
Evaluation of Audio Beat Tracking and Music Tempo Extraction

Algorithms

M. F. McKinney1, D. Moelants2, M. E. P. Davies3 and A. Klapuri4

1Philips Research Laboratories, Eindhoven, The Netherlands; 2Ghent University, Belgium; 3Queen Mary University of
London, UK; 4Tampere University of Technology, Finland

Abstract

This is an extended analysis of eight different algorithms
for musical tempo extraction and beat tracking.
The algorithms participated in the 2006 Music Informa-
tion Retrieval Evaluation eXchange (MIREX), where
they were evaluated using a set of 140 musical excerpts,
each with beats annotated by 40 different listeners.
Performance metrics were constructed to measure the
algorithms’ abilities to predict the most perceptually
salient musical beats and tempi of the excerpts. Detailed
results of the evaluation are presented here and
algorithm performance is evaluated as a function of
musical genre, the presence of percussion, musical
meter and the most salient perceptual tempo of each
excerpt.

1. Introduction

Beat tracking and tempo extraction are related tasks,
each with its own specificity and applications. Tempo
extraction aims at determining the global speed or tempo
of a piece of music, while beat tracking attempts to locate
each individual beat. The tempo can be extracted without
the knowledge of every single beat, thus tempo extraction
could be considered an easier task. On the other hand,
the result of tempo extraction is a single (or small
number of related) value(s), which makes it vulnerable to
error. Another difference between the two tasks is how
they handle fluctuating tempi: the primary challenge of

many beat-tracking systems is following the changing
tempo of a piece of music, while for tempo extractors, it
does not make much sense to notate a changing tempo
with a single value. For music with a constant tempo,
beat trackers do not provide us with much extra
information than tempo extractors, except for the phase
of the beat. Due to these differences, both tasks lead to
different applications. Tempo extraction is useful for
classifying and selecting music based on its overall speed,
while beat tracking allows one to synchronize music
to external elements, e.g. gestural control or live
accompaniment.

Despite the differences between beat tracking and
tempo extraction, both problems have been historically
connected. The first attempt to do some kind of
automatic pulse detection can be found in the 1970s. In
a study of meter in Bach’s fugues, Longuet-Higgins and
Steedman (1971) derived meter and tempo from a
symbolic (score-based) representation of the notes. Later,
this led to rule-based systems that built up an estimate of
the beat based on the succession of longer and shorter
rhythmic intervals (Longuet-Higgins & Lee, 1982, 1984;
Lee, 1985). These systems tried to model the process of
building up a beat based on the start of a rhythmic
sequence. Povel and Essens (1985) also started from
purely symbolic rhythmic patterns (not taking into
account aspects like dynamic accents or preferred tempo)
and analysed them as a whole, searching for the metric
structure that fit best with the foreground rhythm.
Similarly, Parncutt (1994) analysed short repeating
rhythmic patterns, however, he incorporated knowledge
about phenomenological accent and preferred tempo to

Correspondence: M. F. McKinney, Digital Signal Processing, Philips Research Laboratories, Eindhoven, The Netherlands.
E-mail: martin.mckinney@philips.com

Journal of New Music Research
2007, Vol. 36, No. 1, pp. 1 – 16

DOI: 10.1080/09298210701653252 � 2007 Taylor & Francis



make an estimation of tempo and meter. Miller et al.
(1992) proposed a different approach, not starting from a
set of rules, but from the response of a bank of oscillators
to the incoming signal. The basic idea here was that
oscillators start resonating with the incoming rhythm, so
after a while the oscillator corresponding to the do-
minant periodicities should get largest amplitude.
Introducing sensitivity related to human tempo prefer-
ences and coupling oscillators with related periodicities
led to a more accurate detection of tempo and metric
structure, while the resonance characteristics of the
oscillators enabled them to deal with small tempo
fluctuations (Large & Kolen, 1994; McAuley, 1995;
Gasser et al., 1999).

All these approaches start from a theoretical view-
point, rooted in music psychology. In music performance
there was a need to find ways to coordinate the timing
of human and machine performers. This led to systems of
score following, where a symbolic representation of
music was matched with the incoming signal
(Dannenberg, 1984; Baird et al., 1993; Vantomme,
1995; Vercoe, 1997). Toiviainen (1998) developed a
MIDI-based system for flexible live-accompaniment, in
which he started from an oscillator-based model related
to the Large and Kolen (1994) model. Toiviainen (1998),
as well as Dixon and Cambouropoulos (2000), used
MIDI, which allowed them to use the advantages of
symbolic input to follow tempo fluctuations and locate
the beats. However, if one wants to apply tempo
detection or beat tracking on music databases or in an
analogue performance, techniques have to be developed
to extract relevant information from the audio signal.
Goto and Muraoka (1994, 1998) solved this problem by
focusing on music with very well determined structural
characteristics. Searching for fixed successions of bass
and snare drums in a certain tempo range, they obtained
good results for a corpus of popular music. However it is
hard to generalize this method to other musical styles.
The first techniques to create a more general approach to
beat tracking and tempo detection came from Scheirer
(1998), who calculated multi-band temporal envelopes
from the audio signal and used them as input to banks of
resonators, and from Dixon (1999, 2000), who used onset
detection as the first stage followed by a traditional
symbol based system. Since then new signal processing
techniques have been developed, most of which will be
illustrated in this issue.

In the next section, summaries of several state-of-the-
art beat tracking and tempo extraction systems are
presented. These algorithms participated in the 2006
Music Information Retrieval Evaluation eXchange
(MIREX 2006c), an international contest, in which
systems dealing with different aspects of Music Informa-
tion Retrieval are evaluated. Two of the proposed
contests, tempo extraction and beat tracking, are
summarized here. Further details of four of the

participating algorithms can be found in separate articles
in the current issue while two others are described in
more detail in appendices to this article. Details about
the ground-truth data and the evaluation procedure will
be given in Section 3 and evaluation results are provided
in Section 4.

2. Algorithm descriptions

In general, the algorithms described here consist of two
stages: a first stage that generates a driving function from
direct processing of the audio signal; and a second stage
that detects periodicities in this driving function to arrive
at estimates of tempo and/or beat times. While it is
perhaps a crude oversimplification to describe the
algorithms in terms of such a two-step process, it
facilitates a method for meaningful comparison across
many different algorithm structures. Thus, at the end of
this algorithm overview, we conclude with a general
algorithm classification scheme based on these two
stages.

Most of the algorithms presented here were designed
for both beat tracking and tempo extraction and are
evaluated for both of these tasks. One algorithm (see
Section 2.5) was designed mainly (and evaluated only)
for beat tracking. Two algorithms (see Sections 2.1 and
2.2) were designed and evaluated only for tempo
extraction.

Most of the algorithms are described in detail in other
publications (four in this same issue), so we limit our
description here to the essential aspects.

2.1 Algorithm summary: Alonso, David & Richard

The algorithm from Alonso et al. (2006) was designed
for tempo extraction only and comes in two variants,
the second with an improved onset detection method. If
we apply the two-stage descriptive schema outlined
above, the driving function here is a pulse train
representing event onsets, detected by thresholding the
spectral energy flux of the signal. In the second variant of
this algorithm, onset detection is improved by using
spectral-temporal reassignment to improve the temporal
and spectral resolution in the initial stages. The
periodicity detector here is a two-stage process, where
candidate periodicities are first calculated using three
methods, autocorrelation, spectral sum, and spectral
product. Dynamic programming is then employed to
calculate the optimal path (over time) through the
derived periodicities.

Parameters of the driving function derivation include:
audio downsampled to 22 kHz, spectral processing in
eight bands, a processing frame of *34 ms with a hop
size of 5 ms, resulting in a driving function with a 5-ms
temporal resolution.

2 M. F. McKinney et al.



Further details on this algorithm can be found in a
separate article in this issue (Alonso et al., 2007).

2.2 Algorithm summary: Antonopoulos, Pikrakis &

Theodoridis

Antonopoulos et al. (2006) developed an algorithm for
tempo extraction that derives a driving function from an
audio self-similarity measurement. The self-similarity
metric is calculated from audio features similar to
Mel-Frequency Cepstral Coefficients (MFCC) but with
a modified frequency basis. Periodicity in this driving
signal is detected through the analysis of 1st-order
intervals between local minima, which are plotted in
histograms as a function of interval size. These intervals
are assumed to correspond to the beat period in the
music and thus the largest peaks in the histograms are
taken as the most salient beat periods.

