

Cedar Wingate

MUMT 621

Professor Ichiro Fujinaga

15 October 2009

Dynamic Programming Summary

 In 1950, looking for a way to describe the work he was doing at the RAND

corporation, but not wanting to fuel the ire of the sitting secretary of defense, who had an

irrational aversion and hatred of words like "research," Richard Bellman termed the

phrase "dynamic programming:" dynamic meaning multistage, time-varying, and

dynamic in the classical sense; and programming referring to the intent for decision

making, thinking and planning (Dreyfus 2002, p. 48). Simply put, dynamic programming

"refers to simplifying a complicated problem by breaking it down into simpler

subproblems in a recursive manner" (Wikipedia contributors 2009b).

 Dynamic programming is both a mathematical optimization method and a method

of computer programming. In mathematics, “it refers to the simplification of a decision

by breaking it down into a sequence of decision steps over time (Wikipedia contributors

2009b). In computer programming there are two requirements, optimal substructure and

overlapping subproblems. Optimal substructure refers to the problem being able to be

solved through optimal solutions to its subproblems usually by recursion, which is a

method where a function is used within its own definition (Wikipedia contributors 2009b

and Wikipedia contributors 2009c). Overlapping subproblems refers to the solving the

same subproblems over and over instead of generating new subproblesm (Wikipedia

contributors 2009b). There two basic approaches to solving the subproblems, top-down

and bottom-up.

 Using the example of the Fibonacci series (Fi = Fi-1 + Fi-2) (ibid.), a top-down

approach starting on the 5th Fibonacci number would solve : F4 (F3 (F2 + F1)+ F2 (F1 +

F0))+ F3 (F2 (F1 + F0) + F1) + F2 (F1 + F0) + F1) + F1. For the bottom-up approach, it

would solve: F5: F1 + F2 (F1 + F0)+ F3 (F2 + F1) + F4 (F3 + F2)+ F5 (F4 + F3). Assuming

that the solutions to subproblems that have already been solved are being stored in

memory, they both could take the same amount of time, but the first would take up more

space in memory (Wikipedia contributors 2009b).

 Another example taken from David Smith’s introduction to dynamic

programming is called the potential partner problem (1997). In this problem, a scale is

set up of 1-1000 millihelens, referring to the old myth that Helen of Troy had a face that

launched 1000 ships; therefore a millihelen is a face that would launch one ship. Faced

with a number of potential partners, the obvious process is to start with your first choice

and build up a comparison between all the other choices. Once can’t make a decision,

however, until all possible decisions have been contemplated. In dynamic programming,

one would start with the final choice and knowing only the score for that option and the

potential average for the whole set (500 for a scale of 1-1000), one would decide based

on whether the choice in front of him is higher than 500. If it is, that one is chosen; if it

isn’t, then one moves onto the next one (Smith 1997).

 The main application of dynamic programming in the Music Information

Retrieval field is for beat tracking. Daniel Ellis created an algorithm that used dynamic

programming for beat tracking (2007). He basically compared the onset of different

rhythmic emphasis in tracks to predict the next onset and to determine the beats per

minute tempo of a track (Ellis 2007). McKinney et. al. compared a number of different

algorithms including a dynamic programming algorithm (2007). Three of the eight used

dynamic programming inside their algorithms. The general findings were that automatic

beat tracking does not perform as well as humans, but that mixing all the algorithms

could produce something that would perform better than a human (McKinney et. al.

2007). Wright et. al. explored the use of dynamic programming in recognizing clave

rhythms in clave music. They added an extra layer to the process by giving a template of

the even-odd separation of the clave rhythm (2008).

Dixon, Simon. 2007. “Evaluation of the Audio Beat Tracking System BeatRoot.” Journal
of New Music Research 36, no. 1: 39-50.

Dreyfus, Stuart. 2002. "Richard Bellman on the birth of Dynamic Programming."
Operations Research 50, no. 1: 48-51,
http://www.wu.ac.at/usr/h99c/h9951826/bellman_dynprog.pdf (accessed 7 October
2009).

Ellis, Daniel P. W. 2007. “Beat Tracking by Dynamic Programming.” Journal of New
Music Research 36, no. 1: 51-60.	

McKinney, M. F., D. Moelants, M. E. P. Davies, and A. Klapuri. 2007. “Evaluation of
Audio Beat Tracking and Music Tempo Extraction Algorithms.” Journal of New Music
Research 36, no. 1: 1-16.

Smith, David K., and PASS Maths. 1997. “Dynamic programming: an introduction.”
+plus magazine. http://plus.maths.org/issue3/dynamic/ (accessed 7 October 2009).

Wikipedia contributors. 2009a. "Bellman equation." Wikipedia, The Free Encyclopedia,
http://en.wikipedia.org/wiki/Bellman_equation (accessed 7 October 2009).

Wikipedia contributors. 2009b. "Dynamic Programming." Wikipedia, The Free
Encyclopedia, http://en.wikipedia.org/wiki/Dynamic_programming (accessed 7 October
2009).

Wikipedia contributors. 2009c. "Recursion." Wikipedia, The Free Encyclopedia,
http://en.wikipedia.org/wiki/Recursion (accessed 7 October 2009).

Wright, Matthew, W. Andrew Schloss, and George Tzanetakis. 2008. “Analyzing Afro-
Cuban Rhythm Using Rotation-Aware Clave Template Matching With Dynamic
Programming.” Proceedings of the International Conference on Music Information
Retrieval (ISMIR) 2008. Philadelphia, Pennsylvania.

