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ACE COMPONENT 

Summary 

Introduction 
The ACE (Autonomous Classification Engine) component is a framework for the use and 
optimization of classifiers. It is one of the different elements composing jMIR, an open-source 
software suite implemented in Java for use in music information retrieval (MIR) research. 

Presentation of ACE 
The ACE framework experiments a variety of classifiers, classifier ensembles and dimensional 
reduction techniques. It is designed to facilitate and optimize classification tasks for researchers 
in music information research (MIR). 

The ACE 1.1 release is a command-line software. It allows the user to perform three tasks. The 
first one, implemented in the ACEFileConverter class, is the translation of ACE XML files in 
Weka ARFF files. The second one, implemented in the InstanceLabeller class, is the training of 
classifiers using an input training set and the taxonomy. Finally, the third one, implemented in the 
ClassificationTester class, is the classification of an input data set using a trained classifier and a 
taxonomy. The ACE 2.0 is currently being released and it offers a GUI interface to the user. 

Limits of existing machine learning frameworks 
The ACE implementation is inspired by the weaknesses of existing machine learning frameworks 
for pattern recognition in MIR research context (McKay et al. 2005). 

Firstly, the general frameworks, which were not designed specifically for music research, are 
compared. A first example is PRTools (Van der Heijden et al. 2004), a MATLAB toolbox. The 
problem is that it is dependent of proprietary software, and it is not redistributable. The second 
one is Weka (Witten and Frank 2000). It is an open-source software implemented in Java. It fits 
most of the objectives drawn by Cory McKay as necessary for MIR research. That’s why the 
ACE engine is based on machine learning algorithms implemented in Weka. The main issues of 
this framework are related to the file format used, The Weka ARFF format, which is too rigid for 
applications in music. 

The music dedicated frameworks have also some weaknesses. For an example, Marsyas 
(Tzanetakis and Cook 1999) can perform classification tasks but it was designed as a feature 
extractor rather than a classification framework. Furthermore, it can only perform audio 
classification and doesn’t include MIDI functionality. Another problem is that it is implemented 
in C++ and so has a limited portability compared to Java softwares. Another example is M2K 
(Music-to-knowledge), a framework based on D2K (Downie 2004). It suffers from license issues 
that make it non suitable for a research purpose. 

Technical aspects of ACE 
In order to have more flexibility with the exhange file formats in jMIR, Cory McKay designed a 
specific format. It solves the issues related to the ARFF format. Indeed, these files have some 
problematic constraints. For an example, each instance can only be assigned to one class. So it is 
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impossible to specify two genres for one single feature. It is also impossible to keep tracks of the 
relations between the samples if they are coming from the same song or the same database. No 
hierarchy can be specified between the different labels. These constraints are problematic in the 
case of MIR research. The ACE XML file format solves these issues. The choice of XML is due 
to the high standardization of the format, and the fact that XML files are verbose makes them 
easier to use for debugging. Furthermore, the format allows the storage of metadata to strenghten 
the independence between the feature extraction and the classification. Cory McKay chose to 
divide each output in many files, each dedicated to a specific kind of data (features, feature 
definitions, classificatier parameters…).  

The ACE framework allows the use of many classical classification techniques. It includes 
feedforward neural networks, support vector machines, nearest neighbour classifiers, decision 
tree classifiers, and bayesian classifiers. 

On contrary to the machine learning frameworks, ACE implements meta-learning. That means 
that it exploits information from classification training to optimize classification. For this 
purpose, it combines the answer from several classification models. This approach has many 
advantages (Dietterich 2000). It has an obvious statistical performance, but it can also 
significantly improve the results in the case of local optima methods, or in the case of non 
adapted classifiers. The different methods used in ACE are voting, dynamic selection, stacking, 
bagging, and boosting. This last technique and its derived version called AdaBoost (Freund and 
Schapire 1996) are particularly efficient in experiments. 