Parameters of the driving signal include: 42 frequency
bands between 110 Hz and 12.6 kHz, 93-ms temporal
windows with a 6-ms hop size, resulting in a driving
signal with 6-ms temporal resolution.

Further details of this algorithm can be found
in a separate article in this issue (Antonopoulos et al.,
2007).

2.3 Algorithm summary: Brossier

Brossier (2006b) developed an algorithm for beat
tracking and tempo extraction for the 2006 MIREX.
The driving function for his beat tracker is a pulse train
representing event onsets, derived from a spectral
difference function through adaptive thresholding. The
phase and magnitude of periodicities in the onsets were
extracted using an autocorrelation function, which in
turn were used to calculate beat times. Tempo was then
calculated from the most prominent beat periods.

Parameters of Brossier’s driving function derivation
include: 44.1 kHz sampling rate, linear frequency analy-
sis across the complete spectrum, a 1024 sample analysis
frame with a hop size of 512 samples, yielding a 5.6 ms
temporal resolution.

Further details of this algorithm can be found in
Brossier’s PhD thesis (Brossier 2006a).

2.4 Algorithm summary: Davies & Plumbley

Davies and Plumbley (2007) submitted algorithms for the
tempo and beat tracking evaluations. Three separate
driving functions (spectral difference, phase deviation
and complex domain onset detection functions) are used
as the basis for estimating the tempo and extracting the
beat locations. The autocorrelation function of each
driving function is passed through a perceptually
weighted shift-invariant comb filterbank, from which
the eventual tempo candidates are selected as the pair of

peaks which are strongest in the filterbank output
function and whose periodicities are most closely related
by a factor of two.

The beat locations are then found by cross-correlating
a tempo-dependent impulse train with each driving
function. The overall beat sequence is taken as the one
which most strongly correlates with its respective driving
function.

Parameters of the driving functions include: 23.2 ms
analysis frames with an 11.6-ms frame hop for audio
sampled at 44.1 kHz, yielding driving functions with
11.6-ms temporal resolution.

Further details of the algorithms can be found in
Appendix A of this article and in Davies and Plumbley
(2007).

2.5 Algorithm summary: Dixon

Dixon (2006) submitted his BeatRoot algorithm to the
MIREX 2006 beat tracking evaluation. The driving
function of BeatRoot is a pulse train representing event
onsets derived from a spectral flux difference function.
Periodicities in the driving function are extracted through
an all-order inter-onset interval (IOI) analysis and are
then used as input to a multiple agent system to deter-
mine optimal sequences of beat times.

Parameters of the BeatRoot driving function deriva-
tion include: linear frequency analysis covering the entire
spectrum, a 46-ms analysis frame with a 10-ms frame
hop, yielding a driving function with 10-ms temporal
resolution.

Further details of this algorithm can be found in
another article in this issue (Dixon 2007).

2.6 Algorithm summary: Ellis

Ellis (2006) developed an algorithm for both the beat
tracking and the tempo extraction evaluations. The
driving function in his algorithm is a real-valued
temporal ‘‘onset’’ envelope obtained by summing a
half-wave rectified auditory-model spectral flux signal.
The periodicity detector is an autocorrelation function
scaled by a window intended to enhance periodicities that
are naturally preferred by listeners. After candidate
tempi are identified, beat tracking is performed on a
smoothed version of the driving function using dynamic
programming to find the globally optimal set of beat
times. The beat-tracking algorithm uses backtrace and is
thus intrinsically non-real-time and it relies on a single
global tempo, making it unable to track large (410%)
tempo drifts.

Parameters of the driving function derivation in-
clude: 40-band Mel-frequency spectral analysis up to
8 kHz, a 32-ms analysis window with a 4-ms hop
size, yielding a driving function with a 4-ms time
resolution.

Audio beat tracking and tempo extraction 3



Further details of this algorithm can be found in a
separate article in this issue (Ellis 2007).

2.7 Algorithm summary: Klapuri

The beat tracking algorithm submitted by Klapuri to the
2006 MIREX is identical to that described in Klapuri
et al. (2006). The algorithm was originally implemented
in 2003 and later converted to Cþþ by Jouni Paulus in
2004. The method and its parameter values have been
untouched since then.

The method analyses musical meter jointly at three
time scales: at the temporally atomic tatum pulse level, at
the beat (aka tactus) level, and at the musical measure
level. Only the tactus pulse estimate was used in the
MIREX task. The time-frequency analysis part calcu-
lates a driving function at four different frequency
ranges. This is followed by a bank of comb filter
resonators for periodicity analysis, and a probabilistic
model that represents primitive musical knowledge and
uses the low-level observations to perform joint estima-
tion of the tatum, tactus, and measure pulses.

Both causal and non-causal versions of the method were
described in Klapuri et al. (2006). In MIREX, the causal
version of the algorithm was employed. The difference
between the two is that the causal version generates beat
estimates based on past samples, whereas the non-causal
version does (Viterbi) backtracking to find the globally
optimal beat track after hearing the entire excerpt. The
backtracking improves accuracy especially near the begin-
ning of an input signal, but on the other hand, the causal
version is more appropriate for on-line analysis. Further
details of this algorithm can be found in Appendix B.

2.8 Algorithm summary overview

Table 1 shows a summary of all algorithms entered in the
beat-tracking and tempo-extraction evaluations.

3. Evaluation method

For the beat-tracking task, the general aim of the
algorithms was to identify beat locations throughout a
musical excerpt. To test the algorithms we used a set of
160 excerpts from which we collected beat annotations
using a pool of listeners. We tested the algorithms by
comparing their estimated beat locations to the anno-
tated beat locations from every excerpt and listener to
arrive at an overall measure of accuracy.

The aim of the tempo extraction task was to identify
the two most perceptually salient tempi in a musical
excerpt and to rate their relative salience. The same
annotations used for the beat-tracking evaluation were
used to calculate the perceptual tempi of the excerpts.

The beat-tracking and tempo-extraction evaluations
were carried out by the International Music Information

Retrieval Systems Evaluation Laboratory (IMIRSEL) at
the Graduate School of Library and Information
Science, University of Illinois at Urbana-Champaign.
The evaluations were part of the 2006 MIREX, which
included a number of other music information retrieval
evaluations as well (MIREX, 2006c).

Details on the excerpts, annotations and evaluation
method are given in the following sections.

3.1 Evaluation data

The ground truth data used in both the tempo-extraction
and beat-tracking evaluations was collected by asking a
number of listeners to tap to the perceived beats of
musical excerpts, each 30 s long. In total, we used data
for 160 excerpts1, each tapped to by 40 annotators. The
collection of excerpts was selected to give a representative
overview of music with a relatively stable tempo. It
contains a broad range of tempi (including music
especially collected for representing extreme tempi), a
wide range of western and non-western genres, both
classical and popular, with diverse textures and instru-
mentation, with and without percussion and with about
8% non-binary meters. Due to this variety the set should
be fit to test the flexibility of the automatic detection
systems, both in terms of input material and of
performance over the whole tempo range.

The tapping data were collected by asking annotators
to tap along to the musical excerpts using the space bar
of a computer keyboard. Data was collected over two
sessions using 80 annotators in total, with approximately
equal groups of musicians and non-musicians as well as
of male and female participants. The output of this large
set of annotators, with varying backgrounds, gives us
a representative view of the perceptual tempo
(McKinney & Moelants, 2006) of each excerpt. Distribu-
tions of these tapped tempi for individual excerpts often
show two or even three modes, indicating that different
annotators perceived the most salient musical beat at
different metrical levels. In the evaluations that follow,
we take into account all tapped data for a given excerpt
and treat them collectively as the global perception of
beat times and their respective tempi. For the beat-
tracking evaluation, we use all individual tapping records
in the evaluation metric, while for the tempo-extraction
evaluation, we summarize the perceptual tempo by
taking the two modes in the tempo distribution with
the largest number of annotators. The idea is that these
two modes represent the two most perceptually-relevant
tempi while the relative number of annotators at each

1The original collection (cf. McKinney & Moelants, 2006)
contained 170 excerpts, but 10 of them were left out due to
irregularities in the beat structure (mainly having a fluctuating

tempo), which made them inappropriate for the tempo
extraction task.

