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Abstract 

 
We present an exhaustive review of research on automatic classification of sounds from musical 
instruments. Two different but complementary approaches are examined, the perceptual approach 
and the taxonomic approach. The former is targeted to derive perceptual similarity functions in 
order to use them for timbre clustering and for searching and retrieving sounds by timbral 
similarity. The latter is targeted to derive indexes for labeling sounds after culture- or user-biased 
taxonomies. We review the relevant features that have been used in the two areas and then we 
present and discuss different techniques for similarity-based clustering of sounds and for 
classification into pre-defined instrumental categories.  
 

1  Introduction  
The need for automatic classification of sounds arises 
in different contexts: biology (e.g. for identifying 
animals belonging to a given species, or for 
cataloguing communicative resources) (Fristrup & 
Watkins, 1995; Mills, 1995; Potter, Mellinger & 
Clark, 1994), medical diagnosis (e.g. for detecting 
abnormal conditions of vital organs) (Shiyong, 
Zehan, Fei, Li & Shouzong, 1998;  Buller & Lutman, 
1998; Schön, Puppe & Manteuffel, 2001), 
surveillance (e.g. for recognizing machine-failure 
conditions) (McLaughling, Owsley & Atlas, 1997), 
military operations (e.g. for detecting an enemy 
engine approaching or for weapon identification) 
(Gorman & Sejnowski, 1988; Antonic & Zagar, 
2000; Dubnov & Tishby, 1997), and multimedia 
content description (e.g. for helping video scene 
classification or object detection) (Liu, Wang & 
Chen, 1998; Pfeiffer, Lienhart & Effelsberg, 1998). 
Speech, sound effects, and music are the three main 
sonic categories that are combined in multimedia 
databases. Describing multimedia sound therefore 
means describing each one of those categories. In the 
case of speech, the main description concerns speaker 
identification and speech transcription. Describing 
sound effects means determining the apparent sound 
source, or clustering similar sounds even though they 
have been generated by different sources. In the case 
of music, description calls for deriving indexes in 

order to locate melodic patterns, harmonic or 
rhythmic structures, musical instrument sets, usage of 
expressivity resources, etc. As we are not concerned 
here with discrimination between speech, music and 
sound effects, we recommend interested readers 
consult the work by Zhang and Kuo (1998b; 1999a).  
Provided that we are interested in a music-only 
stream of audio data, one of the most important 
description problems is the correct identification of 
the musical instruments present in the stream. This is 
a very difficult task that is far from being solved. The 
practical utility for musical instrument classification 
is twofold: 

• First, to provide labels for monophonic 
recordings, for “sound samples” inside 
sample libraries, or for new patches created 
with a given synthesizer; 

• Second, to provide indexes for locating the 
main instruments that are included in a 
musical mixture (for example, one might 
want to locate a saxophone “solo” in the 
middle of a song); 

The first problem is easier than the second, and it 
seems clearly solvable given the current state of the 
art, as we will see later in this paper. The second is 
tougher, and it is not clear if research done on solving 
the first one may help.  
Common sense dictates that a reasonable approach to 
the second problem would be the initial separation of 
the sounds corresponding to the different sound 
sources, followed by the segmentationi and 
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classificationii on those separated tracks. Techniques 
for source separation cannot yet provide satisfactory 
solutions although some promising approaches have 
been developed (Casey & Westner, 2001; Ellis, 1996; 
Bell & Sejnowski, 1995; Varga & Moore, 1990). As 
a consequence, research on classification has 
concentrated on working with isolated sounds under 
the assumption that separation and segmentation have 
been previously performed. This implies the use of a 
sound sample collection (usually isolated notes) 
consisting of different instrument families and 
classes. The general classification procedure can be 
described as follows: 

• Lists of  features are selected to describe the 
samples. 

• Values for these features are computed.  
• A learning algorithm that uses the selected 

features to discriminate between instrument 
families or classes is applied.  

• The performance of the learning procedure 
is evaluated by classifying new sound 
samples (cross-validation).  

Note that there is a very important tradeoff in 
endorsing this isolated-notes strategy: we gain 
simplicity and tractability, but we lose contextual and 
time-dependent cues that can be exploited as relevant 
features for classifying musical sounds in complex 
mixtures. It is also important to note that the implicit 
assumption that solutions for isolated sounds can be 
extrapolated to complex mixtures should not be taken 
for granted, as we will discuss in the final section. 
Another implicit assumption that should not be taken 
for granted is that the arbitrary taxonomy that we use 
is optimal or, at least, good for the task (see Kartomi 

(1990)) for issues regarding arbitrary taxonomies of 
musical instruments). 
An alternative approach to the whole problem is to 
shift focus from the traditional transcription concern 
to that of description or understanding (Scheirer, 
2000). This is what some Computational Auditory 
Scene Analysis systems have addressed (Ellis, 1996; 
Kashino & Murase, 1997a). We will return to this 
distinction later but for the moment a clarifying 
practical example of this different focus can be 
provided with an “instrument browser” as the one 
depicted in figure 1. In order to develop this kind of 
application, we only need to detect the instrument 
boundaries. The boundaries can surround individual 
instruments or classes of instruments (Aucouturier & 
Sandler, 2001). For example, note how the “soprano 
singer” instrument has been drawn separately 
whereas the other instruments are grouped into 
classes. In Figure 1, the string section subsumes the 
phrases played by violins, violas and cellos. The goal 
of this approach is not to separate into distinct tracks 
each of the instrumental voices but, rather, to label 
their locations within the context of the musical 
work. Thus, the user, when clicking on one of the 
labels would not hear an isolated instrument; instead, 
the user would be taken to part of the piece where the 
desired instrument or instrument family can be 
clearly heard.  Manipulating the source file to bring 
to the foreground the selected instrument(s) is a 
possible enhancement of this boundary-based 
approach. In order to develop that kind of application 
we only need to detect the instrument boundaries.  
 
 

 

 
Figure 1. An imaginary instrument browser adapted from Smoliar and Wilcox ( Smoliar & Wilcox,
1997). 



A very different type of classification arises when 
our target is not an instrument class but a cluster  of 
sounds that can be judged to be perceptually 
similar. In that case, classification does not rely on 
culturally shared labels but on timbre similarity 
measures and distance functions derived from 
psychoacoustical studies (Grey, 1977; Krumhansl, 
1989; McAdams, Winsberg, de Soete & 
Krimphoff, 1995; Lakatos, 2000). This type of 
perceptual classification or clustering is addressed 
to provide indexes for retrieving sounds by 
similarity, using a query by example strategy. 
 
In the next sections we are going to review the 
different features (perceptual-based or taxonomic-
based) that have been used for musical sound 
classification, and then the techniques that have 
been tested for classification and clustering of 
isolated sounds. We have purposely refrained from 
writing mathematical formulae in order to facilitate 
the basic understanding to casual readers. It is our 
hope that the comprehensive list of references at 
the end of the chapter will compensate this lack, 
and will help in finding the complementary 
technical information that a thorough 
comprehension requires. 
 

2 Perceptual description versus 
taxonomic classification 
 
Perceptual description departs from taxonomic 
classification in that it tries to find features that 
explain human perception of sounds, while the 
latter is interested in assigning to sounds some 
label from a previously established taxonomy 
(family of musical instruments, instruments names, 
sound effects category…). Therefore, the latter 
may be considered deterministic while the former 
is derived from experimental results using human 
subjects or artificial systems that simulate some of 
their perceptual processes.  
Perception of sounds has been studied 
systematically since Helmholtz. It is now well 
accepted that sounds can be described in terms of 
their pitch, loudness, subjective duration, and 
something called ”timbre”. According to the ANSI 
definition (American National Standards Institute, 
1973), timbre refers to the features that allow one 
to distinguish two sounds that are equal in pitch, 
loudness, and subjective duration. The underlying 
perceptual mechanisms are rather complex but they 
involve taking into account several perceptual 
dimensions at the same time in a possibly complex 
way. Timbre is thus a multi-dimensional sensation 
that relies among others, on spectral envelope, 
temporal envelope, and on variations of each of 
them. In order to understand better what the timbre 

