Real-time pitch tracking

Contents

Pitch definitions Applications Real-time method requirements Algorithm examples Time-domain methods Frequency-domain methods Statistical methods General improvements Method evaluation

Definitions

Instant frequency ω_i in the case of pseudo-periodic sounds

$$x(t) = \sum_{i=1}^{I(t)} A_i(t) \exp(j\phi_i(t))$$
 with $\phi_i(t) = \int_{-\infty}^t \omega_i(\tau) d\tau$

- Instant fundamental frequency
 - Shortest ω_i

Modern pitch perception models:

- Periodicity of neural patterns in the time domain (Licklider 1951)
- Harmonic pattern of partials resolved by the cochlea in the frequency domain (Goldstein 1973)

Other F0 definitions:

- Rate of vibrations of the vocal folds
- Normalized definition
- Multiple pitch extraction

Figure 3: Waveform with higher power upper harmonics.

12 November 2009

Applications

Original problems in speech processing:

- Classification voiced/unvoiced signals
- Speaker identification

Music applications

- Real-time music transcription
- Audio-to-MIDI conversion
- Pitch modification
 - PSOLA Pitch Synchronous Overlap Add Method (Moulines and Charpentier 1990)
 - Lent's algorithm (Lent 1989)

Realtime pitch tracking (Cuadra 2001)

Problem solved for recorded monophonic voices or sounds

Still difficult in live conditions

Requirements:

- Real-time functioning
- Minimal output delay (latency)
- Robustness (noise)
- Sensitivity to musical requirements of the performance

Live pitch tracking requirements (Cuadra 2001)

Real-time functioning:

- Error checking computational cost
- Heavy overlapping of the frequency transforms
- Several algorithms run in parallel

Minimal output delay (latency)

Pitch-to-MIDI implementation

Robustness (noise)

- Performance environment
- Recording equipment

Sensitivity to musical requirements of the performance

- frequency resolution of at least semi-tones, including the correct octave
- timely recognition and quality of instantaneous pitch for possible real-time conversion into symbolic pitch
- instruments with well-behaved harmonics (such as cello and flute).

Approaches

Time domain

- Zero-crossing rate analysis
- Autocorrelation function
- Instantaneous frequency detection

Frequency domain

- Harmonic period spectrum
- Cepstrum analysis
- Maximum likelihood

Statistical

- Neural networks
- Hidden Markov Models

12 November 2009

Zero-crossing rate (Gerhard 2001)

- Extracts the distance between two zero crossing as being the period related to the fundamental frequency
- Perform badly on inharmonic sounds or sounds with power in the higher frequencies
- Intrinsic information to be used with other algorithms

12 November 2009

Weighted Autocorrelation Function (Kobayashi 1995; Cuadra 2001)

Algorithm

- pick peaks in the autocorrelation function...
- ...or in the average magnitude difference function...
- ... or with an improved estimator

$$\phi(\tau) = \frac{1}{N} \sum_{n=0}^{N-1} x(n) x(n+\tau) \quad \psi(\tau) = \frac{1}{N} \sum_{n=0}^{N-1} |x(n) - x(n+\tau)| \quad f(\tau) = \frac{\phi(\tau)}{\psi(\tau) + k}$$

Advantages

- The last estimator is noise-robust
- Efficient in the case of allowed gross pitch error (10 Hz)

Autocorrelation function - Algorithm (de Cheveigné and Kawahara 2001)

Autocorrelation function Octave errors **Difference function**

$$r_{t}(\tau) = \sum_{j=t+1}^{W} x_{j} x_{j+\tau}$$

$$d_{t}(\tau) = \sum_{j=1}^{W} (x_{j} - x_{j+\tau})^{2}$$

$$d_{t}(\tau) = r_{t}(0) + r_{t+\tau}(0) - 2$$

$$d_t(\tau) = r_t(0) + r_{t+\tau}(0) - 2r_t(\tau)$$

Cumulative mean normalized difference function

→ Less "too high" errors

$$T(\tau) = \begin{cases} 1, & \text{if } \tau = 0, \\ d_t(\tau) / \left[(1/\tau) \sum_{j=1}^{\tau} d_t(j) \right] & \text{otherwise} \end{cases}$$