4 M. F. McKinney et al.



Table 1. Algorithm summary. Algorithm: ALO - Alonso, Richard and David; ANT - Antonopoulos, Pikrakis & Theodoridis; BRO -

Brossier; DAV - Davies & Plumbley; DIX – Dixon; ELL – Ellis; KLA – Klapuri. Application: BT – Beat Tracking; TE – Tempo
Extraction. Driving Function Type: ON – Detected Onsets; SF – Spectral Flux; SR – Spectral Reassignment; SSF – Self-Similarity
Function; PD – Phase Difference; CSF – Complex Spectral Flux; TED – Temporal Envelope Difference. Periodicity Detection: ACF –

Autocorrelation Function; SSP – Spectral Sum and Product; DP – Dynamic Programming; PW – Perceptual Weighting; IMI – Inter-
Minima Interval; CFB – Comb Filter Bank; IOI – Inter-Onset Interval; MA – Multiple Agent System; HMM – Hidden Markov
Model. Implementation Language:* The C/Cþþ code for the ANT algorithm was generated directly using the MATLAB compiler
and thus does not provide the typical complexity advantage gained from manually optimizing the C/Cþþ code.

Algorithm ALO1 ALO2 ANT BRO DAV DIX ELL KLA

Application TE TE TE BT & TE BT & TE BT BT & TE BT & TE

Type SF
ON

SR, SF
ON

SSF SF
ON

SF, PD
CSF

SF
ON

SF TED

Driving
Function

Time
Resolution

5 msec 5 msec 6 msec 5.6 msec 11.6 msec 10 msec 4 msec 5.8 msec

Number

of Channels

8 8 1 1 1 1 1 4

Periodicity

Detection

ACF, SSP

DP, PW

ACF, SSP

DP, PW

IMI ACF ACF

CFB, PW

IOI

MA

ACF

DP, PW

CFB

HMM, PW

Implementation
Language

MATLAB MATLAB C/Cþþ* C/Cþþ
Python

MATLAB Java MATLAB C/Cþþ

mode represents the relative salience of the two tempi.
More details about the stimuli, annotators and procedure
can be found in McKinney and Moelants (2006).

3.2 Beat-tracking evaluation

The output of each algorithm (per excerpt) was a list of
beat locations notated as times from the beginning of the
excerpt. These estimated beat times were compared
against the annotated times from listeners. In order to
maintain consistency with the tempo evaluation method
(see Section 3.3) we treat each excerpt annotation as a
perceptually relevant beat track: we tested each algo-
rithm output against each of the 40 individual annotated
beat tracks for each excerpt.

To evaluate a single algorithm, an averaged ‘‘P’’ score
was calculated that summarizes the algorithm’s overall
ability to predict the annotated beat times. For each
excerpt, 40 impulse trains were created to represent the
40 annotated ‘‘ground-truth’’ beat tracks, using a 100 Hz
sampling rate. An impulse train was also generated for
each excerpt from the algorithm-generated beat times.
We ignored beat times in the first 5 s of the excerpt in
order to minimize initialization effects, thus the impulse
trains were 25 s long, covering beat times between 5 and
30 s. The P-score (for a given algorithm and single
excerpt) is the normalized proportion of beats that are
correct, i.e. the number of algorithm-generated beats that
fall within a small time-window, Ws of an annotator
beat. The P-score is normalized by the number of

algorithm or annotator beats, whichever is greatest,
and is calculated as follows:

P ¼ 1

S

XS
s¼1

1

NP

XþWs

m¼�Ws

XN
n¼1

y½n� � as½n�m�; ð1Þ

where as[n] is the impulse train from annotator s, y[n] is
the impulse train from the algorithm, N is the sample-
length of impulse trains y[n] and as[n], Ws is the ‘‘error’’
window within which detected beats are counted as
correct, and NP is a normalization factor defined by the
maximum number of impulses in either impulse train:

NP ¼ max
X

y½n�;
X

as½n�
� �

: ð2Þ

The ‘‘error’’ window, Ws was one-fifth the annotated
beat, derived from the annotated taps by taking the
median of the inter-tap intervals and multiplying by 0.2.
This window, Ws, was calculated independently for each
annotated impulse train, as.

The overall performance of each beat-tracking algo-
rithm was measured by taking the average P-score across
excerpts.

3.3 Tempo-extraction evaluation

For each excerpt, the histogram analysis of the annotated
beat times, yielded two ground-truth peak tempi, GT1

and GT2, where GT1 is the slowest. In addition, the

Audio beat tracking and tempo extraction 5



strength (salience) of GT1 in comparison to GT2 was also
derived from the tempi histograms and is denoted as
GST1. GST1 can vary from 0 to 1.0.

Each tempo-extraction algorithm generated two tem-
po values for each musical excerpt, T1 and T2, and its
performance was measured by its ability to estimate the
two tempi to within 8% of the ground-truth tempi. The
performance measure was calculated as follows:

P ¼ GST1 � TT1 þ ð1� GST1Þ � TT2; ð3Þ

where TT1 and TT2 are binary operators indicating
whether or not the algorithm-generated tempi are within
8% of the ground-truth tempi:

TT ¼ 1 if jðGT� TÞ=GTj < 0:08;
0 otherwise:

�
ð4Þ

Thus, the more salient a particular tempo is, the more
weight it carries in the calculation of the P-score.
The average P-score across all excerpts was taken as
the overall measure of performance for each tempo
extraction algorithm.

4. Results

4.1 Beat-tracking results

Overall results of the beat-tracking evaluation are shown
in Figure 1 (upper plot). The results show that Dixon’s
algorithm performs best, however its average P-score is
significantly higher than only that from Brossier’s
algorithm. Looking at the absolute range of performance
across the algorithms shows that, with the exception of
Brossier’s algorithm, they all perform equally well, with
P-scores differing by no more than 0.023.

To develop better intuition for the absolute value of
the P-score, we calculated P-scores for each of our
annotators by cross-correlating a single annotator’s beat
track for a given excerpt with the beat tracks from every
other annotator (see Equation (1)). Average P-scores for
each annotator are shown in Figure 1 (lower plot). While
some individual annotator P-scores are lower than
averaged algorithm P-scores, the average human anno-
tator P-score (0.63) is significantly higher than that from
any single algorithm (p5 0.001, bootstrapped equiva-
lence test, see e.g. Efron & Tibshirani, 1993). However, if
we take the best-performing algorithm on each excerpt
and average those P-scores, we get an average score that
is significantly higher than the average annotator P-score
(see Figure 2). If we also take the best performing human
annotator on each excerpt, we see an even higher average
score. Together, these results suggest that an optimal
combination of the current beat-tracking algorithms
would perform better than the average human annotator
but not an optimal human annotator.

We also examined the algorithm P-scores as a
function of a number of musical parameters, including
excerpt genre, meter, the presence of percussion, and the
most salient perceptual tempo. We used a coarse genre
classification with the following general definitions:
Classical: Western classical music including orchestral
and chamber spanning eras from Renaissance to 20th
century; Hard: loud and usually fast music, using mainly
electric guitars (often with distortion) and drums, e.g.
punk, heavy metal; Jazz: improvisational music with a
strong meter, syncopation and a ‘‘swing’’ rhythm,
including the sub-styles swing, vocal, bebop and fusion;
Pop: light music with a medium beat, relatively simple
rhythm and harmony and often a repeating structure;
Varia: popular music genres that do not fall into the
main categories and have in common that they can be
considered as ‘‘listening music’’, e.g. folk, chanson,
cabaret; World: non-Western music, typically folk and
often poly-rhythmic, including African, Latin and Asian
music. Results of this analysis are shown in Figure 3.

Fig. 1. Beat tracking evaluation results. Average P-scores for
each algorithm are plotted (upper plot). Average P-scores for
individual annotators are plotted in the lower plot. Error bars

indicate standard error of the mean, estimated through boot-
strapping across P-scores from individual excerpts. Note the
different ordinate scales on the two subplots.