feature refers to, numerous experiments have been 
performed (Plomp, 1970; Plomp, 1976; Wedin & 
Goude, 1972; Wessel, 1979; Grey, 1977; 
Krumhansl, 1989; McAdams, Winsberg, de Soete, & 
Krimphoff, 1995; Lakatos, 2000).  
In all of these experiments, people were asked for a 
dis-similarity judgment on pairs of sounds. 
Multidimensional Scaling (MDS) analysisiii was 
used to process the judgments, and to represent the 
sound stimuli in a low-dimensional space revealing 
the underlying attributes used by listeners when 
making the judgments. Researchers often refer to 
this low-dimensional representation as a “Timbre 
Space” (see Figure 2). 
Grey (1977) performed one of the first experiments 
under this paradigm. Using 16 instrument sounds 
from the orchestra (string and wind instruments), 
he derived from MDS a timbre space with 3 
dimensions corresponding to the main perceptual 
axes. A qualitative description of these axes 
allowed him to assign one dimension to the spectral 
energy distribution, another to the amount of 
synchronicity of the transients and amount of 
spectral fluctuation, and the last one to the temporal 
attribute of the beginning of the sound. 
Wessel’s experiments (Wessel, 1979) used the 16 
sounds from Grey (1977) plus 8 hybrid sounds (in 
order to use non-existing sounds that avoided the 
class recognition effects and also for getting 

intermediate “timbral steps” between sounds). This 
research yielded a 2-dimensional space with one 
dimension assigned to the “brightness” of the 
sustained part of the sound, and the other to the 
steepness of the attack and the offset between the 
beginnings of the high frequency harmonics to the 
low frequency ones. 

Figure 2. Timbre Space coming from McAdams et al. 
(1995) experiment. It was derived from dissimilarity 
ratings on 18 timbres by 88 subjects with specificities and 
five latent subject classes. Acoustic correlates of the three 
dimensions: rise time, spectra 



Krumhansl (1989) used 21 FM-synthesis sounds 
from Wessel, Bristow & Settel (1987), mainly 
sustained harmonic sounds. She found the same 
results as Grey, but assigned the third dimension to 
something called “spectral flux” that was supposed 
to be related to the variations of the spectral 
content along time. McAdams et al. (1995), also 
used also these 21 FM-synthesis sounds in a new 
experiment and tested a new MDS technique that 
estimates the latent classes of subjects, instrument 
specificity values, and separate weights for each 
class. Compared to Krumhansl’s results, they 
confirmed the assignment of one dimension to the 
attack-time, another to the spectral centroid, but 
they did not confirm the “spectral flux” for the last 
dimension. 
Lakatos’ experiment (2000) used 36 natural sounds 
from the McGill University sound library, both 
wind and string (17) and percussive (18) sounds. 
The goal of this experiment was to extend the 
timbre space to percussive and mixed 
percussive/sustained sounds. This yields a two 
dimensional space and a three dimensional space. 
The conclusion of the experiment is that, except for 
spectral centroid and rise time, additional 
perceptual dimensions exist but their precise 
acoustic correlates are context dependent and 
therefore less prominent. 
An interesting practical application of this 
similarity-based research is that of setting up a 
given orchestration with some set of reference 
sound samples and then substituting some of them 
without radically changing the orchestration. 
Practical reasons for doing query-by-similarity of 
sound samples could include performance rights or 
copyrights issues, sample format compatibility, etc. 
Working examples of the timbre similarity 
approach are, for example, the Soundfisher system 
developed by Musclefishiv, and the Studio On Line 
developed by IRCAMv. Soundfisher, recently 
incorporated as a plug-in into a commercial video-
logger called Virage, is designed to perform the 
classification, indexing and search of sounds in 
general, though it can be used in a music context. The 
initial versions of Soundfishervi (Keislar, Blum, 
Wheaton & Wold, 1995) did not yield an explicit 
class decision but, rather, generated a list of 
mathematically similar sounds. Some kind of class 
decision procedure, however, seems to have been 
recently implemented (Keislar, Blum, Wheaton & 
Wold, 1999). The Soundfisher system implicitly 
implements the assumption that what is 
mathematically similar can be also considered 
perceptually similar; in other words, that the 
computed features accurately represent perceptual 
dimensions, an assumption that contradicts most 
empirical studies. In contrast, Studio On Line 
computes similarity by using features that have 
been extracted under the paradigm of the above-

cited perceptual similarity psychoacoustical 
experiments. The interested reader can find in 
Peeters, McAdams & Herrera (2000) a recent 
validation of the psychoacoustical approach in the 
context of MPEG-7. 

3. Relevant features for 
classification 

3.1  Types of features  
The term feature denotes a quantity or a qualityvii 
describing an object of the world. In the realm of 
signal processing and pattern recognition, objects 
are usually described by using vectors or lists of 
features. Features are also known as attributes or 
descriptors. Audio signal features are usually 
computed directly from the signal, or from the 
output yielded by transformations such as the Fast 
Fourier Transform or the Wavelet Transform. 
These audio signal features are usually computed 
every few milliseconds, for a very short segment of 
audio samples, in order to grasp their micro-
temporal evolution. Macro-temporal evolution 
features can also be computed by using a longer 
segment of samples (e.g. attack time, vibrato 
rate…), or by summarizing micro-temporal values 
(e.g. averages, variances…). 
A systematic taxonomy of features is outside the 
scope of this paper; nevertheless we could 
distinguish features at least according to four points 
of view: 
1. The steadiness or dynamicity of the feature, 

i.e. the fact that the features represent a value 
extracted from the signal at a given time, or a 
parameter from a model of the signal behavior 
along time (mean, standard deviation, 
derivative or Markov model of a parameter); 

2. The time extent of the description provided by 
the features: some description applies to only 
part of the object (e.g. description of the attack 
of the sound), whereas other apply to the 
whole signal (e.g. loudness); 

3. The “abstractness”, i.e. what does the feature 
represent (e.g. cepstrum and linear prediction 
are two different representation and extraction 
techniques for representing spectral envelope, 
but probably the former one can be considered 
as more abstract than the latter)  

4. The extraction process of the feature. 
According to this point of view, we could 
further distinguish: 
• Features that are directly computed on the 

waveform data as, for example, zero-
crossing rate (the rate that the waveform 
changes from positive to negative values); 

• Features that are extracted after 
performing a transform of the signal (FFT, 
wavelet…) as, for example, spectral 



centroid (the “gravity center” of the 
spectrum); 

• Features that relate to a signal model, as 
for example the sinusoidal model or the 
source/filter model; 

• Features that try to mimic the output of the 
ear system (bark or erb bank filter output). 

3.2.  Relevant features for perceptual 
classification 
 
For each of the “timbre” experiments, people have 
tried to qualify the dimensions of these timbre 
spaces, the perceptual axes, in terms of 
”brightness”, ”attack”, etc. Only recently attempts 
have been made to quantitatively describe these 
perceptual axes, i.e. relate the perceptual axes to 
variables or descriptors directly derived from the 
signal (Grey, 1978; Krimphoff, McAdams & 
Winsberg, 1994; Misdariis, Smith, Pressnitzer, 
Susini & McAdams, 1998). 
This quantitative description is done by finding the 
signal features that best explain the dis-similarity 
judgment. This is usually done using regression or 
multiple-regression between feature values and 
sound positions in the “timbre” space, and keeping 
only the features that yield the largest correlation. 
This makes the perceptual description framework 
different from taxonomic classification, since in the 
latter we’re not looking at features that “best 
explain” but at features that allow to “best 
discriminate” (between the considered classes). 
In the Grey and Gordon (1978) experiment, only 
one dimension correlated significantly with a 
perceptual dimension of their “timbre” space: the 
spectral centroid. Krimphoff et al. (1994) worked 
with Krumhansl’s space (1989) trying to find the 
quantitative parameters corresponding to its 
qualitative features and found, as Grey did, 
significant correlations with the spectral centroid, 
but also with the logarithm of the attack time and 
what they called the “spectral irregularity”, which 
is the average departure of the spectral harmonic 
amplitudes from a global spectral envelope. 
Krumhansl (1989) had labelled this dimension as 
“spectral flux”. Misdariis, Smith, Pressnitzer, 
Susini & McAdams, (1998) combined results 
coming from the Krumhansl  (1989) and McAdams 
et al. (1995) experiments. They found the same 
features as Krimphoff did plus a new one that 
explained one dimension of McAdams et al. (1995) 
experiment: spectral flux defined here as the 
average of the correlation between amplitude 
spectra in adjacent time windows. 
Peeters et al. (2000) considered also the two above-
cited experiments by Krumhansl and McAdams et 
al., called here “sustained harmonic sound space” 
as opposed to the “percussive sound space” coming 
from Lakatos (2000) experiment. Two methods 

