			B
			T
			T

Biomedical Instrumentation Lecture 21: slides 396-416

Carlos E. Davila, Electrical Engineering Dept. Southern Methodist University slides can be viewed at: http:// www.seas.smu.edu/~cd/ee5345.html

Example (cont.)

Pr(I) = 0.03Pr(O/I) = 0.0003024

 $\Rightarrow \Pr(O \cap I) = 0.03 \times 0.0003024 = 9.072 \times 10^{-6}$

ex) How many possible state sequences are there?

in general, there are on the order of N^T possible state sequences, (for Example 1, that's 4⁷ = 16,384).
Since some of the transition probabilities are zero, this number decreases to only 30.

•Let each state sequence be denoted by I_i , $i = 1, ..., R = O(N^T)$.

EE 7345/5345, SMU Electrical Engineering Department, © 2000

Total Number of Possible State Sequences: 30

Distributive-Type Property

since I_i , $i = 1, ..., R \equiv O(N^T)$ are disjoint events:

Solution to Problem 1: Forward-Backward Algorithm We seek Pr(O|I)

Forward variable:

$$\boldsymbol{a}_t(\boldsymbol{i}) = \Pr(O_0, O_1, \dots, O_t, \boldsymbol{i}_t = Q_i | \boldsymbol{l})$$

•this is the probability that we observe the partial observation sequence, O_0, O_1, \dots, O_t and arrive at state Q_i at time *t* (given the model λ).

•In the forward-backward algorithm the forward variable is updated recursively.

•Note that the events $O_0, O_1, \dots, O_t, i_t = Q_i$ are disjoint for each Q_i .

EE 7345/5345, SMU Electrical Engineering Department, © 2000

Forward-Backward Algorithm (cont.)

$$a_{0}(i) = p_{i}b_{i}(O_{0}), \quad 0 \le i \le N - 1$$

• for $t = 0, 1, ..., T-2, 0 \le j \le N-1$

$$a_{t+1}(j) = \left[\sum_{i=0}^{N-1} a_{i}(i)a_{ij}\right]b_{j}(O_{t+1})$$

then,

$$\Pr(O|\boldsymbol{I}) = \sum_{i=0}^{N-1} \boldsymbol{a}_{T-1}(i)$$

the algorithm can be easily implemented via arithmetic involving the matrices A, B, and Π .

EE 7345/5345, SMU Electrical Engineering Department, © 2000

Application of Forward-Backward Algorithm to Example 1 (cont.)

	t j	0	1	2	3
	0	0.3	0	0	0
	1	0	0.03	0	0
	2	0	1.2E-2	0	7.2E-3
$\mathbf{a}_{t}(j)$	3	1.44E-3	4.8E-5	0	2.88E-4
	4	8.64E-5	1.0147E-3	2.16E-5	2.88E-6
	5	1.44E-6	2.8934E-5	5.15E-5	0
	6	0	5.0588E-6	3.1596E-5	7.9281E-6

 $\Pr(O|I) = 4.4582E - 5$

EE 7345/5345, SMU Electrical Engineering Department, © 2000

Solution to Problem 2: The Viterbi Algorithm

- We seek the state sequence that maximizes Pr(I|O, I)
- This is equivalent to maximizing $Pr(I \cap O)$ (given λ)
- The trellis diagram representation of HHM's is useful in this regard. We seek the path through the trellis that has the maximum $Pr(I \cap O)$
- At each column (time step) in the trellis, the Viterbi algorithm eliminates all but *N* possible state sequences.
- At each time step, the *N* retained sequences all end in different states.
- If more than one sequence ends in the same state, the sequence with the maximum probability is retained.

EE 7345/5345, SMU Electrical Engineering Department, © 2000

Save each of the N = 4 maximum probabilities in the vector δ_t Save the state at t = 0 in each retained path in the vector Ψ_t

choose path ending in Q_1 having highest probability at t = 2.

choose path ending in Q_2 having highest probability at t = 2.

choose path ending in Q_3 having highest probability at t = 2.

Save each of the N = 4 maximum probabilities in the vector δ_2 Save the state at t = 1 in each retained path in the vector Ψ_1

Viterbi Algorithm (cont.) continue until t = T-1

final probabilities

