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Abstract

We propose a process model for hierarchical
perceptual sound organization, which recog-
nizes perceptual sounds included in incoming
sound signals. We consider perceptual sound
organization as a scene analysis problem in the
auditory domain. Our current application is a
music scene analysis system, which recognizes
rhythm, chords, and source-separated musical
notes included in incoming music signals.

Our process model consists of multiple pro-
cessing modules and a probability network
for information integration. The structure
of our model is conceptually based on the
blackboard architecture. However, employ-
ment of a Bayesian probability network has fa-
cilitated integration of multiple sources of infor-
mation provided by autonomous modules with-
out global control knowledge.

1 Introduction

We humans recognize or understand existence, localiza-
tion and movements of external entities through five
senses. We call this function “scene analysis”. Scene
analysis is viewed here as an information processing
which produces valid symbolic representation of exter-
nal entities or events based on sensory data and stored
knowledge. We use the term visual scene analysis for
the scene analysis through optical (or visual) informa-
tion, and the term auditory scene analysis we use for
the scene analysis through acoustic (or auditory) infor-
mation. It is widely admitted that the research which
addresses artificial realization of those functions, as well
as physiological and psychological approaches, becomes
notably important in the upcoming multimedia society.

From engineering point of view, however, current state
of research on auditory scene analysis is still in its in-
fancy, when compared with a wide spectrum of the work
on visual scene analysis, though several pioneering works
on recognition or understanding of non-speech acous-
tic signals can been found in the literature[Oppenheim
and Nawab, 1992; Nakatani et al., 1994; Ellis, 1994;
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Brown and Cooke, 1994]. Here we consider two direc-
tions of development: flexibility of processing and hier-
archical structure of auditory scene.

First, we note that the flexibility of existing systems
has been rather limited when compared with human au-
ditory abilities. For example, automatic music transcrip-
tion systems which can deal with given ensemble mu-
sic played by multiple music instruments have not yet
realized, although several studies have been conducted
[Roads, 1985; Mont-Reynaud, 1985; Chafe et al., 1985].

Regarding flexibility of auditory functions in humans,
recent progress in physiological and psychological acous-
tics has offered significant information. Especially, the
property of information integration in the human audi-
tory system has been highlighted, as demonstrated in the
“auditory restoration” phenomena [Handel, 1989]. To
achieve flexibility, machine audition systems must have
this property, since auditory scene analysis is an inverse
problem in general formalization and cannot be properly
solved without such information as memories of sound
or models of the external world, as well as given sensory
data.

Using the blackboard architecture, information inte-
gration for sound understanding has already been real-
ized [Oppenheim and Nawab, 1992; Lesser et al., 1993].
However, it is still necessary to consider a quantitative
and theoretical background in information integration.

Second, we introduce the concept of perceptual sounds
as hierarchical and symbolic representation of acoustic
entities. The auditory stream[Bregman, 1990] has al-
ready been a familiar concept in auditory scene analy-
sis: an auditory stream can be thought as a cluster of
acoustic energy formed in our auditory processes. On
the other hand, a perceptual sound is a symbol which
corresponds to an acoustic (or auditory) entity. In ad-
dition, an essential property of perceptual sounds is its
hierarchical structure, as discussed in the following sec-
tions. Thus auditory scene analysis will be also referred
to more precisely as perceptual sound organization in
this paper.

With these points as background, we provide a novel
process model of hierarchical perceptual sound organiza-
tion with a quantitative information integration mecha-
nism. Our model is based on probability theory and
characterized by its autonomous behavior and theoreti-
cally proved stability.



2 Problem Description

2.1 Perceptual Sound Organization

An essential problem of perceptual sound organization
is a clustering of acoustic energy to create such clusters
that humans hear as one sound entity. Here it is impor-
tant to note that humans recognize various sounds in a
hierarchical structure in order to properly grasp and un-
derstand the external world. That is, a perceptual sound
is structured in both spatial and temporal hierarchy. For
example, when one waits for a person to meet standing
in a busy street, the waiting person sometimes hears a
whole traffic noise as one entity, while sometimes hears a
noise of one specific car as one entity. If he or she directs
attention to the specific car’s sound, an engine noise of
the car and a frictional sound from the road surface and
the tires of the car might be heard separately as two
entities.

Figure 1 shows an example of snapshot of perceptual
sounds for music. Note that there is not only spatial
structure as shown in this figure but also temporal clus-
ters of perceptual sounds, typically melodies or chord
progression, though the temporal structure of perceptual
sounds has not been depicted in Figure 1 for simplicity
of the figure.