were used for the selection of the features, a 
“position” method, which tries to explain from the 
feature values the position of the sound in the 
timbre space, and a “distance” method, which tries 
to explain directly the perceived distance between 
sounds from a difference of feature values. From 
this study the following features, now part of the 
MPEG-7 standard, have been derived to describe 
the perceived similarity. For the “harmonic 
sustained sounds”: log-attack time, harmonic 
spectral centroid, harmonic spectral spread (the 
extent of the spectrum’s energy around the spectral 
centroid), harmonic spectral variation (the amount 
of variation of the spectrum energy distribution 
along time), and harmonic spectral deviation (the 
deviation of the spectrum harmonic from a global 
envelope). For the “percussive sounds”: log-attack 
time, temporal centroid (the temporal centre of 
gravity of the signal energy), and spectral centroid 
(the centre of gravity of the power spectrum of the 
whole sound). 
Another approach is the one taken by the company 
Muscle Fish in the development of the Soundfisher 
system (Wold, Blum, Keislar & Wheaton, 1966). In 
this case the selected features are not derived from 
experiments but they constitute a set that is similar 
to the one discussed above: loudness (rms value in 
dB), pitch, brightness (spectral centroid), 
bandwidth (spread of the spectrum around the 
spectral centroid), harmonicity (amount of energy 
of the signal explained by a periodic signal 
model)... In order to capture the temporal trend of 
the features, it is proposed to store their average, 
variance and auto-correlation values along time.  

3.3.  Relevant features for taxonomic 
classification 
Mel-Frequency Cepstrum Coefficients (hence 
MFCCs) are features that have proved useful for 
such speech processing tasks as, for example, 
speaker identification and speaker recognition 
(Rabiner & Juang, 1993). MFCCs are computed by 
taking the log of the power spectrum of a 
windowed signal, then non-linearly mapping the 
spectrum coefficients in a perceptually-oriented 
way (inspired by the Mel scale). This mapping is 
intended to emphasize perceptually meaningful 
frequencies. The Mel-weighted log-spectrum is 
then compacted into cepstral coefficients through 
the use of a discrete cosine transform. This 
transformation reduces the dimensionality of the 
representation without losing information 
(typically, the power spectrum may contain 256 
values, whereas the MFCCs are usually less than 
15). MFCCs provide a rather compact representation 
of the spectral envelope and are probably more 
musically meaningful than other common 
representations like Linear Predictive Coding 
coefficients or curve-fitting approximations to 



spectrum. Despite these strengths, MFCCs by 
themselves can only convey information about static 
behavior and, as a consequence, temporal dynamics 
cannot be considered. Another important drawback is 
that MFCCs do not have an obvious direct 
interpretation, though they seem to be related (in an 
abstract way) with the resonances of instruments. 
Despite these shortcomings Marques (1999) used 
MFCCs in a broad series of classification studies. 
Eronen and Klapuri (2000) used Cepstral Coefficients 
(without the Mel scaling) and combined these 
features with a long list (up to 43) of complementary 
descriptors. Their list included, among others, 
centroid, rise and decay time, FM/AM rate and width, 
fundamental frequency and fundamental-variation-
related features for onset and for the remainder of the 
note. In a more recent study, using a very large set of 
features (Eronen, 2001), the most important ones 
seemed to be the MFCCs, their standard deviations, 
and their deltas (differences between contiguous 
frames), the spectral centroid and related features, 
onset duration, and crest factor (specially for 
instrument family discrimination). There are ways, 
however, for adding temporal information into a 
MFCCS classification schema. For example, Cosi, 
De Poli & Prandoni (1994) created a Kohonen 
Feature Mapviii (Kohonen, 1995) using both note 
durations and the feature coefficients. The network 
then clustered and mapped the right temporal 
sequence into a bi-dimensional space. As a result, 
sounds were clustered in a human perceptual-like 
way (i.e. not into taxonomic classes but into 
timbrically similar conglomerates). Brown (1999) 
used cepstral coefficients from constant-Q transforms 
instead of taking them after FFT-transforms; she also 
clustered feature vectors in a way that the resulting 
clusters seemed to be coding some temporal 
dynamics. 
One of the most commonly used descriptors for 
musical, as well as non-musical, sound classification 
is energy. In (Kaminskyj & Materka, 1995), Root 
Mean Square (RMS) energy was used for classifying 
4 different types of instruments with a neural 
network. In an additional, but apparently unfinished 
extension of this work (Kaminskyj & Voumard, 
1996), the authors also included brightness, spectral 
onset asynchrony, harmonicity and MFCCs. In a 
more recent and comprehensive work (Kaminskyj, 
2001) the main author used the RMS envelope, the 
Constant-Q frequency spectrum, and a set of spectral 
features derived from Principal Component Analysis 
(PCA from now on). PCA is commonly used to 
reduce dimensionality of complex data sets with a 
minimum loss of information. In PCA data is 
projected into abstract dimensions that are contributed 
with different –but partially related- variables. Then 
PCA calculates which projections, amongst all 
possible, are the best for representing the structure of 
data. The projections are chosen so that the maximum 

variability of the data is represented using the smallest 
number of dimensions. In this specific research, the 
177 spectral bins of the Constant-Q were reduced, 
after PCA, to 53 “abstract” features without any 
significant loss in discriminative power. 
Martin and Kim (Martin & Kim, 1998) exemplified 
the idea of testing very long lists of features and then 
selecting only those shown to be most relevant for 
performing classifications. Martin and Kim worked 
with log-lag correlograms to better approximate the 
way our hearing system processes sonic information. 
They examined 31 features to classify a corpus of 14 
orchestral wind and string instruments.  They found 
the following features to be the most useful: vibrato 
and tremolo strength and frequency, onset harmonic 
skew (i.e., the time difference of the harmonics to 
arise in the attack portion), centroid related measures 
(e.g., average, variance, ratio along note segments, 
modulation), onset duration, and select pitch related 
measures (e.g., value, variance). The authors noted 
that the features they studied exhibited non-uniform 
influences, that is, some features were better at 
classifying some instruments and instrument families 
and not others. In other words, features could be both 
relevant and non-relevant depending on the context. 
The influence of non-relevant features degraded the 
classification success rates between 7% and 14%.  
This degradation is an important theoretical issue 
(Blum & Langley, 1997) that unfortunately has been 
overlooked by the majority of studies we have 
reviewed. It should be noted that there are some 
classification techniques that also provide some 
indication about the relevance of the involved 
features. This is the case with Discriminant Analysis 
(see section 4.2.3). Using this technique “backward” 
deletion and “forward” addition of features can be 
used in order to settle into a good (though sometimes 
suboptimal) set. Agostini, Longari, and Pollastri ( 
2001) have used this method for reducing their 
original set of eighteen features to the eight ones that 
best separate the groups. The best features were: 
inharmonicity mean, centroid mean and standard 
deviation, harmonicity energy mean, zero-crossing 
rate, bandwidth mean and standard deviation, and 
standard deviation of harmonic skewness. 
Spectral flatness is a feature that has been recently 
used in the context of MPEG-7 (Herre, Allamanche 
& Hellmuth, 2001) for robust retrieval of song 
archives. It is a “newcomer” in musical instrument 
classification but can be quite useful because it 
indicates how flat (i.e. “white-noisy”) the spectrum of 
a sound is. Our current work indicates that it can also 
be a good descriptor for percussive sound 
classification (Herrera, Yeterian & Gouyon, 2002). 
Jensen and Arnspang (1999) used amplitude, 
brightness, tristimulus, amplitude of odd partials, 
irregularity of spectral envelope, shimmer and jitter 
measures, and inharmonicity, for studying the 
classification of 1500 sounds from 7 instruments. 



