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ABSTRACT iterate
A processing principle is proposed for finding the pitches and mixture ¢ —IF. B, spectrum
separating the spectra of concurrent musical sounds. The princi- signal Predo_rm- PSP » Remove
ple, spectral smoothness, is used in the human auditory system nant pitch partials
which separates sounds partly by assuming that the spectral enve- estimation from the
lopes of real sounds are continuous. Both theoretical and experi- t ) mixture
store the pitch

mental evidence is presented for the vital importance of spectral
smoothness in resolving sound mixtures. Three algorithms of var-  Fig. 1. Experimental framework: system which can be
ying complexity are described which successfully implement the  switched between two modes) (Straightforward iterative
new principle. In validation experiments, random pitch and sound  approach. ) Spectral-smoothness based model.
source combinations were analyzed in a single time frame.
Number of simultaneous sounds ranged from one to six, databaseo single pitch estimation. This is why most recent MPE systems
comprising sung vowels and 26 musical instruments. Usage of aexplicitly refer to and make use of the human auditory scene anal-
specific yet straightforward smoothing operation corrected ysis principles. In human hearing, the perceptual organization of
approximately half of the pitch errors that occurred in a system spectral components has been found to depend on certain acoustic
which was otherwise identical but did not use the smoothnesscues. Two components may be associated to a same source by
principle. In random four-voice mixtures, pitch error rate reduced their closeness in time or frequency, harmonic concordance, syn-
from 18% to 8.1%. chronous changes in the frequency or amplitude of the compo-
nents, or spatial proximity in the case of multisensor input [1].
1. INTRODUCTION The purpose of this paper is to propose a new efficient mecha-

Pitch perception plays an important part in human hearing and hism in computational MPE ano! auditory organizati@ipectral
understanding of sounds. In an acoustic environment, human ”s_smoothnesaafers to the expectation that the spectral envelopes of

teners are able to perceive the pitches of several simultaneougef’jll s_oun_d sources tend_to be contln_uogs. Bregman points out this
sounds and make efficient use of the pitch to “hear out” a sound in principle in hun‘!an hea_rlng by mentioning that spectral smooth-
a mixture [1]. Computational modeling of this function, multip- Ness prpmote_s '”tegra“on_ of freque_ncy par'qals to a same source
itch estimation, has been relatively little explored in comparison and a single higher intensity partial is more likely to be perceived

to the availability of algorithms for single pitch estimation in asan independen_t sound [1, p.232]. Howe_ver, smoot.hne_ss has not
monophonic speech signals [2]. traditionally been included among the auditory organization cues.

Until these days, computational multipitch estimation (MPE) This phaper pl;rese_nts evidence for the importance of spectral
has fallen clearly behind humans in accuracy and flexibility. First smoot ness _Oth in human a_nd comp_utatlonal MPI_E' AI_SO’_ three
attempts were made in the field of automatic transcription of different algorithms are described that implement this principle.

music, but were severy limited in regard to the number of simulta- Validation experiments were performed using an experimen-

neous sounds, pitch range, or variety of sound sources involvedg’_‘Lmedel' where the spectrall smloo_thnessdwas elthgr gtlllzsd in
[3]- In recent years, further progress has taken place. Martin pro- iflerent ways, or was completely ignored. Acoustic database

posed a system that utilized musical knowledge in transcribing _comprlsed sung vowels and the W_h°|e P'tCh range of 26 musical
four voice piano compositions [4]. Kashinet al describe a instruments. MPE was performed in a single time frame for ran-

model which was able to handle several different instruments [5]. dom pitch and sou_nd source comblna'Flons, number of simultane-

Goto’s system was designed to extract melody and bass lines from°YS sounds ranging from one .to SIX. Inclqdlqg the .spectral

real-world musical recordings [6]. Psychoacoustic knowledge hassmoot_hne_ss pn_nmple in calculations m?de 5|gn|f|cant. improve-

been succesfully utilized e.g. in the models of Brown and Cooke ment in 5|mu_lat|ons. For example, the pitch error rate_ln ranc_iom

[7], Godsmarket al [8], and de Cheveigne and Kawahara [9]. four-vo!ce ml_xtures dropped from 18 % to 8.1 %, and in musical

