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ABSTRACT

A processing principle is proposed for finding the pitches and
separating the spectra of concurrent musical sounds. The princi-
ple, spectral smoothness, is used in the human auditory system
which separates sounds partly by assuming that the spectral enve-
lopes of real sounds are continuous. Both theoretical and experi-
mental evidence is presented for the vital importance of spectral
smoothness in resolving sound mixtures. Three algorithms of var-
ying complexity are described which successfully implement the
new principle. In validation experiments, random pitch and sound
source combinations were analyzed in a single time frame.
Number of simultaneous sounds ranged from one to six, database
comprising sung vowels and 26 musical instruments. Usage of a
specific yet straightforward smoothing operation corrected
approximately half of the pitch errors that occurred in a system
which was otherwise identical but did not use the smoothness
principle. In random four-voice mixtures, pitch error rate reduced
from 18% to 8.1%.

1.  INTRODUCTION

Pitch perception plays an important part in human hearing and
understanding of sounds. In an acoustic environment, human lis-
teners are able to perceive the pitches of several simultaneous
sounds and make efficient use of the pitch to “hear out” a sound in
a mixture [1]. Computational modeling of this function, multip-
itch estimation, has been relatively little explored in comparison
to the availability of algorithms for single pitch estimation in
monophonic speech signals [2].

Until these days, computational multipitch estimation (MPE)
has fallen clearly behind humans in accuracy and flexibility. First
attempts were made in the field of automatic transcription of
music, but were severy limited in regard to the number of simulta-
neous sounds, pitch range, or variety of sound sources involved
[3]. In recent years, further progress has taken place. Martin pro-
posed a system that utilized musical knowledge in transcribing
four voice piano compositions [4]. Kashinoet al. describe a
model which was able to handle several different instruments [5].
Goto’s system was designed to extract melody and bass lines from
real-world musical recordings [6]. Psychoacoustic knowledge has
been succesfully utilized e.g. in the models of Brown and Cooke
[7], Godsmarket al. [8], and de Cheveigne and Kawahara [9].
Also purely mathematical approaches have been proposed [10].

Multipitch estimation and auditory scene analysis are inti-
mately linked. If the pitch of a sound can be determined without
getting confused by other co-occurring sounds, the pitch informa-
tion can be used to organize simultaneous spectral components to
their sources of production. Or, vice versa, if the spectral compo-
nents of a source can be separated from the mixture, MPE reduces

to single pitch estimation. This is why most recent MPE system
explicitly refer to and make use of the human auditory scene an
ysis principles. In human hearing, the perceptual organization
spectral components has been found to depend on certain aco
cues. Two components may be associated to a same sourc
their closeness in time or frequency, harmonic concordance, s
chronous changes in the frequency or amplitude of the comp
nents, or spatial proximity in the case of multisensor input [1].

The purpose of this paper is to propose a new efficient mec
nism in computational MPE and auditory organization.Spectral
smoothnessrefers to the expectation that the spectral envelopes
real sound sources tend to be continuous. Bregman points out
principle in human hearing by mentioning that spectral smoot
ness promotes integration of frequency partials to a same sou
and a single higher intensity partial is more likely to be perceive
as an independent sound [1, p.232]. However, smoothness has
traditionally been included among the auditory organization cue
This paper presents evidence for the importance of spec
smoothness both in human and computational MPE. Also, th
different algorithms are described that implement this principle

Validation experiments were performed using an experime
tal model, where the spectral smoothness was either utilized
different ways, or was completely ignored. Acoustic databa
comprised sung vowels and the whole pitch range of 26 musi
instruments. MPE was performed in a single time frame for ra
dom pitch and sound source combinations, number of simulta
ous sounds ranging from one to six. Including the spectr
smoothness principle in calculations made significant improv
ment in simulations. For example, the pitch error rate in rando
four-voice mixtures dropped from 18 % to 8.1 %, and in music
four-voice mixtures from 25 % to 12 %. As a result, MPE coul
be performed quite accurately at a wide pitch range and witho
a priori knowledge of the sound sources involved.

2.  EXPERIMENTAL FRAMEWORK

Figure 1 shows the overview of the system which acts as
experimental framework in this paper. The system can
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Fig. 1.Experimental framework: system which can be
switched between two modes. (A) Straightforward iterative
approach. (B) Spectral-smoothness based model.
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switched between two modes. The straightforward iterative MPE
model, denoted by branchA, has been described earlier in [11]. It
consists of two main parts that are applied in an iterative succes-
sion. The first part, predominant pitch estimation, finds the pitch
of the most prominent sound in the interference of other harmonic
and noisy sounds. As an output, it gives the fundamental fre-
quencyF, inharmonicity factorβ, and the precise frequencies and
amplitudes of the harmonic partials of the sound. In the second
part, the spectrum of the detected sound is linearly subtracted
from the mixture. These are then repeated for the residual signal.