Jensen (1999), using PCA, had earlier identified these 
features as the most relevant from an initial set of 20 
and indicated 3 relevant dimensions that could 
summarize the most important features. He labeled 
these, in decreasing order of importance, “spectral 
envelope”, “(temporal) envelope”, and “noise”. 
Kashino and Murase (1997b) applied PCA to the 
instrument classification problem: 41 features were 
reduced to 11. PCA, in the context of sound 
classification, can be also found in the works of  
Sandell and Martens (1995), and Rochebois and 
Charbonneau, (1997). Less compact representations 
for temporal or spectral envelopes can be found in 
Fragoulis, Avaritsiotis, and Papaodysseus (1999), 
who used the slope of the first five partials, the time 
delay in the onset of these partials, and the high-
frequency energy. Cemgil and Gürgen (1997)) also 
used a set of harmonics (the first twelve) as 
discriminative features in their neural networks study. 
Apart from PCA, another useful method for reducing 
the dimensions of the feature selection problem is the 
application of Genetic Algorithms (GAs). GAs are 
modeled on the processes that drive the evolution of 
gene populations (e.g., crossover, mutation, 
evaluation of fitness, and selection of the best 
adapted). GAs have a property called implicit search, 
which means that near-optimal combinations of genes 
can be found without explicitly evaluating all possible 
combinations. GAs have been used in other musical 
contexts (e.g., sound synthesis and music 
composition) but the only known application to sound 
classification has been that of Fujinaga, Moore, and 
Sullivan (1998) where GAs were used to discover the 
best feature set. From an initial set of 352 features, 
their GA determined that the centroid, fundamental 
frequency, energy, standard deviation and skewness 
of spectrum, and the amplitudes of the first two 
harmonics were the best features to achieve a 
successful classification rate. In a more recent work 
(Fujinaga & MacMillan, 2000), two additional 
significant features were reported: spectral 
irregularity and a modified version of tristimulus. 
Unfortunately, the selection of best features was 
heavily instrument-dependent. This problematic 
dependence has been also noted by other studies.  
The intensive study of feature selection performed by 
Kostek (1998) represents another interesting 
approach. Kostek thoroughly examined 
approximately a dozen features. Examined features 
include, for example, energy of fundamental and of 
sets of partials, brightness, odd/even partials ratio, 
tristimulus-like features, and time delays of partials 
with respect to the fundamental. Kostek also 
explored, in other studies, the use of features derived 
from Wavelet Transforms instead of FFT-derived 
features. She found that the latter provided slightly 
better results than the former.  
One of the more interesting aspects of Kostek’s work 
is her use of rough sets (Pawlak, 1982; Pawlak, 

1991). Rough sets are a technique that was developed 
in the realm of knowledge-based discovery systems 
and data mining. Rough sets are implemented with 
the aim of classifying objects and then evaluating the 
relevance of the features used in the classification 
process. An elementary introduction to rough sets 
can be found in (Pawlak, 1998). We will return 
later with a fuller explication of rough sets.  
Applications of the rough sets technique to 
different problems, including those of signal 
processing, can be found in (Czyzewski, 1998). 
Polkowski and Skowron (1998) present a 
thoughtful discussion of software tools 
implementing this kind of formalisms. Several 
studies by Kostek and her collaborators (Kostek, 
1995; Kostek, 1998;  Kostek, 1999; Kostek & 
Czyzewski, 2001), and by Wieckzorkowska 
(1999b), used rough sets for reducing a large initial 
set of features for instrument classification. 
Wieckzorkowska’s study provides the clearest 
example of set reduction using rough sets. She 
found that a starting set of sixty-two spectral and 
temporal features describing attack, steady state, 
and release of sounds could be further reduced to a 
set of sixteen features. Examples of the more 
significant features include: tristimulus, energy of 
5th, 6th and 7th harmonics, energy of even partials, 
energy of odd partials, the most deviating of the 
lower partials, mean frequency deviation for low 
partials, brightness, and energy of high partials.  
Temporal differences between values of the same 
feature have been rarely used in the reviewed studies. 
Soundfisher, the commercial system mentioned 
earlier, incorporates temporal differences alongside 
such basic features as loudness, pitch, brightness, 
bandwidth, and MFCCs (Wold, Blum, Keislar & 
Wheaton, 1999). The Fujinaga or Eronen studies 
(cited above) have also incorporated temporal 
differences. 
To summarize this section, there are two inter-
related factors that influence the success of feature-
based identification and classification tasks. First, 
one must determine, and then select, the most 
discriminatory features from a seemingly infinite 
number of candidates. Second, one must reduce the 
number of applied features in order to make the 
resultant calculations tractable. We might 
intuitively conclude that using more than fifteen or 
twenty features seems to be a non-optimal strategy 
for attempting automatic classification of musical 
instruments. In order to settle into a short feature 
list, reliable data reduction techniques should be 
used. PCA and some types of Discriminant 
Analysis (both explained below) are robust and 
relatively easy to compute. Other techniques such 
as Kohonen maps, Genetic Algorithms, Rough 
Sets, etc., might yield better results when 
appropriate parameters and data are selected, but 
are inherently more complex. It is also clear that 



there are some features that are discriminative only 
for certain types of instruments, and that not only 
temporal and spectral features, but also their 
temporal evolution, should be considered.  

4. Techniques for sound 
classification 

4.2. Perceptual-based clustering and 
classification 
Retrieving sounds from a database by directly 
selecting signal features as those cited in the 
previous section is not a friendly task. As a 
consequence, exploiting relationships between 
them and high-level descriptions such as class or 
property (roughness, brightness) is required. A 
different way of retrieving sounds is by providing 
examples that are similar to what we are searching 
for; this is known as “query by example”. A 
specific kind of “query by example” is the one 
based on similarity of perception of sounds, instead 
of being based on sound categories. Leaving pitch, 
loudness and duration apart, this points directly to 
the notion of timbre and therefore to “timbre 
similarity”. 
Several authors have proposed a measure of timbre 
similarity that has been derived from psycho-
acoustical experiments (see section 2). This 
measure allows one to approximate the average 
judgment of perceived similarity obtained from 
people’s dissimilarity judgments between pairs of 
sounds. In order to do that, features or 
combinations of them, are used, with a possible 
weighting, to position the sound into a multi-
dimensional space. Giving two sounds, a measure 
of timbre similarity can be approximated. 
Therefore, for a given target sound, it is possible to 
find in a database the one that “sounds” the closest 
to the target. 
Misdariis et al. (1998) derived such a similarity 
measure approximation from Krumhansl (1989) 
and McAdams et al. (1995) experiments. Its 
formulation uses four features: log-attack-time, 
spectral centroid, spectral irregularity and spectral 
flux. Use of the similarity measure proposed by 
Misdariis et al. (1998) can be found, for example, 
in the search engine of IRCAM’s “Studio On Line” 
sound database. Peeters et al. (2000) proposed a 
new approximation adding the new feature 
“spectral spread”. They also proposed an 
equivalent approximation for percussive sounds 
derived from the Lakatos (2000) experiment. This 
latter uses the log-attack time, the spectral centroid 
and the temporal centroid.  
A still remaining problem concerns the 
applicability of such a timbre similarity measure 
for sounds belonging to different families (as for 
example comparing a sustained harmonic sound –

i.e. an oboe sound- with a percussive sound –i.e. a 
snare sound-). Current research is trying to 
construct a meta-timbre-space allowing such 
comparison between sounds belonging to different 
sound classes. 
Another kind of approach is that of Feiten and 
Günzel (1994), Cosi, De Poli, and Lauzzana 
(1994), or Spevak and Polfreman (2000). Signal 
features used in these works try to take into 
account the properties of human perception: 
MFCCs, Loudness critical-band rate time patterns, 
Lyon’s cochlear model, Gamma filter banks, etc. 
These features are then used in order to construct, 
automatically, what is called a “physical timbre 
space”. The “physical timbre space” aims at being 
the equivalent to usual timbre spaces but derived 
from signal features instead of from dissimilarity 
judgments yielded by human subjects in 
experimental conditions.  
A “physical timbre space” can be derived from 
signal features using various techniques: 
Hierarchical Clustering, Multi-Dimensional 
Scaling analysis (see section 2), Kohonen Feature 
Maps (a.k.a. Self Organizing Maps, see note 8), or 
Principal Component Analysis (see section 3.3).  
Prandoni (1994) and De Poli and Prandoni (1997) 
used a combination of MFCCs, Self-Organized 
Maps, and PCA analysis. The authors applied this 
framework to the sounds of Wessel et al. (1987) 
and found that brightness and spectral slope are the 
features that best explain two of its “physical 
timbre space” axes. Prandoni (1994) used the 
barycentre of the representation of each sound 
family in a feature (MFCCs) space. Using MDS 
and Herarchical Clustering analysis he found 
similar results than Grey did, and assigned the first 
two axes of his space to brightness and to 
something called “presence”, which is a measure of 
the energy inside the 800 Hz. region. In these two 
studies the obtained spaces were compared to usual 
timbre spaces coming from human experiments 
such as the above cited (sections 2 and 3.2). 
In Feiten and Günzer (1994), and Spevak and 
Polfreman (2000)), the obtained spaces are used to 
make a temporal model of the sound evolution. The 
former authors define two sound feature maps 
(SFM). The first SFM is derived directly from a 
Kohonen Feature Map training using the MFCCs. 
This SFM, called the Steady State SFM, represents 
the steady parts of the sounds. Each sound is then 
represented by a trajectory between the states of the 
Steady State SFM. A Dynamic State SFM is then 
computed from these trajectories. The latter 
authors, on the other hand, make a comparison 
between different feature sets (Lyon’s cochlear 
model, Gamma Tone filterbank and MFCCs), 
considering their abilities to represent clear and 
separated trajectories in the SFM. They conclude 
that the best feature set is the Gamma Tone 



filterbank combined with Meddis’s inner hair cell 
model. 

