Clustering with Gaussian Mixtures

Andrew W. Moore Associate Professor School of Computer Science Carnegie Mellon University

www.cs.cmu.edu/~awm
awm@cs.cmu.edu
412-268-7599

Unsupervised Learning

- You walk into a bar.

A stranger approaches and tells you:
"I've got data from k classes. Each class produces observations with a normal distribution and variance σ^{2} I . Standard simple multivariate gaussian assumptions. I can tell you all the $\mathrm{P}\left(\mathrm{w}_{\mathrm{i}}\right)^{\prime} \mathrm{s}$."

- So far, looks straightforward. "I need a maximum likelihood estimate of the $\mu_{i}^{\prime} s$."
- No problem:
"There's just one thing. None of the data are labeled. I have datapoints, but I don't know what class they're from (any of them!)
- Uh oh!!

Gaussian Bayes Classifier Reminder

$$
P(y=i \mid \mathbf{x})=\frac{p(\mathbf{x} \mid y=i) P(y=i)}{p(\mathbf{x})}
$$

Predicting wealth from age

Predicting wealth from age

```
wealth = poor
    wealth = rich
(prior = 0.760718)
1 
    density
            0.015
                            (prior = 0.239282)
1 mean cov
    age 44.7727 111.618
    density
```



```
wealth values: poor rich
```


Clustering with Gaussian Mixtures: Slide 5

Learning modelyear, mpg ---> maker
 $$
\boldsymbol{\Sigma}=\left(\begin{array}{cccc} \sigma_{1}^{2} & \sigma_{12} & \cdots & \sigma_{1 m} \\ \sigma_{12} & \sigma_{2}^{2} & \cdots & \sigma_{2 m} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{1 m} & \sigma_{2 m} & \cdots & \sigma_{m}^{2} \end{array}\right)
$$

General: $O\left(m^{2}\right)$ parameters

$$
\boldsymbol{\Sigma}=\left(\begin{array}{cccc}
\sigma_{1}^{2} & \sigma_{12} & \cdots & \sigma_{1 m} \\
\sigma_{12} & \sigma_{2}^{2} & \cdots & \sigma_{2 m} \\
\vdots & \vdots & \ddots & \vdots \\
\sigma_{1 m} & \sigma_{2 m} & \cdots & \sigma_{m}^{2}
\end{array}\right)
$$

maker = america

(prior $=0.625$)			
1	mean	cov	
mpg	20.0335	41.4785	15.2912
modelyear	75.5918	15.2912	13.3983
modelyear	81	+	. . +
	79		++*
	77		
	75	*****	
		+	-
	73	+	
	71	.	
	10	15	$20 \quad 29$
	mpg		

maker = asia
maker = europe

Aligned: $O(m)$
$\boldsymbol{\Sigma}=\left(\begin{array}{cccccc}\sigma^{2}{ }_{1} & 0 & 0 & \cdots & 0 & 0 \\ 0 & \sigma^{2}{ }_{2} & 0 & \cdots & 0 & 0 \\ 0 & 0 & \sigma^{2}{ }_{3} & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & \sigma^{2}{ }_{m-1} & 0 \\ 0 & 0 & 0 & \cdots & 0 & \sigma^{2}{ }_{m}\end{array}\right)$

Aligned: $O(m)$
$\boldsymbol{\Sigma}=\left(\begin{array}{cccccc}\sigma_{1}^{2}{ }_{1} & 0 & 0 & \cdots & 0 & 0 \\ 0 & \sigma^{2}{ }_{2} & 0 & \cdots & 0 & 0 \\ 0 & 0 & \sigma_{3}^{2} & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & \sigma^{2}{ }_{m-1} & 0 \\ 0 & 0 & 0 & \cdots & 0 & \sigma^{2}{ }_{m}\end{array}\right)$

maker = america

(prior $=0.625$)
maker = asia
maker = europe

Spherical: $O(1)$ cov parameters

$\boldsymbol{\Sigma}=\left(\begin{array}{cccccc}\sigma^{2} & 0 & 0 & \cdots & 0 & 0 \\ 0 & \sigma^{2} & 0 & \cdots & 0 & 0 \\ 0 & 0 & \sigma^{2} & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & \sigma^{2} & 0 \\ 0 & 0 & 0 & \cdots & 0 & \sigma^{2}\end{array}\right)$