Another optimization of classification implemented in ACE is the feature dimension reduction. It 
applies an iterative evaluation of the feature weighting techniques. ACE uses techniques such as 
genetic algorithms, principal component analysis, tree search, or forward-backward algorithm. 

ACE 2.0 and future work 
The ACE 2.0 release implements several improvements compared to the previous version. 

Firstly, the class architecture was restructured and extended to facilitate integration with other 
softwares and provide new fonctions for users. Secondly, the cross-validation was redesigned. 
Formerly, the Weka function was used but now a specific ACE class implements this 
functionality. Thirdly, the ACE XML Zip and Project files were designed to facilitate the use of 
related ACE XML files. Finally, the interface was improved, with a graphical user interface 
(GUI) for editing the ACE XML files, and new command-line arguments. 

The future work on ACE is mainly focused on the completion of its present features. The GUI 
would be improved to completely replace the command-line interface. More classification 
algorithms, such as hidden Markov models, or recurrent neural networks, would be included. 
Finally, an important needed feature is the work load distribution which would improve 
computation time. 

Conclusion 
The ACE framework provides to MIR researchers a user-friendly and very complete software for 
classification purposes. It is designed to allow the user to test his/her own classifiers, classifier 
ensembles or data reduction techniques. It encourages experimentation in classification, and 
furthermore draws the advantages of some techniques of optimized classification. 



Francois Germain – Slide Presentation III – Thursday 22 October 2009 

References 
Dietterich, T. G. 2000. Ensemble methods in machine learning. In Multiple classifier systems, J. 
Kittler and F. Roli eds. New York: Springer. 

Downie, J. S. 2004. International music information retrieval systems evaluation laboratory 
(IMIRSEL): Introducing D2K and M2K. Demo Handout at the International Conference on 
Music Information Retrieval. 

Fiebrink, R., C. McKay, and I. Fujinaga. 2005. Combining D2K and JGAP for efficient feature 
weighting for classification tasks in music information retrieval. Proceedings of the International 
Conference on Music Information Retrieval. 

Freund, Y., and R. E. Schapire. 1996. Experiments with a new boosting algorithm. Proceedings 
of the International Conference on Machine Learning: 148–56. 

van der Heijden, F., R. Duin, D. de Ridder, and D. Tax. 2004. Classification, parameter 
estimation and state estimation - an engineering approach using Matlab. New York: Miley. 

Kittler, J. 2000. A framework for classifier fusion: Is it still needed? Proceedings of the Joint 
International Workshops on Advances in Pattern Recognition: 45–56. 

Kotsiantis, S., and P. Pintelas. 2004. Selective voting. Proceedings of the International 
Conference on Intelligent Systems Design and Applications: 397–402. 

McKay, C., R. Fiebrink, D. McEnnis, B. Li, and I. Fujinaga. 2005. ACE: a framework for 
optimizing music classification. Proceedings of the International Conference on Music 
Information Retrieval: 42–9. 

McKay, C., D. McEnnis, R. Fiebrink, and I. Fujinaga. 2005. ACE: A general-purpose 
classification ensemble optimization framework. Proceedings of the International Computer 
Music Conference. 

Sinyor, E., C. McKay, R. Fiebrink, D. McEnnis, and I. Fujinaga. 2005. Beatbox classification 
using ACE. Proceedings of the International Conference on Music Information Retrieval: 672–5. 

Thompson, J., C. McKay, J. Burgoyne, and I. Fujinaga. 2009. Additions and improvements to the 
ACE 2.0 music classifier. Proceedings of the International Society for Music Information 
Retrieval Conference. 

Tzanetakis, G., and P. Cook. 1999. MARSYAS: A framework for audio analysis. Organized 
Sound 4 (3): 169–75. 

Witten, I., and E. Frank. 1999. Weka: Practical Machine Learning Tools and Techniques with 
Java Implementations. Proceedings of ICONIP/ ANZIIS/ANNES99 Future Directions for 
Intelligent Systems and Information Sciences: 192–196. 

 


