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Examples (cont.)

A B⊂ ⊂Ω Ω,Suppose two events                           are not mutually exclusive:

A B∩ ≠ φ
Then 

( ) ( ) ( ) ( )Pr Pr Pr PrA B A B A B∪ = + − ∩

proof:

A B A A B∪ = ∪ ∩

( ) ( ) ( )Pr Pr PrA AB A A B∪ = + ∩
B A B A B= ∩ ∪ ∩

mutually exclusive

( ) ( ) ( )Pr Pr PrB A B A B= ∩ + ∩

( ) ( ) ( ) ( )⇒ ∪ = + − ∩Pr Pr Pr PrA B A A A B
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Examples (cont.)

A ⊂ Ωif               then       is the event corresponding to
“A did not occur”, and

 A

( ) ( )Pr PrA A= −1

ex) 1 roll of a fair die

if A = {roll is even} then      = {roll is odd}A

Pr(A) = 1 - Pr(    ) = 0.5A
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Examples (cont.)

ex) A fair coin is tossed 3 times in succession. 

Events:    A- get a total of 2 heads
                B- get a head on second toss

Ω = {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}

A:                 x        x                   x
B:    x           x                             x       x    

Pr(A) = 3/8  Pr(B) = 4/8   Pr(           ) = 2/8

( )Pr / / / /A B∪ = + − =3 8 4 8 2 8 5 8

A B∩
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Conditional Probability

( ) ( )
( )

Pr |
Pr

Pr
A B

A B

B
≡

∩

ex) A fair coin is tossed 3 times in succession. 

Events:    A- get a total of 2 heads
                B- get a head on second toss

Ω = {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}

A:                 x        x                   x
B:    x           x                             x       x    

Pr(B) = 4/8,  Pr(           ) = 2/8, Pr(A | B) = (2/8) / (4/8) = 1/2A B∩
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Examples (cont.)

ex) A fair die is thrown once:

�Ω = {1, 2, 3, 4, 5, 6}
•A- roll a “2”
•B- roll is even
•Pr(A) = 1/6  Pr(B) = 3/6

 
                              P(A | B) = (1/6)/(3/6) = 1/3

( ) ( )Pr Pr /A B A∩ = = 1 6

note Pr(A | A) = 1, and if A and B are independent events: 

( ) ( )Pr | PrA B A=
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Hidden Markov Models (HMM’s)

example 1)

Q0

Q2

Q1
Q3

a01=1

a11=0.2a13=0.3

a12=0.5

a22=0.4

a23=0.6

a30=1

π
π

0 1

0 0

=
= ≠k k,   
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Example of an HMM

n The aij are state transition probabilities, give the
probability of moving from state i to state j.

n Note that:

n At state Qi, one of 3 output symbols, R, B, or Y is
generated with probabilities

aij
j

∑ =1

( ) ( ) ( )b R b B b Yi i i, ,  or 

State, Qi bi(R) bi(B) bi(Y)

0 0.3 0.2 0.5
1 0.7 0.2 0.1
2 0.9 0 0.1
3 0.2 0.8 0
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Example of an HMM (cont.)

n One output symbol is generated per state (like a Moore
state machine).

n Often the observed output symbols bear no obvious
relationship to the state sequence (i.e. states are “hidden”).

n Knowing the state sequence generally provides more
useful information about the characteristics of the signal
being analyzed than the observed output symbols (as was
the case with syntactic recognition).

possible output sequence:   R,   Y,  B,   B,   R,   Y,  R,  ...
                                state:   Q0, Q1, Q3, Q0, Q1, Q1, Q2, ...
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Definition of Hidden Markov Models

n there are T observation times: t = 0, …, T-1

n there are N states: Q0,…, QN-1

n there are M observation symbols: v0, …, vM-1

n state transition probabilities:

n symbol probabilities:

n initial state probabilities:

( )a Q t Q tij j i= +Pr | at time    at time 1

( ) ( )b k v t Q tj k j= Pr | at time    at time 

( )πi iQ t= =Pr  at 0
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Definition of Hidden Markov Models (cont.)

n Define the matrices A, B, and Π:

n Notation for observation sequence:

n Notation for state sequence: I = i0, i1, …, iT-1

{ }A a i j N
ij ij= = −, , , ,  0 1K

{ } ( )B b k j N k M
jk j= = − = −, , , , , ,    0 1 0 1K K

notation for HMM: λ = (A, B, Π)

O O O OT= −0 1 1, , ,K

{ }Π
i i i N= = −π , , ,  0 1K
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Three Fundamental Problems

n Problem 1: Given the observation sequence
and the model λ = (A, B, Π), how do we compute the
probability of the observation sequence, Pr(O | λ)?

n Problem 2: Given the observation sequence
and the model λ = (A, B, Π), how do we estimate the state
sequence, I = i0, i1, …, iT-1 which produced the
observations?

n Problem 3: How do we adjust the model parameters λ =
(A, B, Π) to maximize Pr(O | λ)?