Spherical: $O(1)$ cov parameters

$$
\boldsymbol{\Sigma}=\left(\begin{array}{cccccc}
\sigma^{2} & 0 & 0 & \cdots & 0 & 0 \\
0 & \sigma^{2} & 0 & \cdots & 0 & 0 \\
0 & 0 & \sigma^{2} & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & \sigma^{2} & 0 \\
0 & 0 & 0 & \cdots & 0 & \sigma^{2}
\end{array}\right)
$$

maker = america

(prior $=0.625$)
maker = asia
maker = europe

Making a Classifier from a Density Estimator

	Categorical inputs only	Real-valued inputs only	Mixed Real / Cat okay

Next... back to Density Estimation

What if we want to do density estimation with multimodal or clumpy data?

The GMM assumption

- There are k components. The i'th component is called ω_{i}
- Component ω_{i} has an associated mean vector μ_{i}

The GMM assumption

- There are k components. The i'th component is called ω_{i}
- Component ω_{i} has an associated mean vector μ_{i}
- Each component generates data from a Gaussian with mean μ_{i} and covariance matrix $\sigma^{2} \boldsymbol{I}$

Assume that each datapoint is generated according to the following recipe:

The GMM assumption

- There are k components. The i'th component is called ω_{i}
- Component ω_{i} has an associated mean vector μ_{i}
- Each component generates data from a Gaussian with mean μ_{i}
 and covariance matrix $\sigma^{2} \boldsymbol{I}$

Assume that each datapoint is generated according to the following recipe:

1. Pick a component at random. Choose component i with probability $P\left(\omega_{i}\right)$.

The GMM assumption

- There are k components. The i'th component is called ω_{i}
- Component ω_{i} has an associated mean vector μ_{i}
- Each component generates data from a Gaussian with mean μ_{i}
 and covariance matrix $\sigma^{2} \boldsymbol{I}$

Assume that each datapoint is generated according to the following recipe:

1. Pick a component at random.

Choose component i with probability $P\left(\omega_{i}\right)$.
2. Datapoint $\sim \mathrm{N}\left(\mu_{i \boldsymbol{\prime}} \sigma^{2} \boldsymbol{I}\right)$

The General GMM assumption

- There are k components. The i'th component is called ω_{i}
- Component ω_{i} has an associated mean vector μ_{i}
- Each component generates data from a Gaussian with mean μ_{i} and covariance matrix Σ_{i}
Assume that each datapoint is generated according to the following recipe:

1. Pick a component at random.

Choose component i with probability $P\left(\omega_{i}\right)$.
2. Datapoint $\sim \mathrm{N}\left(\mu_{i j} \Sigma_{i}\right)$

Unsupervised Learning: not as hard as it looks

Copyright © 2001, Andrew W. Moore

Sometimes easy
IN CASE YOU'RE
WONDERING WHAT
THESE DIAGRAMS ARE,
THEY SHOW 2-d
UNLABELED DATA (X
VECTORS)
DISTRIBUTED IN 2-d
SPACE. THE TOP ONE
HAS THREE VERY
CLEAR GAUSSIAN
CENTERS
and sometimes
in between

Computing likelihoods in unsupervised case

We have $\boldsymbol{x}_{1}, \boldsymbol{x}_{2, \ldots} \boldsymbol{x}_{N}$
We know $\mathrm{P}\left(\mathrm{w}_{1}\right) \mathrm{P}\left(\mathrm{w}_{2}\right)$.. $\mathrm{P}\left(\mathrm{w}_{\mathrm{k}}\right)$
We know σ
$\mathrm{P}\left(\boldsymbol{x} \mid \mathrm{w}_{i}, \boldsymbol{\mu}_{i}, \ldots \boldsymbol{\mu}_{k}\right)=$ Prob that an observation from class $\uparrow \quad \mathrm{w}_{j}$ would have value \boldsymbol{x} given class means $\mu_{1} \ldots \mu_{x}$

