
How fiddle∼ Works

Nathan Whetsell

Contents

1 Introduction 1

2 Computing the DFT 1
2.1 Initial Computation . 2
2.2 Spectral Interpolation . 2
2.3 Frequency-Domain Windowing . 5
2.4 Possible Issues in fiddle∼’s Implementation . 5

3 Sinusoidal Peak Estimation 6

4 The Likelihood Histogram 6

5 Future Work 6

1 Introduction

For my final project, I attempted (and am still attempting) to reverse engineer the fiddle∼ object often
used in Max/MSP (but also available in Pure Data as well as a few obsolete languages). fiddle∼ is a
tool used for realtime pitch tracking, that is, the estimation of the fundamental frequency of a sound with
non-constant pitch.

2 Computing the DFT

The first step of a frequency-domain pitch tracker like fiddle∼ is, of course, to convert the input signal from
a time-domain representation to a frequency-domain representation. This is typically done using the discrete
Fourier transform (DFT). The DFT can be a computationally expensive undertaking if not performed with
some forethought; fortunately, fast algorithms for implementing the DFT exist, among them the ubiquitous
Fast Fourier Transform (FFT) (Cooley and Tukey 1965). Incredibly, fiddle∼ does not employ the FFT to
compute a DFT.

The algorithm used to compute the DFT appears to be a highly optimized version of the discrete Hartley
transform (DHT). A complete description of this transform is beyond the scope of this final project—any
reasonably fast DFT implementation will suffice for fiddle∼’s purposes—but it is worth saying a few
words about it. The mathematical foundations of the DHT were first described in (Hartley 1942), but
the connection to the DFT (and FFT) was not recognized until much later, in (Bracewell 1983). In this
paper, Bracewell also described a fast Hartley transform (FHT), which was the subject of United States
patent number 4,646,256, issued to Stanford University. (Interestingly, the patent itself calls it the “discrete
Bracewell transform.”) In 1994, this patent was placed in the public domain (Bracewell 1995).

The particular implementation of the DHT used in fiddle∼ appears to be based on code written by
one Ron Mayer sometime in 1993. Surprisingly, the primary reference describing this code—(Mayer 1993)—
refers to an Internet message board post (in fact a copy of a message board post). It appears that in many
applications the “Mayer FHT” has been superseded by modern algorithms. Mayer himself suggests the
whimsically titled Fastest Fourier Transform in the West (FFTW) for general purpose applications (Mayer).

1

Let us now work out how fiddle∼ computes a DFT. In essence, fiddle∼ computes a DFT of a block of
input, zeropadded by a factor of four. There are three main steps—initial computation, spectral interpolation,
and frequency-domain windowing—that we will consider in detail. (For the reader familiar with (Puckette,
Apel, and Zicarelli 1998), this is a complete description of the “interesting trick” referenced in that work.)

2.1 Initial Computation

Suppose we have a real, length N signal x[n], and we modulate this signal by the complex exponential
e−j

π
2N n to obtain

xmodulate[n] = x[n]e−j
π

2N n. (1)

We can compute the DFT of this modulated signal as

Xmodulate[k] =
N−1∑
n=0

x[n]e−j
π

2N ne−j
2π
N kn =

N−1∑
n=0

x[n]e−j
π

2N (4k+1)n (2)

for k ∈ [0, N − 1]. Now, suppose we take the same signal x[n], and rather than modulate it, we zeropad it
to length 4N to obtain a signal xzeropad[n]. The DFT of this new signal is

Xzeropad[k] =
N−1∑
n=0

x[n]e−j
2π
4N kn =

N−1∑
n=0

x[n]e−j
π

2N kn =
N−1∑
n=0

x[n]e−j
π

2N kn (3)

for k ∈ [0, 4N − 1]. Note that

Xmodulate[k] =
N−1∑
n=0

x[n]e−j
π

2N (4k+1)n = Xzeropad[4k + 1] (4)

and

X∗
modulate[N − k − 1] =

N−1∑
n=0

x[n]ej
π

2N [4(N−k−1)+1]n =
N−1∑
n=0

x[n]e−j
π

2N (4k+3)n = Xzeropad[4k + 3] (5)

for k ∈
[
0, N2

]
. This implies that we can compute the spectrum in the odd-numbered DFT bins of Xzeropad

using only Xmodulate, which is a quarter of the length of Xzeropad. To obtain the spectrum in the even-
numbered DFT bins, we must interpolate this spectrum from the odd-numbered bins.