Absolute threshold for d' → Less "too low" errors Parabolic interpolation on d → Improve detection resolution

Best local estimate of d'

Version Gross error (%) Step 1 10,0 Step 2 1,95 Step 3 1,69 Step 4 0,78 Step 5 0,77 Step 6 0,50

12 November 2009

Autocorrelation function (de Cheveigné and Kawahara 2001)

Works well up to ¼ of the sampling frequency

No need of detection upper limit

Sensible to the definition of parameters

12 November 2009

Pitch extraction based on instantaneous frequency (Abe et al. 1995)

- Band-pass filter bank
- Each of the filter is controlled to be tracking one harmonic component d

$$\phi_n(t) = \frac{a}{dt} \arg[y_n(t)]$$

- The lowest frequency of each harmony determines the detected pitch
 speaker M1 M2 1
 speaker M1 M2 1
- No double-pitch or half-pitch errors
- Improvement by deducing the pitch from the harmonic spectrum (more robust)

speaker	M1	M2	M3
proposed	0.170	0.204	0.164
cepstrum	0.284	0.300	0.320
speaker	F 1	F2	F3
speaker proposed	F1 0.061	F2 0.062	F3 0.094

speaker	M1	M2	M3
proposed	0.000	0.000	0.000
cepstrum	0.845	0.868	1.257
speaker	F1	F2	F3
speaker proposed	F1 0.000	F2 0.000	F3 0.000

12 November 2009

Pitch extraction by least-square fitting (Choi 1995)

Evaluates the square error between the signal and a sinusoidal function $\sum (\hat{w}_k - w_k)^2$

$$\hat{w}_k = a\sin(fk) + b\cos(fk)$$
 $e = \sum_{k=1}^{n} \frac{1}{2} \sum_{k=1}^{n}$

The estimate coefficients show peaks on signal harmonics

The peak width allows to perform estimation on few frequencies

k=1

The frequency is then extracted by interpolation

No windowing is required

12 November 2009

Harmonic Product Spectrum (Noll 1969; Cuadra 2001)

Algorithm:

Measure the maximum coincidence for harmonics

Advantages:

Works well under a wide range of conditions

Drawbacks:

- Need to enhance low frequency resolution with zero padding
- Errors for frequencies below 50 Hz due to noise

$$Y(\omega) = \prod_{r=1}^{R} |X(\omega r)|$$
$$\hat{Y} = \max_{\omega_i} \{Y(\omega_i)\}$$

Cepstrum analysis (Noll 1967; Gerhard 2001)

Algorithm

- Cepstrum: signal synthesized from the log-magnitude of the signal Fourier transform
- Search through the cepstrum a peak in a limited range, corresponding to the period of the signal

Advantages:

Quite robust to noise

Drawbacks:

Errors in the case of inharmonic sounds

12 November 2009

Maximum Likelihood (Noll 1969; Cuadra 2001)

Algorithm:

Search the best match through a set of possible ideal spectra

$$E(\omega) = ||Y - \tilde{Y}_{\omega}||^2 \quad \hat{Y} = \min_{\omega} \{E(\omega)\}$$

Advantages:

- No spectral interpolation needed → smaller transform sizes
- Works well up to one octave outside its range

Drawbacks:

- Efficiency of the algorithm ⇔ pitch resolution
- Works well only with a fixed tuning (keyboards, woodwinds,...)
- Less robust to noise and weak signals than the previous method

Statistical algorithms

- Use of the intrinsic temporal/frequency similarity between sounds of same pitch → classification problem
 Requires an adapted training
- Neural networks for voiced/unvoiced classification (Barnard et al. 1991)
- Hidden Markov Models for one-singer and multi-singer pitch tracking (Bach and Jordan 2005)

(Bach and Jordan 2005)