Can we write an expression for that?

likelihoods in unsupervised case

We have $\boldsymbol{x}_{1} \boldsymbol{x}_{2} \ldots \boldsymbol{x}_{n}$
We have $\mathrm{P}\left(\mathrm{w}_{1}\right) . . \mathrm{P}\left(\mathrm{w}_{k}\right)$. We have σ.
We can define, for any $\boldsymbol{x}, \mathrm{P}\left(\boldsymbol{x} \mid \mathrm{W}_{i}, \boldsymbol{\mu}_{1}, \boldsymbol{\mu}_{2} . . \boldsymbol{\mu}_{k}\right)$

Can we define $\mathrm{P}\left(\boldsymbol{x} \mid \boldsymbol{\mu}_{1}, \boldsymbol{\mu}_{2} . . \boldsymbol{\mu}_{k}\right)$?

Can we define $\mathrm{P}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{1}, . . \boldsymbol{x}_{n} \mid \boldsymbol{\mu}_{1}, \boldsymbol{\mu}_{2} . . \boldsymbol{\mu}_{k}\right)$?
[YES, IF WE ASSUME THE X_{1}^{\prime} 'S WERE DRAWN INDEPENDENTLY]

Unsupervised Learning: Mediumly Good News

We now have a procedure s.t. if you give me a guess at $\boldsymbol{\mu}_{1}, \boldsymbol{\mu}_{2} . . \boldsymbol{\mu}_{k,}$ I can tell you the prob of the unlabeled data given those $\boldsymbol{\mu}$'s.

Suppose x 's are 1-dimensional.
(From Duda and Hart)
There are two classes; w_{1} and w_{2}
$\mathrm{P}\left(\mathrm{w}_{1}\right)=1 / 3 \quad \mathrm{P}\left(\mathrm{w}_{2}\right)=2 / 3 \quad \sigma=1$.
There are 25 unlabeled datapoints

$$
\begin{gathered}
x_{1}=0.608 \\
x_{2}=-1.590 \\
x_{3}=0.235 \\
x_{4}=3.949 \\
: \\
x_{25}=-0.712
\end{gathered}
$$

Duda \& Hart's Example

Graph of $\log \mathrm{P}\left(x_{1}, x_{2} . . x_{25} \mid \mu_{1,} \mu_{2}\right)$
against $\mu_{1}(\rightarrow)$ and $\mu_{2}(\uparrow)$

Max likelihood $=\left(\mu_{1}=-2.13, \mu_{2}=1.668\right)$
Local minimum, but very close to global at ($\left.\mu_{1}=2.085, \mu_{2}=-1.257\right)^{*}$

* corresponds to switching $\mathrm{w}_{1}+\mathrm{w}_{2}$.

Duda \& Hart's Example

We can graph the prob. dist. function of data given our μ_{1} and μ_{2} estimates.

We can also graph the true function from which the data was randomly generated.

- They are close. Good.
- The $2^{\text {nd }}$ solution tries to put the " $2 / 3$ " hump where the " $1 / 3$ " hump should go, and vice versa.
- In this example unsupervised is almost as good as supervised. If the x_{1}.. x_{25} are given the class which was used to learn them, then the results are ($\mu_{1}=-2.176, \mu_{2}=1.684$). Unsupervised got ($\mu_{1}=-2.13, \mu_{2}=1.668$).

Finding the max likelihood $\mu_{1}, \mu_{2} . . \mu_{k}$

 We can compute $\mathrm{P}\left(\right.$ data $\left.\mid \boldsymbol{\mu}_{11} \boldsymbol{\mu}_{2} . \boldsymbol{\mu}_{k}\right)$ How do we find the μ_{i} 's which give max. likelihood?- The normal max likelihood trick:

Set $\frac{\text { is }}{\frac{2}{2} \mu_{i}} \log \operatorname{Prob}(\ldots)=0$
and solve for $\mu_{j} \mathrm{~s}$.
\# Here you get non-linear non-analyticallysolvable equations

- Use gradient descent

Slow but doable

- Use a much faster, cuter, and recently very popular method...

