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xiii





Preface 
 

Welcome to ISMIR 2020, the 21st International Society for Music Information Retrieval Conference. ISMIR is the world’s 

leading research forum on processing, searching, organizing, and accessing music-related data. Our community reflects a 

diversity of scientific disciplines, seniority levels, professional affiliations, and cultural backgrounds. It always has been 

explicitly interested in fostering and stimulating this diversity, leading to better science and better music services. Due to 

Covid-19, our 21st ISMIR conference has become our first fully online conference. We hope that this new form of 

interaction will allow more people, from more different places and communities, to participate. The organizing team in 

Montreal, and the international team of organizers, reviewers, and meta-reviewers, welcome you to our virtual meeting 

place.  

 

Scientific Program 
 

A total of 326 abstracts were registered, of which 300 were submitted as full papers eligible for review. The reviewing 

model was similar to that of previous years, consisting of a two-tier, double-blind process performed by 313 (anonymous) 

reviewers and 71 meta-reviewers. The scientific program chairs (SPC) anticipated limited availability of reviewers due to 

the COVID-19 crisis. This, combined with a 20% increase in the number of papers relative to the previous year, led the 

SPC to actively recruit a 50% larger reviewing pool to reduce the number of papers for which each individual reviewer is 

responsible. The SPC was happy to welcome a large number of first-time reviewers to the pool, but to ensure that each 

paper is adequately reviewed, we increased the number of reviewers assigned to each paper. The SPC would also like to 

thank all community members for their overwhelming response to our requests for additional reviewers and meta-

reviewers. 

  

Each paper was assigned to one meta-reviewer and 4 reviewers, to ensure that each would eventually receive at least three 

completed reviews, accounting for the foreseen limited availability of some reviewers. Meta-reviewers were also instructed 

to complete a full review of each of their assigned papers, in addition to the final meta-review summarizing the individual 

reviews. Each meta-reviewer was responsible for between 2 and 5 papers, and each reviewer was responsible for no more 

than 4 papers. The initial reviewing phase was followed by a discussion period, in which reviewers and meta-reviewers 

could discuss and revise their assessments of each paper. Meta-reviewers were then instructed to summarize the discussion 

and reviews in the final report. The SPC finally rendered decisions on each paper. 

  

Although the ISMIR 2020 conference is virtual and physical space no longer provided, a constraint on the number of papers 

we could accept and the allocated time for the conference program resulted in a program of comparable size to previous 

years. Of the 300 papers reviewed, 115 were accepted for publication, resulting in an acceptance rate of 38.3%. At 

submission time, authors selected primary and secondary subject areas for their paper. The following table summarizes the 

number of eligible submissions and accepted papers for each primary category. 

 

 

Subject Area Submitted Accepted Accept % 

Applications 42 15 36 

Domain knowledge 61 22 36 

Evaluation, datasets, reproducibility 33 10 30 

Human-centered MIR 18 8 44 

MIR fundamentals 16 7 44 

MIR tasks 83 29 35 

Musical features and properties 43 22 51 

Philosophical and ethical discussions 4 2 50 

TOTAL 300 115 38 
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The table below summarizes the publication statistics over the 21-year-history of the conference. 

 

 

Year Location Oral Poster Total Authors Unique 

Authors 

Authors / 

Paper 

Unique Authors / 

Paper 

2000 Plymouth 19 16 35 68 63 1.9 1.8 

2001 Indiana 25 16 41 100 86 2.4 2.1 

2002 Paris 35 22 57 129 117 2.3 2.1 

2003 Baltimore 26 24 50 132 111 2.6 2.2 

2004 Barcelona 61 44 105 252 214 2.4 2.0 

2005 London 57 57 114 316 233 2.8 2.0 

2006 Victoria 59 36 95 246 198 2.6 2.1 

2007 Vienna 62 65 127 361 267 2.8 2.1 

2008 Philadelphia 24 105 105 296 253 2.8 2.4 

2009 Kobe 38 85 123 375 292 3.0 2.4 

2010 Utrecht 24 86 110 314 263 2.0 2.4 

2011 Miami 36 97 133 395 322 3.0 2.4 

2012 Porto 36 65 101 324 264 3.2 2.6 

2013 Curitiba 31 67 98 395 236 3.0 2.4 

2014 Taipei 33 73 106 343 271 3.2 2.6 

2015 Málaga 24 90 114 370 296 3.2 2.6 

2016 New York 25 88 113 341 270 3.0 2.4 

2017 Suzhou 24 73 97 324 248 3.3 2.6 

2018 Paris 
  

104 337 265 3.2 2.5 

2019 Delft 
  

114 390 315 3.4 2.8 

2020 Montréal / 

Virtual 

  
115 426 343 3.7 3.0 
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The figure below illustrates the number of papers accepted with at least one contributing author from each 

country. Geographic affiliations were inferred from self-reported author affiliations and email addresses. 

 

 
 

Best Paper Awards  
 

The SPC established six paper award categories: Best Research, Best Application, Best New Direction, Best 

Multi/Interdisciplinary Research, Best Evaluation, and Best Reproducibility. The papers considered for an award were 

those with the highest review scores, as well as papers nominated for an award by meta-reviewers. We formed a best-

paper-award committee comprising 4 highly renowned members of the MIR community and the SPC. Each member of the 

committee identified their conflicts of interest and judged only the remaining other papers, as well as reviews and meta-

reviews of those papers. They then proposed papers from that group for each award category and provided justifications 

for their decisions. Once all members of the committee had completed their nominations, the whole committee met to make 

the final decisions. 

 

Best Reviewer Awards 
 

Based on the scores provided by meta-reviewers on the quality of individual reviews, in relation to the number of papers 

reviewed by each reviewer, the SPC selected a total of 13 awardees. 

 

Organizing a Conference During a Pandemic 
 

The organizing team had to face several challenges while planning this conference. After having planned for a regular, 

face-to-face meeting in Montreal, we had to come to the conclusion that this year’s ISMIR Conference would have to be 

entirely virtual when it became clear that the COVID-19 pandemic would not be over in time for allowing people to travel 

and safely attend the conference. After the initial disappointment, however, the team was very enthusiastic to plan for the 

first virtual ISMIR Conference, and saw this as an opportunity to innovate and create a positive experience for all 

participants, while ensuring that the conference would be more affordable, accessible, inclusive, and sustainable thanks to 

this new format.  

 

WiMIR 
 

WiMIR is a group of people dedicated to promoting the role of, and increasing opportunities for, women in the MIR field. 

WiMIR’s initiatives started as informal gatherings around breakfast or lunch during ISMIR conferences (2011–2013), and 

moved to formal WiMIR events included in the conference program (2015–today) garnering a high turnout of both women 

and allies. These events provide occasions for people to network and to discuss several important issues ranging from 

mentorship and conference support, to improving the representation of women and, more broadly, diversity, in the 

community. In 2018, WiMIR started hosting its own workshop as a satellite event, in which attendees of all genders 
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participated in high numbers. These workshops aim to offer participants an opportunity for networking, put the spotlight 

on the work done by women in the field, and foster collaboration between women and allies by proposing group work led 

by project guides to try to solve small research problems or to undertake new research projects that could lead to longer-

term collaborations.  

 

WiMIR and the ISMIR 2020 organizing team worked together to increase women participation and ensure a good 

representation of women in the conference program. Both conference keynote speakers are esteemed female researchers 

with an impressive career path. The program also includes nine meetup sessions with notable women in MIR that were 

organized by the ISMIR 2020 WiMIR chairs. Additionally, three types of grants were offered to female participants: 

registration grants, publishing fee grants, and, for the first time for an ISMIR conference, childcare grants.  

 

Like for the main conference, the WiMIR workshop organizers had to rethink the event in the context of the pandemics. 

The workshop consisted this year in four sessions that took place over eight weeks, featured speakers from India, Australia, 

California, and Europe, and attracted over 450 participants. WiMIR also ran this year the fifth round of its mentoring 

program, which aims at connecting “women students, postdocs, early-stage researchers, industry employees, and faculty 

to more senior women and men in MIR who are dedicated to increasing opportunities for women in the field” 

(https://wimir.wordpress.com/mentoring-program/). 

 

Diversity & Inclusion 
 

Diversity and inclusion are values that are dear to the ISMIR 2020 organizing team. The Black Live Matters movement 

and research on algorithmic racism have only increased our awareness of the need for more diversity in our field. Knowing 

that people from the Black community were severely underrepresented among attendees at previous ISMIR conferences, 

efforts were made to reach out to Black people who could be interested in MIR. Therefore, in addition to the WiMIR grants 

mentioned above, fee registration waivers were offered to people who self-identified as Black. ISMIR 2020 also featured 

the first African American keynote speaker in an ISMIR conference, Dr. Safiya U. Noble.  

 

The virtual format of the conference also allowed us to significantly lower the registration fees for the conference. 

Additionally, it was decided that not only would students be able to benefit from a reduced fee, but also people from low 

GDP countries, or with low income.  

 

Keynote Speakers 
 

For ISMIR 2020, we are honored to host two distinguished keynote speakers: 

 

Safiya U. Noble, Associate Professor, Department of Information Studies, University of California, Los Angeles, 

presenting “Taking on big tech: New paradigms for new possibilities.” 

Johanna Devaney, Assistant Professor of Music, Brooklyn College, and Graduate Center, CUNY, presenting “Beyond 

the current conception of musical performance in MIR” (WiMIR keynote). 

 

Tutorials 
 

ISMIR 2020 tutorial chairs have selected five tutorials that will be presented on Sunday, October 11: 

 

Tutorial 1: Prototyping and scaling audio research with Klio by Fallon Chen and Lynn Root; 

Tutorial 2:  Analysis of expressive timing in recorded music performances by Nico Schüler; 

Tutorial 3: Metric learning for music information retrieval by Brian McFee, Jongpil Lee, and Juhan Nam; 

Tutorial 4: Open-source tools & data for music source separation: A practical guide for the MIR practitioner by 

Ethan Manilow, Prem Seetharaman, and Justin Salamont; 

Tutorial 5: Version identification in the 20s by Furkan Yesiler, Christopher Tralie, and Joan Serrà. 

 

Late Breaking/Demo and Industry Session 
 

The Late Breaking/Demo (LBD) and Industry session will take place on Friday, October 15. LBD posters feature prototype 

systems, initial concepts, and early results that have not yet fully matured but are of interest to the MIR community. 

Proposals went through a light review by the LBD chairs, at the end of which 27 were admitted for presentation. Extended 

abstracts are available online on the conference website.  
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Meetup with Industry 
 

As part of ISMIR 2020, a virtual Meetup with Industry series will be hosted. This series includes Interview masterclasses, 

where industry interviewers will perform mock interviews with volunteers and provide real time feedback, and code review 

masterclasses on good coding practices from an industry standpoint during which experienced developers will live-review 

volunteer submitted repositories. 

 

Music 
 

ISMIR music chairs invited composers, technologists, and performers to submit pieces from any musical genre and in any 

style of electronic, acoustic, or mixed electroacoustic music that explored the notion of music information in the widest 

sense of the term. The musical works that were submitted were subjected to blind review by the ISMIR 2020 music chairs 

and an international panel of musicians. The following compositions were selected and will be presented in the three music 

sessions scheduled throughout the conference: 

 

#otherbeats, by Marcel Zaes; 

A Room with Chaconne (Bach), by Seth Thorn; 

Attempts at Stillness, by Pierre Alexandre Tremblay; 

bell / boom, by Jeremy Hyrkas; 

Blue Sky Catastrophe, by Seth Shafer; 

cecia, by the CECIA team; 

DigiTral, by Matheos Zaharopoulos and Georgios Varoutsos; 

Generative Sibelius, by Juan Carlos Vasquez; 

I'll Marry You, Punk Come, by CJ Carr; 

Moon via Spirit, by Lauren Hayes; 

Mosaicing, by Panayiotis Kokoras; 

Sound | Figuration, by Hongshuo Fan; 

Spectre (for processed solo voice), by Max Addae; 

Super Colliders, by Takuto Fukuda; 

The Pulse of The Sunrise, by Peyman Heydarian; 

Transcognition, by Fernando Egido; 

Trees, by Alexandra Uitdenbogerd. 

 

Satellite Events  
 

In addition to the main conference, four satellite events are offered to participants: 

 

WiMIR 3rd Annual Workshop, held before the conference in four sessions across eight weeks, from August 22 to 

October 3; 

7th International Conference on Digital Libraries for Musicology (DLfM), held on October 16 as a full-day virtual 

conference; 

NLP4MusA: First Workshop on NLP for Music and Audio, held on October 16 and 17 as a virtual conference with live 

presentations on the 16th that will be streamed on the 17th, and live Q&A sessions on both days; 

HAMR Hackathon, held asynchronously over October 16 and 17. 
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Should we consider the users in contextual music auto-tagging models?
Karim M. Ibrahim, Elena V. Epure, Geoffroy Peeters, Gaël Richard . . . . . . . . . . . . . . . . . . . . . 295
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Christoph Finkensiep, Ken Déguernel, Markus Neuwirth, Martin Rohrmeier . . . . . . . . . . . . . . . . 520

Semantically meaningful attributes from co-listen embeddings for playlist exploration and expansion
Ayush Patwari, Nicholas Kong, Jun Wang, Ullas Gargi, Michele Covell, Aren Janson . . . . . . . . . . . 527

ASAP: A dataset of aligned scores and performances for piano transcription
Francesco Foscarin, Andrew McLeod, Philippe Rigaux, Florent Jacquemard, Masahiko Sakai . . . . . . 534

Mood classification using listening data
Filip Korzeniowski, Oriol Nieto, Matthew C. McCallum, Minz Won, Sergio Oramas, Erik M. Schmidt . . . 542

Ultra-light deep MIR by trimming lottery tickets
Philippe Esling, Theis Bazin, Adrien Bitton, Tristan Carsault, Ninon Devis . . . . . . . . . . . . . . . . . 550

A neural approach for full-page optical music recognition of mensural documents
Francisco J. Castellanos, Jorge Calvo-Zaragoza, Jose M. Inesta . . . . . . . . . . . . . . . . . . . . . . 558

Modeling perception with hierarchical prediction: Auditory segmentation with deep predictive coding locates
candidate evoked potentials in EEG
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Sebastian Böck, Matthew E.P. Davies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 574

Exploring acoustic similarity for novel music recommendation
Derek Cheng, Thorsten Joachims, Douglas Turnbull . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 583

DrumGAN: Synthesis of drum sounds with timbral feature conditioning using generative adversarial networks
Javier Nistal, Stefan Lattner, Gaël Richard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 590

A deep learning based analysis-synthesis framework for unison singing
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Keynote Talk 
 

Taking on Big Tech: New Paradigms for New Possibilities 
 

Dr. Safiya U. Noble 

Associate Professor in the Departments of Information Studies and African American Studies 

Co-Director of the Center for Critical Internet Inquiry (C2i2) 

University of California, Los Angeles (UCLA) 

 

Abstract 
 

In her recent best-selling book Algorithms of Oppression, Dr. Safiya Noble challenges the idea that “Big Tech” offers an 

equal playing field for all forms of ideas, identities, and activities. Her work argues that the combination of private interests, 

along with the monopoly status of a relatively small number of internet companies, leads to a limited understanding of how 

racism is created, maintained, and disseminated in everyday digital engagements. 

 

Data discrimination is a real social problem, and in this talk, Noble offers a powerful set of data points, examples, and 

provocations. She asserts we are just at the beginning of creating new paradigms of justice with the tech sector. 

 

Biography 
 

Dr. Safiya Umoja Noble is an Associate Professor at the University of California, Los Angeles (UCLA) in the Department 

of Information Studies where she serves as the Co-Founder and Co-Director of the UCLA Center for Critical Internet 

Inquiry (C2i2). She also holds appointments in African American Studies and Gender Studies. She is a Research Associate 

at the Oxford Internet Institute at the University of Oxford and has been appointed as a Commissioner on the Oxford 

Commission on AI & Good Governance (OxCAIGG). She is a board member of the Cyber Civil Rights Initiative, serving 

those vulnerable to online harassment. 

 

Previously, she was a visiting faculty member to the USC Annenberg School for Communication and Journalism, and 

began her academic career as an Assistant Professor in the College of Media and the Institute of Communications Research 

at the University of Illinois at Urbana-Champaign. 

 

Dr. Noble is the recipient of a Hellman Fellowship and the UCLA Early Career Award. Her academic research focuses on 

the design of digital media platforms on the internet and their impact on society. Her work is both sociological and 

interdisciplinary, marking the ways that digital media impacts and intersects with issues of race, gender, culture, and 

technology. She is regularly quoted for her expertise on issues of algorithmic discrimination and technology bias by national 

and international press including The Guardian, the BBC, CNN International, USA Today, Wired, Time, Full Frontal with 

Samantha Bee, The New York Times, and Virginia Public Radio, and a host of local news and podcasts, including Science 

Friction, and Science Friday to name a few. Recently, she was named in the “Top 25 Doers, Dreamers, and Drivers of 

2019” by Government Technology magazine. 

 

Dr. Noble is the co-editor of two edited volumes: The Intersectional Internet: Race, Sex, Culture and Class Online and 

Emotions, Technology & Design. She currently serves as an Associate Editor for the Journal of Critical Library and 

Information Studies, and is the co-editor of the Commentary & Criticism section of the Journal of Feminist Media Studies. 

She is a member of several academic journal and advisory boards, and holds a Ph.D. and M.S. in Library & Information 

Science from the University of Illinois at Urbana-Champaign, and a B.A. in Sociology from California State University, 

Fresno where she was recently awarded the Distinguished Alumni Award for 2018.  
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WiMIR Keynote Talk 
 

Performance Matters 
Beyond the Current Conception of Musical Performance in MIR 
 

Dr. Johanna Devaney 

Assistant Professor, Conservatory of Music, Brooklyn College 

Faculty in the Data Analysis and Visualization MA program, Graduate Center 

Faculty in the Music PhD program, Graduate Center 

City University of New York (CUNY) 

 

Abstract 
 

This talk will reflect on what we can observe about musical performance in the audio signal and where MIR techniques 

have succeeded and failed in enhancing our understanding of musical performance. Since its foundation, ISMIR has 

showcased a range of approaches for studying musical performance. Some of these have been explicit approaches for 

studying expressive performance while others implicitly analyze performance with other aspects of the musical audio. 

Building on my own work developing tools for analyzing musical performance, I will consider not only the assumptions 

that underlie the questions we ask about performance but what we learn and what we miss in our current approaches to 

summarizing performance-related information from audio signals. I will also reflect on a number of related questions, 

including what do we gain by summarizing over large corpora versus close reading of a select number of recordings. What 

do we lose? What can we learn from generative techniques, such as those applied in style transfer? And finally, how can 

we integrate these disparate approaches in order to better understand the role of performance in our conception of musical 

style? 

 

Biography 
 

Johanna Devaney is an Assistant Professor at Brooklyn College and the CUNY Graduate Center. At Brooklyn College she 

teaches primarily in the Music Technology and Sonic Arts areas and at the Graduate Center she is appointed to the Music 

and the Data Analysis and Visualization programs. Previously, she was an Assistant Professor of Music Theory and 

Cognition at Ohio State University and a postdoctoral scholar at the Center for New Music and Audio Technologies 

(CNMAT) at the University of California at Berkeley. Johanna completed her PhD in music technology at the Schulich 

School of Music of McGill University. She also holds an MPhil degree in music theory from Columbia University and an 

MA in composition from York University in Toronto. 

 

Johanna’s research focuses on interdisciplinary approaches to the study of musical performance. Primarily, she examines 

the ways in which recorded performances can be used to study performance practice and develops computational tools to 

facilitate this. Her work draws on the disciplines of music, computer science, and psychology, and has been funded by the 

Social Sciences and Humanities Research Council of Canada (SSHRC), the Google Faculty Research Awards program and 

the National Endowment for the Humanities (NEH) Digital Humanities program. 
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Tutorial 1 
 

Prototyping and Scaling Audio Research with Klio 
Fallon Chen and Lynn Root 
 

Abstract 
 

This tutorial will walk attendees through the use of a Python framework called klio that makes use of the Apache Beam 

Python SDK to parallelize the execution of audio processing algorithms over a large dataset. Apache Beam is a portable 

and extensible programming model that unifies distributed batch and streaming processing. It manages the I/O and 

parallelized execution needed for large-scale data processing. Any audio processing algorithm that can be executed by a 

Python process and has dependencies that can be installed on machines supported by Apache Beam runners can be run 

with klio. Audio processing algorithms that have been added to a klio data processing job can be run locally on the 

practitioner's machine, before being run on large-scale data processing systems like Google Cloud Dataflow. This enables 

the practitioner to make quick local changes to their algorithm and test it on a few files before deploying a longer running 

job on more files. 

 

The intended audience of this tutorial are audio processing practitioners who have wrestled with the complexity of iterating 

upon and coordinating the execution of algorithms that both consume and produce large audio datasets. klio provides best-

practice standards and abstractions, encoded in its Python-based command line interface and API, that help audio 

practitioners prototype, organize and scale their work. 

 

During the tutorial, attendees will receive: 

 

• An overview of klio that establishes core concepts and features 

• Guidance through building a klio audio processing graph and running it on an audio dataset 

 

Biographies 
 

Fallon Chen is a Senior Engineer at Spotify, where she builds libraries and tools for audio processing. She holds a M.S. 

in Computer Science from the University of California, San Diego, and a B.S. in Computer Science from the University of 

California, Davis. Her favorite genre is industrial techno. 

 

Lynn Root is a Staff Engineer at Spotify and resident FOSS evangelist. She is a seasoned speaker on building and 

maintaining distributed systems, and maintains Spotify's audio processing framework. Lynn is a global leader of diversity 

in the Python community, and the former Vice Chair of the Python Software Foundation Board of Directors. When her 

hands are not on a keyboard, they are usually holding a bass guitar. 
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Tutorial 2 
 

Analysis of Expressive Timing in Recorded Music Performances 
Nico Schüler 
 

Abstract 
 

This tutorial will briefly summarize research on expressive timing in music, present an original research project (as an 

example) on rubato in four performances of Bach’s Invention No. 9, explain and demonstrate how to use the freeware 

Sonic Visualiser as well as Excel for the analysis of expressive timing in music, and participants will, with the help of the 

tutorial leader, pursue their own analysis of other performances of Bach’s Invention No. 9. (Recordings will be provided.) 

We will combine the data collected (in Excel files) to look for similarities and differences in the various performances and 

how expressive timing correlates to certain musical features. (An analytical score of the piece will be provided.) We will 

collectively formulate research findings.  

 

This tutorial is suitable for anyone who is curious about the topic. Beyond curiosity, participants do not need to have a 

music or computer science background. Those interested in participating in the analyses should bring a laptop (Windows 

computer or Mac) to the tutorial, with Sonic Visualiser (http://sonicvisualiser.org) and the VAMP plugin “Note Onset 

Detector” (http://www.vamp-plugins.org) installed. 

 

Biography 
 

Professor Dr. Nico Schüler is University Distinguished Professor of Music Theory & Musicology at Texas State 

University. His main research interests are computer applications in music research, methods and methodology of music 

research, interdisciplinary aspects of 19th/20th century music, music theory pedagogy, and music historiography. He has 

given numerous international workshops on computer-applications in music. He is the editor of the research book series 

Methodology of Music Research, the author and / or editor of 21 books, and the author of more than 120 articles. Among 

his most recent books are Musical Listening Habits of College Students (2010) and Computer-Assisted Music Analysis 

(2014). http://www.nicoschuler.com, mnico.schuler@txstate.edu. 
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Tutorial 3 
 

Metric Learning for Music Information Retrieval 
Brian McFee, Jongpil Lee and Juhan Nam 
 

Abstract 
 

Metric learning is a paradigm of representation learning, in which proximity between the representations of items is 

optimized to correspond to a notion of similarity. Compared to the classification, metric learning can leverage more flexible 

forms of supervision, for example, two audio clips belong to the same artist or not, or have the same tempo or not. This 

enables the learning model to take a large or indefinite number of classes. Moreover, metric learning handles the embedding 

space directly by measuring the distance between the transformations of different examples. This facilitates usage of 

different domains or modalities of inputs in the same framework (e.g., audio embedding in one input and word embedding 

in another input). Such flexible and adaptable characteristics of metric learning have been enjoyed in many of machine 

learning tasks, particularly, similarity-based content retrieval. In recent years, interest in metric learning from the MIR 

community has also increased. Considering the multi-faceted and hierarchical-level of notions in similarity (e.g., semantic-

level, score-level or audio-level) and diverse forms of data (e.g., audio, MIDI, text labels, lyrics, album covers, and user 

data), we see a great potential of metric learning in music. Therefore, introducing the method in an educational manner and 

surveying recent progress will be timely and helpful to relevant researchers. In this tutorial, we plan to present three lectures 

as follows: 

 

1. Metric learning foundations: This lecture introduces mathematical foundations of metric learning. 

2. Deep metric learning and applications to MIR (1): core tasks - This lecture introduces recent deep metric 

learning methods and their applications to music classification and similarity-based retrieval tasks. 

3. Deep metric learning and applications to MIR (2): variations - This lecture introduces various applications of 

deep metric learning in MIR, showing how researchers have bridged diverse domains and modalities of input in 

metric learning. 

 

Biographies 
 

Brian McFee is Assistant Professor of Music Technology and Data Science New York University. He received the B.S. 

degree (2003) in Computer Science from the University of California, Santa Cruz, and M.S. (2008) and Ph.D. (2012) 

degrees in Computer Science and Engineering from the University of California, San Diego. His work lies at the 

intersection of machine learning and audio analysis. He is an active open source software developer, and the principal 

maintainer of the librosa package for audio analysis. 

 

Jongpil Lee received the B.S. degree in electrical engineering from Hanyang University, Seoul, South Korea, in 2015, the 

M.S. degree, in 2017, from the Graduate School of Culture Technology, Korea Advanced Institute of Science and 

Technology, Daejeon, South Korea, where he is currently working toward the Ph.D. degree. He interned at Naver Clova 

Artificial Intelligence Research in the summer of 2017 and at Adobe Audio Research Group in the summer of 2019. His 

current research interests include machine learning and signal processing applied to audio and music applications. 

 

Juhan Nam is an Associate Professor of the Graduate School of Culture Technology at the Korea Advanced Institute of 

Science and Technology (KAIST), South Korea. Before joining KAIST, he was a staff research engineer at Qualcomm. 

Before his research career, he was a software/DSP engineer at Young Chang (Kurzweil). He received the Ph.D. degree 

(2013) in Music from Stanford University, studying at the Center for Computer Research in Music and Acoustics 

(CCRMA). He is interested in various research topics at the intersection of music, signal processing, and machine learning. 
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Tutorial 4 
 

Open-Source Tools & Data for Music Source Separation: A Practical Guide for 
the MIR Practitioner 
Ethan Manilow, Prem Seetharaman and Justin Salamon 
 

Abstract 
 

Musical source separation has become increasingly effective in recent years. As such, applications of music source 

separation have the potential to touch many aspects of MIR research. However, from a user’s perspective, either in doing 

source separation research from scratch or in applying source separation to other tasks (e.g. polyphonic music 

transcription), there are still significant roadblocks. Code and data are released on a paper-by-paper basis, making it difficult 

to compare, use and extend existing techniques. This limits the usefulness of source separation for researchers not actively 

steeped in its many nuances, and hinders its applicability to broader MIR research. 

 

In this tutorial, we present a set of complementary, easy-to-use, open-source tools and datasets for source separation 

research, evaluation, and deployment. We show how they interlock with one another, and how they can be used in concert 

to structure source separation within a project for research or deployment. Finally, we propose a generic and well-tested 

project structure for efficiently doing modern source separation research, from sweeping over hyperparameters, to setting 

up competitive baselines, to augmenting your datasets. 

 

Participants of this tutorial will leave with: 

 

1. A practical overview of source separation including history and current research trends. 

2. The ability to make educated decisions about how to best include source separation in their workflow. 

3. The ability to select the proper separation algorithm or a pre-trained model for their research. 

4. The ability to effectively train a custom model for their research using open-source tools. 

 

Our tutorial is aimed at researchers and practitioners that are familiar with audio and machine learning but have little or no 

experience with source separation. Our primary resources will be the following open-source/data projects: [nussl], [scaper], 

[Slakh2100], and [MUSDB18]. References to additional tools and datasets (including for non-music audio) will be 

provided. 

 

Biographies 
 

Ethan Manilow is a PhD candidate in Computer Science at Northwestern University under advisor Prof. Bryan Pardo. His 

research lies in the intersection of signal processing and machine learning, with a focus on source separation, automatic 

music transcription, and open source datasets and applications. Previously he was an intern at Mitsubishi Electric Research 

Labs (MERL) and at Google Magenta. He is one of the lead developers of nussl, an open source audio separation library. 

 

Prem Seetharaman is a research scientist at Descript in San Francisco. Previously, he was a teaching fellow at 

Northwestern University, where he received his PhD in 2019 advised by Bryan Pardo. The objective of his research is to 

create machines that can understand the auditory world. He works in computer audition, machine learning, and human 

computer interaction. He is one of the lead developers of nussl, an open source audio separation library, and Scaper, a 

library for soundscape generation & augmentation. 

 

Justin Salamon is a research scientist and member of the Audio Research Group at Adobe Research in San Francisco. 

Previously he was a senior research scientist at the Music and Audio Research Laboratory and Center for Urban Science 

and Progress of New York University. His research focuses on the application of machine learning and signal processing 

to audio & video, with applications in machine listening, representation learning & self-supervision, music information 

retrieval, bioacoustics, environmental sound analysis and open-source software & data. He is the lead developer of Scaper, 

a library for soundscape generation & augmentation. 
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Tutorial 5 
 

Version Identification in the 20s 
Furkan Yesiler, Christopher Tralie and Joan Serrà 
 

Abstract 
 

The version identification (VI) task concerns detecting and retrieving a set of songs that originate from the same underlying 

musical composition. Versions (or cover songs) convey the same musical entity while incorporating differences in several 

musical characteristics, including the differences in timbre, tempo, key, lyrics, and even added/deleted sections. The main 

applications include digital rights management and music catalog organization.  

 

For more than a decade, VI systems suffered from the accuracy-scalability trade-off, with attempts to increase accuracy 

resulting in cumbersome, non-scalable systems. Recent years however have witnessed an increase in deep learning-based 

VI approaches that take a step toward bridging the accuracy-scalability gap, and we start seeing the possibility to deploy 

such systems in real-world applications. Although this trend positively influences the number of researchers and institutions 

working on VI, it may also result in obscuring the literature before the deep learning era. To appreciate the 20 years of 

novel ideas in VI and to facilitate building better systems in the next decade, we believe that now may be the right time to 

review some of the successful ideas and applications proposed in VI literature and connect them to current systems and 

ideas. 

 

We will start the tutorial by explaining common input representations and feature post-processing steps. We will continue 

with comparing the pros and cons of alignment-based and embedding-based approaches, which constitute the two main 

perspectives for similarity estimation in VI. Lastly, after discussing a number of ideas that can be incorporated into any VI 

system, we will conclude by presenting the current challenges and future directions in VI research. Our goal is for the 

audience to leave with a thorough appreciation of both the history of the task and current directions, and that this context 

will allow them to jump into conducting novel research in the area. 

 

Biographies 
 

Furkan Yesiler is a PhD candidate at the Music Technology Group (MTG) of Universitat Pompeu Fabra (Barcelona). His 

research is focused on leveraging deep learning techniques to build accurate and scalable music version identification (VI) 

systems for industrial use cases. His recent contributions include MOVE, a state-of-the-art VI system based on musically-

motivated principles; Da-TACOS, a large-scale VI benchmark set; and acoss, an open-source framework for feature 

extraction and benchmarking designed for VI. He received his MSc in Sound and Music Computing also from the MTG, 

with a focus on singing voice research. He graduated summa cum laude with two BSc degrees in computer engineering 

and industrial engineering from Koc University (Istanbul), where he was accepted with a full scholarship. During his 

bachelor’s studies, he did internships in management consulting and M&A advisory companies in Istanbul, managed a 

student club with 200+ members, participated in a number of rowing competitions and musical theater shows, and spent a 

trimester at the University of California, Santa Barbara. 

 

Christopher Tralie is an assistant professor in Math and Computer Science at Ursinus College in Collegeville, 

Pennsylvania, USA. He works in applied geometry/topology and geometric signal processing, and his work spans shape-

based music structure analysis and version identification, video analysis, multimodal time series analysis, and geometry-

aided data visualization. He received a B.S.E. from Princeton University 2011, a master’s at Duke University in 2013, and 

a Ph.D. at Duke University in 2017, all in Electrical Engineering. His Ph.D. was primarily supported by an NSF Graduate 

Fellowship, and his dissertation is entitled “Geometric Multimedia Time Series.” He did a postdoc at Duke University in 

Mathematics and a postdoc at Johns Hopkins University in Complex Systems. He was awarded a Bass Instructional 

Teaching fellowship at Duke University, and he maintains an active interest in pedagogy and outreach, including 

longitudinal mentoring of underprivileged youths in STEAM (STEM + arts) education. 
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ABSTRACT

This paper describes a statistical music structure analysis
method that splits an audio signal of popular music into
musically meaningful sections at the beat level and clas-
sifies them into predefined categories such as intro, verse,
and chorus, where beat times are assumed to be estimated
in advance. A basic approach to this task is to train a recur-
rent neural network (e.g., long short-term memory (LSTM)
network) that directly predicts section labels from acous-
tic features. This approach, however, suffers from fre-
quent musically unnatural label switching because the ho-
mogeneity, repetitiveness, and duration regularity of musi-
cal sections are hard to represent explicitly in the network
architecture. To solve this problem, we formulate a unified
hidden semi-Markov model (HSMM) that represents the
generative process of homogeneous mel-frequency cepstrum
coefficients, repetitive chroma features, and mel spectra
from section labels, where the emission probabilities of
mel spectra are computed from the posterior probabilities
of section labels predicted by an LSTM. Given these acous-
tic features, the most likely label sequence can be esti-
mated with Viterbi decoding. The experimental results
show that the proposed LSTM-HSMM hybrid model out-
performed a conventional HSMM.

1. INTRODUCTION

Music structure analysis is the fundamental task in the field
of music information retrieval (MIR) [1] because the mu-
sical structure, which consists of several sections including
intro, verse, bridge, and chorus, is one of the most impor-
tant elements of popular music. Most studies have tackled
the segmentation task, which splits audio signals into sev-
eral sections [2–12], the clustering task, which categorizes
such sections into several classes [13–23], or both. Beyond
the clustering task that gives arbitrary labels such as “A”
and “B” to detected sections, we tackle the labeling task
that gives concrete labels such as “verse A”, “verse B”, and
“chorus” [4,24] because such musically meaningful labels
are useful for playback navigation [25]. Because section

c© G. Shibata, R. Nishikimi, and K. Yoshii. Licensed under
a Creative Commons Attribution 4.0 International License (CC BY 4.0).
Attribution: G. Shibata, R. Nishikimi, and K. Yoshii, “Music structure
analysis based on an LSTM-HSMM hybrid model”, in Proc. of the 21st
Int. Society for Music Information Retrieval Conf., Montréal, Canada,
2020.

Chroma features
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Posterior probabilities of section labels

Estimated section labels

verse A verse B chorus verse A verse B
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LSTM-HSMM

Figure 1. Proposed music structure analysis method.

labels are subjective features of music, the labeling task is
still challenging. Although deep neural networks (DNNs)
have widely been used for frame-level classification tasks
in MIR, they often suffer from frequent musically unnatu-
ral label switching.

In music structure analysis, the homogeneity and repet-
itiveness of acoustic features, the regularity of section du-
rations, and the novelty of section boundaries, have con-
sidered as the four main noticeable aspects of musical sec-
tions [1, 11]. Using a sufficient amount of music signals
with section label annotations, one could train a labeling
DNN in a supervised manner such that the four aspects
are learned implicitly. Another approach is to formulate a
probabilistic generative model of acoustic features that can
explicitly represent the four aspects and infer latent sec-
tions from observed features. A hierarchical hidden semi-
Markov model (HSMM) based on the homogeneity, repet-
itiveness, and regularity, for example, has recently been
proposed for joint segmentation and clustering [26]. The
complementary properties of these approaches call for a
hybrid approach for joint segmentation and labeling.

In this paper, we propose a deep generative approach to
music structure analysis that integrates the labeling capa-
bility of a bidirectional long short-term memory (BLSTM)
network into the classical shallow generative framework of
the HSMM (Fig. 1). The unified model represents the gen-
erative processes of mel-frequency cepstrum coefficients
(MFCCs) that are homogeneous in each section, chroma
features that are repeated in sections of the same label, and
mel spectra, from sections having regular durations. The
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BLSTM network that estimates section labels from mel
spectra at the frame level is trained in a supervised man-
ner. The emission probabilities of mel spectra from sec-
tions are computed at run-time by referring to the posterior
probabilities of section labels estimated by the network and
the empirical prior distributions of section labels. Given
acoustic features, the latent section sequence as well as
the initial, transition, duration, and terminal probabilities
of sections are estimated in a Bayesian manner with Gibbs
sampling followed by Viterbi decoding, where the latent
section sequence is initialized by the network to avoid bad
local optima.

The main contribution of this paper is to propose a sta-
tistical joint segmentation and labeling method based on a
Bayesian LSTM-HSMM hybrid model that can be adapted
to each musical piece. Because the statistical characteris-
tics of sections are specific to each musical piece, Bayesian
inference based on the empirical prior distributions of those
characteristics plays an essential role for improving the
performance of music structure analysis. We experimen-
tally show that the proposed method significantly outper-
formed a cascade model using the labeling results of the
BLSTM in the post-processing and an LSTM-HSMM mod-
el using only Viterbi decoding.

2. RELATED WORK

This section reviews music structure analysis methods in
terms of segmentation, clustering, and labeling.

2.1 Segmentation

In the segmentation task, the novelty plays a central role.
Foote [2] detected peaks from a novelty curve obtained by
convoluting a checkerboard kernel with the diagonal el-
ements of a self-similarity matrix (SSM). Jensen [3] de-
tected section boundaries such that a homogeneity- and
novelty-aware cost function is minimized. Goto [4] and
Serrà et al. [5] proposed novelty curves computed from lag
SSMs showing repetitions as vertical lines. These meth-
ods were integrated for better segmentation [6] and the
method [5] was extended for clustering [7]. Recently, Ull-
rich et al. [8] proposed a supervised method based on a
convolutional neural network, which was extended to deal
with coarse and fine boundary annotations [9]. Smith et al.
[10] emphasized the importance of considering the regu-
larity in the main analysis step, not in the post-processing
step. Sargent et al. [11] focused on the regularity to favor
comparable-size sections. Maezawa [12] used an LSTM
network based on a cost function considering the homo-
geneity, repetitiveness, novelty, and regularity.

2.2 Clustering and Labeling

Cooper et al. [13] sequentially performed segmentation [2]
and clustering based on intra- and inter-section character-
istics. Goodwin et al. [14] efficiently detected off-diagonal
stripes as repetitions from an SSM using dynamic pro-
gramming. To deal with the repetitiveness and homogene-
ity, Grohganz et al. [15] converted a repetitiveness-aware

SSM with off-diagonal stripes into a homogeneity-aware
SSM with a block-diagonal structure. Nieto et al. [16] used
a convex variant of nonnegative matrix factorization for
segmentation and clustering. McFee et al. [17] encoded
repetitive structures into a graph and performed spectral
clustering for graph partitioning. Cheng et al. [18] con-
verted a path-enhanced SSM into a block-enhanced SSM
using nonnegative matrix factor deconvolution as in [15].

Several studies have taken a statistical approach based
on generative models for joint segmentation and cluster-
ing. Aucouturier et al. [19] used a standard HMM. Levy
et al. [20] proposed an HSMM based on the regularity of
section durations. Ren et al. [21] proposed a nonparamet-
ric Bayesian HMM that can estimate an appropriate num-
ber of sections. Barrington et al. [22] proposed a nonpara-
metric Bayesian switching linear dynamical system (LDS)
that has the ability of automatic model complexity control.

Only a few studies have attempted to estimate musically
meaningful labels. Maddage et al. [27] proposed a label-
ing method based on a typical music structure and the role
of each section. Paulus et al. [24] performed segmenta-
tion, clustering, and labeling using a probabilistic fitness
measure for the N-grams of sections.

3. PROPOSED METHOD

This section describes the proposed method for music struc-
ture analysis.

3.1 Problem Specification

The task we tackle in this paper is specified as follows:

Assumption: The beat times of a target music audio are
estimated in advance by a beat tracking method [28].
Input: Beat-level chroma features Xc , xc1:T (xct ∈ R12),
MFCCs Xm , xm1:T (xmt ∈ R12), and mel spectra Xs ,
xs1:T (xst ∈ R128) obtained from the target music signal,
where T is the number of beats (quarter notes).
Output: Section labels Z , z1:N (zn ∈ {1, . . . ,K}) with
durations D , d1:N (dn ∈ {1, . . . , L}), where N is the
number of sections, K is the number of distinct section
labels, and L is the maximum number of beats in a section.

The notation i:j represents a set of indices from i to j. Let
X be {Xc,Xm,Xs}, and x be {xc,xm,xs}.

3.2 Model Formulation

As shown in Fig. 2, we formulate a hierarchical HSMM
of observed features X with latent sequences of section
labels and abstract chord labels. Let S , S1:N be a se-
quence of chord sequences, where Sn , sn,1:dn (sn,τ ∈
{1, . . . ,M}) is a chord sequence in section n andM is the
maximum number of chords in a section. The full proba-
bilistic model p(X,Z,D,S) is defined as

p(X,Z,D,S) = p(X|Z,D,S)p(S|Z,D)p(Z,D), (1)

where p(X|Z,D,S) is an acoustic model of observed fea-
tures X, p(S|Z,D) is a left-to-right Markov model of chord
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labels S and p(Z,D) is an ergodic semi-Markov model of
section labels Z with durations D.

3.2.1 Semi-Markov Chain of Section Labels

The ergodic semi-Markov model p(Z,D) in Eq. (1) repre-
sents the generative process of section labels Z and their
durations D as follows:

p(Z,D) = p(z1, d1)
N∏
n=2

p(zn, dn|zn−1, dn−1), (2)

where the individual terms are given by

p(z1, d1) = ρz1ψd1 , (3)

p(zn, dn|zn−1, dn−1) = πzn−1znψdn , (4)

p(zN , dN |zN−1, dN−1) = πzN−1zNψdNυzN , (5)

where ρz , πzz′ , and υz are the initial, transition, and ter-
minal probabilities of section labels and ψd is the duration
probability.

3.2.2 Left-to-Right Markov Chain of Chord Labels

The left-to-right Markov model p(S|Z,D) in Eq. (1) rep-
resents the generative process of chord labels S as follows:

p(S|Z,D) =
N∏
n=1

p(sn,1)

dn∏
τ=2

p(sn,τ |sn,τ−1, zn), (6)

where the individual terms are given by

p(sn,1 = 1) = 1, (7)

p(sn,τ |sn,τ−1, zn) = φ(zn)sn,τ−1sn,τ , (8)

where zn is the corresponding section label and φ(z)ss′ is the
transition probability from state s to state s′. The left-to-
right Markov model meets a condition that the initial state
has sn,1 = 1 and sn,τ1 ≤ sn,τ2 for τ1 < τ2. We introduce
a hyperparameter σ that describes the maximum number of
states that may be skipped in a transition; a transition from
state s to state s + σ is allowed. In this way, the model
allows chord labels to be repeated with some variations in
sections of the same label.

3.2.3 Emission of Acoustic Features

Given that the chroma features Xc, the MFCCs Xm, and
the mel spectra Xs are conditionally and temporally in-
dependent, the acoustic model p(X|Z,D,S) in Eq. (1) is
factorized as follows:

p(X|Z,D,S) =
T∏
t=1

χczt,st(x
c
t)χ

m
zt(x

m
t )χszt(x

s
t ), (9)

where zt and st are the section and chord labels at beat
t, respectively, determined by the section-level latent vari-
ables Z, D, and S, and χcz,s, χ

m
z , and χsz are the emission

probabilities of chroma features xc, MFCCs xm, and mel
spectra xs, respectively.

The chroma features xc ∈ R12 are generated depending
on both the section label z and the chord label s having
the left-to-right property. The chord/chroma repetitiveness
is thus represented by applying the same set of emission
probabilities to all sections of the same label. The emission

Observations

Latent states

section

chord

duration
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features
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𝒁

𝑺

𝑫

𝑿!

𝑿"

8 bars 8 bars4 bars

A AB

1 1 2 2 3 3 1 1 2 2 1 1 1 2 2 3

mel spectra 𝑿#

Figure 2. Proposed LSTM-HSMM hybrid model.

probability χcz,s(x
c) in Eq. (9) is given by a multivariate

Gaussian distribution as follows:

χcz,s(x
c) = N (xc|µcz,s, (Λc

z,s)
−1), (10)

where µcz,s and Λc
z,s are a mean vector and a precision

matrix, respectively.
The MFCCs xm ∈ R12 are generated depending on the

section label z. This allows the model to capture the homo-
geneity of the timbral characteristics of each section. The
emission probability χmz (xm) in Eq. (9) is also given by a
multivariate Gaussian distribution as follows:

χmz (xm) = N (xm|µmz , (Λm
z )−1), (11)

where µmz and Λm
z are a mean vector and a precision ma-

trix, respectively.
The mel spectra xs ∈ R128 are generated depending

on the section label z. The emission probability χsz(x
s) in

Eq. (9) is computed as follows:

χsz(x
s) = p(xs|z) ∝ p(z|xs)

p(z)
, (12)

where p(z) is a unigram probability of section labels, and
the probability p(z|xs) is estimated by a labeling network
(BLSTM) that infers section labels from mel spectra at the
frame level. Let p(z|xs) be the average of the frame-level
outputs of the network in beat units.

3.2.4 Prior Distributions Based on Musical Knowledge

To use prior knowledge about musical sections, we formu-
late a Bayesian HSMM by putting conjugate prior distribu-
tions on the model parameters Θ , {ρ,ψ,π,υ,φ,µ,Λ}
[26]. We put Gaussian-Wishart prior distributions on the
multivariate Gaussian parameters as follows:

µcz,s,Λ
c
z,s ∼ N (µcz,s|mc

0, (β
c
0Λ

c
z,s)
−1)W(Λc

z,s|Wc
0, ν

c
0),

µmz ,Λ
m
z ∼ N (µmz |mm

0 , (β
m
0 Λm

z )−1)W(Λm
z |Wm

0 , ν
m
0 ),

where mc
0, βc0, Wc

0, νc0, mm
0 , βm0 , Wm

0 , and νm0 are hy-
perparameters. We then put Dirichlet prior distributions on
the categorical parameters as follows:

ρ , ρ1:K ∼ Dirichlet(aρ), (13)

ψ , ψ1:L ∼ Dirichlet(aψ), (14)

πz , πz(1:K) ∼ Dirichlet(aπz ), (15)
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υ , υ1:K ∼ Dirichlet(aυ), (16)

φ(z)
s , φ

(z)
s(1:M) ∼ Dirichlet(aφ), (17)

where aρ, aψ , aπz , aυ , and aφ are hyperparameters. The
key advantage of Bayesian inference is that unnecessary
sections can be automatically removed by controlling these
sparseness-related hyperparameters.

Because “verse B” tends to come after “verse A”, and
section durations tend to be the integer multiples of the
four measures in popular music, such a statistical tendency
can be incorporated in the prior distribution. Specifically,
we set aρ to the empirical initial section probabilities aρemp,
aπz to the empirical section transition probabilities aπzemp,
aυ to the empirical terminal section probabilities aυemp,
and aψ to the empirical section duration probabilities aψemp.
These probabilities are multiplied by a constant factor.

3.3 Bayesian Inference

Because the posterior distribution p(Z,D,S,Θ|X) is an-
alytically intractable, we use the Gibbs sampling method.
We first sample the latent variables Z, D, and S from the
distribution p(Z,D,S|Θ,X) and then sample the model
parameters Θ from the distribution p(Θ|Z,D,S,X).

3.3.1 Pretraining

We compute the empirical distributions aρemp, aψemp, aπzemp,
and aυemp from training data.

(
aρemp

)
z

is the number of
times that the sequence of section labels starts from a sec-
tion z.

(
aψemp

)
d

is the number of times that section labels
have a duration d.

(
aπzemp

)
z′

is the number of transitions
from a state z to a state z′.

(
aυemp

)
z

is the number of times
that the sequence of section labels ends with a section z.

3.3.2 Initialization of Latent Variables

To avoid bad local optima, we initialize the section labels
Z and durations D with the labeling network. The frame-
level posterior probabilities of section labels estimated by
the network are averaged in each beat t. A section label of
each beat is estimated to be one that achieves the maximum
value of the posterior probability at the beat. Consecutive
section labels are considered as a single section; however,
when the duration length of an integrated section is shorter
than four beats (one bar), the section is further merged into
a left or right section depending on the posterior probabil-
ities. Because it is inefficient to deal with sections that are
too long, we divide sections with a duration length longer
than 32 beats into 32-beat units. After that, we perform the
sampling of chord sequences S and model parameters Θ.

3.3.3 Sampling Latent Variables

We use the forward filtering-backward sampling algorithm
for sampling Z, D, and S. We introduce variables zt and
dt that denote the section label and duration starting at beat
t−dt+1 and ending at beat t. We also define the marginal-
ized emission probability for this section ωzt(xt−dt+1:t),
which can be calculated by the forward algorithm for the
Markov model of chord labels.

In the forward filtering step for the Markov model of
section labels, we initialize and update the forward vari-
ables αt(zt, dt) = p(zt, dt,x1:t) as follows:

αt(zt, dt = t) = ρztψdtωzt(x1:t), (18)

αt(zt, dt)

=
∑
z′,d′

αt−dt(z
′, d′)πz′ztψdtωzt(xt−dt+1:t). (19)

In the backward sampling step, the section labels Z and
durations D are sequentially sampled in the reverse order:

p(zT , dT |X) ∝ αT (zT , dT ). (20)

When variables zt and dt are already sampled, the vari-
ables zt′ and dt′ at beat t′ = t− dt are sampled according
to the probability

p(zt′ , dt′ |zt:T , dt:T ,X) ∝ αt′(zt′ , dt′)πzt′zt . (21)

Next, the chord labels S are sampled using the sam-
pled Z and D. Each chord sequence Sn is sampled by for-
ward filtering-backward sampling for the Markov model of
chord labels in section n. In the forward filtering step, we
calculate the probabilities ζn,sn,τ recursively as follows:

ζn,sn,1 = p(sn,1,x1|zn, dn)
= δsn,11χzn,1(x1), (22)

ζn,sn,τ = p(sn,τ ,x1:τ |zn, dn) (23)

=

 ∑
sn,τ−1

ζn,sn,τ−1φ
(zn)
sn,τ−1sn,τ

χzn,sn,τ (xτ ),

where xτ is a vector of observed features at the beat τ ∈
{1, . . . , dn} considered in relation to the section boundary,
and χz,s(x) is a merged emission probability p(x|z, s). In
the backward sampling step, the chord sequence Sn is sam-
pled in the reverse order as follows:

p(sn,dn |zn, dn,x1:dn)∝ζn,sn,dn , (24)

p(sn,τ |zn, dn, sn,τ+1:dn ,x1:dn)∝ζn,sn,τφ(zn)sn,τsn,τ+1
. (25)

3.3.4 Sampling Model Parameters

We use the Gibbs sampling method for updating the model
parameters as follows:

ρ ∼ Dirichlet(aρ + bρ), (26)

πz ∼ Dirichlet(aπz + bπz ), (27)

ψ ∼ Dirichlet(aψ + bψ), (28)

υ ∼ Dirichlet(aυ + bυ), (29)

φ(z)
s ∼ Dirichlet(aφ + bφ

(z)
s ), (30)

Λc
z,s ∼ W(Wc

z,s, ν
c
z,s), (31)

µcz,s|Λc
z,s ∼ N (mc

z,s, (β
c
z,sΛ

c
z,s)
−1), (32)

Λm
z ∼ W(Wm

z , ν
m
z ), (33)

µmz |Λm
z ∼ N (mm

z , (β
m
z Λm

z )−1), (34)

where bρ ∈ RK , bπz ∈ RK , bψ ∈ RL, bυ ∈ RK ,
and bφ

(z)
s ∈ RM are vectors that count the sampled data.

bρz is 1 if z = z1 and 0 otherwise, bπzz′ is the number of
transitions from state z to state z′, bψd is the number of
times that sampled sections have a duration of d, bυz is 1
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if z = zN and 0 otherwise, and b
φ(z)
s

s′ is the number of
transitions from state s to state s′ in the Markov model
of chord labels in section z. The parameters mc

z,s, β
c
z,s,

Wc
z,s, and νcz,s are calculated as follows:

βcz,s = βc0 +Nz,s, νcz,s = νc0 +Nz,s, (35)

mc
z,s =

1

βcz,s
(βc0m

c
0 +Nz,sx

c
z,s), (36)

(Wc
z,s)
−1 = (Wc

0)
−1 +Nz,sU

c
z,s

+
βc0Nz,s
βc0 +Nz,s

(xcz,s −mc
0)(x

c
z,s −mc

0)
T, (37)

where we have defined

Nz,s =
T∑
t=1

δztzδsts, (38)

xcz,s =
1

Nz,s

T∑
t=1

δztzδstsx
c
t , (39)

Uc
z,s =

1

Nz,s

T∑
t=1

δztzδsts(x
c
t − xcz,s)(x

c
t − xcz,s)

T. (40)

The parameters mm
z , βmz , Wm

z , and νmz can be calculated
similarly.

3.3.5 Viterbi Training

Since the samples from the Gibbs sampler are not neces-
sarily local optima of the posterior distribution, we apply
Viterbi training in the last step of the parameter estima-
tion. Specifically, we apply the Viterbi algorithm (instead
of the forward filtering-backward sampling algorithm) to
estimate the latent variables and update the model parame-
ters to the expectation values of the posterior probabilities
(instead of samples from those probabilities). It is known
that Viterbi training is generally efficient for finding an ap-
proximate local minimum [29].

3.3.6 Refinements

We introduce a weighting factor wdur(≥ 1) for the du-
ration probability to enhance its effect. Specifically, we
replace the probability factor ψd in the forward algorithm
(18) and (19) with (ψd)

wdur . Similar replacements are ap-
plied to the Viterbi training step and the final estimation
step of the latent states explained in Section 3.4. We also
introduce a weighting factor wlabel that balances the emis-
sion probabilities for mel spectra with the other emission
probabilities. We replace the emission probability χsz(x

s)
in (9) with (χsz(x

s))wlabel .

3.4 Estimation of Musical Sections

After training the model parameters Θ, we compute the
maximum a posteriori (MAP) estimate of the musical sec-
tions. Specifically, we maximize the posterior probability
p(Z,D|Θ,X) with respect to the section labels Z and du-
rations D. This can be solved by integrating out the chord
labels S and applying the Viterbi algorithm for HSMMs
[30] to the Markov model of section labels.

4. EVALUATION

Experiments were conducted to investigate the performance
of the proposed method.

4.1 Experimental Conditions

To evaluate our model, we used the 100 pieces from the
RWC Popular Music Database [31] with structure anno-
tations [32] for evaluation. We extracted chroma features
using the deep feature extractor [33] and MFCCs and mel
spectrograms using the librosa library [34]. Beat informa-
tion was obtained using the madmom library [28]. The
labeling network consisted of a single-layer BLSTM with
2048 × 2 cells and a fully-connected layer with output di-
mension K. The network was trained with 10-fold cross
validation, and the empirical distributions aρemp, aψemp, aπzemp,
and aυemp were trained with piece-wise cross validation for
the 100 pieces. For parameter estimation, we iterated the
Gibbs sampling 15 times and the Viterbi training 3 times,
which took around five times longer than the duration of
an input signal with a standard CPU.

The hyperparameters of the proposed model were set as
follows: K = 10, L = 40, M = 16, σ = 1, wdur = 4,
wlabel = 0.5, aρ = 1·aρemp, aπ = 1·aπemp, aψ = 64·aψemp,
aυ = 1 · aυemp, aφ = I, mc

0 = E[Xc], βc0 = 64, Wc
0 =

(νc0 cov[X
c])−1 with νc0 = 512, mm

0 = E[Xm], βm0 = 2,
and Wm

0 = (νm0 cov[Xm])−1 with νm0 = 16, where I de-
notes a vector with all entries equal to 1. The first param-
eter K was determined according to the number of labels
used in [24], as shown in the legend in Fig. 3. The next
two parameters L and M were determined by consulting
the statistics of the annotated data. In the data, most sec-
tions have a length of 40 beats or less. If we assume a
section length of 32 beats (8 measures) and a chord dura-
tion of 2 beats, the expected number of chords in each sec-
tion is 16. The value of σ was set to 1 for simplicity. The
other parameters were determined by a coarse optimiza-
tion w.r.t. the evaluation measures explained below. Each
parameter was optimized by a grid search, fixing the other
parameters. Further optimization of the parameters is left
for future work.

We evaluated the estimation results in terms of segmen-
tation, clustering, and labeling. The qualities of segmen-
tation and clustering were evaluated in the same way as
MIREX [35]. The quality of segmentation was evaluated
by the F-measures of section boundaries denoted by F0.5

and F3.0 [36]. Specifically, an estimated boundary is ac-
cepted as correct if it is within ±0.5/3.0 seconds from the
ground-truth boundary. The precision rate is the percent-
age of correct boundaries in estimated boundaries, the re-
call rate is the percentage of true boundaries that are cor-
rectly estimated, and the F-measures F0.5 and F3.0 are de-
fined as the harmonic means of the precision and recall
rates.

The quality of clustering was evaluated by the pairwise
F-measure denoted by Fpair [37] defined as follows. We
compared pairs of frames (with a length of 100 ms) that
are labeled with the same class in an estimation result with
those in the ground truth. The precision rate, recall rate,

Proceedings of the 21st ISMIR Conference, Montréal, Canada, October 11-16, 2020
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Method
Segmentation Clustering Labeling

F0.5 (%) F3.0 (%) Fpair (%) (%)

GS3 [39] 52.3 73.5 54.2 n/a
SUG2 [40] 25.8 73.7 37.3 n/a
FK2 [41] 30.0 65.7 63.4 n/a
Paulus’09 [24] n/a 63.0 63.7 34.4
Cascade model 38.3 63.9 54.9 38.8
Baseline model 30.6 53.5 43.3 39.5
Proposed model 43.3 66.5 54.6 45.3

Table 1. Evaluation results of a comparative experiment.

and F-measure are defined as follows:

Ppair =
|PE ∩ PA|
|PE |

, Rpair =
|PE ∩ PA|
|PA|

, (41)

Fpair =
2PpairRpair

Ppair +Rpair
, (42)

where PE denotes the set of similarly labeled frame pairs
in the estimation and PA denotes that in the ground truth.
These values are calculated using the mir_eval library
[38]. The quality of labeling was evaluated by the accuracy
in frame units, as in [24]. This is calculated by comparing
a label assigned to each frame in the result and the ground
truth.

For comparison in the segmentation and the clustering,
we refer to GS3 [39], SUG2 [40], and FK2 [41], pub-
lished in MIREX. In addition, for comparison in all three
viewpoints, we quoted the result of [24] and ran two mod-
els, a cascade model and a baseline model. In the cas-
cade model, the frame-level labels obtained by the BLSTM
were counted for each cluster obtained by the HSMM [26].
The most frequently occurring label in a cluster was esti-
mated to be the label in that cluster. Although the baseline
model is similar to the proposed model, it outputs neither
chroma features nor MFCCs and only uses the Viterbi de-
coding to obtain results.

4.2 Experimental Results

Table 1 shows the evaluation results. In the labeling accu-
racy, the proposed method outperformed the other methods
that have the labeling ability. Compared with the cascade
model using the labeling results of the BLSTM in the post-
processing, the proposed model had better performance in
segmentation and labeling. This indicates the effectiveness
of joint segmentation and labeling in the unified probabilis-
tic framework. In addition, compared with the baseline
model using the Viterbi decoding only, the proposed model
achieved better performance in all metrics. This revealed
the effectiveness of piece-specific Bayesian learning based
on the prior distributions. In contrast, the proposed method
did not always achieve the state-of-the-art performance ex-
cept for labeling. It may be because the proposed method
tended to yield unnatural repetitions of the same label with
various lengths. In general, sections of the same label have
approximately the same length. Such a constraint could be
incorporated by introducing a duration probability distri-

0 sec 50 100 150 200 250
intro
verse A

verse B
verse C

chorus A
chorus B

bridge A
ending

pre-chorus
misc

Ground truth

RNN result

Proposed model

Baseline model

Cascade model

Figure 3. Example results by proposed, baseline, and cas-
cade model (RWC-MDB-P-2001 No. 25)

bution specific for each label.
Example results are shown in Fig. 3. The cascade model

yielded some mislabeled sections with correctly estimated
boundaries because the clustering errors of the HSMM were
propagated. In contrast, because the proposed method per-
forms segmentation and labeling simultaneously, such er-
rors were reduced effectively. While the baseline model
yielded errors originating from the errors of the BLSTM,
such errors were corrected in the result of the proposed
method. This suggested that the proposed method has the
ability to prevent such errors by focusing on the homo-
geneity of MFCCs and repetitiveness of chroma features.
We found that the proposed method erroneously estimated
“chorus A” at the beginning of this song as “intro”. Such
errors could be avoided by adjusting the weights of the
initial and emission probabilities or training the BLSTM
with the connectionist temporal classification (CTC) loss
function [42] to remove frequent musically unnatural label
switching.

5. CONCLUSION

We have presented a deep generative approach to music
structure analysis based on a Bayesian LSTM-HSMM hy-
brid model. The model represents the essential character-
istics of sections, homogeneity, repetitiveness, and regular-
ity, with MFCCs, chroma features, and mel spectra. Music
segmentation and section labeling are performed jointly by
unsupervised Bayesian learning of the model. The exper-
imental results showed that the proposed method is effec-
tive for musical structure analysis.

The proposed method considers homogeneity, repeti-
tiveness, and regularity, but not novelty, which has been
emphasized in conventional research [1]. Exploiting this
aspect remains an avenue for future work. It is also im-
portant to deal with further hierarchies [17], as music has
a hierarchical structure moving from motives and phrases
to sections and section groups [43].

Proceedings of the 21st ISMIR Conference, Montréal, Canada, October 11-16, 2020
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ABSTRACT 

Music copyright lawsuits often result in multimillion dol-
lar damage awards or settlements, yet there are few objec-
tive guidelines for applying copyright law in infringement 
claims involving musical works. Recent research has at-
tempted to develop objective methods based on automated 
similarity algorithms, but there remains almost no data on 
the role of perceived similarity in music copyright deci-
sions despite its crucial role in copyright law. We collected 
perceptual data from 20 participants for 17 adjudicated 
copyright cases from the USA and Japan after editing the 
disputed sections to contain either full audio, melody only, 
or lyrics only. Due to the historical emphasis in legal opin-
ions on melody as the key criterion for deciding infringe-
ment, we predicted that listening to melody-only versions 
would result in perceptual judgements that more closely 
matched actual past legal decisions. Surprisingly, how-
ever, we found no significant differences between the three 
conditions, with participants matching past decisions in 
between 50-60% of cases in all three conditions. Auto-
mated algorithms designed to calculate melodic and audio 
similarity produced comparable results: both algorithms 
were able to match past decisions with identical accuracy 
of 71% (12/17 cases). Analysis of cases that were difficult 
to classify suggests that melody, lyrics, and other factors 
sometimes interact in complex ways difficult to capture us-
ing quantitative metrics. We propose directions for further 
investigation of the role of similarity in music copyright 
law using larger and more diverse samples of cases and 
enhanced methods, and adapting our perceptual experi-
ment method to avoid relying for ground truth data only on 
court decisions (which may be subject to selection bias). 
Our results contribute to important practical debates, such 
as whether jury members should be allowed to listen to full 
audio recordings during copyright cases.  

