager learners for music genre classification. Multimedia Systems 11
(5): 422-37.

Grimaldi, M., P. Cunningham, and A. Kokaram. 2003. A wavelet packet representation of audio
signals for music genre classification using different ensemble and feature selection techniques.
Proceedings of the 5th ACM SIGMM International Workshop on Multimedia Information
Retrieval: 102-8.

Grimaldi, M., A. Kokaram, and P. Cunningham. 2002. Classifying music by genre using the
wavelet packet transform and a round-robin ensemble. Technical report.

Hughes, J. 2006. An auditory classifier employing a wavelet neural network implemented in a
digital design. Ph. D. thesis, Rochester Institute of Technology, Rochester, NY.

18



Kapur, A., M. Bening, and G. Tzanetakis. 2004. Query by beat-boxing: Music retrieval for the
dj. Proceedings of the 5th International Conference on Music Information Retrieval: 170-7.

Khan, K., W. Al-Khatib, and M. Moinuddin. 2004. Automatic classification of speech and music
using neural networks. Proceedings of the 2nd ACM international workshop on Multimedia
databases: 94-9.

Kim, H., B. Lee, and N. Lee. 2007. Wavelet-based audio watermarking techniques: robustness
and fast synchronization.

Klapuri, A., and M. Davy. 2006. New York: Springer.

Kobayakawa, M., M. Hoshi, and K. Onishi. 2005. A method for retrieving music data with
different bit rates using mpeg-4 twinvq audio compression. Proceedings of the 13th ACM
International Conference on Multimedia: 459-62.

Kondo, Y., and T. Tanaka. 2008. Automatic music scoring based on wavelet transform. Proceed-
ings of the SICE Annual Conference: 1540-3.

Kosina, K. 2002. Music genre recognition. Ph. D. thesis, Technical College of Hagenberg,.

Kronland-Maninet, R. 1988. The wavelet transform for analysis, synthesis, and processing of
speech and music sounds. Computer Music Journal 12 (4): 11-20.

Kronland-Maninet, R., I. Morlet, and A. Grossmann. 1987. Analysis of sound patterns through
wavelet transforms. International Journal Pattern Recognition Artificial Intelligence 1 (2):
97-126.

Kundur, D., and D. Hatzinakos. 1998. Digital watermarking using multiresolution wavelet de-
composition. Proceedings of the International Conference on Acoustics, Speech and Signal
Processing 5: 2969-72.

Kwong, M. 2004. Detection de transitoires dans un signal audio. Ph. D. thesis, Universite de
Sherbrooke.

Lambrou, T., P. Kudumakis, R. Speller, M. Sandler, and A. Linney. 1998. Classification of audio
signals using statistical features on time and wavelet transform domains. Proceedings of the
International Conference on Acoustics, Speech and Signal Processing 6: 3621-4.

Lampropoulou, P., A. Lampropoulos, and G. Tsihrintzis. 2008. Musical instrument category
discrimination using wavelet-based source separation. In New Directions in Intelligent Inter-
active Multimedia, 127-36. Heidelberg: Springer Berlin.

Li, G., and A. Khokhar. 2000. Content-based indexing and retrieval of audio data using wavelets.
Proceedings of the International Conference on Multimedia and Expo 2: 885-8.

Li, T., Q. Li, S. Zhu, and M. Ogihara. 2002. A survey on wavelet applications in data mining.
SIGKDD Ezplorations Newsletter 4 (2): 49-68.

Li, T., and M. Ogihara. 2004. Content-based music similarity search and emotion detection. Pro-
ceedings of the IEEFE International Conference on Acoustics, Speech, and Signal Processing 5
705-8.

Li, T., and M. Ogihara. 2006. Toward intelligent music information retrieval. IEEE Transactions
on Multimedia 8 (3): 564-74.

19



Li, T., M. Ogihara, and Q. Li. 2003. A comparative study on content-based music genre clas-
sification. Proceedings of the 26th International ACM SIGIR Conference on Research and
Development in Information Retrieval: 282-9.

Li, W., and X. Xue. 2003. An audio watermarking technique that is robust against random
cropping. Computer Music Journal 27 (4): 58-68.

Lidy, T., and A. Rauber. 2005. Evaluation of feature extractors and psycho-acoustic transforma-
tions for music genre classification. Proceedings of the 6th International Conference on Music
Information Retrieval: 34—41.

Lin, C., S. Chen, T. Truong, and Y. Chang. 2005. Audio classification and categorization based on
wavelets and support vector machine. IEEE Transactions on Speech and Audio Processing 13
(5): 644-51.