The E.M. Algorithm

- We'll get back to unsupervised learning soon.
- But now we'll look at an even simpler case with hidden information.
- The EM algorithm
\square Can do trivial things, such as the contents of the next few slides.
\square An excellent way of doing our unsupervised learning problem, as we'll see.
\square Many, many other uses, including inference of Hidden Markov Models (future lecture).

Silly Example

Let events be "grades in a class"
$W_{1}=$ Gets an $A \quad P(A)=1 / 2$
$\mathrm{w}_{2}=$ Gets a B
$P(B)=\mu$
$\mathrm{w}_{3}=$ Gets a C
$P(C)=2 \mu$
$\mathrm{w}_{4}=$ Gets a D
$P(D)=1 / 2-3 \mu$
(Note $0 \leq \mu \leq 1 / 6$)
Assume we want to estimate μ from data. In a given class there were

$$
\begin{array}{ll}
\mathrm{a} & \mathrm{~A}^{\prime \prime} \mathrm{S} \\
\mathrm{~b} & \mathrm{~B}^{\prime} \mathrm{S} \\
\mathrm{c} & \mathrm{C}^{\prime} \\
\mathrm{d} & \mathrm{D}^{\prime} \mathrm{s}
\end{array}
$$

What's the maximum likelihood estimate of μ given $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$?

Silly Example

Let events be "grades in a class"

$$
\begin{aligned}
& w_{1}=\text { Gets an A } \\
& w_{2}=\text { Gets a } \\
& w_{3}=\text { Gets a } \\
& w_{4}=\text { Gets a }
\end{aligned}
$$

$$
P(A)=1 / 2
$$

$P(A)=1 / 2$
$P(B)=\mu$
$\mathrm{P}(\mathrm{C})=2 \mu$
$P(D)=1 / 2-3 \mu$
(Note $0 \leq \mu \leq 1 / 6$)
Assume we want to estimate μ from data. In a given class there were
a A's
b B's
d D's
What's the maximum likelihood estimate of μ given $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$?

Trivial Statistics

$P(A)=1 / 2 \quad P(B)=\mu \quad P(C)=2 \mu \quad P(D)=1 / 2-3 \mu$
$P(a, b, c, d \mid \mu)=K(1 / 2)^{a}(\mu)^{b}(2 \mu)^{c}(1 / 2-3 \mu)^{d}$
$\log P(a, b, c, d \mid \mu)=\log K+a \log 1 / 2+b \log \mu+\operatorname{dog} 2 \mu+d o g(1 / 2-3 \mu)$
FOR MAX LIKE μ, SET $\frac{\partial \log P}{\partial \mu}=0$
$\frac{\partial \log P}{\partial \mu}=\frac{b}{\mu}+\frac{2 c}{2 \mu}-\frac{3 d}{1 / 2-3 \mu}=0$
Gives max like $\mu=\frac{b+c}{6(b+c+d)}$
So if class got

Max like $\mu=\frac{1}{10}$

Same Problem with Hidden Information

Someone tells us that
Number of High grades (A's + B's) $=h$
$\begin{array}{ll}\text { Number of C's } & =c \\ \text { Number of D's } & =d\end{array}$

$$
\begin{aligned}
& \text { REMEMBER } \\
& \text { P(A) }=1 / 2 \\
& P(B)=\mu \\
& P(C)=2 \mu \\
& P(D)=1 / 2-3 \mu
\end{aligned}
$$

What is the max. like estimate of μ now?