Entities Layers

Piano’s "C"

Frequency
Components
Each QO stands for an individual perceptual sound.

Figure 1: An example of snapshot of perceptual
sounds

The problem of perceptual sound organization can be
decomposed into the following sub problems:

1. Extraction of frequency components with an acous-
tic energy representation.

2. Clustering of frequency components into perceptual
sounds.

3. Recognition of relations between the clustered per-
ceptual sounds and building a hierarchical and sym-
bolic representation of acoustic entities.

Note that we consider the problem as extraction of
symbolic representation from flat energy data, while
some approaches toward “auditory scene analysis” have
treated their problem as (e.g. evaluated their systems
in terms of ) restoration of target sound signals[Nakatani
et al., 1994; Brown and Cooke, 1992]. In the computer
vision field, the scene analysis problem has been consid-
ered as extration of symbolic representation from bitmap
images and clearly distinguished from the image restora-
tion problem which addresses recovery of target images
from noise or intrusions.

2.2 Music Scene Analysis

Here we have chosen music as an example of applicable
domain of perceptual sound organization. As summa-
rized in Table 1, we use the term music scene analysis
in the sense of perceptual sound organization in music.
Specifically, music scene analysis refers to recognition of
frequency components, notes, chords and rhythm of per-
formed music.

In the following sections, we first introduce general
configuration of the music scene analysis system. We
then focus our discussion on hierarchical integration of
multiple sources of information, which is an essential
problem in perceptual sound organization. Then behav-
ior of the system and results of the performance evalu-
ation are provided, followed by discussions and conclu-
sions.

3 System Description

Figure 2 illustrates our processing architecture OPTIMA
(Organized Processing toward Intelligent Music Scene Anal-
ysis). Input of the model is assumed to be monaural mu-
sic signals. The model creates hypotheses of frequency
components, musical notes, chords, and rhythm. As
a consequence of probability propagation of hypothe-
ses, the optimal (here we use the term “optimal” in
the sense of “maximum likelihood”) set of hypothe-
ses is obtained and outputted as a score-like display,
MIDI (Musical Instrument Digital Interface) data, or re-
synthesized source-separated sound signals.
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Figure 2: OPTIMA processing architecture

OPTIMA consists of three blocks: (A) preprocessing
block, (B) main processing block, and (C) knowledge
sources. In the preprocessing block, first the frequency
analysis is performed and a sound spectrogram is ob-
tained.

With this acoustic energy representation, frequency
components are extracted. This process corresponds to



Words

Table 1: Summary of our terminology
:  Meanings

perceptual sound

perceptual sound separation
perceptual sound organization (audi-
tory scene analysis)

music scene analysis

A symbol which represents an arbitrary acoustic event in the ex-
ternal world.

Extraction of perceptual sounds from incoming sound signals
Construction of an internal model of external acoustical events in
a spatial and temporal structure with separation and restoration
of perceptual sounds

auditory scene analysis for music sound signals

the first sub problem discussed in the previous section.
Since it is difficult to achieve practical accuracy by a sim-
ple threshold method, we developed the pinching plane
method in peak picking and tracking. As illustrated in
Figure 3, This method uses two planes pinching a spec-
tral peak in order to find temporal continuity of spectral
peaks. The planes are the regression planes of the peak,
calculated by a least-squares fitting.

Figure 3: Extraction of frequency components us-
ing pinching planes

In the case of complicated spectrum patterns, it is
difficult to recognize onset time and offset time solely by
bottom-up information. Thus the system creates several
terminal point candidates for each extracted component.

With Rosenthal’s rhythm recognition method [Rosen-
thal, 1992] and Desain’s quantization method [Desain
and Honing, 1989], rhythm information is extracted for
precise extraction of frequency components and recog-
nition of onset/offset time. Based on the integration of
beat probabilities and termination probabilities of ter-
minal point candidates, the candidates were fixed their
status: continuous or terminated, and consequently pro-
cessing scopes are formed. Here a processing scope is a
group of frequency components whose onset times are
close: it is clarified by the experiments on human audi-
tory characteristics that if onset asynchrony of two fre-
quency components is greater than a certain threshold,
the two components cannot form one note (the value of
the threshold is typically 80ms, though the value differs
by the frequencies or onset gradients of the components).
The processing scope is utilized as a basic time clock
for succeeding main processes of OPTIMA, as discussed
later.

When each processing scope is created in the prepro-
cessing block, it is passed to the main processing block,
as shown in Figure 2. The main block has a hypothesis

network with three layers corresponding to levels of ab-
straction: (1) frequency components, (2) musical notes
and (3) chords. Each layer encodes multiple hypotheses.
That is, OPTIMA holds an internal model of the exter-
nal acoustic entities as a probability distribution in the
hierarchical hypothesis space.