A spectral-smoothness based model is obtained by locating an
additional module between the estimation and subtraction stages.
This is denoted by branchB in Fig. 1. The aim of the spectral
smoothing algorithm is to use the pitch information to produce a
more appropriate estimate for the spectrum of a separated sound
before it is subtracted from the mixture. The need for such a mod-
ule is strongly motivated by two observations. The predominant
pitch estimation algorithm is capable of finding one of the correct
pitches with 99 % certainty even in six-voice polyphonies [11].
However, the probability of error increases rapidly in the course
of iteration. This indicates that the initial estimate of a sound
spectrum as given by predominant pitch algorithm is not accurate
enough to remove it correctly from the mixture.

3.  DIAGNOSIS OF THE STRAIGHTFORWARD
ITERATIVE SYSTEM

Simulations were run to analyze the behaviour of the straightfor-
ward iterative estimation and separation approach, i.e., the branch
A in Figure 1. Random mixtures ofN sounds were generated by
first allotting an instrument and then a random note from its
whole playing range, however, restricting the pitch over five
octaves between 65 Hz and 2100 Hz. The desired number of
sounds was allotted, and them mixed with equal mean square lev-
els. The iterative process was then evoked and requested to extract
N pitches from the acoustic mixture signal. As a general impres-
sion, the presented iterative approach works rather reliably.

However, an important observation is immediately made
when the distribution of the remaining errors is analyzed. Figure 2
shows the errors as a function of the musical intervals that occur
in the erroneously transcribed sound mixtures. It appears that the
error rate is strongly correlated with certain pitch relations. More
exactly, the straightforward estimation and subtraction approach
is likely to fail in cases where the fundamental frequencies of
simultaneous sounds are in simple rational number relations, also
called harmonic relations. These are indicated over the corre-
sponding bars in Fig. 2.

3.1   Coinciding sinusoidal partials

It turned out that coinciding frequency partials from different
sounds make the algorithm fail. If sounds are in a harmonic rela-
tion to each other, a lot of partials coincide, i.e., share the same
frequency. When the firstly detected sound is removed, the coin-
ciding harmonics of remaining sounds are also removed in the
subtraction procedure. In some cases, and particularly after sev-
eral iterations, a remaining sound gets too corrupted to be cor-
rectly analyzed in the coming iterations.

When two sinusoidal partials with amplitudesa1 anda2 and

phase differenceθ∆ coincide in frequency, the amplitude of the
resulting sinusoid can be calculated as

. (1)

If the two amplitudes are roughly equivalent, the partials ma
either amplify or cancel each other, depending onθ∆. However, if
one of the amplitudes is significantly larger than the other, as
usually the case,asapproaches the maximum of the two.

3.2   Fundamental frequency relations

The condition that a harmonic partialh of a soundS coincides a
harmonicj of another soundR can be written as ,
whereFS and FR are the fundamental frequencies, and the tw
sides represent the frequencies of the partials. When the comm
factors of integersh andj are reduced, this yields

, (2)

where are integer numbers. This implies that partia
of two sounds can coincide only if the fundamental frequencies
the two sounds are in rational number relations. Furthermo
when the fundamental frequencies of two sounds are in the ab
relation, then everymth harmonicmk of the soundS coincides
everynth harmonicnk of the soundR at their common frequency
bands, where integer . This is evident since equa

 for each pairh=mk andj=nk, when Eq. (2) holds.
An important principle governing music is paying attention t

the pitch relations, intervals, of simultaneously played notes. Si
ple harmonic relations satistying Eq. (2) are favoured over diss
nant ones. Although western music arranges notes to a quant
logarithmic scale, it can surprisingly well produce the differen
harmonic intervals that can be derived by substituting small in
gers to Eq. (2) [3]. Because harmonic relations are so common
music, these “worst cases” must be handled well in general. Al
this explains why MPE is particularly difficult in music.

