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REAL-TIME PITCH DETECTION 

Summary 

Introduction 
Pitch extraction is a common research issue in the field of Sound Processing. Many methods 
have been developed since the first works the 1960’s and a lot of approaches have been 
explored and refined. 

Pitch definition 
The main objective of pitch extraction could be subject to controversy since there is no exact 
model for human pitch perception. However, there is an obvious link between the perceived 
pitch and the fundamental frequency f0 of the sound signal. That’s why pitch extraction is 
also called fundamental frequency detection. 

Another issue of the definition of the pitch detection is the definition of the instant frequencies 
of a signal. If the decomposition in partials is possible for pseudo-periodic signals, it’s not the 
same for quick-varying signals or noisy signals (e.g., unvoiced speech, drum sounds), where 
such decomposition is difficult or impossible. 

Finally, there is a definition problem between monophonic and polyphonic sounds. In the case 
of monophonic sound, the obvious definition is to pick the lowest partial as the fundamental 
frequency. In the case of polyphonic sounds, resulting either from one source (e.g., a piano) or 
from many sources (e.g., orchestra, choir), the definition is far more difficult, and approaches 
close to the problem of source separation should be used. 

Applications of real-time pitch extraction 
Pitch extraction was originally designed for speech applications on the problem of decision 
between voiced and unvoiced sounds (Noll 1967) or for speaker identification. In the field of 
music, the pitch information is used for real-time music transcription, or for conversion of a 
live performance into MIDI information. Finally, real-time pitch extraction is used in pitch 
and/or time-scaling algorithms which require this information to work like the PSOLA 
algorithm (Moulines and Charpentier 1990), or the Lent’s algorithm (Lent 1989). 

Requirements for a real-time pitch tracking algorithm 
A good algorithm should fulfil the following requirements (Cuadra et al. 2001), in particular 
if it has to perform in a live performance environment. 

The first obvious one is to be able to work real-time. The basic techniques usually fulfil this 
requirement. The limitation applies mostly on the improvements such as error checking or 
overlapping of the analysis frames. 

The next requirement is to have a minimal latency. This latency results from the algorithm 
computational time, but also from its convergence delay, since it can take time to find the 
right pitch, in particular during transients. This issue is critical in the case of MIDI 
conversion. 

The third one is to be robust to noise. This noise can result from the environment where the 
analysis is performed as a live scene (e.g., reverberation echoes), or from the recording 
equipment (e.g., electronic noise). 
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Finally, the algorithm has to fit the sensitivity requirements of the detection. For an example, 
in the case of western music, the algorithm should have a frequency resolution superior to one 
semi-tone, and adapted to the possible tuning of the recorded instruments. 

Classes of algorithms 
As said before, there are numerous different algorithms designed for pitch extraction. Most of 
them can perform real-time if adapted parameters are chosen. These algorithms are usually 
split in three categories (Cuadra et al. 2001; Gerhard 2003): time-domain, frequency-domain 
and statistical methods. 

Time-domain methods 
This class of methods uses the property of periodicity of the signal. This characteristic makes 
this approach intrinsically quite weak in the case of inharmonic signals or in signals with most 
of the power in high frequencies. 

The first example is the zero-crossing rate method. In this case, the measure of the distance 
between two following zero-crossing events is extracted as being the period of the signal. 
Even if this algorithm has obvious limitations, it gives a useful information that could be used 
in conjunction with other algorithms. 

The second example refers to the similarity measurement method. This approach has been 
deeply explored since it uses an obvious property of pseudo-periodic signals. This measure is 
based on different mathematical functions. The most popular ones are the autocorrelation 
function and the average mean difference. Efficient and robust techniques have been derived 
from these estimators (Kobayashi 1995; de Cheveigné and Kawahara 2001). In particular, the 
YIN method presents really promising experimental results. It includes several steps of error 
cancellation and interpolation for improving the results of the basic algorithm. 