Multiple processing modules are arranged around the
hypothesis network. The modules are categorized into
three blocks: (a) bottom-up processing modules to trans-
fer information from a lower level to a higher level,
(b) top-down processing modules to transfer information
from a higher level to a lower level, and (c) temporal pro-
cessing modules to transfer information along the time
axis. The processing modules consult knowledge sources
if necessary. The following sections discuss the informa-
tion integration at the hypothesis network and behavior
of each processing module.

4 Information Integration by the
Hypothesis Network

For information integration in the hypothesis network,
we require a method to propagate impacts of new in-
formation through the network. We employ Pearl’s
Bayesian network method [Pearl, 1986], which can fuse
and propagate new information represented by proba-
bilities through the network using two separate links (A-
link and #-link) if the network is a singly connected (e.g.
tree-structured) graph.

Figure 4 shows our application of the hypothesis net-
work. As shown in the previous section, the network
has three layers: (1) C(Component)-level, (2) N(Note)-
level, and (3) S(Chord)-level. The link between the
C-level node and the N-level node is the S(Single)-
Link, which corresponds to one processing scope. The
link between the S-level and the N-level becomes the
M(Multiple)-Link, as a consequence of temporal integra-
tion: multiple notes along time axis may form a single
chord. The S-level nodes are connected along time by the
T(Temporal)-Link, which encodes chord progression.

To discuss information integration scheme, assume we
wish to find the belief (BEL) induced on the Node A in
Figure 4, for example. Letting D, stand for the data
contained in the tree rooted at A and DI for the data
contained in the rest of the network, we have

BEL(4) = P(4|D},D}) (1)

where A is a probability vector: A = (a1, a2, -, an).
Using Bayes’ theorem and assuming independence of hy-
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Figure 4: Topology of the hypothesis network

potheses

P(D}, Dylaj) = P(Djla;) P(D}lay), (2)

we have

P(A|D}, D}) = aP(D|A) P(AID}), (3)

where o is a normalization constant.
Substituting as A(A) = P(D,|4) and 7w(A) =
P(A|DY), Equation (3) can be written as

BEL(A) = a M(A) m(A). (4)

Given conditional probabilities P(Child|Parent) be-
tween any two adjacent nodes, A(A) can be derived from
A(Children of A) and 7(A) from 7w(Parent of A)[Pearl,
1986]. This derivation is considered as propagation of
diagnostic (A) or causal (7) support to A.

A minimum set of processing modules required in each
node of the network is shown in Figure 5. B-Holder
holds the belief (BEL) and passes new information as A
and 7 messages to the adjacent B-Holders. In our OP-
TIMA model, B-Holders are embedded in the hypoth-
esis network and not explicitly drawn in Figure 2. H-
Creator creates the hypotheses with initial probabilities.
H-Correlator is for evaluating conditional probabilities
P(Node;|Nodey), where Nodes is a parent of Node;,
which are required in the information propagation pro-
cess.

5 System Behavior

Based on the OPTIMA processing architecture, a music
scene analysis system has been implemented. This sec-
tion discusses configuration of knowledge sources and the
behavior of processing modules in the main processing
block in Figure 2.

5.1 Knowledge sources

Six types of knowledge sources are utilized in OPTIMA.

The chord transition dictionary holds statistical
information of chord progression, under the N-gram as-
sumption (typically we use N=3); that is, we currently
assume that the length of Markov chain of chords is
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Figure 5: Processing modules for each node of hy-
pothesis network

three, for simplicity. Since each S-level node has N-
gram hypotheses, one can note that the independence
condition stated by Equation (2) is satisfied even in S-
level nodes. We have constructed this dictionary based
on statistical analysis of 206 traditional songs (all west-
ern tonal music), which are popular in Japan and other
countries.

In the chord-note relation database, probabilities of
notes which can be played under a given chord are stored.
This information is obtained by statistical analysis of the
2365 chords.

The chord naming rules, based on a music theory,
are used to recognize chord when hypotheses of played
notes are given.

The tone memory is a repository of frequency com-
ponents data of a single note played by various musical
instruments (Figure 6). Currently it maintains notes
played by five instruments (clarinet, flute, piano, trum-
pet, and violin) at different expressions (forte, medium,
piano), frequency range, and durations. We recorded
those sound samples at a professional music studio.