Also purely mathematical approaches have been proposed [10]. four-voice mlxturfes from 25 % to 12 % AS_ a result, MPE cpuld
Multipitch estimation and auditory scene analysis are inti- be per_formed quite accurately at a wide _p'tCh range and without

mately linked. If the pitch of a sound can be determined without a priori knowledge of the sound sources involved.

getting confused by other co-occurring sounds, the pitch informa- 2 EXPERIMENTAL ERAMEWORK

tion can be used to organize simultaneous spectral components to '

their sources of production. Or, vice versa, if the spectral compo- Figure 1 shows the overview of the system which acts as an

nents of a source can be separated from the mixture, MPE reducesxperimental framework in this paper. The system can be
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switched between two modes. The straightforward iterative MPE ‘
model, denoted by brandk has been described earlier in [11]. It 8F 4/ 312 1
consists of two main parts that are applied in an iterative succes- 5/ 4
sion. The first part, predominant pitch estimation, finds the pitch | 2 3 |
of the most prominent sound in the interference of other harmonic L 513 (p12/5 i
and noisy sounds. As an output, it gives the fundamental fre- ‘“ T T T 8
guencyF, inharmonicity factof3, and the precise frequencies and r 1
amplitudes of the harmonic partials of the sound. In the second 0 | I II II III IIII |I".IIII||<P|I_|
part, the spectrum of the detected sound is linearly subtracted 0 4 8 12 16 20 24 28 32 36 40
from the mixture. These are then repeated for the residual signal. interval (semitones)
A spectral-smoothness based model is obtained by locating an  Fig. 2. Distribution of the pitch estimation errors as a function
additional module between the estimation and subtraction stages. ©f the musical intervals that occur in the erroneously tran-
This is denoted by brancB in Fig. 1. The aim of the spectral scribed sound mixtures.
smoothing algorithm is to use the pitch information to produce a ) o )
more appropriate estimate for the spectrum of a separated soundhase differencé, coincide in frequency, the amplitude of the
before it is subtracted from the mixture. The need for such a mod- '¢Sulting sinusoid can be calculated as
ule is strongly motivated by two observations. The predominant ag = ‘al + a2e' SA‘ . Q)
p?tch estimation algorithm is capaple qf find_ing one of thg COITeCt ¢ e two amplitudes are roughly equivalent, the partials may
pitches with 99 % ce.r.talnty even in six-voice polyphonles [11]. either amplify or cancel each other, depending@gnHowever, if
Hoyvever, the p.ropabyllty of error Increases ra‘?'d'y in the course one of the amplitudes is significantly larger than the other, as is
of iteration. Thls indicates th_at the _mmal esymatg of a sound usually the case,approaches the maximum of the two.
spectrum as given by predominant pitch algorithm is not accurate
enough to remove it correctly from the mixture. 3.2 Fundamental frequency relations
The condition that a harmonic partialof a soundS coincides a
3. DIAGNGSIS OF THE STRAIGHTFORWARD harmonicj of another soundR can be written ashFg = jFg ,
ITERATIVE SYSTEM whereFg and Fg are the fundamental frequencies, and the two
Simulations were run to analyze the behaviour of the straightfor- sides represent the frequencies of the partials. When the common
ward iterative estimation and separation approach, i.e., the brancHactors of integerk andj are reduced, this yields
A in Figure 1. Random mixtures & sounds were generated by - Me )
first allotting an instrument and then a random note from its R™n s
whole playing range, however, restricting the pitch over five where(m, n)=1 are integer numbers. This implies that partials
octaves between 65Hz and 2100 Hz. The desired number ofof two sounds can coincide only if the fundamental frequencies of
sounds was allotted, and them mixed with equal mean square levthe two sounds are in rational number relations. Furthermore,
els. The iterative process was then evoked and requested to extragihen the fundamental frequencies of two sounds are in the above
N pitches from the acoustic mixture signal. As a general impres- relation, then everynth harmonicmk of the soundS coincides
sion, the presented iterative approach works rather reliably. everynth harmonicnk of the soundR at their common frequency
However, an important observation is immediately made bands, where integek>1 . This is evident sincEg equals
when the distribution of the remaining errors is analyzed. Figure 2 jF for each paih=mkandj=nk, when Eg. (2) holds.
shows the errors as a function of the musical intervals that occur  An important principle governing music is paying attention to
in the erroneously transcribed sound mixtures. It appears that thethe pitch relations, intervals, of simultaneously played notes. Sim-
error rate is strongly correlated with certain pitch relations. More ple harmonic relations satistying Eq. (2) are favoured over disso-
exactly, the straightforward estimation and subtraction approachnant ones. Although western music arranges notes to a quantized
is likely to fail in cases where the fundamental frequencies of |ogarithmic scale, it can surprisingly well produce the different
simultaneous sounds are in simple rational number relations, alscharmonic intervals that can be derived by substituting small inte-
called harmonic relations. These are indicated over the corre- gers to Eq. (2) [3]. Because harmonic relations are so common in
sponding bars in Fig. 2. music, these “worst cases” must be handled well in general. Also,
this explains why MPE is particularly difficult in music.