Lin, R., and L. Chen. 2005. A new approach for audio classification and segmentation using

gabor wavelets and fisher linear discriminator. International Journal of Pattern Recognition
and Artificial Intelligence 19 (6): 807-22.

Lippens, S., J. P. Martens, and T. De Mulder. 2004. A comparison of human and automatic
musical genre classification. Proceedings of the IEEFE International Conference on Acoustics,
Speech, and Signal Processing 4: 233—6.

Liu, Y., Q. Xiang, Y. Wang, and L. Cai. 2009. Cultural style based music classification of audio
signals. Proceedings of the IEEFE International Conference on Acoustics, Speech and Signal
Processing: 57—60.

Lukasik, E. 2005. Wavelet packets features extraction and selection for discriminating plucked
sounds of violins. In Computer Recognition Systems, 867—75. Heidelberg: Springer Berlin.

Mallat, S. 1989. A theory for multiresolution signal decomposition: the wavelet representation.
IEEE Transactions on Pattern Analysis and Machine Intelligence 11 (7): 674-93.

Miyamoto, K., H. Kameoka, H. Takeda, T. Nishimoto, and S. Sagayama. 2007. Probabilistic
approach to automatic music transcription from audio signals. Proceedings of the International
Conference on Acoustics, Speech and Signal Processing 2: 697-700.

Moussaoui, R., J. Rouat, and R. Lefebvre. 2006. Wavelet based independent component analysis
for multi-channel source separation. Proceedings of the International Conference on Acoustics,
Speech and Signal Processing.

Ntalampiras, S., and N. Fakotakis. 2008. Speech/music discrimination based on discrete wavelet
transform. Proceedings of the 5th Hellenic conference on Artificial Intelligence: Theories,
Models and Applications: 205-11.

Paradzinets, A., H. Harb, and L. Chen. 2006. Use of continuous wavelet-like transform in auto-
mated music transcription. Proceedings of the Furopean Signal Processing Conference.

Paradzinets, A., O. Kotov, H. Harb, and L. Chen. 2007. Continuous wavelet-like transform based
music similarity features for intelligent music navigation. Proceedings of the International
Workshop on Content-Based Multimedia Indexing: 165-72.

Rein, S., and M. Reisslein. 2004. Identifying the classical music composition of an unknown
performance with wavelet dispersion vector and neural nets. Ph. D. thesis, Arizona State
University,.

20



Rein, S., and M. Reisslein. 2006. Identifying the classical music composition of an unknown
performance with wavelet dispersion vector and neural nets. Information Sciences 176 (12):
1629-55.

Sagayama, S., H. Kameoka, S. Saito, and T. Nishimoto. 2005. ’specmurt anasylis’ of multi-
pitch signals. Proceedings of the IEEE-Furasip Workshop on Nonlinear Signal and Image
Processing: 42-7.

Su, B., and S. Jeng. 2001. Multi-timbre chord classification using wavelet transform and self-
organized map neural networks. Proceedings of the International Conference on Acoustics,
Speech, and Signal Processing 5: 3377-80.

Subramanya, S., and A. Youssef. 1998. Wavelet-based indexing of audio data in audio/multimedia
databases. Proceedings of MultiMedia Database Management Systems: 46—53.

Turnbull, T. 2005. Automatic music annotation. Ph. D. thesis, UC San Diego.

Tzanetakis, G. 2002. Manipulation, analysis and retrieval systems for audio signals. Ph. D. thesis,
Princeton University.

Tzanetakis, G., and P. Cook. 2002. Musical genre classification of audio signals. IEEFE Transac-
tions on Speech and Audio Processing 10 (5): 293-302.

Tzanetakis, G., A. Ermolinskyi, and P. Cook. 2002. Pitch histograms in audio and symbolic
music information retrieval. Proceedings of the International Society for Music Information
Retrieval Conference: 31-8.

Tzanetakis, G., G. Essl, and P. Cook. 2001. Audio analysis using the discrete wavelet transform.
Proceedings of the Conference in Acoustics and Music Theory Applications.

Woehrmann, R., and L. Solbach. 1995. Preprocessing for the automated transcription of poly-
phonic music: Linking wavelet theory and auditory filtering. Proceedings of the International
Computer Music Conference: 396-9.

Woojay, J., M. Changxue, and C. Yan. 2009. An efficient signal-matching approach to melody
indexing and search using continuous pitch contours and wavelets. Proceedings of the Inter-
national Society for Music Information Retrieval Conference: 681-6.