General improvements

Improvements can be added to lower the error rate of this algorithms

Pre-processing (e.g., low-pass filtering)

Post-processing (e.g., parabolic interpolation, pitch smoothing)

Extra information (e.g., zero-crossing rate, auditory model)

12 November 2009

Pitch extraction based on pitch perception model (de Cheveigné 1991)

Use the average magnitude difference function

$$\psi(\tau) = \frac{1}{N} \sum_{n=0}^{N-1} |x(n) - x(n+\tau)|$$

Based on the Licklider's perception model (Licklider 1951)

- Apply a filter bank to the signal
- Perform the autocorrelation test on each bands
- Quite weak efficiency

Could be added as extra information in another algorithm

12 November 2009

Algorithm evaluation

Common errors:

- Harmonic errors
- Subharmonic errors
- Transient signals

Evaluation problem

- Ground truth?
- Consistency between estimators
- Common database (Plante 1995)

Comparison criteria

- Gross error rate
- Fine error rate
- Difference between estimators

12 November 2009

Conclusion

12 November 2009

THANK YOU

12 November 2009

- Abe, T., T. Kobayashi, and S. Imai. 1995 Harmonics tracking and pitch extraction based on instantaneous frequency. *Proceedings of the International Conference on Acoustics, Speech, and Signal Processing*: 756–59.
- Bach, F., and M. Jordan. 2005. Discriminative training of Hidden Markov Models for multiple pitch tracking. *Proceedings of the International Conference on Acoustics, Speech, and Signal Processing.*
- Barnard, E., R.A. Cole, M.P. Vea, and F.A. Alleva. 1991. Pitch detection with a neural-net classifier. *IEEE Transactions on Signal Processing* 39 (2): 298–307.
- Choi, A. 1997. Real-time fundamental frequency estimation by least-square fitting. *IEEE Transactions on Speech and Audio Processing*: 201–5.
- Cuadra, P., A. Master, and C. Sapp. 2001. Efficient pitch detection techniques for interactive music. *Proceedings of the International Computer Music Conference*.
- de Cheveigné, A. 1991. Speech f0 extraction based on Licklider's pitch perception model. *Proceedings of the International Congresses of Phonetic Sciences*.
- de Cheveigné, A., and H. Kawahare. 2002. YIN, a fundamental frequency estimator for speech and music. *The Journal of the Acoustical Society of America* 111 (4): 1917–30.
- Gerhard, D. 2003. Pitch extraction and fundamental frequency: history and current techniques. Technical Report TR-CS 2003-6, University of Regina Department of Computer Science.
- Goldstein, J. 1973. An optimum processor theory for the central formation of the pitch of complex tones. *Journal of the Acoustic Society of America* 54 (6): 1496–1516.
- Kobayashi, H., and T. Shimamura. 1995. A weighted autocorrelation method for pitch extraction of noisy speech. *Proceedings of the Acoustical Society of Japan*: 343–4.
- Lent, K. 1989. An efficient method for pitch shifting digitally sampled sounds. Computer Music Journal 13 (4).
- Licklider, J. 1951. A duplex theory of pitch perception. *Experientia* 7 (4): 128–134.
- Moulines, Eric, and Francis Charpentier. 1990. Pitch-synchronous waveform processing techniques for text-to-speech synthesis using diphones. *Speech Communications* 9 (5-6): 453–67.
- Noll, M. 1967. Cepstrum pitch determination. The Journal of the Acoustical Society of America 41 (2): 293–309.
- Noll, M. 1969. Pitch determination of human speech by the harmonic product spectrum, the harmonic sum spectrum, and a maximum likelihood estimate. *Proceedings of the Symposium on Computer Processing ing Communications*: 779–97.
- Plante, F., G. Meyer, and W. Ainsworth. 1995. A pitch extraction reference database. Proceedings of EUROSPEECH.

Wise, J., J. Caprio, and T. Parks. 1976. Maximum likelihood pitch estimation. *IEEE Transaction on Acoustics, Speech, Signal Processing* 24 (5): 418–23.