■ 」

Biomedical Instrumentation Lecture 22：slides 417－427

Carlos E．Davila，Electrical Engineering Dept．
Southern Methodist University slides can be viewed at：
http：／／www．seas．smu．edu／～cd／ee5345．html

The Viterbi Algorithm

- Initialization $(t=0)$:

$$
\begin{aligned}
& \delta_{0}(i)=\pi_{i} b_{i}\left(O_{0}\right), \quad 0 \leq i \leq N-1 \\
& \Psi_{1}(i)=0
\end{aligned}
$$

- Time Recursion

$$
\begin{gathered}
\text { For } 1 \leq \mathrm{t} \leq \mathrm{T}-1, \quad 0 \leq \mathrm{j} \leq \mathrm{N}-1 \\
\delta_{\mathrm{t}}(j)=\max _{0 \leq i \leq N-1}\left[\delta_{\mathrm{t}-1}(\mathrm{i}) a_{i j}\right] b_{j}\left(O_{t}\right) \\
\Psi_{\mathrm{t}}(j)=\underset{0 \leq i \leq N-1}{\arg \max }\left[\delta_{\mathrm{t}-1}(\mathrm{i}) a_{i j}\right]
\end{gathered}
$$

The Viterbi Algorithm (cont.)

- Termination:

$$
\begin{aligned}
& P_{\max }=\max _{0 \leq i \leq N-1}\left[\delta_{T-1}(i)\right] \\
& i_{T-1}=\underset{0 \leq i \leq N-1}{\arg \max }\left[\delta_{T-1}(i)\right]
\end{aligned}
$$

- State sequence backtracking:

$$
\begin{aligned}
& \text { For } t=T-2, T-3, \ldots, 0 \\
& i_{t}=\Psi_{t+1}\left(i_{t+1}\right)
\end{aligned}
$$

Backward Variable

$$
\beta_{t}(i)=\operatorname{Pr}\left(O_{t+1}, O_{t+2}, \ldots, O_{T-1} \mid i_{t}=Q_{i}, \lambda\right)
$$

To understand this variable, assume that the current time step is " t ", the current state is " Q_{i} ", and we know the probabilities:

$$
\beta_{t+1}(j), \quad j=0, \ldots N-1
$$

then it should be clear that:

$$
\beta_{t}(i)=\sum_{j=0}^{N-1} a_{i j} b_{j}\left(O_{t+1}\right) \beta_{t+1}(j), \quad 0 \leq i \leq N-1, \quad 0 \leq t \leq T-2
$$

since each of the N events:

$$
O_{t+1}, O_{t+2}, \ldots, O_{T-1} \mid i_{t}=Q_{j}, \quad j=0, \ldots, N-1
$$

are disjoint.

Backward Variable (cont.)

The backward variable can be computed recursively, moving backward in time.

1. initialize at $t=T-1$,

$$
\beta_{T-1}(i)=1, \quad i=0, \ldots N-1
$$

2. for $t=T-2:-1: 0$

$$
\beta_{t}(i)=\sum_{j=0}^{N-1} a_{i j} b_{j}\left(O_{t+1}\right) \beta_{t+1}(j), \quad 0 \leq i \leq N-1
$$

More Definitions

The probability of landing in state Q_{i} at time t, given the observation sequence O is:

$$
\gamma_{t}(i) \equiv \operatorname{Pr}\left(i_{t}=Q_{i} \mid O, \lambda\right)
$$

consider the previous definitions:

$$
\begin{aligned}
& \alpha_{t}(i)=\operatorname{Pr}\left(O_{0}, O_{1}, \ldots, O_{t}, i_{t}=Q_{i} \mid \lambda\right) \\
& \beta_{t}(i)=\operatorname{Pr}\left(O_{t+1}, O_{t+2}, \ldots, O_{T-1} \mid i_{t}=Q_{i}, \lambda\right)
\end{aligned}
$$

hence, for a given model λ :

$$
\alpha_{t}(i) \beta_{t}(i)=\operatorname{Pr}\left(O_{0}, O_{1}, \ldots, O_{T-1} \cap i_{t}=Q_{i}\right)
$$

More Definitions (cont.)

Hence:

$$
\gamma_{t}(i)=\frac{\alpha_{t}(i) \beta_{t}(i)}{\operatorname{Pr}(O \mid \lambda)}
$$

now consider the probability that we go from state Q_{i} at time t to state Q_{j} at time $t+1$ given the observation O :

$$
\xi_{\mathrm{t}}(\mathrm{i}, \mathrm{j}) \equiv \operatorname{Pr}\left(\mathrm{i}_{\mathrm{t}}=\mathrm{Q}_{\mathrm{i}}, \mathrm{i}_{\mathrm{t}+1}=\mathrm{Q}_{\mathrm{j}} \mid \mathrm{O}, \lambda\right)
$$

it follows that

$$
\xi_{\mathrm{t}}(i, j)=\frac{\alpha_{t}(i) a_{i j} b_{j}\left(O_{t+1}\right) \beta_{t+1}(j)}{\operatorname{Pr}(O \mid \lambda)}
$$

More Definitions (cont.)

the average number of transitions made from Q_{i} :

$$
\sum_{t=0}^{T-2} \gamma_{t}(i)
$$

the average number of transitions made from Q_{i} to Q_{j} :

$$
\sum_{t=0}^{T-2} \xi_{t}(i, j)
$$

Solution to Problem 3: Baum-Welch Algorithm

0 . Initialize A, B, and Π

1. Compute $\alpha_{t}(i), \beta_{t}(\mathrm{i})$ and $\operatorname{Pr}(O \mid \lambda)$
2. Compute $\xi_{t}(i, j)$ and $\gamma_{t}(i)$
$\xi_{t}(i, j)=\frac{\alpha_{t}(i) a_{i j} b_{j}\left(O_{t+1}\right) \beta_{t+1}(j)}{\operatorname{Pr}(O \mid \lambda)} \quad$ () $\frac{t()_{t}()}{(\quad)}$
3. Compute

$$
\pi_{i}=\gamma(i), \quad i \leq N-1
$$

4. Compute

Baum-Welch Algorithm (cont.)

5. Compute

$$
b_{j}(k)=\frac{\sum_{\substack{t=0 \\ o_{t}=v_{k}}}^{\sum_{t}^{T-1} \gamma_{t}(j)}}{\sum_{t=0}^{T-1} \gamma_{t}(j)}
$$

7. go to step 2
$\operatorname{Pr}(O \mid \lambda)$ should continue to increase until A, B, and Π converge to optimum values, at which point the algorithm is terminated.

Case Study: Coast et al.

- Used continuous density for observations:

$$
b_{i}(v)=\frac{1}{\sqrt{2 \pi \sigma_{i}}} e^{-0.5\left(\left(v-\mu_{i}\right) / \sigma_{i}\right)^{2}}
$$

This alters most of the formulas we looked at but the basic ideas remain the same.

- Observations consisted of actual ECG samples.
- Used several rhythm HMM models in parallel
- Viterbi algorithm was used to select the most likely sequence (and hence rhythm type).