A class DWT _db - Source code

/*

* @Q(#)DWT_db.java 1.0 December 21, 2009.
*

* Francois Germain

* McGill University

*/

package jAudioFeatureExtractor.jAudioTools;
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/%%
* This class performs fast wavelet transform (FWT) using the Daubechies wavelets
* <p>The FWT is performed by this class’ constructor. The coefficients are stored
* in a vector of the same size as the input vector. The input is considered as being
* a real vector
* No inverse transform algorithm is provided
* Q@author Francois Germain
*/

public class DWT_db

{

/% FIELDS skksrokoskokstokoskokstokskokokokokokokoksfokokskostokosk stk o stk kol okokokok kol o stk kol ok stk sk okokok sk okok /

// The results of the FWT.

private double[] output;

// Number of levels of the FWT

private int nb_levels;

/% CONSTRUCTOR skskskokkokskook sk ok sk sk ks ok ks sk s ke sk s e ok sk sk ek sk s e sk sk s sk s sk s sk s ek sk sk ek sk ok ek ok /

/%%
* Performs the FWT transform and stores the result.
* Input signals are zero-padded if they do not have a length equal to a

* power of 2.

* Q@param input The signal to be transformed.

* QOparam db_indice Indice of the desired Daubechies wavelet.
* QOparam depth The number of desired levels of the FWT.

* @throws Exception Throws an exception if less than

* 27 (depth-1)+1 input samples are provided

* or if the Daubechies index is odd or exceeds 20

*/
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public DWT_db( double[] input,

int db_indice,

int depth )

throws Exception

{

// Throw an exception if less than needed samples are provided

if ( input.length < jAudioFeatureExtractor.GeneralTools.Statistics.pow(2, depth-1) + 1 )
throw new Exception( "Only " + input.length + " samples provided.\n" +

"At least " + (jAudioFeatureExtractor.GeneralTools.Statistics.pow(2, depth-1) + 1)
+ " are needed." );

// Throw an exception if the Daubechies indice is not valid

if ( db_indice > 20 || (db_indice % 2) == 1)

throw new Exception( db_indice + " is not a valid Daubechies indice" );

// Verify that the input size has a number of samples that is a

// power of 2. If not, then increase the size of the array using

// zero-padding. Also creates a zero filled imaginary component

// of the input if none was specified.

int valid_size =
jAudioFeatureExtractor.GeneralTools.Statistics.ensureIsPower0fN(input.length, 2);

if (valid_size != input.length)

{

double[] temp_array = new double[valid_size];
for (int i = 0; i < input.length; i++)
temp_array[i] = input[i];

for (int i = input.length; i < valid_size; i++)
temp_array[i] = 0.0;

input = temp_array;

}

// Instantiate the arrays to hold the output and copy the input
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// to them

output = new double[valid_size];
System.arraycopy(input, O, output, 0, valid_size);
// Set the number of levels

nb_levels = depth;

// Perform the spectral recombination stage by stage
int stage;

int frame_size = output.length;

for ( stage = 0 ; stage < depth ; stage++, frame_size /= 2 )

int left;

for (left = 0; left < frame_size - wavelet.length; left += 2)

for (int i = left ; i < left + wavelet.length ; i++)

{

input [left/2] += output[i] * scaling[db_indice/2][i];

input [(left + frame_size)/2] += output[i] * wavelet[db_indice/2][i];
}

}

//Specific case of the last coefficients

for (; left < frame_size; left += 2)

{

for (int i = left ; i < frame_size ; i++)

{

input [left/2] += output[i] * scaling[db_indice/2][i];

input [(left + frame_size)/2] += output[i] * wavelet[db_indice/2][i];
}

}
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System.arraycopy(input, O, output, O, frame_size);
}
}
/* PUBLIC METHODS skskskokskokskoskskokskokskkskosk ki ksk sk ok stk ok sk sk ok skok sk sk ki ok skl ok skosk ok skok sk ook /
/*%
* Returns a frequency subband
* Q@param subband_num Number of the subband
* Q@return The subband vector.
* Q@throws Exception Throws an exception if the subband number
* exceeds the number of levels + 1
*/
public double[] getSubband ( int subband_num )
throws Exception
{
// Output vector
double[] subband;
// Throw an exception if the desired subband doesn’t exist
if ( subband_num > nb_levels + 1 || subband_num < 1 )
throw new Exception( "There is no subband " + subband_num + "." );

if (subband_num == 1){
// Specific case of the approximate subband (the lowest one)

subband = new double[output.length /
jAudioFeatureExtractor.GeneralTools.Statistics.pow(2, nb_levels)];

System.arraycopy(output, O, subband, O, subband.length);

} else {
// Detailed subbands

subband = new double[output.length /
jAudioFeatureExtractor.GeneralTools.Statistics.pow(2, nb_levels + 2 - subband_num)];

System.arraycopy (output,

jAudioFeatureExtractor.GeneralTools.Statistics.pow(2,
nb_levels + 2 - subband_num), subband, O, subband.length);
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return subband;

}

/**
* Returns the frequency subband labels for each subband referred to by the

* output values as determined by the given sampling rate.