4.3. Taxonomic classification 
In this section we are going to present different 
techniques that have been used for learning to 
classify isolated musical notes into instrument or 
music family categories. Although we have focused 
on the testing phase success rate as a way for 
evaluating them, we have to be cautious because 
other factors (number of instances used in the 
learning phase, number of instances used in the 
testing phase, testing procedure, number of classes 
to be learned, etc.) may have a large impact on the 
results. 

K-Nearest Neighbors 

The K-Nearest Neighbours (K-NN) algorithm is 
one of the most popular algorithms for instance-
based learning. It first stores the feature vectors of 
all the training examples and then, for classifying a 
new instance, it finds a set of k nearest training 
examples in the feature space, and assigns the new 
example to the class that has more examples in the 
set. Traditionally, the Euclidean distance measure 
is used to determine similarity. Although it is an 
easy algorithm to implement, the K-NN technique 
has several significant drawbacks:  

• As it is a lazy algorithm (Mitchell, 1997), 
it requires having all the training instances 
in memory in order to yield a decision for 
classifying a new instance. 

• It does not provide a generalization 

mechanism (because it is only based on 
local information). 

• It is highly sensitive to irrelevant features 
that can dominate the distance metrics. 

• It may require a significant computational 
load each time a new query is processed. 

A k-NN algorithm classified 4 instruments with 
almost complete accuracy in Kaminskyj and 
Materka (1995), but the small size of the database 
(with restricted note range to one octave, although 
including different dynamics) was a drawback for 
taking this result as robust. In recent years 
Kaminskyj (2001) has reported hit rates of 82% for 
a database of 517 sounds and 19 instrumental 
categories. Some interesting features of this study 
are the use of PCA for reduction of data obtained 
after applying a Constant Q Transform and the use 
of a “reliability” estimation that can be extracted 
from confusion matrices. 
Martin and Kim (1998) developed a classification 
system that used a k-NN on a database of 1023 
sounds with 31 features extracted from cochleagrams 
(see also Martin (1999). Their study included a 
hierarchical procedure consisting of: 

• An initial discrimination of pizzicati from 
continuous notes. 

• A discrimination between different 
“families” (e.g., sustained sounds further 
divided into strings, woodwind, and 
brass),  

• A final classification of sounds into 
instrument categories.  

When no hierarchy was used, Martin and Kim 
achieved a 87% classification success rate at the 
family level and a 61% rate at the instrument level. 
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Figure 3. An illustration of the K-NN technique. The point marked with a 
star would be classified as belonging to category “B” when K=3 (as two 
out of its 3 neighbours are from class “B”; but note that in case of using 
K=5 classification would be “A”. 



Use of the hierarchical procedure increased the 
accuracy at the instrument level to 79% but it 
degraded the performance at the family level to 79%. 
In the case of not including the hierarchical 
procedure, performance figures were lower than the 
ones they obtained with a Bayesian classifier. Similar 
results (65% for 27 instrument classes; 77% for a 
two-level 6-element hierarchy) were reported by 
Agostini et al. (2001). In this report, the k-NN 
technique compared unfavorably against 
Discriminant Functions and also against Support 
Vector Machines. 
Eronen and Klapuri (2000) used a combination of 
k-NN and a Gaussian classifier (which was only 
used for rough discrimination between pizzicati 
and sustained sounds) for classifying 1498 samples 
into specific instrumental families or specific 
instrument labels. Using a system architecture very 
similar to Martin and Kim’s hierarchy –wherein 
sounds are first classified in broad categories and 
then the classification is refined inside that 
category- they reported success rates of 75% in 
individual instrument classification and 94% for 
family classification. They also reported a small 
accuracy improvement by only using the best 
features for each instrument and no hierarchy at all 
(80%). A quite surprising result is the extreme 
degradation of performance results (35%) that has 
been reported in a more recent paper (Eronen, 
2001). The explanation may be found in several 
facts: they used a larger and more varied database 
(5286 sounds coming from different collections) 
and more restrictive cross-validation methods (the 
test phase used sounds that were completely 
excluded from the learning set).  
A possible enhancement of the K-NN technique, 
which includes the weighting of each feature 
according to its particular relevance for the task, 
has been used by the Fujinaga team (Fujinaga et 
al., 1998; Fujinaga, 1998; Fraser & Fujinaga, 1999; 
Fujinaga & MacMillan, 2000). In a series of three 
experiments using over 1200 notes from 39 
different instruments, the initial success rate of 
50%, observed when only the spectral shape of 
steady-state notes was used, increased to 68% 
when tristimulus, attack position, and features of 
the dynamically changing spectrum envelope (i.e., 
the change rate of the centroid) were added. In 
their last paper, a real-time version of this system 
was reported. 
The k-NN literature—including the works of such 
research leaders as Martin and Fujinaga—
consistently reports accuracy rates around 80%. 
Provided that the feature selection has been 
optimized with genetic or other optimization 
techniques, one can thus interpret the 80% 
accuracy value as an estimation of the limitations 
of the K-NN algorithm. Therefore, more powerful 
techniques should be explored. 

Naive Bayesian Classifiers 

A Naïve Bayesian Classifier (NBC) incorporates a 
learning step in which the probabilities for the 
classes and the conditional probabilities for a given 
feature and a given class are estimated. Probability 
estimates for each of these are based on their 
frequencies as found in a collection of training 
data. The set of these estimates corresponds to the 
learned hypothesis, which is formed by simply 
counting the occurrences of various data 
combinations within the training examples. Each 
new instance is classified based upon the 
conditional probabilities calculated during the 
learning phase. This type of classifier is called 
naïve because it assumes the independence of the 
features. 
Brown (1999) used the NBC technique in 
conjunction with 18 Cepstral Coefficients 
computed after a constant Q transform. After 
clustering the feature vectors with a K-means 
algorithm, a Gaussian mixture model from their 
means and variances was built. This model was 
used to estimate the probabilities for a Bayesian 
classifier. It then classified 30 short sounds of oboe 
and sax with an accuracy rate of 85%. In a more 
recent paper (Brown, Houix & McAdams, 2001) 
she and her collaborators reported similar hit rates 
for four classes of instruments (oboe, sax, clarinet 
and flute); these good results were replicated for 
different types of descriptors (cepstral coefficients, 
bin-to-bin differences of the constant-Q spectrum, 
and autocorrelation coefficients).  
Martin (1999) enhanced a similar Bayesian 
classifier with context-dependent feature selection 
procedures, rule-one-out category decisions, beam 
search, and Fisher discriminant analysis, to 
estimate the maximum a priori probabilities. In 
(Martin & Kim, 1998), performance of this system 
was better than that of a K-NN algorithm at the 
instrument level with a 71% accuracy rate and 
equivalent to it at the family level with 85% 
accuracy rate. 
Kashino and his team (1995) have also used a 
Bayesian classifier in their CASA system. Their 
implementation is reported to be able to classify, 
and even separate, five different instruments: 
clarinet, flute, piano, trumpet and violin. 
Unfortunately, no specific performance data are 
provided in their paper. 