6 M. F. McKinney et al.



The top plot in Figure 3 reveals a number of
differences in performance depending on the genre of
the music:

. Algorithms differed in their sensitivity to genre:
Davies’ and Klapuri’s algorithms show large perfor-
mance variation across genre while Brossiers’ and
Ellis’ algorithms show virtually no performance
difference across genre.

. Algorithms sensitive to genre (Davies, Dixon, and
Klapuri) performed best on Pop and World music,
perhaps because of the straight, regular beat of Pop
music and the strong rhythmic nature of World
music.

. Brossier’s, Davies’ and Klapuri’s algorithms per-
formed worst on Hard music. Informal analyses
showed that these algorithms often locked to a slower
metrical level and/or to the upbeat when presented
with this style of music, characterized by up-tempo
and off-beat drums and guitars.

. Of the four top performing algorithms, Ellis’ is the
most stable across genre. It performs significantly
worse than the other three on Pop music and worse
than Davies’ on World music, but it performs
significantly better than Davies’ and Klapuri’s on
Hard music and significantly better than Dixon’s on
Classical music.

Figure 3(b) shows the effect of percussion on the
algorithms’ beat-tracking ability. All algorithms show
better performance on percussive music, although the

difference is significant only for Dixon’s and Klapuri’s
algorithm. The three algorithms that showed the greatest
sensitivity to music genre (Davies, Dixon, and Klapuri)
also show the greatest sensitivity to the presence/absence
of percussion. Dixon’s algorithm shows the largest
sensitivity to the presence of percussion with a P-score
differential of 0.10 between the two cases.

Figure 3(c) shows that all algorithms perform
significantly better on excerpts with duple meter than
on excerpts with ternary meter. Ellis’ algorithm shows
the largest difference in performance, with P-score
differential of 0.11 between the two cases.

Finally, Figure 3(d) shows beat-tracking performance
as a function of the most salient perceived tempo (taken
from the ground-truth data for each excerpt). Most
algorithms perform best at mid-tempi (100 – 160 BPM)
but Ellis’ algorithm does best at higher tempi

Fig. 2. Algorithm versus human-annotator beat tracking
results. Average P-scores are shown for (1) the best-performing
single algorithm (Dixon), (2) the best-performing algorithm on

each excerpt, (3) all human annotators, and (4) the best-
performing human annotator on each excerpt. Error bars
indicate standard error of the mean, estimated through boot-

strapping (Efron & Tibshirani, 1993) across P-scores from
individual excerpts.

Fig. 3. Beat-tracking evaluation results as a function of (a)

genre, (b) percussiveness, (c) meter and (d) most-salient ground-
truth tempo. Average P-scores for each algorithm are plotted
for each condition. Error bars indicate standard errors of the

mean, estimated through bootstrapping across P-scores from
individual excerpts. The total number of excerpts used in the
effect of meter analysis (c) was 139 because one of the 140 test
excerpts had a meter of 7/8 (not duple or ternary).

Audio beat tracking and tempo extraction 7



(4160 BPM). Ellis’ algorithm is also the most consistent,
overall, across the three tempo categories. In contrast,
the algorithms from Davies and Klapuri perform
relatively poorly at high tempi and perform very
differently in the different tempo categories. At low
tempi (5100 BPM), Davies’ and Klapuri’s algorithms
perform best, while Dixon’s and Brossier’s algorithms
perform worst.

In addition to the overall P-score, we also evaluated
the performance of each algorithm using a ‘‘partial’’
P-score, assessing them against only those annotated
beat tracks for which the tempo (metrical level) was the
same as that from the algorithm-generated beat track.
Specifically, an annotation was used in the evaluation
only if the tapped tempo was within 8% of the
algorithm-generated tempo (the same criteria used for
the tempo-extraction evaluation). The rationale for this
analysis is that we wanted to see how well the algorithms
beat-track at their preferred metrical level, with no
penalty for choosing a perceptually less-salient metrical
level. Figure 4 shows the results of this analysis for the
algorithms (upper plot) as well as for individual
annotators (lower plot). As one would expect, most
algorithms show an elevated average score here in
comparison to the normal P-scores (Figure 1). Brossier’s
algorithm, however, shows a slight decrease in score here,
although the difference is not significant. In terms of this
partial P-score, Ellis’ algorithm does not perform as well
(statistically) as the three other top-performing algo-
rithms. The partial P-scores of individual annotators
(lower plot) show an even greater increase, on average,
than do the algorithms, in comparison to the normal
P-scores. The plot shows that the scores from annotators
1 – 40 are higher, on average, than those from annotators
41 – 80. It should be noted that the two groups of
annotators worked on separate sets of the musical
excerpt database and that the second group (41 – 80)
annotated a set of excerpts chosen for their extreme
tempo (fast or slow). More information on the musical
excerpt sets and annotators can be found in McKinney
and Moelants (2006).

Another aspect of algorithm performance worth
examining is computational complexity, which can be
grossly measured by the time required to process the test
excerpts. The IMIRSEL team has posted basic results of
this beat-tracking evaluation on their Wiki page, includ-
ing computation time for each algorithm (MIREX
2006a). The computation times of each algorithm are
displayed here in Table 2 and should be interpreted with
knowledge of each algorithm’s implementation language,
as displayed in Table 1. Generally, a MATLAB im-
plementation of a particular algorithm will run slower
than its optimized C/Cþþ counterpart. The algorithms
were run on two different machines (differing in
operating system and memory), however the processors
and the processor speeds were identical in both machines.

The numbers show that Dixon’s algorithm, while per-
forming the best, is also reasonably efficient. Brossier’s
algorithm is the most efficient, but it also performs the

Fig. 4. Beat-tracking evaluation based on annotated beat tracks
with the same tempo (and metrical level) as that from the
algorithm-generated beat track. Average P-scores for each

algorithm are shown in the upper plot and average P-scores for
individual annotators are shown in the lower plot. Error bars
indicate standard errors of the mean, estimated through

bootstrapping across P-scores from individual excerpts.

Table 2. Computation time required for beat tracking.

Computation times are for processing the entire collection of
140 30-s musical excerpts. Algorithms: BRO – Brossier; DAV –
Davies & Plumbley; DIX – Dixon; ELL – Ellis; KLA – Klapuri.

Results taken from MIREX (2006a).

Algorithm

BRO DAV DIX ELL KLA

Computation
time (s)

139 1394 639 498 1218

Implementation
language

C/Cþþ
Python

MATLAB Java MATLAB C/Cþþ

8 M. F. McKinney et al.



worst. Ellis’ algorithm has the second to shortest runtime
despite being implemented in MATLAB, and thus, if
optimized, could be the most efficient algorithm.
In addition, his algorithm performed statistically
equivalent to the best algorithms in many instances.
The two slowest algorithms are those from Davies and
Klapuri, however it should be noted that Davies’
algorithm is implemented in MATLAB, while Klapuri’s
in C/Cþþ.

4.2 Tempo extraction results

Overall results of the tempo-extraction evaluation are
shown in Figure 5. In general, the algorithm P-scores
here are higher and their range is broader than those
from the beat-tracking task (see Figure 1). These dif-
ferences may come from differences in how the two
P-scores are calculated, but it is also likely that the task
of extracting tempo and phase (beat-tracking) is more
difficult than the task of extracting tempo alone.

The data in Figure 5 show that the algorithm from
Klapuri gives the best overall P-score for tempo
extraction, however it does not perform statistically
better than the algorithm from Davies. Klapuri’s
algorithm, however, performs statistically better than
all the other algorithms, while Davies’ algorithm per-
forms better than all but Alonso’s (ALO2), statistically.

The overall results also show that Alonso’s addition of
spectral reassignment in his second algorithm (see
Section 2.1) helps to improve the P-score, but not
significantly in the mean across all excerpts.

As in the beat-tracking evaluation, we examined
algorithm performance as a function of a few musicolo-
gical factors, namely, genre, the presence of percussion,
meter and most-salient perceptual tempo. Figure 6 shows

a breakdown of the tempo-extraction P-scores according
to these factors.

For the tempo task, there is not a single genre for
which all tempo-extraction algorithms performed best or
worst but a number of remarks can be made regarding
the effect of genre:

. Classical tended to be the most difficult for most
algorithms, with Varia also eliciting low P-scores.
Both genres contain little percussion.