2.2 Spectral Interpolation

In general, the length N DFT at bin k of a length M ≤ N signal x[n] is given by

X[k] =
M−1∑
n=0

x[n]e−j
2π
N kn.

Suppose we have

X[k − `i] =
M−1∑
n=0

x[n]e−j
2π
N (k−`i)n

X[k + `i] =
M−1∑
n=0

x[n]e−j
2π
N (k+`i)n

2

where the `i’s are positive integers. Note that

X[k − `i] +X[k + `i] =
M−1∑
n=0

x[n]e−j
2π
N (k−`i)n +

M−1∑
n=0

x[n]e−j
2π
N (k+`i)n

=
M−1∑
n=0

x[n]
(
e−j

2π
N (k−`i)n + e−j

2π
N (k+`i)n

)
= 2

M−1∑
n=0

x[n]e−j
2π
N kn cos

(
2π
N
`in

)
.

Summing over the `i’s, we have

L∑
i=1

X[k − `i] +X[k + `i] = 2
L∑
i=1

M−1∑
n=0

x[n]e−j
2π
N kn cos

(
2π
N
`in

)

= 2
M−1∑
n=0

x[n]e−j
2π
N kn

L∑
i=1

cos
(

2π
N
`in

)
Finally, if

L∑
i=1

ai cos
(

2π
N
`in

)
=

1
2

(6)

for n ∈ [0,M − 1] and some set of ai’s, then

L∑
i=1

ai(X[k − `i] +X[k + `i]) =
M−1∑
n=0

x[n]e−j
2π
N kn = X[k]. (7)

This is promising. In words, we can compute a DFT value X[k] as a weighted sum—a superposition—of
the DFT values on either side of X[k]. Also, we made no assumptions about what the `i’s are; we said
nothing about which bins on either side of X[k] we need to look at. Thus, choosing just the odd-numbered
bins should present no difficulties.

There are, unfortunately, two problems. First, in general, there is no set of ai’s that makes equation (6)
hold for a set of `i’s. We will find that this problem is not particularly troublesome; we can estimate a set of
ai’s that makes equation (6) “almost hold” in an optimal sense. A second, and much more subtle, problem
arises if all the `i’s are odd (and they will be in fiddle∼).

Fig. 1 shows several cosines of the form

cos
(

2π
2048

`in

)
,

where the `i’s are all odd. These are the cosines we’ll be working with if we perform interpolation for a
length N = 2048 DFT. For equation (6) to hold, these cosines must sum up to 1

2 for some set of weightings,
in some region [0,M − 1]. Now, suppose that the signal length M = 512. We now have a problem; all of
the cosines equal 0 at n = 512. No matter what weightings we use, the point at n = 512 can never equal
1
2 . Clearly, points near n = 512 will have values close to 0. Near n = 512, there is absolutely no hope of
equation (6) holding.

What can we do about this? If we delay each cosine by π
4 `i, equation (6) becomes

L∑
i=1

ai cos
[(

2π
N
n− π

4

)
`i

]
=

1
2
. (8)

These shifted cosines are plotted in Fig. 2. We should have a much easier time finding weights that make
the cosines in [0,511] approximate 1

2 . This phase shift can be implemented by modifying equation (7) to

L∑
i=1

ai
(
X[k − `i]e−j

π
4 `i +X[k + `i]ej

π
4 `i
)

= X[k]. (9)

3

512 1024 1536 2048

!1.0

!0.5

0.5

1.0

Figure 1: Cosines cos
(

2π
N `in

)
, with `i odd.