* Q@param sampling_rate The sampling rate that was used to perform
* the DWT.
* @return The subband labels.
*/
public double[] getSubbandLabels(double sampling_rate)
{

int number_bins = nb_levels + 1;

double[] labels = new double[number_bins + 1];
labels[0] = 0.0;
for (int subband = 2; subband < labels.length + 1; subband++)

labels[subband-1] = sampling_rate / (double)
jAudioFeatureExtractor.GeneralTools.Statistics.pow(2, nb_levels + 2 - subband);

return labels;

}

/% STATIC FIELDS skskkskskokskokkokskkokokkokokkokokkkokkokokskokok ok ko ok okok ok ok ok ook ok ok ok kokok ok ok ok ok okok /
// The coefficients of the Daubechies scaling function filters (low-pass)
final static double[][] scaling;

// The coefficients of the Daubechies db8 wavelet filter (high-pass)

final static double[][] wavelet;

static {

scaling = new double[][1{ {
7.071067811865475244008443621048490392848359376884740365883398e-01,
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.071067811865475244008443621048490392848359376884740365883398e-01

B

N

4.829629131445341433748715998644486838169524195042022752011715e-01,
8.365163037378079055752937809168732034593703883484392934953414e-01,
2.241438680420133810259727622404003554678835181842717613871683e-01,
-1.294095225512603811744494188120241641745344506599652569070016e-01
1,

{
3.326705529500826159985115891390056300129233992450683597084705e-01,
8.068915093110925764944936040887134905192973949948236181650920e-01,
4.598775021184915700951519421476167208081101774314923066433867e-01,
-1.350110200102545886963899066993744805622198452237811919756862e-01,
-8.544127388202666169281916918177331153619763898808662976351748e-02,
3.522629188570953660274066471551002932775838791743161039893406e-02
1,

{
2.303778133088965008632911830440708500016152482483092977910968e-01,
7.148465705529156470899219552739926037076084010993081758450110e-01,
6.308807679298589078817163383006152202032229226771951174057473e-01,
-2.798376941685985421141374718007538541198732022449175284003358e-02,
-1.870348117190930840795706727890814195845441743745800912057770e-01,
3.084138183556076362721936253495905017031482172003403341821219e-02,
3.288301166688519973540751354924438866454194113754971259727278e-02,
-1.059740178506903210488320852402722918109996490637641983484974e-02
1,

{
1.601023979741929144807237480204207336505441246250578327725699e-01,
6.038292697971896705401193065250621075074221631016986987969283e-01,
7.243085284377729277280712441022186407687562182320073725767335e-01,
1.384281459013207315053971463390246973141057911739561022694652¢-01,
-2.422948870663820318625713794746163619914908080626185983913726e-01,
-3.224486958463837464847975506213492831356498416379847225434268e-02,
7.757149384004571352313048938860181980623099452012527983210146e-02,
-6.241490212798274274190519112920192970763557165687607323417435e-03,
-1.258075199908199946850973993177579294920459162609785020169232e-02,
3.335725285473771277998183415817355747636524742305315099706428e-03
1,

{
1.115407433501094636213239172409234390425395919844216759082360e-01,
4.946238903984530856772041768778555886377863828962743623531834e-01,
7.511339080210953506789344984397316855802547833382612009730420e-01,
3.152503517091976290859896548109263966495199235172945244404163e-01,
-2.262646939654398200763145006609034656705401539728969940143487e-01,
-1.297668675672619355622896058765854608452337492235814701599310e-01,
9.750160558732304910234355253812534233983074749525514279893193e-02,
2.752286553030572862554083950419321365738758783043454321494202e-02,
-3.158203931748602956507908069984866905747953237314842337511464e-02,
5.538422011614961392519183980465012206110262773864964295476524e-04,
4.777257510945510639635975246820707050230501216581434297593254e-03,
-1.077301085308479564852621609587200035235233609334419689818580e-03
1,