. The Hard genre provided the highest P-scores for
most algorithms, while World also showed relatively
high scores.

. Ellis’ algorithm showed the least sensitivity to
differences in genre, with average P-scores for the
different genres clustered tightly together.

. Despite performing worst overall, Brossier’s algo-
rithm performed statistically equivalent (in the mean)

Fig. 5. Tempo extraction evaluation results. Average P-scores
for each algorithm are plotted. Error bars indicate standard
errors of the mean, estimated through bootstrapping across
P-scores from individual excerpts.

Fig. 6. Tempo extraction evaluation results as a function of
(a) genre, (b) percussiveness, (c) meter and (d) most-salient

ground-truth tempo. Average P-scores for each algorithm are
plotted for each condition. Error bars indicate standard errors
of the mean, estimated through bootstrapping across P-scores

from individual excerpts.

Audio beat tracking and tempo extraction 9



to best algorithm (Klapuri) for the genres Jazz and
World.

The effect of percussion is, in general, greater for the
tempo-extraction task than it was for beat tracking.
Figure 6(b) shows that every algorithm performs
significantly worse on music without percussion than
on music with percussion. It is likely the sharp transients
associated with percussive instruments, which in turn
elicit sharper driving functions, aid in the automatic
extraction of tempo. For music without percussion,
Klapuri’s algorithm still shows the best mean perfor-
mance, but is not significantly better than any of the
other algorithms.

The effect of meter (Figure 6(c)) was large for four of
the seven algorithms and was larger, for the effected
algorithms, in the tempo-extraction task than in the beat-
tracking task. The data show that these four algorithms
(BRO, DAV, ELL, and KLA) perform significantly
worse for ternary than for binary meters. Both Brossier
(2006b) and Davies and Plumbley (2007, see also this
article, Appendix A) make the explicit assumption that
the two most salient tempi are related by a factor of two,
thus it is not surprising that they perform worse on
excerpts with ternary meter. The algorithms from Ellis
(2007) and Klapuri et al. (2006, see also this article,
Appendix B) do not contain any explicit limitations to
duple meters, however they both seem to have implicit
difficulty in extracting the perceptual tempi with ternary
meters. Finally, the algorithms from Alonso et al. (2007)
and Antonopoulos et al. (2007) do not contain assump-
tions regarding duple versus ternary meter and perform
equally well (statistically) in both cases across our range
of excerpts.

Figure 6(d) shows tempo extraction performance as a
function of the most salient groundtruth tempo. Most
algorithms perform best at high tempi (4160 BPM)
while the rest perform best at mid-tempi (100 – 160
BPM). Almost all algorithms perform worst at low tempi
(5100 BPM). Klapuri’s algorithm performs significantly
better than all other algorithms at mid-tempi while
Davies’ algorithm performs significantly better than the

others at high tempi. Of all the conditions, Davies’
algorithm at high tempi is the best-performing combina-
tion, with a near-perfect P-score.

As in the evaluation of beat tracking, we also looked
at the overall algorithm run time of the tempo extraction
algorithms as a measure of computational complexity.
The results from the IMIRSEL team are posted on the
MIREX Wiki page and include the same processor used
for the beat-tracking evaluation (MIREX 2006b). It
appears from their results, presented here in Table 3, that
the algorithm from Antonopoulos et al. (2007) is by far
(nearly an order of magnitude) more complex than all
the other algorithms. It is likely that this computational
load comes from a number of factors including their self-
similarity-based driving function, their multi-pass ap-
proach to periodicity detection, the iterative method for
periodicity voting as well as non-optimized C/Cþþ code.
Ellis’ algorithm is by far the most efficient, processing the
excerpts in less than half the time as the next fastest
algorithm (despite being implemented in MATLAB). It
is interesting to note that the additional computation
(spectral reassignment) in Alonso’s second entry, ALO2,
increased the computation time relative to ALO1 by
more than a factor of two, but the performance
remained statistically the same (see Figure 5). Again,
these results need to be interpreted with knowledge of
the implementation language of each algorithm (see
Table 3).

5. Discussion

We have evaluated a number of algorithms for automatic
beat tracking and tempo extraction in musical audio
using criteria based on the population perception of beat
and tempo. The main findings of the evaluation are as
follows:

. Human beat trackers perform better, on average,
than current beat-tracking algorithms, however an
optimal combination of current algorithms would
outperform the average human beat tracker.

Table 3. Computation time required for tempo extraction. Computation times are for processing the entire collection of 140 30-s

musical excerpts. Algorithms: ALO – Alonso, Richard & David; ANT – Antonopoulos, Pikrakis & Theodoridis; BRO – Brossier;
DAV – Davies & Plumbley; ELL – Ellis; KLA – Klapuri. Results taken from MIREX (2006b). *The C/Cþþ code for the ANT
algorithm was generated directly using the MATLAB compiler and thus does not provide the typical complexity advantage gained

from manually optimizing the C/Cþþ code.

Algorithm

ALO1 ALO2 ANT BRO DAV ELL KLA

Computation time (s) 2126 4411 14500 1486 1389 445 1216

Implementation language MATLAB MATLAB C/Cþþ* C/Cþþ Python MATLAB MATLAB C/Cþþ

10 M. F. McKinney et al.



. Algorithms for beat tracking and tempo extraction
perform better on percussive music than on non-
percussive music. The effect was significant across all
tempo-extraction algorithms but not across all beat-
tracking algorithms.

. Algorithms for beat tracking and tempo extraction
perform better on music with duple meter than with
ternary meter. The effect was significant across all
beat-tracking algorithms but not across all tempo-
extraction algorithms.

. The best performing tempo-extraction algorithms run
simultaneous periodicity detection in multiple fre-
quency bands (ALO and KLA) or on multiple driving
functions (DAV).

. The best performing beat-tracking algorithms (DIX
and DAV) use relatively low-resolution driving func-
tions (10 and 11.6 ms, respectively).

. Overall computational complexity (measured in
computation time) does not appear to correlate with
algorithm performance.

This work extends a summary of an earlier tempo
evaluation at the 2004 MIREX in which a different
database of music was used, notated only with a single
tempo value (Gouyon et al., 2006). In order to
accommodate a single ground-truth tempo value for
each excerpt in that evaluation, two types of tempo
accuracies were measured: one based on estimating the
single tempo value correctly and a second based on
estimating an integer multiple of the ground-truth tempo
(thus finding any metrical level). Here, we chose to treat
the ambiguity in metrical level through robust collection
of perceptual tempi for each excerpt. We took the
dominant perceptual tempi, characterized through
the tempi distribution of the listener population, as the
ground-truth tempi for each excerpt. The use of
perceptual tempi in this study is advantageous in that it
inherently deals with the notion of metrical ambiguity
and for many applications, including music playlisting
and dance, it is the perceptual tempo that counts.
However, in other applications, such as auto-accompani-
ment in real-time performance, notated tempo is the
desired means of tempo communication. For these
applications, a separate evaluation of notated-tempo
extraction would be useful.

Our evaluation shows that the beat-tracking algo-
rithms come close but do not quite perform as well, on
average, as human listeners tapping to the beat.
Additionally, while it is not exactly fair comparing the
P-scores between the tempo-extraction and beat-tracking
evaluations, it appears that beat-tracking performance,
in general, is poorer than the performance of the tempo-
extraction algorithms. Apparently the additional task of
extracting phase of the beat proves difficult.

Looking at the various parameters of the algorithms
and their performance, we can postulate on a few key

aspects. It appears from the tempo-extraction results that
algorithms that process simultaneous driving functions,
either multi-frequency bands or different types of driving
functions, perform better. The best performing tempo
extractors (KLA, DAV, ALO) all contain multiple
frequency bands or driving functions. The same advan-
tage does not seem to hold for beat-tracking, where
Dixon’s algorithm processes a single broad-band driving
function.

About half of the algorithms presented here calculate
explicit event onsets for the generation of their driving
functions. Two of the best performing algorithms for
both beat tracking and tempo extraction (DAV and
KLA), however, do not calculate explicit onsets from the
audio signal but instead rely on somewhat more direct
representations of the audio. The fact that they perform
as well as they do supports previous work that suggests
one does not need to operate at the ‘‘note level’’ in order
to successfully extract rhythmic information from a
musical audio signal (Scheirer, 1998; Sethares et al.,
2005).