4.  SOLUTION AND ITS ARGUMENTATION

The difficulties caused by harmonic pitch relations can be clas
fied into two categories. First, the partials of an other sound m
be erroneously removed along with the one that is being actua
separated. This causes undetections. Second, two or more fu
mental frequencies in certain relations may make a non-exist
“ghost” sound appear, for example the root pitch of a chord. Th
causes insertion errors, i.e., extraneous pitch detections.

There is a solution to these problems that is both intuitiv

0 4 8 12 16 20 24 28 32 36 40
0

2

4

6

8

5/3
2

3
4

3/2

5/4

12/5

8

4/3

Fig. 2.Distribution of the pitch estimation errors as a function
of the musical intervals that occur in the erroneously tran-
scribed sound mixtures.
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efficient, and psychoacoustically valid: the spectra of the detected
sounds must be smoothed before subtracting them from the mix-
ture. Consider the logarithmic magnitude spectrum of a two-
sound mixture in Fig. 3. The harmonic partials of the higher-
pitched sound coincide every third harmonic of the lower-pitched
sound, which has been detected first. As predicted by Eq. (1), the
coinciding partials of the detected sound tend to have higher mag-
nitudes than the other ones. However, when the sound spectrum is
smoothed (thin slowly decreasing horizontal curve in Fig 3), these
partials rise above the smooth spectrum, and thus remain in the
residual after subtraction. In this way, the other sound is not
removed with the detected one. When properly applied, the same
mechanism can be used to treat ghost sounds, too.

4.1   Psychoacoustic knowledge applied

The design of the smoothing operation is not as simple as it seems
to be at the first glance. As a matter of fact, simply smoothing the
amplitude envelope (thin horizontal curve in Fig 3) before sub-
traction from the mixture doesnot work in the sense that it would
reduce the pitch error rate in simulations.

Spectral smoothing in the human auditory system does not
take the form of lowpass filtering. Instead, a nonlinear mechanism
cuts off single higher amplitude partials. In following, a brief
description of the human auditory processing is made in order to
reveal the exact mechanism of an appropriate smoothing process.

Meddis and Hewitt have proposed a computer model of
human auditory periphery which aims at reproducing a widest
range of phenomena in human pitch perception [12]. The algo-
rithm consists of four main steps. First, the input signal is passed
through a bank of bandpass filters. At each band, the signal is
halfwave rectified and lowpass filtered to extract the amplitude
envelope of the bandpassed signal. Periodicity in the resulting sig-
nal is detected by calculating autocorrelation function estimates
within channels. In the final phase, the estimates are linearly
summed across channels to get a summary autocorrelation func-
tion, the maximum value of which points out the global pitch.

Amplitude envelope calculation within channels performs
implicit spectral smoothing. When a harmonic sound is consid-
ered, each two neighbouring harmonic partials cause amplitude
beating, i.e., alternatingly amplify and cancel each other at the
fundamental frequency rate. However, the magnitude of the beat-
ing caused by each two sinusoidal partials is determined by the
smaller of their amplitudes. When the spectrum of a harmonic
sound is considered, this “minimum amplitude” property filters

out single higher amplitude harmonic partials.

4.2   Three smoothing algorithms

A computer implementation of the implicit smoothing in the
human auditory system can be isolated to a separate module.
algorithm simply goes through the harmonic partials of a sou
and replaces the amplitudeah of partial h with the minimum of
the amplitudes of the partial and its neighbour

. (3)

Interestingly, performing this simple operation in the spectr
smoothing module of Fig. 1 corrects about 30 % of the errors
the straightforward iterative model. For example, the error rate
random four-voice mixtures reduces from 18 % to 12 %.

A still more efficient algorithm can be designed by focusin
on the role of the smoothing algorithm. It is: to cut off single
clearly higher amplitude partials. Equation (3) surely does th
but bases the estimate on two values only. The robustness of
method can be improved by imitating the calculations of th
human auditory system at bandlimited frequency channels.

The second algorithm first calculates moving average over
amplitudes of the harmonic partials. An octave wide Hammin
window is centered at each harmonic partialh, and a weighted
meanmh of the amplitudes of the partials in the window is calcu
lated. This is the smooth spectrum illustrated by a thin horizon
curve in Fig. 3. The original amplitude valueah is then replaced
with the minimum of the original and the averaged amplitude

. (4)

These values are illustrated by a thick horizontal curve in Fig.
This straightforward algorithm is already almost as good as cou
be designed. For example, for random four-voice mixtures, t
average pitch error rate dropped from 18 % to 8.9 %.