3.1 Coinciding sinusoidal partials

It turned out that coinciding frequency partials from different 4. SOLUTION AND ITS ARGUMENTATION
sounds make the algorithm fail. If sounds are in a harmonic rela-
tion to each other, a lot of partials coincide, i.e., share the same

frequency. When the firstly detected sound is removed, the coin- i . ;
be erroneously removed along with the one that is being actually

ciding harmonics of remaining sounds are also removed in the separated. This causes undetections. Second, two or more funda
subtraction procedure. In some cases, and particularly after Sev_mcfntal fre. uencies in certain relatioﬁs ma m,ake a non existent-
eral iterations, a remaining sound gets too corrupted to be cor- q Y

rectly analyzed in the coming iterations “ghost” sound appear, for example the root pitch of a chord. This

When two sinusoidal partials with amplitudes anda, and causes insertion errors, i.e., extraneous pitch detections.
2 There is a solution to these problems that is both intuitive,

The difficulties caused by harmonic pitch relations can be classi-
fied into two categories. First, the partials of an other sound may



out single higher amplitude harmonic partials.
40r

& 4.2 Three smoothing algorithms
T 301 \ "'J ‘ ‘ ’ A computer implementation of the implicit smoothing in the
5 2ol ' " ‘ | human auditory system can be isolated to a separate module. The
g’ “ ‘ | .m" "" l ] ‘ ] J algorithm simply goes through the harmonic partials of a sound
T 10H \ \ ‘ ‘MM L | and replaces the amplitudg of partial h with the minimum of
£ 0 ! “ N W \ L H. M“\"Il'l w‘ 1III‘WI the amplitudes of the partial and its neighbour
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Interestingly, performing this simple operation in the spectral
smoothing module of Fig. 1 corrects about 30 % of the errors of
éhe straightforward iterative model. For example, the error rate in
random four-voice mixtures reduces from 18 % to 12 %.

A still more efficient algorithm can be designed by focusing
efficient, and psychoacoustically valid: the spectra of the detectedon the role of the smoothing algorithm. It is: to cut off single
sounds must be smoothed before subtracting them from the mix-clearly higher amplitude partials. Equation (3) surely does that,
ture. Consider the logarithmic magnitude spectrum of a two- but bases the estimate on two values only. The robustness of the
sound mixture in Fig. 3. The harmonic partials of the higher- method can be improved by imitating the calculations of the
pitched sound coincide every third harmonic of the lower-pitched human auditory system at bandlimited frequency channels.
sound, which has been detected first. As predicted by Eq. (1), the  The second algorithm first calculates moving average over the
coinciding partials of the detected sound tend to have higher mag-amplitudes of the harmonic partials. An octave wide Hamming
nitudes than the other ones. However, when the sound spectrum isvindow is centered at each harmonic partialand a weighted
smoothed (thin slowly decreasing horizontal curve in Fig 3), these meanm, of the amplitudes of the partials in the window is calcu-
partials rise above the smooth spectrum, and thus remain in thelated. This is the smooth spectrum illustrated by a thin horizontal
residual after subtraction. In this way, the other sound is not curve in Fig. 3. The original amplitude valig is then replaced
removed with the detected one. When properly applied, the samewith the minimum of the original and the averaged amplitude
mechanism can be used to treat ghost sounds, too. a, — min(a, m,) . (4)

Fig. 3. lllustration of the spectral smoothness principle. Loga-
rithmic magnitude spectrum containing two sounds, lower of
which has been detected first. The spectrum has been high-pas
liftered to remove spectral envelope.