Finally, the estimation of the fitting of the signal curve with a set of reference signals gives an 
estimation of the frequency. This approach has been explored with sinusoids (Choi 1995), 
showing that the correlation of the signal is high with the sinusoids corresponding to its 
partials. Furthermore, a property of this correlation allows calculating the correlation with 
only few frequencies. 

Frequency-domain methods 
This class of methods exploits the partial lines existing on the spectrum of the signal. 

The harmonic product spectrum technique (Noll 1969) measures the coincidence of 
harmonics in the Fourier transform of a signal frame. This simple approach has some 
downsides, including the need to enhance the resolution with zero padding and frequent 
octave errors. The algorithm accuracy depends also on the harmonicity of the signal spectrum. 

The maximum likelihood algorithm (Noll 1969) selects the best match between a set of 
possible spectra. This algorithm could have a good resolution without using large windows. 
However, the accuracy of the result is obviously bound to the size of the spectra set. The 
results are quite good for fixed tuning instruments due to the possibility to have a low 
resolution. 

Another popular technique is based on the cepstrum (Noll 1967). In this case, we pick the first 
peak in the signal synthesized from the log-magnitude of the Fourier transform. This peak 
would correspond to the fundamental frequency of the signal. This algorithm tends to perform 
quite well in noisy conditions. However, it handles uneasily inharmonic sounds since it’s 
based on the assumption of evenly spaced partials 
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Statistical methods 
This class of methods uses the similarities between sounds related to the same pitch. The 
approach is similar to classify a frame as being part of the set corresponding to its pitch. The 
obvious downside of this approach is that it often requires a training of the algorithm, which 
affects the output accuracy. 

A model has been developed using neural networks (Barnard et al. 1991) to extract the pitch 
information in order to classify speech sounds among voiced and unvoiced features. Another 
approach consists in using Hidden Markov Models. This approach has been used (Bach and 
Jordan 2005) to do one-singer and multiple-singer pitch tracking 

General improvements of the algorithms 
A lot of improvements can be added to the presented algorithms such as pre-processing, post-
processing or extra information adding. 

Pre-processing refers usually to a filtering of the signal prior being processed in the algorithm. 
This kind of improvement is quite accurate for speech processing where frequencies are 
clearly band-limited. In the case of music, this method seems less interesting. 

Post-processing refers to interpolation or smoothing of the output. These techniques allow to 
improve the algorithm resolution and to avoid errors for an example in transient frames. 

Adding extra information such as using an auditory model or looking at the zero-crossing rate 
information is another useful way to detect incoherent outputs. Algorithms based on auditory 
models have been developed (de Cheveigné 1991) but they are not as accurate as it could be 
expected, while their used in conjunction with other models could lead to better results. 

Algorithm evaluation 
The evaluation of the compared performance is made difficult due to few issues. Common 
errors of algorithms are harmonic, subharmonic and transient errors. These error rates are 
more likely to occur in different conditions. 

The absence of tests performed on comparable databases. Usually, the algorithms are tested 
the class of signals for which it has been designed, where they perform better than in the 
general case. There is an obvious need of a reference test database in speech (Plante 1995) 
and music to make comparison. The problem is that it’s necessary to find first the ground 
truth for each sample, what is not easy since no pitch perception model can automatically 
label them. 

The usual comparison criteria are the gross error rate, the fine error rate and the difference 
between model outputs. The two first require a ground truth for the tested samples, while the 
last one is only a test among the outputs of several algorithms. 

Conclusion 
The problem of pitch extraction in the case of monophonic sounds can be now considered as 
quite solved. The numerous algorithms available allow the user to pick the more adapted 
(usually developed for his purpose) to do pitch tracking in the present environment. However, 
characteristics related to robustness, or latency can still be further improved. Algorithms such 
as the YIN method have been demonstrated as being accurate and multi-purpose. The 
problem of multi-pitch extraction stays an open problem where source separation and pitch 
tracking merge. 
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