Several of the algorithms (ALO, DAV, ELL, KLA)
use a sort of perceptual weighting on their final choice of
tempi, emphasizing tempi near 120 BPM while deem-
phasizing higher and lower tempi. This type of weighting
could adversely effect algorithm performance at high and
low tempi in that the algorithm could track the beats at
the wrong metrical level. It is interesting to note,
however, that all four of these algorithms are the top-
performing tempo-extractors at high tempi (4160 BPM)
and that Ellis’ beat-tracker performs best in the same
category. Also of interest is the fact that Davies’ and
Klapuri’s beat-trackers perform relatively poorly at high
tempi, but their tempo-extractors are the best and third-
best in the same tempo range. It is likely that, at high
tempi, the beat-alignment portions of their algorithms
are not robust or their algorithms switch to tracking
lower metrical levels.

Finally, it appears that the time resolution of the
driving function, at least for beat-tracking, does not need
to be ultra-high. The best performing beat trackers (DIX
and DAV) use time resolutions of 10 and 11.6 ms and
outperform other algorithms with higher time resolu-
tions. The best performing tempo extractor (KLA) has a
time resolution of 5.8 ms, while the second best (DAV)
has a time resolution of 11.6 ms, outperforming others
with higher time resolutions. Of course it is the complete
combination of parameters and functions that dictate
overall performance, but this type of analysis can help
constrain design guidelines for future algorithm design.

Acknowledgements

We would like to thank J. Stephen Downie and other
members of the IMIRSEL team, who planned, facilitated
and ran the MIREX algorithm evaluations. Andreas

Audio beat tracking and tempo extraction 11



Ehmann, Mert Bay, Cameron Jones and Jin Ha Lee were
especially helpful with the set-up, processing, and
analysis of results for both the Tempo Extraction and
Beat Tracking evaluations.

We would also like to thank Miguel Alonso, Iasonas
Antonopoulos, Simon Dixon, Dan Ellis and Armin
Kohlrausch for valuable comments on an earlier version
of this article.

Matthew Davies was funded by a College Studendship
from Queen Mary University of London and by EPSRC
grants GR/S75802/01 and GR/S82213/01.

References

Alonso, M., David, B. & Richard, G. (2006). Tempo
extraction for audio recordings. From the Wiki-page of
the Music Information Retrieval Evaluation eXchange
(MIREX). Retrieved 1 May 2007 from http://www.
music-ir.org/evaluation/MIREX/2006_abstracts/TE_
alonso.pdf

Alonso, M., Richard, G. & David, B. (2007). Tempo
estimation for audio recordings. Journal of New Music
Research, 36(1), 17 – 25.

Antonopoulos, I., Pikrakis, A. & Theodoridis, S. (2006). A
tempo extraction algorithm for raw audio recordings.
From the Wiki-page of the Music Information Retrieval
Evaluation eXchange (MIREX). Retrieved 1 May 2007
from http://www.music-ir.org/evaluation/MIREX/2006_
abstracts/TE_antonopoulos.pdf

Antonopoulos, I., Pikrakis, A. & Theodoridis, S. (2007).
Self-similarity analysis applied on tempo induction from
music recordings. Journal of New Music Research, 36(1),
27 – 38.

Baird, B., Blevins, D. & Zahler, N. (1993). Artificial
intelligence and music: Implementing an interactive
computer performer. Computer Music Journal, 17(2),
73 – 79.

Bello, J.P., Duxbury, C., Davies, M.E. & Sandler, M.B.
(2004). On the use of phase and energy for musical onset
detection in the complex domain. IEEE Signal Processing
Letters, 11(6), 553 – 556.

Brossier, P. (2006a). Automatic Annotation of Musical Audio
for Interactive Applications. PhD thesis, Queen Mary,
University of London, London, August.

Brossier, P. (2006b). The aubio library at MIREX 2006.
From the Wiki-page of the Music Information Retrieval
Evaluation eXchange (MIREX). Retrieved 1 May 2007
from http://www.music-ir.org/evaluation/MIREX/2006_
abstracts/AME_BT_OD_TE_brossier.pdf

Dannenberg, R. (1984). An on-line algorithm for real-
time accompaniment. In Proceedings of the International
ComputerMusic Conference, San Francisco, pp. 193 – 198.
Computer Music Association: San Francisco, CA.

Davies, M.E.P. & Plumbley, M.D. (2005). Comparing mid-
level representations for audio based beat tracking. In
Proceedings of the DMRN Summer Conference, Glasgow,
Scotland, pp. 36 – 41.

Davies, M.E.P. & Plumbley, M.D. (2007). Context-
dependent beat tracking of musical audio. IEEE Trans-
actions on Audio, Speech and Language Processing, 15(3),
1009 – 1020.

Dixon, S. (1999). A beat tracking system for audio signals.
In Proceedings of the Conference on Mathematical and
Computational Methods in Music, pp. 101 – 110, Wien.
Austrian Computer Society: Vienna.

Dixon, S. (2000). A beat tracking system for audio signals.
In Proceedings of the Pacific Rim International
Conference on Artificial Intelligence, Melbourne,
pp. 778 – 788.

Dixon, S. (2006). MIREX 2006 audio beat tracking
evaluation: BeatRoot. From the Wiki-page of the Music
Information Retrieval Evaluation eXchange (MIREX).
Retrieved 1 May 2007 from http://www.music-ir.org/
evaluation/MIREX/2006_abstracts/BT_dixon.pdf

Dixon, S. (2007). Evaluation of the audio beat tracking
system BeatRoot. Journal of New Music Research, 36(1),
39 – 50.

Dixon, S. & Cambouropoulos, E. (2000). Beat tracking with
musical knowledge. In W. Horn (Ed.), Proceedings of the
14th European conference on artificial intelligence
(pp. 626 – 630). Amsterdam: IOS Press.

Efron, B. & Tibshirani, R.J. (1993). An introduction to the
bootstrap. Monographs on statistics and applied prob-
ability. New York: Chapman & Hall.

Ellis, D.P.W. (2006). Beat tracking with dynamic program-
ming. From the Wiki-page of the Music Information
Retrieval Evaluation eXchange (MIREX). Retrieved 1
May 2007 from http://www.music-ir.org/evaluation/
MIREX/2006_abstracts/TE_BT_ellis.pdf

Ellis, D.P.W. (2007). Beat tracking with dynamic pro-
gramming. Journal of New Music Research, 36(1),
51 – 60.

Gasser, M., Eck, D. & Port, R. (1999). Meter as mechanism:
a neural network that learns metrical patterns. Connec-
tion Science, 11, 187 – 216.

Goto, M. & Muraoka, Y. (1994). A beat tracking system for
acoustic signals of music. In Proceedings of the
second ACM international conference on multimedia
(pp. 365–372). ACM: San Francisco, CA.

Goto, M. & Muraoka, Y. (1998). Musical understanding at
the beat level: real-time beat tracking for audio signals. In
D.F. Rosenthal and H.G. Okuno (Eds.), Computational
auditory scene analysis (pp. 157 – 176). Mahwah, NJ:
Lawrence Erlbaum Associates.

Gouyon, F., Klapuri, A., Dixon, S., Alonso, M.,
Tzanetakis, G., Uhle, C. & Cano, P. (2006). An
experimental comparison of audio tempo induction
alorighms. IEEE Transactions on Audio, Speech and
Language Processing, 14(5), 1832 – 1844.

Klapuri, A., Eronen, A. & Astola, J. (2006). Analysis of the
meter of acoustic musical signals. IEEE Transactions on
Audio, Speech, and Language Processing, 14(1), 342 – 355.

Large, E.W. & Kolen, J.F. (1994). Resonance and the
perception of musical meter. Connection Science, 6(1),
177 – 208.

12 M. F. McKinney et al.



Lee, C.S. (1985). The rhythmic interpretation of simple
musical sequences: towards a perceptual model. In
R. West, P. Howell and I. Cross (Eds.), Musical
structure and cognition (pp. 53 – 69). London: Academic
Press.

Lerdahl, F. & Jackendoff, R. (1983). A generative theory of
tonal music. Cambridge, MA: MIT Press.