4.1 Psychoacoustic knowledge applied These values are illustrated by a thick horizontal curve in Fig. 3.

The design of the smoothing operation is not as simple as it SeemsThls straightforward algorithm is already almost as good as could

to be at the first glance. As a matter of fact, simply smoothing the be designgdh For examzle, fordr?ndomgfgur-vglgeo mixtures, the
amplitude envelope (thin horizontal curve in Fig 3) before sub- 2verage pitch error rate dropped from 18 % to 8.9 %.

traction from the mixture doasotwork in the sense that it would lizi A f'r?al S“th_ |m|p:jrovemdent to tt;e rg;}]hrcl)d can pe ma_dtla by uti-
reduce the pitch error rate in simulations. izing the statistical dependency of ev armonic partials, as

Spectral smoothing in the human auditory system does not explain_ed in Se(_:. 3.2. The third algorithm appligs a multistage fil-
take the form of lowpass filtering. Instead, a nonlinear mechanism ter \évflcz ﬁonsllqstz of tfhf] fﬁllowmg. step;.lFlrst, tzeh numbgrs
cuts off single higher amplitude partials. In following, a brief E] 1'"’ +(1j‘f+ -} of the armgnlclpzrtlasarounh armonlc(:j
description of the human auditory processing is made in order to "' '€ €0 ected from an octave wide window. Next, the surrounc-
reveal the exact mechanism of an appropriate smoothing processin9 partials are classified into groups, where all the harmonics that

Meddis and Hewitt have proposed a computer model of share a common divisor are put to a same group. Third, estimates
human auditory periphery which aims at reproducing a widest for harmonich are calculated inside groups in the same manner as

range of phenomena in human pitch perception [12]. The algo- in the second algorithm. In the last step, the estimates of different

rithm consists of four main steps. First, the input signal is passed groups are averaged, weighting each group according to its mean

through a bank of bandpass filters. At each band, the signal isdlstance from harmonic
halfwave rectified and lowpass filtered to extract the amplitude Th_e _other problem ca_lteg_ory, that of ghost s_oundsf was solved
envelope of the bandpassed signal. Periodicity in the resulting sig-by hoticing that that the likelihood of a predomlna_nt pitch should
nal is detected by calculating autocorrelation function estimates be re-estimated aft_e_r the new smooth spectrum is calcula_ted. An
within channels. In the final phase, the estimates are linearly g)fample case clanifies why an erroneous sound may arise as a
summed across channels to get a summary autocorrelation funcloint effect qf the others and how Fhe problem can be solved. If
tion, the maximum value of which points out the global pitch. two harmonic sounds are played with fundamental frequenéies 2
Amplitude envelope calculation within channels performs and 3, the spectra of these sounds match every second and every

implicit spectral smoothing. When a harmonic sound is consid- third harmonics of a non-existent sound with fundamental fre-

ered, each two neighbouring harmonic partials cause amplitudeq_uency':’ which is erroneously credited for all the opserved par-
beating i.e., alternatingly amplify and cancel each other at the tials, and thus appears as a ghost sound. However, if the harmonic

fundamental frequency rate. However, the magnitude of the beat_amplit.udes of the ghost sqund are smoothed and its likelihood is
ing caused by each two sinusoidal partials is determined by there-estlmated, the irregularity of the spectrum decreases the level

smaller of their amplitudes. When the spectrum of a harmonic ©f the smooth spectrum, and the likelihood remains low.
sound is considered, this “minimum amplitude” property filters
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Table 1: Pitch error rates using different smoothing algorithms. 2 Random mixturas g Mu5|cal mixtures
> 20 : ~ 20
Applied smoothing Random mixtures Musical mixtures, % 15 % 15
algorithm four voices four voices - =
S 10 2 10
—None— 18 % 25 % o o
SMOOTH 18 % 24.% g 5 Eg R Q Q
MIN (1st) 12 % 17 % = OWE = 0’—‘
SMOOTH+MIN (2nd) 8.9 % 13 % p0|yph0ny p0|y|0h0ny
STAT+MIN (3rd) 8.1 % 12 % Fig. 4.Pitch error rates for multipitch estimation in different

polyphonies. Bars represent the overall error rates, and the
different shades of gray the error cumulation in iteration.