1. INTRODUCTION  

Music copyright law protects the lawful rights and inter-
ests of music creators and performers, but in some music 
copyright infringement cases, its application has caused 
bitter controversy. As litigation becomes more frequent, 

inappropriate music copyright lawsuits not only inhibit 
music creativity but also waste millions of taxpayer dollars 
annually to cover the adjudication of these disputes. The 
legal system and music industry could both benefit from 
automated methods that could reduce subjectivity in music 
copyright decisions, and several recent studies have pro-
posed such automated methods [1-4]. While the accuracy 
of some algorithms have been tested against previous court 
decisions, they have not yet been tested against perceptual 
data to determine how different musical and extra-musical 
factors interact in copyright law.  

 “Substantial similarity” and “protectable expression” 
are central concepts in US copyright law, the understand-
ing of which could potentially be supplemented through 
automated and/or perceptual analyses. The concept of 
“substantial similarity” requires not only that the defend-
ant can be shown to have copied musical material, but that 
this copying of protected musical expression was so exten-
sive that the two works are substantially similar [5]. Data 
on degrees of computed and/or perceived similarity can 
help to determine objective standards for how much copy-
ing is required to be considered “substantial”.  

Evaluating what is considered “protectable expression” 
is more qualitative and complex. Many musical aspects 
such as scales, certain rhythmic patterns, and timbres are 
considered to be such basic and commonplace musical 
ideas as not to be copyrightable. For example, many blues 
songs all use very similar blues scales, 12-bar harmonic 
progressions, vocal styles and instrumentation, but copy-
ing these aspects is not considered copyright infringement. 
Instead, melody (i.e., the sequence of pitches) and lyrics 
have traditionally played predominant roles against other 
musical factors [6-7]. However, it has been disputed 
whether jury members should be allowed to listen to full-
audio or melody-only versions of musical works because 
people may perceive and judge differently when compar-
ing pairs of melodies or other musical features [8]. For ex-
ample, a core issue in the recently concluded case involv-
ing the Blurred Lines [9] was whether the jury should be 
allowed to listen to a full audio recording including lyrics 
and background instrumentation of the complaining work, 
or whether it should only be exposed to the sheet music 
that was deposited with the US Copyright Office [6].  

To quantitatively compare the effects of melody, lyrics, 
and other factors, we designed a controlled experiment 
where we constructed versions of a disputed musical work 
containing the full audio (including lyrics, melody, and 
other factors such as instrumentation), melody only 
(pitches and rhythms in MIDI representation), and lyrics 
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only (text representation). Because of the historical domi-
nance of melody, we predicted that participants would 
most accurately match past decisions when presented with 
melody-only versions, and that automated algorithms 
based on melodic data would more accurately match past 
decisions than ones based on full-audio data.  

Section 2 discusses related research. Section 3 discusses 
the data selection for our study. In Section 4, we demon-
strate the design and details of the perceptual experiment. 
In Section 5, we show how the melodic and audio similar-
ity are calculated by automated algorithms (PMI and 
Musly, respectively). In Sections 6, 7, and 8, we discuss 
the performance of the two automated methods, compare 
the automated and perceptual methods, summarize current 
results, and discuss future directions for improvement.  

2. RELATED WORK 

2.1 Perceptual Experiments 

In one previous experimental study, Lund used two past 
court cases (Swirsky v. Carey and Gasté v. Kaiserman) and 
manipulated MIDI representations of the works to change 
aspects such as tempo, rhythm, and instrumentation [8]. 
Lund found that such manipulations reduced the accuracy 
of participants’ judgements of copyright infringements 
even though it was assumed that such non-melodic fea-
tures should not play a role in decisions. Lund argued that 
this demonstrated that the “lay listener test” was flawed 
because it relies on subjective listening to audio recordings 
that may differ in non-melodic aspects. However, Lund did 
not compare full audio recordings with these MIDI repre-
sentations, so it remains unknown whether listeners are in 
fact more accurate when listening to MIDI representations 
than when listening to full audio recordings.  

2.2 Automatic Analysis 

Müllensiefen and Pendzich developed an algorithm for 
judging melodic similarity that compares the profile of 
successive pitch intervals in two disputed songs against 
each other, while weighting them against a database of 
comparable profiles from 14,063 pop songs using a 
weighting formula for estimating perceptual salience [1]. 
When they applied this algorithm to a database of 20 past 
music copyright decisions focused on melodic similarity, 
they found the best-performing version of their algorithm 
was able to accurately identify 90% (18/20) of past cases.  

Savage et al. later developed a Percent Melodic Identity 
(PMI) method for quantifying melodic evolution based on 
automatic sequence alignment algorithms used in molecu-
lar genetics to measure melodic similarity [10]. When they 
applied this method to the same set of cases as Müllen-
siefen & Pendzich, it accurately predicted 80% (16/20) of 
cases, despite being a simpler method that didn’t require 
calibration to an existing database of popular songs [3].  

 
1 While preparing the audio files for experiments we noticed several mi-
nor inconsistencies between the audio files and the transcriptions pro-
vided by the authors of [1]. In some cases, these were small errors in 
pitch/rhythm; in others, only one half of a larger section was transcribed. 
The original transcriptions were not initially published but have now been 

While the related task of cover song detection has a long 
history of study in music information retrieval [11-12], to 
our knowledge no audio similarity algorithms have yet 
been tested for their ability to evaluate copyright infringe-
ment. However, many general audio similarity algorithms 
have been evaluated through the Music Information Re-
trieval Exchange (MIREX) competition. We thus chose 
the audio similarity algorithm implemented in Musly, an 
open-source library of audio music similarity algorithms, 
because it has consistently performed at or near the top of 
audio similarity algorithms as evaluated in MIREX [13].  

3. DATASET OF MUSIC COPYRIGHT 
INFRINGEMENT CASES 

We chose a set of 17 court decisions whose main copyright 
issue focused on substantial similarity of the melodies (Ta-
ble 1). 14 of these 17 cases are from the US, and these 14 
represent a subset of 20 cases from the Music Copyright 
Infringement Resource [14] that were previously analyzed 
[1, 3] for which full audio recordings were available for 
both of the disputed musical works (the remaining 6 cases 
were not included because one or both musical works were 
represented only by sheet music and/or MIDI files). We 
also included 3 court decisions from Japan in order to in-
crease cultural diversity in the dataset for further study on 
adaptability to music other than Western music. Of the 17 
cases courts found no infringement in 8 cases, and in-
fringement in 9.  

4. PERCEPTUAL EXPERIMENT 

4.1 Experiment Design 

We conducted an online perceptual experiment where par-
ticipants were each asked to judge substantial similarity for 
the 17 cases. The disputed segments of the musical works 
(mean length: 22s; range: 3-55s) were presented in one of 
three different versions: full-audio (the recorded versions 
including all instrumental and/or vocal parts), melody-
only (MIDI rendition of the pitches and rhythms of the 
main melody), and lyrics-only (lyrics shown as visual text, 
without any accompanying audio). For the melody condi-
tion, in order to control for all non-melodic factors includ-
ing instrumentation, key, and tempo, transcribed melodies 
from the original audio recordings were edited as neces-
sary to exactly correspond to the audio recordings1: these 
transcribed melodies were transposed to have a tonic of C, 
and were then recorded using the MIDI piano in 
MuseScore played back at a tempo that was the average of 
the tempi from the plaintiff and defendant recordings. For 
the lyrics condition, the three instrumental works without 
lyrics (cf. Table 1) simply showed “[no lyrics]”. These 
three types of presentations were repeated twice: once us-
ing the originally disputed pair of musical works, and once 
using the original defendant work but comparing it against 
a randomly selected plaintiff work from the other 16 cases.  

uploaded to https://github.com/pesavage/copyright/tree/mas-
ter/MIDIs_plagiarismcases_MullensiefenPendzich2009 to allow com-
parison as necessary. The corrected transcriptions are available at 
https://github.com/compmusiclab/music-copyright.  
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Table 1. The 17 music copyright infringement cases analyzed and respective melodic similarity (PMI), audio music simi-
larity (Musly), and perceptual experiment results. Cases are ordered by increasing PMI values. In “Court Decision” column, 
“0” represents no infringement, and “1” represents infringement. Cases in italics are those PMI failed to accurately classify, 
and bold indicates those Musly failed to classify. Columns highlighted in light blue are the accuracy of perceptual judge-
ment for the 17 court cases judged by the 20 participants for full-audio, melody-only, and lyrics-only, corresponding to the 
data in Figure 1. Columns highlighted in light green are perceptual similarity values used for comparison between automatic 
methods and perceptual judgement in Section 6, corresponding to the data in Figures S2 and S3. Three defending works 
marked in orange text are instrumental. 

This gave a total of 102 different pairs of musical works to 
evaluate (17 cases × 3 presentations [full, melody, lyrics] 
× 2 pairings [original plaintiff vs. random plaintiff]), pre-
sented in fully random order (without separate blocks for 
different conditions; i.e., any given sample might be full-
audio, melody-only, or lyrics-only; original case or not). 
Each experiment took approximately 2 hours for one par-
ticipant to complete evaluations for these 102 pairs.  

For each pair, the participant is given a pair of music 
excerpts, “A” and “B”. “A” is always a plaintiff’s work 
while “B” is always a defendant’s work. After listening to 
the full-audio or MIDI or reading the lyrics of the two mu-
sic works, the participant needs to answer two questions: 
1) How similar are A and B? (5-point Likert scale: “not at 
all similar”, “a little similar”, “somewhat similar”, “very 
similar”, and “extremely similar”). 2) Do you think the 
second music work (“B”) infringed the copyright of the 
first one’s (“A”)? (Yes/no answer.) The following criteria 
for infringement were provided, taken from [8] (which was 
in turn adapted from real instructions given to juries [de-
tails of the adaptation were not provided]):  

To find music copyright infringement between plain-
tiff’s and defendant’s songs, you must find that the 
songs are substantially similar. Two works are substan-
tially similar if the original expression of ideas in the 
plaintiff’s (Song #1) copyrighted work and the expres-
sion of ideas in the defendant’s work (Song #2) that are 
shared are substantially similar. Original expression 
are those unique aspects of plaintiff’s song that are not 
common or ordinary to the genre or to music generally. 
The amount of similarity must be both quantitatively 

and qualitatively significant, that is the defendant’s 
song copied either a substantial portion of the original 
expression of the plaintiff’s song, or copied a smaller 
but qualitatively important portion of the plaintiff’s 
song.  

In short, this investigation imitates the lay listener test used 
to see whether an ordinary observer recognizes that the de-
fendant appropriated something belonging to the plaintiff 
[8, 15].  

4.2 Results 

We collected perceptual data from 20 participants from our 
institution. 9 were male, and 11 were female. 17 were be-
tween 17-28 years old, 1 was between 29-50, and 2 were 
over 50. The native languages of participants were Chinese 
(13 participants), Japanese (6) and English (1). 11 reported 
substantial music experience while 9 did not. Table 1 sum-
marizes all results for perceptual and automated experi-
ments.  

Figure 1 and S1 show how accurately the 20 partici-
pants’ judgement of infringement matched the official 
court decisions when they were given full-audio, melody-
only, or lyrics-only versions of music pieces from the 17 
court cases. Note that accuracy is measured as how likely 
participants were to match court decisions, whether that 
decision was of infringement or no infringement. Although 
the perceptual data were collected for the three cases in-
cluding instrumental works, these cases were omitted from 
the lyrics-only analyses because infringement of lyrics is 
clearly impossible for instrumental works. In Figure S1, 

No.
Cou
ntry

Case Complaining Work
Length 
(seconds)

Defending Work
Length 
(seconds)

Court 
Decision

PMI 
(cutoff = 
46.8%)

Musly-
calculated 
Similarity 
(cutoff = 
32.8%)

Perceptual 
Accuracy - 
Full audio

Perceptual 
Accuracy - 
Melody only

Perceptual 
Accuracy - 
Lyrics only

Perceptual 
Similarity - 
Full audio

Perceptual 
Similarity - 
Melody only

Perceptual 
Similarity - 
Lyrics only

1 JP Harry vs. Suzuki
“Boulevard of Broken 
Dreams”

33
“���������
��
��
�	���
�	�” (One 
Rainy Night in Tokyo)

23 0 25% 25% 65% 80% 100% 3.15 2.9 1.4

2 US Cottrill vs. Spears
“What You See is What 
You Get”

22 “What U See is What U Get” 24 0 35% 41% 70% 95% 65% 2.75 1.85 3

3 US Baxter vs. MCA “Joy” 7 “Theme from ‘E.T.’” 19 0 37% 12% 85% 90% N/A 2.7 2 N/A

4 US Swirsky vs. Carey
“One of Those Love 
Songs”

29 “Thank God I Found You” 32 1 45% 76% 60% 35% 0% 3.45 3 1.4

5 US Repp vs. Lloyd-Webber “Till You” 27 “Phantom Song” 38 0 45% 15% 50% 35% 100% 3.15 4.35 1.25

6 JP Kobayashi vs. Hattori
“��������“��������” 
(Dokomademoikō)

23 “���“���” (Kinenju) 40 1 47% 10% 55% 45% 10% 3.6 3.2 1.55

7 US
Three Boys Music vs. 
Michael Bolton

“Love Is A Wonderful 
Thing” 

10
“Love Is A Wonderful 
Thing”

17 1 47% 63% 70% 30% 50% 3.65 3.25 3.7

8 US
Herald Square Music vs. 
Living Music

“Day By Day” 32
“Theme N.B.C.’s ‘Today 
Show’”

30 1 51% 5% 45% 40% N/A 3.6 2.85 N/A

9 US
Grand Upright vs. 
Warner

“Alone Again 
(Naturally)”

5 “Alone Again” 6 1 53% 25% 70% 30% 50% 4.2 2.9 4

10 US
Bright Tunes Music vs. 
Harrisongs Music

“He’s So Fine” 27 “My Sweet Lord” 55 1 58% 35% 25% 45% 5% 2.5 3.25 1.3

11 US Selle vs. Gibb “Let It End” 21 “How Deep Is Your Love” 19 0 63% 11% 55% 40% 95% 3.25 3.65 1.65

12 US
Louis Gaste vs. Morris 
Kaiserman

“Pour Toi” 17 “Feelings” 21 1 65% 33% 50% 50% 0% 3.4 3.8 1.35

13 US
Granite Music vs. United 
Artists

“Tiny Bubbles” 18 “Hiding The Wine” 11 0 67% 4% 60% 40% N/A 3.3 3.8 N/A

14 US Fantasy vs. Fogerty
“Run Through The 
Jungle”

21
“The Old Man Down The 
Road”

21 0 67% 62% 40% 45% 100% 3.45 3.3 1.4

15 US Jean et al. vs. Bug Music “Hand Clapping Song” 3 “My Love Is Your Love” 4 0 71% 20% 45% 80% 90% 3.75 2.6 2.8

16 US Levine vs. McDonald’s
“Life Is A Rock (But 
The Radio Rolled Me)”

22 “McDonald’s Menu Song” 26 1 80% 63% 65% 45% 10% 4 3.6 1.8

17 JP HarumakiGohan vs. Mori
“�������“�������” 
(Hachigatsu no reinī)

21 “M.A.K.E” 22 1 100% 54% 75% 85% 10% 4.25 4.35 2
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25



  
 
individual data points represent mean accuracy for individ-
ual participants (n = 20) across the 17 cases, while in Fig-
ure 1 individual data points represent mean accuracy for 
individual cases (n = 17) across the 20 participants.  

Surprisingly, the accuracy numbers by participants of 
the three condition groups distributed quite closely, with 
mean accuracy of 58%, 54%, and 49% for full-audio, mel-
ody-only, and lyrics-only groups respectively. Not only 
was our predicted difference between melody-only and 
full-audio not significant (paired t = 1.7, df = 19, one-tailed 
p = 0.95), but what small difference there was between 
full-audio and melody-only was in the opposite direction 
from our predictions (participants were slightly more ac-
curate when presented with full-audio than with melody 
alone). However, randomized control pairs had modal ac-
curacies of 100% for all three conditions (cf. Figure S1), 
confirming that participants were able to perform all three 
tasks much more accurately than by chance. In addition, 
participants who self-reported as musicians showed no sig-
nificant differences in accuracy compared to non-musi-
cians (full: t = 0.63, df = 11, 1-sided p-value = 0.27; mel-
ody: t = 1.20, df = 17, 1-sided p-value = 0.12; lyrics: t = 
0.68, df = 14, 1-sided p-value = 0.25).  

 

Figure 1. Accuracy of perceptual judgement for each of 
the 17 court cases, as measured by the percentage of the 20 
participants whose judgements of music copyright in-
fringement matched court decisions.  

Figure 1 plots the accuracy of perceptual judgement for 
the 17 court cases judged by the 20 participants. As in Fig. 
S1, the means of the three conditions are similar. Interest-
ingly, however, the accuracy values are approximately 
normally distributed for the full-audio condition, while the 
melody-only and lyrics-only conditions have bimodal, 
hourglass-shaped distributions. Furthermore, full-audio 
cases show no major differences in the distribution of in-
fringing vs. non-infringing cases, while melodic cases 
show some skewing toward higher accuracy for non-in-
fringing cases and lyrics show a strong dichotomy between 
high accuracy for non-infringing cases and low accuracy 

 
1 Note that rhythms are not eliminated for the perceptual stimuli, only for 
the PMI calculation (see [10] for discussion of treatment of rhythm in the 
PMI method).  

for infringing cases. No clear differences are notable for 
the small subsets of cases from Japan or those involving 
instrumental works.  

5. AUTOMATIC ANALYSIS 

We performed automatic similarity analysis of these cases 
using two different automated algorithms focused on me-
lodic and audio similarity, respectively.  

5.1 Melodic Similarity (Percent Melodic Identity 
[PMI]) 

We chose the PMI (Percent Melodic Identity) method to 
calculate melodic similarity because it has been validated 
in previous research using a similar sample of copyright 
cases. Like Judge Learned Hand’s “comparative method” 
[6] to test musical similarity, the PMI method begins by 
transposing two melodies transcribed in staff notation into 
a same key, eliminating rhythmic information by assigning 
all notes equal time values, and then aligning and counting 
the confluence of notes1. Following the procedure, we pre-
pared note sequences of disputed melodies all transposed 
to a C tonic for consistency (just as was done when prepar-
ing MIDI files). The PMI algorithm then automatically 
aligns each sequences pair, and counts the number of iden-
tical notes (ID). The percentage of identical notes shared 
between the pair of melodies, named percent melodic iden-
tity (PMI) [3], is calculated by dividing ID by the average 
length of the melodies pair (L1 and L2), as follows:  

!"# = 100' #(
)! + )"
2

, 

5.1.1 Melodic Similarity Results 

The PMI values computed for all 17 music copyright in-
fringement cases are shown in Table 1. Receiver Operating 
Characteristic (ROC) analysis was used to assess the pre-
diction given by PMI values. The area under the ROC 
curve (AUC) is 0.61. The optimal cutoff PMI value is 
46.8% with sensitivity = 0.89 and specificity = 0.50. Using 
this cutoff, PMI method was able to accurately classify 12 
out of the 17 cases (71%) to match their court decisions. 
The five cases highlighted by italic font in Table 1 are 
those that the PMI method failed to classify correctly, dis-
cussed further below.  

5.2 Audio Similarity (Musly) 

Musly currently implements two music similarity algo-
rithms. One implements Mandel-Ellis audio similarity al-
gorithm [16]. The other one, which is the default one, im-
proves Mandel-Ellis algorithm to compute audio similarity 
for best results. Specifically, it computes a representation 
of each song’s audio signal based on 25 Mel-Frequency 
Cepstral Coefficients (MFCCs) to estimate a Gaussian 
model and finally a single timbre model to be compared, 
computes similarity between each pair of timbre models 
using Jensen-Shannon approximation, and normalizes the 
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similarities with Mutual Proximity [17-18]. We used the 
default algorithm because it has been found to have higher 
accuracy [17].  

We prepared the full-audio version of the music ex-
cerpts from the dataset of court cases and fed them to the 
default algorithm of Musly to compute similarity. The out-
put of the Musly algorithm is a distance matrix where dis-
tances, i.e. differences, between every two songs are listed. 
Because the Musly default algorithm normalizes the re-
sults, all the distances range between 0 and 1. Conse-
quently, we calculated the audio music similarity by sub-
tracting distance values from 1 and multiplying by 100 to 
convert the results into percentage terms for consistency 
with our other methods.  

5.2.1 Audio Similarity Results 

The results of Musly-calculated audio music similarity 
values for all 17 tested cases are shown in Table 1, ap-
pended next to the column of PMI values. The area under 
the ROC curve (AUC) is 0.69. The optimal cutoff thresh-
old of Musly-calculated similarity is 32.8% with sensitiv-
ity = 0.67 and specificity = 0.75. Using this cutoff, Musly 
algorithm was also able to accurately classify 12 out of the 
17 cases (71%) to match the court’s decisions. The five 
failure cases are highlighted by bold font in Table 1 and 
briefly analyzed below.  

6. AUTOMATED VS. PERCEPTUAL 
JUDGEMENTS 

6.1 PMI vs. Perceptual Data 

Mean perceptual similarity of each court case was calcu-
lated by averaging participants’ individual ratings of simi-
larity. The perceptual similarity values for the 17 court 
cases are listed in Table 1 and highlighted by light green. 
Figure S2 shows the relationship between PMI values and 
perceptual similarity under the three different conditions. 
Regression analyses show that the PMI melodic similarity 
is significantly correlated with perceptual similarity for 
both full-audio and melody-only conditions (full: R = 0.58, 
p = 0.014; melody: R = 0.59, p = 0.012), but not for the 
lyrics-only condition (R = -0.058, p = 0.84).  

6.2 Musly vs. Perceptual Data 

We also compared the Musly-calculated audio music sim-
ilarity with the perceptual data collected. Figure S3 shows 
the correlation between Musly similarity and perceptual 
similarity of the 17 tested court cases under three different 
conditions for perceptual judgement. Regression analyses 
indicate that the Musly audio similarity has no significant 
correlations with perceptual similarity for all three condi-
tion groups of “full-audio”, “melody-only”, and “lyrics-
only” (full: R = 0.26, p = 0.32; melody: R = 0.082, p = 
0.76; lyrics: R = 0.059, p = 0.84).  

 
1 The chance of getting an accuracy of 12 or more correct by chance is 
actually 26%. 

7. DISCUSSION 

Overall, our analyses showed moderate agreement be-
tween automated and perceptual judgements of music cop-
yright infringement. Both automated similarity algorithms 
– PMI for symbolic data and Musly for audio data – 
matched past court decisions with relatively high accuracy 
(both 71%). The fact that PMI was significantly correlated 
with perceptual similarity for both melody-only and full-
audio provides validation for PMI as a perceptually rele-
vant measure of melodic similarity and is consistent with 
the idea that melodic similarity plays a role in judgements 
of overall musical similarity [19].  

The lack of correlation between Musly’s audio similar-
ity algorithm and perceptual similarity was surprising 
given that Musly’s algorithm has previously performed 
well in evaluations of general musical similarity. This may 
be partly explained by Musly’s reliance on MFCCs to cap-
ture timbral and rhythmic similarity, not melodic similar-
ity. Previous studies have shown that limited inter-rater re-
liability in judgements of musical similarity can limit the 
performance of automated algorithms [13]. Future anal-
yses using supervised learning or other algorithms for cap-
turing melodic similarity [1] may be able to improve per-
formance, although the subjective nature of musical simi-
larity will still place limits on the ability of any algorithm 
to match human judgements.  

Surprisingly, both automated methods had higher accu-
racy than that of perceptual judgement, with both auto-
mated methods able to accurately predict 71% (12/17) of 
previous court decisions while perceptual accuracy were 
58% and 54% under full-audio and melody-only condi-
tions respectively. We suspect that allowing the algorithms 
to optimize the similarity threshold via the ROC analysis 
helped to improve - and probably overfit - the automated 
analyses1. Future analyses with larger data samples should 
consider calibrating parameters on a training subset before 
evaluating them on a separate test subset.  

There are several possibilities for the low levels of per-
ceptual accuracy. The fact that participants showed very 
high levels of accuracy (almost 100%) for randomized 
plaintiff samples suggests that the results were not merely 
random, but the inclusion of such samples might conceiv-
ably have skewed judgements by including levels of dis-
similarity rarely included in real court cases. The fact that 
musicians performed similarly to non-musicians suggests 
that lack of musical expertise is also unlikely to explain the 
low performance. Although we cannot rule out effects of 
participants’ familiarity because we failed to collect such 
data, any familiarity effects when participants were aware 
of the cases would be predicted to increase, rather than de-
crease, accuracy.  

Instead, some past court decisions (e.g., the cases in-
volving “He’s So Fine” and “Blurred Lines”) have been so 
controversial as to be debatable whether they were in fact 
“correct” [6]. Indeed, it seems likely that the dynamics of 
copyright lawsuits create a type of selection bias in which 
cases where infringement or lack of infringement are ob-
vious are more likely to be resolved out of court2 without 
a final court decision, while only the most ambiguous 

2 One case (HarumakiGohan v. Mori) was settled out of court, and this 
case displayed some of the highest levels of participant accuracy. 
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cases require the court to make a final adjudication. In the 
future, rather than relying for ground truth only on court 
decisions and the selection bias they may create, our per-
ceptual experiment may provide an alternative source of 
ground truth for disputes that were resolved out of court 
and thus tend to lack objective legal documentation.  

Our prediction that listening to melody-only would pro-
vide superior accuracy than listening to full-audio was not 
supported. The fact that our prediction was not only not 
significant but was in the wrong direction suggests that 
limited statistical power cannot explain this result. Instead, 
despite legal arguments suggesting that non-melodic fac-
tors should generally be ignored and the sample having 
been selected based on the criteria of melodic similarity 
[1], individual cases are always complex and factors such 
as lyrics, instrumentation, and other non-melodic factors 
did in fact play roles in past decisions [14]. Overall, par-
ticipants tended to judge melody-only versions as less sim-
ilar than full-audio, with accuracy tending to be lower for 
cases judged as infringing. This suggests that participants 
have more difficulty detecting infringement using melody 
only. Since including non-melodic information appears to 
help (or at least not hurt) improve accuracy even for this 
sample emphasizing melodic similarity, this may suggest 
that allowing juries to hear full audio recordings without 
restricting them to sheet music depositions could actually 
help improve accuracy in legal cases. However, this hy-
pothesis remains speculative until it can be more rigor-
ously tested at larger scales (and the issue discussed above 
of determining “correct” decisions more thoroughly ad-
dressed).  

The average results for each case shown in Figure 1 dis-
played a normal distribution for full-audio but were hour-
glass-shaped/bimodal for melody-only and lyrics-only. 
For the lyrics-only condition, this distribution reflects that 
most participants judged non-infringement for most cases, 
which is consistent with the fact that this sample was not 
selected to include many example of lyrics infringement. 
The melody-only condition led to higher accuracy for 
some cases (as predicted), but lower accuracy for others 
(contra predictions).  

The accuracy of the PMI algorithm for the current study 
of 71% (12/17 cases) was slightly lower than the value of 
80% (16/20 cases) reported in a previous study using a 
similar dataset. There are two reasons for this: 1) The sam-
ple was different – this study excluded 6 cases without 
matching full audio recordings and added 3 new Japanese 
cases (the new Japanese cases were not selected based on 
PMI values or any quantitative criteria, but they all were 
correctly classified by the PMI algorithm). 2) In the pro-
cess of preparing controlled audio files for the experiment 
that were exactly matched, we noticed that several of the 
transcriptions used in [1] and [3] either did not exactly 
match the audio recordings, or had mismatched lengths.  

Compared with the previous published study on PMI 
[3], the current PMI method successfully classified two 
case that were not accurately classified in the 2018 testing 
(Three Boys Music v. Michael Bolton and Grand Upright 
v. Warner), but three cases previously classified success-
fully now failed to be successfully classified (Swirsky v. 
Carey, Granite Music v. United Artists, and Jean et al. v. 
Bug Music). Two cases (Selle v. Gibb and Fantasy v. 

Fogerty) remained failures in both studies, but these two 
exceptions were not due primarily to a failure of the me-
lodic similarity algorithm but rather to the complex nature 
of musical copyright law [3]. These discrepancies show 
how results from the PMI method can be affected by errors 
and uncertainties in the transcription process.  

While the Musly algorithm resulted in the same overall 
accuracy as the PMI method (71%), 4 of the 5 mis-classi-
fied cases were different between the two methods. Both 
methods mis-classified Fantasy v. Fogerty as infringing 
when the court decision was non-infringement (see [3] for 
discussion of legal details). The four cases uniquely mis-
classified by the Musly but not PMI method largely 
seemed to be of the type predicted by the melody-centric 
view of copyright in which non-melodic similarities or dif-
ferences interfered with assessment of melodic similarity. 
For instance, Herald Square Music v. Living Music 
showed low audio similarity via Musly despite high me-
lodic similarity and a finding of infringement. In this case, 
the different timbres where one melody is performed by a 
saxophone with background noise while the other is sung 
by a vocalist with piano accompaniment seem to obscure 
similarities in the two melodies.  

The fact that both algorithms failed for different sets of 
cases, and the fact that participants who made judgements 
only based on audio similarity without information about 
the historical/legal context performed even lower than the 
algorithms, suggests that the complexities of copyright law 
are difficult to fully capture through objective measure-
ment of similarity alone. The relative emphasis on melody, 
lyrics, other musical aspects, and extra-musical legal fac-
tors changes from case to case, limiting the power of any 
single objective method. This supports previous caveats 
that, while objective quantitative methods may help sup-
plement traditional qualitative analysis, “Trial by algo-
rithm will never replace trial by jury, nor should it.” [3].  

8. FUTURE DIRECTIONS 

The primary limitation of our study at present is its limited 
size and scope, with a dataset of only 17 court decisions 
(17 from USA) and perceptual ratings from only 20 partic-
ipants. Furthermore, some of the cases include non-musi-
cal aspects that make it difficult for current automated 
methods focusing on musical similarity to identify those 
exceptions. Thus, we plan to expand the testing data by in-
cluding more usable cases which have court decisions and 
have no non-musical factors that have affected the court 
decisions. Preliminary screening of the 238 cases at the 
Music Copyright Infringement Resource [14], we found 50 
potentially usable court cases we plan to investigate in fu-
ture studies. To increase diversity and cross-cultural gen-
eralizability, we also plan to identify more non-US cases, 
particularly from Japan and China where music industry 
revenues are substantial.  

One promising direction may be to expand from a focus 
purely on music copyright infringement to also include the 
related domain of cover-song detection. Because there are 
larger databases and more sophisticated algorithms being 
developed for cover-song detection, these may provide 
more powerful methods that could be adapted to copyright 
infringement in future research [11-12].  
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9. DATA/CODE AVAILABILITY 

Musical stimuli, data and analysis code are available at 
https://github.com/compmusiclab/music-copyright. The 
full experiment can be accessed at https://mu-
sic.keio.moe/experiments/copyright/full.  
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ABSTRACT

Investigating music with a focus on the similarity relations
between songs, albums, and artists plays an important role
when trying to understand trends in the history of music
genres. In particular, representing these relations as a sim-
ilarity network allows us to investigate the innovation pre-
sented by these entities in a multitude of points-of-view,
including disruption. A disruptive object is one that cre-
ates a new stream of events, changing the traditional way of
how a context usually works. The proper measurement of
disruption remains as a task with large room for improve-
ment, and these gaps are even more evident in the music
domain, where the topic has not received much attention
so far. This work builds on preliminary studies focused
on the analysis of music disruption derived from metadata-
based similarity networks, demonstrating that the raw au-
dio can augment similarity information. We developed a
case study based on a collection of a Brazilian local music
tradition called Forró, that emphasizes the analytical and
musicological potential of the musical disruption metric to
describe and explain a genre trajectory over time.

1. INTRODUCTION

Inflections on creative threads are prevalent events that can
be observed multiple times throughout music history [1].
The emergence of punk rock in the early seventies, for ex-
ample, changed the traditional rock and roll in many as-
pects to create a unique music expression [2]. The music
branch of the punk culture brought heavy lyrics, aggressive
looks, and even deep acoustic changes to the songs, which
were more aroused and noisier than songs from previous
decades. Such music aspects were replicated over time,
as evidenced for example in the expert-curated influences
credited in the AllMusic guide [3] to artists from the early
stages of the punk rock (e.g. Ramones, Bad Religion, Sex
Pistols). The guide attributes to these bands influence over
more recent ones, such as Green Day and The Offspring.

c© F. Falcão, N. Andrade, F. Figueiredo, D. Silva and F.
Morais. Licensed under a Creative Commons Attribution 4.0 Interna-
tional License (CC BY 4.0). Attribution: F. Falcão, N. Andrade, F.
Figueiredo, D. Silva and F. Morais, “Measuring disruption in song simi-
larity networks”, in Proc. of the 21st Int. Society for Music Information
Retrieval Conf., Montréal, Canada, 2020.

Figure 1. Network topology for a disruptive artist.

Regarding the different creative roles played by artists
during the genre trajectories, the AllMusic guide defines
the Ramones as “inarguably the most relevant band in
punk history, creating the stylistic prototype that would
be followed by countless bands who emerged in their
wake” 1 . That points out to a particular innovative case
where an artist had a significant and primary influence over
the rupture of some well-established guidelines. Thus, an
artist can be considered disruptive when your music contri-
bution is developed in a self-sufficient way, abruptly shift-
ing the present creative thread.

Conversely, AllMusic suggests a different nature of in-
novation when describes Green Day as “influenced by the
late-’70s punk predecessors, they went on to introduce a
new, younger generation to the genre” 2 . On the opposite
of the disruptive movement by the Ramones, this excerpt
allows describing Green Day’s creative potential as a con-
solidation of the previous practices, including their partic-
ular musical signature in the meantime.

Both musical creative natures can be represented by a
network model, where the nodes represent artists and the
edges symbolize the influence relation of one artist over
another. Figure 1 shows a disruptive innovation by the Ra-
mones based on influences metadata extracted from All-
Music, where edges indicate an “influenced by” relation.
Predecessors (i.e., one that chronologically preceded an-
other) of a focal node (in green) are represented by red

1 https://www.allmusic.com/artist/
ramones-mn0000490004/biography

2 https://www.allmusic.com/artist/
green-day-mn0000154544/biography
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Figure 2. Network topology for a consolidator artist.

nodes, whereas purple nodes represent the successors.
Due to its self-sufficient nature, one may expect that

most of the artists (nodes) that succeed and are influenced
by a disruptive artist connect to this artist, but not to its pre-
decessors. A similar explanation can be given to describe
the network topology for artists that consolidate the genres
over time (Figure 2 for Green Day): these artists reaffirm
a thread of influences, as their successors are usually influ-
enced by both them and their predecessors.

Despite its simple semantics and noticeable potential in
enriching musicological analyses about the history of gen-
res, there is limited research that measures the disruption
of songs over time. In particular, this work is based on the
disruption quantification using a metric derived from audio
similarity networks. Specifically, we model a network of
similarity among songs and use their temporal precedence
to explore patterns of similarity that reveal creative aspects
and disruption over time.

Features extracted from raw audio are reportedly a rich
source of similarity information [4], as they cover many
music aspects, such as timbre [5, 6], harmony [7, 8], and
rhythm [9]. Therefore, consider such types of data to con-
struct similarity networks can be valuable in understand-
ing how songs of the same genre are acoustically related.
In this work, a musical disruption analysis is proposed over
this similarity network, allowing to unveil some interesting
findings of the disruption of songs over time. To promote
a better interpretation of results, we collected a new audio
dataset comprising songs of a definite style, called Forró.

In this analysis we represent songs as Mel-Frequency
Cepstral Coefficients (MFCCs), using these representa-
tions to build a similarity network that connects songs with
similar acoustics. Next, we process this network’s topol-
ogy to calculate the disruption metric for all songs, sum-
marizing the most disruptive music pieces. This analysis
allows us to validate the disruption metric in the music
context. Both the dataset and the network representations
generated during the experiments are made available for
further studies.

2. BACKGROUND

2.1 Music Innovation & Corpora

Music innovation is not a popular main research topic, be-
ing usually mentioned in studies focused on modeling mu-

Figure 3. Demonstration for different types of influence.

sic influence [10–12]. In particular, Shalit et al. [13] pro-
posed a dynamic topic model to represent music influence
over time using metadata and audio. In their work a song
is considered influential if its language gets replicated by
subsequent works, while innovation is modeled as the ex-
tent of which the model accounts for a song when trained
only with data from the past. Their findings leveraged the
Million Song Dataset [14] to point to correlations between
influence and innovation only during some short periods in
the early 70’s and mid-90’s.

Associations between music influence and innovation
were also investigated by Noyer and his collaborators [15].
Using a network to represent influences between artists, the
authors tried to find topological differences between inno-
vative and non-innovative artists. Their approach analysed
artists data from 1951 to 2008, measuring innovation as
the number of Grammy awards won by each artist. Con-
clusions identify that innovation in fact impacts network
topology, showing that artists with more awards presented
considerably more structural holes on their sub-networks.

Corpora plays a major role when representing the influ-
ence relations between artists, albums and songs. Both the
Million Song Dataset [13,16] and the information available
on the AllMusic music catalogue [15, 17, 18] have been
used as audio and metadata source for many MIR tasks,
including influence modeling.

2.2 Disruption Index

This present work builds on a network metric proposed by
Funk & Owen-Smith [19] to measure destabilizing and
consolidating influences of inventions over existing tech-
nology streams. Their CDt index assumes that the de-
gree of destabilizing influence (disruption) of an invention
within an influence network should be measured in terms
of "how future inventions make use of the technological
predecessors cited by a focal patent". Given that notion,
Figure 3 depicts an example of the three types of music
influences for a focal node a (Green Day in the example)
used for measuring disruption according with CDt: Let ni

be the number of nodes i that reference only a and none of
its predecessors (e.g., Smash Mouth), nj be the number of
nodes j that reference both a and at least one of its prede-
cessors (e.g., blink-182), while nk accounts for the number
of nodes k that do not reference a but reference at least
one of its predecessors (e.g., Arctic Monkeys). Disruption
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(henceforth referenced as D) is then measured as:

D =
ni − nj

ni + nj + nk
(1)

D ranges from -1 to 1, where values close to 1 indicate
nodes with highly disruptive potential whereas measures
around the negative extreme denote nodes that mostly con-
solidated influences over time and therefore were cited in
parallel with their predecessors.

The original case study for D was developed over a
database of patents granted in the US between 1977 and
2005. Their findings indicate that disruptive inventions
are usually boosted by federal research funding initiatives,
while commercial ties are more related to the consolidation
of the status quo. Such validation was later expanded by
Wu et al. [20], that enriched the dataset with scientific pa-
pers and software repositories, accounting now for a total
of 65 million observations. The study concluded that dis-
ruptive products are associated with smaller teams, while
larger groups mostly consolidated knowledge.

The disruption metric was recently experimented in the
music context by Figueiredo and Andrade [17]. They
leveraged influence metadata from AllMusic to create a
network linking 32,568 artists according with their influ-
ence relations (i.e. a "link from artist a to b denotes that a
has been influenced by b"). Disruptions are then extracted
for all the network components, triggering discussions re-
garding disruptive and consolidator potential. In particular,
they confirm the results of [13] about the lack of correla-
tion between influence and disruption, also concluding that
D translates structural insights that are not derived from
any existing network metrics.

3. COLLECTED MUSIC DATA

Our musical disruption analysis uses audio data from a
Brazilian cultural manifestation called Forró (composed
by music, dance, and festivities), native from the north-
east of Brazil during the second half of the 19th century.
The Forró music genre is composed of three preponder-
ant instruments: accordion, triangle, and a percussive drum
called zabumba. Luiz Gonzaga is the most prominent rep-
resentative of this genre and is responsible for spreading
his music to other regions of Brazil.

The audio data was obtained from the collaborative site
Forró em Vinil [21], which organize and publish contents
that register the history of Forró (e.g. albums, books, and
pictures). The audio collection is maintained by media col-
lectors that own long play records and CD’s that are no
longer produced by record labels. These collectors digitize
their media and provide the audio files to the site’s admin-
istrators, responsible for curating the collection. We built a
dataset covering Forró songs ranging from the years 1945
to 2016, by scraping the site via a web crawler. Overall,
2,449 distinct albums were collected, grouping a total of
31,485 songs, each one annotated with artist, album, and
release year.

To ensure that the collected data is only comprised of
Forró songs, we excluded other genres found on a descrip-

Figure 4. Histogram for number of songs over decades.

Figure 5. Histogram for number of albums over decades.

tive analysis phase. Moreover, to guarantee a chronolog-
ical information required by the nature of this study, we
filtered out albums without release year informed. These
data corrections were necessary to satisfy genre-specific
and time constraints requirements. Figures 4 and 5 show
the song and album distribution over decades before and
after dataset correction, respectively. Out of the original
2,449 albums, 2,293 satisfied the constraints, accounting
for 27,352 songs which we considered.

4. MUSIC & SIMILARITY REPRESENTATIONS

We leverage Mel-Frequency Cepstral Coefficients
(MFCCs) as feature for audio similarity estimation.
MFCCs are robust music representations often used in
many music information retrieval tasks [22], including
genre classification [23], music recommendation [24, 25]
and audio similarity [26, 27]. Moreover, given its reported
ability to model timbre information [28], we expect that
this feature will also capture relevant audio events when
iterating over our data. In particular, we look for disruptive
episodes when an artist included new instruments to the
basic setup discussed on Section 3, which is something
that actually happened during the history of Forró.

Similarly to what is proposed by Choi et al. [22] for
their baseline feature, we employ as our audio feature the
means and standard deviations for 20 MFFCs and their first
order derivatives over the entire song. Audio processing
techniques are aided by the Librosa package [29]. The re-
sult of this feature extraction methodology is a collection
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Task # # of classes
(n in top-n)

Max. items
per class Sample size Precision

1 20 classes 500 items 6572 items 0.79
2 50 classes 25 items 1125 items 0.88

Table 1. Sampling settings and reported precisions for
artist (#1) and album (#2) classification tasks.

of 27,352 vectors (henceforth referenced as feature vec-
tors), each one containing 80 elements that represent audio
information.

An extra validation step is also conducted to confirm
those feature vectors encode enough audio information to
generate comprehensible music similarities. Two multi-
class audio classification tasks are designed to measure the
precision of machine learning classifiers when trained with
feature vectors from the Forró em Vinil Dataset:

• Task 1: Artist classification: classification of artists
among the top-n (those with more songs);

• Task 2: Album classification: classification of al-
bums among the top-n (those with more songs);

SVM classifiers are used in both cases, given their ef-
ficiency in tasks with small training sets. Model training
was done using scikit-learn [30] and experiments are run
with 10-fold cross-validation using stratified splits. Mod-
els have their parameters optimized upon the use of grid-
search on the validation phase and reported precision val-
ues are related to the best classifier after all splits are done.
Table 1 summarizes both the dataset sampling strategies
and scores for artist and album classifiers, indicating high
precisions for both cases (79% and 88%, respectively).

These partial results present two interesting findings
that support the next steps. First we can now fairly as-
sume that our vector representations encode enough audio
information to derive similarity measures. The second con-
clusion refers to the best performing kernel function con-
sidered by the grid-search routine for both classifiers: the
Radial Basis Function (RBF) kernel. The RBF kernel mod-
els vector distance, and its mathematical definition [31] as-
signs to itself a similarity interpretation [32] (i.e., values
ranging from 0 to 1, inversely proportional to the vector
distance). Given its potential on providing similarity in-
sights for sequential data, we opt for using the RBF kernel
as similarity measure for pairs of feature vectors.

5. SIMILARITY NETWORK

To measure disruption we first need to construct a directed
network connecting similar objects. When it comes to song
similarity networks, the nodes are the songs and an edge
between any pair of songs represent a similarity relation-
ship. We now describe how our network was built.

Each song from the Forró em Vinil Dataset is a single
node in this network. As for the edges, although the RBF
kernel allows us to quantify the similarity between any pair
of songs, the binary choice about whether or not we create

Figure 6. Distribution of in and out degrees.

an edge between two nodes depends on the definition of
a similarity threshold above which we can safely ensure
that a similarity edge exists. In order to empirically se-
lect this threshold, we leverage the fact that songs from
the same album are arguably a fair ground truth for no-
ticeable similarity (i.e., these songs usually share the same
instrument and voice settings). Thus, we iterate over the
whole dataset checking the average similarities between
each song s from album a and every other song s′ from
a. This analysis informs an average similarity of ≈ 0.90,
which from now on is used as threshold when creating
edges.

To create our network, for each song s we query the
similarity matrix among all songs and create an edge from
s to a predecessor s′ if their similarity is greater than or
equal the threshold. Additionally, to limit our analysis to
a timeframe where stylistic movements are observable, we
enforce a time window within which two songs must fall
to in order to enable connections between them. Here the
size of this time window is 10 years, as it seems reasonable
in this context and was also used in [20] when deriving
influences between scientific papers.

Out of the 27,352 original songs from the dataset,
26,452 are included in the resulting graph, connected by
5,728,466 directed edges. This minimal difference from
the original songs count is explained by the removal of dis-
connected nodes (i.e. songs that do not sound similar to
any other). 98% of all nodes are densely connected to the
same giant component and in and out-degrees distribution
can be observed on Figure 6. Moreover, Figure 7 illustrates
an ego-network extracted from the original structure.
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Song Artist Album (year) Disruption Index & Comments
Padrinho
Cícero do
Juazeiro

Trio Juazeiro Pedaço de fulô
(1982)

D = 1 (ni = 37, nj = 0, nk = 0). A fast song (140bpm) with a clear
and complex accordion arrangement. The sub-network focused around its
node evidences connections with multiple songs from same albums, what
might indicate the emergence of a new (disruptive) acoustic setting that was
adopted by following artists, like Clemilda and Roberto do Acordeon.

Namorada de
João

Coroné Nar-
cisinho

Forró do Ser-
rado (1969)

D = 1 (ni = 28, nj = 0, nk = 0). The song brings a very audible triangle
as part of its percussive setup, what can’t be perceived in most of the songs
from the same epoch. Dominant triangles can also be heard in many of the
songs that succeded Namorada de João, as in Esse forró eu danço (Abdias -
1977).

Sem ver-
gonheira

Marinês Canção da fé
(1972)

D = 1 (ni = 24, nj = 0, nk = 0). Marinês is one of the first female Forró
singers. Sem vergonheira, as many of her songs, presents a combination of
a strong lead singing voice and effective backing vocals, an unusual practice
back then. Similar strategy is used by some of its succeeding songs, like
Quebra-cabeça (Trio Nordestino - 1981).

Derramaro o
gai

Luiz Gonzaga O nordeste
na voz de
Luiz Gonzaga
(1962)

D = 1 (ni = 22, nj = 0, nk = 0). The refined accordion melodies are
undoubtedly the strongest aspect of Luiz Gonzaga’s work, and this song is
proof of that. Derramaro o gai has multiple disruptive connections with
other songs from its very same album, as well as similarities with songs from
Severino Januário, his brother.

Lembranças Flávio José Só confio em tu
(1977)

D = 1 (ni = 19, nj = 0, nk = 0). The song empowers the acoustic
guitar among the original Forró instrumentation, what was rare back in the
late seventies. Similar songs by Flávio José solidify this new creative branch,
imitated by artists like Marinês and Genival Lacerda.

Table 2. Top-5 of disruptive songs according to the D measure.

Figure 7. Ego-network for Alô, alô, minha Campina
Grande by Jackson do Pandeiro (D = −0.07). Red nodes
preceded and purple succeeded the focal, green, node.

6. DISRUPTION ANALYSIS

We can now combine the disruption metric D with the sim-
ilarity network proposed in the previous section to trigger
discussions regarding the disruptive potential of songs over
the history of Forró. Since disruption as modeled by Equa-
tion 1 depends on preceding data (i.e., nj and nk nodes),
we decide to use songs prior to 1960 only as comparison
data for the following decades, hence no disruptions for
these are reported. In other words, the songs from the for-
ties and fifties are a part of the graph (they impact the dis-
ruption of future songs), we just do not report their dis-
ruption. All the other songs have their disruption indexes

derived according to the i, j and k as described on Section
2.2.

Table 2 depicts data from the disruption ranking and
summarizes the five most disruptive songs of the Forró em
Vinil Dataset, trying to support these findings with specifics
related to the songs acoustics and their similarity relations.
Although artist influence is not a mandatory requirement
when determining disruption, it’s meaningful to evidence
that music pieces from representative artists such as Luiz
Gonzaga, Marinês and Flávio José are considered disrup-
tive according to our analysis.

We draw special attention to songs from Sivuca that
are included among the most disruptive ones (eight songs
with D ≥ 0.5). This musician, widely acclaimed for his
work both in Brazil and the United States, was a multi-
instrumentalist with strong accordion and acoustic guitar
skills. Many of his songs with high disruption in the net-
work combine elements from a variety of genres other than
Forró, like Choro, Frevo, Jazz and Blues. The acoustic
richness assigned to his work as well as the uniqueness
of the music performed by Sivuca generate a lot of inter-
nal similarity relations between his own songs, causing the
high disruptions. To put it another way, when it comes to
Forró, Sivuca was disruptive in the sense that his work was
mostly influenced by himself, and himself only. This pecu-
liar finding is a representative example of how the disrup-
tion metric can actually help to identify meaningful events
hidden inside the history of genres.

Next, we leverage the disruption information to model
how the creative thread for Forró was developed during
the past seven decades. With this analysis we aim at find-
ing exactly when the genre presented creative inflections
and how often these events happen during its history. Due
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Figure 8. 5 to 95 percentile range of D over the years.

to the large number of songs with D around zero, caused
by the dense network, we opt to summarize this disrup-
tion distribution in Figure 8 using 5 to 95 percentile ranges
over the years. In overall, the higher disruptions of Forró
are mostly concentrated on its first years, specially in the
interval between 1960 and 1970. While at a first glance
this may look like a natural consequence of these being
the first songs in the dataset, recall that we omit an entire
decade from Figure 8 (i.e., to filter out biases due to first
mover advantage, songs from the 1950’s impact the disrup-
tion of future songs but are not present in our analysis).

We further queried the ranking to understand what hap-
pened in the 1960’s. Firstly, we see that this high creative
load is guided by multiple disruptive songs from pioneers
of the history of Forró, like Luiz Gonzaga, Jackson do Pan-
deiro and Marinês. When we investigate the biographies of
these artists (from the AllMusic Guide), we point out facts
such as: Jackson do Pandeiro 3 is considered: “one of the
most inventive and influential Brazilian musicians”, Luiz
Gonzaga 4 is cited as ‘‘one of the most influential figures
of Brazilian popular music in the twentieth century”. Fi-
nally, Marinês was the first woman to have a Forró group 5 .
Biographies were last accessed in August 2020.

Nevertheless, we do point out that the following
decades were also presented with disruptive songs. In par-
ticular, we propose an artist by year investigation to unveil
some insights regarding artists who have unsettled the cre-
ative structure of Forró. Figure 9 uses the same percentile
approach as Figure 8 to summarize the disruption informa-
tion for the six artists with higher averaged D for aggre-
gated data (i.e., all songs from the artist in the network).
Again we see Luiz Gonzaga and Marinês figuring as very
disruptive artists, with a high creative production specially
until 1980, when their careers came to an end (Luiz Gon-
zaga died in 1989 and Marinês reduced her production af-
ter late 1980). Their creative legacy seems to have been
inherited by Genival Lacerda and Flávio José, other dis-
ruptive artists that have been active since the seventies and
which often perform disruptive songs since then. These
other artists provide further evidence that our ranking is
not entirely explained by first mover advantage.

3 https://www.allmusic.com/artist/mn0000109367
4 https://www.allmusic.com/artist/mn0000316340
5 https://www.allmusic.com/artist/mn0000371916

Figure 9. 5 to 95 percentile range of D for disruptive
artists over the years.

7. FUTURE WORK & CONCLUSIONS

The present study proposed an audio-based approach to
extend the experimentation of a disruption metric in the
music context. A new dataset comprised of songs from a
Brazilian music tradition was collected to allow for a spe-
cific case study. The data supported the generation of an
audio similarity network that models the creative flow of
songs over time. Results derived from the disruption index
underline the semantic potential attached to it, by trigger-
ing discussions about specific times when the genre had
creative inflections and even which artists were responsi-
ble for these events. We argue in favor of applying similar
approaches to different contexts, as this may unveil inter-
esting findings about the history of many music genres.

A complementary research direction encourages some
enhancements on Equation 1. In particular, we advocate
that this formula should also account for the nodes similar-
ities encoded on the edges, instead of simply dealing with
creative relations in a binary fashion. That would prevent
future studies from having to define a similarity threshold
to choose whether or not similarity edges are included in
the network, as suggested by this work.

Reproducibility: Both the MFCCs for the Forró em
Vinil Dataset and the generated similarity network (Graph
Exchange XML Format) 6 , as well as the code used during
the experiments 7 are publicly available.
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6 https://zenodo.org/record/3820920
7 https://github.com/nazareno/forro-disruption
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ABSTRACT

Music arrangement generation is a subtask of automatic
music generation, which involves reconstructing and re-
conceptualizing a piece with new compositional tech-
niques. Such a generation process inevitably requires
reference from the original melody, chord progression,
or other structural information. Despite some promising
models for arrangement, they lack more refined data to
achieve better evaluations and more practical results. In
this paper, we propose POP909, a dataset which contains
multiple versions of the piano arrangements of 909 popular
songs created by professional musicians. The main body
of the dataset contains the vocal melody, the lead instru-
ment melody, and the piano accompaniment for each song
in MIDI format, which are aligned to the original audio
files. Furthermore, we provide the annotations of tempo,
beat, key, and chords, where the tempo curves are hand-
labeled and others are done by MIR algorithms. Finally,
we conduct several baseline experiments with this dataset
using standard deep music generation algorithms.

1. INTRODUCTION

Music arrangement, the process of reconstructing and re-
conceptualizing a piece, can refer to various conditional
music generation tasks, which includes accompaniment
generation conditioned on a lead sheet (the lead melody
with a chord progression) [1–4], transcription and re-
orchestration conditioned on the original audio [5–7], and
reduction of a full score so that the piece can be performed
by a single (or fewer) instrument(s) [8,9]. As shown in Fig-
ure 1, arrangement acts as a bridge, which connects lead
sheet, audio and full score. In particular, piano arrange-

c© Z. Wang, K. Chen, J. Jiang, Y. Zhang, M. Xu, S. Dai, X.
Gu, G. Xia. Licensed under a Creative Commons Attribution 4.0 Interna-
tional License (CC BY 4.0). Attribution: Z. Wang, K. Chen, J. Jiang,
Y. Zhang, M. Xu, S. Dai, X. Gu, G. Xia, “POP909: a pop-song dataset
for music arrangement generation”, in Proc. of the 21st Int. Society for
Music Information Retrieval Conf., Montréal, Canada, 2020.
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Figure 1: Illustration of the role of piano arrangement in
the three forms of music composition, where 1 and 2
are covered by our POP909 dataset.

ment is one of the most favored form of music arrange-
ment due to its rich musical expression. With the emer-
gence of player pianos [10] and expressive performance
techniques [11, 12], we expect the study of piano arrange-
ment to be more meaningful in the future, towards the full
automation of piano composition and performance.

In the computer music community, despite several
promising generative models for arrangement, the lack of
suitable datasets becomes one of the main bottlenecks of
this research area (as pointed by [19, 20].) A desired ar-
rangement dataset should have three features. First, the
arrangement should be a style-consistent re-orchestration,
instead of an arbitrary selection of tracks from the original
orchestration. Second, the arrangement should be paired
with an original form of music (audio, lead sheet, or full
score) with precise time alignment, which serves as a su-
pervision for the learning algorithms. Third, the dataset
should provide external labels (e.g., chords, downbeat la-
bels), which are commonly used to improve the controlla-
bility of the generation process [21]. Until now, we have
not seen such a qualified dataset. Although most existing
high-quality datasets (e.g., [13, 15]) contain at least one
form of audio, lead melody or full score data, they have
less focus on arrangement, lacking accurate alignment and
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Dataset Size Paired Property Annotation ModalityPolyphony Lead Melody Audio Time-alignment Beat Key Chord
Lakh MIDI [13] 170k X X ∆ X ∆ ∆ score, perf

JSB Chorales [14] 350+ X N/A X X score
Maestro [15] 1k X X perf

CrestMuse [16] 100 X X X X X score, perf
RWC-POP [17] 100 X X X ∆ X X X score, perf
Nottingham [18] 1k N/A N/A X X X score

POP909 1k X X X X X X X score, perf

Table 1: A summary of existing datasets.

labels.
To this end, we propose POP909 dataset.1 It contains

909 popular songs, each with multiple versions of piano
arrangements created by professional musicians. The ar-
rangements are in MIDI format, aligned to the lead melody
(also in MIDI format) and the original audios. Further-
more, each song are provided with manually labeled tempo
curves and machine-extracted beat, key and chord labels
using music information retrieval algorithms. We hope our
dataset can help with future research in automated music
arrangement, especially task 1 and 2 indicated in Fig-
ure 1:

Task 1: Piano accompaniment generation condi-
tioned on paired melody and auxiliary annotation. This
task involves learning the intrinsic relations between
melody and accompaniment, including the selection of
accompaniment figure, the creation of counterparts and
secondary melody, etc.

Task 2: Re-orchestration from audio, i.e., the gener-
ation of piano accompaniment based on the audio of a
full orchestra.

Besides those main tasks, our dataset can also be used for
unconditional symbolic music generation, expressive per-
formance rendering, etc.

2. RELATED WORK

In this section, we begin with a discussion of different
modalities of music data in Section 2.1. We then review
some existing composition-related datasets in Section 2.2
and summarize the requirements of a qualified arrange-
ment dataset in Section 2.3. Again, our focus is piano
arrangement and this dataset is designed for task 1 and
2 indicated in Figure 1, i.e., piano accompaniment gen-

eration based on the lead melody or the original audio.

2.1 Modalities of Music Generation

As discussed in [22], music data is intrinsically multi-
modal and most generative models focus on one modality.
In specific, music generation can refer to: 1) score gen-
eration [23–26], which deals with the very abstract sym-
bolic representation, 2) performance rendering [4, 19, 20],
which regards music as a sequence of controls and usually
involves timing and dynamics nuances, and 3) audio syn-
thesis [27, 28], which considers music as a waveform or

1 The dataset is available at https://github.com/music-x-lab/POP909-
Dataset

spectrogram. The POP909 dataset is targeted for arrange-
ment generation in the modality of score and performance.

2.2 Existing Datasets

Table 1 summarizes the existing music datasets which are
the potential resources for the piano arrangement genera-
tion tasks. The first column shows the dataset name, and
the other columns show some important properties of each
dataset.

Lakh MIDI [13] is one of the most popular datasets in
symbolic format, containing 176,581 songs in MIDI for-
mat from a broad range of genres. Most songs have multi-
ple tracks, most of which are aligned to the original audio.
However, the dataset does not mark the lead melody track
or the piano accompaniment track and therefore cannot be
directly used for piano arrangement.

Maestro [15] and E-piano [29] contains classical pi-
ano performances in time-aligned MIDI and audio formats.
However, the boundary between the melody and accom-
paniment is usually ambiguous for classical compositions.
Consequently, the dataset is not suitable for the arrange-
ment task 1 . Moreover, the MIDI files are transcription
rather than re-harmonization of the audio, which makes it
inappropriate for the arrangement task 2 either.

Nottingham Database [18] is a high-quality resource of
British and Irish folk songs. The database contains MIDI
files and ABC notations. One drawback of the dataset is
that it only contains monophonic melody without poly-
phonic texture.

RWC-POP [17], CrestMuse [16], and JSB-Chorale [14]
all contain polyphonic music pieces with rich annotations.
However, the sizes of these three datasets are relatively
small for training most deep generative models.

2.3 Requirements of Datasets for Piano Arrangement

We list the requirements of a music dataset suitable for
the study of piano arrangement. The design objective of
POP909 is to create a reliable, rich dataset that satisfies the
following requirements.

• A style-consistent piano track: The piano track can
either be an re-orchestration of the original audio or an
accompaniment of the lead melody.

• Lead melody or audio: the necessary information for
the arrangement task 1 and 2 , respectively.
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• Sufficient annotations including key, beat, and chord
labels. The annotations not only provide structured in-
formation for more controllable music generation, but
also offer a flexible conversion between score and ex-
pressive performance.

• Time alignment among the piano accompaniment
tracks, the lead melody or audio, and the annotations.

• A considerable size: while traditional machine learning
models can be trained on a relatively small dataset, deep
learning models usually require a larger sample size (ex-
pected 50 hours in total duration).

3. DATASET DESCRIPTION

POP909 consists of piano arrangements of 909 popular
songs. The arrangements are time-aligned to the corre-
sponding audios and maintain the original style and tex-
ture. Extra annotation includes beat, chord, and key infor-
mation.

3.1 Data Collection Process

We hire professional musicians to create piano arrange-
ments. In order to maintain a high-quality standard of the
arrangements, we divide the musicians into two teams: the
arranger team and the reviewer team. The collection is fi-
nalized through an iterative procedure between two teams.
For each song, each iteration goes through three steps:

1. Arrangement: the arranger team creates an arrangement
from scratch, or revise the previous version of arrange-
ment.

2. Review: the reviewer team decides whether the current
version is qualified and comments on how to improve
the arrangement in case further revisions are required.

3. Discussion: musicians from both teams catch up with
the progress, discuss and improve details of arrangement
standards.

We start the process from a list of 1000 popular songs
and finally select 909 songs with high arrangement qual-
ity. We not only present the last revision (i.e., the quali-
fied version) of each song but also provide the unqualified
versions of each song created during the iterative process.
This multi-version feature may potentially offer a broader
application scenario of the dataset.

3.2 Data Content and Format

In POP909, the total duration of 909 arrangements is about
60 hours. The songs are composed by 462 artists. The
release of all songs spans around 60 years (from the earliest
in 1950s to the latest around 2010).

Each piano arrangement is stored in MIDI format with
three tracks. Figure 2 shows an example of a three-track
MIDI file, in which different tracks are labeled with differ-
ent colors. The three tracks are:

• MELODY: the lead (vocal) melody transcription.

Figure 2: An example of the MIDI file in a piano roll view.
Different colors denote different tracks (red for MELODY,
yellow for BRIDGE, and green for PIANO).

• BRIDGE: the arrangement of secondary melodies or
lead instruments.

• PIANO: the arrangement of main body of the accompa-
niment, including broken chords, arpeggios, and many
other textures.

Here, the combination of BRIDGE and PIANO track
forms the piano accompaniment arrangement of the origi-
nal song. Each MIDI file is aligned with the original audio
by manually labeled tempo curve. Moreover, each note
event contains expressive dynamics (i.e., detailed velocity
control) based on the original audio.

Beat, chord, and key annotations are provided in five
separate text files for each song. Annotations for beat
and chord have both MIDI and audio versions while key
changes annotations are merely extracted from audios.2

The relevant music information retrieval algorithms are
discussed in Section 4.

3.3 Data Folder Structure

Figure 3 demonstrates the folder structure of POP909. In
the root directory, there are 909 folders, corresponding to
909 songs. In each folder, we provide the MIDI format
arrangement, text format annotations, and a folder of all
arrangement versions produced during the iterative pro-
cesses.

The annotation files contain beat, chord and key anno-
tations in plain text format. Table 2 shows the partial anno-
tations of the song 003 in table format for better illustra-
tion purposes. For the beat annotation, beat_audio and
beat_midi are the annotation files extracted from audio
and MIDI, respectively. The source of chord and key an-
notations are indicated in a similar way.

Finally, we provide an index file in the root directory
containing the song name, artist name, number of modified
times and other useful metadata of the dataset.

2 For annotations from MIDI files, the qualified (final) version of ar-
rangements is used.
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POP909

Song 001 Song 002 Song 909

versions

001-v3.mid

beat_audio.txt beat_midi.txt

......

chord_audio.txtchord_midi.txt key_audio.txt

001-v1.mid 001-v2.mid

001.mid

Index File

Figure 3: The folder structure of POP909. The blue boxes denote the folder and the orange boxes denote the file.

4. ANNOTATION METHODS

In this section, we discuss how we annotate the beat, chord
and key information. For each of the three tasks, different
algorithms are applied to extract information from MIDI
or audio.

4.1 Beat & Downbeat Estimation

We first extract beat information from MIDI files by tak-
ing advantage of two features of the MIDI performance:
(1) human-annotated tempo curves, and (2) the accompa-
niment figure of arrangements which shows a significant
sign of beat and downbeat attacks.

