
Francois Germain – Slide Presentation III – Thursday 22 October 2009

ACE COMPONENT

Summary

Introduction
The ACE (Autonomous Classification Engine) component is a framework for the use and
optimization of classifiers. It is one of the different elements composing jMIR, an open-source
software suite implemented in Java for use in music information retrieval (MIR) research.

Presentation of ACE
The ACE framework experiments a variety of classifiers, classifier ensembles and dimensional
reduction techniques. It is designed to facilitate and optimize classification tasks for researchers
in music information research (MIR).

The ACE 1.1 release is a command-line software. It allows the user to perform three tasks. The
first one, implemented in the ACEFileConverter class, is the translation of ACE XML files in
Weka ARFF files. The second one, implemented in the InstanceLabeller class, is the training of
classifiers using an input training set and the taxonomy. Finally, the third one, implemented in the
ClassificationTester class, is the classification of an input data set using a trained classifier and a
taxonomy. The ACE 2.0 is currently being released and it offers a GUI interface to the user.

Limits of existing machine learning frameworks
The ACE implementation is inspired by the weaknesses of existing machine learning frameworks
for pattern recognition in MIR research context (McKay et al. 2005).

Firstly, the general frameworks, which were not designed specifically for music research, are
compared. A first example is PRTools (Van der Heijden et al. 2004), a MATLAB toolbox. The
problem is that it is dependent of proprietary software, and it is not redistributable. The second
one is Weka (Witten and Frank 2000). It is an open-source software implemented in Java. It fits
most of the objectives drawn by Cory McKay as necessary for MIR research. That’s why the
ACE engine is based on machine learning algorithms implemented in Weka. The main issues of
this framework are related to the file format used, The Weka ARFF format, which is too rigid for
applications in music.

The music dedicated frameworks have also some weaknesses. For an example, Marsyas
(Tzanetakis and Cook 1999) can perform classification tasks but it was designed as a feature
extractor rather than a classification framework. Furthermore, it can only perform audio
classification and doesn’t include MIDI functionality. Another problem is that it is implemented
in C++ and so has a limited portability compared to Java softwares. Another example is M2K
(Music-to-knowledge), a framework based on D2K (Downie 2004). It suffers from license issues
that make it non suitable for a research purpose.

Technical aspects of ACE
In order to have more flexibility with the exhange file formats in jMIR, Cory McKay designed a
specific format. It solves the issues related to the ARFF format. Indeed, these files have some
problematic constraints. For an example, each instance can only be assigned to one class. So it is

Francois Germain – Slide Presentation III – Thursday 22 October 2009

impossible to specify two genres for one single feature. It is also impossible to keep tracks of the
relations between the samples if they are coming from the same song or the same database. No
hierarchy can be specified between the different labels. These constraints are problematic in the
case of MIR research. The ACE XML file format solves these issues. The choice of XML is due
to the high standardization of the format, and the fact that XML files are verbose makes them
easier to use for debugging. Furthermore, the format allows the storage of metadata to strenghten
the independence between the feature extraction and the classification. Cory McKay chose to
divide each output in many files, each dedicated to a specific kind of data (features, feature
definitions, classificatier parameters…).

The ACE framework allows the use of many classical classification techniques. It includes
feedforward neural networks, support vector machines, nearest neighbour classifiers, decision
tree classifiers, and bayesian classifiers.

On contrary to the machine learning frameworks, ACE implements meta-learning. That means
that it exploits information from classification training to optimize classification. For this
purpose, it combines the answer from several classification models. This approach has many
advantages (Dietterich 2000). It has an obvious statistical performance, but it can also
significantly improve the results in the case of local optima methods, or in the case of non
adapted classifiers. The different methods used in ACE are voting, dynamic selection, stacking,
bagging, and boosting. This last technique and its derived version called AdaBoost (Freund and
Schapire 1996) are particularly efficient in experiments.

Another optimization of classification implemented in ACE is the feature dimension reduction. It
applies an iterative evaluation of the feature weighting techniques. ACE uses techniques such as
genetic algorithms, principal component analysis, tree search, or forward-backward algorithm.

ACE 2.0 and future work
The ACE 2.0 release implements several improvements compared to the previous version.

Firstly, the class architecture was restructured and extended to facilitate integration with other
softwares and provide new fonctions for users. Secondly, the cross-validation was redesigned.
Formerly, the Weka function was used but now a specific ACE class implements this
functionality. Thirdly, the ACE XML Zip and Project files were designed to facilitate the use of
related ACE XML files. Finally, the interface was improved, with a graphical user interface
(GUI) for editing the ACE XML files, and new command-line arguments.

The future work on ACE is mainly focused on the completion of its present features. The GUI
would be improved to completely replace the command-line interface. More classification
algorithms, such as hidden Markov models, or recurrent neural networks, would be included.
Finally, an important needed feature is the work load distribution which would improve
computation time.

Conclusion
The ACE framework provides to MIR researchers a user-friendly and very complete software for
classification purposes. It is designed to allow the user to test his/her own classifiers, classifier
ensembles or data reduction techniques. It encourages experimentation in classification, and
furthermore draws the advantages of some techniques of optimized classification.

Francois Germain – Slide Presentation III – Thursday 22 October 2009

References
Dietterich, T. G. 2000. Ensemble methods in machine learning. In Multiple classifier systems, J.
Kittler and F. Roli eds. New York: Springer.

Downie, J. S. 2004. International music information retrieval systems evaluation laboratory
(IMIRSEL): Introducing D2K and M2K. Demo Handout at the International Conference on
Music Information Retrieval.

Fiebrink, R., C. McKay, and I. Fujinaga. 2005. Combining D2K and JGAP for efficient feature
weighting for classification tasks in music information retrieval. Proceedings of the International
Conference on Music Information Retrieval.

Freund, Y., and R. E. Schapire. 1996. Experiments with a new boosting algorithm. Proceedings
of the International Conference on Machine Learning: 148–56.

van der Heijden, F., R. Duin, D. de Ridder, and D. Tax. 2004. Classification, parameter
estimation and state estimation - an engineering approach using Matlab. New York: Miley.

Kittler, J. 2000. A framework for classifier fusion: Is it still needed? Proceedings of the Joint
International Workshops on Advances in Pattern Recognition: 45–56.

Kotsiantis, S., and P. Pintelas. 2004. Selective voting. Proceedings of the International
Conference on Intelligent Systems Design and Applications: 397–402.

McKay, C., R. Fiebrink, D. McEnnis, B. Li, and I. Fujinaga. 2005. ACE: a framework for
optimizing music classification. Proceedings of the International Conference on Music
Information Retrieval: 42–9.

McKay, C., D. McEnnis, R. Fiebrink, and I. Fujinaga. 2005. ACE: A general-purpose
classification ensemble optimization framework. Proceedings of the International Computer
Music Conference.

Sinyor, E., C. McKay, R. Fiebrink, D. McEnnis, and I. Fujinaga. 2005. Beatbox classification
using ACE. Proceedings of the International Conference on Music Information Retrieval: 672–5.

Thompson, J., C. McKay, J. Burgoyne, and I. Fujinaga. 2009. Additions and improvements to the
ACE 2.0 music classifier. Proceedings of the International Society for Music Information
Retrieval Conference.

Tzanetakis, G., and P. Cook. 1999. MARSYAS: A framework for audio analysis. Organized
Sound 4 (3): 169–75.

Witten, I., and E. Frank. 1999. Weka: Practical Machine Learning Tools and Techniques with
Java Implementations. Proceedings of ICONIP/ ANZIIS/ANNES99 Future Directions for
Intelligent Systems and Information Sciences: 192–196.