5. SIMULATIONS RESULTS .
envelopes of natural sounds are rather continuous seems to hold,

A lot of simulations was run to verify the importance of the pro- since the smoothing operation can be done without noticeable

posed spectral smoothness principle and to compare the describefbss of information from the MPE viewpoint.

three algorithms. Table 1 gives the pitch error rates using different

spectral smoothing algorithms. Algorithms are listed top—down in 7. REFERENCES

the order they were introduced in this paper. The first row gives

the results using the straightforward iterative estimation and sepa-

ration approach, with no smoothing. Lab®WOOTH refers to

simple smoothing of the amplitude envelope, which is of no help,

as mentioned in Sec. 4.MIN refers to the minimum-among-

neighbours algorithm implemented by Eq. (SMOOTH+MIN is

the second algorithm, given by Eq. (BTAT+MIN is the third

algorithm utilizing statistical dependencies between the partials.
Random mixtures were generated in the way described in

Sec. 3. In musical mixtures, different pitch relations were tts Institute of Technol Media Laboratory Perceptual
favoured according to a statistical profile discovered by Krum- setis Institute ot Technology Media Laboralory Ferceptua
Computing Section Technical Report No. 399.

hansl in classical western music [13, p.68]. In all simulations, . : . .

pitch estimation took place in a single 190 ms time frame 100 ms [5] (Iizzrg)noi‘oli”a:'ag?g?’oﬁ.ﬁilg?z:!tczl Eérigdt-r;naslf)a,n:s.'

after the onsets of the sounds. A correct pitch was defined to devi- N ganization of Hi : ptu unas-

ate less than half a semitone3( %) from the correct value. Music Sceng Ar_laly5|s with _Autonomou_s Processw_lg Modules
As the most important observation, spectral smoothing makes and a Q_uantltatl_v e Information !ntggratlon_Mechanlsm,” l?roc.

remarkable improvement to MPE accuracy. The third algorithm is International Joint Conf. on Atrtificial Intelligence, Montréal.

. . : . [6] Goto, M. (2000). “A robust predominant-FO estimation
slightly but consistently the best, but also by far the most compli- thod f -t detecti f lod db i .
cated among the three. The second algorithm, while being very rgg rgcor(c)irnres” ;T:C IeE‘ISECEKI):t(;)rn;nt%EaIy ggnf s:sAégeztm
simple to implement, already achieves almost same performance. INgs, y . : ) ust.,

Speech, and Signal Processing, Istanbul, Turkey.

Figure 4 shows multipitch estimation results in different poly- B .
phonies using theSTAT+MIN algorithm The bars represent the (7] Brown,_G. J., and Cooke, M. P‘. (1994). Peﬁrceptual grouping
of musical sounds: A computational model,” J. of New Music

overall error rates as a function of the polyphony, where e.g. error

rate for random four-voice polyphonieg isyg.l 0/3;/0n averagge. The g gegearcr;(ZS, 107(1_;32' G. J. (1999). “A blackboard archi-

different shades of grey in each bar indicate the error cumulation[ ] totsmafr D an ¢ tr.ownl, 'd'.t( )- acl (.)az Sarc Ih

in the iteration, errors occurred in the first iteration at the bottom. ecture for computational auditory scene analysis,” speec
Communication 27, 351-366.

The system works reliably and exhibits graceful degradation T . .
o - . . [9] de Cheveigné, A., and Kawahara, H. (1999). “Multiple period
In increasing polyphony, with no abrupt breakdown at any point. estimation and pitch perception model,” Speech Communica-

As predicted by the analysis in Sec. 3.2, musical mixtures were tion 27, 175-185.

generally more difficult to resolve. However, the difference is not i g

very big, indicating that the spectral smoothing works well. [10]5%23“6;;5\'/5\/'1%“1“dsztsﬁyﬁ,;!g'séil:; 9\)@ Pf;loﬂg: |ti/1Trans-
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otherwise identical system which did not use the smoothness  phase sensitivity of a computer model of the auditory periph-
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sources involved. The underlying assumption that the spectral  Ppitch,” Oxford University Press, New York.
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