Our method can be seen as a modification of the beat-
tracking algorithms used in [30, 31]. First, we estimate the
initial beat position and use the tempo curve to deduce sub-
sequent beat positions. Second, we estimate the number of
beats in a measure by calculating the auto-correlation of
the extracted beat features (MIDI onset and velocity), as-
suming time signature is in general consistent within one
song except for some infrequent phase changes. Finally,
we search among all the possible phase shifts and find the
optimal beat track that has the highest correlation with the
extracted features.

We also provide the beat and downbeat annotations ex-
tracted from the audio using the algorithm introduced in
[32] and compare them with the annotations extracted from
MIDI.

For beat position estimation, the two algorithms have
more than 90% consistency when the maximum error tol-
erance is 100 ms, which is acceptable in the data collection
process. For downbeat estimation, the two algorithms have
80% agreement. We provide both extraction results in our
annotation files.

4.2 Chord Label Extraction

We also provide the chord labels extracted from both MIDI
and audio files. For the audio chord recognition, we adopt a
large-vocabulary chord transcription algorithm by [33]. As
chord changes in popular music are most likely to happen

at beat positions, we post-process the chord boundaries by
aligning them to beats to produce the final chord labels.

file beat time downbeat_1 downbeat_2

beat_midi

0.02
0.75
1.49
2.22
2.95
3.68

...

1.0
0.0
1.0
0.0
1.0
0.0
...

0.0
0.0
1.0
0.0
0.0
0.0
...

file beat time beat order

beat_audio

1.46
2.18
2.92
3.66

...

1.0
2.0
3.0
4.0
...

file start time end time chord

chord_midi

0.02
0.75
1.49
4.41

...

0.75
1.49
4.41
7.34

...

N
N

G:min7
Eb:sus2

...

file start time end time chord

chord_audio

0.00
2.46
4.39

...

1.46
4.39
7.31

...

N
G:min7

Eb:maj(9)
...

file start time end time key

key_audio 1.46 226.00 Bb:maj

Table 2: The first several lines of the annotation files
for song 003. “downbeat_1” and “downbeat_2” in
beat_midi are the two downbeat extractors under sim-
ple meter and compound meter assumptions, respectively.

For MIDI chord recognition, we adopt a method sim-
ilar to the one proposed in [34]. We made two minor
changes based on the original algorithm. First, the chord
segmentation is performed on the beat level. Second, we
alter the chord templates to include more chord qualities
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used by pop songs: (1) triads (maj, min, dim, aug) with
inversions, (2) basic sevenths (maj7, min7, 7, dim7,
hdim7) with inversions, (3) suspended chords (sus2,
sus4, sus4(b7)), and (4) sixth chords (maj6, min6).

Note that the arrangement and its original audio may
have different chord progressions. For example, a C:maj
chord may be arranged into C:sus2, if necessary. There-
fore, both annotations are reasonable and they are not nec-
essarily consistent with each other. To compare the extrac-
tion accuracy, we compute the matching rate of the root
notes of the chords extracted from both methods. Results
show that the matching degree of more than 800 songs in
POP909 are above 75%. On the other hand, there are still
a few songs whose matching degrees are below 40%. The
main reasons are: (1) some of these audio recordings are
slightly out of tune, and (2) some parts of the audio have
complicated sound effects, in which case our teams decide
to re-arrange the chord progression.

4.3 Key Signature Extraction

We also provide key signature annotation from the audio
files. We adopt an algorithm very similar to [35]. The orig-
inal algorithm performs the key classification for a whole
song based on the averaged frame-wise feature. In our
modified algorithm, we also allow key changes in the mid-
dle of the song using a median filter to post-process the
frame-level labels.

5. EXPERIMENTS

In this section, we conduct two baseline experiments
on music (score-modality) generation with the POP909
dataset: 1) polyphonic music generation (without melody
condition), and 2) piano arrangement generation condi-
tioned on melody. For both tasks, we use the Transformer
architecture [36] for its advantages in capturing long-term
dependencies on time-series data.

5.1 Polyphonic Music Generation

We use a transformer encoder with relative positional en-
coding [19, 37] to model the distribution of polyphonic
music. We adopt a MIDI-like event-based representation
slightly modified from [19, 38] to encode the polyphonic
music. Each piece of music is represented as a series of
events, including note onsets, offsets, velocity changes,
and time shifts. We further quantize time shifts tokens un-
der the resolution of 1

4 beat. In total, we use 16 time-shift
events, ranging from 1

4 beat to 4 beats. Longer notes or
rests can be represented by multiple time-shift tokens in a
sequence. Table 3 shows the details of our data representa-
tion.

We split the dataset into 3 subsets: 90% for training, 5%
for validation, and 5% for testing. We set the maximum
sequence length L = 2048, transformer hidden size H =
512, the number of attention heads h = 6, and the number
of attention layers N = 6. Cross Entropy loss is used as
the loss function and early stopping is applied.

Event type Tokenization

Note-On
0-127 (MELODY & BRIDGE track)

256-383 (PIANO track)

Note-Off
128-255 (MELODY & BRIDGE)

384-511 (PIANO track)
Time-Shift 512-527

Velocity 528-560

Table 3: The tokenization of the modified MIDI-like event
sequence representation.

GPT-2-based transformer in POP909

Train Loss Train Acc. Test Loss Test Acc.
2.08978 0.62021 2.38122 0.54529

Table 4: The report of training and test loss and prediction
accuracy of MIDI event tokens.

We use Adam optimizer [39] with hyperparameters
β1 = 0.9, β2 = 0.998. We further adopt the warm-up
schedule to control the learning rate. Formally, at the i-th
warm-up step, the learning rate

lr =
1√
H
×min(

1√
i
,

i

S
√
S
), (1)

where S = 4000 is a hyperparameter controlling the num-
ber of warm-up steps. The training result is presented in
Table 4.

5.2 Piano Arrangement Generation

In the second experiment, we design an automatic piano
arrangement task: piano accompaniment generation condi-
tioned on the melody. In the data processing step, we first
merge the MELODY track and the BRIDGE track into the
main melody and regard PIANO track the piano accompa-
niment.

We use the same (trained) model in Section 5.1 to model
the joint distribution of the main melody and piano accom-
paniment. During the inference, we force the generated
melody to match the given melody condition, generating
the most likely accompaniment conditioned on the melody.
(A similar conditional generation method has been used
in [20].)

5.3 Experiment Results

Figure 4 shows several examples generated by the trained
model. In each subfigure, the top piano roll shows the poly-
phonic music generation (introduced in Section 5.1) result
and the bottom piano roll shows the piano arrangement
generation (introduced in Section 5.2) result conditioned
on the main melody (the blue track). In both cases, the first
500 MIDI-event tokens are given as the context; the red
line separates the given context and the generated outputs.
We see that the generated pieces capture basic harmonic
relationships between the melody and accompaniment and
contain consistent rhythmic patterns. Although the qual-
ity is still far from the music generated by state-of-the-art
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(a) Generation results of example a.

(b) Generation results of example b.

Figure 4: Generation examples with POP909 dataset. Unconditioned polyphonic music generation and piano arrangement
generation (blue for the melody, orange for the accompaniment) of the two selected examples are displayed.

algorithms [19, 40], they serve as a baseline to illustrate
our dataset usage. We believe that the model can produce
better and more structured results with the development of
deep generative models.

6. CONCLUSION

In conclusion, we contributed POP909, a tailored dataset
for music arrangement. It contains multiple versions of
professional piano arrangements in MIDI format of 909
popular songs, together with precise tempo curve aligned
to the original audio recordings. We also provide annota-
tions of tempo, beat, downbeat, key, and chord labels. To
guarantee a high data quality, the dataset was collected via
the collaboration of two groups of professional musicians,
arrangers and reviewers, in an interactive process. Apart
from the arrangement problem, the POP909 dataset serves
as a high-quality resource for structural music generation
and cross-modal music generation.
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ABSTRACT

We present Connective Fusion, a music generation scheme
by transformational joining of two musical sequences for
creative purposes. Given two shorter sequences as inputs,
our model transforms each of them such that their concate-
nation is more coherent to form a longer sequence, while
each of the transformed shorter sequences retains mean-
ingful similarity with the corresponding input sequence. In
short, our model connects and fuses two contextually unre-
lated sequences in a coherent way. This transformation can
be applied iteratively to gradually fuse the input sequences.
The style latent space is simultaneously learned, allowing
users to control how the two sequences are merged. Our
approach comprises two steps of unsupervised learning: a
deep generative model with a latent space is learned, fol-
lowed by adversarial learning of the transformation func-
tion in the latent space. We demonstrate the usefulness of
our method through the task of melody creation using a
symbolic music dataset.

1. INTRODUCTION

Spurred by the progress of deep neural networks, symbolic
music generation systems, especially the ones with user
controllability have gathered renewed interests these days.
Most of the systems with controllability can be categorized
into generating continuation [1], regenerating arbitrary po-
sitions [2, 3], unsupervised conditional generation [4, 7],
or transforming musical sequences such that musical at-
tributes, concepts, or styles are altered [4–8].

In this paper, we seek another category, generation by
fusing input musical sequences as ideas. Specifically, we
propose Connective Fusion, a generative transformation
scheme which allows two input musical sequences to be
transformed such that the concatenated musical sequence
is musically plausible (See Fig.1 for the illustration). After
the transformation, each of the two sequences has mean-
ingful similarity with the one before the transformation.
Two input musical sequences can also be transformed it-

c© T. Akama. Licensed under a Creative Commons Attri-
bution 4.0 International License (CC BY 4.0). Attribution: T. Akama,
“Connective Fusion: Learning Transformational Joining of Sequences
with Application to Melody Creation”, in Proc. of the 21st Int. Society
for Music Information Retrieval Conf., Montréal, Canada, 2020.
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(b) Transformed outputs of iteration 1,2, and 3

Figure 1: Iterated application of transformation.
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(b) Transformed outputs

Figure 2: Transformation with style space exploration.

eratively to gradually increase the coherency of joining
(Fig.1). Our generative transformation differs from pure
transformation in that it permits users to explore or sample
from the style space of how the two sequences are com-
bined (Fig.2). The application of Connective Fusion in-
cludes i) providing users with musical ideas based on not
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(a) Pre-training (b) Training (c) Transformation

Figure 3: Connective Fusion schematic diagrams.

necessarily polished ideas on hand, and ii) creating novel
musical flows by combining and fusing musical fragments
of different characteristics in a coherent way.

Technically, our approach is training a transformation
function in an unsupervised learning manner, consisting of
two steps: the pre-training step and the training step. In the
pre-training step, a Variational Auto-Encoder (VAE) [9] is
trained to obtain mappings between the data space and the
latent space. A given pair of musical sequences are fed into
the encoder of the VAE to be mapped to the corresponding
latent vectors in the latent space. In the following train-
ing step, models are trained upon the representation of the
VAE latent space. The transformation function, the gen-
erator is trained adversarially [10] such that transformed
results are indistinguishable from the human-made musi-
cal sequences. Together with the adversarial loss, the sim-
ilarity loss, consisting of the latent space distance before
and after the transformation, is simultaneously taken into
account in order to train models with desired amount of
transformation.

In experiments, we empirically demonstrate that our
method outperforms a baseline method with various pa-
rameter settings in terms of reality and five musical statis-
tics at each transformation amount. We also quantitatively
show that iterated application of our transformation allows
gradual transformation while having comparable to or bet-
ter performance than single (non-iterative) transformation.

Our contributions of this paper are: i) proposing a new
problem setting/task and its solution, ii) presenting a model
and procedure for learning style space, iii) introducing it-
erated application of transformation for gradual transfor-
mation, and iv) demonstrating the performance and the ap-
plication for melody creation.

2. METHODOLOGY

2.1 Problem Scenario

Suppose we have a dataset of sequences Dy = {y(i) =

x
(i)
L ⊕x

(i)
R }Ni=1, where y(i) ∈ Y is the concatenation of two

subsequences x(i)L ∈ X and x(i)R ∈ X . We can consider
Dy as a sequence pair dataset D = {(x(i)L , x

(i)
R )}Ni=1. For

instance, y(i) is a musical sequence of 8 bars, whereas x(i)L

and x(i)R are musical sequences of 4 bars.
Using the dataset D, the scheme of Connective Fusion

basically solves the following task: given two sequences
xL, xR ∈ X , transforming xL to x′L and xR to x′R such that
the concatenated sequence x′L ⊕ x′R becomes more proba-
ble to be a sample inY than xL⊕xR, while the transformed
sequences x′L, x

′
R retain meaningful similarity to the given

sequences xL, xR, respectively. For example, this serves as
a solution for generating longer musical sequences given
shorter musical sequence pairs of any combinations as in-
spiration, which is useful for composing new music based
on unpolished musical ideas on hand.

2.2 Approach

Schematic diagrams of pre-training, training, and transfor-
mation of Connective Fusion are depicted in Fig.3.

2.2.1 Pre-training

Our approach is first training a Variational Auto-Encoder
(VAE) model for obtaining bidirectional mappings be-
tween each sequence x ∈ X and its latent vector z ∈ Z ⊂
Rdz , which has the compressed information of x.

2.2.2 Training

Then we train a generator G that transforms any pair
(zL, zR) ∈ Z × Z to (z′L, z

′
R) ∈ Z × Z that are in-

distinguishable from the pairs in the dataset. The gen-
erator also takes a style vector s ∈ S from the style
space S = [0, 1]ds as an additional input. Formally, the
generator can be written as (z′L, z

′
R) = G(zL, zR, s) and

G : Z × Z × S → Z × Z . The generator G is trained to-
gether with the discriminator D : Z × Z → [0, 1] with the
adversarial learning framework [10]. In addition to the ad-
versarial loss, we add the similarity loss in order to adjust
the degree of similarity before and after the transforma-
tion.

2.2.3 Transformation

Given two sequences xL and xR, these sequences are first
fed to the encoder of the VAE to obtain zL and zR, respec-
tively. The latent vectors zL and zR together with a style
vector s ∈ S sampled from S = [0, 1]ds are then fed to the
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generator G to transform zL, zR to z′L, z′R, respectively.
Finally, the transformed latent vectors z′L, z′R are fed to the
decoder to generate x′L, x′R, respectively. The concatena-
tion x′L⊕x′R is the generated sequence. Instead, zL and zR
can also be sampled from the prior distribution p(z), pro-
viding users with scratch generation functionality followed
by the transformation functionality.

The style space S allows us to control how the two se-
quences are connectively fused. For example, as illustrated
in Fig.2 and explained in the experiments Sec.3.3, users
can choose preferred styles of fusion among interpolated
styles on a 2D plane.

We also propose iterated transformation with G, which
consists in applying G repeatedly, drawing two inter-
related trajectories in the latent space. The higher the num-
ber of iterations becomes, the farther the latent vectors tend
to move from the original position. This is useful for users
to control the degree of similarity in transformation.

2.3 Advantage of Approach Using Latent Space

Using the representation inZ but not the one inX i) is use-
ful for defining similarity before and after the transforma-
tion, ii) is computationally inexpensive, and iii) bypasses
the difficult problem of back-propagating through discrete
sampling of sequences.

2.4 Pre-training Detail: Encoder and Decoder
Training with Auto-Encoding VB algorithm

To train the VAE, another dataset D′ = {x(j)}2Nj=1 is

derived from the dataset D = {(x(i)L , x
(i)
R )}Ni=1, where

x(2i−1) = x
(i)
L and x(2i) = x

(i)
R . The encoder model

qθ(x|z) and the decoder model pθ(z|x) in the VAE are
trained with the following optimization problem:

max
θ

E
x∼D′

[
E

z∼qθ(z|x)
[log pθ(x|z)]−KL (qθ(z|x)||p(z))

]
,

(1)
which is the maximization of the variational lower bound
[9], the lower bound of the marginal log likelihood. Here,
KL denotes the Kullback-Leibler (KL) divergence. Note
that the sampling operation z ∼ qθ(z|x) is differentiable
using the reparametrization trick. For the purpose of visu-
alization in Fig.3, we name the two terms in the optimiza-
tion problem Lrec = −Ex∼D′

[
Ez∼qθ(z|x) [log pθ(x|z)]

]
and Lpri = Ex∼D′ [KL (qθ(z|x)||p(z))]. For the rest of
this paper, θ̂ denotes the estimated model parameter after
the optimization of Eq.1. We use normal distribution for
the encoder model qθ(z|x).

2.5 Training Detail: Generator and Discriminator
Training with Adversarial Learning

For notational simplicity, we introduce datasets of latent
vectors Dz = {(z(i)L , z

(i)
R )}Ni=1 and D′z = {z(j)}2Nj=1 corre-

sponding to D = {(x(i)L , x
(i)
R )}Ni=1 and D′ = {x(j)}2Nj=1

respectively, where z
(i)
L = argmaxz qθ̂(z|x

(i)
L ), z(i)R =

argmaxz qθ̂(z|x
(i)
R ), and z(j) = argmaxz qθ̂(z|x

(j)). The
generator G and the discriminator D are parametrized by
ψ and φ, respectively. In the following, we use short
hand Lp

Dφ
(zL, zR) = − logDφ(zL, zR), Ln

Dφ
(zL, zR) =

−(1− logDφ(zL, zR)), and U = U(0, 1)ds .

2.5.1 Discriminator Loss

In the adversarial learning framework, the discriminator
classifies two sets of samples: the real class and the fake
class. In Connective Fusion, samples in the real class are
latent vector pairs (zL, zR) sampled from the dataset Dz .
Formally, the loss function for the real class of the discrim-
inator is

Lp
dis = E

(zL,zR)∼Dz

[
Lp
Dφ

(zL, zR)
]
. (2)

The fake class for the discriminator are latent vector pairs
(zL, zR) which are obtained by i) sampling independently
with the uniform distribution over the dataset D′z (1st term
of Eq.3), ii) sampling independently from the prior p(z)
(2nd term of Eq.3), iii) the generator G transforming sam-
ples (zL, zR, s), where zL, zR are sampled in the same way
as i, while s are sampled from U , the uniform distribution
over S = [0, 1]ds (3rd term of Eq.3), and iv) the genera-
tor G transforming samples (zL, zR, s), where zL, zR are
sampled in the same way as ii, while s are sampled from U
(4th term of Eq.3). Formally, the loss function is

Ln
dis = E

zL∼D′
z

E
zR∼D′

z

[
Ln
Dφ

(zL, zR)
]

+ E
zL∼p(z)

E
zR∼p(z)

[
Ln
Dφ

(zL, zR)
]

+ E
zL∼D′

z

E
zR∼D′

z

E
s∼U

[
Ln
Dφ

(Gψ(zL, zR, s))
]

+ E
zL∼p(z)

E
zR∼p(z)

E
s∼U

[
Ln
Dφ

(Gψ(zL, zR, s))
]
. (3)

Finally, the overall loss function for the discriminator be-
comes

Ldis = Lp
dis + Ln

dis. (4)

2.5.2 Generator Loss

Based on the discriminator, a generator is trained such that
the generated samples become more like the real samples
rather than the fake samples. We consider two kinds of
generated samples which are sampled in the same way as
iii and iv in the previous section 2.5.1. Formally, the loss
function is

Lp
gen = E

zL∼D′
z

E
zR∼D′

z

E
s∼U

[
Lp
Dφ

(Gψ(zL, zR, s))
]

+ E
zL∼p(z)

E
zR∼p(z)

E
s∼U

[
Lp
Dφ

(Gψ(zL, zR, s))
]
. (5)

Additionally, we introduce the similarity loss which is the
latent space distance between samples before and after the
transformation:

Lsim = E
zL∼D′

z

E
zR∼D′

z

E
s∼U

[Ldist(zL, zR, s)]

+ E
zL∼p(z)

E
zR∼p(z)

E
s∼U

[Ldist(zL, zR, s)] , (6)
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48



Figure 4: Evaluation of our model on six metrics vs z-distance. The upper/lower rows are transformation results where
inputs are randomly created pairs of test/generated (sampled from prior) data. The color gradient corresponds to the number
of iterations for LP. For all metrics, higher values are better. See Sec.3.5.

Figure 5: Musical statistics are corrected after our trans-
formation. Brighter color indicates higher probability. See
the second paragraph of 3.4.

Figure 6: Analysis of z-distance in the latent space Z . See
the last paragraph of 3.4.

where

Ldist(zL, zR, s) =
1

dz

∥∥∥∥ 1

σ̄2
z

log
(

1 + (z′L − zL)
2
)∥∥∥∥

1

+
1

dz

∥∥∥∥ 1

σ̄2
z

log
(

1 + (z′R − zR)
2
)∥∥∥∥

1

with (z′L, z
′
R) = Gψ(zL, zR, s). (7)

Following the latent constraint paper [6], σ̄z ∈ Rdz is
chosen to be the standard deviation σ(x) ∈ Rdz of the
encoder model qθ̂(z|x) = N

(
µ(x),diag

(
σ2(x)

))
av-

eraged over all the training dataset. Precisely, σ̄z =
1/|D′|

∑
x∈D′ σ(x). Finally, the overall loss function for

the generator becomes

Lgen = Lp
gen + λLsim. (8)

3. EXPERIMENTS

3.1 Dataset

We create datasets from LMD-matched of Lakh MIDI
dataset [11], comprising 45,129 files matched to the song
identity entries in the Million Song Dataset [12]. Each
song has one or several different versions of MIDI files.
We first extract files with 4/4 time signature, use accom-
panying tempo information to determine beat locations,
and quantize each beat into 4. We then split the song
identities into the proportion of 11:1:6:1:1 to create train-
1, validation-1, train-2, validation-2, and test dataset, re-
spectively. Train-1 and validation-1 datasets are for train-
ing proposed and baseline models, whereas train-2 and
validation-2 datasets are for training evaluation models.
We filter out non-monophonic tracks, bass or drum tracks,
and the tracks outside the pitch range of [55, 84]. We con-
duct data augmentation by transposing tracks to all pos-
sible keys if the transposed tracks stay within the pitch
range of [55, 84]. We retrieve 8-bar sliding windows
(with a stride of 1 bar) from each track followed by fil-
tering out windows that have more than one bar consec-
utive rests. Finally, for each split of train-1, validation-1,
train-2, validation-2, and test dataset, we create a dataset
D = {(x(i)L , x

(i)
R )}Ni=1 by assigning the first 4-bars and the

last 4-bars of each 8-bar window to x(i)L and x(i)R , respec-
tively. For encoding musical sequences, we use Melodico-
rhythmic encoding proposed in [3].
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Figure 7: Evaluation of iterated application of our model. Iterated application of models with larger λ tends to com-
pare favorably with others. The upper/lower rows are transformation results where inputs are randomly created pairs of
test/generated (sampled from prior) data. The color gradient corresponds to the number of iterations for our method. For
all metrics, higher values are better. See Sec.3.6.

3.2 Implementation Details

2-layered long short term memory (LSTM) [13] is used for
the encoder and the decoder of the VAE, with the number
of latent dimensionality dz = 64. 5-layered multilayer per-
ceptron (MLP) is used for the generator and the discrimina-
tor, where input vectors are simply concatenated and ReLU
activation is employed. Following the latent constraint pa-
per [6], we use the gating mechanism for each of the out-
puts z′L and z′R. For the decoder to generate sequences,
argmax operation is utilized at each time step greedily for
sampling each token. In the adversarial learning, the pa-
rameter updates of the model are alternating between up-
dating the discriminator 10 times and updating the genera-
tor once. Adam optimizer [14] is used for training with the
parameters (α, β1, β2) = (0.000005, 0, 0.9).

3.3 Transformation Examples

Fig.1 and Fig.2 are the transformation examples for λ =
2.0 and λ = 0.3, respectively. In Fig.1b at iteration 1, the
used pitch set of xL becomes aligned to that of xR, and the
note at time around 4 transforms to the one with longer du-
ration to join two input sequences. As the number of iter-
ations increases, the note durations become more uniform,
while retaining similarity to the input sequences in terms
of pitch contours or rhythmic properties. In Fig.2b, four
corners are generated by feeding s randomly sampled from
{0, 1} for each dimension and the others are interpolations.
Interestingly, the time 4 to 8 of the bottom left sequence is
the exact transposition of the right input of Fig.2a, whereas
other sequences has variations and transpositions.

3.4 Evaluation Metrics

We use reality, correlations of five musical statistics eval-
uated against the test data, and z-distance as evaluation

metrics. Reality is defined as the probability that a gen-
erated sequence is classified as human-made. Two-layered
transformer binary classification model is trained on train-
2 and validation-2 datasets, where the pair sequences from
the dataset D are labeled as positive, while the randomly
shuffled pair sequences from the same dataset are labeled
as negative. The mean of output values of this classifica-
tion model and its accuracy are 0.959 and 0.953 on the test
dataset. Reality is a holistic metric of quality which quan-
tifies how likely a sequence is human-made.

As musical statistics, we choose to use key, mean-pitch
(MP), mean-duration (MD) for evaluating whether the first
and the last 4-bars are more musically consistent after
transformation. We also employ pitch-transition (PT) and
duration-transition (DT) for evaluating if transitions be-
tween the first and the last 4-bars are smooth and natural.
Fig.5 illustrates these five musical statistics. For key, MP,
and MD, these values are estimated for the first and the
last 4-bars, which are interpreted as Markov transitions of
musical states, creating matrices as in Fig.5. For PT and
DT, we extract two or three consecutive notes around the
boundary of the first and the last 4-bars, and again com-
pute Markov transition matrices of each statistics as states.
Finally, as a quantitative metric, we compute Pearson cor-
relation coefficient between the matrix made from the test
dataset and the one from the samples outputted by models.
z-distance is a scaled squared Mahalanobis distance

dist(z′, z) = 1/dz(z
′ − z)Σ−1(z′ − z)ᵀ, where Σ =

diag(σ̄2
z). We analyze z-distance in the latent space Z us-

ing song id annotations of the dataset. We randomly sam-
pled 1,000,000 pairs of 4-bar sequences from the entire
dataset, where pairs are sampled either from the same or
different song id, corresponding to intra- and inter-song in
Fig.6. Pairs with identical sequences are filtered out to ana-
lyze the similarity rather than the identicality. Fig.6 shows
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that sequences from different song ids are several orders of
magnitude less likely to have smaller (say, less than 1.0 or
3.0) z-distances, compared with those from the same ids.
The difference of z-distances probably comes from the fact
that a lot of variations can be seen within each song id and
similar themes are rarely seen among different song ids
especially for melody, suggesting that smaller z-distances
includes variations and that z-distance encodes musically
meaningful similarity.

Algorithm 1 Latent Perturb (baseline method).
Input: zL, zR, and σLP

1: Smax ← argmaxx pθ̂(x|zL)⊕ argmaxx pθ̂(x|zR)
2: Rmax ← estimate reality of Smax

3: for i = 1 to NumIter do
4: εL, εR ∼ N (0,diag(σ2

LP))
5: SL ← argmaxx pθ̂(x|zL + εL)
6: SR ← argmaxx pθ̂(x|zR + εR)
7: Rtmp ← estimate reality of Stmp = SL ⊕ SR

8: if Rtmp > Rmax then
9: Smax ← Stmp; Rmax ← Rtmp

10: zL ← zL + εL; zR ← zR + εR
11: end if
12: end for
13: return Smax

3.5 Comparisons of Methods

We introduce a naive but strong baseline method called
Latent Perturb (LP), which is summarized in Algorithm
1. Note that the reality estimation model is trained with
the train-1 dataset, and the argmax operation is approx-
imated with the greedy sampling scheme. Compared to
data space, perturbation in the latent space can efficiently
search similar samples with high reality.

Fig.4 shows the comparisons of baseline methods and
ours evaluated on z-distance vs the other evaluation met-
rics, where z-distance is the average of the mean of z-
distances for zL and zR. The reason for choosing LP with
σLP in [0.01, 0.2] is to make sure their resulting evaluation
metrics span the range that the proposed technique “ours”
spans. For samples from the prior as well as from the test
dataset, our methods, especially with larger λ tend to out-
perform in all the metrics, even though LP methods use
abundant computational budgets—100 forward computa-
tions of the decoder model and the classification model.

3.6 Evaluation of Iterated Transformation

Fig.7 illustrates the performance of iterated application of
our transformation. Interestingly, performance of models
with larger λ after several iterations are often compara-
ble to or better than that of models with smaller λ. This
means that a model with larger λ can be used for transfor-
mation with different distances, without sacrificing the per-
formance. For example, as illustrated in Fig.1, the model
with λ = 2.0, if iteratively applied, can be used for grad-
ual transformations with several different distances. Their

quality is as satisfactory as single (non-iterative) transfor-
mation with models of smaller λ.

4. RELATED WORK

Concatenative Synthesis (CS) methods [15, 16] typically
use a large database of source audio segmented into units,
and search units that match each segment of the target au-
dio by unit selection algorithms. Mashup methods [17,18]
combine two or more songs to create entertaining musi-
cal results. Typically tracks from different songs are su-
perimposed and combined. Our Connective Fusion differs
from CS and Mashup in that i) ours is generative rather
than searching and using existing segments of music, ii)
ours tries to combine any segments, whereas CS/Mashup
typically combine some searched segments, iii) ours is un-
supervised learning which does not need any human anno-
tation in the dataset or musical expertise for training mod-
els, and iv) ours is symbolic which is often not the case in
CS/Mashup.

Learning transformation in the latent space has been
studied for image, texts, and music [6, 19–23]. Notably,
Mueller et al. proposed to transform texts to have specified
attributes based on optimization in the latent space [21].
Engel et al. proposed to transform image or music to be-
come more realistic or to have specified attributes in the
latent space by using adversarial learning [6]. Lore et al.
and more recently Jahanian et al. instead proposed to trans-
form image by learning latent space directions [22, 23].

Learning transformation with adversarial learning with-
out paired data has been extensively studied. The input
and output domain of transformation in these studies can
be categorized into the same data domain with different
classes [24] or attributes [6,25], the semantic domain to the
data domain [24], and semantically similar domain such
as simulation to real [26, 27] and unsupervised language
translation [28, 29]. On the other hand, the input and out-
put domains of transformation in this paper are essentially
the same except that they have different lengths/counts.

5. CONCLUSION

We introduced Connective Fusion, a new scheme of inter-
actively generating sequences for creative purposes. Given
two sequences of random combination, our model trans-
forms each of them to similar one such that their con-
catenation is more indistinguishable from human-made
sequences. The transformation model is adversarially
learned in the latent space. Our model equips with user
control—choosing the amount of transformation as well as
exploring in the style space. In experiments of melody cre-
ation on a symbolic music dataset, we empirically demon-
strated that our method outperforms a baseline method of
various parameter settings, and that iterative gradual trans-
formation not just introduced new functionality but also
works as satisfactory as or sometimes better than non-
iterative transformation.
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ABSTRACT

As the field of Music Information Retrieval grows, it is
important to take into consideration the multi-modality of
music and how aspects of musical engagement such as
movement and gesture might be taken into account. Bod-
ily movement is universally associated with music and re-
flective of important individual features related to music
preference such as personality, mood, and empathy. Fu-
ture multimodal MIR systems may benefit from taking
these aspects into account. The current study addresses
this by identifying individual differences, specifically Big
Five personality traits, and scores on the Empathy and Sys-
temizing Quotients (EQ/SQ) from participants’ free dance
movements. Our model successfully explored the unseen
space for personality as well as EQ, SQ, which has not
previously been accomplished for the latter. R2 scores for
personality, EQ, and SQ were 76.3%, 77.1%, and 86.7%
respectively. As a follow-up, we investigated which bodily
joints were most important in defining these traits. We dis-
cuss how further research may explore how the mapping
of these traits to movement patterns can be used to build a
more personalized, multi-modal recommendation system,
as well as potential therapeutic applications.

1. INTRODUCTION

From the perspective of most computational analysis, mu-
sic can be defined as sound, its important features yielding
to the decomposition of waveforms. However, for the vast
majority of history, musical sound could not be separated
from its source; to whatever degree it may have evolved
biologically to serve various human functions, music must
be regarded as an embodied and socially embedded phe-
nomenon [1–3]. Research has shown intimate links be-
tween musical features and human movement, including
the reflection of hierarchical rhythmic structures in em-
bodied eigen movements [4], the reflection of higher-level

c© Y. Agrawal, S. Jain, E. Carlson, P. Toiviainen, and V.
Alluri. Licensed under a Creative Commons Attribution 4.0 International
License (CC BY 4.0). Attribution: Y. Agrawal, S. Jain, E. Carlson, P.
Toiviainen, and V. Alluri, “Towards Multimodal MIR: Predicting individ-
ual differences from music-induced movement”, in Proc. of the 21st Int.
Society for Music Information Retrieval Conf., Montréal, Canada, 2020.

musical structures in group movement to Electronic Dance
Movement [5], and reflection of spectral and timbral fea-
tures of music in dance [6]. Bodily movement is one of
the most commonly reported responses to music [7], and
movement to music is one of very few universal features
of music across cultures [8].

This paper towards Multimodal MIR takes into con-
sideration the multi-modality of music, and takes into ac-
count one of the primary aspect of musical engagement,
i.e, movement. It is therefore insufficient to consider mu-
sic only in terms of sound when trying to understand hu-
man digital use and interaction with music. This may be
especially true in terms of user experience and personal-
ization; human movement in response to music reflects not
only the music itself but characteristics of the individual,
such as personality [9] and emotion [10]. Indeed, research
has shown that music-induced movement is so individual
that its features can be used in person-identification with
a high degree of accuracy [11]. This is in line with pre-
vious research, such as that of Cutting et al. [12] demon-
strating that friends can recognise each other from their
walk with only point-light (stick figure) displays of move-
ment, without the need for other distinguishing features.
This paradoxical balance between universality and individ-
uality in human motoric responsiveness to music poses a
challenge for the creation of digital music interfaces which
take music-induced movement into account in providing
personalized music experiences. Although the concept of
an interactive music system has long been proposed that al-
low music playback to be controlled and altered via human
gestures [13], human-movement based interaction tech-
niques and devices are fast gaining importance in the field
of HCI [14]. In this context, it makes decoding aspects
of a user/individual via human movements a key and use-
ful endeavor, which would then aid in the design of more
personalized experiences.

2. RELATED WORK

The specific features used in previous work associated
movement with individual differences are quite varied.
Satchell et al. [15] examined speed, relative and absolute
rotation of the body and found relationships between rela-
tive movement of the upper and lower body during walk-
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ing in both FFM personality traits and gait, while Micha-
lak et al. [16] were able to associate low mood with lateral
body sway and posture. In dance, relevant features have in-
cluded amount of movement of the whole body relative to
itself and to the environment, responsiveness to music fea-
tures such as tempo [4, 17]. Another area for exploration
of individual differences in movement patterns has been
in the context of disorders that have altered or impaired
movement [18–20]. These links allow us to postulate that
movement patterns should give us information related to
individual traits and tendencies which can be then linked
to music preferences, mood or emotion in relation to mu-
sic experiences and could have implications for music ther-
apy as well as for music information retrieval. However,
as an initial step, there exist no studies that predict per-
sonality and empathy as a function of movement patterns.
The current study focuses on identifying FFM personality
traits, as well as scores on the Empathy Quotient (EQ) and
Systemizing Quotient (SQ), from participants’ free dance
movements to various genres of music. The EQ measures
participants’ tendency to empathize with others [21], while
the SQ measures the tendency to think in terms of sys-
tems [22]. These two measures were originally developed
to increase understanding of people with ASD, as in this
population trait systemizing tends to be very high while
empathy tends to be low. However previous work has
also used the EQ/SQ to determine how these traits are dis-
tributed in the general population. Although previous work
has found relationships between empathy and responsive-
ness to changes in heard music or in dance partner [23,24],
and between EQ/SQ scores and music preferences [25,26],
general movement patterns associated with empathy have
not, to the knowledge of the authors, been explored using
dance movement, nor have patterns related to systemizing
tendencies.

3. METHOD

3.1 Participants

Data acquired was from a previous study [27] comprising
data from 73 university students (54 females, mean age =
25.74 years, std = 4.72 years). Thirty-three reported hav-
ing received formal musical training; five reported one to
three years, ten reported seven to ten years, while sixteen
reported ten or more years of training. Seventeen partici-
pants reported having received formal dance training; ten
reported one to three years, five reported four to six years,
while two reported seven to ten years. Participants were of
24 different nationalities, with Finland, the United States,
and Vietnam being the most frequently represented. For
attending the experiment, participants received two movie
ticket vouchers each. All participants spoke and received
instructions in English. Fifteen participants were excluded
from further analysis due to incomplete data. They were
asked to listen to the music and move as freely as they de-
sired, but staying within the marked capture space. The
aim of these instructions was to create a naturalistic set-
ting, such that participants would feel free to behave as

they might in a real-world situation.

3.2 Apparatus, Stimuli, and Procedure

Participants’ movements were recorded using a twelve-
camera optical motion-capture system (Qualisys Oqus 5+),
tracking at a frame rate of 120 Hz, the three-dimensional
position of 21 reflective markers attached to each partic-
ipant. Markers were located as follows (L=left, R=right,
F=front, B=back) 1: LF head; 2: RF head; 3: B head; 4:
L shoulder; 5: R shoulder; 6: sternum; 7: stomach; 8: LB
hip; 9: RB hip; 10: L elbow; 11: R elbow; 12: L wrist;
13: R wrist; 14: L middle finger; 15: R middle finger;
16: L knee; 17: R knee; 18: L ankle; 19: R ankle; 20: L
toe; 21: R toe. The stimuli comprised sixteen 35-second
excerpts from eight genres, in randomized order: Blues,
Country, Dance, Jazz, Metal, Pop, Rap, and Reggae. The
stimuli for the experiment were selected using a computa-
tional process based on social-tagging and acoustic data.
The selection pipeline was designed to select naturalistic
stimuli that were uncontroversially representative of their
respective genres, which would also be appropriate to use
in a dance setting. Moreover, investigating movements to
multiple genres of music further adds to the generalizabil-
ity of our findings.

(A) (B)

Figure 1: Marker and joint locations (A) Anterior view of
the marker locations a stick figure illustration; (B) Anterior
view of the locations of the secondary markers/joints used
in animation and analysis of the data

3.2.1 Personality and Trait Empathy Measures

The Big Five Inventory (BFI) was used to capture the five
predominant personality dimensions, namely, Openness,
Conscientiousness, Extraversion, Agreeableness, and Neu-
roticism [28]. Trait Empathy was measured using the EQ-
and SQ-short form version, developed and validated by
Wakabayashi et al. [29], as a result giving an EQ and SQ
score per participant.

Proceedings of the 21st ISMIR Conference, Montréal, Canada, October 11-16, 2020
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Figure 2: Overview of our Pipeline. Given the position of joints across time frames in 3D Euclidean space(a), we apply
pairwise correntropy between time series xi and xj and calculate the K-matrix (b). Then, taking the lower triangular part
of the symmetric covariance matrix, we get the feature vectors (c). After training the regression model on the feature
vectors, we get the weight vector(d). Finally, corresponding weight values from the learned weight vector are mapped to
the corresponding joints to get the per-joint importance (e).

3.3 Feature Extraction

The analysis and prediction pipeline is illustrated in
Figure 2. To facilitate extraction of kinematic features us-
ing the MATLAB Motion Capture (MoCap) Toolbox [30],
a set of 20 secondary markers, subsequently referred to as
joints, was derived from the original 21 markers. The lo-
cations of these 20 joints are depicted in Figure 1. The
locations of joints B, C, D, E, F, G, H, I, M, N, O, P, Q, R,
S, and T are identical to the locations of one of the orig-
inal markers, while the locations of the remaining joints
were obtained by averaging the locations of two or more
markers; Joint A: midpoint of the two back hip markers;
J: midpoint the shoulder and hip markers; K: midpoint of
shoulder markers; and L: midpoint of the three head mark-
ers. The instantaneous velocity of each marker in each
direction was calculated. Instantaneous velocity was es-
timated by time differentiation followed by the application
of a 2nd-order Butterworth filter with a cutoff frequency of
24Hz [30].

The features used in our analysis is the co-variances of
position and velocity. The co-variances between all marker
time series in each direction (X , Y and Z) within each
participant for each stimulus. We used a non-linear mea-
sure to calculate covariance between the markers. This
method, referred to as correntropy between time series xi
and xj [31], is given by:

K(xi, xj) = e
−||xi−xj ||

2
2

2σ2T2 (1)

where ||xi − xj ||2 is L2-norm between xi and xj , σ is
a constant, 12.0 in our case and T is the length of the
time-series. The L2-norm is divided by T to normalize ac-
cording to time series length since it has different lengths
with varying stimuli. Since the number of joints are 20
and each joint has three coordinates, the dimension of K

would be 60×60. The lower triangular part excluding the
diagonal elements of the symmetric covariance matrix was
vectorised to produce a feature vector of length 1770 for
each participant and for each stimuli.

We also run our experiments using the Normalized fea-
ture vectors calculated by using Position and Velocity, we
employed standard Gaussian Normalization technique:

X̂ =
X − µ(X)

σ(X)
(2)

where X̂ is the feature vector, µ(X) is the mean and σ(X)
is standard deviation.

3.4 Model Regression

The most common regression model for value prediction
tasks used is Linear Regression. The goal here is to find
an optimal line that minimizes the total prediction error.
But this model treats its parameters as unknown constants
whose values must be derived. Moreover, the weights be-
come sensitive when the dataset size is large. So to prevent
the model from overfitting, we took principal components
of the features to train the model (For the result sections,
we will be considering 243 components for position data
and 137 components for velocity data which gave us the
best results). We also approached this problem by using
Bayesian Regression other than Principal Component Re-
gression (PCR) 1 .

In Bayesian Regression the parameters are treated as
random variables belonging to an underlying distribution.
Depending on the dataset, we can be more or less certain
about the weights. Since, the parameters of the model be-
long to a distribution, the predictions of the model also be-
long to a distribution. So we have confidence bounds on

1 Detailed analysis of Principal Component Regression (PCR) and
Bayesian Regression are discussed in the supplementary.
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our predictions. Therefore, they are better at representing
the uncertainty of a model’s predictions.

3.4.1 Personality and Trait Empathy Prediction

The features extracted are used to train five different
Bayesian Regression models to predict each of the five
personality traits - Openness, Conscientiousness, Extraver-
sion, Agreeableness, and Neuroticism (OCEAN). The fea-
tures extracted are used to train both regression models to
predict EQ and SQ respectively. The model is trained and
evaluated on the described dataset.

3.5 Visualizing the Weight Vector

To interpret the coefficients (also known as the weights or
model parameters) of the regression models, we add the
value of the feature vector to the corresponding joints. In
our algorithm, we first find the index in the 60×60 matrix
and then add the absolute value to those joints.

The sign of the coefficient indicates the direction of the
relationship but the magnitude preserves the importance.
After that, Min-Max Normalization is applied to bring the
values in the range (0, 1) for better visualizing the same
variable across similar tasks.

JI[i] =

(
JI[i]−min(JI)

max(JI)−min(JI)

)
∀JI[i] (3)

where JI represent the normalized Joint Importance Vec-
tor. Algorithm 1 describes the pseudo-code to get the im-
portance of joints from the weights of the trained regres-
sion model.

Algorithm 1 Joint Importance
Result: Calculate a vector J of 20 dimensions represent-

ing importance of each joint.
W is the weight vector; J is the importance vector

initialised with 0; S contains lower triangular indices
excluding diagonal indices; 0-indexing is followed;

1: S ← LowerTriangularIndices(60× 60)
2: N ← S.length()
3: for k = 0 : N − 1 do
4: (i, j) := S(k)
5: (̂i, ĵ)← IndexToJoint(i, j)
6: J (̂i) := J (̂i) + |W (k)|
7: J(ĵ) := J(ĵ) + |W (k)|
8: end for
9: return J

After getting a vector of 20 dimension, we reduce it to
12 before visualizing joint importance. We did this by tak-
ing the average of joints which occur in pairs eg. (L shoul-
der, R shoulder), (L wrist, R wrist).

3.5.1 Evaluation Metric

(a) Root Mean Square Error (RMSE): It computes a risk
metric corresponding to the expected value of the root of
squared (quadratic) error or loss.

(b) R2 Score: It represents the proportion of the vari-
ance(of y) that has been explained by the independent vari-
ables in the model. 2

As the square root of a variance, RMSE can be interpreted
as the standard deviation of the unexplained variance, and
has the useful property of being in the same units as the re-
sponse variable and at the same time theR2 helps us evalu-
ate the goodness of fit in capturing the variance in training
data. We calculate RMSE and R2 on multiple splits so that
we get an average estimate of the accuracy.

3.6 Results

3.6.1 EQ and SQ

The results for EQ prediction are in Table 1 and SQ predic-
tion are in Table 2. The results are calculated using 5-fold
cross validation. The range of EQ and SQ is 0-80. The
boldface values represent the best score. The ’N’ in the
tables denote that Gaussian Normalization was applied on
the features. We trained and evaluated two different mod-
els for each of the aforementioned tasks. We can see that
using position data, instead of velocity data, to generate
the feature vectors, gave us the best results. Also, we can
see that the Bayesian Regression gave better results than
Principal Component Regression on both metrics. So from
here on, we will be using Bayesian Regression for other
prediction and analysis tasks.

Input PCR Bayesian Ridge
RMSE R2 RMSE R2

Position 3.071 0.708 2.722 0.771
Position(N) 3.201 0.684 2.733 0.765

Velocity 4.938 0.249 4.343 0.423
Velocity(N) 4.583 0.353 4.015 0.503

Table 1: Prediction Results for Empathizing Quotient

Input PCR Bayesian Ridge
RMSE R2 RMSE R2

Position 2.398 0.781 2.161 0.867
Position(N) 2.363 0.786 2.502 0.838

Velocity 4.448 0.252 3.832 0.469
Velocity(N) 4.211 0.329 3.714 0.552

Table 2: Prediction Results for Systemizing Quotient

3.6.2 Personality Regression

The results for OCEAN value prediction on Dataset can be
found in Table 3. The results are calculated using 5-fold
cross validation. The range of the personality values is 1.0-
5.0. We can see that using position data to extract features
gave the best results on predicting all five personality traits
on the dataset. We can concur that using position data in-
stead of velocity data in the kernelized space is better for
these regression tasks.

2 Detailed explanation of metrics is provided in the supplementary.
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Input Openness Conscientiousness Extraversion Agreeableness Neuroticism
RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2

Position 0.197 0.776 0.317 0.760 0.384 0.743 0.252 0.776 0.384 0.758
Position(N) 0.227 0.740 0.332 0.690 0.414 0.756 0.273 0.716 0.390 0.739

Velocity 0.332 0.464 0.487 0.415 0.556 0.523 0.440 0.335 0.557 0.483
Velocity(N) 0.304 0.527 0.426 0.543 0.501 0.623 0.408 0.442 0.461 0.654

Table 3: Prediction Results for Five Personality Traits using Bayesian Regression

3.6.3 Joints’ Importance

For evaluating joint importance we used learned weights
of the model using position data across different tasks. For
the purpose of analyzing the importance of the joints, we
reduced them to 12 by taking the average for those joints
which occur in pairs eg. (L shoulder, R shoulder). This was
also done for hips, knee, ankle, toe, elbow, wrist, and fin-
ger. Altogether the results in characterizing an individual
trait is dominated by the limbs than the core of the body.

From the relative joint importance depicted in Figure 3,
we observe that ’Ankle’, Elbow’ and ’Shoulder’ play an
important role in determining EQ and SQ of an individual,
whereas ’Neck’ and ’Torso’ have a negligible contribution.
We also infer that ’Finger’, ’Hip’, and ’Knee’ are more
crucial joints for predicting EQ than for SQ whereas ’El-
bow’ holds significantly higher importance for predicting
SQ than for EQ.

Figure 4 displays the relative joint importance of per-
sonality along with the mean plotted in each sub-figure.
The farther away from the mean the joint importance value
for an individual joint is, the more important it is in char-
acterizing that trait. Some similarities in the joint impor-
tance profiles across the personality traits can be attributed
to the inherent correlation that exists among them 3 . We
observe that it is the ’Finger’, ’Elbow’, and ’Knees’ that
contribute to Feature Importance whereas ’Root’, ’Neck’
and ’Torso’ have negligible contribution. For character-
izing Conscientiousness, ’Shoulders’, ’Knees’ and ’Neck’
play a crucial role while ’Head’ and ’Toe’ plays an im-
portant role for Extraversion. For Agreeableness, ’Neck’
and ’Wrists’ have relatively less importance as compared
to other joints whereas, ’Wrists’ play an important role in
Openness. Finally, there are no significant defining fea-
tures for Neuroticism, which indicates that their expression
in Dance Movements through Music-Induced Movements
are very limited.

4. DISCUSSION

Music experiences are highly embodied, making it neces-
sary to consider individual embodied responses to music in
developing more advanced personalized user experiences.
The current study is among the first to the authors’ knowl-
edge to use participants’ free dance movements to predict
personality traits, and both the Empathizing and Systemiz-
ing Quotients (EQ/SQ).

3 The table for Spearman Correlation between the personality traits is
provided in the supplementary material.

Co-variance between joint velocities has previously
been used to identify an individual from their free dance
movements with a high degree of accuracy [11]. The re-
sults of the current analysis show co-variance to be a useful
feature in predicting individual differences. However, we
achieved considerably better prediction accuracy by using
position data than velocity data.

Overall, the limbs of the body seemed to have more im-
portance in predicting individual traits than the core body.
This is in line with the fact that gesture plays an important
role in communication [32], and as specifically regards the
EQ/SQ, as these tests were originally developed in con-
junction with studies of ASD, in which gesture and imita-
tive movement appear to be compromised [33]. Although
the sample used in the current study comprised typically
functioning (non-ASD) participants, the accuracy of pre-
diction of EQ/SQ scores in this analysis is worth highlight-
ing in light of recent work suggesting the existence of mo-
tor signatures unique to ASD, detectable from whole body
movements as well as data drawn from participants’ inter-
action with tablets [19, 34].

The specific markers that were important in the predic-
tion of individual traits in some cases corroborates previ-
ous work, and in some cases contradicts it. Luck et al.
[9] found correlations between Extraversion and speed of
head movement, which supports the current finding that the
head is of particular importance in identifying Extraver-

Root
Torso

Hips

Knee

Ankle

Toe
Finger

Wrist

Elbow

Shoulder

Head

Neck

0.2

0.4

0.6

0.8

1.0

EQ
SQ

Figure 3: Relative importance of Joints in EQ and SQ
Tasks using the Position Data.
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Figure 4: Relative importance of Joints of the five personality traits(Openness, Conscientiousness, Extraversion, Agree-
ableness, and Neuroticism) using the Position Data. The black line indicates the mean importance of the corresponding
joint marker. The red dotted line in the top left sub-figure indicates the standard deviation about the mean.

sion. Carlson et al. [17] found that, compared to Conscien-
tiousness, the core body was more important in responsive-
ness to musical tempo in relation to Extraversion, which
is partly supported by the slightly greater importance of
the finger and wrist markers to Extraversion in our study,
but partly contradicted by the importance of the shoulder
marker in Extraversion. The difference between findings
may relate to the use in the current study of position rather
than velocity or acceleration data; that is, core body pos-
ture while moving to music may be more indicative of
Conscientiousness than core body movement. EQ scores
were more related to head, finger, hips and lower limb
joints than SQ scores, which may be partly attributed to
gender-typical movement patterns as females tend to score
higher on the EQ than males [21, 35].

Several limitations of the current study should be noted.
First, the majority of participants were from European or
North American countries, and all eight music stimuli were
of Western origin, limiting the degree to which results can
be generalized cross-culturally. Secondly, There may ex-
ist potential bias due to gender imbalance. Future work
could include separate analysis performed within gender
categories. And lastly, participants’ preferences for heard
stimuli were not included in our model. This would be an
important feature to focus on in future work, as preference

and enjoyment are highly relevant to personalized MIR.
Further extension of this work could help to make mu-

sic recommendation systems more robust. Previous work
has considered the relationship between personality and
music preference [25, 36], while Greenberg et al. [26]
explored the relationship between music preference and
empathizing-systematizing theory, suggesting even that
music may play a role in increasing empathy in people with
empathy-related disorders, such as ASD. However, the re-
lationship between embodiment, personality and musical
experiences requires further exploration.

To conclude, this study represents an early step towards
multimodal MIR. To make this approach applicable to per-
sonalized gesture-based retrieval systems, it can be ex-
tended to monocular video captured by accessible devices
such as a mobile phone camera. This approach would be
feasible due to recent progress in the area of 3D human
pose estimation in predicting the body joint coordinates
from a monocular video [37–39]. This would then al-
low future recommendation systems to take embodied pro-
cesses into account, resulting in better and more responsive
personalized experiences.
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ABSTRACT

This paper studies the problem of automatically generat-
ing piano score following videos given an audio record-
ing and raw sheet music images. Whereas previous works
focus on synthetic sheet music where the data has been
cleaned and preprocessed, we instead focus on developing
a system that can cope with the messiness of raw, unpro-
cessed sheet music PDFs from IMSLP. We investigate how
well existing systems cope with real scanned sheet mu-
sic, filler pages and unrelated pieces or movements, and
discontinuities due to jumps and repeats. We find that a
significant bottleneck in system performance is handling
jumps and repeats correctly. In particular, we find that a
previously proposed Jump DTW algorithm does not per-
form robustly when jump locations are unknown a priori.
We propose a novel alignment algorithm called Hierarchi-
cal DTW that can handle jumps and repeats even when
jump locations are not known. It first performs alignment
at the feature level on each sheet music line, and then per-
forms a second alignment at the segment level. By op-
erating at the segment level, it is able to encode domain
knowledge about how likely a particular jump is. Through
carefully controlled experiments on unprocessed sheet mu-
sic PDFs from IMSLP, we show that Hierarachical DTW
significantly outperforms Jump DTW in handling various
types of jumps.

1. INTRODUCTION

This paper tackles the problem of generating piano score
following videos in a fully automated manner. Given an
audio recording of a piano performance, our long-term
goal is to build a system that can (a) identify the piece and
automatically download the corresponding sheet music
PDF from the International Music Score Library Project
(IMSLP) website, and (b) generate a video showing the
corresponding line of sheet music at each time instant in
the audio recording. In this work, we focus exclusively on
task (b), assuming that the correct sheet music PDF has
been identified. This task requires us to perform audio–
sheet music alignment on completely unprocessed PDF

c© M. Shan and T. Tsai. Licensed under a Creative Com-
mons Attribution 4.0 International License (CC BY 4.0). Attribution:
M. Shan and T. Tsai, “Improved Handling of Repeats and Jumps in
Audio–Sheet Image Synchronization”, in Proc. of the 21st Int. Society
for Music Information Retrieval Conf., Montréal, Canada, 2020.

files from IMSLP. This paper describes the key insights we
have gained in building such a system, along with a novel
alignment algorithm developed in the process.

Many previous works have studied cross-modal align-
ment between sheet music images and audio. Two gen-
eral categories of approaches have been proposed. The
first approach is to convert the sheet music images to a
symbolic representation using optical music recognition
(OMR), to collapse the pitch information across octaves to
get a chroma representation, and then to compare this rep-
resentation to chroma features extracted from the audio.
This approach has been applied to synchronizing audio
and sheet music [1] [2] [3], identifying audio recordings
that correspond to a given sheet music representation [4],
and finding the corresponding audio segment given a short
segment of sheet music [5]. The second approach is to
convert both sheet music and audio into a learned feature
space that directly encodes semantic similarity. This has
been done using convolutional neural networks combined
with canonical correlation analysis [6] [7], pairwise rank-
ing loss [8] [9], or some other suitable loss metric. This
approach has been explored in the context of online sheet
music score following [10], sheet music retrieval given an
audio query [11] [8] [9], and offline alignment of sheet mu-
sic and audio [8]. Recent works [12] [13] have also shown
promising results formulating the score following problem
as a reinforcement learning game. See [14] for an overview
of work in this area.

The main difference between our current task and previ-
ous work is that we are working with totally unprocessed
data “in the wild." All of the above works make one or
more of the following assumptions, which are untrue in
our task. First, many works focus primarily on training
and testing with synthetic sheet music. In our case, we
are primarily working with digital scans of physical sheet
music. Second, most works assume that the data has been
cleaned and preprocessed in various ways. For example,
it is commonly assumed that unrelated pages of sheet mu-
sic have been removed. Many works further assume that
each page has been segmented into lines, so that the data
is presented as a sequence of image strips each contain-
ing a single line of sheet music. In our task, the raw PDF
from IMSLP may contain unrelated movements, pieces, or
filler pages like the title page or table of contents. We also
obviously cannot assume that each page has already been
segmented perfectly. Third, all of the above works assume
that the music does not have any jumps or repeats. In our
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Figure 1. Architecture of proposed system. The sheet mu-
sic and audio are both converted into bootleg scores, and
then aligned with the Hierarchical DTW algorithm.

task, we have to be able to handle common discontinuities
like repeats, D.C. al coda, D.S. al fine, etc.

In attempting to build a system that can handle messy,
real-world data, we discovered two things. First, we found
that most of the above issues can be resolved to a rea-
sonable degree by suitably combining existing tools in the
MIR literature. However, we also discovered that a sig-
nificant bottleneck in system performance was handling
jumps and repeats. In particular, we found that a previ-
ously proposed Jump DTW alignment algorithm [15] does
not yield satisfactory performance when jump locations are
unknown a priori.

There are several existing offline algorithms for align-
ing two feature sequences in the presence of jumps or
repeats. Jump DTW [15] is a variant of dynamic time
warping (DTW) where additional long-range transitions
are allowed in the cost matrix at potential jump locations.
Mueller and Appelt [16] and Grachten et al. [17] also pro-
pose variants of DTW for partial alignment in the pres-
ence of structural differences. One limitation of these latter
two works is that repeated sections are handled by simply
skipping or deleting sections of features, so that the actual
alignment of the repeated section is not known. Joder et al.
[18] frame the alignment problem as a conditional random
field with additional transitions inserted at known jump lo-
cations. Jiang et al. [19] use a modified Markov model
that allows arbitrary jumps to follow a musician during a
practice session with lots of do-overs and jumps. There are
also several real-time score following algorithms that han-
dle various types of jumps [20] [21] [22] [23], though our
focus in this work is on the offline context. In this study,
we primarily focus on Jump DTW as the closest match to
our target scenario: it is an offline algorithm, targeted at
performances rather than practice sessions, and it provides
a complete estimated alignment in the presence of jumps.

The main conceptual contribution of this paper is a
novel alignment algorithm called Hierarchical DTW. Un-
like Jump DTW, it does not require knowledge of jump lo-
cations a priori, but instead considers every line transition
as a potential jump location. The algorithm is called Hi-
erarchical DTW because it first performs an alignment at
the feature level with each sheet music line, and then uses
the results to perform a second alignment at the segment
level. By performing an alignment at the segment level, we
can encode domain knowledge about which types of jumps

are likely. The algorithm is very simple and only has two
hyperparameters, which both have very clear and intuitive
interpretations. Through carefully controlled experiments
on unprocessed PDFs from IMSLP, we show that Hierar-
chical DTW significantly outperforms Jump DTW on the
piano score following video generation task. 1

2. SYSTEM DESCRIPTION

Figure 1 shows a high-level overview of our proposed sys-
tem. We will explain its design in three parts: feature ex-
traction, alignment, and video generation.

2.1 Feature Extraction

The first step is to convert both the sheet music and audio
into bootleg score representations. The bootleg score [24]
is a recently proposed feature representation for aligning
piano sheet music images and MIDI. For sheet music, it
encodes the position of filled noteheads relative to the staff
lines. The bootleg score itself is a 62 × N binary matrix,
where 62 indicates the total number of possible staff line
positions in both the left and right hands, and where N
indicates the total estimated number of simultaneous note
events. For MIDI files, each note onset can be projected
onto the bootleg score using the rules of Western musical
notation. Ambiguities due to enharmonic representations
or left-right hand attribution are handled by simply setting
all possible positions to 1.

We computed the bootleg score representations in the
following manner. We convert each PDF into a sequence of
PNG images at 300 dpi, compute a bootleg score for each
page, and then represent the entire PDF as a sequence of
bootleg score fragments, where each fragment corresponds
to a single line of music. Note that these fragments may
include lines of music from other unrelated movements or
pieces in the same PDF, or may even represent nonsense
features coming from filler pages. Next, we transcribe the
audio recording using the Onsets and Frames [25] auto-
matic music transcription system, and then convert the es-
timated MIDI into its corresponding bootleg score. In this
work, we treat the bootleg score computation and music
transcription as fixed feature extractors.

2.2 Alignment

The second main step is to align the bootleg score represen-
tations. We propose a novel alignment algorithm called Hi-
erarchical DTW to accomplish this task. Figure 2 shows an
overview of the algorithm, which consists of three stages.

The first stage is to perform feature-level alignment.
We do this using a variant of DTW called subsequence
DTW, which finds the optimal alignment between a short
query sequence and any subsequence within a reference
sequence. We perform subsequence DTW between each
sheet music bootleg score fragment (each corresponding
to one line of music) and the entire MIDI bootleg score, as

1 Code, data, and example score following videos can be found at
https://github.com/HMC-MIR/YoutubeScoreFollowing.
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Figure 2. Overview of Hierarchical DTW. Subsequence
DTW is performed at the feature level on each sheet music
line. The results are used to generate the segment-level
data matrices, and then a second alignment is performed at
the segment level. Only a few selected elements of Tseg
are shown for illustration.

shown on the left side of Figure 2. 2 We use the normalized
negative inner product distance metric proposed in [24]
along with allowable transitions {(1, 1), (1, 2), (2, 1)}with
weights {1, 1, 2}. For a more detailed explanation of sub-
sequence DTW, we refer the reader to [26].

The second stage is to construct the segment-level data
matrices. There are two matrices that need to be con-
structed. The first matrix is formed by taking the last row
in every cumulative cost matrixDi from stage 1 and stack-
ing them into a matrix of size L ×M , where L indicates
the total number of lines of music in the PDF and M in-
dicates the total number of features in the MIDI bootleg
score. This matrix contains subsequence path scores and
is denoted as Cseg in Figure 2. It will play a role analo-
gous to the pairwise cost matrix when we do dynamic pro-
gramming at the segment level. The second matrix Tseg is
the same size as Cseg and indicates allowable transitions at
the segment level. Each element Tseg[i, j] is computed by
identifying the jth element in the last row of Di, and then
backtracking from this element to determine the beginning
location of the matching path. Tseg[i, j] thus indicates the
starting location of the best matching path in the ith line of
sheet music ending at position j in the MIDI bootleg score.
In Figure 2, a few selected elements in Tseg are shown as
colored boxes to illustrate this process. Note that, in order
to construct Tseg , we need to backtrace from every possible
location for every line of sheet music.

The third stage is to perform segment-level alignment.
Here, we use dynamic programming to find the optimal
path through Cseg using transitions in Tseg . We construct
a segment-level cumulative cost matrix Dseg by filling
out its entries column-by-column using dynamic program-
ming. The first column of Dseg is initialized to all zeros,
which ensures that the matching path can start on any line
of music without penalty. Note that, unlike regular DTW
where the set of allowable transitions and weights is the
same at every location, here the set of allowable transi-
tions and weights is different for each element of Dseg .

2 In Figure 2, the horizontal axis corresponds to the reference (left to
right) and the vertical axis corresponds to the query (bottom to top).

Since the transitions are all unique, we simply encode the
previous location rather than the transition type (e.g. the
previous location (i − 1, j − 1) instead of the transition
(1, 1)). When computing Dseg[i, j], there are two types of
allowable transitions. The first type of transition is skip-
ping elements. This means transitioning from (i, j − 1)
and moving directly to the right by one position without
accumulating any score. Here, the candidate path score is
Dseg[i, j] = Dseg[i, j − 1]. The second type of transition
is matching the ith line of music (ending) at this position.
In this case, we can transition from the end of any line of
music immediately before the matching segment begins.
If we let k , Tseg[i, j] be the beginning of the match-
ing subsequence path, then there are L different possible
transitions from (n, k − 1), n = 0, . . . , L − 1 where n in-
dicates the line of music. Here, the candidate path scores
are Dseg[i, j] = Dseg[n, k − 1] + wn,i · Cseg[i, j] + pn,i,
where wn,i is a multiplicative weight and pn,i is an addi-
tive penalty for jumps. We can summarize the dynamic
programming rules for the segment-level alignment as

k , Tseg[i, j] (1)

Dseg[i, j] = min


Dseg[i, j − 1]

Dseg[0, k − 1] + w0,i · Cseg[i, j] + p0,i

Dseg[1, k − 1] + w1,i · Cseg[i, j] + p1,i

· · ·
(2)

where the minimum is calculated over all sheet music lines
n = 0, . . . , L− 1. When filling out the entries of Dseg us-
ing dynamic programming, we also keep track of backtrace
information in a separate matrix. OnceDseg has been con-
structed, we identify the element in the last column ofDseg

with the lowest path score, and then backtrace from that
position to determine the optimal alignment path. Figure 2
shows the optimal alignment path as a series of black dots
and the induced segmentation of the MIDI bootleg score as
gray rectangles.