512 1024 1536 2048

!1.0

!0.5

0.5

1.0

Figure 2: Cosines cos
[(

2π
N n−

π
4

)
`i
]
, with `i odd.

4

We are now ready to approximate a set of ai’s that “nearly” conforms to equation (8). Define

a =
[
a1 a2 · · · aL

]T
b(n) =

[
cos
[(

2π
N n−

π
4

)
`1
]

cos
[(

2π
N n−

π
4

)
`2
]
· · · cos

[(
2π
N n−

π
4

)
`L
]]T

.

Also define the error E as

E =
M−1∑
n=0

[
aTb(n)− 1

2

]2
= aT

[
M−1∑
n=0

b(n)bT (n)

]
a− aT

M−1∑
n=0

b(n) +
1
4
. (10)

Taking the derivative of equation (10) with respect to a and setting it equal to 0, we obtain

2

[
M−1∑
n=0

b(n)bT (n)

]
a−

M−1∑
n=0

b(n) = 0⇒ a =
1
2

[
M−1∑
n=0

b(n)bT (n)

]−1 M−1∑
n=0

b(n). (11)

For the purposes of the fiddle∼ object, the appropriate parameter values are M = 512, N = 2048, and
{`1, `2, `3, `4, `5} = {1, 3, 5, 7, 9}. Computing the optimal a for these parameters using equation (11) gives

a =
[
0.614965 −0.154600 0.051131 −0.013506 0.002033

]T
.

The coefficients from the fiddle∼ source code are

a =
[
0.613527 −0.151193 0.047663 −0.011374 0.001267

]T
and are in reasonably close agreement. (The coefficients found by least-squares optimization give improved
performance over the coefficients in the fiddle∼ source code, which were found “by trial and error.”)

2.3 Frequency-Domain Windowing

The final step in fiddle∼’s DFT computation is windowing the original block of audio. However, instead
of multiplying the time-domain signal by a window, we convolve in the frequency domain.

If we are given a rectangular-windowed spectrum X[k] that has been zeropadded by a factor of c, we can
find its Hann-windowed version XH [k] using

XH [k] =
X[k]

2
− X[k − c] +X[k + c]

4
= (WH ∗X)[k], (12)

where WH =
[
− 1

4 , 0, . . . , 0,
1
2 , 0, . . . , 0,−

1
4

]
. To see this, write

IDFT{WH [k]} =
c∑

k=−c

WH [k]ej
2π
M kn = −1

4
e−j

2π
M cn +

1
2
− 1

4
ej

2π
M cn =

1
2
− 1

2
cos
(

2π
M
cn

)
. (13)

Indeed, this is a (causal) Hann window for use with a signal zeropadded by a factor of c.

2.4 Possible Issues in fiddle∼’s Implementation

In a certain sense, this is a description of the algorithm fiddle∼ employs to compute the DFT. The actual
implementation is. . . idiosyncratic.

Before the frequency-domain windowing, various phase shifts are applied—seemingly inadvertently—to
the spectrum. Bins k = 1, 5, 9, . . . are modulated by e−j

π
2 , bins k = 2, 6, 10, . . . are modulated by e−jπ, and

bins k = 3, 7, 11, . . . are modulated by ej
π
2 .

The frequency-domain windowing is also a bit strange. If fiddle∼ zeropads a block of input by a factor
of four (and it does), we should expect the Hann window to be implemented as

wH [n] =
1
2
− 1

2
cos
(

8π
M
n

)
.

The Hann window actually employed assumes a zeropadding factor of two, and includes an additional gain:

wH [n] = 1− cos
(

4π
M
n

)
.

