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e [ntroduction

e Exemplar-based learning
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* Genetic algorithm
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Introduction

“We tend to think of what we ‘really’ know as what
we can talk about, and disparage knowledge that
we can’t verbalize.” owling 1989,252)

o Western civilization’s emphasis on logic, verbalization,
and generalization as signs of intelligence

« Limitation of rule-based learning used in traditional
Artificial Intelligence (Al) research

e The lazy learning model is proposed here as an
alternative approach to modeling many aspects of
music cognition
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Traditional Al Research

“In AI generally, and in Al and Music in particular,
the acquisition of non-verbal, implicit knowledge is

difficult, and no proven methodology exists.”
(Laske 1992, 259)

 Rule-based approach in traditional Al research

 Exemplar-based learning systems

e Neural networks (greedy)
* k-NN classifiers (lazy)

e Adaptive system based on a k-nearest neighbour (k-NN)
classifier and a genetic algorithm
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Exemplar-based learning

* The exemplar-based learning model is based on the idea
that objects are categorized by their similarity to one or
more stored examples

 There is much evidence from psychological studies to
support exemplar-based categorization by humans

e This model differs both from rule-based or prototype-
based (neural nets) models of concept formation in that it
assumes no abstraction or generalizations of concepts

* This model can be implemented using k-nearest neighbour
(k-NN) classifier and is further enhanced by application of
a genetic algorithm

T McGill MUMT 621 Fujinaga DOMAL B EEREdlE 5




Applications of lazy learning model

« Optical music recognition (Fujinaga, Pennycook, and Alphonce 1989;
MacMillan, Droettboom, and Fujinaga 2002)

e Vehicle identification (Lu, Hsu, and Maldague 1992)
* Pronunciation (Cost and Salzberg 1993)
e Cloud identification (Aha and Bankert 1994)

* Respiratory sounds classification (Sankur et al. 1994)
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Implementation of lazy learning

 The lazy learning model can be implemented by the k-nearest
neighbour classifier (Cover and Hart 1967)

* Aclassification scheme to determine the class of a given
sample by its feature vector

* The class represented by the majority of k-nearest neighbours
(k-NN) is then assigned to the unclassified sample

* Besides its simplicity and intuitive appeal, the classifier can be
easily modified, by continually adding new samples that it
“encounters” into the database, to become an incremental
learning system

o Criticisms: slow and high memory requirement
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K-nearest neighbour classifier

“The nearest neighbor algorithm is one of the
simplest learning methods known, and yet no
other algorithm has been shown to outperform it
consistently.” (Cost and Salzberg 1993)

- The K-NN classifier is the simplest of all machine
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K-nearest neighbour classifier

“"Many sophisticated classification algorithms have
been proposed... According to our experiments on
the popular datasets, k-NN with properly tuned

parameters performs on average best.”
(Kordos, Blachnik & Strzempa 2010)

 Determine the class of a given sample by its feature
vector:

 Distances between feature vectors of an unclassified
sample and previously classified samples are calculated

* The class represented by the majority of k-nearest
neighbours is then assigned to the unclassified sample
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An example of k-NN classifier
Basketball players and Sumo wrestlers
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An example of k-NN classifier

Classification of atheletes by height and weight
(Sumo wrestlers vs NBA basketball players)
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Example of k-NN classifier

Classifying Michael Jordan

Classification of atheletes by height and weight
(Sumo wrestlers vs NBA basketball players)
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Example of k-NN classifier

Classifying David Wesley

Classification of atheletes by height and weight
(Sumo wrestlers vs NBA basketball players)

215

1 4 Sumo
® Chicago Bulls
Michael Jordan
206
HE m ¢ David Wesley

O
= 197 ‘4 N
g _B
(e
T 188 B 9 P
)
4
179
4
170
75 &) 125 150 17 200

Weight (kg

MUMT 621 Fuiaga ~ DDMAL QSIS DRIA A 5

T McGill ST




Example of k-NN classifier

Reshaping the Feature Space

Classification of atheletes by height and weight
(Sumo wrestlers vs NBA basketball players)
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Distance measures

 The distance in a N-dimensional feature space
between two vectors X and Y can be defined as:
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Genetic algorithms

* Optimization based on biological evolution

e Maintenance of population using selection, crossover,
and mutation
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Genetic Algorithm
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Crossover in Genetic Algorithm

Parent 1 Parent 2
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Applications of Genetic Algorithm
in Music

e Instrument design (Horner et al. 1992, Horner et al. 1993,
Takala et al. 1993, Vuori and Valimaki 1993, Poirson et al. 2007)

« Compositional aid (Horner and Goldberg 1991, Biles 1994,
Johanson and Poli 1998, Wiggins 1998, Geem et al. 2001)

« Expressive music performance (Ramirez and Hazan 2005)

e Granular synthesis regulation (Fujinaga and Vantomme
1994)

« Optimal placement of microphones (Wang 1996)
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Realtime Timbre Recognition

e QOiriginal source: McGill Master Samples

e Up to over 1300 notes from 39 different timbres (23
orchestral instruments)

e Spectrum analysis of first 232ms of attack (9
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Features

e Static features (per window)

e pitch

* mass or the integral of the curve (zeroth-order moment)
* centroid (first-order moment)

e variance (second-order central moment)

» skewness (third-order central moment)
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Overall Architecture for
Timbre Recognition
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Results

Recognition rate

Experiment |

e SHARC data
e static features

Experiment Il

*  McGill samples
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Human vs Computer
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Peabody experiment

88 subjects (undergrad, composition students and faculty)
Source: McGill Master Samples

2-instruments (oboe, saxophones)

3-instruments (clarinet, trumpet, violin)

9-instruments (flute, oboe, clarinet, bassoon, saxophone, trombone, trumpet, violin,
cello)

27-instruments:

* violin, viola, cello, bass
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Peabody vs
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Peabody subjects vs Computer
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The best Peabody subjects vs Computer
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Future Research for
Timbre Recognition

e Performer identification
e Speaker identification

 Tone-quality analysis
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Conclusions

 Realtime adaptive timbre recognition by k-NN
classifier enhanced with genetic algorithm

e A successful implementation of the exemplar-
based learning system in a time-critical
environment

 Recent human experiments poses new
challenges for machine recognition of isolated

tones
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Recognition rate for different lengths of
analysis window
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