The real power of Hierarchical DTW comes from set-
ting wn,i and pn,i in an intelligent way that encodes mu-
sical domain knowledge. These values can be adapted
to allow no jumps, allow arbitrary jumps, or anything in
between. For example, disallowing jumps means setting
pn,i = ∞ · 1(i 6= n + 1). The system described below is
one possible instantiation based on three assumptions: (a)
the performed lines of music will form a contiguous block
(e.g. we will not go from page 13 to 34 to 19), (b) back-
wards jumps (from repeats) are to lines of music we have
seen before, and (c) forward jumps (from D.S. al fine) are
to one line past the furthest line of music that has been seen
before (which we refer to as the “leading edge"). For the
allowed jump transitions, multiplicative weights are set to
1 and additive penalties are set to−γ·pavg , where γ is a hy-
perparameter and pavg is the result of calculating the best
subsequence path score for each line of sheet music and av-
eraging the scores across all lines. So, if γ = 1, the jump
penalty approximately offsets 1 line of matching music.
Note that we can keep track of which lines have been seen
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before by defining two matrices Rlower and Rupper which
are the same size as Cseg and keep track of the range of
lines that have been seen in the optimal path ending at any
position (i, j). Rlower and Rupper can be updated along
with Dseg and the backtrace matrix during the dynamic
programming stage. For regular forward transitions, we
allow moving to the next line, staying on the current line
(slowing down), or skipping one line (speeding up). These
three transitions have multiplicative weights 1, α, and α
and additive penalties of 0 (all), respectively. We found
that allowing additional time warping at the segment level
with multiplicative penalty α = 0.5 allows the algorithm
to recover from large mistakes more easily.

Hierarchical DTW is simple yet flexible. The version
described above only has two hyperparameters that corre-
spond to a multiplicative penalty for speeding up/slowing
down (α) and an additive penalty for jumps (γ). Yet, the
framework of Hierarchical DTW makes it possible to se-
lectively allow very specific types of jumps that obey com-
mon musical conventions.

2.3 Video Generation

The third main step is to generate the score following
video. In order to translate the predicted segment-level
alignment into a score following video, we need additional
auxiliary information from the bootleg score feature com-
putation. For the audio recording, we need to keep track of
the correspondence between each MIDI bootleg score fea-
ture column and its corresponding time in the audio record-
ing. For the sheet music, we need to keep track of the
correspondence between each sheet music bootleg score
feature column and its corresponding page and pixel range
in the sheet music images. We modified the original code
provided in [24] to return this information, in addition to
the bootleg score features. Given this auxiliary information
and the predicted segment-level alignment, we can gen-
erate the score following video in a very straightforward
manner: we simply show the predicted line of sheet music
at every time instant in the audio recording.

3. EXPERIMENTAL SETUP

In this section, we explain the datasets and metrics used to
evaluate our proposed system.

Our data is a derivative of the Sheet MIDI Retrieval
dataset [24]. We will first describe the original dataset,
and then explain how we used it to generate the data for
this current work. The original dataset contains scanned
sheet music from IMSLP for 200 solo piano pieces across
25 composers. The sheet music comes with manual anno-
tations of how many lines of music are on each page, and
how many measures are on each line. For each of the 200
pieces, there is a corresponding MIDI file and ground truth
annotations of measure-level timestamps.

We derived our dataset in the following manner. We
synthesize the MIDI files to audio using the FluidSynth
library. By combining the sheet music and MIDI annota-
tions, we determine the time intervals in the audio record-

Figure 3. Generating audio with repeats. The original au-
dio recording is segmented by lines of sheet music. We
sample k boundary points without replacement, and then
splice and concatenate audio segments to generate the data
with repeats.

ing that correspond to each line of sheet music. For each
sheet music PDF in the Sheet MIDI Retrieval dataset, we
retrieved the original PDF from the IMSLP website. The
only difference between these two files is that the original
IMSLP PDF contains other unrelated movements, pieces,
and filler pages that were removed during the preparation
of the Sheet MIDI Retrieval dataset. For example, one PDF
in the test set contains 127 pages, of which only 17 corre-
spond to the piece of interest. Because we want to test
how well our system handles this type of noise, we use the
original PDF with no preprocessing or data cleaning what-
soever. We augmented the sheet music annotations by con-
verting the original IMSLP PDFs into PNG files at 300 dpi
and manually annotating the vertical pixel range for every
line of sheet music played in the audio recording. This re-
quired annotating a total of 1090 pages with 11, 556 pixel
positions. By combining all of our annotations together,
we can determine the page and pixel range of the line of
sheet music that is currently being played at every point in
the audio recording. In total, there are 13.0 hours of anno-
tated audio. Because there are no repeats or jumps in the
sheet music, we call this data the “No Repeat" dataset.

We also generate several synthetic datasets to test how
well our system handles jumps and repeats. The process
of generating a synthetic dataset consists of three steps,
as shown in Figure 3. The first step is to identify the
L + 1 boundary positions of the L lines of sheet music
that are played in the audio recording. The second step
is to randomly sample k boundary points without replace-
ment. The value of k depends on the types of jumps we
want to simulate. In this work, we consider four schemas:
1 repeat (k = 2), 2 repeats (k = 3), 3 repeats (k = 4),
and D.S. al fine (k = 3). The third step is to splice and
concatenate the audio to generate a modified audio record-
ing as shown in Figure 3. Note that all of the synthetic
datasets have the exact same sheet music, but their audio
recordings have been spliced to reflect the desired schema.
Since the process of sampling is random, we generate five
different samples for every audio recording. The four syn-
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Figure 4. Comparison of system performance on bench-
marks with various types of jumps. The bar levels indicate
accuracy with a scoring collar of 0.5 sec. The short gray
lines indicate accuracy with scoring collars of 0 and 1.0
seconds.

thetic datasets described above have 84, 94, 100, and 81
hours of audio, respectively. The ground truth annotations
are modified accordingly.

We evaluate system performance using a simple accu-
racy metric. Because our goal is to generate score follow-
ing videos, we want to use an evaluation metric that corre-
lates with user experience. The accuracy simply indicates
the percentage of time that the correct line of music is be-
ing shown to the user. When calculating accuracy, we use
a scoring collar, in which small intervals (ti−∆t, ti +∆t)
around the ground truth transition timestamps ti are ig-
nored during scoring. This is a standard practice in eval-
uating time-based segmentation tasks like speech activity
detection [27]. By using a range of scoring collar values,
we can also gain insight into what fraction of our errors
occur very close to the transition boundaries.

For all experiments, we use (the same) 40 pieces for
training and 160 pieces for testing. This results in 160 test
queries for the No Repeat benchmark (10.6 hours of au-
dio) and 160 × 5 = 800 test queries for the benchmarks
with jumps (69.2, 76.9, 81.8, and 66.1 hours). Since we
treat the bootleg score computation and automatic music
transcription as fixed feature extractors, our system has no
trainable weights and only 2 hyperparameters (α, γ). So,
we only use a small fraction of the data for developing the
algorithm, and we reserve most of the data for testing.

4. RESULTS

In this section, we present our experimental results on the
piano score following video generation task.

We compare our proposed system to three other base-
line systems. The first baseline system (‘bscore-subDTW’)
is identical to our proposed system in Figure 1 except that it
replaces the Hierarchical DTW with a simple subsequence
DTW. The second baseline system (‘bscore-jumpDTW’) is
also identical to our proposed system except that it replaces

the Hierarchical DTW with Jump DTW [15]. Because
Jump DTW was designed to handle jumps and repeats, we
expect this system to provide the most competitive base-
line results. The third baseline system (‘Dorfer-subDTW’)
is based on Dorfer et. al [9]. This system approaches the
audio–sheet music alignment task by training a multimodal
CNN to project chunks of sheet music and chunks of audio
spectrogram into the same feature space where similarity
can be computed directly. We used the pretrained CNN
provided in [9] as a feature extractor, and then apply sub-
sequence DTW. Finally, our proposed Hierarchical DTW
system is indicated as ‘bscore-hierDTW.’

Figure 4 shows the results of these four systems. The
histogram bars indicate the accuracies with a scoring collar
of ∆t = .5 sec. There are four things to notice about these
results. First, the Dorfer-subDTW system performs poorly
on all benchmarks. This indicates that this system does
not generalize well to the scanned sheet music from IM-
SLP. Second, the bscore-subDTW system performs well
on the No Repeat benchmark (87.9% accuracy), but per-
forms poorly on all other benchmarks (e.g. 30.3% on the
Repeat 3 benchmark). This is to be expected, since sub-
sequence DTW cannot handle jumps and repeats. Third,
Jump DTW is significantly worse than subsequence DTW
on the No Repeat benchmark (71.5% vs. 87.9%), but it
has consistent performance across benchmarks with re-
peats and jumps (71.5%, 71.8%, 71.7%, and 70.5%). This
indicates that Jump DTW is able to cope with discontinu-
ities, but with a significant cost in performance. Fourth,
the Hierarchical DTW system is only slightly worse than
subsequence DTW on the No Repeat benchmark (84.8%
vs. 87.9%), and its performance decreases only slightly on
the other benchmarks (83.9%, 82.8%, 82.4%, 81.6%). We
can see that the Hierarchical DTW system consistently out-
performs Jump DTW by 10-13% across all benchmarks.
These results indicate that Hierarchical DTW is able to
handle repeats and jumps reasonably well, and with a much
smaller performance cost than Jump DTW.

5. ANALYSIS

In this section, we conduct two different analyses to gain
more insight into system behavior.

5.1 Failure Modes

The first analysis answers the question, “What are the fail-
ure modes for each system?" To answer this question, we
identified the individual queries that had the poorest accu-
racy, and then investigated the reasons for the errors.

The Dorfer system has two primary failure modes. The
first failure mode is that the system is not designed to han-
dle jumps, so it performs very poorly on any datasets with
jumps or repeats. Note, however, that this system also per-
forms poorly on the No Repeat benchmark. When we in-
vestigated the reasons for this, we discovered the second
major failure mode: page segmentation. The sub-system
for segmenting each page into lines of music performed
very poorly on many pages in the dataset. This is perhaps
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not surprising, since the original system was developed and
trained on synthetic sheet music, where staff lines are per-
fectly horizontal. In this case, the assumptions in this work
do not translate well to our task of working with IMSLP
scanned sheet music.

The subsequence DTW system also has two primary
failure modes. The first is (again) that the system cannot
handle jumps or repeats. When we investigated the reasons
for major errors on the No Repeat benchmark, we find that
the failures primarily come from mistakes in the bootleg
score representation. The bootleg score does not account
for octave markings or clef changes, and it does not de-
tect non-filled noteheads (e.g. half or whole notes). When
there are long stretches of sheet music that contain several
of these elements at the same time, the bootleg score is a
poor representation of the sheet music. For example, three
of the pieces in the test set are Erik Satie’s Gymnopedies,
where the sheet music is almost entirely non-filled note-
heads. These pieces had close to 0% accuracy and caused
a decrease of several percentage points on the aggregate
accuracy score.

The JumpDTW system has one primary failure mode: it
often jumps to incorrect lines of music. This occurs when
either (a) there are similar lines of music in multiple places
(e.g. the recapitulation of a theme), or (b) significant boot-
leg score errors cause the system to match random lines
of music elsewhere in the piece. This problem is most
clearly seen in the No Repeat benchmark, where it often
takes jumps when none are present.

The Hierarchical DTW system has two primary failure
modes. The first failure mode is prolonged bootleg score
failures, which cause the algorithm to insert spurious small
jumps. Once the bootleg score becomes an accurate repre-
sentation again, the system is usually able to recover. The
second failure mode is when the sheet music contains very
repetitive measures and lines. This problem is particularly
bad when the sheet music is very short (e.g. 2-3 pages
long) and has jumps or repeats.

Figure 5 shows a visualization tool for diagnosing fail-
ure modes. The top half of Figure 5 shows four gray strips,
each representating the duration of a single audio recording
in the No Repeat benchmark. The topmost strip contains
black vertical lines indicating the location of the ground
truth sheet music line transitions. The three strips below
it show the predictions of the subsequence DTW, Jump
DTW, and Hierarchical DTW systems, where errors are
shown in red. The bottom half of Figure 5 shows the same
information for a query in the Repeat 3 benchmark. The
location of the jumps are indicated with blue vertical lines.
We can see many of the failure modes described above. For
example, Jump DTW has spurious jumps in both queries
but is able to follow two of the repeats in the bottom query.
Subsequence DTW is unable to handle the jumps in the
bottom query, but matches well after the last jump occurs.
Finally, we can see that the Hierarchical DTW system is
able to follow the correct sequence of sheet music lines,
and its errors primarily occur close to line transitions.

Figure 5. Visualizing system predictions for a query with
no repeats (top half) and a query with three repeats (bottom
half). Black lines show ground truth line transitions, red
regions indicate errors, and blue lines show repeats.

5.2 Error Locations

The second analysis answers the question, “Where are the
errors located?" One way we can answer this question is
to calculate system performance across a range of values
for the scoring collars. This can tell us how close the er-
rors are to line transition boundaries. Figure 4 shows the
results of each system with various scoring collar values.
The histogram bar level indicates the default scoring collar
∆t = .5 sec, and the results with ∆t set to 0 sec and 1.0
sec are shown as short horizontal gray lines directly below
and above the histogram bar level, respectively. Note that
as ∆t increases, the accuracy will increase monotonically.

There are two things to notice about the results with
various scoring collars. First, we see that even with a gen-
erous scoring collar of ∆t = 1 sec, the accuracies of all
systems only increase about 1-2%. This indicates that most
of the errors are not slight misalignments at the line tran-
sitions, but are instead large errors due to total alignment
failures. Second, we observe that the results with Hierar-
chical DTW on benchmarks with jumps is only marginally
worse than the No Repeat benchmark. This indicates that
Hierarchical DTW is able to handle discontinuities reason-
ably well. Combining these two observations, the failures
in the bscore-hierDTW system seem to primarily come
from large misalignments due to prolonged bootleg score
failures. This strongly suggests that the performance bot-
tleneck is the bootleg score representation, not the Hierar-
chical DTW alignment.

6. CONCLUSION

We present a method for audio-sheet image alignment that
combines a bootleg score representation with a novel align-
ment algorithm called Hierarchical DTW, which performs
alignment at both the feature-level and the segment-level in
order to handle repeats, jumps, and unknown offset in the
sheet music. We show that Hierarchical DTW significantly
outperforms Jump DTW in handling jumps and repeats on
unprocessed sheet music.

Proceedings of the 21st ISMIR Conference, Montréal, Canada, October 11-16, 2020
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69



ZERO-SHOT SINGING VOICE CONVERSION

Shahan Nercessian
iZotope, Inc.

shahan@izotope.com

ABSTRACT

In this paper, we propose the use of speaker embedding
networks to perform zero-shot singing voice conversion,
and suggest two architectures for its realization. The use
of speaker embedding networks not only enables the capa-
bility to adapt to new voices on-the-fly, but also allows for
model training on unlabeled data. This not only facilitates
the collection of suitable singing voice data, but also allows
networks to be pretrained on large speech corpora before
being refined on singing voice datasets, improving network
generalization. We illustrate the effectiveness of the pro-
posed zero-shot singing voice conversion algorithms by
both qualitative and quantitative means.

1. INTRODUCTION

Singing voice conversion (SVC) is the transformation of
a singing performance from one vocalist to that of an-
other. It can be used for creative manipulations of the
voice that go far beyond traditional time stretching and
pitch/formant shifting [1]. SVC methods must learn to dis-
entangle speaker content from acoustic features [2], while
accurately preserving input phonetic and pitch information
in the converted output. Relative to similar methods ap-
plied to speech, the singing voice exhibits a larger pitch
range and generally slower transitions between phonetic
units, which conversion networks must be able to accom-
modate for [3, 4].

Most approaches to SVC rely on some form of vocoder
which synthesizes vocal waveforms. The SVC task then
becomes one of transforming vocoder features from a per-
formance of a source singer to that of some target voice.
Unlike approaches to voice conversion on speech, which
usually leverage neural vocoders such as WaveNet [5] or
WaveRNN [6] as their back-end speech synthesizer, SVC
and singing synthesis algorithms tend to use hand-designed
vocoders such as WORLD [7] for acoustic modeling and
synthesis of the voice (with some exceptions, as in [8]).
This is because they explicitly separate pitch from timbral
components [3, 4, 9]. Accordingly, it is possible to learn
timbral transformations while preserving pitch, which is
not usually guaranteed when using neural vocoder [2].

c© S. Nercessian. Licensed under a Creative Commons At-
tribution 4.0 International License (CC BY 4.0). Attribution: S. Ner-
cessian, “Zero-Shot Singing Voice Conversion”, in Proc. of the 21st Int.
Society for Music Information Retrieval Conf., Montréal, Canada, 2020.

This may come at the expense of reduced expressivity rel-
ative to neural vocoders, but is considered to be acceptable
given its pitch-preserving characteristics [4].

Generative Adversarial Networks (GANs) [3,9,10] and
Variational Autoencoders (VAEs) [11] have become popu-
lar choices for learning transformations of vocoder features
for both SVC and singing synthesis. Different strategies
have been investigated to model several target voices, and
specifically, to adapt systems for new voices not seen dur-
ing model training. One such strategy involves assigning
a random embedding to the unseen voice, and resuming
model training on data of the unseen voice so as to update
this embedding and perform any necessary refinements to
the model [12, 13]. More recently, conversion algorithms
in the speech domain have used pretrained speaker embed-
ding networks designed for speaker verification tasks [14]
in order to encode speaker identity [15]. These approaches
have the advantage that, upon having trained the speaker
embedding network on many speakers, conversion algo-
rithms can be adapted to new voices in a zero-shot manner,
requiring no further training of the model and with as few
as one sample of an unseen voice.

In this paper, we adapt zero-shot voice conversion
methodologies [15] utilizing speaker embedding networks
for the application of SVC. We use the WORLD vocoder
and suggest two architectures for carrying out zero-shot
SVC. We show that the zero-shot nature of the algorithm
allows for SVC on unlabeled data. Moreover, we posit
that SVC systems are amenable to initial training on large
speech datasets which are more widely available, followed
by model adaptation on smaller singing voice datasets. To
the best of our knowledge, this is the first work to tackle
zero-shot SVC. Unlike singing synthesis algorithms, such
as [4, 10, 13], it does not require predefined annotations
of phonetic transitions or pitch, as this information is ex-
tracted from acoustic features of the source performance.

The remainder of this paper is structured as follows: We
suggest architectures for zero-shot SVC in Section 2. We
evaluate model performance via qualitative and quantita-
tive means in Section 3. Lastly, we draw conclusions and
allude to future work in Section 4.

2. SVC ALGORITHMS

We use the WORLD vocoder for analysis and synthesis
of singing voices due to its ability to separate timbral and
pitch components. Specifically, the system decomposes
a vocal signal into a harmonic spectral envelope and an
aperiodicity envelope, based on a tonality-gated estimate
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Figure 1. (a) Adapted AutoVC and (b) fixed encoder network architectures for zero-shot SVC.

of fundamental frequency. The conversion task primar-
ily involves transformation of the harmonic spectral en-
velope, leaving the aperiodicity envelope unchanged. As
in [4], we reduce the dimensionality of harmonic spectral
envelopes to 60 coefficients at each time step, using trun-
cated frequency warping in the cepstral domain with an
allpole warping coefficient α = 0.45 [16]. We consider
two different architectures for SVC, as illustrated in Fig-
ure 1, drawing inspiration from [2, 15, 17, 18].

2.1 AutoVC

The first architecture is an adaptation of the AutoVC archi-
tecture [15] for singing voice, which operates on harmonic
spectral envelopes extracted from WORLD (instead of Mel
spectrograms which are ultimately fed into a WaveNet
vocoder as in the original work). It is comprised of a
speaker embedding network Es(·) which takes as input a
Mel spectogram and generates a single fixed-dimensional
speaker embedding, a content encoder E(·) which takes as
input the harmonic spectral envelope and speaker embed-
ding from a source utterance and generates a latent encod-
ing, and a decoder network D(·) which constructs the con-
verted harmonic spectral envelope from a latent encoding
and target speaker embedding.

The input to the encoder is the harmonic spectral enve-
lopeX1 computed from a source utterance x1. This is con-
catenated with a source speaker embedding S1 = Es(X

′
1)

at each time step, where X ′1 is a Mel spectrogram of the

same or potentially different utterance x′1 from the same
source speaker. The encoder consists of a convolutional
prenet, comprised of three 1D convolutional layers with
512 output channels and kernel size 5, each followed by
batch normalization and ReLU activation. This result is
passed through two bidirectional LSTM layers with for-
ward and backward cell dimensions of 32, yielding an en-
coding of dimension 64. This is temporally downsampled
by 32, yielding the content encoding C1. The inclusion of
S1 in the encoder network helps the encoder to more easily
learn a speaker-independent encoding.

The decoder begins by upsampling the latent encod-
ing C1 to its original temporal resolution. Given the Mel
spectrogram X ′2 of some utterance x′2 from the same tar-
get speaker as the target utterance x2, the speaker embed-
ding S2 = Es(X

′
2) is concatenated with the upsampled

encoding. The concatenated features pass through a con-
volutional prenet similar to that in the encoder, followed
by three LSTM layers with cell dimension 1024. The out-
puts of the LSTM layer are linearly projected to dimension
60, serving as an initial estimate X̃1→2 of the converted
harmonic spectral envelope. This initial estimate is refined
by means of a convolutional postnet consisting of five 1D
convolutional layers of kernel size 5. Batch normalization
and Tanh are applied to the first four layers, and they each
output 512 channels. The final layer applies no activation
and outputs 60 channels. The converted harmonic spectral
envelope X̂1→2 is produced by adding the output of the

Proceedings of the 21st ISMIR Conference, Montréal, Canada, October 11-16, 2020
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postnet to X̃1→2.
During training, we set x1 = x2, S1 = S2, and accord-

ingly, X1 = X2, X̃1→1 = X̃1→2, and X̂1→1 = X̂1→2.
The objective function used for training AutoVC is

L =E[|X1 − X̂1→1|22] +
µE[|X1 − X̃1→1|22] +

λE[|E(X1, S1)− E(X̂1→1, S1)|1] (1)

The first term is the reconstruction loss between the orig-
inal and reconstructed harmonic spectral envelopes. The
second term is a reconstruction loss between the original
and initially estimated harmonic spectral envelopes, which
empirically helps model convergence. The third term is a
latent regressor loss [19] penalizing differences in encod-
ings between the original and converted harmonic spectral
envelopes. In practice, hyperparameters µ and λ can be set
to 1 [15]. The model is trained as an autoencoder, with the
hope that its bottleneck will be small enough to disentangle
speaker identity but large enough to allow for an accurate
reconstruction.

During inference, S2 can be set to the speaker embed-
ding of some target singer to perform a conversion. Given
a source pitch contour F1 extracted during WORLD anal-
ysis, the target pitch contour F2 should be adjusted to ac-
commodate the register of the target singer, and therefore,
F2 = F1 + F∆1→2. The pitch shift F∆1→2 can be deter-
mined automatically by measuring the median pitches of
source and target performances, and taking their difference
rounded to the nearest octave. The aperiodicity spectral en-
velope of the source performance X1,AP is used as is. The
converted audio waveform x̂1→2 is computed by feeding
the transformed harmonic spectral envelope, source aperi-
odicity spectral envelope, and target pitch contour F2 as
input to the WORLD synthesis engine.

2.2 Fixed encoder model

The second architecture is similar to AutoVC, but replaces
the encoder E(·) with a number of conditioning signals,
such as those found in [2]. By design, these conditioning
signals encode the input in a speaker-independent way us-
ing explicit features, akin to the timbre transfer networks
in [18]. We capture linguistic content using phonetic pos-
teriorgrams (PPGs) extracted from a phoneme classifier
Ep(·), as in [17]. The classifier passes 40 Mel frequency
cepstral coefficients (MFCCs) per frame through two bidi-
rectional LSTMs with 128 units per direction. A final
dense layer with softmax activation yields the classifier
output, which is compared to ground truth labels using a
categorical cross-entropy loss during training. We trained
the network on the TIMIT dataset [20], using its prescribed
training and test sets. The dataset consists of audio and
sample level timestamps of phonetic transitions from one
of 61 classes (including a silence class). The output of
the phoneme classifier is, therefore, a 61-dimensional vec-
tor at each time frame. The classification accuracy on the
test set is 65%, which is found to be sufficient to act as
a speaker-independent representation of linguistic content.

We extract loudness information (L) using the computa-
tional steps El(·) as in [21]. We compute an A-weighted
power spectrum, which puts greater emphasis on higher
frequencies. The result is aggregated across all frequen-
cies and converted to decibels to produce a loudness value
(in dbA) at each time step. Lastly, we include the target
pitch contour F2.

The decoder concatenates the target pitch contour F2,
P1 = Ep(x1), L1 = El(x1) with the target speaker em-
bedding S2. The inclusion of these different conditioning
signals attempts to account for timbral changes which may
vary as a function of the pitch and dynamics of a partic-
ular performance, while instructing the decoder of its un-
derlying linguistic content. The decoder network is almost
identical to that in AutoVC, except that we remove the up-
sampling operation as we no longer need to construct an in-
formation bottleneck for speaker disentanglement. We re-
fer to this architecture as the fixed encoder model, because
all conditioning signals are either computed without a neu-
ral network, or using a pretrained neural network whose
weights are frozen during the training of the decoder net-
work. The training objective is similar to that in Eqn. (1),
except that the third term is no longer applicable and is
therefore removed. Note that in this case, the source har-
monic spectral envelope X1 is never actually passed as in-
put to the network, but is used as a target for reconstruction
during training.

2.3 Architecture comparisons

We notionally discuss the potential advantages and disad-
vantages associated with the architectures proposed here.
The main advantage of the AutoVC architecture is that it
does not rely on a dedicated training set for extracting pho-
netic information. This information is learned by the en-
coder itself during model training. This could potentially
have better implications for cross-lingual applications, in
the case that the set of phoneme labels of a dataset itself
introduces a language bias [22]. It does, however, incur
some risk, as the encoder is solely responsible for learn-
ing all timbral variations in vocalization. It also requires
a temporal downsampling/upsampling of its encoding to
create an information bottleneck for speaker disentangle-
ment, which has some additional latency implications in
the decoder. The fixed encoder architecture is computa-
tionally less intensive, as the phoneme classifier is substan-
tially smaller than the encoder network in AutoVC. It also
avoids the need for temporal downsampling/upsampling.
The main disadvantages of this architecture is the reliance
on data to train a phoneme classifier, as well as the fact that
its expressivity is limited to that provided by its condition-
ing signals.

2.4 Universal Background Model (UBM)

While we could simply train SVC networks "from scratch"
on singing voice datasets, we consider leveraging the inter-
esting fact that the use of speaker embeddings for encoding
vocal identity (instead of one-hot labels) allows the sys-
tem to be trained on unlabeled data. Arguably, any "clean"
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72



speech or singing voice clip could now be used for train-
ing SVC systems. It is generally understood that there is
significantly more speech data than their is singing voice
data for research purposes. Borrowing nomenclature from
the speech recognition community, an initial pretraining
on large speech corpora is like training a UBM [23] from
which other networks can be adapted for the more specific
SVC task. We would hope that such a model would serve
as a better initial condition for training a SVC network than
random weights, and that the resulting system would at the
very least generalize to more voices.

3. EXPERIMENTAL RESULTS

3.1 Experimental setup

Two datasets are used for training conversion networks in
this work. We use the VCTK corpus, which consists of
over 40 hours of speech from 109 speakers [24]. This cor-
pus serves as both a supervised speaker dataset to compare
performance between supervised and (unsupervised) zero-
shot networks, as well as a sufficiently large dataset for
training a UBM for further model fine tuning. As in [15],
we retain 90% of the data of each speaker for training, and
save the remainder as a test set. Additionally, we use a
proprietary and unlabeled dataset consisting of 7 hours of
singing voice data, which we simply call the SVC dataset.
Again, we retain 90% of the data for training, and save the
remainder as a test set. Note that the lack of labels in this
dataset poses no problem for zero-shot network training.

We make use of an open-source speaker embedding
network 1 pretrained to minimize the Generalized End-to-
End Loss [14]. This speaker embedding network gener-
ates a 256-dimensional speaker embedding from a 40-band
Mel spectrogram using an LSTM architecture and retain-
ing only the output from the final time step. During train-
ing, we use an entire utterance for x′1, whereas x1 is a 2
second cut from the same utterance. The speaker embed-
ding network and the phoneme classifier are pretrained and
frozen during the training of the conversion networks.

All models operate at 16 kHz with a frame rate of
12.5 ms, and were trained with a batch size of 2 using
the ADAM optimizer and a learning rate of 10−3. We
train four configurations for each model architecture de-
scribed here. The first configuration, VCTK (one-hot), is
trained on the VCTK corpus using the labels provided by
the dataset, which are converted to a one-hot representation
and fed as S1 to the network. This configuration serves
as a baseline to compare against its zero-shot counterpart.
The second configuration, VCTK (zero-shot), is trained on
the VCTK corpus using speaker embeddings for S1. The
first two configurations are each trained for 150,000 steps.
In the third configuration, SVC (zero-shot), we train zero-
shot architectures on the SVC dataset for 500,000 steps. In
the final configuration, VCTK→SVC (zero-shot), the sec-
ond configuration is used as an initial state, and training is
resumed for 350,000 steps on the SVC dataset (for a to-
tal of 500,000 steps). For audio examples, please visit the

1 https://github.com/CorentinJ/Real-Time-Voice-Cloning.

demo site 2 associated with this paper.

3.2 Performance assessment

We assess networks by both qualitative and quantitative
means. The main goal of this paper is to illustrate that
speaker embeddings networks can indeed be utilized for
training zero-shot SVC networks. Since we are unaware
of any other published methods for zero-shot SVC such
as the ones introduced here, and in order to provide some
form of comparative analysis, we focus our attention to an-
alyzing differences in results between the training config-
urations outlined here. For our quantitative evaluation, we
report the reconstruction loss for each network (the first
term in Eqn. (1)), which when computed on harmonic
spectral envelopes, effectively serves as a Mel cepstral dis-
tortion metric. For our qualitative evaluation, we con-
ducted surveys with 15 participants within our organization
who have some critical listening experience, and tabulated
mean opinion scores (MOS). We conduct separate surveys
for overall conversion quality and on similarity to the target
voice. While we provide examples from both architectures
in the supplementary material of this work, we restrict our-
selves to samples generated from training variants of the
fixed encoder architecture for subjective evaluations. The
first reason for this restriction is simply to minimize the
number of listening options so as not to overwhelm par-
ticipants taking part in the survey. The second reason is
because the inclusion of one-hot speaker labels for S1 in
the encoder network of AutoVC would require that input
source samples come from its closed speaker set. There-
fore, it is not practically possible to use the VCTK (one-
hot) training configuration on AutoVC on singing voice
examples without removing S1 from the network, leading
to a potentially unfair comparison.

The results of our quantitative analysis assessed on both
the VCTK and SVC datasets are shown in Tables 1 and
2, respectively. Across both architectures, we can confirm
that the replacement of one-hot labels with speaker embed-
dings does not dramatically hurt conversion performance.

AutoVC Fixed Encoder

VCTK (one-hot) 0.1837 0.1882
VCTK (zero-shot) 0.1634 0.1891
SVC (zero-shot) 0.2930 0.3590
VCTK→SVC (zero-shot) 0.2557 0.3232

Table 1. Reconstruction loss on the VCTK test set.

AutoVC Fixed Encoder

VCTK (one-hot) N/A N/A
VCTK (zero-shot) 0.3007 0.4314
SVC (zero-shot) 0.1650 0.1959
VCTK→SVC (zero-shot) 0.1439 0.1850

Table 2. Reconstruction loss on the SVC test set.
2 https://sites.google.com/izotope.com/ismir2020-audio-demo
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In fact, we see that for the AutoVC architecture, VCTK
(zero-shot) actually outperforms VCTK (one-hot), while
offering the added functionality of zero-shot adaptation to
new unseen voices. This result is consistent with the find-
ings in [15]. We note that there is a significant degrada-
tion in performance assessed quantitatively when apply-
ing either VCTK (zero-shot) directly to singing voice sam-
ples, or when applying SVC networks directly to VCTK
samples, highlighting that there is indeed a mismatch be-
tween the speech and singing voice domains. There is a
consistent improvement when using our proposed adapta-
tion strategy, with VCTK→SVC (zero-shot) outperform-
ing SVC (zero-shot), both in the speech domain and more
importantly, in the singing voice domain of interest. Over-
all, the best performing approach for singing voice based
on this quantitative evaluation is AutoVC trained using
VCTK→SVC (zero-shot) training configuration, though
the computationally lighter, fixed encoder model does per-
form comparably well. It is worth noting that the VCTK
(one-hot) configuration is not applicable for evaluation on
the SVC dataset as it does not have the immediate ability
to adapt to new voices.

The results of our qualitative analysis, converting
singing voice performances using target voices from both
the VCTK and SVC test sets are shown in Tables 3 and 4,
respectively. First and foremost, we observe that speaker
embeddings networks can, in general, be used for zero-
shot SVC. We note that conversion networks trained on
speech can be used on singing voice, but they have some
trouble maintaining consistent spectral envelopes over pro-
longed vowels. Lastly, while not formally a part of the sub-
jective evaluation, we informally observe comparable per-
formance between architectures, with a preference towards
one architecture over the other on a per-case basis.

With target voices from VCTK, there is no remarkable
difference between networks trained using one-hot speaker
labels or using zero-shot speaker embeddings, but the lat-
ter naturally allows adaptation to new voices. While SVC
(zero-shot) is trained to be adapted to properties of singing
voice, it is trained on less data and has been exposed to
fewer voices. Though it was able to generate voices resem-
bling the VCTK target voices due to its zero-shot nature,
and worked comparably to other methods, it understand-
ably received the lowest MOS in this case. The networks
trained on the SVC dataset are more successful when us-
ing target voices from the SVC test set (and again, are
better adapted to the time scale of phonetic transitions in
singing). In this case, there is some degradation in quality
for the system trained using the VCTK (zero-shot) con-
figuration, and the VCTK (one-hot) configuration is not
even applicable. We again see an improvement for net-
works trained using VCTK→SVC (zero-shot) relative to
SVC (zero-shot) in this scenario. In fact, the VCTK→SVC
(zero-shot) training configuration outperforms other meth-
ods in terms of overall quality for both VCTK and SVC
target voices. The VCTK (zero-shot) and VCTK→SVC
(zero-shot) training configurations are the top performers
in terms of voice similarity for VCTK and SVC target

Quality Similarity

VCTK (one-hot) 2.377 2.828
VCTK (zero-shot) 2.447 3.051
SVC (zero-shot) 2.289 2.549
VCTK→SVC (zero-shot) 2.476 2.664

Table 3. Mean opinion scores on singing voice with target
voices from the VCTK test set with fixed encoder model.

Quality Similarity

VCTK (one-hot) N/A N/A
VCTK (zero-shot) 2.154 2.610
SVC (zero-shot) 2.477 2.772
VCTK→SVC (zero-shot) 2.674 2.937

Table 4. Mean opinion scores on singing voice with target
voices from the SVC test set with fixed encoder model.

voices, respectively.
Lastly, we further exemplify the zero-shot nature of our

proposed method by subjecting our system to target voices
outside of the VCTK and SVC datasets. These examples
were generated without any further training of models and
using just 1-2 seconds of audio from a target voice in order
to compute speaker embeddings. While quality and voice
similarity could obviously be improved by further model
fine tuning on more data from target voices, it is apparent
that the system can generate reasonable conversions resem-
bling the voices from the reference material in a zero-shot
manner.

4. CONCLUSION

In this paper, we propose the application of speaker embed-
ding networks for zero-shot SVC. We suggest two archi-
tectures for carrying out zero-shot SVC using the WORLD
vocoder for modeling singing voice. Overall, we find that
speaker embeddings can indeed be used directly for zero-
shot SVC. Moreover, zero-shot networks replacing one-
hot speaker labels with speaker embeddings perform as
well as (or even better than) their supervised closed set
counterparts, with the invaluable added benefits that they
can be trained on unlabeled data and can potentially adapt
to new voices without requiring further training. Further-
more, we show that there is some benefit to training zero-
shot SVC networks by adapting an initial model trained on
large amounts of speech data. In future work, we will in-
vestigate learning latent factors which can allow for further
expressive manipulation of conversion results. While some
initial progress to this end has been made using Gaussian
Mixture VAEs (GMVAEs) [11], they have largely been
limited to sung vowels. We can likely generalize this to
more practical singing voice by utilizing the conditioning
signals used in this work. We are also interested in replac-
ing the WORLD vocoder with learned vocoders based on
differentiable digital signal processing, as in [18, 25], in
order to enable lightweight end-to-end training.
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ABSTRACT

Drawing an analogy with automatic image completion
systems, we propose Music SketchNet, a neural network
framework that allows users to specify partial musical
ideas guiding automatic music generation. We focus on
generating the missing measures in incomplete mono-
phonic musical pieces, conditioned on surrounding con-
text, and optionally guided by user-specified pitch and
rhythm snippets. First, we introduce SketchVAE, a novel
variational autoencoder that explicitly factorizes rhythm
and pitch contour to form the basis of our proposed
model. Then we introduce two discriminative architec-
tures, SketchInpainter and SketchConnector, that in con-
junction perform the guided music completion, filling in
representations for the missing measures conditioned on
surrounding context and user-specified snippets. We eval-
uate SketchNet on a standard dataset of Irish folk music
and compare with models from recent works. When used
for music completion, our approach outperforms the state-
of-the-art both in terms of objective metrics and subjective
listening tests. Finally, we demonstrate that our model can
successfully incorporate user-specified snippets during the
generation process.

1. INTRODUCTION

As a research area, automatic music generation has a
long history of studying and expanding human expres-
sion/creativity [1]. The use of neural network techniques
in automatic music generation tasks has shown promising
results in recent years [2]. In this paper, we focus on a
specific facet of the automatic music generation problem
on how to allow users to flexibly and intuitively control
the outcome of automatic music generation. Prior work
supports various forms of conditional music generation.
MuseGan [3] allows users to condition generated results
on full-length multi-track music. DeepBach [4] provides a
constraint mechanism that allows users to limit the gen-
erated results to match composer styles. Music Trans-

c© Ke Chen, Cheng-i Wang, Taylor Berg-Kirkpatrick,
Shlomo Dubnov. Licensed under a Creative Commons Attribution 4.0
International License (CC BY 4.0). Attribution: Ke Chen, Cheng-
i Wang, Taylor Berg-Kirkpatrick, Shlomo Dubnov, “Music SketchNet:
Controllable Music Generation via Factorized Representations of Pitch
and Rhythm”, in Proc. of the 21st Int. Society for Music Information
Retrieval Conf., Montréal, Canada, 2020.
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Figure 1. The music sketch scenario. The model is de-
signed to fill the missing part based on the known context
and user’s own specification.

former [5] supports a accompaniment arrangement from
an existing melody track in classical music. However, all
these approaches require the user preference to be defined
in terms of complete musical tracks.

Inspired by the sketching and patching work from com-
puter vision [6–10], we propose Music SketchNet 1 which
allows users to specify partial musical ideas in terms of
incomplete and distinct pitch and rhythm representations.
More specifically, we generalize the concept of sketching
and patching – wherein a user roughly sketches content
for a missing portion of an image – to music, as depicted
in Figure 1. The proposed framework will complete the
missing parts given the known context and user input. To
the best of our knowledge, there has been limited work on
sketching in music generation. Some work [4,11] has used
Markov Chain Monte Carlo (MCMC) to generate music
with given contexts or generate music conditioned on sim-
ple starting and ending notes [12]. The most related task is
music inpainting: completing a musical piece by generat-
ing a sequence of missing measures given the surrounding
context, but without conditioning on any form of user pref-
erences. Music InpaintNet, [13] completes musical pieces
by predicting vector representations for missing measures,
then the vector representations are decoded to output sym-
bolic music through the use of a variational autoencoder
(VAE) [14].

Our proposed music sketching scenario takes music in-

1 https://github.com/RetroCirce/Music-SketchNet.
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SketchInpainter

 	 SketchVAE	Encoder

User	Sketching	Info.

SketchConnector 	 	 

SketchVAE	Decoder 	 	 	 

Music	Tokens

Sketch	Music	Output

...

Figure 2. The Music SketchNet pipeline. The color pat-
terns inside Inpainter and Connector correspond to the la-
tent space transform and completion process in Figure 1.

painting a step further. We let users specify musical ideas
by controlling pitch contours or rhythm patterns, not by
complete musical tracks. The user input is optional: users
can choose to specify musical ideas, or let the system fill
in predictions without conditioning on user preferences.

Music SketchNet consists of three component, as de-
picted in Figure 2: (1) SketchVAE is a novel variational
autoencoder that converts music measures into high dimen-
sional latent variables. By the use of a factorized infer-
ence network, SketchVAE decouples latent variables into
two parts: pitch contour and rhythm, which serve as the
control parameters for users. (2) SketchInpainter contains
stacked recurrent networks to handle the element-level in-
painting prediction in the latent space. (3) SketchConnec-
tor receives users’ sketches of pitch, rhythm, or both, com-
bines them with the prediction from SketchInpainter, and
finalizes the generation.

In this paper, we show that the proposed Sketch-
VAE is capable of factorizing music input into la-
tent variables meaningfully, and the proposed SketchIn-
painter/SketchConnector allows users to control the gen-
erative process. The novel training and evaluation method-
ologies of the SketchConnector are also presented.

2. MUSIC SKETCHING

We formalize the music sketching task as solving the fol-
lowing three problems: (1) how to represent music ideas or
elements, (2) how to generate new materials given the past
and future musical context and (3) how to process users’
input and integrate it with the system. A visualization of
the sketching scenario is depicted in Figure 1.

We propose three neural network components to tackle
the three problems. The SketchVAE encodes/decodes the
music between external music measures and the learned
factorized latent representations. The SketchInpainter pre-
dicts musical ideas in the form of the latent variables given
known context. And the SketchConnector combines the
predictions from SketchInpainter and users’ sketching to
generate the final latent variables which are sent into the
SketchVAE decoder to generate music output. A diagram

showing the proposed pipeline is shown in Figure 2.

2.1 Problem Definition

More formally, the proposed sketch framework can be de-
scribed as a joint probability model of the missing musi-
cal content, Xm, conditioned on the past, future, and user
sketching input. The joint probability breaks down into a
product of conditional probabilities corresponding to sub-
components of the framework:

Pφ,ε,γ,θ,τ (X
m, Z, S|Xp, Xf , C) =

Pφ(X
m|Zm) (SketchVAE Decoder)

∗ Pε(Zm|Sm, C) (SketchConnector)

∗ Pγ(Smpitch|Z
p
pitch, Z

f
pitch) (SketchInpainter)

∗ Pγ(Smrhythm|Z
p
rhythm, Z

f
rhythm) (SketchInpainter)

∗Qθ(Zppitch, Z
f
pitch|X

p
pitch, X

f
pitch)

∗Qτ (Zprhythm, Z
f
rhythm|X

p
rhythm, X

f
rhythm)

(SketchVAE Encoders)

X indicates the input/output music sequence, Z is the se-
quence for {z} the latent variable , S is the SketchIn-
painter’s predicted sequence, C is users’ sketching input.
The superscripts, p, m, f indicate the past, missing and
future context. The subscripts, pitch and rhythm indi-
cate the pitch and rhythm latent variables. Qθ, Qτ , Pφ
are the SketchVAE pitch/rhythm encoders and decoder pa-
rameters, Pγ represents the SketchInpainter, and Pε is the
SketchConnector.

2.2 SketchVAE for Representation

MusicVAE [15] is one of the first works applying the vari-
ational auto-encoder [14] to music. MeasureVAE [13] fur-
ther focuses on representing isolated measures and utilizes
a hierarchical decoder to handle ticks and beats. EC2-
VAE [16] factorizes music measures with separate vectors
representing pitch and rhythm by a single encoder and two
decoders. Our proposed SketchVAE aims to factorize rep-
resentations by introducing a factorized encoder that con-
siders pitch and rhythm information separately in the en-
coder channels. Different from EC2-VAE, it could al-
low users to enter parts of the information (rhythm and/or
pitch) optionally.

SketchVAE aims to represent a single music measure
as a latent variable z that encodes rhythm and pitch con-
tour information in separate dimensions (zpitch, zrhythm).
It contains (1) a pitch encoder Qθ(zpitch|xpitch), (2) a
rhythm encoder Qτ (zrhythm|xrhythm), and (3) a hierar-
chical decoder Pφ(x|zpitch, zrhythm) as shown in Figure
4.

2.2.1 Music Score Encoding

Similar to [15], we encode the monophonic midi melody
by using [0, 127] for the note onsets, 128 for holding state,
and 129 for the rest state. We cut each measure into 24
frames to correctly quantize eighth-note triplets like [13],
and encode the midi as described in the previous sentence.
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D5 _ _ E5 _ _  A4 _ _ _ _ _ _ _ _  G4 _ _  A4 _ _ _ _ _ 

74 128 128 76 128 128 69 128 128 128 128 128 128 128 128 67 128 128 69 128 128 128 128 128

74 76 69 67 69 ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● O _ _ O _ _ O _ _ _ _ _ _ _ _ O _ _ O _ _ _ _ _

Music Melody Tokens

Pitch Tokens (with padding ●) Rhythm Tokens

Figure 3. An example of the encoding of a monophonic
melody.

As Figure 3 shows, we further process the encoded 24-
frame sequence x into xpitch and xrhythm, the pitch and
rhythm token sequences respectively. The pitch token se-
quence xpitch is obtained by picking all note onsets in x
with padding (shown by "•" in Figure 3) to fill 24 frames.
The rhythm token sequence xrhythm is obtained by replac-
ing all pitch onsets with the same token (shown by "O"
and "_" in Figure 3). A similar splitting strategy is also
used in [17]. Our motivation is to provide users with two
intuitive music dimensions to control, and to help enforce
better factorization in the latent representation for later pre-
diction and control.

2.2.2 The Pitch Encoder and Rhythm Encoder

After pre-processing x, xpitch only contains the note value
sequence, while xrhythm only has the duration and onset
information. xpitch and xrhythm are then fed into two
different GRU [18] encoders for variational approxima-
tion. The outputs of each encoder are concatenated into
z = [zpitch, zrhythm].

2.2.3 The Hierarchical Decoder

After we obtain the latent variable z, we feed it into the hi-
erarchical decoder. This decoder is similar to the decoder
used in MeasureVAE [13]. As shown in the bottom part in
Figure 4, it contains an upper "beat" GRU layer and a lower
"tick" GRU layer. This division’s motivation is to decode z
into n beats first and then decode each beat into t ticks. As
a result, the note information in each measure will be de-
coded in a musically intuitive way. For the tick GRU, we
use the teacher forcing [19, 20] and auto-regressive tech-
niques to train the network efficiently. The output is condi-
tioned frame-by-frame not only on the beat token but also
on the last tick token.

2.2.4 Encoding the Past, Missing and Future Musical
Context

The latent variable sequences Zp, Zm, and Zf are then ob-
tained by processing the music input in measure sequences
Xp, Xm, and Xf . Both Xm and Zm are masked during
training. This encoding part is shown in the left block of
Figure 5.

2.3 SketchInpainter for Initial Prediction

Next, we describe the model component that performs the
music inpainting to predict latent representations for the
missing measures. The SketchInpainter accepts Zpitch
and Zrhythm as two independent inputs from SketchVAE.

..................................................

 	 	...
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Output	Melody	Tokens

Figure 4. SketchVAE structure: pitch encoder, rhythm en-
coder and hierarchical decoder. Rhythm tokens: the upper
dashes denote the onsets of note, and the bottom dashes
denote the hold/duration state. We use pitch symbols to
represent the tokens numbers for better illustration.

Then only the past and future Zpitch and Zrhythm are fed
into the pitch/rhythm GRU groups respectively. The out-
put from each GRU group is the hidden state h, as shown
in the middle of Figure 5.

Then we combine the past/future hidden states h from
both the pitch and rhythm GRU groups and use them as the
initial states for the pitch/rhythm generation GRUs. The
generation GRUs then predict the missing latent variables
by Sm = (Spitch, Srhythm), as shown in the green box in
Figure 5. Each generation GRU is trained with the teach
forcing and auto-regressive techniques.

Each output vector sm from Sm has the same dimension
as the latent variable z from Z. We first build a model with
only SketchVAE and SketchInpainter that directly predicts
the missing music material,Xm. As the right block of Fig-
ure 5 shows, Sm is sent into the SketchVAE decoder and
we compute the cross entropy loss between the predicted
music output and the ground truth. This is the stage I train-
ing in our model, detailed in Section 3.3.

2.4 SketchConnector for Finalization

The predicted Sm from SketchInpainter can already serve
as a good latent representation for the missing part
Xm. We continue by devising the SketchConnector,
Pε(Z

m|Sm, C), to modify the prediction with user con-
trol. To make up for the lack of correlation between
pitch and rhythm in current predictions, we introduce the
SketchConnector as a way to intervene/control the genera-
tive process, that also leads to a wider musical expressivity
of the proposed system.
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Figure 5. SketchInpainter structure. We feed the music tokens into the SketchVAE and obtain the latent variable sequences.
And we feed the sequences into the pitch GRU and the rhythm GRU groups to generate the initial prediction S.

2.4.1 Random Unmasking

With Sm obtained from SketchInpainter, we concatenate it
with Zp and Zf again. However, before we feed it back
into the network, we randomly unmask some of the miss-
ing parts to be the ground-truth (simulating user providing
partial musical context). The masked Sm are shown by the
red boxes in Figure 6. We replace some s from Sm to be
the real answer in Zm, denoted as C. We observe that this
optimization is very similar to BERT [21] training. The
difference is that BERT randomly masks the ground truth
labels to be unknown, but SketchConnector randomly un-
masks the predictions to be truths. The unmasking rate is
set to 0.3.

Intuitively, this allows the model to learn a more close
relation among current rhythm, pitch tokens, and the near-
est neighbour tokens. In the sketch inference scenario, the
randomly unmasked measures will be replaced by the user
sketching information, which allows a natural transition
between the training and testing process.

2.4.2 Transformer-based Connector

Then with Sm and the random unmasking data C, we feed
them into a transformer encoder with absolute positional
encoding. In contrast to [5], we do not use relative posi-
tional encoding because our inputs are vectors represent-
ing individual measures, whose length is far shorter than
midi-event sequences.

The output of the SketchConnector, Zm, will be the fi-
nal prediction for the missing part. We feed it into the
SketchVAE decoder, and compute the cross entropy loss
of the output with the ground-truth.

3. EXPERIMENT

3.1 Dataset and Baseline

To evaluate the SketchVAE independently, we compare
our model with two related systems: MeasureVAE [13]
and EC2-VAE [16]. For SketchNet, we compare our
generation results with Music InpaintNet [13], which has
shown better results than the earlier baseline [12]. Similar
to [13], we use the Irish and Scottish monophonic music

Zp  (past) Zf (future)
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s1 s2 ... st-1 st
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Positional Encoding
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2

final	prediction Zm'

Figure 6. The SketchConnector: the output of SketchIn-
painter is randomly unmasked and fed into a transformer
encoder to get the final output.

Dataset [22] and select the melodies with a 4/4 time signa-
ture. About 16000 melodies are used for training and 2000
melodies for testing.

3.2 SketchVAE Measurements

3.2.1 Reconstruction

For SketchVAE, MeasureVAE and EC2-VAE, the dimen-
sion of latent variable |z| is set to 256, half for the pitch
contour, and the other half for the rhythm. We set the learn-
ing rate to 1e-4 and use Adam Optimization with β1 = 0.9
and β2 = 0.998. Three models achieve the accuracy (the
reconstruction rate of melodies) 98.8%, 98.7%, 99.0% re-
spectively. We can clearly conclude that all VAE models
are capable of converting melodies to latent variables by
achieving the accuracy around 99%. SketchVAE is capa-
ble of encoding/decoding musical materials in SketchNet.
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Irish-Test Irish-Test-R Irish-Test-NR

Model loss ↓ pAcc ↑ rAcc ↑ loss ↓ pAcc ↑ rAcc ↑ loss ↓ pAcc ↑ rAcc ↑

Music InpaintNet 0.662 0.511 0.972 0.312 0.636 0.975 0.997 0.354 0.959

SketchVAE + InpaintRNN 0.714 0.510 0.975 0.473 0.619 0.981 1.075 0.374 0.964

SketchVAE + SketchInpainter 0.693 0.552 0.985 0.295 0.692 0.991 1.002 0.389 0.977

SketchNet 0.516 0.651 0.985 0.206 0.799 0.991 0.783 0.461 0.977

Table 1. The generation performance of different models in Irish and Scottish monophonic music dataset. The InpaintRNN
is the generative network in Music InpaintNet.

Model Complexity↑ Structure↑ Musicality↑

Original 3.22 3.47 3.56

InpaintNet 2.98 3.01 3.09

SketchNet 3.04 3.29 3.26

Table 2. Results of the subjective listening test.

3.2.2 Comparison with EC2-VAE

EC2-VAE [16] is also capable of decoupling the la-
tent variable into rhythm and pitch contour dimensions.
However, SketchVAE’s encoders can accept pitch con-
tour/rhythm inputs separately. Rhythm and pitch controls
can be manipulated independently in the sketching sce-
nario where the user might not specify an entire musical
measure (e.g., just a rhythm pattern). By contrast, EC2-
VAE requires a completed measure before encoding. If
users want to specify either rhythm or pitch controls, the
model must first fill in the other half part before inputting
it, which prohibits the possibility of the separate control.

3.3 Generation Performance

3.3.1 Training Results

The SketchNet’s training is separated into stage I and II. In
stage I, after training the SketchVAE, we freeze its param-
eters and train the SketchInpainter as shown in the right
block of Figure 5. In stage II, with the trained Sketch-
VAE and SketchInpainter, we freeze both, concatenate Sm

with the past/future latent variables, and feed them to the
SketchConnector for training.

We compare four models by using 6 measures of past
and future contexts to predict 4 measures in the middle (i.e.
np = nf = 6, and nm = 4 ). Music InpaintNet [13] is
used as the baseline, along with several variations. Early
stopping is used for all systems.

We compute three metrics: loss, pitch accuracy, and
rhythm accuracy to evaluate the model’s performance.
The pitch accuracy is calculated by comparing only the
pitch tokens between each generation and the ground truth
(whether the model generates the correct pitch in the cor-
rect position). And the rhythm accuracy is calculated
by comparing the duration and onset (regardless of what
pitches it generates). The overall accuracy and loss are

negatively correlated.
For this part of the experiment, we also use two special

test subsets. We compute the similarities between the past
and future contexts of each song in the Irish test set, pick
the top 10% similar pairs (past and future contexts are al-
most the same) and bottom 10% pairs (almost different),
and create the Irish-Test-R (repetition) and Irish-Test-NR
(non-repetition) subsets.

From Table 1, we can see that SketchNet beats all other
models for all test sets. The performance improved more
for pitch then for rhythm. The accuracy is almost the same
between the 1st and 2nd model. Accuracy is slightly bet-
ter if we use SketchInpainter to treat rhythm and pitch in-
dependently during generation. Lastly, with the power of
transformer encoder and random unmasking process done
in SketchConnector, we can achieve the best performance
by using SketchNet (bottom row in Table 1). We further
follow [23] to use the Bootstrap significance test to ver-
ify the difference between each pair’s overall accuracy for
models in the whole Irish-Test set (Four models, i.e. six
pairs in total). The sample time is set to 10000. After
calculation, all p-values except the fist and second model
pair (p-value = 0.402) are less than 0.05, which proves that
SketchNet is different from the left three models.

In the repetition test subsets, the loss of Music Inpaint-
Net is 0.312, which is lower enough to capture repetitions
in the musical context and fill in the missing part by copy-
ing. In most cases, copying is the correct behaviour be-
cause the original melody has repetitive pattern structures.
The loss is a measurement to evaluate if the model can
learn the repetitive pattern and copy mechanism from the
data. the SketchNet slightly outperforms InpaintNet.

3.3.2 Subjective Listening Test

However, the more interesting result is the generation with
non-repetition subset. In this case, models cannot merely
copy because original melodies do not repeat its content.
We see higher losses in all models in this subset compared
to the repetition subset. Intuitively, it means that repetitive
patterns are essential to the reconstruction task, not nec-
essarily the expressivity of the generated output would be
less.

To further evaluate the proposed SketchNet, we con-
duct an online subjective listening test to let subjects judge
the generated melodies from the non-repetition subset.
Each subject will listen to three 32-second piano-rendered
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Past	Context Future	ContextGeneration

{Ab5,	Db6,	Eb6,	Gb6} {C6,	Eb6,	Db6,	F6,	Db6}  {F6,	Gb6,	Ab6,	Ab6,	F6} {Db6,	F6,	Ab6,	Bb6,	Db6}

{Ab5,	Db6,	Eb6,	Gb6}

Original

Control
Pitch

Control
Rhythm

Control
Both

No	Sketch

Figure 7. An example of sketch generation. From top to bottom: original, pitch/rhythm/mixture control. The blue pitch
texts denote pitch controls, and the pink segments denote rhythm controls.

Control Info. Rhythm Pitch
Pitch Acc. 0.189 0.881

Rhythm Acc. 0.973 0.848

Table 3. The accuracy of the virtual control experiment.

melodies: the original, the Music InpaintNet’s genera-
tion, and the SketchNet’s generation. Songs are randomly
picked from the Irish-Test-NR set. The beginning and end-
ing (past & future) are the same for the three melodies.
Since the subjective feeling of music is complicated to
quantify, we chose three criteria: the number of notes
(complexity), the repetitiveness between musical struc-
tures (structure), and the degree of harmony of the music
(overall musicality). In this way, subjects with different
levels of music skills can all give reasonable answers.

Before rating the songs, subjects will see three criteria
descriptions as we introduced below. The rating is ranged
from 1.0 to 5.0 with a 0.5 step. We collected 318 sur-
veyed results from 106 subjects (each subject listens to
three groups, nine melodies in total). The average rating of
each criteria for all models are shown in Table 2. The sub-
jective evaluations of all three criteria in SketchNet are bet-
ter for those of Music InpaintNet. Similar to section 3.3.1,
we also conduct a pairwise significance test via Bootstrap
in three criteria. All p-values except the <complexity: In-
paintNet, SketchNet> (p-value = 0.364) are less than 0.05.
It proves that three models (including original songs) are
significantly different in structure and overall musicality
(subjective feeling to a person). As for the complexity, we
believe that the results generated by the two models are
similar in terms of the richness of notes, and our model
does not significantly increase the number of notes gener-
ated.

3.4 Sketch Scenario Usage

The contribution of Music SketchNet is not only shown in
the performance of the generation in section 3.3, but can
also be shown in the interactive scenario where users can
control the generated output by specifying the rhythm or
pitch contour in each measure.

Figure 7 shows an example of a non-repetition subset
melody, where the first and last two measures are given,
and the middle parts is generated. The first track is the

original melody, the second track is generated with the
pitch contour control, the third track is generated with the
rhythm control, and the fourth track is controlled with both
pitch and rhythm. We can see that each generated melody
follows the control from users and develops music phrases
accordingly in the missing part. Moreover, each measure
is in line with the past and future measures even in the case
of scale shift.

We also provide a "virtual control experiment" to statis-
tically show that users’ control did influence the model’s
generation process. We randomly collect 3000 sample
pairs (A, B) from the Irish-Test set. And we use the
pitch/rhythm of Sample B to be the sketch information
in the same missing position of Sample A. Then we let
the model make the generation. We then compute the
pitch/rhythm accuracy 2 in the missing position between
the generation and Song B. From 3 we can see if we sketch
song B’s rhythm into the model, the generation will follow
the rhythm with 97.3% accuracy but has different (18.9%)
pitches. However, when we sketch pitches, the pitches
in the generation will be highly (88.1%) in line with the
sketching. This proves that the user’s control has a rela-
tively high guiding effect on the result of the model gener-
ated at the specified position.

4. CONCLUSION & FUTURE WORK

In this paper, we propose a new framework to explore de-
coupling latent variables in music generation. We further
convert this decoupling into controllable parameters that
can be specified by the user. The proposed Music Sketch-
Net achieves the best results in the objective and subjective
evaluations. Practically, we show the framework’s applica-
tion for the music sketching scenario where users can con-
trol the pitch contour and/or rhythm of the generated re-
sults. There are several possible extensions for this work.
Music elements other than pitch and rhythm can be applied
into the music sketching scenario by the latent variable de-
coupling. Also, how to represent a polyphonic music piece
in the latent space is another pressing issue. Both are fu-
ture works that can generalize this model to more applied
scenarios.

2 The metric to calculate the pitch accuracy is different from section
3.3.1, because the generated pitches in the new song might have different
onset positions. We leverage the Longest Common Sequence to calculate
the accuracy. The implementation is presented in the code archive.
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ABSTRACT

Music is hierarchically structured, in which the global
attributes (e.g., the determined tonal structure, musical
form) dominate the distribution of local elements (e.g.,
pitch, playing technique arrangement). Existing methods
for instrumental playing technique detection mostly focus
on the local features extracted from audio. However, we
argue that structural information is critical for both global
and local tasks, particularly considering the characteristics
of guqin music. Incorporating mode and playing technique
analysis, this study demonstrates that the structural rela-
tionship between notes is crucial for detecting mode, and
such information also provides extra guidance for the play-
ing technique detection in local-level. In this study, a new
dataset is compiled for guqin performance analysis. The
mode detection is achieved by pattern matching, and the
predicted results are conjoined with audio features to be
inputted into a neural network for playing technique detec-
tion. Advanced techniques are developed to optimize the
extracted pitch contour from the audio. It is manifest in the
results that the global and local features are inter-connected
in guqin music. Our analysis identifies key components
affecting the recognition of mode and playing technique,
and challenging cases resulting from unique properties of
guqin audio signal are discussed for further research.

1. INTRODUCTION

The guqin (古琴) is a plucked seven-string Chinese musi-
cal instrument existing for over 3,000 years, and has been
selected as UNESCO World Cultural Heritage. 1 In guqin
performance, it is an intrinsic convention for musicians to
implement diverse playing techniques, in order to commu-
nicate their interpretations of the performed music. In the
theory of guqin performance, such configuration of play-
ing technique in local-level is considered to be connected
and reflect the higher-level, hierarchical tonal structure in

1 https://ich.unesco.org/en/RL/guqin-and-its-music-00061
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mance with machine learning”, in Proc. of the 21st Int. Society for Music
Information Retrieval Conf., Montréal, Canada, 2020.

pentatonic modes [1]. However, existing research does not
appear to provide sufficient empirical evidence to support
the theory. In particular, in the research area of Music In-
formation Retrieval (MIR), key/mode detection has been
regarded as the recognition of the overall, global construc-
tion of music piece, whereas playing technique detection is
usually taken as a classification task relying on local fea-
tures extracted from the audio. This study aims to solve
this discontinuity, and argue that the global tonal structure
and the local configuration of playing technique are inter-
connected in guqin performance. This work takes MIR and
machine learning frameworks as the means for empirical
music analysis, and contribute to several aspects including:

1) to design and compile a new dataset, GQ39, fea-
tured by representative historical guqin recordings
and note-by-note annotations;

2) to demonstrate the importance of tonal structural in-
formation, and to identify the crucial components
contributing to both the mode detection and playing
technique detection;

3) to bridge the knowledge gap between the theory and
empirical observations, as well as to highlight the
connection between the high-level structure and lo-
cal elements in music.