Discriminant Analysis 

Classification using categories or labels that have 
been previously defined can be done with the help 
of Discriminant Analysis (DA), a technique that is 
related to multivariate analysis of variance 
(MANOVA) and multiple regression. DA attempts 
to minimize the ratio of within-class scatter to the 



between-class scatter and builds a definite decision 
region between the classes. It provides linear, 
quadratic or logistic functions of the variables that 
"best" separate cases into two or more predefined 
groups. DA is also useful for determining which 
are the most discriminative features and the most 
similar/dissimilar groups. Surprisingly there have 
been very few studies using these techniques. 
Martin and Kim (1998)) made limited use of this 
method when they used a linear DA to estimate the 
mean and variance of the Gaussian distributions of 
each class to be fed into an enhanced naive 
Bayesian classifier.  
More recently Agostini et al. (2001) have found 
that a set of quadratic discriminant functions 
outperformed even Support Vector Machines (93% 
versus 70% hit rates) in classifying 1007 tones 
from 27 musical instruments with a very small set 
of descriptors.  In our laboratory we carried out, 
some time ago, an unpublished study with 120 
sounds from 8 classes and 3 families in which we 
got a 75% accuracy using also quadratic linear 
discriminant functions in two steps (sounds were 
first assigned to a family, and then they were 
specifically classified). As the features we used 
were not optimized for instrument classification but 
for perceptual similarity classification, it would be 
reasonable to expect still better results when 
including other more task-specific features. In a 
more recent work (Herrera et al., 2002) that used a 
database of 464 drum sounds (kick, snare, hihat, 
tom, cymbals) and an initial set of more than thirty 
different features, we got hit rates higher than 94% 
with four canonical Discriminant functionsix that 
combined 18 features comprising some MFCCs, 
attack and decay descriptors, and relative energies 
in some selected bands. 

Higher Order Statistics 

When signals have Gaussian density distributions, 
we can describe them thoroughly with such second 
order measures as the autocorrelation function or 
the spectrum. In the case of noisy signals such as 
engine noises of sound effects, the variations in the 
spectral envelope do not allow a good signal 
characterisation and matching. A method to match 
signals using a variant of matched filter using 
polyspectral matching was presented in (Dubnov & 
Tishby, 1997), and it could be specifically useful 
for the classification of sounds from percussive 
instruments. There are some authors who claim that 
musical signals, because they have been generated 
through non-linear processes, do not fit a Gaussian 
distribution. In that case, using higher order 
statistics or polyspectra, as for example skewness 
of bispectrum and kurtosis of trispectrum, it is 
possible to capture all information that could be 
lost if using a simpler Gaussian model. With these 

techniques, and using a Maximum Likelihood 
classifier, Dubnov, Tishby, and Cohen (1997) have 
showed that discrimination between 18 instruments 
from string, woodwind and brass families is 
possible. Unfortunately the detailed data that is 
presented there comes from a classification 
experiment that used machine and other types of 
non-instrumental sounds. Acoustic justification for 
differences in kurtosis among families of 
instruments was provided in (Dubnov & Rodet, 
1997). The measure of kurtosis was shown to 
correspond to the phenomenon of phase coupling, 
which implies coherence in phase fluctuations 
among the partials. 

Binary trees 

Binary Trees, in different formulations, are 
pervasively used for different machine learning and 
classification tasks. They are constructed top-
down, beginning with the feature that seems to be 
the most informative one, that is, the one that 
maximally reduces entropy. Branches are then 
created from each one of the different values of this 
descriptor. In the case of non-binary valued 
descriptors, a procedure for dichotomic partitioning 
of the value range must be defined. The training 
examples are sorted to the appropriate descendant 
node, and the entire process is then repeated 
recursively using the examples of one of the 
descendant nodes, then with the other. Once the 
tree has been built, it can be pruned to avoid over-
fitting and to remove secondary features. Although 
building a binary tree is a recursive procedure, it is 
order of times faster than, for example, training a 
neural network. 

 
Figure 3: An imaginary binary tree for classification of 

sounds into 4 different classes. 

 
Binary trees are best suited for approximating 
discrete-valued target functions but they can be 
adapted to real-valued features. Jensen and 
Arnspang’s binary decision tree (1999) exemplifies 
this approach to instrument classification. In their 



system, the trees are constructed by asking a large 
number of questions designed in each case to 
divide the data into two sets (e.g., “Is attack time 
longer than 60 ms?). Goodness of split (e.g., 
average entropy) is calculated and the question that 
renders the best goodness is chosen. Once the tree 
has been built using the learning set, it can be used 
for classifying new sounds because each leaf 
corresponds to one specific class. The tree can also 
be used for making explicit rules about which 
features better discriminate one instrument from 
another. Unfortunately, detailed results regarding 
the classification of new sounds have not yet been 
published. Consult Jensen’s thesis (1999), 
however, for his discussion of log-likelihood 
classification functions.  
Wieczorkowska (1999a) used a binary tree 
approach, called the C4.5 algorithm (Quinlan, 
1993), to classify a database of 18 classes and 62 
features. Accuracy rates varied between 64% and 
68% depending on the test procedure applied. In 
our above-mentioned drum sounds classification 
study (Herrera et al., 2002) we obtained slightly 
better figures (83% of hit rates) using the C4.5 
algorithm for classifying nine different classes of 
instruments. 
A final example of a binary tree for audio 
classification, although not specifically tested with 
musical sounds, is that of Foote (1997). His tree-
based approach uses MFCCs and supervised vector 
quantization to partition the feature space into a 
number of discrete regions. Each split decision in 
the tree involves comparing one element of the 
vector with a fixed threshold that is chosen to 
maximize the mutual information between the data 
and the associated human-applied class labels. 
Once the tree is built, it can be used as a classifier 
by computing histograms of frequencies of classes 
in each leaf of the tree; histograms are similarly 
generated for the test sounds then compared with 
tree-derived histograms. 

Artificial Neural Networks 

An Artificial Neural Network (ANN) is an 
information processing structure that is composed 
of a large number of highly interconnected 
processing elements—called neurons or units—
working in unison to solve specific problems. 
Neurons are grouped into layers (usually called 
input, output, and hidden) that can be 
interconnected through different connectivity 
patterns. An ANN learns complex mappings 
between input and output vectors by changing the 
weights that interconnect neurons. These changes 
may proceed either supervised or unsupervised. In 
the supervised case, a teaching instance is 
presented to the ANN, it is asked to generate an 
output, this out is then compared with an expected 

“correct” output, and the weights are consequently 
changed in order to minimize future errors. In the 
unsupervised case, the weights “settle” into a 
pattern that represents the collection of input 
stimulus.  
A very simple feedforward network with a 
backpropagation training algorithm was used in 
(Kaminskyj & Materka, 1995). The network (a 
system with 3 input units, 5 hidden units, and 4 
output units) learned to classify sounds from 4 very 
different instruments—piano, marimba, accordion 
and guitar—with an accuracy rate as high as 97%. 
Slightly better results were obtained, however, using 
a simpler K-NN algorithm. 
A three-way evaluative investigation involving a 
multilayer network, a time-delayed network, and a 
hybrid self-organizing network/radial basis function 
(see note 5) can be found in (Cemgil & Gürgen, 
1997). Although very high success rates were found 
(e.g., 97% for the multilayer network, 100% for the 
time-delay network, and 94% for the self-organizing 
network) it should be noted that the experiments used 
only 40 sounds from 10 different classes with the 
pitch range limited to one octave.   
Implementations of self-organizing maps (Kohonen, 
1995) can be found in (Feiten & Günzel, 1994;   Cosi, 
De Poli & Lauzzana, 1994; Cosi et al., 1994; 
Toiviainen et al., 1998). All these studies used some 
kind of human auditory pre-processing simulation to 
derive the features that were fed to the network. Each 
then built a map and evaluated its quality by 
comparing the network clustering results to those 
human-based sound similarity judgments (Grey, 
1977; Wessel, 1979). From their maps and their 
comparisons they advance timbral spaces to be 
explored, or confirm/reject theoretical models that 
explain the data. We must note, however, that the 
classification we get from self-organizing maps has 
not traditionally been directly usable for instrument 
recognition, as the maps are not provided with any a 
priori label to be learned (i.e., no instrument names). 
Nevertheless, there are several promising 
mechanisms being explored for associating the output 
clusters to specific labels (e.g., the radial basis 
function used by Cemgil, (see above). The ARTMAP 
architecture (Carpenter, Grossberg & Reynolds, 
1991) is another means to implement this strategy. 
ARTMAP has a very complex topology including a 
couple of associative memory subsystems and also 
an “attentional” subsystem. Fragoulis et al. (1999) 
successfully used an ARTMAP for the 
classification of 5 instruments with the help of only 
ten features: slopes of the first five partials, time 
delays of the first 4 partials relative to the 
fundamental, and high frequency energy. The small 
2% error rate reported was attributed to neglecting 
different playing dynamics in the training phase.  
Kostek’s (1999) is the most exhaustive study on 
instrument classification using neural networks. 