Longuet-Higgins, H.C. & Steedman, M.J. (1971). On
interpreting Bach. In B. Meltzer and D. Michie (Eds.),
Machine intelligence 6 (pp. 221 – 241). Edinburgh: Edin-
burgh University Press.

Longuet-Higgins, H.C. & Lee, C.S. (1982). Perception of
musical rhythms. Perception, 11, 115 – 128.

Longuet-Higgins, H.C. & Lee, C.S. (1984). The rhythmic
interpretation of monophonic music. Music Perception,
1(4), 424 – 441.

McAuley, J.D. (1995). Perception of time as phase: toward an
adaptive-oscillator model of rhythmic pattern processing.
PhD thesis, Indiana University.

McKinney, M.F. & Moelants, D. (2006). Ambiguity in
tempo perception: What draws listeners to different
metrical levels? Music Perception, 24(2), 155 – 166.

Miller, B.O., Scarborough, D.L. & Jones, J.A. (1992). On
the perception of meter. In M. Balaban, K. Ebcioglu and
O. Laske (Eds.), Understanding music with AI: perspec-
tives on music cognition (pp. 428 – 447). Cambridge: MIT
Press.

MIREX Audio Beat Tracking Results. (2006a). From the
Wiki-page of the Music Information Retrieval Evalua-
tion eXchange (MIREX). Retrieved 1 May 2007 from
http://www.music-ir.org/mirex2006/index.php/Audio_
Beat_Tracking_Results

MIREX Audio Tempo Extraction Results. (2006b). From
the Wiki-page of the Music Information Retrieval
Evaluation eXchange (MIREX). Retrieved 1 May 2007
from http://www.music-ir.org/mirex2006/index.php/Audio_
Tempo_Extraction_Results

MIREX Music Information Retrieval Evaluation eX-
change. (2006c). Retrieved 1 May 2007 from http://
www.music-ir.org/mirex2006/index.php/Main_Page

Moore, B.C.J. (1995). Hearing. Handbook of perception and
cognition, 2nd ed. New York: Academic Press.

Parncutt, R. (1994). A perceptual model of pulse salience
and metrical accent in musical rhythms. Music Percep-
tion, 11(4), 409 – 464.

Povel, D.-J. & Essens, P. (1985). Perception of temporal
patterns. Music Perception, 2(4), 411 – 440.

Scheirer, E.D. (1998). Tempo and beat analysis of acoustical
musical signals. Journal of the Acoustical Society of
America, 103, 588 – 601.

Sethares, W.A., Morris, R.D. & Sethares, J.C. (2005). Beat
tracking of musical performances using low-level audio
features. IEEE Transactions on Speech and Audio
Processing, 13(2), 275 – 285.

Toiviainen, P. (1998). An interactive MIDI accompanist.
Computer Music Journal, 22(4), 63 – 75.

Vantomme, J.D. (1995). Score following by temporal
pattern. Computer Music Journal, 19(3), 50 – 59.

Vercoe, B. (1997). Computational auditory pathways to
music understanding. In I. Deliège and J. Sloboda (Eds.),
Perception and cognition of music (pp. 307 – 326). Hove:
Psychology Press.

Appendix A: Extended summary of the Davies &
Plumbley algorithm

The Davies and Plumbley submissions to the Audio
Tempo Extraction and Audio Beat Tracking tasks within
MIREX 2006 are based on their existing beat tracking
system, the full details of which may be found in Davies
and Plumbley (2007). Within this summary we provide
an overview of this beat tracking system highlighting
those areas which have been modified from the originally
published approach. In particular two main changes
have been implemented: (i) in line with the tempo
extraction task, the algorithm has been updated to
provide two perceptual tempo estimates; and (ii) for the
beat tracking task, the algorithm has been adapted to
generate three parallel sequences of beats. Each sequence
is derived from a different onset detection function, from
which the eventual output is determined via a post-
processing confidence measure.

Beat tracker overview

The basic operation of the Davies and Plumbley beat
tracking system, shown in Figure 7(a), can be broken
down into four discrete stages:

. Input representation: The first stage in the beat
tracking algorithm is the transformation of the audio
signal into a representation more suited to identifying
beat locations. The chosen input representation is the
onset detection function – a continuous signal which
exhibits peaks at likely onset locations. The onset
detection function is calculated by measuring the
spectral difference between short term (11 ms) analy-
sis frames and is referred to as the complex domain
method (Bello et al., 2004). An example audio signal
and onset detection function are shown in
Figures 7(b) and (c).

. Beat period: The process of extracting the beat period
(the time between consecutive beats) centres on the
analysis of the autocorrelation function of the onset
detection function. As can be seen from the example
plot in Figure 7(d) many peaks are present in the
autocorrelation function. The majority correspond to
periodicities which are too long to be considered
reasonable candidates for the tempo. To extract a
meaningful estimate of the beat period, the auto-
correlation function is passed through a shift-
invariant comb filterbank. The comb filterbank is
implemented in matrix form, where the columns of

Audio beat tracking and tempo extraction 13



the matrix contain comb-like impulse trains covering
a range of periodicities to an upper limit of 1.5 s.

To indicate an approximate perceptual weighting
over these periodicities, the relative strength of each
column is set by a Rayleigh distribution function (as
shown in Figure 7(e)). This weighting gives most
emphasis to periodicities close to 500 ms. The comb
filterbank output function (in Figure 7(f)) is calcu-
lated as the sum of the product of each column of the
matrix with the autocorrelation function. The beat
period is taken as the index of the maximum value of
the output function.

For the beat tracking system, only a single beat
period estimate is necessary, however within the
tempo extraction task, two are required (one for each
perceptual tempo candidate). To identify two peri-
odicities from the comb filterbank output it may not
be sufficient to extract the two most significant peaks,
whose height may be distorted by the Rayleigh
weighting function. Instead, the pair of peaks, which
are most closely related by a factor of two and are the
strongest in the filterbank output signal, are ex-
tracted. The periodicity of the higher of the two peaks
is taken as the primary tempo estimate and the lower
as the secondary. The salience between the two tempi
is calculated as the ratio of the height of the stronger
peak to the sum of the heights of both peaks.

. Beat phase: Once an estimate of the beat period has
been identified the next task within the beat tracking
system is to find the locations of the beats. To

represent the known beat period an impulse train
with impulses at beat period intervals is formed.
Over-lags ranging one beat period, this impulse train
is cross-correlated with the onset detection function.
The lag at which the impulse train most strongly
correlates with the onset detection function is taken
to represent the phase of the beats. Subsequent beat
locations can be predicted at beat period intervals
from this point. An example onset detection function
with beat locations is given in Figure 7(g).

. High-level processing: Within the tempo extraction
task only global estimates of the two tempi are re-
quired, therefore the tempo estimates can be derived
from one global autocorrelation function calculated
across the length of the onset detection function.
However, for the beat tracking task, the beat tracker
should be reactive to changes in the phase or tempo
of the beats. To enable this sensitivity, both the beat
period and beat phase processes are repeated on
overlapping onset detection function frames. Each
frame is 6 s in length with a 1.5 s step increment.

A potential problem with the repeated estimation of
beat period and phase is that no effort is made to
enforce continuity. This is resolved by measuring the
consistency between sequential beat period estimates.
If three consecutive beat period estimates are close then
the Rayleigh weighting (within the shift-invariant
comb filterbank) is replaced with a tighter Gaussian
weighting centred on the consistent beat period
estimate. This greatly limits the range of observable

Fig. 7. (a) Overview of the Davies and Plumbley beat tracking system. (b) Audio signal. (c) Onset detection function. (d)
Autocorrelation function. (e) Rayleigh weighting function. (f) Comb filterbank output. (g) Onset detection function with beat
locations. (h) Beat tracking with multiple onset detection function inputs.

14 M. F. McKinney et al.



periodicities, forcing the beats to be predicted at
approximate beat period intervals. The downside of
this restriction is that it can leave the beat tracker blind
to any global changes in tempo, i.e. those beyond the
limited range of the Gaussian weighting.