In the subsequent section, related research regarding the
tonal structure investigation, playing technique classifica-
tion, and guqin performance theories will be reviewed. The
theoretical basis and the procedure to construct the GQ39
dataset will be described in Section 3. The mode detection
is performed on the dataset, and the results are analyzed
in Section 4. The playing technique is further investigated
using a neural network, and decisive components playing
important roles in the task are discussed in Section 5, fol-
lowed by the concluding remarks in Section 6.

2. RELATED WORK

For the high-level tonal structure in music, key detection
has been one of the core issues to be explored in Western
tonal music. Methods based on chord progression rules
are applied to detect key modulation in audio [2]. Neu-
ral networks are utilized for key classification, and it has
been found that the global harmonic structure in the whole
piece plays an important role to identify local keys of short
segments [3]. In addition to the connection between the lo-
cal and global tonal structures, it has also been proven that
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different music styles are more easily to be classified by
informing the global key and key-related pitch classes [4].
In Indian art music, the usage of raga achieves the struc-
tural coherence in music, and different types of raga can
be identified according to their pitch distribution [5]. The
implicit patterns of melodic and timing features in raga
has also been explored [6]. In Arab-Andalusian music,
its centonization is analyzed using a high-order n-gram
model [7], and different music patterns, nawba, can be
classified using template matching [8]. In Georgian mu-
sic, its unique tuning system has been examined through
melodic and harmonic aspects, and the structural relation-
ship between pitch intervals has been found [9].

In previous studies of playing technique classification,
diverse features are extracted from audio according to the
traits of individual instruments. In particular, strings ap-
pear to be high-profile instruments in this research area.
For electric guitar, note-level timbral and pitch features are
considered to be major components for identifying differ-
ent types of playing techniques [10], whereas for guitar,
each playing technique possesses distinguishable cepstral
and phase features [11]. In a study to classify plucking
styles of electric bass guitar, intra-note attributes corre-
sponding to the attack and decay parts of the notes are
further examined using spectral and statistical descriptors
[12]. In violin performance, note-level features including
dynamics, vibrato rate and vibrato extent are proven to be
connected with score-informed expressive schemes [13],
and idiosyncratic performing styles of individual violinists
can be characterized by their articulation, energy, and vi-
brato attributes [14].

In guqin performance, the fingering and playing tech-
niques for strings pressing in the left hand have been re-
garded as a primary component to affect the expression and
aesthetic perception of performance, especially since the
late Ming dynasty (around the late 17th century) [15–17].
Furthermore, the left-hand techniques are not merely local
ornaments attached to single musical events, and should be
contemplated within the global context of complete mu-
sic composition. As stated in conventional guqin perfor-
mance theory, the hierarchical tonal structure in the mode
can vastly affect the selection of playing technique in the
practice of guqin performance [1, 18, 19]. The connection
between the global tonal structure and local technique el-
ements is manifest in guqin music theories, and such as-
sociation between the mode and playing technique is also
a prevailing, shared character in many Asian music cul-
tures [20,21]. However, only few efforts have been devoted
to explore empirical evidence regarding how the global and
local aspects conjoin with one another in the actual per-
formance practice [22, 23]. This study therefore aims to
bridge the knowledge gap between the guqin music theo-
ries and the empirical observation, and explore the connec-
tion between the mode structure and the playing technique
implement using statistics and machine learning.

3. GQ39 DATASET
Guqin music is constructed from diverse modes of pen-
tatonic scale, and the performance carries distinctive ex-

Rank Mode 1 Mode 2 Mode 3 Mode 5 Mode 6
1st 1 2 3 5 6
2nd 5 6 - 2 3
3rd 2 3 - 6 -

Table 1. The hierarchical structure in pentatonic scale (the
top row): the 3 importance level for note degrees (the bot-
tom row) in 5 modes (the middle row).

pressions in playing techniques. We therefore design and
compile a new dataset for music performance analysis ac-
cording to such properties.

3.1 The guqin performance and pentatonic scale

Guqin performers pluck strings by their right hands and
press strings using left hands for performing. Guqin per-
formance is characterized by its flexibility, which render
plenty of freedom for musicians to choose a wide selection
of playing techniques to perform the same piece of mu-
sic. In particular, the usage of vibrato and portamento is
central among all playing techniques to carry the represen-
tative traits of individual music pieces and musicians.

The pentatonic scale (see the top row of Table 1 as
an example) forms the main construction of guqin music.
While other altered chromatic tones and microtones can
be included, the pentatonic scale retain the central position
in guqin compositions. The pentatonic scale can be trans-
formed into 5 different modes, each of which has a dif-
ferent order of notes according to its initial degree: mode
1 (mode Gong (宮); degree 1, 2, 3, 5, 6), mode 2 (mode
Shang (商); degree 2, 3, 5, 6, 1), mode 3 (mode Jue (角);
degree 3, 5, 6, 1, 2), mode 5 (mode Zhi (徵); degree 5,
6, 1, 2, 3), and mode 6 (mode Yu (羽); degree 6, 1, 2, 3,
5). Each mode has its own hierarchical structure, which is
achieved by assigning different importance levels to note
degrees based on the Circle of Fifths. In each mode, at
most 3 notes can be considered as prominent component
(equivalent concept to the Tonic, Dominant, and Subdomi-
nant in Western major and minor scales, see the lower two
rows in Table 1) [1, 19]. It should be noted that the pen-
tatonic scale only denotes the relative intervals between
notes, but not the absolute pitches, which means that the
degree 1 in the scale can be assigned to any pitch in 12
semitones.

3.2 Data collection and labelling

The GQ39 dataset consists of 39 audio recordings of preva-
lent guqin solo compositions and corresponding event-by-
event annotations. The audio data are extracted from a
massive collection of guqin historical recording, with the
recording years ranging from 1960 to 1990 [24]. 39 ex-
cerpts played by five different guqin performers are se-
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lected according to a professional guqin musician’s opin-
ion (with the performing experience of 18 years). The
39 selected audio excerpts cover representative composing
and performing styles and contain diverse playing tech-
niques. The GQ39 dataset only includes guqin music in
mode 1, 2, and 5, on account of the facts that: 1) the 2
modes with less than 3 important notes (mode 3 and mode
6) are considered as having less stable structure; 2) mode
3 is only occasionally applied to guqin composition; 3)
guqin music composed by mode 6 is relatively compli-
cated, which is not applicable for this exploratory study.
The collected audio recordings are roughly 2,000 seconds
long in total.

Considering the typical feature of guqin playing, we de-
fine an event as a plucking movement in the right hand,
which may correspond to either one single note, or a se-
ries of note pitch variations and sliding movements in the
left hand (ranging up to 5 semitones). Each event is then
annotated with 13 types of label by professional guqin mu-
sicians, including 2 music-level features (tuning, mode),
and 11 event-level features regarding the event context
(note degree, pitch range), playing techniques in the right
hand for plucking (plucked string, plucking finger, pluck-
ing technique type), playing techniques in the left hand
for string pressing (pressed position, pressing finger, tech-
nique type for pitch variation, technique type for timbre
variation), and performing matters (event onset, event du-
ration). As the result, the GQ39 dataset comprises 2,303
annotated events in total (mean # of event = 59.1, SD =
29 per excerpt). The annotations are available on the web-
site, together with details regarding the annotation proce-
dure and dataset descriptions. 2

4. MODE DETECTION AND ANALYSIS

In this section, we examine mode, the global tonal structure
in guqin performance. Chromas are derived from audio
recordings. Two types of template representing the tonal
structure are designed for pattern matching. The statistical
analysis reveals that the inherent characters of mode con-
struction are reflected in the performance. And the results
of mode detection indicate that the hierarchical configura-
tion is a crucial element to identify different modes.

4.1 Data representation and mode matching

In mode detection, three types of data are obtained from
audio data: the chroma representation of constant-Q trans-
form (CQT), pitch salience function, and pitch contour.
For the first type of data, the chromagrams of audio record-
ings are derived using CQT [25]. For the second and the
third types of data, the pitch estimation network, Crepe, is
applied to estimate the pitch salience function and the pitch
contour [26]. For all types of data, we obtain 60 chromas
instead of 12 chromas per octave for higher pitch resolu-
tion, considering the facts that: 1) the tuning in guqin is
not equal temperament, and 2) the dataset contains large
amounts of protamento and transitions between semitones.

2 https://sites.google.com/view/mctl/resource

Figure 1. The mode detection with 2 template types: the
uniform template (left) and the ordinal template (right).
This instance shows the mode 5 template, with degree 5
being shifted to the position of 18 in x-axis.

For each recording, the energy of each chroma is accumu-
lated and is normalized to the range between 0 and 1.

We design two types of mode template, i.e., the uni-
form template and the ordinal template (see Figure 1 as
examples), to be matched up with the chroma representa-
tion from audio. For each mode, the uniform mode tem-
plate is constructed by denoting the positions of note de-
grees as 1 and otherwise 0 in 12 semitones (e.g., mode 1
= (1,0,1,0,1,0,0,1,0,1,0,0)). In addition to the degree posi-
tions, the ordinal mode template includes the information
regarding the importance level of degrees. The degree po-
sitions are represented as 4, 3, 2 individually following the
order of importance ranking in Table 1, and the two triv-
ial degrees are marked as 1, otherwise 0 in 12 semitones
(e.g., mode 1 = (4,0,2,0,1,0,0,3,0,1,0,0)). The two 12-D
templates are extended to 60-D for the subsequent match-
ing with 60-chroma representation (each chroma unit rep-
resents 20 cents). Complying the treatment procedure for
audio chroma representation, all mode templates are nor-
malized to the range between 0 and 1.

The chroma representation of each music excerpt is then
matched with mode templates. The built mode templates
are shifted to the position of 60 chromas in turn, and are
then compared with the audio chroma representation using
Pearson correlation. This procedure results in 360 match-
ing pairs for per music excerpt (2 template types (uni-
form/ordinal) x 3 modes (mode1/2/5) x 60 chroma shifts).
The mode is determined by the matching with the highest
Pearson correlation coefficient.

4.2 Results and discussion

The statistics of the annotated note degrees reveal the struc-
tural configuration of modes, and such observation pro-
vides insights regarding how the music theory is prac-
ticed in actual performances. As stated in conventional
music theories, mode 1 holds the most solid construction
among all modes [18]. As can be observed in Figure 2, the
note degrees with higher importance ranking usually oc-
cur more frequently in the composition (such as degree 1,
5, 2 in mode 1; degree 2, 6, 3 in mode 2; degree 5, 2, 6
in mode 5). Furthermore, in mode 1, the prominent roles
of the three principal notes are settled by obvious differ-
ences of occurrence ratios, compared to two other trivial
degrees. In the mode detection task, we can take a step
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Figure 2. The statistics of the annotated degrees (x-axis)
in different modes (y-axis) (in %).

further to evaluate that how the structural configuration of
mode affects the task outcome.

For the evaluation of mode detection, we follow the
weighted accuracy used in the audio key detection cam-
paign in MIREX. 3 The instance is marked as 1 point
when the prediction is the same mode as the ground truth,
whereas 0.5 points is marked when the predicted mode is
in perfect fifth above the ground truth (i.e. mode 1 is pre-
dicted as mode 5). The results are shown in Table 2. It is
evident that all the tasks with ordinal mode template out-
perform their counterparts applying uniform template. In
fact, the t-test for the prediction accuracy using uniform/
ordinal template yields a two-tailed p-value of 0.0013,
which indicates a significant difference between the tasks
adopting/ without the structural configuration of mode. To
incorporate the statistics of annotated notes with the results
of mode detection, above analyses lead to the finding that
the information regarding the hierarchical configuration in
mode contributes vastly in the mode detection.

5. PLAYING TECHNIQUE DETECTION AND
ANALYSIS

In this section, we investigate the classification of left-hand
playing technique in guqin performance, and also exam-
ine the interaction between global and local features during
the classification. Frame-level together with mid-level and
high-level features are obtained from audio data and anno-
tations. Dynamic programming is applied to optimize the
extracted pitch contour. Six types of playing techniques
are then classified using a neural network. The statistical
analysis indicates that the hierarchical tonal configuration
is embedded in the distribution of portamento types. The
classification results suggest that mid-level and high-level
features can facilitate the recognition of technique type in
local-level. Major components to improve the classifica-
tion are identified. Challenging cases are further discussed.

5.1 Data extraction

In playing technique detection, three types of data are de-
rived from audio recordings. For the first and second types
of data, we acquire the spectrogram using CQT, and ob-
tain the pitch salience function using Crepe following the
procedure stated in Section 4.1. For the third type of data,
we further apply dynamic programming to eliminate the

3 https://www.music-ir.org/mirex/wiki/2019:Audio_Key_Detection

Type CQT Salience Contour
Result uni ord uni ord uni ord
Correct # 14 34 19 29 17 30
Fifth # 4 4 5 8 6 8
Miss # 21 1 15 2 16 1
Accuracy 0.41 0.92 0.55 0.84 0.51 0.87

Table 2. The results of mode detection task (3 data types
(CQT/ salience function/ pitch contour) x 2 template types
(uniform/ ordinal)).

spikes in the estimated pitch contour. Given the output of
Crepe X ∈ RK×N , the pitch salience function at time si
is X[:, si], K is the number of frequency bins, and N is
the number of frames, the pitch contour S := {si}Ni=1 is
extracted with the following objective function:

S∗ = argmax
S

N∑
i=1

X[:, si]− λ
N∑
i=2

|si+1 − si| . (1)

Equation (1) can be solved with dynamic programming
[27]. The seconds term of (1) is to enhance the smoothness
of the extracted pitch contours. The parameter λ controls
the smoothness of the pitch contour, and in this work we set
λ = 10−3. This facilitates the processing of those guqin
historical recordings with relatively low audio quality.

Six types of playing techniques are labelled for the pitch
variation movement in the left hand: none (such as 直按
and 散音), vibrato (such as 吟 and 猱), upward porta-
mento (such as 綽 and 上), downward protamento (such
as 注 and 下), inverted-U protamento (such as 進復 and
撞), and U protamento (such as 退復 and 豆). The three
types of data mentioned above are then divided into event
segments according to the onset and duration annotations,
and each segment corresponds to one of the six technique
types. Figure 3 illustrates the featured pitch contour and
examples of event segments in 6 technique types. The seg-
ments are then treated with padding, resulting the the input
segment size of cqt (156, 60), pitch salience function (361,
60), and pitch contour (361, ).

In order to investigate that how the meta-, structural mu-
sic features connect with technique implements in local-
level, we further extract 62 high-level and mid-level fea-
tures including 2 music-level features (mode, # of event in
music), 12 event-level features (event duration, event in-
dex, note degree, importance ranking of degree, also 8 de-
scriptive statistical indicators of pitch contour (the mean,
maximum, minimum, range, standard deviation, skewness,
kurtosis, the time difference between the maximum and
minimum)). The first six features (the two features in
music-level and the first four features in event-level) are
obtained from the prediction of our mode detection model
as described in section 4. The eight descriptive indicators
are extracted from dynamic programming pitch contour.
Since the critical traits of each technique type may appear
in different parts of the overall pitch contour, we also ex-
tract intra-event-level features by computing the eight de-
scriptive statistical indicators for six intra-event pitch con-
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Figure 3. The CQT (middle) and pitch salience segments (right) corresponding to the six technique types of guqin.

Data type CQT Salience Contour
Frame-level only 0.743 0.845 0.842
With mid-, high-level 0.840 0.839 0.842

Table 3. The average accuracy of the playing technique
detection task using various local and high-level features.

tour per event. To define the range of intra-event pitch con-
tour, each segment is resampled to the mean length of all
segments (0.7 seconds), and the resampled contour is di-
vided by six hop windows (window size = 0.2 seconds,
hop = 0.1 seconds), resulting 48 intra-event-level features
for per musical event (8 indicators x 6 windows).

5.2 Playing technique classification

The playing technique is classified by a 10-layer neural
network, which is composed of 2 convolutional layers (ker-
nel = 3 x 3, stride = 1, fmap = 32), 1 self-attention layer
(kernel = 1 x 1), and then followed by 3 convolutional lay-
ers (kernel = 3 x 3, stride = 1, fmap = 32), 3 fully-connected
layers (neuron = 512), and a softmax output layer. The at-
tention layer is constructed based on [28] to further investi-
gate which high- and mid- level elements affect the results
of technique classification in local level. The framework
is implemented using Tensorflow. The training process is
carried out by minimizing the cross-entropy between the
model output and the one-hot label using Adam Optimizer
with the learning rate of 10−5. The dataset and the code to
implement the model will be released afterward.

We design six experimental settings to examine the in-
teraction between the global and local features. Three
types of frame-level data: CQT, pitch salience function,
and pitch contour with dynamic programming processing
are inputted into the network respectively. They are then

associated with high-level and mid-level features derived
from the prediction from the previous mode detection and
labelled annotations, resulting six experimental settings in
total (as shown in Table 3). For each setting, 10-fold cross-
validation is performed (roughly 1800 seconds of audio
recordings for training, and 200 seconds for testing).

5.3 Results and discussion

The statistical analysis shows that the distribution of por-
tamento types reflects the high-level mode structure. As
shown in Figure 4, except the type 1 technique without
any pitch variation, type 3 portamento possesses highest
occurrence ratio compared to other portamento types for
important degrees in mode 1 (degree 1, 5, 2), and similar
tendency can also be observed in other modes. This pro-
vides empirical evidence for the theoretical basis of guqin
performing convention, where musicians frequently ap-
ply type 3 (upward) portamento to emphasize highlighted
notes, and on the contrary, they tend to implement type 4
(downward) portamento to decorate trivial notes [16].

For the the results of technique classification, as can be
seen in Table 3, the mid-level and high-level features con-
tribute to the improvement of CQT data, but not for other
two data types. This outcome may owing to the fact that
the statistical descriptors of pitch contour are already con-
tained in mid-level and high-level features, and such in-
formation of pitch contour may provide extra guidance for
technique classification.

In order to further investigate that which are the deci-
sive high-level and mid-level features to affect the tech-
nique classification, we follow the procedure in [28] and
plot the self-attention with the feature map outputted from
the neural network for 62 high- and mid- level features.
All the values are normalized to the range between 0 and 1
for comparison. Figure 5 presents the attention map for the
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Figure 4. The statistics of the annotated portamento types
(x-axis) in note degrees (y-axis) for mode 1.

Figure 5. The attention map with feature map for 62 high-
and mid- level features: music, event, and intra-event fea-
tures. The red dotted lines indicate different feature types;
the yellow dotted lines indicate features from 6 windows.

CQT and mid-, high-level features combination. As can be
observed in the graph, the music-level features receive the
most attention in the classification model (mean value =
0.982), compared to the event-level features (mean value =
0.500) and intra-event-level features (mean value = 0.293).
Moreover, in intra-event features, an obvious peak occurs
in each window, which corresponds to a specific feature:
the distance between the maximum and minimum value
within the window. Above observations suggest that high-
level features (music and event features) are more effective
to facilitate technique classification. And in mid-level fea-
tures (intra-event features), the distance between the max-
imum and minimum value is the most adequate element to
represent the pitch contour constitution.

To analyze individual portamento types in depth, it is
noted in the confusion matrix (Figure 6) that types II to IV
(especially type II, vibrato) are easily confused with type 1
(no variation) portamento. It is an unexpected result con-
tradicting the studies on other instruments [10, 29], where
vibrato can be easily identified. The inter-type confusion
is mainly caused by the data imbalance in guqin perfor-
mance, in which type I occurs much more frequently than
other types (see Figure 4). In addition, we further exam-
ine the spectrogram and pitch contours for different porta-
mento types (Figure 7), and notice that the pitch contours
of type 1 portamento are not straight lines as expected,
but exhibit unstable and irregular pitch drift, which can
be easily confused with weak type 2 portamento, partic-

Figure 6. The confusion matrix of playing technique de-
tection with CQT (left) and with CQT and high-, mid-level
features (right).

Figure 7. The example of CQT (the background figure)
and pitch contour segments (color curves) for different por-
tamento types (color blocks at the bottom).

ularly when only the spectral features are analyzed. Fur-
thermore, the two type 3 portamento segments in this ex-
ample display diverse manners. The divergent behaviour
within one single portamento type can rise the difficulty for
accurate classification. The insufficient quality of histori-
cal recordings may also blur the distinction between porta-
mento types and add additional challenges for the task.

6. CONCLUDING REMARKS

In this paper, we design and compile a new dataset con-
sulting the theoretical basis of guqin performance. Mode
detection is performed on the collected dataset, and play-
ing technique classification are conducted using neural
network. The results indicate that the hierarchical con-
struction is crucial for mode detection, and the high-level
and mid-level features contribute to improving the playing
technique classification task.

This work verifies the conventional theory by empir-
ical observations, in which statistical analysis confirmed
the solid connection between the mode structure and the
arrangement of playing technique. This study highlights
the joint-relationship between the global tonal structure
and the local distribution of playing technique, as well as
bridges the knowledge gap between the music theory and
performance practice. The findings in this study contribute
insights for constructing an auto-evaluation system for mu-
sic performance, or an educational system for musicians
and music listeners.
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ABSTRACT

The lack of labeled data is a major obstacle in many mu-
sic information retrieval tasks such as melody extraction,
where labeling is extremely laborious or costly. Semi-
supervised learning (SSL) provides a solution to alleviate
the issue by leveraging a large amount of unlabeled data.
In this paper, we propose an SSL method using teacher-
student models for vocal melody extraction. The teacher
model is pre-trained with labeled data and guides the stu-
dent model to make identical predictions given unlabeled
input in a self-training setting. We examine three setups
of teacher-student models with different data augmenta-
tion schemes and loss functions. Also, considering the
scarcity of labeled data in the test phase, we artificially
generate large-scale testing data with pitch labels from un-
labeled data using an analysis-synthesis method. The re-
sults show that the SSL method significantly increases the
performance against supervised learning only and the im-
provement depends on the teacher-student models, the size
of unlabeled data, the number of self-training iterations,
and other training details. We also find that it is essential
to ensure that the unlabeled audio has vocal parts. Finally,
we show that the proposed SSL method enables a baseline
convolutional recurrent neural network model to achieve
performance comparable to state-of-the-arts.

1. INTRODUCTION

One of the key elements in the success of deep learning
is a large amount of labeled data. However, when the la-
beled data is scarce in a given task, it can be a bottleneck
in leveraging the power of deep neural networks. The issue
has been found in many music information retrieval (MIR)
tasks as well. Among others, melody extraction research
has suffered from it as pitch labeling requires experienced
annotators to handle the annotation tool and the process is
extremely labor-intensive [1].

The lack of labeled data in melody extraction research
has been tackled in several different ways. A popular

c© Sangeun Kum, Jing-Hua Lin, Li Su, Juhan Nam. Li-
censed under a Creative Commons Attribution 4.0 International License
(CC BY 4.0). Attribution: Sangeun Kum, Jing-Hua Lin, Li Su, Juhan
Nam, “Semi-supervised learning using teacher-student models for vocal
melody extraction”, in Proc. of the 21st Int. Society for Music Informa-
tion Retrieval Conf., Montréal, Canada, 2020.

method to alleviate the issue is data augmentation which
increases labeled data by transforming the input audio, for
example, using pitch-shifting [2–4]. Data augmentation,
however, has the limitation in covering the diversity in
the input space. Another approach is using multi-track
audio data [5–7]. This allows to use monophonic pitch
tracking algorithms for the melodic source and therefore
it expedites laborious the pitch labeling. However, multi-
track recording datasets often maintain individual tracks
as stem files where multiple similar sound sources can be
mixed (e.g., main vocal and backing vocal). Therefore,
obtaining clean pitch labels from multi-track audio can be
not straightforward [8, 9]. Recently, melody MIDI files,
which are more easily accessible, have been utilized to
guide melody extraction from audio with transfer learn-
ing techniques from the symbolic to audio domain [3, 10].
MIDI data exhibit greater flexibility than audio on data
augmentation, but still face limitations on representing nat-
ural pitch contours of singing voice, which usually contain
subtle variations such as vibrato and portamento.

Semi-supervised learning (SSL) is another but more
general strategy to address the lack of labeled data. SSL
uses a large amount of unlabeled data, which is usually
easy to collect, jointly with labeled data. A popular class
of SSL methods is based on self-training in the teacher-
student framework. Recent works have combined random
data augmentation with the SSL methods to encourage the
model to produce robust output even when input is per-
turbed. This approach has achieved state-of-the-art per-
formance on image classification [11–13], speech recog-
nition [14], and audio classification [15]. There are a few
MIR researches that used the teacher-student framework
to address the lack of labeled data, for example, in au-
tomatic drum transcription [16] and singing voice detec-
tion [17, 18]. However, to the best of our knowledge, re-
cent advances in SSL methods that leverage the power of
deep neural networks and random data augmentation in the
teacher-student framework have been not studied yet in the
music domain.

In this paper, we apply the SSL methods to vocal
melody extraction with the following contributions. First,
we present the SSL methods for vocal melody extraction
leveraging large-scale unlabeled music datasets. This pre-
vents the model from overfitting to small labeled data and
improve the performance. Second, we compare three se-
tups of teacher-student models along with various audio
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data augmentation techniques. We show the model with
the consistency regularization is most effective. Third,
we investigate effective SSL strategies by exploring joint
training, the size of unlabeled data, and the number of
self-training iterations. Fourth, we show that the proposed
teacher-student training method enables a baseline convo-
lutional recurrent neural network model to achieve perfor-
mance comparable to state-of-the-arts. Finally, apart from
the SSL method, we propose large-scale testing data arti-
ficially generated from unlabeled data using an analysis-
synthesis framework, considering the lack of labeled data
even at the testing stage. Evaluation on the diverse and
sizable test set will reinforce the effectiveness of the pro-
posed method. For reproducibility, the source code and
pre-trained model used in this paper are available online 1 .

2. RELATED WORK

The teacher-student framework has been previously stud-
ied in several MIR tasks to address the lack of labeled data.
Wu and Lerch applied the approach to automatic drum
transcription [16]. They used multiple teacher models
based on non-negative matrix factorization (NMF) trained
with different datasets and a student model based on deep
neural network trained with labels from the teachers. They
showed that the student model outperforms the teacher
models. However, it was not a self-training setting where
the teacher model is repeatedly replaced with an improved
student model. Schlüter explored the self-training for
singing voice detection [17]. They first trained a convo-
lutional neural network (CNN) on the original labels with
low-granularity, then a second network on pseudo-labels
with high-granularity from the first network, and a third
network on the summarized saliency maps from the sec-
ond network. They showed this self-improvement worked
up to the third network. However, they conducted the self-
training on weakly-labeled data in the context of multiple-
instance learning and did not used any unlabeled data. Re-
cently, Meseguer-Brocal et al. used the teacher-student
paradigm for singing voice detection to create a large-scale
time-aligned vocal melody and lyrics dataset [18]. They
consistently improved the teacher model by increasing the
correlation between the prediction of the model and the
time-aligned lyrics annotation.

3. METHODS

3.1 Model Architecture

Recent melody extraction algorithms have used CNN [9,
19, 20] and its variants [4, 21, 22] as a standard architec-
ture. Since we focus on the effectiveness of SSL in this
paper, we employ a previously proposed convolutional re-
current neural network (CRNN) which was a baseline ar-
chitecture in [4]. The CRNN architecture consists of 4
ResNet blocks and a bi-directional long short-term mem-
ory layer. We first merge the audio waveforms into a mono
channel and downsample them to 8 kHz. We then calculate
the logarithmic-magnitude spectrogram using short-time

1 https://github.com/keums/melodyExtraction_SSL

Algorithm 1: Train SSL Models
Train a teacher network T1 on labeled data
D = {(xd, yd) : d ∈ (1, ..., N)};

Generate augmented data
Ũ = {x̃u = RAA(xu) : u ∈ (1, ...,M)} from
unlabeled data U = {xu : u ∈ (1, ...,M)};

for i = 1 to k do
Use Ti to generate pseudo labels for U (or Ũ);
Train student network Si using both D and U
(or Ũ) as training data;
Ti+1 = Si;

end

Fourier transform with a 1024-point Hann window and an
80-point hop size.The CRNN architecture takes 31 con-
secutive frames of the spectrogram as input and predicts a
pitch label quantized with a resolution of 1/8 semitone and
ranged from E2 (82.4 Hz) to B6 (1975.7 Hz). The size of
the output layer is 442, including a non-vocal label.

3.2 SSL in the Teacher-Student Framework

Our SSL method is based on self-training in the teacher-
student framework where the teacher model is first trained
with labeled data and then the student model is trained with
artificial labels generated from the teacher model using un-
labeled data. The artificial labels can be the prediction dis-
tribution vector [11, 12] or one-hot vector determined by
the class with a highest confidence [13, 23]. We formally
describe the overall procedure in Algorithm 1. We first
train the initial teacher model T1 using only labeled dataD
where xd are labeled examples and yd are one-hot refer-
ence labels. For unlabeled data U where xu are unlabeled
examples, we use random data augmentation to generate
noisy input data Ũ where x̃u are noisy unlabeled exam-
ples. RandAudioAugment (RAA) is an audio version of
random data augmentation method which is described in
Section 3.4. While it is more effective to use random data
augmentation on the student model only in image classifi-
cation [12], we also try applying it for both teacher and
student models for ablation study. Once we train the stu-
dent model jointly with the labeled data and unlabeled data
(with pseudo labels), we replace the teacher model with the
student model. We repeat the same pseudo labeling and the
training with a new student model.

3.3 Proposed Teacher-Student Models

Our proposed Teacher-Student models are illustrated
in Figure 1. The supervised loss LD is computed with la-
beled data and defined as:

LD =
1

N

N∑
d=1

H(yd, p(y|xd; θs)) (1)

where H(·) denotes the cross-entropy between the pitch
label yd and pitch prediction p(y|x), and θs denotes
a set of parameters of the student model. The super-
vised loss is a common loss term of the three investigated
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94



Student
Network

Labels Prediction

Cross-Entropy 
Loss

Labeled
Data

To Final Loss

(c) Noisy Student

To Final Loss

Teacher
Network

Student
Network

Pseudo
Labels Prediction

RandAudio
Augment

Unlabeled
Data

Cross-Entropy
Loss

(a) Basic Teacher-Student

Teacher
Network

Student
Network

Pseudo
Labels Prediction

Unlabeled
Data

To Final Loss

Cross-Entropy 
Loss

(b) Noisy Teacher-Student

To Final Loss

Teacher
Network

Student
Network

Pseudo
Labels Prediction

RandAudio
Augment

Unlabeled
Data

Cross-Entropy
Loss

< Supervised Loss> < Unsupervised Loss>

Figure 1. Diagram of the three Teacher-Student models.

teacher-student models. Each of them are explained below.

Basic Teacher-Student is a fundamental teacher-student
framework that uses the unlabeled data U but trains the
student network with the pseudo labels generated from the
teacher network. The final loss of Basic Teacher-Student
LB is defined as

LB = LD +
1

M

M∑
u=1

H(yu, p(y|xu; θs)) (2)

where yu is the pseudo labels on U generated by the
teacher network, i.e. yu = p(y|xu; θt) where θt to
denote the parameters of teacher network. The basic
teacher-student model is illustrated in Figure 1(a).

Noisy Teacher-Student takes noisy unlabeled data
Ũ for both of the teacher and student networks using RAA
and the rest is the same as the basic teacher-student model.
The final loss of Noisy Teacher-Student LN is defined as

LN = LD +
1

M

M∑
u=1

H(ỹu, p(y|x̃u; θs)) (3)

where ỹu is a prediction on Ũ generated by the teacher
network, i.e. ỹu = p(y|x̃u; θt). The noisy teacher-student
model is illustrated in Figure 1(b).

Noisy Student takes noisy unlabeled data Ũ only for
the student network while the teacher network takes
unnoised input U to generate the pseudo labels. The idea
is that the student should produce consistent outputs that
minimize the difference from the teacher even though
the input is perturbed [12]. This notion is also similar to
consistency regularization [24,25]. The final loss of Noisy
Student LC is defined as

LC = LD +
1

M

M∑
u=1

H(yu, p(y|x̃u; θs)) (4)

The noisy student model is illustrated in Figure 1(c).

3.4 Data Augmentation

We conducted pitch-shift by± 1,2 semitone on the labeled
data D (audio and corresponding labels). In the melody
extraction task, it has shown that pitch-shifting can im-
prove the generality and performance of the model by in-
creasing the amount of audio and label pairs for differ-
ent f0 [2, 26]. For data augmentation of unlabeled data U ,
we propose RandAudioAugment (RAA) inspired by Ran-
dAugment [27], which is a method of randomly applying
different kinds of transformations to increase image data.
RAA converts audio by randomly selecting multiple au-
dio effects as follows: audio equalizer (low-shelf, high-
shelf), filters (low-pass, high-pass), overdrive, phaser, and
reverb. Here, we use pysndfx that is a Python library de-
signed for applying effects to audio files 2 . We sampled
a random magnitude of each transformation from a pre-
defined range. The implementation details for RAA are
also described in the source code.

3.5 Data Selection

The SSL algorithm using large-scale unlabeled data may
suffer from labeling noise. Unlabeled data are highly
likely to have audio without vocals. Filtering only high-
confidence examples or the top-K examples in image clas-
sification has demonstrated to be an effective method to
handle the labeling noise [12,28]. Likewise, we performed
data selection so that only the tracks with vocal ratios ex-
ceeding a threshold were used for training. To estimate the
ratio of vocals included in the track, we used our singing
voice detector 3 based on CNN based on [29]. Consider-
ing the distribution of vocal ratio in the FMA, we set the
threshold to 0.3.

4. DATASETS

Table 1 shows the simple statistics of the labeled and unla-
beled training datasets and test datasets.

2 https://github.com/carlthome/python-audio-effects
3 https://github.com/keums/SingingVoiceDetection
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95



Dataset Number of Tracks Total Length

Training
(Labeled)

RWC 100 6h 47m
MedleyDB 61 2h 39m

iKala 262 2h 6m

Training
(Unlabeled)

In-house 535 6h 21m
FMA_small 3,521 / 8,000 25h / 60h

FMA_medium 10,639 / 25,000 89h / 208h
FMA_large 40,505 / 106,574 337h / 888h

Test

ADC04 12 4m
MIREX05 9 4m
MedleyDB 12 43m

AST218 218 14h 53m

Table 1. Description of datasets. In FMA, The two num-
bers indicate tracks with vocal (the vocal ratio above 0.3)
and all tracks respectively.

4.1 Labeled Data

We used the three labeled datasets (RWC [30], Med-
leyDB [6], and iKala [7]) and split them into a train and
validation set following [9]. We augmented the training
data by pitch-shifting with ± 1,2 semitone. The total
length of the labeled training data amounts to about 55
hours after the data augmentation.

4.2 Unlabeled Data

As to unlabeled data, we used an in-house dataset crawled
from YouTube and the Free Music Archive (FMA) [31].
The in-house dataset is pop songs with vocals recorded
in a variety of environments. It includes both public-
released and user-uploaded tracks. FMA is a large-scale
open dataset containing up to 106,574 tracks and covers
161 genres of music. We used FMA for performance com-
parison on data scalability. The FMA has three different
subsets depending on the number of the track and genre
included: FMA_small (FMAS), FMA_medium (FMAM ),
and FMA_large (FMAL). We selected vocal tracks from
them as described in Section 3.5 and denote the selected
versions as FMASv, FMAMv , and FMALv , respectively.
We augmented the unlabeled datasets via RAA during
training as described in Section 3.4.

4.3 Test Data

4.3.1 Public Test Sets

We used three public test sets (ADC04 4 , MIREX05 4 , and
MedleyDB) to evaluate the performance of vocal melody
extraction. In this study, we excluded non-vocal tracks
from ADC04 and MIREX05, and used songs not included
in training data for MedleyDB. To obtain the ground
truth for singing voice in MedleyDB, we adopted its
’MELODY2’ annotations. These three datasets have been
commonly used to compare the performance of melody
extraction. However, the number of tracks and the total
length are very limited as shown in Table 1.

4 http://labrosa.ee.columbia.edu/projects/melody/

4.3.2 Proposed Large-Scale Test Set

To make up the scarcity of testing data for evaluating
singing voice extraction algorithms, we propose a new
test set composed of DSD100 [32] and MusDB18 [33].
The two multitrack datasets were originally designed for
source separation. Each track has four isolated stems:
vocals, drums, bass, and others. Following the analy-
sis/synthesis framework [8], the singing melodies for 218
selected tracks 5 were synthesized with automatically gen-
erated f0 contours. In detail, for each song, we extracted
the melody of the vocals with five different pitch trackers,
and each f0 information along with the vocal audio was
fed into the WORLD [34] (D4C edition [35]) vocoder to
reproduce five monophonic variations of the vocal stem.
The original vocal audio was parameterized into harmonic
and aperiodic spectral envelopes, and then resynthesized
with provided pitch contours. Then a mask was applied
to filter intervals without f0 information. For remixing,
the amplitude of the synthesized vocal was weighted to
that of the original vocal stem, and the rest stems were
directly summed up as accompaniments, then mixed with
the weighted synthesized vocal that perfectly matched the
f0 annotation. These 1,090 polyphonic mixtures with ac-
curate and automatic annotations constitute the proposed
analysis/synthesis test set, AST218 6 .

Each track in AST218 has five variations whose vocal
melody was annotated separately with five different pitch
estimators: CREPE [36] (with confidence threshold of 0.5
and 0.7), pYIN [37], and Lu&Su [3] (with time step of
10 and 20ms), as they have different merits. Since there
is no exact way to pinpoint a common optimal confidence
threshold across the entire dataset, we chose two differ-
ent threshold values for CREPE: one is 0.5, suffering from
high false positive (FP) but preserving details; the other
threshold is 0.7, acceptable FP though sacrificing some re-
call. pYIN was chosen for it has even lower FP while pro-
ducing stable and continuous melodic lines when the vo-
cal stem is monophonic. However, it is not stable in the
pholyphonic scenario, which is universal in DSD100 and
MusDB18. In need of other polyphonic-based melody es-
timators to balance the f0 quality, we chose two time step
setups of the Lu&Su model: 20ms, at which this model
is optimized; and 10ms, which provides more continuous
predictions and offers alternative pitch contours when en-
countering multiple melodic vocal lines.

The analysis/synthesis framework has been practiced
successfully in evaluating monotonic pitch trackers [36].
As a sanity check, we evaluated several patchCNN [19] se-
tups on the original and resynthesized ADC04, MIREX05,
and MedleyDB. The differences of OA are within ± 2–
5%, which is acceptable, meaning this framework is also
applicable for polyphonic test set generation.

When evaluating vocal extraction algorithms on
AST218, we averaged the scores from the five variations.
Our pilot study shows that these five pitch contours reach

5 Songs that appear in MedleyDB were excluded for they were part of
the training data, but songs in MusDB18 having counterparts in DSD100
were not removed for they are not exactly identical. Additionally, 12
songs that do not have discernible vocal melodies were also excluded.

6 https://sites.google.com/view/mctl/resource
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Figure 2. Comparison with supervised-learning model and
three student models on three test sets.

consensus over a majority of frames, while the estimations
differ for tricky frames. Rather than manually check on
the estimated f0, we used AST218 in an ensemble manner,
fully leveraging the spirit of automatic pitch annotation.

5. EXPERIMENTS

5.1 Experimental Setup

5.1.1 Training Details

We used the CRNN architecture with residual connections
and bi-directional long short-term memory in all experi-
ments. The implementation of the model was consistent
with that of the main network of [4]. We trained our mod-
els using Adam optimizer for 70 epochs on 2 GPUs. The
initial learning rate was set to 0.003 in all the experiments.
We used a learning rate schedule that reduces the learning
rate by 0.7 times if validation accuracy did not increase
within three epochs. The model and the training proce-
dures were implemented using Keras 7 [38].

5.1.2 Evaluation

To evaluate the performance of melody extraction, we
mainly used overall accuracy (OA) which combines the ac-
curacy of pitch estimation with voice detection. We also
used three metrics raw pitch accuracy (RPA) for pitch es-
timation, and voicing recall (VR) and voicing false alarm
(VFA) for voice detection [39]. These metric are computed
by mir_eval [40] library designed.

5.2 Experiment 1: Teacher-Student Models

Our first experiment is to demonstrate the efficacy of the
proposed Teacher-Student models for SSL. In this experi-
ment, we trained three Teacher-Student models described
in Section 3.3 using an in-house dataset as unlabeled data.
We evaluated the performance of each model on ADC04,
MIERX05, and MedleyDB, which have been used as stan-
dard test sets for evaluation. As shown in Figure 2, the ba-
sic teacher-student model can achieve 1.1% higher average
OA than the supervised-only model which has 77.7% av-
erage OA. This confirms the possibility of using unlabeled
data to improve the performance of melody extraction. Our
experiment also shows that the noisy student model outper-
forms all the others, having 78.9% average OA.

The noisy student model increases OA by 3.1% with re-
spect to the supervised-only model in MedleyDB, which is

7 We used Keras 2.3.0, Accessed: 15 May 2020
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Figure 3. Comparison with pre-training, fine-tuning, and
joint training methods on three test sets.

especially a challenging dataset because it contains tracks
that are difficult to distinguish between vocals and back-
ground music, or tracks with excessive audio effects. The
results indicate that the student network can be trained re-
liably using the noisy student model, even if the initial
teacher network is not robust to diverse noise. Meanwhile,
the performance of the noisy teacher-student has deterio-
rated, being worse than the supervised-only model. This
degradation is probably because the noised teacher model
is not generating reliable pseudo labels.

5.3 Experiment 2: Joint Training vs. Fine-Tuning

The training methods of the teacher-student framework can
be divided into three approaches depending on how D and
U are used for training: pre-training on only U and then
fine-tuning on D; joint-training on both U and D simulta-
neously. Figure 3 compares the results among pre-training,
fine-tuning, and joint training for the noisy student model.
The jointly trained model achieves 0.8% higher average
OA than the fine-tuned model, with the highest results on
MedleyDB. This indicates that joint training on unlabeled
data and labeled data would help the networks produce a
decision boundary that better reflects real music [41]. In-
terestingly, the average OA of the pre-trained model only
on unlabeled data is higher than that of the supervised
learning model. This suggests that the distribution of un-
labeled data is similar to that of labeled data. Considering
that the in-house dataset consists of pop songs with vocals,
the in-house dataset can be seen as having a similar ten-
dency to the labeled data. It provides insight into the data
selection in the next experiment.

5.4 Experiment 3: Size of Training Data

We investigated the importance of the size and validity of
unlabeled data. To explore the effect of the size of unla-
beled data, we started with the in-house dataset as train-
ing data for the noisy student model and progressively in-
cluded larger subsets of FMA. The results can be seen in
Figure 4. Although the FMA data set contains more nu-
merous tracks than the in-house dataset, the average OA
of FMAS and FMAL is lower than that of the model
trained only with the in-house dataset. Note that the pro-
posed model focuses only on vocal melodies. As a result,
teacher models may suffer from labeling noise generated
by numerous instrument tracks included in the FMA. In
addition, all labels on the instrumental track are classified
as non-vocal pitch, resulting in data imbalance.
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To confirm the validity of the dataset, we performed
data selection for each FMA subset as mentioned in Sec-
tion 3.5 and used them to train each student model. In-
terestingly, as the size of the U increases, the performance
of each model tends to be significantly improved. For ex-
ample, FMALv achieves an average OA of 80.2%, which
is 3.6% higher than the supervised-only model. This indi-
cates that effective SSL requires a large amount of U with
a similar distribution for D.

5.5 Experiment 4: Iterative Training

We iterated the self-training 4 times for the noisy student
model using the in-house dataset and FMALv . The results
are illustrated in Figure 5. We observe that the perfor-
mance continuously increases up to 2 iterations achieving
the highest average OA of 81.1%. Generally, self-training
tends to amplify the error caused by labelling noise dur-
ing training. However, the noisy student model trained
on large-scale unlabeled data can help overcome this diffi-
culty. Nevertheless, increasing the number of training iter-
ations three or more times does not improve performance,
and rather slightly lower the accuracy.

5.6 Comparison with State-of-the-Arts

We compared the supervised-only model (as a baseline)
and proposed the noisy student model (NS) with four re-
cent melody extraction algorithms based on deep neu-
ral networks: the patch-based CNN (patchCNN) [19],
the deep salience map (DSM) [9], the streamlined en-
coder/decoder network (segNet) [21], and the joint detec-
tion and classification model (JDC) [4], which have open-
sourced codes with vocal mode. Each method was run
with its default parameters, and then evaluated on the three
conventional test sets and the newly introduced AST218.

Methods ADC04 MIREX05 MedleyDB AST218

PatchCNN [19] 76.9 / 72.9 69.7 / 73.8 44.0 / 59.3 42.3 / 59.7
DSM [9] 89.2 / 72.2 87.7 / 80.1 80.6 / 75.4 38.9 / 68.3

SegNet [21] 88.7 / 83.3 82.6 / 80.0 70.6 / 75.5 41.5 / 68.1
JDC [4] 90.6 / 83.5 91.4 / 87.4 72.7 / 78.1 55.8 / 75.4

Baseline 78.7 / 76.8 79.9 / 81.5 57.2 / 70.7 56.3 / 69.7
Proposed (NS) 90.4 / 82.2 90.4 / 85.9 76.3 / 79.2 54.2 / 74.2

Table 2. Vocal melody extraction results in terms of (RPA
/ OA) of the proposed and other methods on various test
sets. The proposed model is iterated the self-training two
times using the in-house dataset and FMALv .

Methods ADC04 MIREX05 MedleyDB AST218

PatchCNN 91.8 / 46.1 80.3 / 11.6 60.1 / 22.4 61.6 / 26.0
DSM 95.7 / 61.1 93.9 / 29.4 85.4 / 26.6 44.6 / 7.7

SegNet 95.2 / 38.5 92.2 / 24.0 78.8 / 21.7 51.7 / 10.0
JDC 96.7 / 40.2 97.5 / 18.5 80.5 / 18.3 64.7 / 8.6

Baseline 92.6 / 33.8 89.1 / 15.2 71.0 / 16.7 72.0 / 19.2
Proposed (NS) 97.4 / 42.1 97.3 / 20.4 83.3 / 19.1 61.6 / 9.4

Table 3. Voicing detection results in terms of (VR / VFA)
of the proposed and other methods on various test sets.

Besides, we report the frame-level scores instead of song-
level ones to settle uneven song lengths.

Table 2 and Table 3 list the results of each method on
the four test sets. In general, performances of the proposed
NS model are comparable to other supervised-learning-
based methods and even outperforms others in MedleyDB,
and it effectively improves the OA of the baseline by 4.5–
8.5%. The overall rankings of VR and VFA vary across
the test sets, but the behavior converges in terms of OA.
One can also observe that the AST218 is the most chal-
lenging in the majority of cases. In such a dataset, the per-
formance of the NS model shows that the proposed method
is robust to large-scale evaluation. However, the NS model
improves the baseline except for VR and RPA in AST218.
This result might be because the simple rule-based remix-
ing of vocal and accompaniment tracks in AST218 is dif-
ferent from the artistic practice of mixing engineers, which
can affect voicing detection and, in turn, RPA.

6. CONCLUSION

This study provides a framework of semi-supervised learn-
ing using the teacher-student model for vocal melody ex-
traction. We compared three setups of teacher-student
models and revealed that the NS model is the most effec-
tive and robust to real-world music where various noises
can be present. We showed that large-scale unlabeled data
is effective when they are properly selected. We found
that iterative training for the teacher-student model helps
improve performance. We also confirmed the effective-
ness of the proposed method by evaluating it on artificial
large-scale test data generated from automatically anno-
tated multitrack data. Although these findings are based
only on vocal melody extraction, we believe our method
can be extended to other MIR tasks that suffer from the
lack of labeled data such as automatic music transcription
and chord recognition.
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ABSTRACT

In this paper, we present MusPy, an open source Python
library for symbolic music generation. MusPy provides
easy-to-use tools for essential components in a music gen-
eration system, including dataset management, data I/O,
data preprocessing and model evaluation. In order to
showcase its potential, we present statistical analysis of
the eleven datasets currently supported by MusPy. More-
over, we conduct a cross-dataset generalizability experi-
ment by training an autoregressive model on each dataset
and measuring held-out likelihood on the others—a pro-
cess which is made easier by MusPy’s dataset management
system. The results provide a map of domain overlap be-
tween various commonly used datasets and show that some
datasets contain more representative cross-genre samples
than others. Along with the dataset analysis, these results
might serve as a guide for choosing datasets in future re-
search. Source code and documentation are available at
https://github.com/salu133445/muspy.

1. INTRODUCTION

Recent years have seen progress on music generation,
thanks largely to advances in machine learning [1]. A mu-
sic generation pipeline usually consists of several steps—
data collection, data preprocessing, model creation, model
training and model evaluation, as illustrated in Figure 1.
While some components need to be customized for each
model, others can be shared across systems. For symbolic
music generation in particular, a number of datasets, rep-
resentations and metrics have been proposed in the litera-
ture [1]. As a result, an easy-to-use toolkit that implements
standard versions of such routines could save a great deal
of time and effort and might lead to increased reproducibil-
ity. However, such tools are challenging to develop for a
variety of reasons.

First, though there are a number of publicly-available
symbolic music datasets, the diverse organization of these
collections and the various formats used to store them
presents a challenge. These formats are usually designed
for different purposes. Some focus on playback capability

c© Hao-Wen Dong, Ke Chen, Julian McAuley, Taylor Berg-
Kirkpatrick. Licensed under a Creative Commons Attribution 4.0 Inter-
national License (CC BY 4.0). Attribution: Hao-Wen Dong, Ke Chen,
Julian McAuley, Taylor Berg-Kirkpatrick, “MusPy: A Toolkit for Sym-
bolic Music Generation”, in Proc. of the 21st Int. Society for Music
Information Retrieval Conf., Montréal, Canada, 2020.

Figure 1. An example of a learning-based music genera-
tion system. MusPy provides basic routines specific to mu-
sic as well as interfaces to machine learning frameworks.

(e.g., MIDI), some are developed for music notation soft-
wares (e.g., MusicXML [2] and LilyPond [3]), some are
designed for organizing musical documents (e.g., Music
Encoding Initiative (MEI) [4]), and others are research-
oriented formats that aim for simplicity and readability
(e.g., MuseData [5] and Humdrum [6]. Oftentimes re-
searchers have to implement their own preprocessing code
for each different format. Moreover, while researchers can
implement their own procedures to access and process the
data, issues of reproducibility due to the inconsistency of
source data have been raised in [7] for audio datasets.

Second, music has hierarchy and structure, and thus dif-
ferent levels of abstraction can lead to different represen-
tations [8]. Moreover, a number of music representations
designed specially for generative modeling of music have
also been proposed in prior art, for example, as a sequence
of pitches [9–12], events [13–16], notes [17] or a time-
pitch matrix (i.e., a piano roll) [18, 19].

Finally, efforts have been made toward more robust
objective evaluation metrics for music generation sys-
tems [20] as these metrics provide not only an objective
way for comparing different models but also indicators
for monitoring training progress in machine learning-based
systems. Given the success of mir_eval [21] in evaluating
common MIR tasks, a library providing implementations
of commonly used evaluation metrics for music generation
systems could help improve reproducibility.

To manage the above challenges, we find a toolkit ded-
icated for music generation a timely contribution to the
MIR community. Hence, we present in this paper a new
Python library, MusPy, for symbolic music generation. It
provides essential tools for developing a music generation
system, including dataset management, data I/O, data pre-
processing and model evaluation.

With MusPy, we provide a statistical analysis on the
eleven datasets currently supported by MusPy, with an eye
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Figure 2. System diagram of MusPy. The MusPy Music object at the center is the core element of MusPy.

to unveiling statistical differences between them. More-
over, we conduct three experiments to analyze their rela-
tive diversities and cross-dataset domain compatibility of
the various datasets. These results, along with the statisti-
cal analysis, together provide a guide for choosing proper
datasets for future research. Finally, we also show that
combining multiple heterogeneous datasets could help im-
prove generalizability of a music generation system.

2. RELATED WORK

Few attempts, to the best of our knowledge, have been
made to develop a dedicated library for music generation.
The Magenta project [22] represents the most notable ex-
ample. While MusPy aims to provide fundamental routines
in data collection, preprocessing and analysis, Magenta
comes with a number of model instances, but is tightly
bound with TensorFlow [23]. In MusPy, we leave the
model creation and training to dedicated machine learning
libraries, and design MusPy to be flexible in working with
different machine learning frameworks.

There are several libraries for working with symbolic
music. music21 [24] is one of the most representative
toolkits and targets studies in computational musicology.
While music21 comes with its own corpus, MusPy does
not host any dataset. Instead, MusPy provides functions to
download datasets from the web, along with tools for man-
aging different collections, which makes it easy to extend
support for new datasets in the future. jSymbolic [25] fo-
cuses on extracting statistical information from symbolic
music data. While jSymbolic can serve as a powerful fea-
ture extractor for training supervised classification mod-
els, MusPy focuses on generative modeling of music and
supports different commonly used representations in music
generation. In addition, MusPy provides several objective
metrics for evaluating music generation systems.

Related cross-dataset generalizability experiments [15]
show that pretraining on a cross-domain data can improve
music generation results both qualitatively and quantita-
tively. MusPy’s dataset management system makes it eas-
ier for us to thoroughly verify this hypothesis by examining
pairwise generalizabilities between various datasets.

(a)

(b)

Figure 3. Examples of (a) training data preparation and
(b) result writing pipelines using MusPy.

3. MUSPY

MusPy is an open source Python library dedicated for sym-
bolic music generation. Figure 2 presents the system dia-
gram of MusPy. It provides a core class, MusPy Music
class, as a universal container for symbolic music. Dataset
management system, I/O interfaces and model evaluation
tools are then built upon this core container. We provide
in Figure 3 examples of data preparation and result writing
pipelines using MusPy.

3.1 MusPy Music class and I/O interfaces

We aim at finding a middle ground among existing formats
for symbolic music and design a unified format dedicated
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Dataset Format Hours Songs Genre Melody Chords Multitrack

Lakh MIDI Dataset (LMD) [26] MIDI >9000 174,533 misc 4 4 4
MAESTRO Dataset [27] MIDI 201.21 1,282 classical
Wikifonia Lead Sheet Dataset [28] MusicXML 198.40 6,405 misc X X
Essen Folk Song Database [29] ABC 56.62 9,034 folk X X
NES Music Database [30] MIDI 46.11 5,278 game X X
Hymnal Tune Dataset [31] MIDI 18.74 1,756 hymn X
Hymnal Dataset [31] MIDI 17.50 1,723 hymn
music21 Corpus [24] misc 16.86 613 misc 4 4
Nottingham Database (NMD) [32] ABC 10.54 1,036 folk X X
music21 JSBach Corpus [24] MusicXML 3.46 410 classical X
JSBach Chorale Dataset [11] MIDI 3.21 382 classical X

Table 1. Comparisons of datasets currently supported by MusPy. Triangle marks indicate partial support. Note that, in this
version, only MusicXML and MIDI files are included for the music21 Corpus.

MIDI MusicXML MusPy

Sequential timing X X
Playback velocities X 4 X
Program information X 4 X

Layout information X
Note beams and slurs X
Song/source meta data 4 X X
Track/part information 4 X X
Dynamic/tempo markings X X
Concept of notes X X
Measure boundaries X X
Human readability 4 X

Table 2. Comparisons of MIDI, MusicXML and the pro-
posed MusPy formats. Triangle marks indicate optional or
limited support.

for music generation. MIDI, as a communication proto-
col between musical devices, uses velocities to indicate dy-
namics, beats per minute (bpm) for tempo markings, and
control messages for articulation, but it lacks the concepts
of notes, measures and symbolic musical markings. In
contrast, MusicXML, as a sheet music exchanging format,
has the concepts of notes, measures and symbolic musi-
cal markings and contains visual layout information, but
it falls short on playback-related data. For a music genera-
tion system, however, both symbolic and playback-specific
data are important. Hence, we follow MIDI’s standard for
playback-related data and MusicXML’s standard for sym-
bolic musical markings.

In fact, the MusPy Music class naturally defines a uni-
versal format for symbolic music, which we will refer to
as the MusPy format, and can be serialized into a human-
readable JSON/YAML file. Table 2 summarizes the key
differences among MIDI, MusicXML and the proposed
MusPy formats. Using the proposed MusPy Music class
as the internal representation for music data, we then pro-
vide I/O interfaces for common formats (e.g., MIDI, Mu-
sicXML and ABC) and interfaces to other symbolic music
libraries (e.g., music21 [24], mido [33], pretty_midi [34]

(a) on-the-fly mode

(b) preconverted mode

Figure 4. Two internal processing modes for iterating over
a MusPy Dataset object.

and Pypianoroll [35]). Figure 3(b) provides an example of
result writing pipeline using MusPy.

3.2 Dataset management

MusPy provides an easy-to-use dataset management sys-
tem similar to torchvision datasets [36] and TensorFlow
Dataset [37]. Table 1 presents the list of datasets currently
supported by MusPy and their comparisons. Each sup-
ported dataset comes with a class inherited from the base
MusPy Dataset class. The modularized and flexible design
of the dataset management system makes it easy to handle
local data collections or extend support for new datasets
in the future. Figure 4 illustrates the two internal process-
ing modes when iterating over a MusPy Dataset object. In
addition, MusPy provides interfaces to PyTorch [38] and
TensorFlow [23] for creating input pipelines for machine
learning (see Figure 3(a) for an example).

3.3 Representations

Music has multiple levels of abstraction, and thus can
be expressed in various representations. For music gen-
eration in particular, several representations designed for
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Representation Shape Values Default configurations

Pitch-based T × 1 {0, 1, . . . , 129} 128 note-ons, 1 hold, 1 rest (support only monophonic music)
Event-based T × 1 {0, 1, . . . , 387} 128 note-ons, 128 note-offs, 100 time shifts, 32 velocities
Piano-roll T × 128 {0, 1} or R+ {0, 1} for binary piano rolls; R+ for piano rolls with velocities
Note-based N × 4 N or R+ List of (time, pitch, duration, velocity) tuples

Table 3. Comparisons of representations supported by MusPy. T and N denote the numbers of time steps and notes,
respectively. Note that the configurations can be modified to meet specific requirements and use cases.

generative modeling of symbolic music have been pro-
posed and used in the literature [1]. These representations
can be broadly categorized into four types—the pitch-
based [9–12], the event-based [13–16], the note-based [17]
and the piano-roll [18,19] representations. Table 3 presents
a comparison of them. We provide in MusPy implementa-
tions of these representations and integration to the dataset
management system. Figure 3(a) provides an example
of preparing training data in the piano-roll representation
from the NES Music Database using MusPy.

3.4 Model evaluation tools

Model evaluation is another critical component in devel-
oping music generation systems. Hence, we also integrate
into MusPy tools for audio rendering as well as score and
piano-roll visualizations. These tools could also be use-
ful for monitoring the training progress or demonstrating
the final results. Moreover, MusPy provides implementa-
tions of several objective metrics proposed in the litera-
ture [17, 19, 39]. These objective metrics, as listed below,
could be used to evaluate a music generation system by
comparing the statistical difference between the training
data and the generated samples, as discussed in [20].

• Pitch-related metrics—polyphony, polyphony rate,
pitch-in-scale rate, scale consistency, pitch entropy and
pitch class entropy.

• Rhythm-related metrics—empty-beat rate, drum-in-
pattern rate, drum pattern consistency and groove con-
sistency.

3.5 Summary

To summarize, MusPy features the following:

• Dataset management system for commonly used
datasets with interfaces to PyTorch and TensorFlow.

• Data I/O for common symbolic music formats (e.g.,
MIDI, MusicXML and ABC) and interfaces to
other symbolic music libraries (e.g., music21, mido,
pretty_midi and Pypianoroll).

• Implementations of common music representations for
music generation, including the pitch-based, the event-
based, the piano-roll and the note-based representations.

• Model evaluation tools for music generation systems, in-
cluding audio rendering, score and piano-roll visualiza-
tions and objective metrics.

All source code and documentation can be found at
https://github.com/salu133445/muspy.
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Figure 5. Length distributions for different datasets.

4. DATASET ANALYSIS

Analyzing datasets is critical in developing music genera-
tion systems. With MusPy’s dataset management system,
we can easily work with different music datasets. Below
we compute the statistics of three key elements of a song—
length, tempo and key using MusPy, with an eye to un-
veiling statistical differences among these datasets. First,
Figure 5 shows the distributions of song lengths for differ-
ent datasets. We can see that they differ greatly in their
ranges, medians and variances.

Second, we present in Figure 6 the distributions of ini-
tial tempo for datasets that come with tempo information.
We can see that all of them are generally bell-shaped but
with different ranges and variances. We also note that there
are two peaks, 100 and 120 quarter notes per minute (qpm),
in Lakh MIDI Dataset (LMD), which is possibly because
these two values are often set as the default tempo values
in music notation programs and MIDI editors/sequencers.
Moreover, in Hymnal Tune Dataset, only around ten per-
cent of songs have an initial tempo other than 100 qpm.

Finally, Figure 7 shows the histograms of keys for dif-
ferent datasets. We can see that the key distributions are
rather imbalanced. Moreover, only less than 3% of songs
are in minor keys for most datasets except the music21
Corpus. In particular, LMD has the most imbalanced key
distributions, which might be due to the fact that C major is
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Figure 6. Initial-tempo distributions for different datasets
(those without tempo information are not presented).
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Figure 7. Key distributions for different datasets. The keys
are sorted w.r.t. their frequencies in Lakh MIDI Dataset.

often set as the default key in music notation programs and
MIDI editors/sequencers. 1 These statistics could provide
a guide for choosing proper datasets in future research.

5. EXPERIMENTS AND RESULTS

In this section, we conduct three experiments to analyze
the relative complexities and the cross-dataset general-
izabilities of the eleven datasets currently supported by
MusPy (see Table 1). We implement four autoregressive
models—a recurrent neural network (RNN), a long short-
term memory (LSTM) network [40], a gated recurrent unit
(GRU) network [41] and a Transformer network [42].

5.1 Experiment settings

For the data, we use the event representation as specified
in Table 3 and discard velocity events as some datasets
have no velocity information (e.g., datasets using ABC for-
mat). Moreover, we also include an end-of-sequence event,
leading to in total 357 possible events. For simplicity, we
downsample each song into four time steps per quarter note
and fix the sequence length to 64, which is equivalent to

1 Note that key information is considered as a meta message in a MIDI
file. It does not affect the playback and thus can be unreliable sometimes.
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Figure 8. Log-perplexities for different models on differ-
ent datasets, sorted by the values for the LSTM model.

four measures in 4/4 time. In addition, we discard repeat
information in MusicXML data and use only melodies in
Wikifonia dataset. We split each dataset into train–test–
validation sets with a ratio of 8 : 1 : 1. For the train-
ing, the models are trained to predict the next event given
the previous events. We use the cross entropy loss and
the Adam optimizer [43]. For evaluation, we randomly
sample 1000 sequences of length 64 from the test split,
and compute the perplexity of these sequences. We im-
plement the models in Python using PyTorch. For repro-
ducibility, source code and hyperparmeters are available at
https://github.com/salu133445/muspy-exp.

5.2 Autoregressive models on different datasets

In this experiment, we train the model on some dataset D
and test it on the same dataset D. We present in Figure 8
the perplexities for different models on different datasets.
We can see that all models have similar tendencies. In gen-
eral, they achieve smaller perplexities for smaller, homoge-
neous datasets, but result in larger perplexities for larger,
more diverse datasets. That is, the test perplexity could
serve as an indicator for the diversity of a dataset. More-
over, Figure 9 shows perplexities versus dataset sizes (in
hours). By categorizing datasets into multi-pitch (i.e., ac-
cepting any number of concurrent notes) and monophonic
datasets, we can see that the perplexity is positively corre-
lated to the dataset size within each group.

5.3 Cross-dataset generalizability

In this experiment, we train a model on some dataset
D, while in addition to testing it on the same dataset D,
we also test it on each other dataset D′. We present in
Figure 10 the perplexities for each train–test dataset pair.
Here are some observations:

• Cross dataset generalizability is not symmetric in gen-
eral. For example, a model trained on LMD generalizes
well to all other datasets, while not all models trained on

Proceedings of the 21st ISMIR Conference, Montréal, Canada, October 11-16, 2020
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Figure 9. Log-perplexities for the LSTM model versus
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other datasets generalize to LMD, which is possibly due
to the fact that LMD is a large, cross-genre dataset.