5

3 Sinusoidal Peak Estimation

The next step in the fiddle∼ pitch-tracking algorithm is to estimate the frequencies of prominent spectral
peaks. There are three sources describing precisely how fiddle∼ estimates the frequency of a spectral peak:
(Puckette, Apel, and Zicarelli 1998), (Puckette and Brown 1998), and the fiddle∼ code. Each source gives
a different equation. It is my guess that this equation from (Puckette and Brown 1998) is the one intended:

ωest =
2π
N

(
k + <

{
β(X[k − 1]−X[k + 1])− 2γ(X[k − 2]−X[k + 2])

2αX[k]− β(X[k − 1] +X[k + 1]) + 2γ(X[k − 2] +X[k + 2])

})
. (14)

The parameters α, β, and γ in equation (14) are terms of the Blackman window family, which we can define
as

wB [n] = wR[n]
[
α− β cos

(
2π
N
n

)
+ γ cos

(
4π
N
n

)]
, (15)

where wR[n] is a rectangular window. This definition differs slightly from the one given in (Puckette and
Brown 1998), but it is unclear what effect this difference has on equation (14). For a causal Hann window,
we have {α, β, γ} = { 1

2 ,
1
2 , 0}, and equation (14) becomes

ωest =
π

N

(
k + <

{
X[k − 1]−X[k + 1]

2X[k]−X[k − 1]−X[k + 1]

})
. (16)

The equation given in (Puckette, Apel, and Zicarelli 1998) is

ωest =
π

N

(
k + <

{
X[k − 2]−X[k + 2]

2X[k]−X[k − 2]−X[k + 2]

})
, (17)

which corresponds to a Blackman family window with parameters {α, β, γ} = {1, 0,− 1
4}, an unusual window

indeed. The fiddle∼ source code uses

ωest =
π

N

(
k +
<{(X∗[k − 2]−X∗[k + 2])(2X[k]−X[k − 2]−X[k + 2])}

2|X[k]|

)
, (18)

which seems somewhat out of left field.

4 The Likelihood Histogram

The next—and possibly most important—step is the computation of the likelihood histogram. It is this data
structure that performs the “magic” of finding which spectral peaks correspond to harmonic pitches. This
data structure appears to be the result of much experimentation, and untangling the C code to determine
what exactly it is doing is an ongoing project.

5 Future Work

The final goal of this project is to port the fiddle∼ algorithm to Matlab in order to compare fiddle∼ to
the YIN algorithm described in (de Cheveigné and Kawahara 2002). The YIN algorithm already exists as
Matlab code; porting fiddle∼ to Matlab will facilitate automated and very detailed testing.

For a test suite, I plan to use the publicly available sound databases described in (Camacho 2007).

References

Bracewell, R. N. 1983. Discrete Hartley transform. Journal of the Optical Society of America. 73(12):1832–5.

Bracewell, R. N. 1995. Computing with the Hartley transform. Computers in Physics. 9(4):373–9.

Camacho, A. 2007. SWIPE: A sawtooth waveform inspired pitch estimator for speech and music. Ph.D.
thesis. University of Florida. Gainesville, FL, USA.

6

de Cheveigné, A., and H. Kawahara. 2002. YIN, a fundamental frequency estimator for speech and music.
Journal of the Acoustical Society of America. 111(4):1917–30.

Cooley, J. W., and J. W. Tukey. 1965. An algorithm for the machine calculation of complex Fourier series.
Mathematics of Computation. 19(90):297–301.

Mayer, R. Performance and accuracy benchmarking for FFT (Fast Fourier Transform), RFFT (real-valued
FFT) and FHT (Fast Hartley Transform) algorithms.
http://www.geocities.com/ResearchTriangle/8869/fft summary.html (accessed April 21, 2008).

Mayer, R. 1993. Real FFT comparison.
http://www.geocities.com/ResearchTriangle/8869/1993 fft summary.html (accessed April 21,
2008). Online copy of newsgroup post.

Hartley, R. V. L. 1942. A more symmetrical Fourier analysis applied to transmission problems. Proceedings
of the Institute of Radio Engineers. 30(3):144–50.

Puckette, M. S., T. Apel, and D. D. Zicarelli. 1998. Real-time audio analysis tools for Pd and MSP. In
Proceedings of the International Computer Music Conference. 109–12.