Kostkek’s team has carried out several studies 
(Kostek & Krolikowski, 1997; Kostek & Czyzewski, 
2000;  Kostek & Czyzewski, 2001) on network 
architecture, training procedures, and number and 
type of features, although the number of classes to be 
classified has been always too small. They have used 
a feedforward NN with one hidden layer.  Initially 
their classes were instruments with somewhat similar 
sounds: trombone, bass trombone, English horn and 
contrabassoon. In last papers more categories (double 
bass, cello, viola, violin, trumpet, flute, clarinet…) 
have been added to the tests. Accuracy rates higher 
than 90% were achieved for different sets of four 
classes, although the results varied depending on the 
types of training and descriptors used. 
Some ANN architectures are capable of 
approximating any function.  This attribute makes 
neural networks a good choice when the function 
to be learned is not known in advance, or it is 
suspected to be nonlinear. ANN’s do have some 
important drawbacks, however, that must be 
considered before they are implemented: the 
computation time for the learning phase is very 
long, adjustment of parameters can be tedious and 
prohibitively time consuming, and data over-fitting 
can degrade their generalization capabilities. It is 
still an open question whether ANN’s can 
outperform simpler classification approaches. They 
do, however, exhibit one strong attribute that 
recommends their use: once the learning phase is 
completed, the classification decision is very fast 
when compared to other popular methods such as 
k-NN.  
 

Support Vector Machines 

SVMs are based on statistical learning theory 
(Vapnik, 1998). The basic training principle 
underlying SVMs is finding the optimal linear 
hyperplane such that the expected classification 
error for unseen test samples is minimized (i.e., 
they look for good generalization performance). 
According to the structural risk minimization 
inductive principle, a function that classifies the 
training data accurately, and which belongs to a set 
of functions with the lowest complexity, will 
generalize best regardless of the dimensionality of 
the input space. Based on this principle, a SVM 
uses a systematic approach to find a linear function 
with the lowest complexity. For linearly non-
separable data, SVMs can (nonlinearly) map the 
input to a high dimensional feature space where a 
linear hyperplane can be found. This mapping is 
done by means of a so-called kernel function 
(denoted by φ in Figure 4).    
Although there is no guarantee that a linear 
solution will always exist in the high dimensional 
space, in practice it is quite feasible to construct a 

working solution. In other words, it can be said that 
training a SVM is equivalent to solving a quadratic 
programming with linear constraints and as many 
variables as data points. Anyway, SVM present 
also some drawbacks: first, there is a risk of 
selecting a non-optimal kernel function; second, 
when there are more than two categories to 
classify, the usual way to proceed is to perform a 

concatenation of two-class learning procedures; 
and third, the procedure is computationally 
intensive.   

Figure 4. In SVM’s the Kernel function f maps the input
space (where discrimination of the two classes of
instances is not easy to be defined) into a so-called feature
space, where a linear boundary can be set between the two
classes 

Marques (1999) used an SVM for the classification 
of 8 solo instruments playing musical scores from 
well-known composers. The best accuracy rate was 
70% using 16 MFCCs and 0.2 second sound 
segments. When she attempted classification on 
longer segments an improvement was observed 
(83%). There were, however, two instruments 
found to be very difficult to classify: trombone and 
harpsichord. Another noteworthy feature of this 
study was the use of truly independent sets for the 
learning and for the testing consisting mainly of 
“solo” phrases from commercial recordings.  
Agostini et al. have reported quite surprising results 
(Agostini et al., 2001). In their study an SVM 
performed marginally better than (Linear) 
Canonical Discriminant functions and also better 
than k-NN’s, but not nearly as good as a set of 
Quadratic Discriminant Functions (see section 
4.2.3). 
Some promising applications of SVM that are 
related to music classification but are not specific 
to music instrument labelling can be found in Li & 
Guo (2000), Whitman, Flake and Lawrence (2001), 
Moreno and Rifkin (2000), or Guo, Zhang, and Li 
(2001). 

Rough Sets 

Rough sets are a novel technique for evaluating the 
relevance of the features used for description and 
classification. These are similar to, but should not 



be confused with, fuzzy sets.  In rough set theory, 
any set of similar or indiscernible objects is called 
an elementary set and forms a basic granule of 
knowledge about the universe; on the other hand, 
the set of discernible objects are considered rough 
(i.e., imprecise or vague). Vague concepts cannot 
be characterized in terms of information about their 
elements; however, they may be replaced by two 
precise concepts, respectively called the lower 
approximation and the upper approximation of the 
vague concept (see figure 5 for a graphical 
illustration of these ideas). The lower 
approximation consists of all objects that surely 
belong to the concept whereas the upper 
approximation contains all objects that could 
possibly belong to the concept. The difference 
between both approximations is called the 
boundary region of the concept.  

 
Figure 5. An illustration of rough sets concepts. 

The assignment of an object to a set is made 
through a membership function that has a 
probabilistic flavour. Once data are conveniently 
organized into information tables, this technique is 
used to assess the degree of vagueness of the 
concepts and the interdependency of attributes; it 
therefore is useful for reducing complexity in the 
table without reducing the information it provides. 
Information tables regarding cases and features can 
be interpreted as conditional decision rules of the 
form IF {feature x} is observed, THEN 
{is_a_Y_object}, and consequently they can be 
used as classifiers. When applied to instrument 
classification, (Kostek, 1998) reports accuracy 
rates higher than 80% for classification of the same 
4 instruments mentioned in the ANN’s section. 
While both useful and powerful, the use of rough 
sets does entail some significant costs. The need 
for feature value quantization is the principal and 
non-trivial cost associated with rough sets. 
Furthermore, the choice of quantization method 
can affect output results. In the context of 
instrument classification, different quantization 
methods have been discussed in (Kostek & 
Wieczorkowska, 1997), (Kostek, 1998), and 
(Wieczorkowska, 1999b). When compared to 
neural networks or fuzzy sets rules, rough sets are 

computationally less expensive while at the same 
time yielding results similar to those obtained with 
the other two techniques. 

Hidden Markov Models 

Hidden Markov Models (HMMs), as the name 
implies, contain two components: a set of hidden 
variables that can not be observed directly from the 
data, and a Markov property that is usually related 
to some dynamical behaviour of the hidden 
variables.  
A HMM is a generative model that assumes that a 
sequence of measurements or observations is 
produced through another sequence of hidden 
states , so that the model generates, in 
each state, a random measurement drawn from a 
different (finite or continuous) distribution. Thus, 
given a sequence of measurements and assuming a 
certain sequence of hidden states, the HMM model 
specifies a joint probability distribution. 
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The HMM paradigm is used to solve three main 
tasks: classification, segmentation and learning. 
Learning is the first problem that needs to be 
solved in order to use a HMM model, unless the 
parameters of the model are externally specified. It 
means estimating the parameters of the models, 
usually iteratively done by the EM algorithm 
(Dempster, Laird & Rubin, 1977). The tasks of 
segmentation and classification are accomplished 
via forward-backward recursions, which propagate 
information across the Markov state transition 
graph. The segmentation problem means finding 
the most likely sequence of the hidden states given 
an observation . Given several candidate 
HMM models that represent different acoustic 
sources (musical instruments in our case), the 
classification problem computes the probability 
that the observations came from these models. The 
model that gives the highest probability is chosen 
as the likely source of the observation.  
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HMMs have been used to address musical 
segmentation problems by several researchers 
(Raphael, 1999; Aucouturier & Sandler, 2001). 
These works dealt with segmentation of a sound 
into large-scale entities such as complete notes or 
sections of musical recordings, with the purpose of 
performing tasks such as score following or 
identification of  texture changes in a musical 
piece.  
Works that address the classification problem 
usually take a simpler view that discards the 
Markovian dynamics. Based on a work by 
Reynolds on speaker identification (Reynolds & 



Rose, 1995), several researchers considered a 
Gaussian Mixture Model (GMM) for computer 
identification of musical instruments (Brown, 
1999; Marques, 1999). GMMs consider a 
continuous probability density of the observation, 
and model it as a weighted sum of several Gaussian 
densities. The hidden parameters in GMM are the 
mean vector, covariance matrix and mixture weight 
of the component densities. Parameter estimation is 
performed using an EM procedure or k-means. 
Using a GMM in an eight-instrument classification 
task, Marques reported an overall error rate of 5% 
for 32 Gaussians with MCCs as features. Brown 
performed a two-instrument classification 
experiment where she compared machine 
classification results with human perception for a 
set oboe and saxophone sounds. She reported a 
lower error rate for the computer than humans for 
oboe samples and roughly the same for the sax 
samples. Eronen and Klapuri (2000) also compare 
a GMM classifier to other classifiers for various 
features. 
In the HMM model for sound clips presented by 
Zhang and Kuo (1998a; 1999b) they use a 
continuous observation density probability 
distribution function (pdf) with various 
architectures of the Markov transition graphs. They 
also incorporate an explicit State Duration model 
(semi-markov model, (Rabiner, 1989) for 
modelling the possibility that d consecutive 
observations belong to the same state. Denote a 
complete parameter set of HMM as 