Same Problem with Hidden Information

Someone tells us that
Number of High grades (A's $+\mathrm{B}^{\prime} \mathrm{s}$) $=h$
Number of C's
Number of D's
= c
$=d$

$$
P(A)=1 / 2
$$

$$
P(B)=\mu
$$

$$
P(C)=2 \mu
$$

$$
P(D)=1 / 2-3 \mu
$$

What is the max. like estimate of μ now?
We can answer this question circularly:
EXPECTATION
If we know the value of μ we could compute the expected value of a and b Since the ratio a:b should be the same as the ratio $1 / 2: \mu \quad a=\frac{1 / 2}{1 / 2+\mu} h \quad b=\frac{\mu}{1 / 2+\mu} h$

MAXIMIZATION

$$
\mu=\frac{b+c}{6(b+c+d)}
$$

E.M. for our Trivial Problem

We begin with a guess for μ
We iterate between EXPECTATION and MAXIMALIZATION to improve our estimates of μ and a and b.

REMEMBER
$P(A)=1 / 2$
$P(B)=\mu$
$P(C)=2 \mu$
$P(D)=1 / 2-3 \mu$

Define $\mu(\mathrm{t})$ the estimate of μ on the t'th iteration

$$
\begin{aligned}
& \mathrm{b}(\mathrm{t}) \text { the estimate of } b \text { on t'th iteration } \\
\mu(0) & =\text { initial guess } \\
b(t) & =\frac{\mu(\mathrm{t}) h}{1 / 2+\mu(t)}=\mathrm{E}[b \mid \mu(t)] \\
\mu(t+1) & =\frac{b(t)+c}{6(b(t)+c+d)} \\
& =\text { max like est of } \mu \text { given } b(t)
\end{aligned}
$$

Continue iterating until converged. Good news: Converging to local optimum is assured. Bad news: I said "local" optimum.

E.M. Convergence

- Convergence proof based on fact that $\operatorname{Prob}($ data $\mid \mu)$ must increase or remain same between each iteration [not obvious]
- But it can never exceed 1 [obvious]

So it must therefore converge [obvious]

In our example, suppose we had

$$
\begin{array}{r}
\mathrm{h}=20 \\
\mathrm{c}=10 \\
\mathrm{~d}=10 \\
\mu(0)=0
\end{array}
$$

Convergence is generally linear: error decreases by a constant factor each time step.

t	$\mu(\mathrm{t})$	$\mathrm{b}(\mathrm{t})$
0	0	0
1	0.0833	2.857
2	0.0937	3.158
3	0.0947	3.185
4	0.0948	3.187
5	0.0948	3.187
6	0.0948	3.187

Back to Unsupervised Learning of GMMs

Remember:
We have unlabeled data $x_{1} x_{2} \ldots x_{\text {R }}$
We know there are k classes
We know $\mathrm{P}\left(\mathrm{w}_{1}\right) \mathrm{P}\left(\mathrm{w}_{2}\right) \mathrm{P}\left(\mathrm{w}_{3}\right) \ldots \mathrm{P}\left(\mathrm{w}_{\mathrm{k}}\right)$
We don't know $\boldsymbol{\mu}_{1} \boldsymbol{\mu}_{2} . . \boldsymbol{\mu}_{\mathrm{k}}$
We can write $\mathrm{P}\left(\right.$ data $\left.\mid \boldsymbol{\mu}_{1} \ldots . \boldsymbol{\mu}_{\mathrm{k}}\right)$

$$
=\mathrm{p}\left(x_{1} \ldots x_{R} \mid \mu_{1} \ldots \mu_{k}\right)
$$

$$
=\prod_{i=1}^{R} \mathrm{p}\left(x_{i} \mid \mu_{1} \ldots \mu_{k}\right)
$$

$$
=\prod_{i=1}^{R} \sum_{j=1}^{k} \mathrm{p}\left(x_{i} \mid w_{j}, \mu_{1} \ldots \mu_{k}\right) \mathrm{P}\left(w_{j}\right)
$$

$$
=\prod_{i=1}^{R} \sum_{j=1}^{k} \mathrm{~K} \exp \left(-\frac{1}{2 \sigma^{2}}\left(x_{i}-\mu_{j}\right)^{2}\right) \mathrm{P}\left(w_{j}\right)
$$