• Models trained on multi-pitch datasets generalize well
to monophonic datasets, while models trained on mono-
phonic datasets do not generalize to multi-pitch datasets
(see the red block in Figure 10).

• The model trained on JSBach Chorale Dataset does not
generalize to any of the other datasets (see the orange
block in Figure 10). This is possibly because its samples
are downsampled to a resolution of quarter note, which
leads to a distinct note duration distribution.

• Most datasets generalize worse to NES Music Database
compared to other datasets (see the green block
in Figure 10). This is possibly due to the fact that NES
Music Database contains only game soundtracks.

5.4 Effects of combining heterogeneous datasets

From Figure 10 we can see that LMD has the best gener-
alizability, possibly because it is large, diverse and cross-
genre. However, a model trained on LMD does not gen-
eralize well to NES Music Database (see the brown block
in the close-up of Figure 10). We are thus interested in
whether combing multiple heterogeneous datasets could
help improve generalizability.

We combine all eleven datasets listed in Table 1 into one
large unified dataset. Since these datasets differ greatly in
their sizes, simply concatenating the datasets might lead
to severe imbalance problem and bias toward the largest
dataset. Hence, we also consider a version that adopts
stratified sampling during training. Specifically, to acquire
a data sample in the stratified dataset, we uniformly choose
one dataset out of the eleven datasets, and then randomly
pick one sample from that dataset. Note that stratified sam-
pling is disabled at test time.

We also include in Figures 8, 9 and 10 the results for
these two datasets. We can see from Figure 10 that com-
bining datasets from different sources improves the gener-
alizability of the model. This is consistent with the find-
ing in [15] that models trained on certain cross-domain
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Figure 10. Cross-dataset generalizability results. The val-
ues and colors represent the log-perplexities of a LSTM
model trained on a specific dataset (row) and tested on an-
other dataset (column). The datasets are sorted by the di-
agonal values, i.e., trained and tested on the same dataset.

datasets generalize better to other unseen datasets. More-
over, stratified sampling alleviates the source imbalance
problem by reducing perplexities in most datasets with a
sacrifice of an increased perplexity on LMD.

6. CONCLUSION

We have presented MusPy, a new toolkit that provides es-
sential tools for developing music generation systems. We
discussed the designs and features of the library, along
with data pipeline examples. With MusPy’s dataset man-
agement system, we conducted a statistical analysis and
experiments on the eleven currently supported datasets to
analyze their relative diversities and cross-dataset gener-
alizabilities. These results could help researchers choose
appropriate datasets in future research. Finally, we showed
that combining heterogeneous datasets could help improve
generalizability of a machine learning model.
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ABSTRACT

High-level musical qualities (such as emotion) are often
abstract, subjective, and hard to quantify. Given these dif-
ficulties, it is not easy to learn good feature representa-
tions with supervised learning techniques, either because
of the insufficiency of labels, or the subjectiveness (and
hence large variance) in human-annotated labels. In this
paper, we present a framework that can learn high-level
feature representations with a limited amount of data, by
first modelling their corresponding quantifiable low-level
attributes. We refer to our proposed framework as Music
FaderNets, which is inspired by the fact that low-level at-
tributes can be continuously manipulated by separate “slid-
ing faders” through feature disentanglement and latent reg-
ularization techniques. High-level features are then in-
ferred from the low-level representations through semi-
supervised clustering using Gaussian Mixture Variational
Autoencoders (GM-VAEs). Using arousal as an example
of a high-level feature, we show that the “faders” of our
model are disentangled and change linearly w.r.t. the mod-
elled low-level attributes of the generated output music.
Furthermore, we demonstrate that the model successfully
learns the intrinsic relationship between arousal and its cor-
responding low-level attributes (rhythm and note density),
with only 1% of the training set being labelled. Finally,
using the learnt high-level feature representations, we ex-
plore the application of our framework in style transfer
tasks across different arousal states. The effectiveness of
this approach is verified through a subjective listening test.

1. INTRODUCTION

We consider low-level musical attributes as attributes that
are relatively straightforward to quantify, extract and cal-
culate from music, such as rhythm, pitch, harmony, etc.
On the other hand, high-level musical attributes refer to se-
mantic descriptors or qualities of music that are relatively
abstract, such as emotion, style, genre, etc. Due to the na-
ture of abstractness and subjectivity in these high-level mu-
sical qualities, obtaining labels for these qualities typically

c© Hao Hao Tan, Dorien Herremans. Licensed under a Cre-
ative Commons Attribution 4.0 International License (CC BY 4.0). At-
tribution: Hao Hao Tan, Dorien Herremans, “Music FaderNets: Con-
trollable Music Generation Based On High-Level Features via Low-Level
Feature Modelling”, in Proc. of the 21st Int. Society for Music Informa-
tion Retrieval Conf., Montréal, Canada, 2020.

requires human annotation. However, training conditional
models on top of these human-annotated labels using su-
pervised learning might result in sub-par performance be-
cause firstly, obtaining such labels can be costly, hence the
amount of labels collected might be insufficient to train a
model that can generalize well [1]; Secondly, the anno-
tated labels could have high variance among raters due to
the subjectivity of these musical qualities [2, 3].

Instead of inferring high-level features directly from the
music sample, we propose to use low-level features as a
“bridge” between the music and the high level features.
This is because the relationship between the sample and
its low-level features can be learnt relatively easier, as the
labels are easier to obtain. In addition, we learn the rela-
tionship between the low-level features and the high-level
features in a data-driven manner. In this paper, we show
that the latter works well even with a limited amount of
labelled data. Our work relies heavily on the concept that
each high-level feature is intrinsically related to a set of
low-level attributes. By tweaking the levels of each low-
level attribute in a constrained manner, we can achieve a
desired change on the high-level feature. This idea is heav-
ily exploited in rule-based systems [4–6], however rule-
based systems are often not robust enough as their capa-
bilities are constrained by the fixed set of predefined rules
handcrafted by the authors. Hence, we propose an alterna-
tive path which is to learn these implicit relationships with
semi-supervised learning techniques.

To achieve the goals stated above, we intend to build a
framework which can fulfill these two objectives:

• Firstly, the model should be able to control multiple
low-level attributes of the music sample in a contin-
uous manner, as if it is controlled by sliding knobs
on a console (or also known as faders). Each knob
should be independent from the others, and only
controls one single feature that it is assigned to.

• Secondly, the model should be able to learn the rela-
tionship between the levels of the sliding knobs con-
trolling the low-level features, and the selected high-
level feature. This is analogous to learning a preset
of the sliding knobs on a console.

We named our model “Music FaderNets”, with refer-
ence to musical “faders” and “presets” as described above.
Achieving the first objective requires representation learn-
ing and feature disentanglement techniques. This moti-
vates us to use latent variable models [7] as we can learn
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separate latent spaces for each low-level feature to obtain
disentangled controllability. Achieving the second objec-
tive requires the latent space to have a hierarchical struc-
ture, such that high-level information can be inferred from
low-level representations. This is achieved by incorporat-
ing Gaussian Mixture VAEs [8] in our model.

2. RELATED WORK

2.1 Controllable Music Generation

The application of deep learning techniques for music gen-
eration has been rapidly advancing [9–13], however, em-
bedding control and interactivity in these systems still re-
mains a critical challenge [10]. Variants of conditional
generative models (such as CGAN [14] and CVAE [15])
are used to allow control during generation, which have at-
tained much success mainly in the image domain. Fader
Networks [16] is one of the main inspirations of this work
(hence the name Music FaderNets), in which users can
modify different visual features of an image using “slid-
ing faders”. However, their approach is built upon a
CVAE with an additional adversarial component, which
is very different from our approach. Recently, control-
lable music generation has gained much research interest,
both on modelling low-level [17–20] and high-level fea-
tures [21, 22]. Specifically, [18] and [19] each proposed
a novel latent regularization method to encode attributes
along specific latent dimensions, which inspired the "slid-
ing knob" application in this work.

2.2 Disentangled Representation Learning for Music

Disentangled representation learning has been widely used
across both the visual [23–26] and speech domain [1, 27,
28] to learn disjoint subsets of attributes. Such techniques
have also been applied to music in several recent works,
both in the audio [29–31] and symbolic domain [32–34].
The discriminator component in our model draws inspira-
tion from both the explicit conditioning component in the
EC2-VAE model [33], and the extraction component in the
Ext-Res model [34]. We find that most of the work on
disentanglement in symbolic music focuses on low-level
features, and is done on monophonic music.

This research distinguishes itself from other related
work through the following novel contributions:

• We combine latent regularization techniques with
disentangled representation learning to build a
framework that can control various continuous low-
level musical attribute values using “faders”, and ap-
ply the framework on polyphonic music modelling.

• We show that it is possible to infer high-level fea-
tures from low-level latent feature representations,
even under weakly supervised scenario. This opens
up possibilities to learn good representations for ab-
stract, high-level musical qualities even under data
scarcity conditions. We further demonstrate that the
learnt representations can be used for controllable
generation based on high-level features.

3. PROPOSED FRAMEWORK

3.1 Gaussian Mixture Variational Autoencoders

VAEs [35] combine the power of both latent variable mod-
els and deep generative models, hence they provide both
representation learning and generation capabilities. Given
observations X and latent variables z, the VAE learns a
graphical model z→ X by maximizing the evidence lower
bound (ELBO) of the marginal likelihood p(X) as below:

L(p, q;X) = Eq(z|X)[log p(X|z)]−DKL(q(z|X)||p(z))

where q(z|X) and p(z) represent the learnt posterior and
prior distribution respectively. In vanilla VAEs, p(z) is
an isotropic, unimodal Gaussian. Gaussian Mixture VAEs
(GM-VAE) [8] extend the prior to a mixture ofK Gaussian
components, which corresponds to learning a graphical
model with an extra hierarchy of dependency c→ z→ X.
The newly introduced categorical variable c ∈ C, whereby
|C| = K, is a discrete representation of the observations.
Hence, a new distribution q(c|X) is introduced to infer the
class of each observation, which enables semi-supervised
and unsupervised clustering applications.

Following [8], the ELBO of a GM-VAE is derived as:

L(p, q;X) = Eq(z|X)[log p(X|z)]

−
K∑
k=1

q(ck|X)DKL(q(z|X)||p(z|ck))

−DKL(q(c|X)||p(c))

The original KL loss term from the vanilla VAE is mod-
ified into two new terms: (i) the KL divergence between
the approximate posterior q(z|X) and the conditional prior
p(z|ck), marginalized over all Gaussian components; (ii)
the KL divergence between the cluster inferring distribu-
tion q(c|X), and the categorical prior p(c).

3.2 Model Formulation

Figure 1 shows the model formulation of our proposed
Music FaderNets. Input X is a sequence of performance
tokens converted from MIDI following [12, 13]. Assume
that we want to model a high-level feature with K discrete
states, which is related to a set ofN low-level features. We
denote the latent variables learnt for each low-level feature
as z1...N ; the labels for each low-level feature as y1...N ;
and the class inferred from each latent variable as c1...N .

The joint probability of X, z1...N , c1...N is written as:

p(X, z1...N , c1...N ) = p(X|z1...N )
N∏
i=1

p(zi|ci)
N∏
i=1

p(ci)

We assume that each categorical prior p(ci), i ∈ [1, N ]
is uniformly distributed, and the conditional distributions
p(zi|ci) = N (µci , diag(σci)) are diagonal-covariance
Gaussians with learnable means and constant variances.
For each low-level attribute, we learn an approximate pos-
terior q(zi|X), parameterized by an encoder neural net-
work, that samples latent code zi which represents the i-th
low-level feature.
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Figure 1. Music FaderNets model architecture.

The latent codes z1...N are then passed through the re-
maining three components: (1) Discriminator: To ensure
that zi incorporates information of the assigned low-level
feature, it is passed through a discriminator represented
by a function d(zi) to reconstruct the low-level feature la-
bel yi; (2) Reconstruction: All latent codes are fed into
a global decoder network which parameterizes the condi-
tional probability p(X|z1...n) to reconstruct the input X;
(3) Cluster Inference: This component parameterizes the
cluster inference probability q(c|X), with c representing
the selected high-level feature. It can be approximated by
q(c|X) ≈ Eq(z|X)p(c|z) [36], where the cluster state is pre-
dicted from each latent code zi instead of X.

To incorporate the “sliding knob” concept, we need to
map the change of value of an arbitrary dimension on zi
(denoted as zdi , shown on Figure 1 as the darkened dimen-
sion) linearly to the change of value of the low-level feature
label yi. After comparing across previous methods on con-
ditioning and regularization [15, 16, 18, 19], we choose to
adopt [19] which applies a latent regularization loss term
written as Lreg(zdi , yi) = MSE(tanh(Dzdi

), sign(Dyi)),
where Dzdi

and Dyi denotes the distance matrix of values
zdi and yi within a training batch respectively. We provide
a detailed comparison study across each proposed method
in Section 4.2. Hence, if we define:

Liφ(p, q;X) =



K∑
k=1

q(ci,k|X)DKL(q(zi|X)||p(zi|ci,k))

+DKL(q(ci|X)||p(ci)), if unsupervised

DKL(q(zi|X)||p(zi|ci)), if supervised
(1)

then the entire training objective can be derived as:

L(p, q;X) = Eq(z1|X)...q(zN |X)[log p(X|z1, z2, ..., zN )]

− β ·
N∑
i=1

Liφ(p, q;X) +
N∑
i=1

Lreg(zdi , yi)

+ Eq(z1|X)...q(zn|X)[log p(y1|z1)...p(yN |zN )]

(2)

where β is the KL weight hyperparameter [24]. The first
term in Eq. 2 represents the reconstruction loss. The sec-
ond KL loss term (derived from the ELBO function of
GM-VAE) correspond to the cluster inference component,
which allows both supervised and unsupervised training
setting, depending on the availability of label c. If we
omit the cluster inference component, it could conform to
a vanilla VAE by replacing this term with the KL loss term
of VAE. The third term is the latent regularization loss ap-
plied during the encoding process. The last term is the
reconstruction loss of the low-level feature labels, which
corresponds to the discriminator component. All encoders
and decoders are implemented with gated recurrent units
(GRUs), and teacher-forcing is used to train all decoders.

4. EXPERIMENTAL SETUP

In this work, we chose arousal (which refers to the energy
level conveyed by the song [37]) as the high-level feature to
be modelled. In order to select relevant low-level features,
we refer to musicology papers such as [6, 38, 39], which
suggest that arousal is related to features including rhythm
density, note density, key, dynamic, tempo, etc. Among
these low-level features, we focus on modelling the score-
level features in this work (i.e. rhythm, note and key).

4.1 Data Representation and Hyperparameters

We use two polyphonic piano music datasets for training:
the Yamaha Piano-e-Competition dataset [12], and the
VGMIDI dataset [3], which contains piano arrangements
of 95 video game soundtracks in MIDI, annotated with va-
lence and arousal values in the range of -1 to 1. The arousal
labels are used to guide the cluster inference component in
our GM-VAE model using semi-supervised learning. We
extract every 4-beat segment from each music sample, with
a beat resolution of 4 (quarter-note granularity). Each seg-
ment is encoded into event-based tokens following [12]
with a maximum sequence length of 100. This results in
a total of 103,934 and 1,013 sequences from the Piano e-
Competition and VGMIDI dataset respectively, which are
split into train/validation/test sets with a ratio of 80/10/10.
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Inspired by [33], we represent each rhythm label,
yrhythm, as a sequence of 16 one-hot vectors with 3 dimen-
sions, denoting an onset for any pitch, a holding state, or
a rest. The rhythm density value is calculated as the num-
ber of onsets in the sequence divided by the total sequence
length. Each note label, ynote, is represented by a sequence
of 16 one-hot vectors with 16 dimensions, each dimension
denoting the number of notes being played or held at that
time step (we assume a minimum polyphony of 0 and a
maximum of 15). The note density value is the average
number of notes being played or held for per time step.
For key, we use the key analysis tool from music21 [40]
to extract the estimated global key of each 4-beat segment.
The key is represented using a 24-dimension one-hot vec-
tor, accounting for major and minor modes. In this work,
we directly concatenate the key vector as a conditioning
signal with zrhythm and znote as an input to the global de-
coder for reconstruction. For representing arousal, we split
the arousal ratings into two clusters (K = 2): high arousal
cluster for positive labels, and low arousal cluster for neg-
ative labels. We remove labels annotated within the range
[-0.1, 0.1] so as to reduce ambiguity in the annotations.

The hyperparameters are tuned according to the results
on the validation set using grid search. The mean vectors
of p(c|z) are all randomly initialized with Xavier initial-
ization, whereas the variance vectors are kept fixed with
value e−2. We observe that the following annealing strat-
egy for β leads to the best balance between reconstruction
and controllability: β is set to 0 in the first 1,000 training
steps, and is slowly annealed up to 0.2 in the next 10,000
training steps. We set the batch size to 128, all hidden sizes
to 512, and the encoded z dimensions to 128. The Adam
optimizer is used with a learning rate of 10−3.

4.2 Measuring the Controllability of Latent Features

The proposed Music FaderNets model should meet two re-
quirements: (i) Each “fader” independently controls one
low-level musical feature without affecting other features
(disentanglement), and (ii) the “faders” should change lin-
early with the controlled attribute of the generated output
(linearity). For disentanglement, we follow the definition
proposed in [41] which decomposes the concept of disen-
tanglement into generator consistency and generator re-
strictiveness. Using rhythm density as an example:

• Consistency on rhythm density means that for the
same value of zdrhythm, the value of the output’s
rhythm density should be consistent.

• Restrictiveness on rhythm density means that chang-
ing the value of zdrhythm does not affect the attributes
other than rhythm density (in our case, note density).

• Linearity on rhythm density means that the value of
rhythm density is directly proportional to the value
of zdrhythm, which is analogous to a sliding fader.

We will be evaluating all three of these points in our ex-
periment. For evaluating linearity, [19] proposed a slightly
modified version of the interpretability metric by [42],

Figure 2. Workflow of obtaining evaluation metrics for
“faders” controlling rhythm density.

which includes the following steps: (1) encode each sam-
ple in the test set, obtain the rhythm latent code and the
dimension zd which has the maximum mutual information
with regards to the attribute; (2) learn a linear regressor
to predict the input attribute values based on zd. The lin-
earity score is hence the coefficient of determination (R2)
score of the linear regressor. However, this method eval-
uates only the encoder and not the decoder. As we want
the sliding knobs to directly impact the output, we argue
that the relationship between zd and the output attributes
should be more important. Hence, we propose to “slide”
the values of the regularized dimension zd within a given
range and decode them into reconstructed outputs. Then,
instead of predicting the input attributes given the encoded
zd, the linear regressor learns to predict the corresponding
output attributes given the “slid” values of zd.

We demonstrate a single workflow to calculate the con-
sistency, restrictiveness and linearity scores of a given
model based on the low-level features (we use rhythm den-
sity as an example low-level feature for the discussion be-
low), as depicted in Figure 2. After obtaining the rhythm
density latent code for all samples in the training set and
finding the minimum and maximum value of zdrhythm, we
“slide” for T = 8 steps by calculating min(zdrhythm) +
t
T (max(zdrhythm) − min(zdrhythm)),with t ∈ [1, T ]. This re-
sults in a list of values denoted as [zdrhythm]1...T . Then, we
conduct the following steps:

1. Randomly select M = 100 samples from the test
set, and encode each sample into zrhythm and znote;

2. Alter the d-th element in zrhythm using the values in
the range [zdrhythm]1...T , to obtain [ẑrhythm]m,1...T for
each sample m;

3. Decode each new rhythm density latent code to-
gether with the unchanged note density latent code
znote to get X̂m,1...T ;

4. Calculate rhythm density rm,1...T and note density
nm,1...T for each reconstructed output;

5. Pair up the new rhythm density latent code with the
resulting rhythm density of the output as T training
data points pm = {([zdrhythm]t, rm,t) | t ∈ [1, T ]} for
a linear regressor.

The final evaluation scores are then calculated as follows:

Consistency score = 1− 1

T

T∑
t=1

σ
t
(r1...M,t) (3)
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Consistency Restrictiveness Linearity

Rhythm Density Note Density Rhythm Density Note Density Rhythm Density Note Density

Proposed (Vanilla VAE) 0.4367 ± 0.0258 0.3490 ± 0.0360 0.6645 ± 0.0169 0.6481 ± 0.0154 0.7805 ± 0.0142 0.8255 ± 0.0107
Proposed (GM-VAE) 0.5096 ± 0.0248 0.4207 ± 0.0309 0.6603 ± 0.0164 0.6457 ± 0.0132 0.7580 ± 0.0124 0.7792 ± 0.0177

Pati et al. [19] 0.4625 ± 0.0264 0.5100 ± 0.0150 0.6417 ± 0.0171 0.5497 ± 0.0206 0.7613 ± 0.0171 0.8220 ± 0.0143
CVAE [15] 0.2613 ± 0.0376 0.4997 ± 0.0355 0.6863 ± 0.0221 0.7140 ± 0.0130 0.4969 ± 0.0166 0.3997 ± 0.0411

Fader Networks [16] 0.2730 ± 0.0366 0.4983 ± 0.0425 0.6861 ± 0.0163 0.7379 ± 0.0149 0.5482 ± 0.0283 0.4647 ± 0.0292
GLSR [18] 0.1891 ± 0.0346 0.1969 ± 0.0831 0.6365 ± 0.0276 0.7136 ± 0.0185 0.2465 ± 0.0197 0.1799 ± 0.0209

Table 1. Experimental results (conducted on the Yamaha dataset test split) on the controllability of low-level features
(rhythm density and note density) using disentangled latent variables. Bold marks the best performing model.

Restrictiveness score = 1− 1

M

M∑
m=1

σ
m
(nm,1..T ) (4)

Linearity score = R2(M(p1...M )) (5)

where σ(·) denotes the standard deviation, andM denotes
the linear regressor model. In other words, consistency
calculates the average standard deviation across all out-
put rhythm density values given the same zdrhythm, whereas
restrictiveness calculates the average standard deviation
across all output note density values given the changing
zdrhythm. In a perfectly disentangled and linear model, the
consistency, restrictiveness and linearity scores should be
equal to 1, and higher scores indicate better performance.

5. EXPERIMENTS AND RESULTS

We compare the evaluation scores of our proposed model,
using both a vanilla VAE (omitting the cluster inference
component) and GM-VAE, with several models proposed
in related work on controllable synthesis: CVAE [15],
Fader Networks [16], GLSR [18] and Pati et al. [19]. We
repeat the above steps for 10 runs for each model and re-
port the mean and standard deviation of each score. Table 1
shows the evaluation results. Overall, our proposed models
achieve a good all-rounded performance on every metric as
compared to other models, especially in terms of linearity,
models that use [19]’s regularization method largely out-
perform other models. Our model shares similar results
with [19], however as compared to their work, we encode
a multi-dimensional, regularized latent space instead of a
single dimension value for each low-level feature, thus al-
lowing more flexibility. Our model can also be used for
“generation via analogy” as mentioned in EC2-VAE [33],
by mix-matching zrhythm from one sample with znote from
another. Moreover, the feature latent vectors can be used to
infer interpretable and semantically meaningful clusters.

5.1 Inferring High-Level Features from Latent
Low-Level Representations

Figure 3 visualizes the rhythm and note density latent
space learnt by GM-VAE using t-SNE dimensionality re-
duction. We observe that both spaces successfully learn a
Gaussian-mixture space with two well-separated compo-
nents, which correspond to high and low arousal clusters,
even though it was trained with only around 1% of labelled
data. We also find that the regularized zd values capture

Figure 3. Visualization of rhythm (top) and note (bottom)
density latent space in the GM-VAE. Each column is col-
ored in terms of: (left) original density values, (middle)
regularized zd values, (right) arousal cluster labels (0 refers
to low arousal and 1 refers to high arousal).

the overall trend of the actual rhythm and note density val-
ues. Interestingly, the model learns the implicit relation-
ship between high/low arousal and the corresponding lev-
els of rhythm/note density. From Figure 3, we observe that
the high arousal cluster corresponds to higher rhythm den-
sity and lower note density, whereas the low arousal clus-
ter corresponds to lower rhythm density and higher note
density. This is reasonable as music segments with high
arousal often consist of fast running notes and arpeggios,
being played one note at a time, whereas music segments
with low arousal often exhibit a chordal texture with more
sustaining notes and relatively less melodic activity.

To further inspect the importance of using low-level
features, we train a separate GM-VAE model with only
one encoder (without discriminator component), which en-
codes only a single latent vector for each segment. The
model is trained to infer the arousal label with the single
latent vector similarly in a semi-supervised manner, and
the hyperparameters are kept the same. From Figure 4,
we can observe that the latent space learnt without using
low-level features is not well-segregated into two separate
components, suggesting that the right choice of low-level
features helps the learning of a more discriminative and
disentangled feature latent space.

The major advantage demonstrated from the results
above is that by carefully choosing low-level features sup-
ported by domain knowledge, semi-supervised (or weakly
supervised) training can be leveraged to learn interpretable
representations that can capture implicit relationships be-
tween high-level and low-level features, overcoming the
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Figure 4. Arousal cluster visualization of GM-VAE with
(left), and without (right) using low-level features.

Figure 5. Examples of arousal transfer on music samples.

difficulties mentioned in the introduction section. This is
an important insight for learning representations of abstract
musical qualities under label scarcity conditions in future.

5.2 Style Transfer on High Level Features

Utilizing the learnt high-level feature representations en-
ables the application of feature style transfer. Follow-
ing [29], given the means of each Gaussian component,
µarousal=0 and µarousal=1, the “shifting vector” from high
arousal to low arousal is slow_shift = µarousal=0 − µarousal=1,
and vice versa. To shift a music segment from high to
low arousal, we modify the latent codes by z′rhythm =
zrhythm + slow_shift, z′note = znote + slow_shift. Both new latent
codes z′rhythm and z′note are fed into the global decoder for
reconstruction. For cases where crhythm 6= cnote, we choose
to perform shifting only on the latent codes which are not
lying within the target arousal cluster. Figure 5 shows sev-
eral examples of arousal shift performed on given music
segments. We can observe that the shift is clearly accom-
panied with the desired changes in rhythm density and
note density, as mentioned in Section 5.1. More exam-
ples are available online. 1 We also conducted a subjective
listening test to evaluate the quality of arousal shift per-
formed by Music FaderNets. We randomly chose 20 music
segments from our dataset, and performed a low-to-high
arousal shift on 10 segments and a high-to-low arousal
shift on the other 10. Each subject listened to the original
sample and then the transformed sample, and was asked
whether (1) the arousal level changes after the transforma-
tion, and; (2) how well the transformed sample sounds in
terms of rhythm, melody, harmony and naturalness, on a

1 https://music-fadernets.github.io/

Figure 6. Subjective listening test results. Left: Heat map
of annotated arousal level change against actual arousal
level change. Right: Bar plot of opinion scores for each
musical quality, with 95% confidence interval.

Likert scale of 1 to 5 each.
A total of 48 subjects participated in the survey. We

found that 81.45% of the responses agreed with the ac-
tual direction of level change in arousal, shifted by the
model. This showed that our model is capable of shifting
the arousal level of a piece to a desired state. From the heat
map shown in Figure 6, we observe that shifting from high
to low arousal has a higher rate of agreement (92.5%) than
shifting from low to high arousal (70.41%). Meanwhile,
the mean opinion score of rhythm, melody, harmony and
naturalness were reported at 3.53, 3.39, 3.41 and 3.33 re-
spectively, showing that the quality of the generated sam-
ples are generally above moderate level.

6. CONCLUSION AND FUTURE WORK

We propose a novel framework called Music FaderNets 2 ,
which can generate new variations of music samples by
controlling levels (“sliding knobs”) of low-level attributes,
trained with latent regularization and feature disentangle-
ment techniques. We also show that the framework is ca-
pable of inferring high-level feature representations (“pre-
sets”, e.g. arousal) on top of latent low-level representa-
tions by utilizing the GM-VAE framework. Finally, we
demonstrate the application of using learnt high-level fea-
ture representations to perform arousal transfer, which was
confirmed in a user experiment. The key advantage of this
framework is that it can learn interpretable mixture com-
ponents that reveal the intrinsic relationship between low-
level and high-level features using semi-supervised learn-
ing, so that abstract musical qualities can be quantified in
a more concrete manner with limited amount of labels.

While the strength of arousal transfer is gradually in-
creased, we find that the identity of the original piece is
also gradually shifted. A recent work on text generation
using VAEs [43] observed this similar trait and attributed
its cause to the “latent vacancy" problem by topological
analysis. A possible solution is to adopt the Constrained-
Posterior VAE [43], in which we aim to explore in future
work. Future work will also focus on applying the frame-
work on other sets of abstract musical qualities (such as
valence [37], tension [44], etc.), and extending the frame-
work to model multi-track music with longer duration to
produce more complete music.

2 Source code available at: https://github.com/gudgud96/
music-fader-nets
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ABSTRACT

Data-driven approaches to automatic drum transcription
(ADT) are often limited to a predefined, small vocabulary
of percussion instrument classes. Such models cannot rec-
ognize out-of-vocabulary classes nor are they able to adapt
to finer-grained vocabularies. In this work, we address
open vocabulary ADT by introducing few-shot learning to
the task. We train a Prototypical Network on a synthetic
dataset and evaluate the model on multiple real-world ADT
datasets with polyphonic accompaniment. We show that,
given just a handful of selected examples at inference time,
we can match and in some cases outperform a state-of-the-
art supervised ADT approach under a fixed vocabulary set-
ting. At the same time, we show that our model can suc-
cessfully generalize to finer-grained or extended vocabu-
laries unseen during training, a scenario where supervised
approaches cannot operate at all. We provide a detailed
analysis of our experimental results, including a break-
down of performance by sound class and by polyphony.

1. INTRODUCTION

Automatic Drum Transcription (ADT) aims at deriving a
symbolic annotation of percussion instrument events from
a music audio recording. It is a subtask of Automatic Mu-
sic Transcription, where the aim is to transcribe all events
within a musical piece. An accurate ADT system enables
diverse applications in music education, music production,
music search and recommendation, and computational mu-
sicology.

Early studies on ADT often combined multiple sig-
nal processing, information retrieval, and machine learn-
ing techniques such as support vector machines (SVM)
and hidden Markov models (HMM) [1–3]. While these
methods work well when applied to solo drum recordings,
they often generalize poorly when applied to polyphonic
music [4]. Recent approaches utilizing non-negative ma-
trix factorization (NMF) [5, 6] and deep neural networks
[7, 8] have shown promising performance in the presence
of polyphonic music. However, such systems are often

c© Y. Wang, J. Salamon, M. Cartwright, N. J. Bryan, and
J. P. Bello. Licensed under a Creative Commons Attribution 4.0 Inter-
national License (CC BY 4.0). Attribution: Y. Wang, J. Salamon, M.
Cartwright, N. J. Bryan, and J. P. Bello, “Few-shot Drum Transcription in
Polyphonic Music”, in Proc. of the 21st Int. Society for Music Informa-
tion Retrieval Conf., Montréal, Canada, 2020.
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Figure 1. Few-shot drum transcription. We input a music
recording and one or more target example sounds into our
trained model, output the likelihood of the selected event
over time, and then post-process to generate onset times
per percussion instrument.

limited to transcribing a very small subset of percussive
sound classes, such as the bass drum (BD), snare drum
(SD), and hi-hat (HH). For deep learning methods, in par-
ticular, this is mainly due to the limited number and size
of ADT datasets, and the small class vocabulary size of
the annotations in these datasets [9–12]. Recently, stud-
ies have utilized synthetic data and deep learning to ex-
pand ADT systems to support transcribing larger vocabu-
laries of 10 or more instruments [11, 13]. However, 10–
20 classes are still far from the wide gamut of percussive
instruments used in recorded music. For example, rare
or non-western percussion sounds are usually considered
out-of-vocabulary. Moreover, when transcribing different
datasets, we often need to manually map the percussion
instruments in a dataset to the limited output vocabulary
of an existing ADT system with reduced granularity. It
can also be challenging for ADT systems that utilize fully-
supervised learning to generalize to different musical gen-
res or diverse drum sounds [11].

Recently, few-shot learning has been proposed for rec-
ognizing and detecting novel sound events [14–17], which
is of great relevance to ADT. Under this paradigm, a model
is trained to learn to recognize novel classes, unseen during
training, given only very few examples from each class at
inference time. Expanding on this, a few-shot sound event
detection system for open vocabularies was recently pro-
posed [14], yielding a search-by-example paradigm where
a human first selects a handful of target example sounds
that are passed to a trained model that automatically locates
similar sounding events within the same audio track. This
work, however, was developed for speech data, while other
studies have focused on environmental sound. The main
challenges in applying few-shot learning to music audio
are the limited size of available datasets and the polyphonic
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nature of music audio. While few-shot learning methods
are designed to work with few labeled examples at infer-
ence time, they still require large amounts of labeled data
at train time. Standard few-shot models are designed to
solve multi-class problems where only one class is active
at a time, while polyphonic music is inherently multi-label
since multiple instruments can be active at once.

In this work, we propose a new paradigm for drum
transcription in polyphonic music by introducing few-shot
learning. Instead of trying to train a standard supervised
model with more data for better generalizability, we pro-
pose to incorporate minimal human input with a few-shot
model. Our proposed few-shot drum transcription system
is shown in Figure 1, which can easily adapt to detecting
a novel percussion instrument given a handful (e.g., five)
of labeled target examples. By doing so, we can support
open-vocabulary drum transcription, while minimizing the
human labeling effort in order to make the transcription
process as close to automatic as possible. To address the
aforementioned challenges to applying few-shot learning
to polyphonic music audio, we propose (1) utilizing a large
synthetic dataset for training and (2) transcribing one per-
cussion instrument at a time as a binary classification prob-
lem during inference. We evaluate our proposed model on
multiple real music ADT datasets, compare it to a state-
of-the-art supervised learning benchmark, and provide a
detailed analysis of our model’s performance including
breakdowns by instrument class and polyphony. We show
that our approach not only matches or outperforms past
methods, but enables open vocabulary drum transcription,
which is highly-advantageous for real-world applications.

2. METHODS

2.1 Prototypical Networks with Episodic Training

In our work, we focus on metric learning-based few-shot
methods and, in particular, prototypical networks [18–21].
Prototypical networks have been found to perform well on
several audio-related tasks [14,15,17,22], rely on a simple
training framework, and support efficient feed-forward in-
ference [20], all of which are advantageous for our problem
domain. They are designed to project an input audio exam-
ple into a discriminative embedding space such that simi-
lar sounding events are clustered around a single prototype
(average class embedding) via a neural network. Classifi-
cation is then performed for an embedded query point by
simply finding the nearest class prototype via the squared
Euclidean distance.

Few-shot learning models, and prototypical networks
specifically, are typically trained to solve a C-way K-shot
multi-class classification task. In this setup, the method
is tasked with labeling a query recording with one of C
novel class labels, given K labeled examples per class at
inference time, where K is typically a small number in
the range of one to five. The availability of only very few
examples of the new classes limits our ability to fine-tune
a pre-trained model. To address this, episodic training has
been proposed to train a prototypical network, which mim-

ics the few-shot inference problem during training, im-
proving model generalizability [19]. In each training iter-
ation, a training episode is formed by randomly selecting
C classes from the training set. For each selected class,
K samples are first selected to build a support set S of
size of C × K, while a disjoint set of q samples are se-
lected to form a query set Q of size C × q. Prototypes
M = {µ1, ..., µC} are the mean vectors of the embedded
support samples belonging to each class:

µc =
1

K

∑
(x,y)∈Sc

fθ(x), (1)

where Sc denotes a set of examples labeled with class c and
fθ is parametrized by a neural network. Given a sample xq
inQ, we take a softmax over distances to the prototypes in
the embedding space to obtain per-class likelihoods:

pθ(y = c | xq) =
exp(−d(fθ(xq), µc))∑
c′ exp(−d(fθ(xq), µc′))

, (2)

where d is the squared Euclidean distance function.
The training objective is to minimize the negative log-
likelihood of the true class c:

L(θ) = − log pθ(y = c | xq). (3)

Therefore, in each training episode, the model is learning
to solve a C-way K-shot classification task. By training
with a large collection of episodes, each consisting of a
different set of C classes, the model learns how to learn
from limited labeled data and obtains a class-agnostic dis-
criminative ability. In this work, we train a prototypical
network on a 10-way 5-shot classification task [14] as the
few-shot model in our proposed system.

2.2 Few-shot Drum Transcription

While the training task is a specific C-way K-shot classifi-
cation, the trained few-shot model provides an embedding
function that projects the input data into a discriminative
space in which sound events are classified by finding the
nearest class prototype, where each prototype is derived
from a few examples. We propose to use this embedding
space for percussion sound event detection by providing a
support set containing examples for both the positive (tar-
get) and negative (non-target) classes, and classify a given
query by measuring its distance to the positive and nega-
tive class prototypes. Here, the trained few-shot model is
essentially performing a binary, 2-way, classification at in-
ference time for each target class, ultimately resulting in a
multi-label prediction.

Given a target instrument and an audio track, we first
slice the track into a series of query frames. To construct a
support set of labeled examples for the few-shot model, we
randomly sample target examples from the track as posi-
tive examples, simulating the human input in Figure 1, and
take all frames within the track as negative examples to
model the non-target class. Note that, while the full track
will also contain the target class, previous work has shown
that since the target class is relatively sparse compared to
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the full track, this strategy works well [14]. Given the sup-
port set, the trained few-shot model outputs the likelihood
of each query frame containing the target class. Finally, we
perform peak-picking on these probabilities to get a list of
onset locations as is commonly done for ADT [11, 13].

3. EXPERIMENTAL DESIGN

To evaluate the proposed few-shot drum transcription
paradigm, we first train a prototypical network as our few-
shot model on a large synthetic dataset. Then, we apply
the trained model to three real-music ADT datasets to get
transcription performance. We focus on one target instru-
ment at a time and use randomly selected target examples
to simulate human input at inference time.

3.1 Dataset for Episodic Training: Slakh2100

We use the Slakh2100 dataset to train our few-shot model
[23]. Slakh2100 is synthesized from the Lakh MIDI
Dataset [24] using professional-grade sample-based virtual
instruments. It contains 2100 automatically mixed tracks
and accompanying MIDI files, totaling 145 hours of mix-
tures. Slakh2100 is synthesized using eight different drum
patches, where each patch can be viewed as a unique drum-
mer playing a unique drum kit. In each patch, there are
around 25 to 45 different percussion classes, each con-
sisting of a combination of a percussion instrument with a
playing technique. For episodic training, we alternatively
define a class as a specific percussion class (e.g. snare
drum side stick) played by a specific patch, resulting in
a total of 282 classes. Each drum patch has its own MIDI
note-instrument mapping, which does not follow the gen-
eral MIDI convention. We manually check the mapping to
group duplicates and remove empty ones. Each patch is
used to synthesize approximately 250 songs. We partition
the dataset into patch-conditional train, validation and test
splits using 5, 1, 2 patches per split, respectively.

3.2 Evaluation Datasets

3.2.1 ENST-Drums

ENST-Drums is a dataset of recordings from three drum-
mers each playing a different drum kit [9]. It contains drum
onset annotations for 20 classes of percussion sounds.
While the dataset also contains many solo drum record-
ings, we only use the subset of 64 recordings with accom-
paniment for evaluation. The accompaniments are mixed
with corresponding drum tracks using a scaling factor of
1/3 and 2/3 to get natural-sounding mixtures and to be con-
sistent with prior studies [6, 11, 25].

3.2.2 MDB-Drums

MDB-Drums is a set of 23 fully-produced music tracks
from the MedleyDB dataset [10,26]. It contains two levels
of drum onset annotations — we use the finer level which
divides the classes by instrument and playing technique,
resulting in 21 classes.

Batch Normalization (BN)

128 (3x3) Conv + BN + ReLU

Flatten

x4
 (2x2) Max-pool

Input log-Mel-spectrogram
(128, 25, 1)

1024 dim Embedding

 (Tx1) Max-pool

Figure 2. Our backbone prototypical network embedding
model architecture.

3.2.3 RBMA13

RBMA13 consists of 30 fully-produced music tracks in the
genres of electronic dance music, singer-songwriter, and
fusion-jazz [11]. The drum sounds of this set are more
diverse compared to the previous sets, and it is considered
a particularly difficult dataset [11]. It contains annotations
for 23 percussive classes.

3.3 Training

For each percussion instrument onset in Slakh2100, we
center a 250 ms context window around the onset as
the input to the model. We compute a log-scaled Mel-
spectrogram from the context window with librosa [27]
using a window size of 46 ms (2048 samples for a sample
rate of 44.1 kHz) and a hop size of 10 ms. In prelimi-
nary experiments, we studied a range of short (160 ms) to
long (500 ms) context windows and found that a 250 ms
window yields consistent, well-performing results across
different datasets. We conjecture that a 250 ms window is
wide enough to capture most percussive onsets, while also
capturing some context around the onset.

To construct a 10-way 5-shot training episode, we ran-
domly sample a drum patch from the training set, sam-
ple 10 percussion instrument classes from the drum patch,
and sample 5 instances per class as the support set. Note
that, while each instance is guaranteed to contain the target
class, it may also contain other sound classes if they over-
lap in time with the target class. The query set is comprised
of 16 separate instances per each of the 10 classes [28].

We use a backbone convolutional neural network
(CNN) to embed the input as shown in Figure 2. It con-
sists of four convolution blocks, each of which has a con-
volutional layer with a 3× 3 kernel, a batch normalization
layer, a ReLU activation layer, and a 2 × 2 max-pooling
layer. To allow our model to handle varying-duration in-
put, we apply max-pooling along the time dimension to
the output of the convolution blocks (rather than a fully
connected layer). Finally, we flatten the feature map to get
an embedding with a dimensionality of 1024. We train our
model using the Adam optimizer [29] in PyTorch [30]
with a learning rate of 0.001 for 100,000 episodes with
early stopping. We choose the best model based on the
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Vocab size Model Target examples ENST-Drums MDB-Drums RBMA13

micro macro macro* micro macro macro* micro macro macro*

18 CRNN [11] - 0.67 - 0.74 0.60 - 0.78 0.47 - 0.64

Proto. Net Include 0.55 0.54 0.80 0.58 0.60 0.87 0.56 0.55 0.81
Exclude 0.49 0.45 0.76 0.51 0.49 0.83 0.54 0.50 0.79

Table 1. F-measure evaluated on real polyphonic music datasets under a fixed 18-class vocabulary [11].

Vocab size Model Target examples ENST-Drums MDB-Drums RBMA13

micro macro macro* micro macro macro* micro macro macro*

All Proto. Net Include 0.55 0.54 0.89 0.60 0.61 0.90 0.54 0.53 0.83
Exclude 0.49 0.45 0.87 0.53 0.48 0.88 0.52 0.48 0.81

Table 2. F-measure evaluated on real polyphonic music datasets under all classes that exist in each dataset.

few-shot classification loss on the validation set.

3.4 Evaluation

To evaluate our proposed few-shot drum transcription
paradigm, we apply the prototypical network trained on
Slakh2100 to perform drum transcription on three real mu-
sic datasets. For each dataset, we first evaluate transcrip-
tion under the fixed vocabulary scenario by mapping per-
cussion instruments to a predefined 18-class vocabulary
used in a state-of-the-art ADT system [11] for compari-
son. Then, we transcribe all classes that exist in the test
set, including those classes that do not exist in our training
data, mimicking the open vocabulary scenario.

Given a target class and an audio track, we first pre-
process the track into a series of overlapping query frames
with a 250 ms window size, matching the context window
used during training, and 10 ms hop size. To simulate hu-
man selections at inference time, we randomly sample 5
target examples from the track as positive examples. Then,
we take all frames within the track as negative examples
and predict each query frame as described in Section 2.2.
We run 10 iterations of this prediction process to account
for randomness and concatenate all predictions to compute
performance metrics. We estimate target onset locations
from the model output using the peak picking method de-
scribed in [31]. A frame n is selected as an onset if the
corresponding output probability p(n) meets the following
criteria:

1. p(n) = max(p(n− w1) : p(n+ w2)),

2. p(n) ≥ mean(p(n− w3) : p(n+ w4)) + δ,

3. n− nlast onset > w5,

where δ is a threshold parameter, w1 to w4 are sample off-
set values defining the windows for the max and mean
functions, and w5 is the minimum allowed number of sam-
ples between onsets.

We divide each dataset used for evaluation into three
splits for 3-fold cross-validation. For each fold, we tune
the peak-picking parameters on the validation split using a
randomized search with 1000 iterations, and perform drum

transcription on the test split. Finally, we report the model
performance averaged over the three test splits. For ENST-
Drums, each split contains a different drummer. For MDB-
Drums and RBMA13, we use the same splits as [11].

3.5 Metrics

We compute performance metrics by first using the
onset_evaluation function in madmom [32] to find
matching onset locations with a 20 ms tolerance window.
We then compute F-measure as the primary performance
metric, using both micro and macro aggregation. For mi-
cro F-measure, we aggregate all true positives (TP), false
positives (FP), and false negatives (FN) over all classes and
tracks in the entire dataset. For macro F-measure, we first
compute a track-level F-measure for each track by aver-
aging all class-level F-measures in the track, and we then
average over all track-level F-measures in the dataset to
compute the final metric.

When computing macro F-measure, if an instrument
does not exist in a track and the ADT model under eval-
uation does not predict any corresponding positive labels,
previous work defined its class-level F-measure to be 1
[11]. This convention is informative for a standard super-
vised approach since the model may produce false posi-
tives for non-existing classes. However, a few-shot model
would never predict non-existing classes since there are
no positive examples to begin with, which is one of the
advantages of the few-shot drum transcription paradigm.
Therefore, when evaluating our few-shot model, it makes
more sense to exclude non-existing classes in a track from
the evaluation to avoid artificially inflating the macro F-
measure. For completeness and comparison to previous
work, however, we report both variants, either excluding
non-existing classes in a track (macro F-measure) or fol-
lowing the convention of setting the F-measure for such
classes to 1 (macro* F-measure).

Given that our model requires five user-labeled exam-
ples from the test data in each iteration of prediction, we
can compute the aforementioned performance metrics ei-
ther including or excluding the user-labeled examples. The
former represents the joint human-computer performance
of the proposed paradigm that a user would experience for
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a track, while the latter represents our model’s performance
on strictly unlabeled data (i.e., the rest of the track). We re-
port both variants for each metric described in the previous
paragraph (labeled as Include/Exclude in the Tables).

4. RESULTS

4.1 Fixed Vocabulary

We first compare our few-shot drum transcription approach
to a state-of-the-art CRNN model, which was trained on
synthetic data and fine-tuned on real music data, under
a fixed 18-class vocabulary [11]. Note that while NMF-
based methods can be considered more closely related to
our approach, they require iterative optimization at test
time and the determination of the non-negative rank for
the decomposition process can be difficult. Most pre-
vious NMF-based ADT systems were evaluated on solo
drum tracks and a small subset of percussive sound classes
[5, 12, 33]. Therefore, in this work, we choose the CRNN
model as the baseline system and plan to compare our ap-
proach to NMF-based methods as part of future work.

In Table 1 we present model performance on three real
music datasets. From these results, we find three dis-
tinct insights applicable to the fixed vocabulary ADT tasks.
First, the results show that our approach, a prototypical
network trained on synthetic data with only five exam-
ples provided at inference time, gives comparable and in
some cases better performance compared to previous, fully
supervised state-of-the-art results. Second, we see that
our model performance is relatively stable across differ-
ent datasets. Third, our proposed approach outperforms
the supervised model on RBMA13 by a large margin,
which is considered a difficult dataset with diverse drum
sounds [11]. For instance, snare drum sounds on different
tracks in RBMA13 are very diverse and can sound very dif-
ferent. Standard supervised approaches typically struggle
to generalize well for classes with high intra-class varia-
tion. However, while a percussive sound class may exhibit
large intra-class variation across different tracks (e.g. dif-
ferent tracks may have very different snare drum sounds),
it’s often the case that such sound classes display far less
intra-class variation within the same track (e.g., the same
snare drum is used throughout a track). Since our few-
shot model detects a sound class based on target examples
from the same track, it is considerably more robust when
it comes to intra-class variation, as evidenced by the quan-
titative results. This highlights the strength of the few-shot
drum transcription paradigm which instead of aiming at
generalization, aims for quick adaptation with minimal hu-
man input.

4.2 Open Vocabulary

Next, we evaluate our few-shot model under an open-
vocabulary scenario. Here, we evaluate the model against
all the classes in each test set, including classes that were
never seen by the model during training. Specifically, we
evaluate on 20 classes for ENST-Drums, 19 classes for
MDB-Drums, and 20 classes for RBMA13. Classes that do
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Figure 3. F-measure for each percussion instrument in
the RBMA13 dataset. (Left) Under 18-class vocabulary.
(Right) Under all 20 classes. For each instrument, we show
the metrics computed with target examples included (dark
bar) and excluded (light bar).

not appear more than five times in any track in the dataset
are filtered out. Note that 6, 4, and 1 classes within the
full vocabulary of ENST, MDB, and RBMA respectively
do not exist in our training data. The results are presented
in Table 2. Note that we do not compare our model to
the fully supervised model in this scenario since, as noted
earlier, such a model would fail (by design) to recognize
classes that are outside of the training vocabulary. When
we compare these results to those in Table 1 (fixed vocab-
ulary), we note that there is no drop in performance when
moving from a fixed known vocabulary to an open vocabu-
lary with previously unseen sound classes. This is a direct
result of adapting few-shot learning to ADT and highlights
the benefit of our proposed approach.

Next, we break down the performance of the few-shot
model by instrument class under both the fixed and open
vocabulary scenarios on RBMA13, presented in Figure 3.
Here, two out of 18 predefined classes, splash cymbal and
china cymbal, do not exist in RBMA13 annotations and
thus the results for these classes are absent from the figure.
We see that in the open vocabulary scenario, we are able
to transcribe fine-grained classes such as six different tom
drums (orange bars in Figure 3) with comparable perfor-
mance to predicting a coarser, fixed vocabulary. We can
also transcribe Maracas (pink bar in Figure 3) which our
model has not seen at training.

4.3 Transcribing Novel Classes

In the previous section, we saw that the model can detect
a class that is out of the training vocabulary. To evaluate
this more quantitatively, we re-train our few-shot model
on the Slakh2100 dataset while completely excluding three
classes from the training data: bass drum, tambourine, and
clap, representing both common and rare classes. We then
evaluate the model on predicting these three classes in the
Slakh2100 test set and compare the results to those we ob-
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Training data Target
examples

H in Slakh2100 test set

micro macro macro*

Slakh2100 Include 0.66 0.66 0.83
Exclude 0.64 0.64 0.83

Slakh2100 - H Include 0.62 0.62 0.81
Exclude 0.61 0.60 0.80

Table 3. F-measure evaluated on three classes: H =
{bass drum, tambourine, clap} in the Slakh2100 test set
when training with the entire Slakh2100 training set or
with three classes held out from the training data.

tain when the three classes are included in the training data.
We present the results in Table 3. We see that the per-

formance of the model is very stable, with only a minor de-
crease in F-measure when predicting classes that are com-
pletely excluded from the training set. This confirms that
with the few-shot training paradigm, our model can detect
entirely unseen classes given just a few examples at infer-
ence time.

4.4 Performance Breakdown by Polyphony

Next, we focus on the target example selection process at
inference time. Due to the polyphonic nature of music
audio, when a target example is selected, it can include
non-target instrument sounds, played at the same time. We
want to investigate how the polyphony of these selected
examples affects transcription performance. To do so, we
repeat our evaluation process three more times, each time
varying the support set such that all positive target exam-
ples have the same degree of polyphony: 1, 2, and 3 or
more (3+). To define the polyphony of each example, we
look at a 20 ms window around its onset and count the
number of percussion instruments that co-occur within the
window. To assess how the performance is affected by the
polyphony of the query, we break down the performance
by the polyphony of the query frames.

We present the results in Figure 4, which show sim-
ilar trends across the three evaluation datasets. First,
we see high performance on the diagonal, where the
polyphony between target and query examples match.
Along the diagonal, performance also increases with in-
creasing polyphony, for which a possible explanation is
that the chance of having exactly matched instrument
sources between target and query examples increases at
high polyphony. That is, the number of different percus-
sion instrument combinations decreases with increasing
polyphony, due to the underlying pattern of drum playing.
Another insight is that when there is a mismatch between
target and query polyphony, having lower polyphony in
target examples than in query examples gives better per-
formance than the other way around (comparing the up-
per right triangle to the lower-left triangle in each fig-
ure). This matches the intuition that when the target ex-
amples have high polyphony, it is difficult for the few-shot
model to latch onto the correct target instrument, result-
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Figure 4. Break down F-measure by polyphony in both
target and query examples.

ing in poor performance even on query examples with low
polyphony. On the other hand, it is easier for the model
to find the target class in common within examples with
lower polyphony.

Overall, the results show that the performance of our
few-shot drum transcription approach can significantly de-
pend on the target examples selected for the support set. In
future work, we plan to build on top of these results to in-
vestigate the best strategy of composing a support set, and
how we can inform user to make effective selections.

5. LIMITATION AND FUTURE WORK

The main limitation of our proposed approach is that it re-
quires the user to provide a few examples at inference time.
If the vocabulary is known in advance and there is suffi-
cient training data for each sound class, a fully supervised
approach has the advantage of not requiring any user in-
tervention. However, when the vocabulary is not known in
advance, or when there isn’t enough training data for every
class, the few-shot paradigm is clearly advantageous. For
future work, we plan to investigate the example selection
process at inference time and the corresponding human el-
ement. This includes studying how we can compose sets of
support examples to maximize performance, and how we
can guide the user to those selections.

6. CONCLUSION

In this work, we address open vocabulary ADT by propos-
ing a few-shot drum transcription paradigm, a combination
of a few-shot model with minimal human input. We train a
prototypical network on the Slakh2100 dataset as the few-
shot model, and evaluate the proposed few-shot drum tran-
scription system on multiple real-world ADT datasets with
polyphonic accompaniment. We show that, given just a
handful of target examples, we can match and, in some
cases outperform, a state-of-the-art supervised ADT ap-
proach under a fixed vocabulary setting. At the same time,
we show that our model can successfully generalize to
finer-grained class labeling and extended vocabularies un-
seen during training. Lastly, we investigate the dependence
of few-shot model performance on the polyphony of target
examples. We show that matching polyphony in target and
query examples gives better performance and when there
is a mismatch, having lower polyphony in target examples
than in query examples gives better results.

Proceedings of the 21st ISMIR Conference, Montréal, Canada, October 11-16, 2020
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ABSTRACT

Representation learning focused on disentangling the un-
derlying factors of variation in given data has become an
important area of research in machine learning. However,
most of the studies in this area have relied on datasets from
the computer vision domain and thus, have not been readily
extended to music. In this paper, we present a new sym-
bolic music dataset that will help researchers working on
disentanglement problems demonstrate the efficacy of their
algorithms on diverse domains. This will also provide a
means for evaluating algorithms specifically designed for
music. To this end, we create a dataset comprising of 2-bar
monophonic melodies where each melody is the result of
a unique combination of nine latent factors that span or-
dinal, categorical, and binary types. The dataset is large
enough (≈ 1.3 million data points) to train and test deep net-
works for disentanglement learning. In addition, we present
benchmarking experiments using popular unsupervised dis-
entanglement algorithms on this dataset and compare the
results with those obtained on an image-based dataset.

1. INTRODUCTION

Representation learning deals with extracting the underly-
ing factors of variation in a given observation [1]. Learning
compact and disentangled representations (see Figure 1 for
an illustration) from given data, where important factors
of variation are clearly separated, is considered useful for
generative modeling and for improving performance on
downstream tasks (such as speech recognition, speech syn-
thesis, vision and language generation [2–4]). Disentangled
representations allow a greater degree of interpretability
and controllability, especially for content generation, be
it language, speech, or music. In the context of Music
Information Retrieval (MIR) and generative music mod-
els, learning some form of disentangled representation has
been the central idea for a wide variety of tasks such as
genre transfer [5], rhythm transfer [6, 7], timbre synthe-
sis [8], instrument rearrangement [9], manipulating musical
attributes [10, 11], and learning music similarity [12].

Consequently, there exists a large body of research in

c© Ashis Pati, Siddharth Gururani, Alexander Lerch. Li-
censed under a Creative Commons Attribution 4.0 International License
(CC BY 4.0). Attribution: Ashis Pati, Siddharth Gururani, Alexander
Lerch, “dMelodies: A Music Dataset for Disentanglement Learning”,
in Proc. of the 21st Int. Society for Music Information Retrieval Conf.,
Montréal, Canada, 2020.
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Figure 1: Disentanglement example where a high dimen-
sional observed data is disentangled into a low dimensional
representation comprising of semantically meaningful fac-
tors of variation.

the machine learning community focused on developing
algorithms for learning disentangled representations. These
span unsupervised [13–16], semi-supervised [17–19] and
supervised [10, 20–22] methods. However, a vast majority
of these algorithms are designed, developed, tested, and
evaluated using data from the image or computer vision
domain. The availability of standard image-based datasets
such as dSprites [23], 3D-Shapes [24], and 3D-Chairs [25]
among others has fostered disentanglement studies in vision.
Additionally, having well-defined factors of variation (for
instance, size and orientation in dSprites [23], pitch and
elevation in Cars3D [26]) has allowed systematic studies
and easy comparison of different algorithms. However, this
restricted focus on a single domain raises concerns about
the generalization of these methods [27] and prevents easy
adoption into other domains such as music.

Research on disentanglement learning in music has often
been application-oriented with researchers using their own
problem-specific datasets. The factors of variation have
also been chosen accordingly. To the best of our knowledge,
there is no standard dataset for disentanglement learning
in music. This has prevented systematic research on under-
standing disentanglement in the context of music.

In this paper, we introduce dMelodies, a new dataset
of monophonic melodies, specifically intended for disen-
tanglement studies. The dataset is created algorithmically
and is based on a simple and yet diverse set of independent
latent factors spanning ordinal, categorical and binary at-
tributes. The full dataset contains ≈ 1.3 million data points
which matches the scale of image datasets and should be
sufficient to train deep networks. We consider this dataset
as the primary contribution of this paper. In addition, we
also conduct benchmarking experiments using three pop-
ular unsupervised methods for disentanglement learning
and present a comparison of the results with the dSprites
dataset [23]. Our experiments show that disentanglement
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learning methods do not directly translate between the im-
age and music domains and having a music-focused dataset
will be extremely useful to ascertain the generalizability of
such methods. The dataset is available online 1 along with
the code to reproduce our benchmarking experiments. 2

2. MOTIVATION

In representation learning, given an observation x, the task
is to learn a representation r(x) which “makes it easier to
extract useful information when building classifiers or other
predictors” [1]. The fundamental assumption is that any
high-dimensional observation x ∈ X (where X is the data-
space) can be decomposed into a semantically meaningful
low dimensional latent variable z ∈ Z (where Z is referred
to as the latent space). Given a large number of observations
in X , the task of disentanglement learning is to estimate
this low dimensional latent space Z by separating out the
distinct factors of variation [1]. An ideal disentanglement
method ensures that changes to a single underlying factor
of variation in the data changes only a single factor in its
representation [27]. From a generative modeling perspec-
tive, it is also important to learn the mapping from Z to X
to enable better control over the generative process.

2.1 Lack of diversity in disentanglement learning

Most state-of-the-art methods for unsupervised disentangle-
ment learning are based on the Variational Auto-Encoder
(VAE) [28] framework. The key idea behind these meth-
ods is that factorizing the latent representation to have
an aggregated posterior should lead to better disentangle-
ment [27]. This is achieved using different means, e.g., im-
posing constraints on the information capacity of the latent
space [13, 29, 30], maximizing the mutual information be-
tween a subset of the latent code and the observations [31],
and maximizing the independence between the latent vari-
ables [14, 15]. However, unsupervised methods for disen-
tanglement learning are sensitive to inductive biases (such
network architectures, hyperparameters, and random seeds)
and consequently there is a need to properly evaluate such
methods by using datasets from diverse domains [27].

Apart from unsupervised methods for disentanglement
learning, there has also been some research on semi-
supervised [18, 19] and supervised [20, 21, 32, 33] learning
techniques to manipulate specific attributes in the context
of generative models. In these paradigms, a labeled loss is
used in addition to the unsupervised loss. Available labels
can be utilized in various ways. They can help with disen-
tangling known factors (e.g., digit class in MNIST) from
latent factors (e.g., handwriting style) [34], or supervising
specific latent dimensions to map to specific attributes [10].
However, most of these approaches are evaluated using
image domain datasets.

Tremendous interest from the machine learning com-
munity has led to the creation of benchmarking datasets

1 https://github.com/ashispati/dmelodies_dataset
2 https://github.com/ashispati/dmelodies_benchmarking

(albeit image-based) specifically targeted towards disentan-
glement learning such as dSprites [23], 3D-Shapes [24],
3D-chairs [25], MPI3D [35], most of which are artificially
generated and have simple factors of variation. While one
can argue that artificial datasets do not reflect real-world
scenarios, the relative simplicity of these datasets is often
desirable since they enable rapid prototyping.

2.2 Lack of consistency in music-based studies

Representation learning has also been explored in the field
of MIR. Much like images, learning better representations
has been shown to work well for MIR tasks such as com-
poser classification [36, 37], music tagging [38], and audio-
to-score alignment [39]. The idea of disentanglement has
been particularly gaining traction in the context of interac-
tive music generation models [5, 6, 11, 33]. Disentangling
semantically meaningful factors can significantly improve
the usefulness of music generation tools. Many researchers
have independently tried to tackle the problem of disentan-
glement in the context of symbolic music by using different
musically meaningful attributes such as genre [5], note
density [10], rhythm [6], and timbre [8]. However, these
methods and techniques have all been evaluated using dif-
ferent datasets which makes a direct comparison impossible.
Part of the reason behind this lack of consistency is the dif-
ference in the problems that these methods were looking
to address. However, the availability of a common dataset
allowing researchers to easily compare algorithms and test
their hypotheses will surely aid systematic research.

3. dMELODIES DATASET

The primary objective of this work is to create a simple
dataset for music disentanglement that can alleviate some of
the shortcomings mentioned in Section 2: first, researchers
interested in disentanglement will have access to more di-
verse data to evaluate their methods, and second, research
on music disentanglement will have the means for con-
ducting systematic, comparable evaluation. This section
describes the design choices and the methodology used for
creating the proposed dMelodies dataset.

While core MIR tasks such as music transcription, or
tagging focus more on analysis of audio signals, research
on generative models for music has focused more on the
symbolic domain. Considering most of the interest in dis-
entanglement learning stems from research on generative
models, we decided to create this dataset using symbolic
music representations.

3.1 Design Principles

To enable objective evaluation of disentanglement algo-
rithms, one needs to either know the ground-truth values of
the underlying factors of variation for each data point, or
be able to synthesize the data points based on the attribute
values. The dSprites dataset [23], for instance, consists of
single images of different 2-dimensional shapes with simple
attributes specifying the position, scale and orientation of
these shapes against a black background. The design of our
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dataset is loosely based on the dSprites dataset. The follow-
ing principles were used to finalize other design choices:
(a) The dataset should have a simple construction with ho-

mogenous data points and intuitive factors of variation.
It should allow for easy differentiation between data
points and have clearly distinguishable latent factors.

(b) The factors of variation should be independent, i.e.,
changing any one factor should not cause changes to
other factors. While this is not always true for real-
world data, it enables consistent objective evaluation.

(c) There should be a clear one-to-one mapping between
the latent factors and the individual data points. In other
words, each unique combination of the factors should
result in a unique data point.

(d) The factors of variation should be diverse. In addition,
it would be ideal to have the factors span different types
such as discrete, ordinal, categorical and binary.

(e) Finally, the different combinations of factors should
result in a dataset large enough to train deep neural
networks. Based on size of the different image-based
datasets [23,40], we would require a dataset of the order
of at least a few hundred thousand data points.

3.2 Dataset Construction

Considering the design principles outlined above, we de-
cided to focus on monophonic pitch sequences. While there
are other options such as polyphonic or multi-instrumental
music, the choice of monophonic melodies was to ensure
simplicity. Monophonic melodies are a simple form of mu-
sic uniquely defined by the pitch and duration of their note
sequences. The pitches are typically based on the key or
scale in which the melody is being played and the rhythm
is defined by the onset positions of the notes.