{
7.785205408500917901996352195789374837918305292795568438702937e-02,
3.965393194819173065390003909368428563587151149333287401110499e-01,
7.291320908462351199169430703392820517179660611901363782697715e-01,
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4.697822874051931224715911609744517386817913056787359532392529e-01,
-1.439060039285649754050683622130460017952735705499084834401753e-01,
-2.240361849938749826381404202332509644757830896773246552665095e-01,
7.130921926683026475087657050112904822711327451412314659575113e-02,
8.061260915108307191292248035938190585823820965629489058139218e-02,
-3.802993693501441357959206160185803585446196938467869898283122e-02,
-1.657454163066688065410767489170265479204504394820713705239272e-02,
1.255099855609984061298988603418777957289474046048710038411818e-02,
4.295779729213665211321291228197322228235350396942409742946366e-04,
-1.801640704047490915268262912739550962585651469641090625323864e-03,
3.537137999745202484462958363064254310959060059520040012524275e-04
1,

{
5.441584224310400995500940520299935503599554294733050397729280e-02,
3.128715909142999706591623755057177219497319740370229185698712e-01,
6.756307362972898068078007670471831499869115906336364227766759¢-01,
5.853546836542067127712655200450981944303266678053369055707175e-01,
-1.582910525634930566738054787646630415774471154502826559735335e-02,
-2.840155429615469265162031323741647324684350124871451793599204e-01,
4.724845739132827703605900098258949861948011288770074644084096e-04,
1.287474266204784588570292875097083843022601575556488795577000e-01,
-1.736930100180754616961614886809598311413086529488394316977315e-02,
-4.408825393079475150676372323896350189751839190110996472750391e-02,
1.398102791739828164872293057263345144239559532934347169146368e-02,
8.746094047405776716382743246475640180402147081140676742686747e-03,
-4.870352993451574310422181557109824016634978512157003764736208e-03,
-3.917403733769470462980803573237762675229350073890493724492694e-04,
6.754494064505693663695475738792991218489630013558432103617077e-04,
-1.174767841247695337306282316988909444086693950311503927620013e-04

>

}

{
3.807794736387834658869765887955118448771714496278417476647192e-02,
2.438346746125903537320415816492844155263611085609231361429088e-01,
6.048231236901111119030768674342361708959562711896117565333713e-01,
6.572880780513005380782126390451732140305858669245918854436034e-01,
1.331973858250075761909549458997955536921780768433661136154346e-01,
-2.932737832791749088064031952421987310438961628589906825725112e-01,
-9.684078322297646051350813353769660224825458104599099679471267e-02,
1.485407493381063801350727175060423024791258577280603060771649e-01,
3.072568147933337921231740072037882714105805024670744781503060e-02,
-6.763282906132997367564227482971901592578790871353739900748331e-02,
2.509471148314519575871897499885543315176271993709633321834164e-04,
2.236166212367909720537378270269095241855646688308853754721816e-02,
-4.723204757751397277925707848242465405729514912627938018758526e-03,
-4.281503682463429834496795002314531876481181811463288374860455e-03,
1.847646883056226476619129491125677051121081359600318160732515e-03,
2.303857635231959672052163928245421692940662052463711972260006e-04,
-2.519631889427101369749886842878606607282181543478028214134265e-04,
3.934732031627159948068988306589150707782477055517013507359938e-05
1,

{

2.667005790055555358661744877130858277192498290851289932779975e-02,
1.881768000776914890208929736790939942702546758640393484348595e-01,
5.272011889317255864817448279595081924981402680840223445318549e-01,
6.884590394536035657418717825492358539771364042407339537279681e-01,
2.811723436605774607487269984455892876243888859026150413831543e-01,
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-2.498464243273153794161018979207791000564669737132073715013121e-01,
-1.959462743773770435042992543190981318766776476382778474396781e-01,
1.273693403357932600826772332014009770786177480422245995563097e-01,
9.305736460357235116035228983545273226942917998946925868063974e-02,
-7.139414716639708714533609307605064767292611983702150917523756e-02,
-2.945753682187581285828323760141839199388200516064948779769654e-02,
3.321267405934100173976365318215912897978337413267096043323351e-02,
3.606553566956169655423291417133403299517350518618994762730612e-03,
-1.073317548333057504431811410651364448111548781143923213370333e-02,
1.395351747052901165789318447957707567660542855688552426721117e-03,
1.992405295185056117158742242640643211762555365514105280067936e-03,
-6.858566949597116265613709819265714196625043336786920516211903e-04,
-1.164668551292854509514809710258991891527461854347597362819235e-04,
9.358867032006959133405013034222854399688456215297276443521873e-05,
-1.326420289452124481243667531226683305749240960605829756400674e-05
3}

wavelet = new double[10][];

for(int i=0;i < 10;i++)

{

wavelet[i] = new double[2*i];

for(int j=0;j < 2%i;j++)

{

wavelet [1] [j] = scaling[i] [2*i-1-j] * (1 - 2x(j%2));
}

}
}
}
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