E.M. for GMMs

For Max likelihood we know $\frac{\partial}{\partial \mu_{i}} \log \operatorname{Prob}\left(\operatorname{data} \mid \mu_{1} \ldots \mu_{k}\right)=0$
Some wild'n' crazy algebra turns this into :"For Max likelihood, for each j ,

$$
\mu_{j}=\frac{\sum_{i=1}^{R} P\left(w_{j} \mid x_{i}, \mu_{1} \ldots \mu_{k}\right) x_{i}}{\sum_{i=1}^{R} P\left(w_{j} \mid x_{i}, \mu_{1} \ldots \mu_{k}\right)}
$$

This is n nonlinear equations in $\boldsymbol{\mu}_{\mathrm{j}}{ }^{\prime} \mathrm{s}$."
If, for each \mathbf{x}_{i} we knew that for each w_{j} the prob that $\boldsymbol{\mu}_{j}$ was in class w_{j} is $\mathrm{P}\left(\mathrm{w}_{\mathrm{i}} \mid \mathrm{x}_{\mathrm{i}}, \mu_{1} \ldots \mu_{\mathrm{k}}\right)$ Then... we would easily compute μ_{j}.

If we knew each μ_{j} then we could easily compute $P\left(w_{j} \mid x_{i}, \mu_{1} \ldots \mu_{j}\right)$ for each w_{j} and x_{i}.
.I feel an EM experience coming on!!

E.M. for GMMs

Iterate. On the t th iteration let our estimates be

$$
\lambda_{t}=\left\{\mu_{1}(t), \mu_{2}(t) \ldots \mu_{c}(t)\right\}
$$

E-step

Compute "expected" classes of all datapoints for each class
$\mathrm{P}\left(w_{i} \mid x_{k}, \lambda_{t}\right)=\frac{\mathrm{p}\left(x_{k} \mid w_{i}, \lambda_{t}\right) \mathrm{P}\left(w_{i} \mid \lambda_{t}\right)}{\mathrm{p}\left(x_{k} \mid \lambda_{t}\right)}=\frac{\mathrm{p}\left(x_{k} \mid w_{i}, \mu_{i}(t), \sigma^{2} \mathbf{I}\right)}{\sum_{j=1}^{c} \mathrm{p}\left(x_{k} \mid w_{j}, \mu_{j}(t), \sigma^{2} \mathbf{I}\right) p_{j}(t)}$
M-step.
Compute Max. like $\boldsymbol{\mu}$ given our data's class membership distributions
$\mu_{i}(t+1)=\frac{\sum_{k} \mathrm{P}\left(w_{i} \mid x_{k}, \lambda_{t}\right) x_{k}}{\sum_{k} \mathrm{P}\left(w_{i} \mid x_{k}, \lambda_{t}\right)}$

E.M.

Convergence

- Your lecturer will (unless out of time) give you a nice intuitive explanation of why this rule works.
- As with all EM procedures, convergence to a local optimum guaranteed.
- This algorithm is REALLY USED. And in high dimensional state spaces, too. E.G. Vector Quantization for Speech Data

E.M. for General GMMs

Iterate. On the t th iteration let our estimates be

$$
\lambda_{t}=\left\{\mu_{1}(t), \mu_{2}(t) \ldots \mu_{c}(t), \Sigma_{1}(t), \Sigma_{2}(t) \ldots \Sigma_{c}(t), p_{1}(t), p_{2}(t) \ldots p_{c}(t)\right\}
$$

E-step

Compute "expected" classes of all datapoints for each class
Just evaluate a Gaussian at $\mathrm{P}\left(w_{i} \mid x_{k}, \lambda_{t}\right)=\frac{\mathrm{p}\left(x_{k} \mid w_{i}, \lambda_{t}\right) \mathrm{P}\left(w_{i} \mid \lambda_{t}\right)}{\mathrm{p}\left(x_{k} \mid \lambda_{t}\right)}=\frac{\mathrm{p}\left(x_{k} \mid w_{i}, \mu_{i}(t), \Sigma_{i}(t)\right) p_{i}(t)}{\sum_{j=1}^{c} \mathrm{p}\left(x_{k} \mid w_{j}, \mu_{j}(t), \Sigma_{j}(t)\right) p_{j}(t)}$
M-step.