Power ey

Figure 6: Tone memory

The timbre models are formed in the feature space
of the timbre. We first selected 43 parameters for musi-
cal timbre, such as onset gradient of the frequency com-
ponents and deviations of frequency modulations, and
then reduced the number of parameters by the princi-
pal component analysis. With the proportion value of
95%, we have an eleven-dimensional feature space where
at least timbres of above mentioned five instruments are
completely separated with each other. Assuming that



one category of timbre has the normal distribution in
the timbre space, we use Z;, the averaged value of j-
th parameter (j = 1,2,...,m), and a variance-covariance
matrix V' as timbre model parameters for a timbre cate-
gory A. Using Mahalanobis’ distance D?, the probability
P for the i-th note to belong to the category A can be
calculated as

1 1
P=— " e —D?} 5
COREVE] p{ 2 @
where S = V! and
D? = ZZ($ij —Z;) Sjk (zar — Zi). (6)
ik

Finally, the perceptual rules describe the human
auditory characteristics of sound separation[Bregman,
1990]. Currently, the harmonicity rules and the onset
timing rules are employed[Kashino and Tanaka, 1993]
based on psychoacoustic experiments.

5.2 Bottom-up processing modules

There are two bottom-up processing modules in OP-
TIMA: NHC (Note Hypothesis Creator) and CHC
(Chord Hypothesis Creator). NHC is a H-Creator for
the note layer, and performs the clustering for sound
formation and the clustering for source identification to
create note hypotheses (Figure 7). It uses the percep-
tual rules for the clustering for sound formation, and
the timbre models for discrimination analysis of timbres
to identify the sound source of each note. CHC is a
H-Creator for the chord layer, which creates chord hy-
potheses when note hypotheses are given. It refers to
chord naming rules in the knowledge sources.
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Figure 7: Note hypothesis creator
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5.3 Top-down processing modules

FCP (Frequency Component Predictor) and NP (Note
Predictor) are the top-down processing modules. FCP is
a H-Correlator between the note layer and the frequency
component layer, and evaluates conditional probabilities

between hypotheses of the two layers, consulting tone
memories (Figure 8). NP is a H-Correlator between the
chord layer and the note layer, to provide a matrix of
conditional probabilities between those two layers (Fig-
ure 9). NP uses the stored knowledge of chord-note
relations.
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Figure 8: Frequency component predictor
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Figure 9: Note predictor

5.4 Temporal processing modules

There are also temporal processing modules: CTP
(Chord Transition Predictor) and CGC (Chord Group
Creator). CTP is a H-Correlator between the two ad-
jacent chord layers, which estimates the transition prob-
ability of two N-grams (not the transition probability
of two chords), using the chord transition knowledge
source (Figure 10). CGC decides the M-Link between
the chord layers and the note layers. In each process-
ing scope, CGC receives chord hypotheses and note hy-
potheses. Based on rhythm information extracted in the
preprocessing stage, it tries to find how many succes-
sive scopes correspond to one node in the chord layer, to
create M-Link instances. Thus the M-Link structure is
formed dynamically as the processing progresses.

6 Note Level Evaluation using
Benchmark Test Signals

We have performed a series of evaluation tests on the sys-
tem: frequency component level tests, note level tests,
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chord level tests, and tests using sample song perfor-
mances. In this section, however, we will concentrate on
the note-level evaluation and present a part of the results
of benchmark tests.

6.1 Test Patterns

In note-level benchmark tests, we used simultaneous note
patterns such as shown in Figure 11. In those patterns,
a given number (typically two or three) of simultane-
ous notes were performed repeatedly by a MIDI sampler
using digitized acoustic signals (16bit, 44.1kHz) of natu-
ral musical instruments (clarinet, flute, piano, trumpet,
and violin). Note patterns were randomly composed by
a computer, with one of the following constraints:

Class 1 pattern: At least two of simultaneous notes
are always in a octave relation in pitch. That is,
in the case of a two simultaneous note pattern, the
fundamental frequencies of simultaneous two notes
are always in harmonic relations.

Class 2 pattern: At least two of simultaneous notes
are always in a 0.5 octave (fifth) relation in pitch.
That is, in the case of a two simultaneous note pat-
tern, the second (fourth, sixth, ... ) harmonic of
one note and the third (sixth, ninth, ...) harmonic
of another note always overlap.

Class 3 pattern: Note patterns which do not belong
to class 1 nor class 2.
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Figure 11: An example of note patterns for note-
level benchmark tests

6.2 Parameters for Evaluation

The note recognition index R was defined as

right —wrong 1 1
R=100.( 22— 27909~y 7
( total 213 el ()

where right is the number of correctly identified and
correctly source-separated notes, wrong is the number
of spuriously recognized (surplus) notes and incorrectly
identified notes, and total is the number of notes in the
input. Since it is sometimes difficult to distinguish sur-
plus notes from incorrectly identified notes, both are in-
cluded together in wrong. Scale factor 1/2 is for normal-
izing R: when the number of output notes is the same
as the number of input notes, R becomes 0 [%] if all
the notes are incorrectly identified and 100 [%] if all the
notes are correctly identified by this normalization.