O O O OT= −0 1 1, , ,K

O O O OT= −0 1 1, , ,K
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Relevance to Normal/Abnormal ECG Rhythm Detection

n Suppose we have one HMM that models normal rhythm,
and a second HMM that models abnormal rhythm, and we
have a measured observation sequence. Problem 1 can be
used to determine which is the most likely model for the
measured observations, hence, we can classify the rhythm
as normal or abnormal.

n Suppose we have a single model which enables us to
associate certain states with with the components of the
ECG (P, QRS, and T waves). Problem 2 can be used to
estimate the states from the observation sequence. The
state sequence can then be used to detect P, QRS, and T
waves.
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Relevance to Normal/Abnormal ECG Rhythm Detection
(cont.)

n Problem 3 is used to generate the  model parameters that
best fit a given training set of observations. In effect, the
solution to Problem 3 allows us to build the model. This
problem must be solved first before we can solve Problems
1 and 2. Problem 3 is more difficult to solve than Problems
1 and 2.
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Markovian Property of State Sequences

n The sequence i0, i1, …, iT-1 has the Markov property:

n A consequence of this property is (homework):

( ) ( )Pr | , , , Pr |i i i i i ik k k k k− − −=1 2 0 1K

that is, the state at time t = k, ik ,  is independent of all
previous states except ik-1.

( ) ( ) ( ) ( ) ( )Pr , , , , Pr | Pr | Pr | Pri i i i i i i i i i ik k k k k k k− − − − −=1 2 0 1 1 2 1 0 0K L

( ) ( )Pr , , , , Pri i i i i i i ik k k k k k− − − −≡ ∩ ∩ ∩ ∩1 2 0 1 2 0K Knotation:
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Trellis Representation of HMM in Example 1

Q0

Q1

Q2

Q3

0          1          2          3          4          5         6 = T-1
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t
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Q0

Q2

Q1
Q3

a01=1

a11=0.2a13=0.3

a12=0.5

a22=0.4

a23=0.6

a30=1

Pr(Q0, Q1, Q3, Q0, Q1, Q1, Q2) = 1*0.3*1*1*0.2*0.5 = 0.03

Probability of state sequence: I = Q0, Q1, Q3, Q0, Q1, Q1, Q2
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Probability of a given I and O:

observed output sequence:   R,   Y,  B,   B,   R,   Y,  R
                                  state:   Q0, Q1, Q3, Q0, Q1, Q1, Q2

( )Pr I O∩

( ) ( ) ( )Pr Pr Pr |I O I O I∩ =

Note that:
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Back to Example 1

Q0

Q1

Q2

Q3

0          1          2          3          4          5         6 = T-1

1

0.3

1

1

0.2

0.5

             output sequence:   R,   Y,  B,   B,   R,   Y,  R
                                state:   Q0, Q1, Q3, Q0, Q1, Q1, Q2

R

Y

B

B

R Y

R

t
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Example (cont.)

Pr( I ) = Pr( Q0, Q1, Q3, Q0, Q1, Q1, Q2) 
           = 1*0.3*1*1*0.2*0.5 = 0.03
Pr( O | I ) = Pr( R, Y, B, B, R, Y, R) 
           = 0.3*0.1*0.8*0.2*0.7*0.1*0.9 = 0.0003024

( ) ( ) ( )Pr Pr Pr |I O I O I∩ =

             output sequence:   R,   Y,   B,   B,   R,  Y,  R
                                state:   Q0, Q1, Q3, Q0, Q1, Q1, Q2

State, Qi bi(R) bi(B) bi(Y)

0 0.3 0.2 0.5
1 0.7 0.2 0.1
2 0.9 0 0.1
3 0.2 0.8 0