Compute Max. like $\boldsymbol{\mu}$ given our data's class membership distributions
$\mu_{i}(t+1)=\frac{\sum_{k} \mathrm{P}\left(w_{i} \mid x_{k}, \lambda_{t}\right) x_{k}}{\sum_{k} \mathrm{P}\left(w_{i} \mid x_{k}, \lambda_{t}\right)} \quad \Sigma_{i}(t+1)=\frac{\left.\sum_{k} \mathrm{P}\left(w_{i} \mid x_{k}, \lambda_{t}\right)\left[x_{k}-\mu_{i}(t+1)\right] x_{k}-\mu_{i}(t+1)\right]^{T}}{\sum_{k} \mathrm{P}\left(w_{i} \mid x_{k}, \lambda_{t}\right)}$

$$
p_{i}(t+1)=\frac{\sum_{k} \mathrm{P}\left(w_{i} \mid x_{k}, \lambda_{t}\right)}{R} R=\text { \#records }
$$

Gaussian Mixture Example: Start

Advance apologies: in Black and White this example will be incomprehensible

Clustering with Gaussian Mixtures: Slide 40

After first iteration

After 2nd iteration

After 3rd iteration

After 4th iteration

After 5th iteration

After 6th iteration

After 20th iteration

Some Bio Assay data

Resulting Density Estimator

Where are we now?

| Inference |
| :--- | :--- |
| P |

The old trick...

	Joint DE, Bayes Net Structure Learning
$\xrightarrow[y]{n} \rightleftarrows \text { Classifier } \xrightarrow{\text { Predict }}$	Dec Tree, Sigmoid Perceptron, Sigmoid N.Net, Gauss/Joint BC, Gauss Naïve BC, N.Neigh, Bayes Net Based BC, Cascade Correlation, GMM-BC
$\begin{gathered} n \\ \because \text { Density } \\ \square \end{gathered} \text { Estimator } \rightarrow \begin{aligned} & \text { Prob- } \\ & \text { ability } \end{aligned}$	Joint DE, Naïve DE, Gauss/Joint DE, Gauss Nazue DE, Bayes Net Structure Learning, GMMs
$\xrightarrow[i=1]{\square} \longrightarrow$ Regressor \rightarrow Preal no.	Linear Regression, Polynomial Regression, Perceptron, Neural Net, N.Neigh, Kernel, LWR, RBFs, Robust Regression, Cascade Correlation, Regression Trees, GMDH, Multilinear Interp, MARS

Resulting Bayes Classifier

Clustering with Gaussian Mixtures: Slide 54

Resulting Bayes Classifier, using posterior probabilities to alert about ambiguity and anomalousness
 Yellow means anomalous
 Cyan means ambiguous

Compound =

Unsupervised learning with symbolic

 attributesNATION

misim

MARRIED

It's just a "learning Bayes net with known structure but hidden values" problem.
Can use Gradient Descent.

EASY, fun exercise to do an EM formulation for this case too.

Final Comments

- Remember, E.M. can get stuck in local minima, and empirically it DOES.
- Our unsupervised learning example assumed $\mathrm{P}\left(\mathrm{w}_{\mathrm{i}}\right)$'s known, and variances fixed and known. Easy to relax this.
- It's possible to do Bayesian unsupervised learning instead of max. likelihood.
- There are other algorithms for unsupervised learning. We'll visit K-means soon. Hierarchical clustering is also interesting.
- Neural-net algorithms called "competitive learning" turn out to have interesting parallels with the EM method we saw.

What you should know

- How to "learn" maximum likelihood parameters (locally max. like.) in the case of unlabeled data.
- Be happy with this kind of probabilistic analysis.
- Understand the two examples of E.M. given in these notes.

For more info, see Duda + Hart. It's a great book. There's much more in the book than in your handout.

Other unsupervised learning methods

- K-means (see next lecture)
- Hierarchical clustering (e.g. Minimum spanning trees) (see next lecture)
- Principal Component Analysis simple, useful tool
- Non-linear PCA

Neural Auto-Associators
Locally weighted PCA
Others...