In addition, we also use the retrieval index a and the
precision index [ for the note-level evaluation:

b
9 /BZ*

4 ®)
where n is the number of total notes in the input, a is
the number of correctly identified and correctly source-
separated notes in the output, b is the number of the
other notes in the output (Figure 12). The R can be

written using « and [ as

a
o = —
n

1 1

Input Pattern |::> Output
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Figure 12: Parameters for note-level evaluation

6.3 Results

In our experiments, tests have been performed in three
ways: perceptual sound organization (case 1) without
any information integration, (case 2) with information
integration at the N-level only, and (case 3) with all (z.e.
N-level and S-level) information integration. In the first
case, the best note hypothesis produced by the bottom-
up processing (NHC) is just viewed as the answer on
the system, while the other two cases the tone memory
information given by FCP is integrated.

Experimental results for the N-level evaluation is dis-
played in Figure 13 and 14 (class 1), Figure 15 and 16
(class 2), and Figure 17 and 18 (class 3). In the a—/ plot
figures, results for the case 1 and case 2 are displayed.

These results clearly indicate that integration of tone
memory information has significantly improved the note
recognition accuracy of the system. Especially, in the
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Figure 14: a — 3 plot (class 1)

class 1 patterns, where most frequency components are
overlapped, the a values before information integration
is quite low. However, NHC creates octave hypothe-
ses when there are only low probability hypotheses.
Thus the note-level information integration can effec-
tively work and consequently the « values are improved.

It is natural that chord-level integration did not af-
fect the results, since the note patterns used in these
tests are randomly (under the class constraint) composed
and have nothing to do with the stored chord transition
knowledge.

7 Conclusion

We first discussed problem of perceptual sound organi-
zation in terms of construction of valid symbolic hier-
archical representation from incoming acoustic energy.
Since we believe that an essential technical issue on this
problem is quantitative integration of multiple sources of
information, we then discussed information integration
scheme based on Bayesian probability network, which
have been applied to a music scene analysis system.
The Bayesian probability network enables us stable in-
formation integration without any global control knowl-
edge. The experimental results show that the integra-
tion of tone memory information significantly improves
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Figure 15: Results of benchmark tests for note
recognition (class 2)
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Figure 16: a — 3 plot (class 2)

the recognition accuracy for perceptual sounds, in com-
parison with a conventional bottom-up based processing.
Especially, in the situation that most frequency compo-
nents in multiple notes are overlapping (e.g. class 1 and
class 2), use of the tone memory information is found to
be essential.

While we concentrated on the note-level evaluation in
this article, we have found that the chord level informa-
tion is also very effective: for the efficacy of chord tran-
sition information, see also our another paper[Kashino
and Tanaka, 1995].

One of the limits of our method lies in the topological
constraint of the probability network: probability propa-
gation scheme described in this paper cannot be applied
to a multiply-connected graph (e.g. mesh-structured
graph). In our music scene analysis system, most com-
mon error at the note level is misidentification of instru-
ments, and the second major error is the overtone pitch
error. If we could introduce note-level transition infor-
mation to the system, as well as the chord-level tran-
sition information, the recognition accuracy would be
further improved; for example, such information that “it
is not usual that one note of trumpet suddenly cuts into
a flute and piano duet”, or “this note is unusually high
in pitch judging from this melody stream” would be use-



Center:  With Note-level Integration
Left: Without Any Integration

Right:

With Note & Chord-level Integration

I 95% Confidence Interval

92.5 60.0 61.0 51.0 563 _77.3 61.3
R[%] 895 925 60.0 61.0 51.0 563 _77.3 61.3
87.5 31.0 58.0 463 503" 740 54.0
100 I
,,,,,, {I ”mm{ ,IT
,,,,,,,,,,,,,, I
,,,,,,,,,,,,,,,,,,,,,,,,,, i I .
50 oeoof |- | —I rrrrrrrr 1 rrrrrrrrrrrrrrrrrrrrrr
0 L

2fp

2tp

2vp 3ctp 3cvp 3fcp 3vip

Figure 17: Results of benchmark tests for note

recognition (class 3)
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ful. Thus we anticipate that developing an information
integration method applicable to a multiply-connected
graph will be the next step of our approach.
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