A final slight improvement to the method can be made by u
lizing the statistical dependency of everymth harmonic partials, as
explained in Sec. 3.2. The third algorithm applies a multistage fi
ter which consists of the following steps. First, the numbe
{..., h–1,h, h+1, h+2...} of the harmonic partials around harmonic
h are collected from an octave wide window. Next, the surroun
ing partials are classified into groups, where all the harmonics t
share a common divisor are put to a same group. Third, estima
for harmonich are calculated inside groups in the same manner
in the second algorithm. In the last step, the estimates of differ
groups are averaged, weighting each group according to its m
distance from harmonich.

The other problem category, that of ghost sounds, was solv
by noticing that that the likelihood of a predominant pitch shou
be re-estimated after the new smooth spectrum is calculated.
example case clarifies why an erroneous sound may arise a
joint effect of the others and how the problem can be solved.
two harmonic sounds are played with fundamental frequenciesF
and 3F, the spectra of these sounds match every second and ev
third harmonics of a non-existent sound with fundamental fr
quencyF, which is erroneously credited for all the observed pa
tials, and thus appears as a ghost sound. However, if the harmo
amplitudes of the ghost sound are smoothed and its likelihood
re-estimated, the irregularity of the spectrum decreases the le
of the smooth spectrum, and the likelihood remains low.
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Fig. 3. Illustration of the spectral smoothness principle. Loga-
rithmic magnitude spectrum containing two sounds, lower of
which has been detected first. The spectrum has been high-pass
liftered to remove spectral envelope.
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5.  SIMULATIONS RESULTS

A lot of simulations was run to verify the importance of the pro-
posed spectral smoothness principle and to compare the described
three algorithms. Table 1 gives the pitch error rates using different
spectral smoothing algorithms. Algorithms are listed top–down in
the order they were introduced in this paper. The first row gives
the results using the straightforward iterative estimation and sepa-
ration approach, with no smoothing. LabelSMOOTH refers to
simple smoothing of the amplitude envelope, which is of no help,
as mentioned in Sec. 4.1.MIN refers to the minimum-among-
neighbours algorithm implemented by Eq. (3).SMOOTH+MIN is
the second algorithm, given by Eq. (4).STAT+MIN is the third
algorithm utilizing statistical dependencies between the partials.

Random mixtures were generated in the way described in
Sec. 3. In musical mixtures, different pitch relations were
favoured according to a statistical profile discovered by Krum-
hansl in classical western music [13, p.68]. In all simulations,
pitch estimation took place in a single 190 ms time frame 100 ms
after the onsets of the sounds. A correct pitch was defined to devi-
ate less than half a semitone ( %) from the correct value.

As the most important observation, spectral smoothing makes
remarkable improvement to MPE accuracy. The third algorithm is
slightly but consistently the best, but also by far the most compli-
cated among the three. The second algorithm, while being very
simple to implement, already achieves almost same performance.

Figure 4 shows multipitch estimation results in different poly-
phonies using theSTAT+MIN algorithm. The bars represent the
overall error rates as a function of the polyphony, where e.g. error
rate for random four-voice polyphonies is 8.1 % on average. The
different shades of grey in each bar indicate the error cumulation
in the iteration, errors occurred in the first iteration at the bottom.

The system works reliably and exhibits graceful degradation
in increasing polyphony, with no abrupt breakdown at any point.
As predicted by the analysis in Sec. 3.2, musical mixtures were
generally more difficult to resolve. However, the difference is not
very big, indicating that the spectral smoothing works well.

6.  CONCLUSIONS

Spectral smoothness principle was proposed as an efficient new
mechanism in MPE and sound separation. Introduction of this
idea corrected approximately half of the errors occurring in an
otherwise identical system which did not use the smoothness
principle. As a result, MPE could be performed quite accurately
at a wide pitch range and withouta priori knowledge of the sound
sources involved. The underlying assumption that the spectral

envelopes of natural sounds are rather continuous seems to h
since the smoothing operation can be done without noticea
loss of information from the MPE viewpoint.
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Table 1: Pitch error rates using different smoothing algorithms.

Applied smoothing
algorithm

Random mixtures,
four voices

Musical mixtures,
four voices

—None— 18 % 25 %

SMOOTH 18 % 24 %

MIN (1st) 12 % 17 %

SMOOTH+MIN (2nd) 8.9 % 13 %

STAT+MIN (3rd) 8.1 % 12 %
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Fig. 4.Pitch error rates for multipitch estimation in different
polyphonies. Bars represent the overall error rates, and the
different shades of gray the error cumulation in iteration.
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