, with A for the transition 
probability, B for the GMM parameters, D for 
duration pdf parameters and π for initial state 
distribution. In this model, two types of 
information are represented in the HMM: timbre 
and rhythm. Each kind of timbre is modelled by a 
state, and rhythm information is denoted by 
transition and duration parameters. The authors 
arrive at a three step learning procedure that first 
uses GMM for estimating B, then A is calculated 
from statistics of the state transitions and 
eventually D is estimated state by state, assuming a 
Gaussian density for the durations.  This simplified 
procedure is not a strict HMM learning process and 
it is used to simplify the computational load of the 
learning stage. They report over 80% accurate 
classification rate for 50 sound clips, with 
misclassifications reportedly happening with 
classes of perceptually similar sounds, such as 
applause, rain, river and windstorm. The timbre of 
sound is described primarily by the frequency 
energy distribution that is extracted from short time 
spectrum. In their experiments, Zhang and Kuo 
employ a rather naive feature set for description of 
the timbre, that consist of log amplitude from a 
128-point FFT vector (thus obtaining a 65 
dimensional feature vector), calculated at 

approximately 9 msec intervals. Depending on the 
type of sound that is analyzed, a partial or complete 
HMM models is employed. The simplest ones are 
single state sounds, and sounds that omit duration 
and transition information. These are used when 
every timbral state in the model can occur 
anywhere in time and for any duration. Second 
model includes transition probabilities, but without 
durations. The third (complete case) includes 
sounds such as footsteps and clock ticks, which 
carry both transition and duration information. An 
improvement to the timbral description was 
recently suggested by Casey and Westner (2001). 
Instead of using magnitude FFT, they suggest 
reduced rank spectra as a feature set for HMM 
classifier. After FFT analysis, singular value 
decomposition (SVD) is used to estimate a new 
basis for the data and, by discarding basis vectors 
with low eigenvalues, a data-reduction step is 
performed. Then the results are passed to 
independent component analysis (ICA

),,,( πλ DBA=

x), which 
imposes additional constraints on the output 
features. The resulting representation consists of a 
projection of a data into a lower-dimensional space 
with marginal distributions being approximately 
independent. They report a success rate of 92.65% 
for reduced-rank versus 60.61% for the full-rank 
spectra HMM classifier.  
Another variant of Markov modelling, but this time 
using explicit (not hidden) observations with 
arbitrary length Markov modelling was used by 
Dubnov and Rodet (1998). In this work a universal 
classifier is constructed using a discrete set of 
features. The features were obtained by clustering 
(vector quantization of) cepstral and cepstral 
derivative coefficients. The motivation for this 
model is a universal sequence classification method 
of Ziv-Merhav (Ziv & Merhav, 1993) that 
performs matching of arbitrary sequences with no 
prior knowledge of the source statistics and having 
an asymptotic performance as good as any Markov 
or finite-state model. Two types of information are 
modelled in their work: timbre information and 
local sound dynamics, which are represented by 
cepstral and cepstral derivative features 
(observables). The long-term temporal behaviour is 
captured by modelling innovation statistics of the 
sequence, i.e. a probability to see a new symbol 
given the history of that sequence (for all possible 
length prefixes). By clever sampling of the 
sequence history, only most significant prefixes are 
used for prediction and clustering. The clustering 
method was tested on a set of 20 examples from 4 
musical instruments, giving a 100% correct 
clustering.  

Conclusions 
We have examined the techniques that have been 
used for classification of isolated sounds and the 



features that have been found as more relevant for 
the task. We have also reviewed the perceptual 
features that account for clustering of sounds based 
on timbral similarity. Regarding the perceptual 
approach, we have presented empirical data for 
defining timbral spaces that are spanned by a small 
number of perceptual dimensions. Theses timbral 
spaces may help users of a music content-
processing system to navigate through collections 
of sounds, to suggest perceptually based labels, and 
to perform groupings of sounds that capture 
similarity concepts. Regarding the taxonomic 
classification, we have discussed a variety of 
techniques and features that have provided 
different degrees of success when classifying 
isolated instrumental sounds. All of them show 
advantages and disadvantages that should be 
balanced according to the specifics of the 
classification task (database size, real-time 
constraints, learning phase complexity, etc.).  
An approach yet to be tested is the combination of 
perceptual and taxonomic data in order to propose 
mixtures of perceptual and taxonomic labels (i.e. 
bright snare-like tom or nasal violin-like flute). It 
remains unclear, however, whether taxonomic 
classification techniques and features can be 
applied directly and successfully to the task of 
complex mixtures’ segmenting-by-instrument. 
Additionally, because many of these techniques 
assume a priori isolation of input sounds, they 
would not accomplish the requirements outlined by 
Martin (1999) for real-world sound-source 
recognition systems. Anyway, we have been lately 
focusing in a special type of sound mixtures, so-
called “drum loops”, where some dual and ternary 
combinations of sounds can be found, and we have 
obtained very good classification results adopting 
the isolated sounds approach (Herrera, Yeterian, 
Gouyon, 2002). We have elsewhere (Herrera, 
Amatriain, Batlle & Serra, 2000) suggested some 
strategies for overcoming this limitation and for 
guiding some forthcoming research.  
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NOTES 

                                                           
i Segmentation can be defined as the process of breaking 

up an audio stream into temporal segments by means 
of applying a boundary detection criterion as, for 
example, texture, note, instrument, rhythm pattern, 
overall structure, etc. The same audio stream can be 
segmented in different ways by recurrently applying 
different criteria.  

ii Once an audio stream has been segmented, labels have 
to be attached to the segments. Two different families 
of algorithms can be used for learning labels: in the 
case we know in advance the labels to be used, 
pattern recognition, discrimination, or supervised 
learning techniques are the logical choice; when we 
do not know beforehand the labels and they will have 
to be inferred from the data, then the right choice is 
some unsupervised learning or clustering technique. 
See {Michie, Spiegelhalter, et al. 1994 109 /id} for 
more details.  

iii Multidimensional Scaling is a technique for 
discovering the number of underlying 
dimensions appropriate for a set of 
multidimensional data and for locating the 
observations in a low-dimensional space (Wish 
& Carroll, 1982). 

iv http://www.musclefish.com 
v http://www.ircam.fr/produits/technologies/sol/index-

e.html 
vi http://www.soundfisher.com 
vii In this paper we will only consider the quantitative 

approach. 
viii A Kohonen or Self Organized Feature Map is a type 

of neural network that uses a single layer of 
interconnected units in order to learn a compact 
representation (i.e. with reduced features) of similar 
instances. It is very useful to cluster objects or 
instances that share some type of similarity because it 
preserves the inner space topology. 

ix A canonical Discriminant function uses standardized 
values and Mahalannobis distances instead of raw 
values and Euclidean distances. 

x Independent component analysis (ICA) tries to improve 
upon the more traditional Principal Component 
Analysis (PCA) method of feature extraction by 
performing an additional linear transformation 
(rotating and scaling) of the PCA features so as to 
obtain maximal statistical independence between the 
feature vectors. One must note that PCA arrives at 
uncorrelated features, which are independent only 
when the signal statistics are Gaussian. It is claimed 
by several researchers that both in vision and sound 
the more "natural" features are the ICA vectors. The 
motivation for this claim is that ICA features are 
better localized in time (or space, in the case of 
vision) [Bell and Sejnowsky 1996, 1997], and arrive 
at a more sparse representation of sound, that is, 
requiring less features, at every given instant of time 
(or space) in order to describe the signal. (One should 

                                                                                    
note, though, that the total number of features needed 
to describe the whole signal is not changed). A 
serious study of the utility of ICA for sound 
recognition still needs to be carried out, especially in 
view of the computational overhead that needs to be 
"paid" for ICA processing, vs. the improvement in 
recognition rates. 
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http://www.ircam.fr/produits/technologies/sol/index-e.html
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