Since the set of all possible monophonic melodies is
very large and heterogeneous, the following additional con-
straints were imposed on the melody in order to enforce
homogeneity and satisfy the other design principles:
(a) Each melody is based on a scale selected from a finite

set of allowed scales. This choice of scale also serves
as one of the factors of variation. The melody will also
be uniquely defined by the pitch class of the tonic (root
pitch) and the octave number.

(b) In order to constrain the space of all possible pitch
patterns within a scale, we restrict each melody to be
an arpeggio over the standard I-IV-V-I cadence chord
pattern. Consequently, each melody consists of 12
notes (3 notes for each of the 4 chords).

(c) In order to vary the pitch patterns, the direction of
arpeggiation of each chord, i.e. up or down, is used as
a latent factor. This choice adds a few binary factors of
variation to the dataset.

(d) The melodies are fixed to 2-bar sequences with 8th
note as the minimum note duration. This makes the
dataset uniform in terms of sequence lengths of the
data points and also helps reduce the complexity of the
sequences. 2-bar sequences have been used in other
music generation studies as well [10, 41]. We use a
tokenized data representation such that each melody is

Factor # Options Notes
Tonic 12 C, C#, D, through B

Octave 3 Octave 4, 5 and 6

Scale 3 major, harmonic minor, and blues

Rhythm Bar 1 28
(8
6

)
, based on onset locations of 6 notes

Rhythm Bar 2 28
(8
6

)
, based on onset locations of 6 notes

Arp Chord 1 2 up/down, for Chord 1

Arp Chord 2 2 up/down, for Chord 2

Arp Chord 3 2 up/down, for Chord 3

Arp Chord 4 2 up/down, for Chord 4

Table 1: Table showing the different factors of variation
for the dMelodies dataset. Since all factors of variation are
independent, the total dataset contains 1,354,752 unique
melodies.

a sequence of length 16.
(e) If we consider the space of all possible unique rhythms,

the number of options will explode to
(
16
12

)
which will

be significantly larger than other factors of variation.
Hence, we choose to break the latent factor for rhythm
into 2 independent factors: rhythm for bar 1 and bar 2.

(f) The rhythm of a melody is based on the metrical onset
position of the notes [42]. Consequently, rhythm is
dependent on the number of notes. In order to keep
rhythm independent from other factors, we constrain
each bar to have 6 notes (play 2 chords) thereby obtain-
ing

(
8
6

)
options for each bar.

Based on the above design choices, the dMelodies
dataset consists of 2-bar monophonic melodies with 9 fac-
tors of variations listed in Table 1. The factors of varia-
tion were chosen to satisfy the design principles listed in
Section 3.1. For instance, while melodic transformations
such as repetition, inversion, retrograde would have made
more musical sense, they did not allow creation of a large-
enough dataset with independent factors of variation. The
resulting dataset thus contains simple melodies which do
not adequately reflect real-world musical data. A side-effect
of this choice of factors is that some of them (such as arpeg-
giation direction and rhythm) affect only a specific part
of the data. Since each unique combination of these fac-
tors results in a unique data point we get 1,354,752 unique
melodies. Figure 2 shows one such melody from the dataset
and its corresponding latent factors. The dataset is gener-
ated using the music21 [43] python package.

4. BENCHMARKING EXPERIMENTS

In this section, we present benchmarking experiments to
demonstrate the performance of some of the existing un-
supervised disentanglement algorithms on the proposed
dMelodies dataset and contrast the results with those ob-
tained on the image-based dSprites dataset.
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Arp Chord 1: up Arp Chord 2: up Arp Chord 3: up Arp Chord 4: down

Tonic: C, Octave: 4 Rhythm Bar 1: 7 Rhythm Bar 2: 23

Scale: Major

Figure 2: Example of a sample melody from the dMelodies
dataset. Also shown are the values of the different latent fac-
tors. For rhythm latent factors, the shown value corresponds
to the index from the rhythm dictionary.

4.1 Experimental Setup

We consider 3 different disentanglement learning methods:
β-VAE [13], Annealed-VAE [29], and FactorVAE [15]. All
these methods are based on different regularization terms
applied to the VAE loss function.

4.1.1 Data Representation

We use a tokenized data representation [44] with the 8th-
note as the smallest note duration. Each 8th note position
is encoded with a token corresponding to the note name
which starts on that position. A special continuation symbol
(‘__’) is used which denotes that the previous note is held.
A special token is used for rest.

4.1.2 Model Architectures

Two different VAE architectures are chosen to conduct these
experiments. The first architecture (dMelodies-CNN) is
based on Convolutional Neural Networks (CNNs) and is
similar to those used for several image-based VAEs, ex-
cept that we use 1-D convolutions. The second architec-
ture (dMelodies-RNN) is based on a hierarchical recurrent
model [41, 45]. Details of the model architectures are pro-
vided in the supplementary material.

4.1.3 Hyperparameters

Each learning method has its own regularizing hyperpa-
rameter. For β-VAE, we use three different values of
β ∈ {0.2, 1.0, 4.0}. This choice is loosely based on the
notion of normalized-β [13]. In addition, we force the
KL-regularization only when the KL-divergence exceeds
a fixed threshold τ = 50 [41, 46]. For Annealed-VAE,
we fix γ = 1.0 and use three different values of capac-
ity, C ∈ {25.0, 50.0, 75.0}. For FactorVAE, we use the
Annealed-VAE loss function with a fixed capacity (C = 50),
and choose three different values for γ ∈ {1, 10, 50}.

4.1.4 Training Specifications

For each of the above methods, model, and hyperparame-
ter combination, we train 3 models with different random
seeds. To ensure consistency across training, all models are
trained with a batch-size of 512 for 100 epochs. The ADAM
optimizer [47] is used with a fixed learning rate of 1e−4,
β1 = 0.9, β2 = 0.999, and ε = 1e−8. For β-VAE and
Annealed-VAE, we use 10 warm-up epochs where β = 0.0.
After warm-up, the regularization hyperparameter (β for

β-VAE andC for Annealed-VAE) is annealed exponentially
from 0.0 to their target values over 100000 iterations. For
FactorVAE, we stick to the original implementation and do
not anneal any of the parameters in the loss function. The
VAE optimizer is the same as mentioned earlier. The Factor-
VAE discriminator is optimized using ADAM with a fixed
learning rate of 1e−4, β1 = 0.8, β2 = 0.9, and ε = 1e−8.
We found that utilizing the original hyperparameters [15]
for this optimizer led to unstable training on dMelodies.

For comparison with dSprites, we present the results for
all the three methods using a CNN-based VAE architecture.
The set of hyperparameters and other training configura-
tions were kept the same for the dSprites dataset, except for
the FactorVAE where we use the originally proposed loss
function and discriminator optimizer hyperparameters, as
the model does not converge otherwise.

4.1.5 Disentanglement Metrics

The following objective metrics for measuring disentangle-
ment are used: (a) Mutual Information Gap (MIG) [14],
which measures the difference of mutual information be-
tween a given latent factor and the top two dimensions of
the latent space which share maximum mutual information
with the factor, (b) Modularity [48], which measures if each
dimension of the latent space depends on only one latent
factor, and (c) Separated Attribute Predictability (SAP) [16],
which measures the difference in the prediction error of the
two most predictive dimensions of the latent space for a
given factor. For each metric, the mean across all latent
factors is used for aggregation. For consistency, standard
implementations of the different metrics are used [27].

4.2 Experimental Results

4.2.1 Disentanglement

In this experiment, we present the comparative disentangle-
ment performance of the different methods on dMelodies.
The result for each method is aggregated across the differ-
ent hyperparameters and random seeds. Figure 3 shows the
results for all three disentanglement metrics. We group the
trained models based on the architecture. The results for
the dSprites dataset are also shown for comparison.

First, we compare the performance of different methods
on dMelodies. Annealed-VAE shows better performance
for MIG and SAP. These metrics indicate the ability of a
method to ensure that each factor of variation is mapped
to a single latent dimension. The performance in terms of
Modularity is similar across the different methods. High
Modularity indicates that each dimension of the latent space
maps to only a single factor of variation. For dSprites,
FactorVAE seems to be best method overall across metrics.
However, the high variance in the results shows that choice
of random seeds and hyperparameters is probably more
important than the disentanglement method itself. This is
in line with observations in previous studies [27].

Second, we observe no significant impact of model ar-
chitecture on the disentanglement performance. For both
the CNN and the hierarchical RNN-based VAE, the per-
formance of all the different methods on dMelodies is
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Figure 3: Overall disentanglement performance (higher is better) of different methods on the dMelodies and dSprites
datasets. Individual points denote results for different hyperparameter and random seed combinations. Please refer to
supplementary material Sec.2.1 for the best hyperparameter settings.
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Figure 4: Overall reconstruction accuracies (higher is bet-
ter) of the different methods on the dMelodies and dSprites
datasets. Individual points denote results for different hy-
perparameter and random seed combinations.

comparable. This might be due to the relatively short se-
quence lengths used in dMelodies which do not fully uti-
lize the capabilities of the hierarchical-RNN architecture
(which has been shown to work well in learning long-term
dependencies [41]). On the positive side, this indicates
that the dMelodies dataset might be agnostic to the VAE-
architecture.

Finally, we compare differences in the performance be-
tween the two datasets. In terms of MIG and SAP, the
performance for dSprites is slightly better (especially for
Factor-VAE), while for Modularity, performance across
both datasets is comparable. However, once again, the dif-
ferences are not significant. Looking at the disentanglement
metrics alone, one might be tempted to conclude that the dif-
ferent methods are domain invariant. However, as the next
experiments will show, there are significant differences.

4.2.2 Reconstruction Fidelity

From a generative modeling standpoint, it is important that
along with better disentanglement performance we also re-
tain good reconstruction fidelity. This is measured using the
reconstruction accuracy shown in Figure 4. It is clear that
all three methods fail to achieve a consistently good recon-
struction accuracy on dMelodies. β-VAE gets an accuracy
≥ 90% for some hyperparameter values (more on this in

Section 4.2.3). However, both Annealed-VAE and Factor-
VAE struggle to cross a median-accuracy of 40% (which
would be unusable from a generative modeling perspective).
The performance of the hierarchical RNN-based VAE is
slightly better than the CNN-based architecture. In compar-
ison, for dSprites, all three methods are able to consistently
achieve better reconstruction accuracies.

4.2.3 Sensitivity to Hyperparameters

The previous experiments presented aggregated results over
the different hyperparameter values for each method. Next,
we take a closer look at the individual impact of those
hyperparameters, i.e., the effect of changing the hyperpa-
rameters on the disentanglement performance (MIG) and
the reconstruction accuracy. Figure 5 shows this in the form
of scatter plots. The ideal models should lie on the top right
corner of the plots (with high values of both reconstruction
accuracy and MIG).

Models trained on dMelodies are very sensitive to hy-
perparameter adjustments. This is especially true for recon-
struction accuracy. For instance, increasing β for the β-VAE
model improves MIG but severely reduces reconstruction
performance. For Annealed-VAE and Factor-VAE there is a
wider spread in the scatter plots. For Annealed-VAE, having
a high capacity C seems to marginally improve reconstruc-
tion (especially for the recurrent VAE). For FactorVAE,
increasing γ leads to a drop in both disentanglement and
reconstruction.

Contrast this with the scatter plots for dSprites. For all
three methods, the hyperparameters seem to only signif-
icantly affect the disentanglement performance. For in-
stance, increasing β and γ (for β-VAE and FactorVAE,
respectively) result in clear improvement in MIG. More
importantly, however, there is no adverse impact on the
reconstruction accuracy.

4.2.4 Factor-wise Disentanglement

We also looked at how the individual factors of variation
are disentangled. We consider the β-VAE model for this
since it has the highest reconstruction accuracy. Figure 6
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Figure 5: Effect of the hyperparameters on the different disentanglement methods. Overall, for improving disentanglement
on dMelodies results in severe drop in reconstruction accuracy. The dSprites dataset does not suffer from this drawback.
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shows the factor-wise MIG for both the CNN and RNN-
based models. Factors corresponding to octave and rhythm
are disentangled better. This is consistent with some recent
research on disentangling rhythm [6, 7]. In contrast, the
factors corresponding to the arpeggiation direction perform
the worst. This might be due to their binary type. Similar
analysis for the dSprites dataset reveals better disentangle-
ment for the scale and position based factors. Additional
results are provided in the supplementary material.

5. DISCUSSION

As mentioned in Section 2, disentanglement techniques
have been shown to be sensitive to the choice of hyper-
parameters and random seeds [27]. The results obtained in
our benchmarking experiments in the previous section using
dMelodies seem to ascertain this even further. We find that
methods which work well for image-based datasets do not
extend directly to the music domain. When moving between
domains, not only do we have to tune hyperparameters sep-
arately, but the model behavior may vary significantly when
hyperparameters are changed. For instance, reconstruction
fidelity is hardly effected by hyperparameter choice in the
case of dSprites while for dMelodies it varies significantly.
While sensitivity to hyperparameters is expected in neural
networks, this is also one of the main reasons for evaluating
methods on more than one dataset, preferably from multiple
domains.

Some aspects of the dataset design, especially the na-

ture of the factors of variation, might have affected our
experimental results. While the factors of variation in
dSprites are continuous (except the shape attribute), those
for dMelodies span different data-types (categorical, ordinal
and binary). This might make other types of models (such
as VQ-VAEs [49]) more suitable. Another consideration is
that some factors of variation (such as the arpeggiation di-
rection and rhythm) effect only a part of the data. However,
the effect of this on the disentanglement performance needs
further investigation since we get good performance for
rhythm but poor performance for arpeggiation direction.

Unsupervised methods for disentanglement learning
have their own limitations and some degree of supervision
might actually be essential [27]. It is still unclear if it is pos-
sible to develop general domain-invariant disentanglement
methods. Consequently, supervised and semi-supervised
methods have been garnering more attention [10,11,19,34].
The dMelodies dataset can also be used to explore such
methods for music-based tasks. There has been some work
recently in disentangling musical attributes such as rhythm
and melodic contours which are considered important from
an interactive music generation perspective [6,11,50]. Apart
from the designed latent factors of variation, other low-
level musical attributes such as rhythmic complexity and
contours can also be computationally extracted using this
dataset to meet task-specific requirements.

6. CONCLUSION

This paper addresses the need for more diverse modes of
data for studying disentangled representation learning by in-
troducing a new music dataset for the task. The dMelodies
dataset comprises of more than 1 million data points of
2-bar melodies. The dataset is constructed based on fixed
rules that maintain independence between different factors
of variation, thus enabling researchers to use it for study-
ing disentanglement learning. Benchmarking experiments
conducted using popular disentanglement learning methods
show that existing methods do not achieve performance
comparable to those obtained on an analogous image-based
dataset. This showcases the need for further research on
domain-invariant algorithms for disentanglement learning.
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130



7. ACKNOWLEDGMENT

The authors would like to thank Nvidia Corporation for
their donation of a Titan V awarded as part of the GPU
(Graphics Processing Unit) grant program which was used
for running several experiments pertaining to this research.

8. REFERENCES

[1] Y. Bengio, A. Courville, and P. Vincent, “Representa-
tion Learning: A Review and New Perspectives,” IEEE
Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 35, no. 8, 2013.

[2] W.-N. Hsu, Y. Zhang, and J. Glass, “Unsupervised learn-
ing of disentangled and interpretable representations
from sequential data,” in Advances in Neural Informa-
tion Processing Systems 30 (NeurIPS), Long Beach,
California, USA, 2017.

[3] W. Hsu, Y. Zhang, R. J. Weiss, Y. Chung, Y. Wang,
Y. Wu, and J. R. Glass, “Disentangling correlated
speaker and noise for speech synthesis via data aug-
mentation and adversarial factorization,” in Proc. of
IEEE International Conference on Acoustics, Speech
and Signal Processing, ICASSP 2019, Brighton, United
Kingdom, 2019.

[4] K. Yi, J. Wu, C. Gan, A. Torralba, P. Kohli, and J. Tenen-
baum, “Neural-symbolic vqa: Disentangling reason-
ing from vision and language understanding,” in Ad-
vances in Neural Information Processing Systems 31
(NeurIPS), Montréal, Canada, 2018.

[5] G. Brunner, A. Konrad, Y. Wang, and R. Wattenhofer,
“MIDI-VAE: Modeling Dynamics and Instrumentation
of Music with Applications to Style Transfer,” in Proc.
of 19th International Society for Music Information
Retrieval Conference (ISMIR), Paris, France, 2018.

[6] R. Yang, D. Wang, Z. Wang, T. Chen, J. Jiang, and
G. Xia, “Deep music analogy via latent representation
disentanglement,” in Proc. of 20th International Society
for Music Information Retrieval Conference (ISMIR),
Delft, The Netherlands, 2019.

[7] J. Jiang, G. G. Xia, D. B. Carlton, C. N. Anderson,
and R. H. Miyakawa, “Transformer vae: A hierarchi-
cal model for structure-aware and interpretable music
representation learning,” in Proc. of IEEE International
Conference on Acoustics, Speech and Signal Processing
(ICASSP), Barcelona, Spain, 2020, pp. 516–520.

[8] Y.-J. Luo, K. Agres, and D. Herremans, “Learning disen-
tangled representations of timbre and pitch for musical
instrument sounds using gaussian mixture variational
autoencoders,” in Proc. of 20th International Society
for Music Information Retrieval Conference (ISMIR),
Delft, The Netherlands, 2019.

[9] Y.-N. Hung, I.-T. Chiang, Y.-A. Chen, and Y.-H. Yang,
“Musical composition style transfer via disentangled tim-
bre representations,” in Proc. of 28th International Joint

Conference on Artificial Intelligence (IJCAI), Macao,
China, 2020.

[10] G. Hadjeres, F. Nielsen, and F. Pachet, “GLSR-VAE:
Geodesic latent space regularization for variational au-
toencoder architectures,” in Proc. of IEEE Symposium
Series on Computational Intelligence (SSCI), Hawaii,
USA, 2017, pp. 1–7.

[11] A. Pati and A. Lerch, “Latent space regularization for
explicit control of musical attributes,” in Proc. of ICML
Workshop on Machine Learning for Music Discovery
Workshop (ML4MD), Extended Abstract, Long Beach,
California, USA, 2019.

[12] J. Lee, N. J. Bryan, J. Salamon, Z. Jin, and J. Nam, “Dis-
entangled multidimensional metric learning for music
similarity,” in Proc. of IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP),
Barcelona, Spain, 2020, pp. 6–10.

[13] I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glo-
rot, M. M. Botvinick, S. Mohamed, and A. Lerchner,
“β-VAE: Learning Basic Visual Concepts with a Con-
strained Variational Framework,” in Proc. of 5th Interna-
tional Conference on Learning Representations (ICLR),
Toulon, France, 2017.

[14] R. T. Q. Chen, X. Li, R. Grosse, and D. Duvenaud,
“Isolating Sources of Disentanglement in Variational
Autoencoders,” in Advances in Neural Information Pro-
cessing Systems 31 (NeurIPS), Montréal, Canada, 2018.

[15] H. Kim and A. Mnih, “Disentangling by Factorising,”
in Proc. of 35th International Conference on Machine
Learning (ICML), Stockholm, Sweeden, 2018.

[16] A. Kumar, P. Sattigeri, and A. Balakrishnan, “Vari-
ational Inference of Disentangled Latent Concepts
from Unlabeled Observations,” in Proc. of 5th Interna-
tional Conference of Learning Representations (ICLR),
Toulon, France, 2017.

[17] D. P. Kingma, D. J. Rezende, S. Mohamed, and
M. Welling, “Semi-supervised learning with deep gen-
erative models,” in Advances in Neural Information
Processing Systems 27 (NeurIPS), Montréal, Canada,
2014.

[18] N. Siddharth, B. Paige, J.-W. van de Meent, A. Des-
maison, N. D. Goodman, P. Kohli, F. Wood, and P. H.
Torr, “Learning disentangled representations with semi-
supervised deep generative models,” in Advances in
Neural Information Processing Systems 30 (NeurIPS),
Long Beach, California, USA, 2017.

[19] F. Locatello, M. Tschannen, S. Bauer, G. Rätsch,
B. Schölkopf, and O. Bachem, “Disentangling factors
of variations using few labels,” in Proc. of 8th Interna-
tional Conference on Learning Representations (ICLR),
Addis Ababa, Ethiopia, 2020.

Proceedings of the 21st ISMIR Conference, Montréal, Canada, October 11-16, 2020
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ABSTRACT

EarSketch is an online environment for learning intro-
ductory computing concepts through code-driven, sample-
based music production. This paper details the design and
implementation of a module to perform code and music
analyses on projects on the EarSketch platform. This anal-
ysis module combines inputs in the form of symbolic meta-
data, audio feature analysis, and user code to produce com-
prehensive models of user projects. The module performs
a detailed analysis of the abstract syntax tree of a user’s
code to model use of computational concepts. It uses mu-
sic information retrieval (MIR) and symbolic metadata to
analyze users’ musical design choices. These analyses pro-
duce a model containing users’ coding and musical deci-
sions, as well as qualities of the algorithmic music created
by those decisions. The models produced by this module
will support future development of CAI, a Co-creative Ar-
tificial Intelligence. CAI is designed to collaborate with
learners and promote increased competency and engage-
ment with topics in the EarSketch curriculum. Our module
combines code analysis and MIR to further the educational
goals of CAI and EarSketch and to explore the application
of multimodal analysis tools to education.

1. INTRODUCTION

Digital music creation environments often use a combina-
tion of raw audio data, symbolic information, code, and
metadata to represent user-generated music. For example,
a digital audio workstation might represent a song through
a combination of audio files, genre and artist labels, MIDI
events, and a data source indicating the placement of audio
and MIDI segments on a multi-track timeline, along with
device and mixer settings and automation.

c© Jason Smith, Erin J.K. Truesdell, Jason Freeman, Brian
Magerko, Kristy Elizabeth Boyer, Tom McKlin. Licensed under a Cre-
ative Commons Attribution 4.0 International License (CC BY 4.0). At-
tribution: Jason Smith, Erin J.K. Truesdell, Jason Freeman, Brian
Magerko, Kristy Elizabeth Boyer, Tom McKlin, “Modeling Music and
Code Knowledge to Support a Co-creative AI Agent for Education”, in
Proc. of the 21st Int. Society for Music Information Retrieval Conf.,
Montréal, Canada, 2020.

In the context of music information retrieval (MIR), ac-
cess to these multiple types of music representation can
vastly simplify common retrieval tasks that are too com-
plex to perform on audio alone. Examples of this include
music preference modeling using a combined model of au-
dio and metadata [1] and genre recognition using feature
analysis alongside symbolic representation of the same
audio through statistical descriptors of melody, harmony,
and rhythm [2, 3]. A multimodal analytical approach can
therefore help develop powerful MIR-driven applications
within these digital music creation environments, such as
creativity-support tools that generate ideas and feedback
for users as they create music with the software.

Digital environments that include algorithmic composi-
tion elements offer yet another mode of analysis: the code
that generates the music. A creativity support tool that in-
corporates code analysis in addition to these other modal-
ities can potentially generate recommendations not only
about the music users create but also about the code that
they write and and the conceptual overlap thereof between
the code and music.

This paper describes an analysis system we have created
that uses audio features, audio metadata, symbolic multi-
track music data, and code from user-created projects to
understand the structure of algorithmic music and to model
users’ knowledge of coding and musical techniques. We
have created the system in the context of EarSketch [4], an
expressive and collaborative learning environment for high
school students that is used by roughly 120,000 students
per year. In EarSketch, users write Python or JavaScript
code to algorithmically create multi-track compositions
remixing a library of audio loops. Figure 1 depicts the
EarSketch user interface. EarSketch aims to increase
student engagement in computing across diverse student
populations, promoting student perceptions of authenticity
through its use of a professionally-produced audio loop li-
brary and design influences from industry-standard digital
audio workstations [5].

The EarSketch curriculum contains musical concepts
integral to algorithmic music and relevant to coding, in-
cluding repetition, form, and effect usage. The EarSketch
sound library contains over 3,500 sounds from professional
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Figure 1. A Screenshot of the EarSketch web-based ap-
plication, containing the Digital Audio Workstation (top),
and Code Editor (bottom).

artists, split into folders and labeled with artist, genre,
and instrument type. Users write code with Python and
JavaScript APIs to manipulate sounds and create music.

EarSketch is designed for students without formal mu-
sic training. It does not focus on traditional music theory
concepts such as music notation, melody, and harmony. In-
stead, it uses audio loops, effects, automation, and step-
sequenced rhythms to facilitate music production through
code without prerequisite knowledge. In addition to mod-
eling understanding of code, our module includes music
analysis to compare a user project’s traits to the informa-
tion conveyed by the EarSketch curriculum.

Our analysis system was designed to support a new
creativity-support tool within EarSketch called CAI (Co-
creative Artificial Intelligence). CAI, which is still in the
early stages of design, will assist EarSketch users in learn-
ing and practicing pedagogical concepts in both computing
and music. CAI will use our multimodal analysis system
in combination with user interaction to suggest additions
and changes to student music and code, scaffolding student
learning and producing co-creative musical output.

In the following sections, we position this work in the
context of recent music information retrieval research, de-
scribe each component of the analytical system in turn, ex-
plain how we coalesce this data into a user model to inform
CAI, and outline future areas of work in the design and
implementation of the larger CAI system that will leverage
this analysis tool.

The development of this analysis module for CAI marks
a unique application of MIR and code analysis to educa-
tional systems. Further development of the CAI system
will continue to illuminate the role of mixed-input models
for the goal of supporting learners in expressive computing
environments.

2. RELATED WORK

Multimodal music information retrieval relies on represen-
tations of information to perform analysis tasks beyond
what is possible using raw audio signals [6]. Digital pro-
duction environments and notation software use symbolic
information to represent structural and artistic elements of
user-generated music. Due to its prominent use in music
software, symbolic music is a significant presence in the
domain of music information retrieval, with well-known
tools such as Music21 [7] performing operations on sym-
bolic data. MIDI has also been used to train style transfer
models [8] and detect meter in live performance [9].

MIDI note messages are direct symbolic representa-
tions of musical notes. Other combinations of symbolic
and audio analysis performed by labeling audio with sta-
tistical descriptors have been used in applications of genre
recommendation [2] and pattern-based style identification
[3]. Another application [10] uses symbolic music rep-
resentation to vectorize multiple aspects of music for the
purpose of performing song recommendations. The LFM-
1b dataset [11] contains recorded listening events tagged
with metadata, and has been used in conjunction with au-
dio feature analysis to model user music preference [1].
Our system differs from these applications by using au-
dio and symbolic data to model a user’s proficiency with
the techniques required to produce musical output, using
EarSketch curriculum topics as evaluation criteria.

Our system extends traditional music information re-
trieval applications in its use of source code analysis as an
input. Code analysis tools often rely on the analysis of ab-
stract syntax trees (ASTs) generated from student code to
propose edits. Contemporary AST-based systems [12, 13]
rely on step calculations between a student’s current code-
state and a previously seen code-state or family of code-
states that fulfills a set of conditions. These systems use
AST analysis to simplify a wide range of projects to their
most basic structure and provide suggestions in almost all
situations. This application has largely focused on mov-
ing students from an "incorrect" answer to a "correct" one.
In comparison, the application of AST analysis to creative
problems without a defined "solution" is relatively unex-
plored. Our code analysis module brings the advantages of
AST analysis into the expressive domain, reorienting the
process towards open-ended learning and development.

Examples of software analysis applied to music infor-
mation retrieval include a tool that uses Source Code Anal-
ysis and Manipulation (SCAM) to represent the structure
of algorithmic music compositions [14, 15]. Music code
analysis has also been performed in the context of live
coding, a performance format in which programmers write
algorithmic music in real time. A survey of live coding
practitioners on creativity [16] discusses the link between
analyzing live coding techniques and the development of
a creative software agent. EarSketch has previously been
examined for its ability to function as an educational live
coding platform [17], and a fully developed CAI system
will be able to collaborate with learners in a live coding
environment.
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3. CODE ANALYSIS

3.1 Code Knowledge Modeling

The code portion of the analysis module combines AST
analysis and a computer science learning taxonomy to
build a model of user knowledge that will be used by CAI
to generate level-appropriate suggestions for EarSketch
users. Previous works on computer science assess-
ment [18–20] have adapted general learning taxonomies
for computing topics; similarly, we defined a series of
knowledge levels for 15 computational concepts from the
EarSketch curriculum across 4 knowledge categories (see
Table 1) based upon a flattened version of Bloom’s Taxon-
omy [21]. For each concept, we define knowledge levels
specific to its usage contexts. Table 2 outlines knowledge
levels defined for the "String" and "User-Defined Func-
tion" concepts. Level 1 refers to usage of the concept
or construct (e.g., a user includes a string in their script).
Level 2 is defined as "original" usage of the concept (us-
age not copied directly from sample code). Our origi-
nality measures are described in greater detail in Section
3.2. Subsequent levels focus on increased complexity of
use: for example, a user’s script could reach level 2 of the
"String" concept by merely including an original string in
their script, but level 3 requires that the string to be put to
use (such as using it as a function argument).

Category Concepts
Value Types String, Integer, Float, Boolean
Data Storage List, Variable

Operations
String Operation, List Operation,
Comparison, Boolean Logic,
Mathematical Operator

Procedure
For Loop, Conditional Statement,
User-defined Function,
Console Input

Table 1. Concepts in the analysis module taxonomy.

Level String
User-Defined
Function

0 Does Not Use Does Not Use
1 Uses Uses
2 Uses Originally Uses Originally

3
Uses Originally for
Purpose

Uses and Calls
Originally

4
Uses Originally and
Indexes or Iterates
for Purpose

Uses and Calls
Originally with Return
OR Arguments

5 N/A
Uses and Calls
Originally with Return
AND Arguments

Table 2. Knowledge levels for two concepts: "String" and
"User-Defined Function."

3.2 Code Complexity Analysis

The code analysis module generates knowledge models for
student scripts, producing concise information on under-
standing of each topic. Code knowledge models are gener-
ated by analyzing the abstract syntax tree of a user’s code,
which allows for fast and non-intrusive analysis. The code
analysis module searches each AST node for constructs
that indicate the user’s knowledge level for every concept
in our taxonomy.

Prior to analysis, the module performs a series of four
passes over the script’s AST to gather supporting data. The
first pass tests student code for similarity to sample code.
We use Andrei Mackenzie’s Levenshtein function 1 to cal-
culate the edit distance between each line of a user’s code
and all lines of EarSketch sample code; if the edit dis-
tance is below a manually-defined similarity threshold, the
line is marked as "not original." Three subsequent passes
gather information about user-defined functions and vari-
able assignments and values. Once this information is col-
lected, each individual node in the hierarchy is checked
against discrete rules developed in tandem with the knowl-
edge modeling level table.

Below is an example of a student script progressing
through levels of the "user-defined function" concept. In
the first code snippet, the user creates and then calls a func-
tion to make a section of music, calling fitMedia() to
place piano and drumpad samples between measures 1 and
16. This corresponds to level 3 of the "user-defined func-
tion" item: "Uses and Calls Originally."

def sectionA():
fitMedia(RD_RNB_PIANO_1,1,1,16)
fitMedia(Y25_DRUMPAD_1,2,1,16)

sectionA()

In the second snippet, the function has been modified to
take arguments: the function now places the samples be-
tween passed "start" and "end" measures. This corresponds
to level 4 of the "user-defined function” item: “Uses and
Calls Originally with Return OR Arguments.”

def sectionA(start, end):
fitMedia(RD_RNB_PIANO_1,1,start,end)
fitMedia(Y25_DRUMPAD_1,2,start,end)

sectionA(1,16)

These node analyses populate an output object with val-
ues mapped to knowledge levels, visualized in Table 3.
These analyses will be used to support future development
of CAI, providing guidance to the system about appropri-
ate code structure for programming and music suggestions
when collaborating with a student.

1 https://gist.github.com/andrei-m/982927
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Concept 0 1 2 3 4 5
String

Integer
Float

Boolean
List

Variable
String Op

List Op
Comparison

Boolean Logic
Math Op
For Loop

Conditional
User Function
Console Input

Table 3. Visualization of code analysis output for a sample
project.

4. SYMBOLIC MUSIC ANALYSIS

4.1 EarSketch Music Representation

The music component of the analysis module uses a sim-
plified symbolic representation generated by EarSketch to
apply sounds and effects to the Digital Audio Workstation
view and generate audio playback. When a learner runs a
script, the parsed abstract syntax tree of the code is repre-
sented internally as a dictionary of tracks containing sound
and effect usage for each measure in a piece of music.

Figure 2. Code in the Code Editor of an example project
created in EarSketch.

The track listing for the example project (Figure 2) is
an array of tracks, each containing a series of clip and
effect objects reflecting those used in the code. Each
clip object contains the name of the sound file used
(RD_WORLD_PERCUSSION_KALIMBA_PIANO_1), as
well as its start measure (1), and end measure (5). Each
effect object contains each instance of a specific effect

(VOLUME-GAIN), its starting value and measure (-60, 5)
and ending value/measure (0, 9).

The music analysis tool begins by converting this track
representation to a timeline representation, in order to
ascertain temporal patterns in the song. The timeline is
created by converting the track dictionary to a dictio-
nary of measures, as measure numbers are used in the
EarSketch API for audio and effect sequencing. Figure
3 shows this timeline for four measures of the example,
which has sounds used throughout the song such as
RD_WORLD_PERCUSSION_KALIMBA_PIANO_1
and sounds used in a single section such as
RD_WORLD_PERCUSSION_SEEDSRATTLE_1, as
well as the value of the gain adjustment at each measure.

Figure 3. Timeline representation for measures 1, 5, 7, and
9 of the sample EarSketch project (see Figure 2).

Recognition of patterns in sound and effect usage over
time can be used in determining form as described in sec-
tion 5. It allows CAI to propose changes to sound choices,
effects, and parameters at specific points in time, or to sug-
gest optimized code structure to realize those patterns. For
example, if a user places the same sound at regular in-
tervals and the code analysis does not observe any loops
containing the variables related to that sound in their code,
CAI can suggest the use of a loop.

Audio usage requires students only to select sounds
from the library; conversely, effects can be manipulated
through envelopes and are introduced in the EarSketch cur-
riculum in multiple levels of complexity. The analysis
module conducts a hierarchical score analysis for effect us-
age, while simply recording the selection of audio at each
measure to inform its audio analysis tools.

4.2 Effect Usage Scores

Effect envelopes in EarSketch are applied using a start
value, end value, start time, and end time. The following
code example (found in Figure 2) shows a use of the vol-
ume effect on track 1 having its gain parameter changed
from -60 dB to 0 dB between measures 5 and 9:

setEffect(1, VOLUME, GAIN, -60, 5, 0, 9)
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The internal track representation stores a single record-
ing of these four values for each effect parameter. Con-
sequently, we use linear interpolation to store the value of
each effect parameter at each measure when converting ef-
fect envelopes to the timeline.

This reorganization allows the analysis module to clas-
sify the level of usage the user demonstrates for each audio
effect in the library, such as gain, filters, delay, and reverb.
The EarSketch curriculum teaches basic effect usage, fol-
lowed by use of effect parameters, and then the use of en-
velopes to change parameter values over time. Similarly,
the levels of effect usage are 0: Does not use, 1: Uses
standard parameters, 2: Uses non-standard parameters,
and 3: Changes parameters over time. EarSketch’s goal
is to teach coding technique through music production, so
students are encouraged to use increasingly complex effect
parameter manipulation through increasingly complex al-
gorithmic structure. These scores, along with the scores
from the code analysis described in section 3, form a com-
posite score to represent user knowledge.

In addition to the timeline representation and modeling
of effects usage, the analysis module records the length of
the piece and whether or not the user sets a tempo differ-
ent than the default 120 bpm. The combination of these
music analysis outputs can be used by CAI to character-
ize a user project and to identify which sounds or effects
to include and where to include them, or areas for further
improvement in a script.

5. AUDIO FEATURE ANALYSIS

In addition to storing user knowledge modeling, the anal-
ysis module is designed to analyze the sound usage, form,
and genre of a user project. These are not represented in or-
dered levels to model conceptual understanding like effects
are, but are recorded to display a detailed overview of the
piece of music and to better target suggestions made by the
CAI system. For example, if a user is primarily choosing
sounds of a certain genre in a specific musical section, CAI
might suggest other sounds in that genre for that section,
while suggesting contrasting sounds for a different section.

5.1 Audio Recommendations

The analysis module includes an expansion of the exist-
ing EarSketch recommendation system [22], which uses
the code of an active user project to make real-time rec-
ommendations. The recommendation system uses audio
features Short-time Fourier Transform (STFT) and Mel-
Frequency Cepstral Coefficients (MFCC) [23] to represent
temporal and non-temporal information, respectively, of
each EarSketch library sound whose name is found in the
code [24]. Feature vectors for each sound are generated in
offline scripts, and feature distances and relative co-usage
by EarSketch users between each pair of sound vectors are
uploaded to the EarSketch server. This avoids the need to
calculate the features, feature distances, and co-usage data
in real time. The advantage of this form of analysis in a
digital production system such as EarSketch is that audio

feature distances can be measured against metadata tags
for artist, genre, and instrument type. The system is able to
provide recommendations that either specifically conform
to the user project’s genre and instrumentation or allow the
user to consciously explore other creative options.

The original EarSketch recommendation system [22],
which used the source code of a script to generate recom-
mendations for an entire user project. The analysis module
expands this system by presenting a series of sound rec-
ommendations per measure. These recommendations can
be used to increase or decrease musical contrast at specific
points throughout a composition, or use stored feature dis-
tances to ascertain the best measure to include a sound.

5.2 Form and Structure Analysis

The use of symbolic music representation greatly simpli-
fies the task of determining sections in a song through
changes in instrumentation and effects. Sound and effect
usage are represented for each measure, and instrument
type and genre are included in metadata tags.

Self-similarity can be used in retrieving [25] and visu-
alizing [26] musical structure. An array of self-similarity
values for instrumentation at every measure in the timeline
view allows the analysis module to infer musical structure
from sounds used by marking the first measure in a se-
quence to pass above or below a threshold of similarity.

Figure 4. Self-similarity of instrumentation for the exam-
ple EarSketch project (see Figure 2), indicating an A-B-A
form. Dotted lines represent similarity thresholds of 0.4
and 0.2 that, when crossed, mark section beginnings.

The threshold of similarity can also be hierarchically
defined to determine different granularities of sections and
subsections, from a whole piece to the measure level. The
example in Figure 4 shows ternary form, a musical struc-
ture represented in the EarSketch curriculum. If the sim-
ilarity threshold is above 0.25, then the analysis module
will cross the threshold three times and predict section be-
ginnings at measures 1, 5, and 9. If the threshold is lower,
then it will be crossed five times and predict section be-
ginnings at measures 3 and 11 as well. When analyzing a
script, the analysis module generates a list of section pre-
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dictions for thresholds of every ten percent between 0.9
and 0.1. Any list of a unique length (or with unique val-
ues) is recorded. In the example of Figure 4, lists would be
generated to form a section prediction of [1, 5, 9] with a
subsection prediction of [1, 3, 5, 9, 11].

5.3 Genre Analysis

Each sound in the EarSketch sound library is labeled with a
tag for one of 21 genres such as Rock, Funk, Hip Hop, and
EDM. These tags were manually added to the sounds by
the artists and EarSketch developers who uploaded them.

Our music analyzer combines these genre tags with au-
dio features (as described in section 5.1) to predict a genre
for each measure in a user project. It applies the k-means
genre clustering algorithm [27] to each measure, approx-
imating the closest distance in audio fingerprints between
the average for the measure’s sounds and the average for
a genre found in the EarSketch library. The genre tag for
each sound used in a measure is also added to increase the
confidence value for that genre. This combination affords
our system the knowledge of the original genre label for
each sound as presented to the user, but allows it to rec-
ognize a user who has creatively used sounds in genre ap-
plications separate from their label. This genre analysis is
used to determine the likelihood of a user project belong-
ing to a specific genre at the script, section, subsection, or
measure level - depending on the granularity of the self-
similarity measurement used to determine form.

This genre analysis can be used for CAI to target its
audio suggestions to a song’s identified genre. If a user is
writing a song mainly using sounds tagged with a single
genre, such as in the example code (Figure 2), CAI can
suggest sounds in that genre or present options for different
genres to generate contrast.

6. PRELIMINARY RESULTS, USAGE, AND
INSIGHTS

Two informal testing methods have been used to aid in
the iterative development of the code analysis module: a
review of output correctness, and an ongoing large-scale
process to identify bugs in the module.

To evaluate the ability of the module to produce a cor-
rect analysis of a script, we ran it on a series of 103
student- and researcher-generated scripts (77 Python, 26
JavaScript). Student scripts were selected to ensure the
module could accurately respond to programming choices
made by EarSketch users; researcher scripts were selected
or written to test the module’s ability to respond to com-
plex scenarios. For each test script, the analysis module’s
output was judged against a researcher-generated score.
Any discrepancies between the two indicated a missing
component in the module. Modifications were made until
the analysis module could correctly score the script. This
testing identified a number of situations not originally ac-
counted for in the module.

To efficiently locate bugs in the code analysis script, we
have included a version of the Code Analysis module on

EarSketch that runs each time any user runs a script. Upon
the encounter of an exception while analyzing a project,
the module sends a report including the exception and
stack trace to an analytics engine. These reports are fre-
quently reviewed to identify bugs and improve the ability
of the code analysis module to run without error.

The music analysis tool has been integrated into the
EarSketch autograder, an automatic grading tool used in
evaluating the complexity of code submissions in previous
course projects [4]. This autograder is a separate web page
that, given any number of EarSketch script sharing IDs,
generates a list of code topics, their categorized scores, the
list of section markings, measure-by-measure audio rec-
ommendations, and genre predictions. This analysis can
be performed on large samples of scripts, such as on mul-
tiple instances of a script to track improvement over its
history, and is used in ongoing evaluation of the analysis
module’s ability to model form and genre. As the analy-
sis module undergoes future iterative development, obser-
vations of emergent patterns in output will further aid the
development and evaluation of the CAI recommendation
system as well as its component parts.

Though the CAI system that will make use of this anal-
ysis module has yet to be completed, the development of
this module has generated insights about the applications
of MIR work in tandem with other disciplines, particularly
in the context of education. Its combined analysis of sym-
bolic music, audio features, and code knowledge highlights
the ability of multimodal analysis to provide a comprehen-
sive body of information to support [systems that do two
things]. The use of this combination in an educational con-
text will allow CAI to assist learners in simultaneous musi-
cal and programming development and further the goals of
educational platforms that intersect domains. Additionally,
the development of this module for a co-creative AI indi-
cates potential for additional knowledge to be developed as
the module is used to inform the agent’s outputs.

7. FUTURE WORK

This analysis module has been implemented in the produc-
tion version of EarSketch. We are still in the early stages
of designing CAI, the agent that will leverage this analysis
data to interact with students through dialogue and gener-
ate suggestions for their music and code. Over the past
year, we have performed studies to better understand how
students interact through chat with each other in student-
to-student chat experiments. We have also conducted chat
experiments between students and researchers posing as AI
agents to simulate the intelligence that CAI will eventually
provide. We are using the findings from these studies to
inform the design of CAI. The initial version of CAI will
exist as a chat-style interface within EarSketch, where stu-
dents will choose prompts from a menu-driven system and
receive natural language responses based on their interac-
tion with the system and its analysis of their code and mu-
sic as described in this paper. Through the addition of CAI
to EarSketch, we hope to further increase student engage-
ment and creativity with the platform.
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141



THE JAZZ TRANSFORMER ON THE FRONT LINE:
EXPLORING THE SHORTCOMINGS OF AI-COMPOSED MUSIC

THROUGH QUANTITATIVE MEASURES

Shih-Lun Wu1,2 and Yi-Hsuan Yang2,3

1 National Taiwan University, 2 Taiwan AI Labs, 3 Academia Sinica, Taiwan
b06902080@csie.ntu.edu.tw, yang@citi.sinica.edu.tw

ABSTRACT

This paper presents the Jazz Transformer, a generative
model that utilizes a neural sequence model called the
Transformer-XL for modeling lead sheets of Jazz music.
Moreover, the model endeavors to incorporate structural
events present in the Weimar Jazz Database (WJazzD) for
inducing structures in the generated music. While we are
able to reduce the training loss to a low value, our lis-
tening test suggests however a clear gap between the rat-
ings of the generated and real compositions. We there-
fore go one step further and conduct a series of computa-
tional analysis of the generated compositions from differ-
ent perspectives. This includes analyzing the statistics of
the pitch class, grooving, and chord progression, assess-
ing the structureness of the music with the help of the fit-
ness scape plot, and evaluating the model’s understanding
of Jazz music through a MIREX-like continuation predic-
tion task. Our work presents in an analytical manner why
machine-generated music to date still falls short of the art-
work of humanity, and sets some goals for future work on
automatic composition to further pursue.

1. INTRODUCTION

Music is a heart-touching form of art that strikes a chord
with people’s emotions, joyful or sorrowful; intense or re-
lieved, through the twists and turns of notes. Despite its
ubiquity in our everyday lives, the composition and ar-
rangement of music often requires substantial human ef-
fort. This is a major reason why automatic music compo-
sition is such a fascinating field of study. Over the years,
researchers have sought strenuously ways for machines to
generate well-formed music; such methods include metic-
ulously designed non deep learning-based algorithms like
the Markov chains [6] and formal grammars [19]; and, a
proliferation of deep learning-based solutions in the past
decade [8]. In this work, we exclusively study the exten-
sion and evaluation of Transformer-based models [43] for

c© Shih-Lun Wu and Yi-Hsuan Yang. Licensed under a
Creative Commons Attribution 4.0 International License (CC BY 4.0).
Attribution: Shih-Lun Wu and Yi-Hsuan Yang. “The Jazz Transformer
on the Front Line: Exploring the Shortcomings of AI-composed Music
through Quantitative Measures”, 21st International Society for Music In-
formation Retrieval Conference, Montréal, Canada, 2020.

Figure 1. The first 8 bars of a piece (filename sample_
B01.mp3 in Google Drive) composed by the Jazz Trans-
former, exhibiting clear rests between phrases.

its claimed successes in natural language processing and
music generation in recent years [12, 13, 20, 38].

The dataset chosen for our work is the Weimar Jazz
Database (WJazzD) [2, 37]. As opposed to the commonly
used piano MIDIs in recent works [20, 21], the choice of
this dataset represents a fresh endeavor to train the Trans-
former on Jazz music, and grants us the unique opportu-
nity to integrate structure-related events, precisely anno-
tated in the WJazzD, to the model. However, such an at-
tempt involves no short of technical challenges, including
the quantization of the numerous short notes in Jazz impro-
visations; and, dealing with the complex chord representa-
tions used in the WJazzD. In Section 3, we will elaborate
on how these difficulties are tackled in a detailed manner.

Furthermore, while recent works in Transformer-based
music generation often praised the model’s capabilities,
like being able to compose “compelling” music, or gen-
erate pieces with “expressiveness, coherence, and clear
structures” as claimed in [20] and [21] respectively, rarely
do we admit that the machine is still far behind humans, as
shown in our user study (Section 4), and take a step back to
“face the music”, in other words, to identify what exactly
goes wrong in the model’s compositions.

Therefore, the goal of the paper is two-fold. First, to
deploy Transformers to a new, more complex music genre,
Jazz, asking the model to compose melody lines, chord
progression, and structures all at once. Second, to de-
velop a set of objective metrics (Section 5) that evaluate
the generated music’s pitch usages, rhythmicity, consis-
tency in chord progression, and structureness (see Sec. 5.4
for definition), to discover the culprits behind the model’s
incompetence (Section 6).
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Figure 1 shows an example of a composition generated
by our model, in which we may find reasonable combi-
nations of chords and melody; and, clear rests between
phrases. Audio samples can be found in a Google Drive
folder, 1 which we encourage readers to listen to. We have
also open-sourced our implementation of the Jazz Trans-
former 2 and the proposed objective metrics. 3

2. RELATED WORK

There has been a great body of research work on computa-
tional analysis of human performance of Jazz [3, 4, 15, 18,
44]. One prominent example is the Jazzomat Project [5],
which established the WJazzD [2] to study the creative pro-
cesses underpinning Jazz solo improvisations [37]. Weiss
et al. [44], for instance, used the dataset to explore the evo-
lution of tonal complexity of Jazz improvisations in the
past century. See Sec. 3.1 for more details of the dataset.

The use of Transformer-like architectures for training
music composition models has drawn increasing attention
recently. These works enhanced the Transformer’s capa-
bility in modeling music through relative positional encod-
ing schemes [20, 36], cross-domain pre-training [13], and
event token design [13, 21]. To the best of our knowledge,
this work represents the first attempt in the literature to em-
ploy Transformers to compose exclusively Jazz music.

Automatic composition of general lead sheets has been
investigated lately, mostly based on recurrent neural net-
work (RNN) models [7, 29, 30]. As for inducing struc-
tures in the generated music, several RNN-based solutions
have also been proposed [24, 31, 39]. Since Transform-
ers have been shown to outperform RNNs in various tasks
[9, 20, 26], we strive to be the forerunner in bringing them
to these realms of research.

Relatively little work has been done to train a model
for Jazz composition. JazzGAN [42] is a model employ-
ing a generative adversarial network (GAN) architecture
for chord-conditioned melody composition, using a dataset
of only 44 lead sheets, approximately 1,700 bars. Another
model presented in [22] explores the use of recurrent vari-
ational auto-encoders for generating both the melody and
chords of a lead sheet from scratch.

A number of objective metrics have been employed
for measuring the performance of deep learning for music
composition [10, 14, 41, 45]. However, most of them fo-
cused on surface-level statistics only (e.g., pitch class his-
tograms, note onset intervals, etc.). The introduction of
structureness indicators and the MIREX-like metric (see
Sec. 5.4–5.5) in this paper provide new insights into as-
sessing music’s quality at piece level, and evaluating the
model’s overall understanding of a certain music genre.

3. THE JAZZ TRANSFORMER

Transformers use self-attention modules to aggregate in-
formation from the past events when predicting the next

1 https://drive.google.com/drive/folders/
1-09SoxumYPdYetsUWHIHSugK99E2tNYD?usp=sharing

2 https://github.com/slSeanWU/jazz_transformer
3 https://github.com/slSeanWU/MusDr

# solos Total
duration

Total #
events

Avg. #
events

per solo

Train 409 11h 19m 1,220 K 2,983
Val. 22 33m 56 K 2,548

Table 1. Statistics of the dataset we compile from the
WJazzD [37]. See Section 3.2 for details of the “events”.

events [11,27,43]. Accordingly, it is natural that we model
music as a language, namely, to represent each composi-
tion by a sequence of event tokens. In this section, we
will explain in detail how we break down the components
of the WJazzD [37] to construct the vocabulary of events,
and how the pieces are converted into sequences that can
be fed into a Transformer-like model for training.

3.1 Dataset

The WJazzD dataset [2,37] comprises of 456 monophonic
Jazz solos. Each solo is arranged in the lead sheet style
and comes with two tracks: the melody track and the beat
track. The melody track contains every note’s pitch, onset
time and duration (in seconds), with additional information
on loudness (in decibels), phrase IDs and “midlevel units”
(MLUs) [17], a structure of finer granularity than a phrase
to capture the distinctive short-time ideas in Jazz impro-
visations. The beat track contains the beat onsets (in sec-
onds), chord progressions and form parts (or sections, e.g.,
A1, B1). The highlight of this dataset is that all the con-
tents, including the notes, chords, metrical and structural
markings, are human-annotated and cross-checked by the
annotators [37], ensuring the data cleanliness that is often
crucial for machine learning tasks. To simplify the subse-
quent processings, we retain only the pieces marked solely
with 4/4 time signature, resulting in 431 solos. For ob-
jective analysis, we leave 5% of the solos as the held-out
validation data. See Table 1 for the statistics of the data.

3.2 Data Representation

The event representation adopted here is a modified ver-
sion of the “REvamped MIDI-derived event representa-
tion” recently proposed in [21], extended to integrate the
chord system and structural events of WJazzD. The result-
ing event encodings can be broken down into the following
4 categories: note-related—NOTE-VELOCITY, NOTE-
ON, NOTE-DURATION; metric-related—BAR, POSI-
TION, TEMPO-CLASS, TEMPO; chord-related—CHORD-
TONE, CHORD-TYPE, CHORD-SLASH; and structure-
related—PHRASE, MLU, PART, REPETITION.

3.2.1 Note-related Events

Each note in the melody is represented by three events, i.e.,
NOTE-VELOCITY, NOTE-ON, and NOTE-DURATION.

The NOTE-VELOCITY event decides how hard the note
should be played. We derive it according to the esti-
mated loudness (in decibels) provided by the dataset, and
quantize it into 32 bins, corresponding to MIDI velocities
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[3, 7, . . . , 127], through v = b
(
80 + 3 · (dB − 65)

)
/4c,

where dB is the decibel value of the note, and v, clipped
such that v ∈ [1, 32], is the resulting NOTE-VELOCITY(v)
event. This mapping scheme comes in handy in the process
of converting the model’s compositions to MIDIs.

The NOTE-ON events, ranging from 0 to 127, corre-
spond directly to the MIDI numbers, indicating the note’s
pitch. The NOTE-DURATION events represent the note’s
length in 64th note multiples, ranging from 1 to 32, ob-
tained by taking the ratio of the note’s duration (in sec-
onds) to the duration of the beat (also in seconds) where the
note situates. The reason why we use such a fine-grained
quantum, while previous work mainly consider only 16th
note multiples (e.g., [20, 21]), is as follows. Most notes
in WJazzD are quite short, with a significant portion being
32th and 64th notes (12.9% and 2.7% respectively). The
quantum is chosen such that the coverage of the 32 NOTE-
DURATION events encompasses the most notes, which is
99.6% with our choice of the 64th note. 4

3.2.2 Metric-related Events

To model the progression of time, we use a combination of
BAR and POSITION events; as demonstrated in [21], this
combination leads to clearer rhythmic structure in the gen-
erated music compared to using TIME-SHIFT events intro-
duced in [20]. In addition, the pace the music should be
played at is set by TEMPO-CLASS and TEMPO events.

A BAR event is added at the beginning of each bar, and
a bar is quantized into 64 subunits, each represented by a
POSITION event; for example, POSITION(16) marks the
start of the 2nd beat in a bar. A POSITION event occurs
whenever there is a note onset, chord change, or tempo
change. It is worth mentioning that to minimize the quan-
tization error, a note’s onset position is justified with the
beat it is in through the formula:

pn = pb + 16 ·
(
tn − tb

)
/db , (1)

where pb, tb, db are the beat’s position (note that pb ∈
{0, 16, 32, 48}), onset time, and duration; and tn is the
note’s onset time. The resulting pn is then rounded to the
nearest integer to determine the note’s onset position.

The TEMPO-CLASS and TEMPO events always co-
occur at every beat position. The 5 TEMPO-CLASS events
represent the general “feeling” of speed (i.e. fast, or slow)
with interval boundaries of [50, 80, 110, 140, 180, 320]
beats per minute (bpm), while the 12 TEMPO events as-
signed to each tempo class in evenly-spaced steps (within
the interval, e.g., 50, 52.5, 55 bpm...) determine the exact
pace. The events can be derived simply by taking the recip-
rocal of a beat’s duration (provided by WJazzD). The fre-
quent appearance of these tempo events facilitates smooth
local tempo changes common in Jazz performances.

3.2.3 Chord-related Events

Chord progressions serve as the harmonic foundation of
Jazz improvisations [25], hence a complex chord represen-
tation system is used in the WJazzD dataset. If we were to

4 All notes shorter than a 64th note are discarded and those longer than
a half note are clipped.

treat each of the 418 unique chord representations present
in the WJazzD as a token, the majority of chord tokens will
have very few occurrences—in fact, 287 (69%) of them ap-
pear in less than 5 solos, making it hard for the model to
learn the meaning of those chords well; plus, the process
of translating chords to individual notes during the conver-
sion to MIDIs would be extremely cumbersome.

Fortunately, thanks to the detailed clarification provided
in [37], we are able to decompose each chord into 3 events,
namely, the CHORD-TONE, CHORD-TYPE, and CHORD-
SLASH events, with the help of regular expressions (regex)
and some rule-based exception handling.

The 12 CHORD-TONE events, one for each note on the
chromatic scale (i.e. C, C#, D, ...), determine the root note,
hence the tonality, of the chord. The 47 CHORD-TYPE

events affect the chord’s quality and emotion by the differ-
ent combination of notes played relative to the root note
(or, key template as we call it); e.g., the key template of
a Dominant 7th chord (CHORD-TYPE(7)) is [0, 4, 7, 10].
Finally, the 12 CHORD-SLASH events allow the freedom
to alter the bass note to slightly tweak the chord’s quality.
If a chord contains no slash, its CHORD-SLASH event will
share the same key as its CHORD-TONE. For instance, the
chord C7/G, a C Dominant 7th over G, is represented by
[CHORD-TONE(C), CHORD-TYPE(7), CHORD-SLASH(G)].

Note that after our decomposition, the number of unique
chord-related events is greatly reduced to 71; and, the re-
sulting set of events is still able to represent all 418 chords
in WJazzD. It is easy to use the manually-constructed key
template accompanying each CHORD-TYPE, together with
the CHORD-TONE and CHORD-SLASH events to map each
chord to notes during the conversion to MIDIs.

3.2.4 Structure-related Events

For the melodies, we prepend a PHRASE event to the notes
marked as the start of a phrase. The presence of phrases
may be important as it informs the model to “take a breath”
between streams of notes. And, we retain several common
types and subtypes of midlevel units (e.g., line, rhythm,
lick etc.) as MLU events [17], likewise prepended to the
starting note of each MLU, hoping that the model could
capture the short-term note patterns described by the MLU
types. PART and REPETITION events are added to each
beginning and end of a form part, 5 guiding the model to
generate repetitive chord progression and coherent melody
lines for the parts marked with the same letter.

3.3 Model and Training Setups

Due to the large number of events per solo (check Table
1), it is hard to feed the entire pieces into a Transformer at
once because of memory constraint. Therefore, we choose
as the backbone sequence model the Transformer-XL [11],
an improved variant of the Transformer which introduces
recurrence to the architecture. It remedies the memory
constraint and the resulting context fragmentation issue by
caching the computation record of the last segment, and

5 For example, the entire A1 part is represented as [PART-START(A),
REPETITION-START(1), . . . other events . . . , REPETITION-END(1),
PART-END(A)].
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allowing the current segment to attend to the cache in the
self-attention process. This allows information to flow
across the otherwise separated segments, inducing better
coherence in the generated music.

To evaluate the effectiveness of adding the structure-
related events (cf. Section 3.2.4), we consider the follow-
ing two variants in our objective analysis:

• Model (A): trained with no structure-related events.

• Model (B): trained with the complete set of events.

They both consist of 12 layers, 8 attention heads and about
41 million learnable parameters. We train them on a single
NVIDIA GTX 1080-Ti GPU (with 11 GB memory) with
Adam optimizer, learning rate 1e−4, batch size 8, segment
length 512 and 100% teacher forcing. Besides, following
the Music Transformer’s data augmentation setting [20],
we randomly transpose each solo in the range of −3 to
+3 keys in every epoch. It takes roughly a full day for
the negative log-likelihood losses of the models to drop to
0.25, a level at which they are able to produce music of
distinctive Jazz feeling (see Section 6 for justifications).

4. SUBJECTIVE STUDY

To discover how users feel about the Jazz Transformer’s
compositions, we set up a blind listening test in which
test-takers listen to four one-minute long pieces, two from
the Model (B)’s compositions (at loss level 0.25), and two
from real data. We do not include Model (A) here to re-
duce the burden on the test-takers, assuming that Model
(B) is better. We inform them that the pieces are indepen-
dent of one another, and they will be asked the same set of
questions after listening to each piece, namely, to rate it in
a five-point Likert scale on the following aspects:

• Overall Quality (O): Does it sound good overall?

• Impression (I): Can you remember a certain part or
the melody?

• Structureness (S): Does it involve recurring music
ideas, clear phrases, and coherent sections?

• Richness (R): Is the music diverse and interesting?

We distribute five test suites to our social circles and col-
lect responses from 59 anonymized subjects, of which 27
are classified as “pros” for they rate their musical back-
ground (in general, not restricted to Jazz) as 4/5 or 5/5
(i.e., also on a five-point scale). The result shown in Fig-
ure 2 indicates that the Jazz Transformer receives mediocre
scores and falls short of humans in every aspect, especially
in overall quality (O) and structureness (S). Moreover, per-
formed one-tailed Z-tests for the difference of means also
suggests the significance of the gaps (p < 0.05 for all as-
pects), providing concrete evidence of the model’s defeat.

5. OBJECTIVE EVALUATION METRICS

The result of our subjective study poses to us an intriguing
question: If the machine is still inferior to humans in creat-
ing music, then what exactly are the causes? To unravel the
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Figure 2. Result of subjective study (O: Overall Quality,
I: Impression, S: Structureness, R: Richness), comparing
from-scratch compositions created by the proposed model
with structure-related events (i.e., ‘Model (B)’) against the
real pieces from the WJazzD. We note that the gaps in all
aspects are statistically significant (p < 0.05).

mystery, we develop a set of objective metrics which en-
ables us to scrutinize the Jazz Transformer’s compositions
from various perspectives, and make comparisons with real
data. These metrics include the analyses of event distribu-
tions, namely, the pitch class histogram, the grooving pat-
tern, and the chord progressions; assessing the structure-
ness with the help of the fitness scape plot; and, judging
the model’s performance on a discriminative task through
the MIREX-like continuation prediction challenge.

5.1 Pitch Class Histogram Entropy

To gain insight into the usage of different pitches, we first
collect the notes appeared in a certain period (e.g., a bar)
and construct the 12-dimensional pitch class histogram

−→
h ,

according to the notes’ pitch classes (i.e. C, C#, ..., A#, B),
normalized by the total note count in the period such that∑

i hi = 1. Then, we calculate the entropy of
−→
h :

H(
−→
h ) = −

11∑
i=0

hi log2(hi) . (2)

The entropy, in information theory, is a measure of “uncer-
tainty” of a probability distribution [40], hence we adopt
it here as a metric to help assessing the music’s quality in
tonality. If a piece’s tonality is clear, several pitch classes
should dominate the pitch histogram (e.g., the tonic and
the dominant), resulting in a low-entropy

−→
h ; on the con-

trary, if the tonality is unstable, the usage of pitch classes
is likely scattered, giving rise to an

−→
h with high entropy.

5.2 Grooving Pattern Similarity

The grooving pattern represents the positions in a bar at
which there is at least a note onset, denoted by −→g , a 64-
dimensional binary vector in our setting. 6 We define the
similarity between a pair of grooving patterns −→g a, −→g b as:

GS(−→g a,−→g b) = 1− 1

Q

Q−1∑
i=0

XOR(gai , g
b
i ) , (3)

6 For example, if a bar contains only two note onsets, at the beginning
of the 1st beat and 2nd beat respectively, then the corresponding −→g will
have g0, g16 = 1, and the rest dimensions 0.
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where Q is the dimensionality of−→g a,−→g b, and XOR(·, ·) is
the exclusive OR operation. Note that the value of GS(·, ·)
would always lie in between 0 and 1.

The grooving pattern similarity helps in measuring the
music’s rhythmicity. If a piece possesses a clear sense of
rhythm, the grooving patterns between pairs of bars should
be similar, thereby producing high GS scores; on the other
hand, if the rhythm feels unsteady, the grooving patterns
across bars should be erratic, resulting in low GS scores.

5.3 Chord Progression Irregularity
To measure the irregularity of a chord progression, we be-
gin by introducing the term chord trigram, which is a triple
composed of 3 consecutive chords in a chord progression;
for example, (Dm7, G7, CM7). Then, the chord progression
irregularity (CPI) is defined as the percentage of unique
chord trigrams in the chord progression of an entire piece.
Please note that 2 chord trigrams are considered different
if any of their elements does not match.

It is common for Jazz compositions to make use of 8-
or 12-bar-long templates of chord progressions (known as
the 8-, or 12-bar blues), which themselves can be broken
down into similar substructures [25, 35], as the foundation
of a section, and more or less “copy-paste” them to form
the complete song with, say, AABA parts. Therefore, a
well-composed Jazz piece should have a chord progression
irregularity that is not too high.