Puckette, M. S., and J. C. Brown. 1998. Accuracy of frequency estimates using the phase vocoder. IEEE
Transactions on Speech and Audio Processing. 6(2):166–76.

Bibliography

Boersma, P. 1993. Accurate short-term analysis of the fundamental frequency and the harmonics-to-noise
ratio of a sampled sound. Proceedings of the Institute of Phonetic Sciences 17. 97–110.

Brown, J. C., and M. S. Puckette. 1993. A high resolution fundamental frequency determination based on
phase changes of the Fourier transform. Journal of the Acoustical Society of America. 94(2):662–7.

Cooper, D., and K. C. Ng. 1996. A monophonic pitch-tracking algorithm based on waveform periodicity
determinations using landmark points. Computer Music Journal. 20(3):70–8.

de la Cuadra, P., A. Master, and C. Sapp. 2001. Efficient pitch detection techniques for interactive music.
In Proceedings of the International Computer Music Conference (ICMC 2001). 403–6.

Jacovitti, G., and G. Scarano. 1993. Discrete time techniques for time delay estimation. IEEE Transactions
on Signal Processing. 41(2):525–33.

Kuhn, W. B. 1990. A real-time pitch recognition algorithm for music applications. Computer Music Journal.
14(3):60–71.

Lane, J. E. 1990. Pitch detection using a tunable IIR filter. Computer Music Journal. 14(3):46–59.

Licklider, J. C. R. 1951. A duplex theory of pitch perception. Experientia. 7(4):128–34.

Liu, J., T. Zheng, J. Deng, and W. Wu. 2005. Real-time pitch tracking based on combined SMDSF. In
Proceedings of the 9th European Conference on Speech Communication and Technology (EUROSPEECH
2005). 301–4.

Marchand, S. 2001. An efficient pitch-tracking algorithm using a combination of Fourier transforms. In
Proceedings of the COST G-6 Conference on Digital Audio Effects (DAFx-01). 170–4.

Markel, J. D. 1972. The SIFT algorithm for fundamental frequency estimation. IEEE Transactions on
Audio and Electroacoustics. 20(5):367–77.

McGonegal, C. A., L. Rabiner, and A. E. Rosenberg. 1975. A semiautomatic pitch detector (SAPD). IEEE
Transactions on Acoustics, Speech, and Signal Processing. 23(6):570–4.

McLeod, P., and G. Wyvill. 2005. A smarter way to find pitch. In Proceedings of the International Computer
Music Conference. 138–41.

Noll, A. M. 1966. Cepstrum pitch determination. Journal of the Acoustical Society of America. 41(2):293–
309.

7

http://www.geocities.com/ResearchTriangle/8869/fft_summary.html
http://www.geocities.com/ResearchTriangle/8869/1993_fft_summary.html

Noll, A. M. 1970. Pitch determination of human speech by the harmonic product spectrum, the harmonic
sum spectrum and a maximum likelihood estimate. In Proceedings of the Symposium on Computer
Processing in Communications, vol. 19. Brooklyn: Polytechnic Press. 779-97.

Rabiner, L. R. 1977. On the use of autocorrelation analysis for pitch detection. IEEE Transactions on
Acoustics, Speech, and Signal Processing 25(1):24–33.

Rabiner, L. R., M. J. Cheng, A. E. Rosenberg, and C. A. McGonegal. 1976. A comparative performance
study of several pitch detection algorithms. IEEE Transactions on Acoustics, Speech, and Signal
Processing 24(5):399–418.

Ross, J. R., H. L. Shaffer, A. Cohen, R. Freudberg, and H. J. Manley. 1974. Average magnitude difference
function pitch extractor. IEEE Transactions on Acoustics, Speech, and Signal Processing. 22(5):353–
62.

8

	Introduction
	Computing the DFT
	Initial Computation
	Spectral Interpolation
	Frequency-Domain Windowing
	Possible Issues in fiddle's Implementation

	Sinusoidal Peak Estimation
	The Likelihood Histogram
	Future Work