To address the compromise between sensitivity to
tempo change and consistency of beats, a Two State
Model for beat tracking is implemented. The first
state, referred to as the General State, uses the
Rayleigh weighting to find an initial tempo estimate
and to track tempo changes while the second, known
as the Context-dependent State maintains continuity
within regions of approximately constant tempo with
the Gaussian weighting. Further details of the
complete beat tracking system can be found in Davies
and Plumbley (2007).

Beat tracking with multiple inputs

The beat tracking system presented in Davies and
Plumbley (2007) employs a single onset detection
function (the complex domain method) as the basis for
finding beat locations. Informal experiments by Davies
and Plumbley (2005) revealed that overall beat tracking
performance could be improved by choosing between
multiple onset detection functions. In these initial tests,
the selection was made by hand, however for the beat
tracking task, an automatic approach is presented. In all,
three onset detection functions are calculated for a given
audio signal: (i) complex domain; (ii) phase deviation and
(iii) spectral difference, each of which is described in Bello
et al. (2004).

The beat tracking system operates independently on
each onset detection function, which results in three
sequences of beat times. To make the decision over which
beat sequence to take as the sole output from the system,
each sequence is rendered as an impulse train at the
temporal resolution of the onset detection function. A
time-limited (100 ms) cross-correlation between each
beat impulse train and its respective onset detection
function is used to evaluate each beat tracking submis-
sion. The beat sequence which is most strongly correlated
with a detection function is then taken as the output. An
overview of the beat tracking process with multiple onset
detection functions is shown in Figure 7(h).

Appendix B: Extended summary of the Klapuri
algorithm

This appendix describes the meter analysis method of
Klapuri et al. (2006). Figure 8 shows an overview of the
method. The different parts are now explained one at a
time.

Time-frequency analysis

The time-frequency analysis front-end aims at measuring
the degree of musical accent (or, stress) as a function of
time at four different frequency ranges. Acoustic input
signals are sampled at 44.1 kHz rate and 16-bit resolu-
tion. Discrete Fourier transforms are calculated in
successive 23 ms time frames with 50% overlap. In each
frame, 36 triangular-response bandpass filters are simu-
lated that are uniformly distributed on a critical-band
scale between 50 Hz and 20 kHz (Moore 1995, p. 176).
The power at each band is calculated and stored to xb(n),
where n is the frame index and b¼ 1, 2, . . . ,36 is the band
index. The signals xb(n) are interpolated to obtain a time
resolution of 5.8 ms.

The task of musical accent estimation is then recasted
as measuring the amount of incoming spectral energy as
a function of time. From the human hearing viewpoint, it
makes sense to operate on a logarithmic magnitude scale,
therefore the subband envelopes are log-compressed as
yb(n)¼ log(xb(n)þ E), where E is a small constant. A low-
pass filter with a 10-Hz cutoff frequency is then applied
to smooth the compressed power envelopes. The result-
ing smoothed envelopes are differentiated and half-wave
rectified (constraining negative values to zero) to obtain
the signal ub(n) which measures the degree of incoming
energy at band b in frame n in a perceptually meaningful
way.

Finally, each 9 adjacent bands are linearly summed to
get 4 accent signals at different frequency ranges
(‘‘channels’’) c:

vcðnÞ ¼
X9c

b¼9ðc�1Þþ1
ubðnÞ; c ¼ 1; . . . ; 4: ðB1Þ

Periodicity analysis

Periodicity of the bandwise accent signals vc(n) is
analysed in order to measure the salience of different
pulse candidates. This is done using a bank of comb filter

Fig. 8. Overview of the meter analysis method of Klapuri et al.
(2006). (Reprinted, with permission, from Klapuri et al. (2006).
� 2006 IEEE.)

Audio beat tracking and tempo extraction 15



resonators similar to those employed by Scheirer (1998).
Each individual comb filter corresponds to a pulse
candidate. The comb filters have an exponentially-
decaying impulse response where the half-time refers to
the delay during which the response decays to a half of its
initial value. The output of a comb filter with delay t for
input vc(n) is given by

rcðt; nÞ ¼ atrcðt; n� tÞ þ ð1� atÞvcðnÞ; ðB2Þ

where the feedback gain at determines the half-time
(here 3 s).

A bank of such resonators is applied, with t getting
values from 1 to tmax, where the maximum period tmax

corresponds to four seconds. Short-time energies sc(t, n)
of each comb filter in channel c at time n are calculated
by squaring and averaging the filter outputs and by
applying a normalization procedure (see Klapuri et al.,
2006, for details).

Finally, the salience s(t, n) of a metrical pulse with
period-length t at time n is obtained by summing across
channels:

sðt; nÞ ¼
X4
c¼1

scðt; nÞ: ðB3Þ

Probabilistic model for pulse periods

The comb filters serve as feature extractors for two
probabilistic models. One model is used to decide the
period-lengths of the tatum, tactus, and measure pulses
and the other model is used to estimate the correspond-
ing phases (see Figure 8).

For period estimation, a hidden Markov model is
used that describes the simultaneous evolution of the
three pulses. The observable data consists of the in-
stantaneous energies of the resonators, s(t, n), denoted sn
in the following. The unobservable hidden variables are
the tatum period tAn , tactus period tBn , and measure

period tCn . The vector qn¼ [j, k, l] is used to denote a

‘‘meter state’’, equivalent to tAn ¼ j; tBn ¼ k; and tCn ¼ l.

The hidden state process is a first-order Markov
model which has an initial state distribution P(q1)
and transition probabilities P(qnjqn7 1). The observable
variable is conditioned on the current state so
that we have state-conditional observation densities
p(snjqn).

The joint probability density of a state sequence
Q¼ (q1q2 . . . qN) and observation sequence O¼
(s1s2 . . . sN) can be written as

pðQ;OÞ ¼ Pðq1Þpðs1jq1Þ
YN
n¼2

Pðqnjqn�1ÞpðsnjqnÞ; ðB4Þ

where the term P(qnjqn7 1) can be decomposed as

Pðqnjqn�1Þ ¼ P tBn jtBn�1
� �

P tAn jtBn ; tAn�1
� �

P tCn jt
B
n ; t

C
n�1

� �
: ðB5Þ

Above, it has been assumed that the tatum period tAn at
time n depends only on the tatum period at time n7 1
and on the beat period at time n, but not on the measure

period. Similarly, tCn depends only on tCn�1 and tBn , but
not on tAn directly.

Klapuri et al. (2006) proposed a structured and
parametric form for the term P(qnjqn7 1) in order to
impose musical constraints on the estimated meter. In
practice, the period lengths were constrained to be
slowly-varying, and binary or ternary integer relation-
ships were preferred between the concurrent pulses. The
optimal meter, that is, the optimal state sequence
Q¼ (q1q2 . . . qN) can be found using the Viterbi algo-
rithm. In a causal model, the meter estimate qn at time n
is determined according to the end-state of the best
partial path at that point in time.

The period length of the tactus pulse alone suffices for
tempo estimation. In the MIREX-2006 contest, the
median period length over the latter half of the analysed
signal was used. It should be noted, however, that joint
estimation of the three pulses improves the robustness of
the tactus analysis. In order to conform to the MIREX
tempo extraction task, another tempo value is obtained
by doubling or halving the first estimate towards a mean
tempo of 109 BPM.

Phase estimation

For beat tracking, also the temporal locations of each
individual beat are required. This task is called beat
phase estimation and is here based on the latest outputs
of the comb filter corresponding to the estimated tactus
period t̂Bn . There are four channels, therefore there are

four output signals rc t̂Bn ; j
� �

, where c¼ 1, . . . ,4 is the

channel index and the phase index j takes on values
between n7 tþ 1 and n when estimation is taking place
at time n. The four signals are summed in order to get an
observation vector hn(j) for phase estimation:

hnðjÞ ¼
X4
c¼1
ð6� cÞrc t̂Bn ; j

� �
; ðB6Þ

where j¼ n7 tþ 1, . . . ,n. Note that the lower-frequency
channels are given a larger weight in the sum. This is is
motivated by the ‘‘stable bass’’ rule of Lerdahl and
Jackendoff (1983) and improves the robustness of phase
estimation in practice.

The observation vector (B6) is used in another hidden
Markov model which describes the phase evolution of
the tactus pulse. Joint estimation with the other two
pulses was not attempted.

16 M. F. McKinney et al.