5.4 Structureness Indicators
The structureness of music is induced by the repetitive mu-
sical content in the composition. It can involve multiple
granularities, ranging from an instant musical idea to an
entire section. From a psychological perspective, the ap-
pearance of repeated structures is the essence of the catch-
iness and the emotion-provoking nature of music [28].

The fitness scape plot algorithm [32, 33] and the asso-
ciated SM Toolbox [34] offer an aesthetic way of detect-
ing and visualizing the presence of repeating structures in
music. The fitness scape plot is a matrix SN×N , 7 where
sij ∈ [0, 1] is the fitness, namely, the degree of repeat in the
piece derived from the self-similarity matrix (SSM) [16],
of the segment specified by (i, j).

Our structureness indicator is based on the fitness scape
plot and designed to capture the most salient repeat within
a certain duration interval. For brevity of the mathematical
representation, we assume the sampling frame rate of S is
1 Hz (hence N will be the piece’s duration in seconds), and
define the structureness indicator as follows:

SIul (S) = max
l≤i≤u
1≤j≤N

S , (4)

where l, u 8 are the lower and upper bounds of the dura-
tion interval (in seconds) one is interested in. In our ex-
periments, we choose the structureness indicators of SI83,
SI158 , and SI15 to examine the short-, medium-, and long-
term structureness respectively.

7 N is the number of frames sampled from the audio of a piece, the
1st axis represents the segment duration (in frames), and the 2nd axis
represents the center of segment (in frames).

8 If present, otherwise l defaults to 1, and u defaults to N .
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Figure 3. Result of the MIREX-like continuation predic-
tion challenge, each checkpoint is asked 100 questions.
Notice that the accuracy of both Model (A) and (B) peaks
at the loss level of 0.25, at 80% and 83% respectively.

5.5 MIREX-like Continuation Prediction Challenge

Being inspired by the “Patterns for Prediction Challenge”
held as part of the Music Information Retrieval Evaluation
eXchange (MIREX) 2019 [1, 23], we developed a method
to test the model’s capability to predict the correct continu-
ation given a musical prompt. The challenge is carried out
as follows: First, the model is fed with the beginning 8 bars
of a piece, denoted by −→s ; then, it is presented with a set
of four 8-bar continuations X = {−→x 0,−→x 1,−→x 2,−→x 3}, in
which one is the true continuation, and the rest are wrong
answers randomly drawn from other pieces. The way the
model attempts to answer the multiple choice question is
by calculating the average probability of generating the
events of each continuation:

P(−→x i) =
1

L

L−1∑
j=0

p(xi
j | x̃j−1, . . . , x̃0;

−→s ), i ∈ {0, 1, 2, 3} ,

(5)
where L is the length of the shortest given continuation
(in # events) in X , xi

j is the j-th event token in −→x i,
and x̃j−1, . . . , x̃0 are the events sampled from the model’s
output, hence the conditional probability p(xi

j) at each
timestep can be obtained straightforward. Finally, the
model returns argmaxi P(

−→x i) as its answer, of which the
correctness we can check.

If the model can achieve high accuracy on this continu-
ation prediction task, we may say it possesses a good over-
all understanding of Jazz music, enough for it to tell right
from wrong when given multiple choices.

6. EXPERIMENT RESULTS AND DISCUSSIONS

We begin with the evaluation on the MIREX-like chal-
lenge (Section 5.5). We pick 5 checkpoints of both Model
(A) and Model (B) at different training loss levels to ask
each of them 100 multiple choice questions (the prompt
and continuation choices of each question are randomly
drawn from the held-out validation data). The result shown
in Figure 3 indicates that, similarly for both models, the
accuracy steadily goes up as the training loss decreases,
peaks at the loss level of 0.25, and drops afterwards. This
shows that the models are gradually gaining knowledge
about Jazz music along the training process until a certain
point, where they potentially start to overfit.
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Model (A) Model (B) Real
loss 0.80 0.25 0.80 0.25 0.10 - -

H1 2.29 2.45 2.26 2.20 2.17 1.94
H4 3.12 3.05 3.04 2.91 2.94 2.87
GS 0.76 0.69 0.75 0.76 0.76 0.86
CPI 81.2 77.6 79.2 72.6 75.9 40.4
SI83 0.18 0.22 0.25 0.27 0.26 0.36
SI158 0.15 0.17 0.18 0.18 0.17 0.36
SI15 0.11 0.14 0.10 0.12 0.11 0.35

Table 2. Results of objective evaluations. H1, H4 are the
1-, and 4-bar pitch class histogram entropy (see Sec. 5.1);
GS is the grooving pattern similarity (Sec. 5.2) measured
on all pairs of bars within a piece; CPI is the chord pro-
gression irregularity (in %; Sec. 5.3); finally, SI83, SI158 ,
and SI15 are the short-, medium-, and long-term structure-
ness indicators (Sec. 5.4). Bold texts indicate the model
checkpoint performing the closest to real data, which is
considered to be the best. It is observed that Model (B)
(i.e., the model trained with structure-related events) with
a loss of 0.25 outperforms its counterparts at other loss lev-
els and Model (A) on most of the metrics. Moreover, con-
sistent with the result of the MIREX-like challenge (Fig.
3), the performance of Model (B) plunges when the loss
goes too low (0.1 in this case).

Following the MIREX-like challenge, we pick several
checkpoints of both Models (A) and (B) for objective eval-
uations described in Sections 5.1–5.4. The chosen check-
points are at loss levels 0.8, 0.25, and 0.1 (for Model (B)
only, since in the MIREX-like challenge (Fig. 3), its ac-
curacy drastically drops when the loss reduces from 0.25
to 0.1). In the experiments, 50 32-bar-long from-scratch
compositions from each checkpointed model are compared
against the 409 pieces in the training dataset.

From the results (Table 2), we can summarize the
model’s deficiencies as follows: 1) the erraticity of the
generated musical events; and, 2) the absence of medium-
and long-term repetitive structures. Comparing with the
real data, the first argument can be justified by the higher
H1 and H4, manifesting the unstable usage of pitches at
local scale; and, the lower GS and higher CPI of the en-
tire pieces, marking the lack of consistency in rhythm and
harmony from a global point of view; meanwhile, the sec-
ond argument can be explained directly by the significantly
lower values of structureness indicators SI158 and SI15,
suggesting that while the model might be able to repeat
some short fragments of music, creating structures of a
longer time span is still beyond its capability.

Much to our delight, the introduction of structure-
related events seems to be functional to some extent, no-
ticeable from the numbers that Model (B) at 0.25 loss level
is for most of the time the closest competitor to humans,
with a substantial lead on the metrics focusing on shorter
timespans (i.e.,H1,H4, and SI83) when placed in compar-
ison with Model (A). This suggests that the use of PHRASE

and MLU events provides some assistance to the model in
modeling music. Furthermore, resonating with the accu-
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Figure 4. The fitness scape plots of Model (B)’s best com-
position (according to the structureness (S) score in our
subjective study, see Sec. 4) versus a human composition
in the WJazzD. Note that the piece by Model (B) contains
almost no signs of repetition longer than 10 seconds, while
the real piece’s repetitive structures extend well into the
20–30 seconds range.

racy trend in the MIREX-like challenge, the performance
worsens when the loss is reduced to an overly low level.

To visualize the deficiency in structureness of the
model’s compositions, we choose the piece which scores
the highest, 3.14, in the structureness (S) aspect in our
subjective study; and, a human composition of the same
duration, receiving 3.54 in the aspect S, for a head-to-
head comparison of their fitness scape plots. The rivalry
(see Figure 4) reveals the stark contrast between their fit-
ness values across all timescales. In the model’s work, all
traces of repetitive structures disappear at the timescale of
10 seconds; whereas in the human composition, not only
do the fitness values stay high in longer timespans, but a
clear sense of section is also present, as manifested by the
2 large, dark “triangles” in its scape plot.

7. CONCLUSION AND FUTURE WORK

In this paper, we have presented the Jazz Transformer,
whose incorporation of structure-related events has been
shown useful here in enhancing the quality of machine-
generated music. Moreover, we have proposed a series of
objective metrics that shed light on the shortcomings of
machine-composed pieces, including the erratic usage of
pitch classes, inconsistent grooving pattern and chord pro-
gression; and, the absence of repetitive structures. These
metrics not only show that the Transformer is in fact not
that good a music composer, but also serve as effective
quantitative measures for future efforts in automatic music
composition to assess their models’ performance, which
by now still relies heavily on human evaluation.

In the future, we plan to carry out larger-scale stud-
ies to explicate the correlations between those quantita-
tive metrics and the aspects of subjective evaluation; and,
to continue working on inducing structures in machine-
composed music; such endeavors may not stay on revamp-
ing events that fit into Transformers as done, but involve
a complete redesign of the Transformer architecture, en-
abling it to read the structural information directly com-
putable from data, say, the fitness scape plot, to grasp the
blueprint of a piece before composing music at finer scales.
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ABSTRACT

Dynamic prediction of perceived emotions of music is a
challenging problem with interesting applications. Utiliza-
tion of relevant context in audio sequence is essential for
effective prediction. Existing methods have used LSTMs
with modest success. In this work we describe three atten-
tive LSTM based approaches for dynamic emotion predic-
tion from music clips. We validate our models through ex-
tensive experimentation on standard dataset annotated with
arousal-valence values in continuous time, and choose the
best performer. We find that the LSTM based attention
models perform better than the state of the art transformers
for the dynamic emotion prediction task, both in terms of
R2 and Kendall-τ metrics. We explore individual smaller
feature sets in search of a more effective one and to under-
stand how different features contribute to perceived emo-
tion. The spectral features are found to perform at par
with the generic ComPare feature set [1]. Through atten-
tion map analysis we visualize how attention is distributed
over music clips’ frames for emotion prediction. It is ob-
served that the models attend to frames which contribute to
changes in reported arousal-valence values and chroma to
produce better emotion predictions, effectively capturing
long-term dependencies.

1. INTRODUCTION

Automatic determination of perceived emotion in music
is an active and major area of focus for the music infor-
mation retrieval (MIR) community. The aim of dynamic
perceived emotion prediction task is to output a sequence
of time-synchronized arousal-valence labels when a music
clip is given as input. It finds varied applications in the
domains of personalized and/or generalized music recom-
mendations, organizing music databases, automatic music
creation, mood based music search etc. This task is chal-
lenging because: 1) perceived emotion might depend on

c© S. Chaki, P. Doshi, S. Bhattacharya and P. Patnaik. Li-
censed under a Creative Commons Attribution 4.0 International License
(CC BY 4.0). Attribution: S. Chaki, P. Doshi, S. Bhattacharya and P.
Patnaik, “Explaining Perceived Emotion Predictions in Music: An At-
tentive Approach”, in Proc. of the 21st Int. Society for Music Information
Retrieval Conf., Montréal, Canada, 2020.

the inherent relationship between different frames of mu-
sic, distributed over time, and 2) emotion perception is in-
herently subjective in nature, highly contextual and per-
sonal. Thus, it is understandable that the emotions related
to music are a time-continuous process, where the context
of the sequential music frames play an immense role on the
associated emotion. Relating this to the machine learning
perspective, one can discern the need of context sensitive
models like recurrent neural networks (RNNs) for the task
at hand. In this study, we use attention mechanism with
a deep RNN-LSTMs (Long Short Term Memory) and the
Transformer [2], to predict the perceived emotion in each
defined time frame of music continuously. We compare
our approach with recent works [3] using only LSTM. We
also attempt to understand the importance of types of fea-
tures contributing to dynamic perceived emotion. Lastly,
attention is visualized with the help of attention map analy-
sis. The following are the major contributions of this work:
1) The LSTM based attention models are found to perform
better than the state of the art Transformers for the dynamic
emotion prediction task. 2) Spectral features are found to
perform at par with the generic ComPare feature set [1].
3) Attention maps are interpreted to observe that the atten-
tion models are able to focus on relevant music frames for
dynamic emotion prediction task.

This paper is organized as follows. In section 2, rel-
evant literature regarding music emotion recognition and
attention is reviewed. Section 3 provides details of the at-
tention based models and Transformer used in this work.
All the experiments carried out and the observations are
reported in section 4. Finally, the conclusions drawn from
the present study are detailed in section 5.

2. RELATED WORK

2.1 Music Emotion Recognition

In the past, most music emotion prediction systems used
features of timbre, pitch, MFCCs and/or lyrics and applied
to classifiers like SVMs [4]. Current state-of-the-art meth-
ods for music emotion prediction are mostly based on deep
neural networks like RNN-LSTMs. Coutinho et al. [5]
proposed the use of this model for this task. Weninger
et al. [3, 6, 7] used RNN-LSTM networks successfully to
perform continuous time music emotion regression, using
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a modified cost function, on the 1000 Songs for Emotional
Analysis of Music dataset [8]. Giamusso et al. [9] used neu-
ral networks to predict playlist emotions based on lyrics.
Fan et al. [10] performed ranking based emotion recogni-
tion from experimental music. Delbouys et al. [11] used
LSTM and ConvNet models on the Million Song Dataset
[12] for audio and lyrics based bimodal music emotion de-
tection.

2.2 Emotion Representation

Over the years, Discrete and Dimensional models of emo-
tion representation have been used in MIR. Studies using
discrete model either tag their musical data with single [13]
or cluster [14] of simple tags. In dimensional models like
Russel’s Circumplex model [15], emotion is mapped into a
2-D plane, spanned by two axes denoting arousal and va-
lence. Using this well known and satisfyingly exhaustive
emotion representation, the problem of emotion recogni-
tion/prediction is turned into a two dimensional regression
problem [16].

2.3 Attention in MIR tasks

Recently, attention mechanism and Transformer models
have found application in a wide range of MIR tasks, with
success. Balke et al. [17] used a soft-attention mechanism
on input of synthesized piano data for audio sheet music
retrieval. Their results indicate that attention increases the
robustness of the retrieval system by focusing on differ-
ent parts of the input representation based on the tempo
of the audio. The improved results led them to argue for
the potential of attention models as a very general tool for
many MIR tasks. Gururani et al. [18] explored an attention
mechanism for handling weakly labeled data for multi-
label instrument recognition. Their results show that in-
corporating attention leads to overall improvement in clas-
sification accuracy metrics and enables models to attend
to specific time segments in the audio relevant to each in-
strument label leading to interpretable results. Donahue et
al. [19] used the Transformer architecture to improve per-
formance for the task of generating multi-instrumental mu-
sic scores. Chen et al. [20] proposed the Harmony Trans-
former, a multi-task music harmony analysis model aim-
ing to improve chord recognition. Park et al. [21] utilized
a bi-directional Transformer for chord recognition (BTC)
which showed competitive performance. Through atten-
tion map, they visualized how attention was performed,
and it was observed that the model was able to divide seg-
ments of chords by utilizing adaptive receptive field of the
attention mechanism and capture long-term dependencies.
These and other works have explored various feature sets
like CQT (in [21]), Chroma (in [20]), along with other
standard feature sets [1] (in [3]). These recent successes
in varied MIR tasks in terms of model accuracy and in-
terpretability, motivated us to apply the same in the music
emotion regression task. To the best of our knowledge, nei-
ther attention models nor Transformers have been applied
before to the task under examination.

3. ATTENTION BASED MODELS FOR
EMOTION PREDICTION IN MUSIC

3.1 Attention Model (AT)

In the past, traditional LSTM-RNN approach has provided
good results in music emotion regression [3]. In this work
we propose the use of attention mechanism for dynamic
emotion prediction in music. According to the attention
model [22], to compute each output of a encoder-decoder
architecture, a distinct context vector is used, which is a
function of all the hidden states at the encoder side and
not just the last one. The encoder encodes the input into
a set of hidden states and attention is applied on them to
produce target arousal and valence values over fixed length
segments or time frames of the music audio signal. The
encoder reads the input sequence x = (x1, x2, . . . , xT ),
which is a sequence of vectors, and produces the hidden
states (h1, h2, . . . , hT ), using some RNN approach. In this
work LSTM is used. In traditional attention mechanism
[22], the whole set of hidden states (h1, h2, . . . , hT ) are
available to compute the context vectors. Each time, the
context vector ci is calculated as a weighted sum of all
the hidden states. Let the output be y = (y1, y2, . . . , yT ).
For the current problem, y can be defined as set of arousal
or valence values associated with each music time frame.
The tth output, yt, will be a function g() of a) the present
hidden state ht, b) the previous output yt−1, c) the unique
context vector ct, as given by equation 1.

p(yt|y1, y2, . . . , yt−1,x) = g(ht, yt−1, ct) (1)

The unique context vector ct depends on the sequence
of annotations (h1, h2, . . . , hT ), and is computed as a
weighted sum of these annotations hj , as given in equa-
tion 2.

ct =
T∑

j=1

αtjhj (2)

So, the model at time t, attends to each hj correspond-
ing to each of the inputs, with a weight of αtj . To obtain
each weight αtj for each output yt, the alignment between
the corresponding ht and each of hj need to be calculated,
where 1 ≤ j ≤ T . So, the alignment model, when attend-
ing to hj , is given by equation 3.

etj = a(ht−1, hj), 1 ≤ j ≤ (t− 1) (3)

This alignment is the measure of how well the inputs
around position j and the output at position t match. Then,
each of these scores etj are used to calculate the attention
weights for each hj as given in equation 4.

αtj =
exp(etj)∑T
k=1 exp(etk)

(4)

So, for each output, the context vector will attend or fo-
cus on those parts of the entire input sequence, which
are more relevant for that particular output, by assign-
ing higher weights to the associated encoder-side hidden
states, using an alignment model. These models are re-
ferred to as the AT models from hereon. The naming con-
vention of the models is the acronym AT for attention, fol-
lowed by the hidden layer dimensions.
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Table 1: Model Selection for Dynamic Arousal Prediction

Model Parameter Search (Layer Size) Best Model R2
A τA MAEA

Baseline [3] 400 - 0.60 0.14 0.11
LSTM 128, 300, 400, 512,

1024 0.73 0.12 0.12
(Single Layer) 700, 1024, 2048

LSTM (700_128), (700_400),
(700_128) 0.69 0.20 0.12

(Multi Layer) (2048_1024), (2048_1024_700)
AT 32, 64, 128, 300, 400,

300 0.75 0.15 0.13
(Single Layer) 512, 700, 1024, 2048

AT (300_128), (400_128), (1024_400),
(2048_1024) 0.78 0.24 0.11

(Multi Layer) (2048_1024), (2048_1024_512)
BAT

400, 1024, 2048 1024 0.55 0.04 0.12
(Single Layer)

BAT (300_128), (400_128), (1024_400),
(2048_1024) 0.58 0.06 0.12

(Multi Layer) (1024_512), (2048_1024), (2048_1024_512)
Transformer 1-Layer, 2-Layer, 4-Layer 2-Layer 0.64 0.61 0.27

Table 2: Model Selection for Dynamic Valence Prediction

Model Parameter Search (Layer Size) Best Model R2
V τV MAEV

Baseline [3] 400 - 0.29 0.08 0.16
LSTM 128, 300, 400, 512,

700 0.39 0.10 0.15
(Single Layer) 700, 1024, 2048

LSTM (700_128), (700_400), (2048_1024) 0.29 0.17 0.15
(Multi Layer) (2048_1024), (2048_1024_700)

AT 32, 64, 128, 300, 400, 2048
400 0.53 0.08 0.16

(Single Layer) 512, 700, 1024, 2048
AT (300_128), (400_128), (1024_400),

(300_128) 0.51 0.04 0.16
(Multi Layer) (2048_1024), (2048_1024_512)

BAT
400, 1024, 2048 2048 0.16 0.13 0.15

(Single Layer)
BAT (300_128), (400_128), (1024_400),

(400_128) 0.21 0.16 0.14
(Multi Layer) (1024_512), (2048_1024), (2048_1024_512)
Transformer 1-Layer, 2-Layer, 4-Layer 1-Layer 0.12 0.11 0.10

3.2 Backward Attention Model (BAT)

A modified form of the traditional attention mechanism
[22] is also used in the current work, called Backward At-
tention (BAT) models. In these models, for emotion pre-
diction at each tth time frame, attention is distributed only
among hk hidden states, where, 1 ≤ k ≤ (t− 1).

3.3 Transformers

The transformer architecture as proposed in Vaswani et.
al. [2] is used in this work, with changes in the number
of encoder side layers, as appropriate for the experiments.
Attention is calculated as in equation 5.

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (5)

where, Q, K and V are matrices representing the set of
queries, keys and values respectively and dk is the key di-
mension.

4. EXPERIMENTS

4.1 Data Description and Experimental Setup

We use the 1000 Songs for Emotional Analysis of Music
dataset [8] for all experiments. Of the thousand clips,the
dataset provides arousal and valence annotations for only
744 clips, which are used as ground truth values. Accord-
ing to the dataset manual [8], arousal-valence continuous
annotations for each song (second 15-45), with 2Hz sam-
pling frequency are available in the dataset. We define each
non-overlapping 500ms of the clips as one music frame.
Thus, the last 30s or the last 61 frames of each clip are
used for this work, since only those 61 emotion (arousal-
valence) tags are available. 10-fold cross validation was
used on the training and test sets. We used the Mean
squared error (MSE) as the loss function. RMSProp, with
the default learning rate of 0.001 was used for optimizing

(a) Arousal Comparison

(b) Valence Comparison

Figure 1: Dynamic Emotion Predictions for Clip 584

the loss with a batch size 20, and maximum 50 epochs.
An early stopping strategy is also used, if validation error
shows no improvement over 10−4 after 5 epochs, process-
ing is stopped. Sequences are presented in random order
during training. All hyper-parameters not explicitly men-
tioned here are left to their default values as in Tensorflow
1.14. The feature sets used for different experiments are
described below.

4.1.1 ComPare Feature Set

The 2013 Computational Paralinguistics Evaluation (Com-
ParE) tasks featureset [1], containing 6670 features is used
for all experiments in sections 4.2 and 4.4. TUM’s open-
source openSMILE feature extractor [23] is used to extract
the ComParE featureset for each frame of each clip. Stan-
dard normalization was performed on the extracted feature
values before the experiments. So, each clip is charac-
terised by 61 feature vectors, each of size 6670.

4.1.2 Other Feature Sets

In experiments reported in section 4.3, subsets of the
Compare feature set [1] and some other features are ex-
plored. These features extracted using Librosa [24] are de-
tailed here. The Chroma(STFT+CQT) features [24] con-
sist of chroma values derived using both STFT analy-
sis and constant-Q transform (CQT) analysis implemen-
tations. The CQT on Audio clip features [24] are derived
from the core Spectrogram operations of Librosa [24] suit-
able for pitch-based signal analysis. The Spectral Fea-
tures [24] denote the distributions of energy over a set of
frequencies and are very important in many MIR anal-
ysis techniques. These consist of: Chroma(24), CENs
(12) MFCC (20), RMS (1), Mel-scaled spectrogram (128),
spectral centroid (1), spectral bandwidth (1), spectral con-
trast (7), spectral flatness (1), spectral roll-off (1), zero
crossing rate (1). All clips were re-sampled to 44100 Hz
before feature extraction. All features were extracted for
non-overlapping frames of 500 ms each, corresponding to
the available arousal-valence labels of the dataset.
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(a) Arousal-AT_2048_1024 (b) Valence-AT_400

(c) Arousal-Baseline (d) Valence-Baseline

Figure 2: Emotion Error Histograms over Validation Set

4.1.3 Metrics

The metrics used for reporting the results are Coefficient of
determination (R2), average Kendall’s τ per song (τ )and
mean absolute error (MAE). The determination coefficient
(R2) is a key output of regression analysis, which pro-
vides a measure of how well observed outcomes are repli-
cated by the model, based on the proportion of total vari-
ation of outcomes explained by the model. It can vary
between 0 and 1. If a data set has n values marked
(y1 . . . yn), and each associated with a predicted value
(f1 . . . fn). So, R2 is defined as R2 ≡ 1 − SSres

SStot
where,

SSres =
∑

i (yi − fi)
2 and SStot =

∑
i (yi − y)

2, given
y = 1

n

∑n
i=1 yi. Kendall’s τ per song (τ ) is a mea-

sure of how well the emotional profile of each song is
captured by the regressor, as opposed to overall correla-
tion. It measures the correspondence between two rank-
ings. Values close to 1 indicate strong agreement, val-
ues close to -1 indicate strong disagreement. It is de-
fined τ = P−Q√

(P+Q+T )∗(P+Q+U)
where, P is the number

of concordant pairs, Q the number of discordant pairs, T
the number of ties only in target set (y1 . . . yn), and U
the number of ties only in predicted set (f1 . . . fn). The
mean absolute error (MAE) is given for reference. In the
next section, we report the results of applying the proposed
model for dynamic music emotion regression.

Baseline: It has been shown by Weninger et. al. [3, 6]
that LSTMs can be used to produce good performance in
emotion prediction, using the ComParE featureset. We
try to reproduce their results using single layer LSTM-
RNNs with hidden layer size of 400 units. These results
are considered as Baseline in this work and are reported in
the "Baseline" annotated rows of Table 1 and Table 2 for
arousal and valence respectively.

4.2 Experiment 1: Model Selection

In the first set of experiments, we aim to find the best model
for dynamic arousal and valence prediction, among the

Table 3: Feature Sets for Arousal Prediction

Features Used # Features Best Model R2
A τA MAEA

Chroma(STFT+CQT) 24 AT_64 0.15 0.04 0.19
CQT on Audio clip 252 AT_64 0.45 0.06 0.17

Chroma+CQT 276 AT_64 0.57 0.07 0.14
Spectral Features 197 AT_64 0.70 0.03 0.12

Table 4: Feature Sets for Valence Prediction

Features Used # Features Best Model R2
V τV MAEV

Chroma(STFT+CQT) 24 AT_64 0.01 0.002 0.09
CQT on Audio clip 252 AT_64 0.07 0.01 0.17

Chroma+CQT 276 AT_64 0.17 0.06 0.14
Spectral Features 197 AT_128 0.35 0.07 0.16

ones proposed in section 3. Accordingly, the models with
attention (AT, BAT, Transformers) and without attention
(LSTM) are executed with varying layer sizes and layer
numbers. The findings for arousal and valence are reported
in Table 1 and Table 2 respectively. For dynamic arousal
prediction (Table 1) using the ComPare feature set [1] (sec
4.1.1), the best result is obtained with the multi-layer atten-
tion model AT_2048_1024. Comparable result is also ob-
tained with single-layer attention model AT_300. The best
model for dynamic valence prediction (Table 2) is found
to be the single-layer attention model AT_400. Compara-
ble result is also obtained with multi-layer attention model
AT_300_128.

The following are observed from this experiment: a)
The best prediction performances reported in this section
are better than that reported by the baseline methods (sec
4.1.3). b) Among all the experiments conducted, AT mod-
els fare best in dynamic arousal-valence prediction using
the full ComPare feature set [1]. c) The best single and
multi layer AT models’ performances are comparable. d)
Performance for arousal prediction (R2

A and τA) in general
is much better than valence (R2

V and τV ) - across all mod-
els tested. Though performance with respect to MAE are
comparable.

In the following subsections, we demonstrate an illus-
trative example of dynamic emotion prediction using a clip
chosen at random, followed by an error analysis of the pre-
dictions by the best proposed models, over the validation
set clips.

4.2.1 Illustrative examples

In this section, we demonstrate an illustrative example
of dynamic emotion prediction pattern, with respect to
ground truth (sec 4.1) and baseline (sec 4.1.3), using a clip
chosen at random from the dataset [8]. The best models,
AT_2048_1024 for arousal and AT_400 for valence, ob-
tained in section 4.2 are used for dynamic (per 500 ms)
arousal and valence prediction of music clip 584.mp3. This
is presented in Figure 1. Figure 1a and Figure 1b denote
the time varying arousal and valence predictions respec-
tively. In the figures, X-axis denote the time (in seconds),
and the Y-axis denote arousal and valence values respec-
tively. It is seen that the proposed best models follow the
pattern of reported emotions more closely than baseline
model.
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(a) Clip 206 - Arousal (b) Clip 206 - Valence (c) Clip 978 - Arousal (d) Clip 978 - Valence

Figure 3: Attention Maps using AT models. X-axis = attention points (500ms clip frames), Y-axis = prediction points
(clip’s progression through time)

(a) Clip 206 (b) Clip 978

Figure 4: Comparing attended frames with ground truth
Emotion ratings of dataset [8]

4.2.2 Errors Analysis

In this section we aim to observe patterns and biases in the
best proposed models’ (sec 4.1) emotion predictions, with
respect to the baseline (sec 4.1.3). The respective predic-
tions are utilized to group the validation set clips into error
bins for this study. These are shown as histograms in figure
2. The X-axis denote the error bins of the models over the
validation set clips. The Y-axis denote the number of clips
of the validation set, which fall into each error bin. Com-
paring Figure 2a and Figure 2c, it can be seen that, for the
proposed model, the number of clips with higher values of
errors are less, in case of arousal. In case of valence, for the
proposed model, almost all the clips are grouped into the
error bins ≤ 0.05 (Figure 2b). Whereas for the baseline
model ((Figure 2d)), a significant number of clips across
bins are present.

4.3 Experiment 2: Exploring Other Feature Sets

In section 4.2, all the experiments use the full ComPare
feature set [1]. Though it performs well in dynamic emo-
tion prediction in music, it might be noted that it is generic,
not music specific. It is large, which causes models to have
large number of parameters. Also, there might be other
relevant features, which might be used for this task, eg.
Constant Q Transform features. In this section, we ex-
plore some smaller feature sets detailed in section 4.1.2,
which might possibly produce similar or better results,
over the same dataset [8], with the additional benefit of
being smaller in size.

Single layer AT models were used to train on these new
feature sets, since, it was observed in section 4.2 that they
perform best and at par with multi layer models for emo-

(a) Clip 206

(b) Clip 978

Figure 5: Chromagrams for Attention Map Analysis. X-
axis = time (in seconds), Y-axis = Chroma. Vertical
bars=Chroma intensities

tion prediction. The results are presented in Table 3 and
Table 4 for arousal and valence respectively. For arousal
(Table 3), it is observed that AT_64 performs well, when
using the Spectral Features set, with a R2

A comparable
to the best model AT_2048_1024 using full ComPare [1]
feature set. It is evident that Chroma features alone have
negligible contribution in arousal prediction. CQT set per-
forms moderately. For valence prediction (Table 4) also,
Spectral features set performs best among all. CQT set
does not contribute much to valence prediction. Thus, we
conclude that there might be a possibility of a smaller fea-
tureset for emotion prediction.

4.4 Attention Maps for Emotion Prediction

Attention maps demonstrate the relative importance of
layer activations at different 2D spatial locations with re-
spect to arousal and valence predictions. In this section,
the best AT and BAT models are used to generate the atten-
tion maps for both arousal and valence, for some clips cho-
sen at random from the dataset [8], presented in Figure 3
and Figure 6. These maps provide information about those
frames of the clip, which are attended to during emotion
prediction. This in turn can yield valuable insights into
specific audio features of those frames, conducive to cer-
tain emotion perception. For all the maps, X-axis signifies
the attention points, which are the 500 ms frames of the
clip the model attends to. The Y-axis signifies the predic-
tion points, the clip’s progression through time. It is to be
noted that these 61 frames in the maps, correspond to the
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(a) Clip 60 - Arousal (b) Clip 308 - Arousal

(c) Clip 60 - Valence (d) Clip 308 - Valence

Figure 6: Attention Maps using BAT models. X-axis =
attention points (500ms clip frames), Y-axis = prediction
points (clip’s progression through time)

last 30 seconds of each clip, as per the dataset [8]. So, the
sth frame of a clip, is actually the (15 + x−1

2 )th second of
the entire 45 second clip. The vertical bars on the right of
each attention map give the attention weight values present
in each map. The observations are discussed in the follow-
ing subsections.

4.4.1 Attention Maps Using AT models

The attention maps for arousal and valence prediction,
generated using AT_2048_1024 and AT_400, for clips
128.mp3, 171.mp3, 206.mp3, and 978.mp3 from the
dataset [8] are presented in Figure 3. Figure 3a and
Figure 3b demonstrates the attention maps for arousal and
valence prediction in clip 206.mp3 . As evident from the
figure 3a, the model attends mostly to the clip frames 20-
22, 26-28, and then again frames between 43-44, 49, 53-54
and 58 to predict arousal. From figure 3b, it is observed
that the model attends to the frames 1-4, 6, 9, 12-13, 17,
20-21, 40-41, 49-50 and 59-61 to predict valence. Simi-
lar observations can be made about the other clips as well
from Figure 3.

Observations: For arousal prediction, the model at-
tends to comparatively fewer frames of the clip. These
attended frames are observed to occur around 10 seconds
(20 frames) after the clip has started. It can be concluded
that the arousal generated in the later part of the music clip
plays a significant role in determining the arousal percep-
tion of the entire clip. The attended frames have arousal
ratings which are approximately average of all the arousal
ratings for a particular clip. On the other hand, for valence
prediction, attention is distributed across the clip, when-
ever there is perceptible change in valence ratings. Thus it
can be concluded that reports of valence depends on mo-
mentary perception. Even small changes are registered.
The attended frames have quite varied valence rating val-
ues within a particular clip.

For further investigation, we juxtapose our findings with
a) The dynamic arousal and valence ratings provided by
the dataset [8] - ground truth, given in Figure 4, and b)
Chromagrams of the clips obtained using Librosa [24],
presented in Figure 5. In each line graph of Figure 4, the
X-axis denotes time frames, and Y-axis denotes the arousal
and valence values.

It is to be noted here that the clips 206 and 978 are so
chosen that they have significantly different arousal and
valence ground truth values. In clip 206, the arousal val-
ues are lesser than the valence values. In clip 978, the re-
ported arousal values are greater than the valence values.
The blue and green lines denote arousal and valence re-
spectively, the red dots highlight the time frames attended
to by the AT models, as evident from Figure 3. In each
subplot of Figure 5, the X-axis denotes time (in seconds),
and the Y-axis denotes the Chroma. The vertical bars indi-
cate the intensities of the Chroma. Figure 5a demonstrates
the chromagram for clip 206.mp3.
Observations: For arousal prediction, the model attends
on those frames with stable presence of higher notes (eg.
A, B). For valence prediction, model attends all over the
chroma bins, specially when there is a change in notes
in the chroma sequence of the clip. Similar observations
might be made from the other chromagrams as well.

4.4.2 Attention Maps using BAT models

The attention maps generated using the BAT models,
BAT_2048_1024 for arousal are presented in Figure 6.
Figure 6a gives the attention map for arousal prediction in
clip 60.mp3 of the dataset [8]. As evident from the figure,
the attention of the model shifts continuously throughout
the clip, as it progresses in time, though Segments 11-12
receive maximum attention overall. Similar trends are ob-
served in Figure 6c as well, which represents the map for
valence prediction for the same clip. Initially, the first few
segments are attended to. As the clip progresses in time,
the attention is shifted to later segments, with segments
18-19 and 29-30 being more prominent. As the clip pro-
gresses, the attention to initial segments reduces, rendering
the lower right triangular region of the maps devoid of any
attention traces.

5. CONCLUSION

We demonstrate that the state of the art models for
continuous-time emotion prediction perform modestly,
thus emphasizing the need for further research in this area.
We have proposed an attentive LSTM based model which
improves the state of the art performance significantly, on
standard benchmark dataset with standard metrics. Fur-
ther, we observe that a reduced, music-specific feature set
achieves similar performance to the new state of the art
model on arousal prediction, leading to much smaller mod-
els. Finally, we analyse attention maps for the full attention
model to conclude that the model indeed attends to criti-
cal portions of the music in order to predict the dynamic
emotions. We also observe that the nature of attention is
different in case of arousal and valence prediction tasks.
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155



6. REFERENCES

[1] B. Schuller, S. Steidl, A. Batliner, A. Vinciarelli,
K. Scherer, F. Ringeval, M. Chetouani, F. Weninger,
F. Eyben, E. Marchi et al., “The interspeech 2013
computational paralinguistics challenge: social sig-
nals, conflict, emotion, autism,” in Proceedings IN-
TERSPEECH 2013, 14th Annual Conference of the In-
ternational Speech Communication Association, Lyon,
France, 2013.

[2] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit,
L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin,
“Attention is all you need,” in Advances in neural in-
formation processing systems, 2017, pp. 5998–6008.

[3] F. Weninger, F. Eyben, and B. Schuller, “On-line
continuous-time music mood regression with deep re-
current neural networks,” in ICASSP. IEEE, 2014, pp.
5412–5416.

[4] Y. E. Kim, E. M. Schmidt, R. Migneco, B. G. Morton,
P. Richardson, J. Scott, J. A. Speck, and D. Turnbull,
“Music emotion recognition: A state of the art review,”
in ISMIR, vol. 86, 2010, pp. 937–952.

[5] E. Coutinho, F. Weninger, B. W. Schuller, and K. R.
Scherer, “The munich lstm-rnn approach to the me-
diaeval 2014 "emotion in music" task.” in MediaEval,
2014.

[6] F. Weninger, F. Ringeval, E. Marchi, and B. W.
Schuller, “Discriminatively trained recurrent neural
networks for continuous dimensional emotion recogni-
tion from audio.” in IJCAI, vol. 2016, 2016, pp. 2196–
2202.

[7] F. Weninger, F. Eyben, and B. Schuller, “The tum
approach to the mediaeval music emotion task using
generic affective audio features,” in Proceedings Me-
diaEval 2013 Workshop, 2013.

[8] M. Soleymani, M. N. Caro, E. M. Schmidt, C.-Y. Sha,
and Y.-H. Yang, “1000 songs for emotional analysis of
music,” in Proceedings of the 2nd ACM international
workshop on Crowdsourcing for multimedia. ACM,
2013, pp. 1–6.

[9] S. Giammusso, M. Guerriero, P. Lisena, E. Palumbo,
and R. Troncy, “Predicting the emotion of playlists us-
ing track lyrics,” ISMIR, Late Breaking Session, 2017.

[10] J. Fan, K. Tatar, M. Thorogood, and P. Pasquier,
“Ranking-based emotion recognition for experimental
music.” in ISMIR, 2017, pp. 368–375.

[11] R. Delbouys, R. Hennequin, F. Piccoli, J. Royo-
Letelier, and M. Moussallam, “Music mood detection
based on audio and lyrics with deep neural net,” ISMIR,
pp. 370–375, 2018.

[12] T. Bertin-Mahieux, D. P. Ellis, B. Whitman, and
P. Lamere, “The million song dataset,” ISMIR, 2011.

[13] Y. Song, S. Dixon, and M. T. Pearce, “Evaluation of
musical features for emotion classification.” in ISMIR.
Citeseer, 2012, pp. 523–528.

[14] R. Panda, R. Malheiro, and R. P. Paiva, “Musical tex-
ture and expressivity features for music emotion recog-
nition.” in ISMIR, 2018, pp. 383–391.

[15] J. A. Russell, “A circumplex model of affect,” Journal
of Personality and Social Psychology, vol. 39, no. 6,
pp. 1161–1178, 1980.

[16] Y.-H. Yang, Y.-C. Lin, Y.-F. Su, and H. H. Chen, “A
regression approach to music emotion recognition,”
IEEE Transactions on audio, speech, and language
processing, vol. 16, no. 2, pp. 448–457, 2008.

[17] S. Balke, M. Dorfer, L. Carvalho, A. Arzt, and G. Wid-
mer, “Learning soft-attention models for tempo-
invariant audio-sheet music retrieval,” ISMIR, pp. 216–
222, 2019.

[18] S. Gururani, M. Sharma, and A. Lerch, “An atten-
tion mechanism for musical instrument recognition,”
ISMIR, pp. 83–90, 2019.

[19] C. Donahue, H. H. Mao, Y. E. Li, G. W. Cottrell, and
J. McAuley, “Lakhnes: Improving multi-instrumental
music generation with cross-domain pre-training,” IS-
MIR, pp. 685–692, 2019.

[20] T.-P. Chen and L. Su, “Harmony transformer: Incorpo-
rating chord segmentation into harmony recognition,”
ISMIR, pp. 259–267, 2019.

[21] J. Park, K. Choi, S. Jeon, D. Kim, and J. Park, “A bi-
directional transformer for musical chord recognition,”
ISMIR, pp. 620–627, 2019.

[22] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine
translation by jointly learning to align and translate,” in
3rd International Conference on Learning Representa-
tions, ICLR, 2015.

[23] F. Eyben, M. Wöllmer, and B. Schuller, “Opensmile:
the munich versatile and fast open-source audio fea-
ture extractor,” in Proceedings of the 18th ACM inter-
national conference on Multimedia. ACM, 2010, pp.
1459–1462.

[24] B. McFee, C. Raffel, D. Liang, D. P. Ellis, M. McVicar,
E. Battenberg, and O. Nieto, “librosa: Audio and music
signal analysis in python,” in Proceedings of the 14th
python in science conference, vol. 8, 2015.

Proceedings of the 21st ISMIR Conference, Montréal, Canada, October 11-16, 2020
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ABSTRACT

The COVID-19 pandemic causes a massive global health
crisis and produces substantial economic and social dis-
tress, which in turn may cause stress and anxiety among
people. Real-world events play a key role in shaping col-
lective sentiment in a society. As people listen to music
daily everywhere in the world, the sentiment of music be-
ing listened to can reflect the mood of the listeners and
serve as a measure of collective sentiment. However, the
exact relationship between real-world events and the senti-
ment of music being listened to is not clear. Driven by this
research gap, we use the unexpected outbreak of COVID-
19 as a natural experiment to explore how users’ senti-
ment of music being listened to evolves before and during
the outbreak of the pandemic. We employ causal infer-
ence approaches on an extended version of the LFM-1b
dataset of listening events shared on Last.fm, to examine
the impact of the pandemic on the sentiment of music lis-
tened to by users in different countries. We find that, after
the first COVID-19 case in a country was confirmed, the
sentiment of artists users listened to becomes more nega-
tive. This negative effect is pronounced for males while
females’ music emotion is less influenced by the outbreak
of the COVID-19 pandemic. We further find a negative
association between the number of new weekly COVID-
19 cases and users’ music sentiment. Our results provide
empirical evidence that public sentiment can be monitored
based on collective music listening behaviors, which can
contribute to research in related disciplines.

1. INTRODUCTION

Music listening has various functions in people’s daily
lives, especially in terms of psychological aspects. Mood
management and regulation are two major psychological

c© M. Liu, E. Zangerle, X. Hu, A. Melchiorre,and M.
Schedl . Licensed under a Creative Commons Attribution 4.0 Interna-
tional License (CC BY 4.0). Attribution: M. Liu, E. Zangerle, X. Hu,
A. Melchiorre,and M. Schedl . “Pandemics, music, and collective sen-
timent: evidence from the outbreak of COVID-19”, 21st International
Society for Music Information Retrieval Conference, Montréal, Canada,
2020.

uses of music listening [31, 41–43] and have been widely
investigated in previous studies [18,21,40,44]. In the liter-
ature, there are mainly two kinds of music mood being ad-
dressed. One is “expressed” mood, the other is “induced”
mood. The former refers to the mood that is intended to be
expressed by a piece of music whereas the latter refers to
listeners’ emotional state or feeling induced by listening to
a music piece or situations with which people associate a
song [5, 58]. Both kinds of music mood have been exten-
sively studies in the field of Music Information Retrieval
(MIR) in recent decades [59]. It is well known that peo-
ple often search and select music based on the mood of
music that fits their current (emotional) needs [12] and it
has been found that people’s mood is responsive to events
in daily life [10, 25]. However, the influence of real-world
events, such as human or natural disasters, on users’ mood-
based music selection remains less explored, especially in
the scale of collective choices of users in a society.

As of May 4, 2020, with 3.57 million cases and over
250 thousand deaths reported, COVID-19 has posed a se-
vere threat to public health. To contain the virus, multiple
measures have been taken, such as city lock-downs, so-
cial distancing, travel restrictions, and university closures,
disrupting people’s daily life and routine. High unem-
ployment and the economic damages caused by COVID-
19 make people suffer from increasing economic stress
[17, 24]. Causing economic and social pressure, the pan-
demic is putting enormous stress on all of us and might
trigger feelings of distress and anxiety [8, 56]. Large-scale
disasters are often accompanied by increases in depression,
a broad range of other psychological stress and behavioral
disorders [16,20,34]. Investigating whether and the extent
to which collective sentiment inferred from music listen-
ing behavior is influenced by the pandemic can not only
deepen our understanding of the relationship between real-
world events and users’ sentiment reflected by the music
they listen to, but also contribute to mitigating negative
mental health impacts caused by the pandemic, and help
people adapt, and be resilient during distress times.

Inspired by the research gap and driven by the emerg-
ing pandemic, this study aims to explore the association
between real-world events and the sentiment of music be-
ing listened to based on users’ music listening history at
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a large scale. In this study, we use the term users’ music
sentiment to refer to the aggregated collective sentiment of
music listened to by a population of users. We use the dif-
ference in differences (hereafter DD) method [2], a widely
used causal inference approach, and base our analysis on
an extension of the LFM-1b dataset [45]. This dataset pro-
vides us with a substantial set of listening histories of users
from around the world as well as user-generated tags that
we derive sentiment information from. We use the unan-
ticipated outbreak of COVID-19 as a natural experiment to
investigate the causality between pandemics and collective
sentiment reflected by music people choose to listen to.

Specifically, we aim to answer the following research
questions:

RQ1: How did the first COVID-19 case in a country
affect the music sentiment of users in that country?

RQ2: How did the number of new COVID-19 cases and
hence, the spread of the disease in a country affect the mu-
sic sentiment of users in that country?

Using the DD model, our analyses can reveal causal re-
lationship between real-world events, a pandemic in our
case, and users’ music sentiment. Results of this study
could shed light on designs of music recommenders to be
more sensitive to real-life events. More importantly, our re-
sults provide convincing evidence that collective sentiment
is hampered by the pandemic. Beyond the field of MIR,
findings of this study could provide empirical evidence on
the extent to which public sentiment could be monitored by
music listening behaviors of a concerned population. This
could contribute to science in related disciplines such as
social psychology, sociology, and journalism.

2. RELATED WORK

Two streams of research show a possible relationship be-
tween real-world events and users’ sentiment of music be-
ing listened to, while the causal pathway remains unex-
plored. Links between real-worlds events and people’s
mood have been widely documented in previous research
[50, 51]. However, to our best knowledge, there has been
no study on the association between real-world events and
users’ collective sentiment as reflected by music they listen
to.

2.1 Real-world events linked to mood

Mood indicates a set of transient, fluctuating affective
states in terms of individuals’ feelings [4, 26]. A variety
of factors are related to individuals’ mood state, including
personality [14], ongoing events, experiences, or the envi-
ronmental milieu [57]. Real-world events or the daily ex-
periences, conceptualized as situational or contextual fac-
tors, have long been recognized as important determinants
of daily mood in abundant research [50, 51].

Pioneering studies on the association between daily
events and mood are often based on self-reported data on
the same day. For example, Lewinsohn and colleagues [29]
found a negative correlation between the number of pleas-
ant events and depression by exploiting subjects’ self-
reported data on daily experiences and self-ratings of mood

states. Similar results have been found by Rehm [36] and
Stone [49, 51]. In particular, Stone found a same-day as-
sociation between major daily events and mood, based on
self-reported events and moods of 50 men [51]. However,
studies based on self-reported data in the same-day con-
text are not sufficient to demonstrate a causal relationship
because mood could impact the reliability of event report-
ing [9]. More convincing evidence of the causal relation-
ship between real-world events and mood could be pro-
vided based on longitudinally self-reported data on events
and moods over a period of time.

The occurrences of events have an impact on changes
in positive and negative mood, respectively. Pleasant
events are normally related to positive mood, such as ex-
ercise [13, 28], family, friends, and leisure time [50] and
other pleasant daily events [27]. There is also evidence
of the links between various negative daily events and
negative mood, such as interpersonal conflict [6], nega-
tive interpersonal interactions [38], stressful work-related
events [38], daily hassle [11], undesirable daily events [1],
and other daily stressors [15, 52]. For instance, using the
data extracted from diaries, Zuckerman demonstrated that
young adults reported significantly higher levels of depres-
sion when they reported interpersonal conflicts [7].

Current research on the effect of major real-world
events on mood is limited [47]. The majority of previous
work is built on the self-reported data of small samples. On
one hand, it is unclear whether small samples were suffi-
ciently representative; on the other hand, the self-rating of
mood state can be subjective.

2.2 Real-world events and music listening
Schedl et al. [46] took an initial step to explore the cor-
relation between real-world events and music consump-
tion behavior by leveraging listening events from Last.fm
and world-wide events from Google Trends. Performing
an intervention time series analysis, the authors found that
changes in listening behavior might be correlated to real-
world events. However, only two variables were taken into
account: the number of events identified by Google Trends
and the absolute number of listening events. Whether or
not real-world events are linked to users’ music sentiment
remains uncovered.

Inspired by this research gap , this study aims to exam-
ine the association between real-world events (the COVID-
19 pandemic) and the collective sentiment reflected in peo-
ple’s music listening behaviors. Based on (an extension of)
the LFM-1b dataset, one of the largest datasets of music
listening histories available to date, this study examines
the relationship between the outbreak of COVID-19 and
the collective music sentiment.

3. DATA AND METHODOLOGY
In the following, we present the data utilized and subse-
quently, we describe the methods underlying our analyses.

3.1 Data
We built upon the LFM-1b dataset [45] to explore the rela-
tionship between the outbreak of the COVID-19 pandemic
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and users’ music sentiment. More precisely, we gath-
ered the listening records of users in the LFM-1b dataset
between November 1, 2019, one month before the first
COVID-19 case in the world was confirmed in China 1 ,
and March 27, 2020. Even though the outbreaks are still
ongoing in many places as of the writing of this paper, this
time frame captures the times of first confirmed COVID-
19 cases in all countries involved in this study. We ob-
tained more than 28 million listening events shared during
this period of time, 21 weeks in total, generated by 12,278
Last.fm users from 40 countries from the LFM-1b dataset.
From the Our World in Data website, 2 we collected data
on confirmed COVID-19 new cases by date for these coun-
tries. In particular, we identified the date of the first con-
firmed COVID-19 case in each country and define it as the
date when the COVID-19 outbreak started in this country.

3.2 Measuring music sentiment
In Last.fm, tracks and artists are associated with tags cre-
ated by users. To capture the sentiment of music listened
to by our users, we collect the artists whose music pieces
are included in our dataset, that is, have been listened to by
included users during the concerned period of time. Al-
though tracks also have tags, track-level tags indicating
sentiment might be too sparse as there are a much larger
number of tracks than artists. Therefore, using artist sen-
timent (as opposed to track sentiment) provides us with a
substantially larger set of tags with sentiment. The sen-
timent of an artist can then be calculated by methods de-
scribed in the next paragraphs.

We capture the sentiment values assigned to all artists
by crawling the user-created tags assigned to those artists
from Last.fm. Subsequently, we follow Zangerle et
al.’s [60] approach for the computation of sentiment values
based on the tags. Specifically, we utilize sentiment lexica,
a widely used unsupervised sentiment detection method
for the extraction of sentiment information from the tags.
A sentiment lexicon is a list of words, where each word
is assigned a sentiment value (e.g., on a scale from 0 to
1, describing a range of sentiments from negative to pos-
itive) [54]. We rely on a set of widely used dictionaries
that have been shown to provide the best coverage and ac-
curacy according to Ribeiro’s benchmark of sentiment dic-
tionaries [39]: AFINN [32], Opinion Lexicon [22], Sen-
tiStrength [55], and Vader [23]. The different lexica pro-
vide different notions of polarity and strength of polarity.
Hence, we normalize the set of sentiments to a range be-
tween 0 and 1 by using linear min-max feature scaling.

The following steps are taken to perform the sentiment
computation based on these dictionaries. First, we em-
ploy whitespace as delimiters to tokenize the tags as tags
may consist of several words such as in “nothing left to
fear”. We then use the tokens as the input to the match-
ing step between tokens and dictionaries. To do so, we
apply lemmatization to the tokens contained in the senti-
ment dictionaries (utilizing the lemmatization method of

1 There are rumors on suspected cases earlier than November 1, 2019
at different places around the world. In this study, we only consider cases
officially reported in mainstream media.

2 https://ourworldindata.org/covid-cases

the Python’s NLTK package). Next, we match each tag
token to the set of dictionaries. For each matched token,
we extract the assigned sentiment value. In the case that a
token matches multiple entries of the dictionaries (i.e., if it
is contained in multiple dictionaries), we utilize the arith-
metic mean of those values as the sentiment value of the
token. After having computed the sentiment value for each
token, we assign the tag the mean of the sentiment values
of all tokens contained in the original tag.

The sentiment of an artist is then defined as the
weighted average sentiment values of the tags assigned to
the artist, as shown in Equation 1:

ASj =
n∑

i=1

vi ·
fi
F

(1)

where (ASj) stands for the sentiment value of the jth

artist; vi denotes the sentiment value of the ith tag for artist
j; fi refers to the frequency of tag i for this artist, and F
denotes the total frequency of tags for the artist.

We consider this a reasonable estimate as the tags ap-
plied to each artist reflect the collective sentiment a large
number of listeners had towards the artist over a long pe-
riod of time. It can thus be assumed that tags are not biased
by certain (subgroups of) users or any short term events.

3.3 Difference in differences approach

To capture the relationship between the outbreak of the
COVID-19 pandemic and the sentiment of music listened
to by users, the DD model is used [2]. This method mea-
sures the differential effect of certain changes on the de-
pendent variable of treatment groups versus that of control
groups [19]. One distinct advantage of the DD model is
that it can disclose causality. In this study, the concerned
change is the outbreak of COVID-19. The dependent vari-
able is the users’ music sentiment extracted from their lis-
tening behaviors (cf. Section 3.2). In this study, for a given
period of observation (i.e., a specific week), users in coun-
tries with confirmed COVID-19 cases are in the treatment
group, whereas users in countries without confirmed cases
form the control group.

Besides, to control for users’ other characteristics that
may affect their sentiment of music, we introduce fixed ef-
fects regression, the major method for regression analysis
of panel data. It is an extension of multiple regression that
exploits panel data to control for variables that differ across
entities but are constant over time [48]. This allows con-
trolling unobserved changes during our observation period.
We incorporate user gender, age, and country as control
variables.

The DD model employed for the COVID-19 pandemic
is shown in Equation 2.

Yit =α+ β1 (Iit) + β2Genderi+

β3Agei + Ci +Dt + εit
(2)

where Y is a dependent variable, I are the independent
variables, it indicates observations for user i in week t
and εit indicates the error term in the equation. We de-
tail the utilized dependent and independent variables in
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Sections 3.4 and 3.5, respectively. Furthermore, the equa-
tion also contains controls and fixed-effect variables as de-
scribed above. Specifically, fixed-country effects (Ci in
the equation) allow controlling the time-invariant, country-
specific characteristics of users as e.g., socio-cultural back-
ground may be related to users’ artist listening behavior.
The observable changes of global events that might influ-
ence users’ listening behavior worldwide can be controlled
by adding a week fixed effect (Dt). Controls of gender and
age of users are also included in Equation 2.

The coefficient for the dependent variable is an effective
difference-in-differences estimate of the average impact of
the COVID-19 outbreak on the sentiment of music listened
to by users. The effect of the outbreak of COVID-19 on
user’s music sentiment in a week is estimated using the
Ordinary Least Squares method, which is appropriate for
the continuous dependent variable.

3.4 Dependent variables

We use two dependent variables to build two models, by
which we can cross check robustness of the results. Both
are on user’s music sentiment calculated based on the mea-
sure of music sentiment described in Section 3.2. The first
dependent variable is the average sentiment of artists a user
listened to (hereafter referred to asUSE) in a given week.
The values of USE range from 0 to 1. The larger the USE
value is, the more positive the user’s music sentiment. USE
captures the average sentiment of artists the user listened
to in each day, weighted by the relative consumption fre-
quency of the artists, as shown by Equation 3:

USE =
n∑

i=1

ASi ·
ci
C

(3)

where ASi denotes the sentiment value of the ith artist
the user listened to on the given day; ci indicates the play-
count (number of times the user listened to artist i); and C
denotes the total playcount of the user on that day. Based
on daily USE values, we then aggregate this user’s daily
USE to the weekly level through averaging. The weekly
average USE of a user is the first dependent variable.

The second dependent variable we propose to use is
whether the music sentiment of a user in a given week is
extremely positive (i.e., whether or not the weekly USE
value of a user is in the 90th percentile of USE values of
all users in our dataset). We refer to this variable as POS.

3.5 Independent variables

For our DD analyses, we propose to use the outbreak of
COVID-19, denoted as COVID-19 hereafter, as the inde-
pendent variable. Specifically, it is a binary variable in-
dicating whether or not the first COVID-19 case has been
confirmed in a given country in a given week. The variable
is 0 for observations (a.k.a samples) before the outbreak
in a country and 1 for observations/samples after the out-
break. In addition, to explore the association between the
number of new COVID-19 cases and user’s music senti-
ment, we also include the weekly number of new COVID-
19 cases in a country as the second independent variable,
denoted as COVID19 cases.

Variable Mean Std. Dev. Min Max
USE 0.3332 0.0782 0 0.9813
POS 0.0976 0.2967 0 1
COVID-19 0.2038 0.4028 0 1
COVID-19 cases 0.8344 1.9249 0 10.0542
Age 32.3674 13.1637 6 126
Gender 0.1731 0.3783 0 1

Table 1. Descriptive statistics of variables modeled in this
study; N =184,277 (weekly observations of 12,278 users
for 21 weeks); gender indicates male (0) or female (1).

Table 1 summarizes the descriptive statistics of depen-
dent and independent variables in this study. The distribu-
tion of USE for the samples is presented in Figure 1.

3.6 Interaction effect between the COVID-19 and
gender

To explore whether there is a gender difference regard-
ing the effect of the COVID-19 pandemic on user’ mu-
sic sentiment, we generate two interaction terms be-
tween gender and the independent variables respectively,
COVID#Gender and Case#Gender. Specifically, we mul-
tiply COVID-19 and COVID-19 cases with gender respec-
tively and add each of the interaction terms to Equation 2
for separate modeling.

Besides, after running regression models on all sampled
users, we conduct DD analysis for females and males sep-
arately, to further examine possible gender differences.

In sum, for each dependent variable (USE, POS), we
run four regression models on each independent variable
(COVID-19 and COVID19 cases): the original one indi-
cated by Equation 2, the one with added interaction term,
and two on female and male users only.

Figure 1. Distribution of USE (average sentiment of artists
the user listened to), with USE on x-axis and probability
density on y-axis.

4. RESULTS

4.1 COVID-19 outbreak and users’ music sentiment

The effects of the independent variable, COVID-19, on de-
pendent variable, weekly USE (user’s music sentiment) are
shown in columns 1 to 4 in Table 2 (Panel 1). We ob-
serve a significant and negative association between the
outbreak of COVID-19 in a country and users’ music sen-
timent (USE): The coefficient on COVID-19 for USE is
-0.002 (p < 0.01, t-test) in column 1 of Table 2 (Panel 1),
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suggesting that the sentiment values of the users in coun-
tries with COVID-19 outbreak is 0.002 lower than that of
the users in countries where COVID-19 has not appeared
yet. In other words, compared to sentiment of artists lis-
tened to by users in countries without COVID-19, that of
users exposed to this pandemic is more negative.

In the USE model, the coefficient for Gender in column
1 (Panel 1) is 0.014 at the significance level of 0.01, indi-
cating that the sentiment of artists listened to by females is
more positive than that of males. The coefficient for age
is significantly negative in column 1 (Panel 1), suggest-
ing that younger users’ average weekly music sentiment
is more positive than older users, though the difference is
small and nearly close to zero.

Gender differences are also found in the model of USE
with the intersection term (column 2, Panel 1). With a
value of 0.0025 (p < 0.05), the coefficient on the in-
teraction term between COVID-19 outbreak and gender,
COVID#Gender, is significantly positive, indicating that
females are less influenced by the pandemic, as compared
to their male peers. In column 2 of Table 2 (Panel 1). The
estimated USE for females and males before and after the
outbreak of COVID-19 is shown in Figure 2. The figure
suggests a very slight decrease in USE after the outbreak
of COVID-19 for females, as compared to a clear decline
in users’ USE for males. The regression results are con-
sistent based on the models that only include either female
(column 3, Panel 1) or male users (column 4, Panel 1):
there is no significant impact of COVID-19 outbreak on
USE in the model of females (column 3), while there is a
significantly negative effect for males as shown in column
4 of Table 2 (Panel 1).

The results of the analyses of the POS variable (i.e.,
whether music sentiment of users is extremely positive)
provide consistent findings that user’s music sentiment
turns more negative after the outbreak of COVID-19. Col-
umn 5 of Table 2 (Panel 1) reveals that there is a sig-
nificantly negative relationship between the outbreak of
COVID-19 and the positiveness of users’ music sentiment
(POS). After the outbreak of COVID-19, the probability
that users’ weekly averaged music sentiment reaches ex-
tremely positive values decreased by nearly 2.8% (p <
0.01). The coefficient on the interaction term between
COVID-19 and gender is not significant (column 6, Panel
1). Columns 7 and 8 in Panel 1 both show that the likeli-
hood that the weekly USE for females and males get ex-
tremely positive declines by 1.6% (p < 0.05) and 3.2%
(p < 0.01), respectively.

4.2 COVID-19 cases and users’ music sentiment

Users’ sentiment of music is negatively associated with the
number of COVID-19 cases in a country. In other words,
in a country where a larger number of people are infected
with COVID-19 in a given week, the weekly average senti-
ment of artists the user listened to becomes more negative.
From column 1 in Table 2 (Panel 2), one unit growth in
COVID-19 new cases in the week leads to a decrease of
0.05 in weekly USE of users , i.e., 64.10% (i.e., 0.05 di-
vided by standard deviation of USE) standard deviation of

users’ USE. Again, we find the negative effect of COVID-
19 cases only for males, as shown in column 4 of Table 2
(Panel 2). For the dependent variable POS, results in col-
umn 5 of Table 2 (Panel 2) shows that, one unit increase
in COVID-19 new cases in the week is related to a 67%
lower probability that the weekly user sentiment reaches
extremely positive values. There is no gender difference
regarding the effect of new COVID-19 cases on users’ POS
as the interaction term between new COVID-19 cases and
Gender is not significant (column 6, Panel 2), and the coef-
ficients of COVID-19 cases on POS for females and males
are very close, as shown in columns 7 and 8 of Table 2
(Panel 2).

Figure 2. Estimated interaction effect between COVID-19
outbreak and gender.

5. DISCUSSION

Our results show that, after the outbreak of COVID-19 in
a country, the weekly sentiment of artists users listened
to turns more negative. These results are robust regard-
less of whether the dependent variable is the weekly av-
erage sentiment value of users’ artist listening (USE) or
whether or not users’ music sentiment is extremely positive
(POS). The findings hence show significant causality be-
tween the real-world event (i.e., the COVID-19 pandemic)
and users’ music sentiment. We find that, after the first
COVID-19 case in a country was confirmed, the weekly
sentiment of artists users listened to decreased by 0.002,
nearly 3% of standard deviation of users’ USE (column
1 Panel 1 in Table 2. This negative effect is pronounced
for males, whereas females’ music emotion is less influ-
enced by the outbreak of the COVID-19 pandemic. We
further find a negative association between the number of
COVID-19 new cases in the current week and users’ mu-
sic sentiment: one unit growth in COVID-19 new cases in a
given week brings a decrease of 0.05, i.e., 64.10% of stan-
dard deviation of user’s weekly music sentiment (column
1, Panel 2 in Table 2. One unit increase in COVID-19 new
cases in a week is related to a 67% lower probability that
user’s weekly music sentiment reaches extremely positive
(column 5, Panel 2 in Table 2).

We provide convincing evidence to show a negative
impact of public health crisis on collective sentiment us-
ing the unexpected outbreak of COVID-19 pandemic as
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(1) (2) (3) (4) (5) (6) (7) (8)
Panel 1

Model USE POS
All All Female Male All All Female Male

COVID19 -0.0020*** -0.0024*** 0.0008 -0.0028*** -0.0284*** -0.0290*** -0.0161*** -0.0316***
(0.0006) (0.0006) (0.0015) (0.0007) (0.0023) (0.0024) (0.0062) (0.0025)

Gender 0.0141*** 0.0136*** 0.0335*** 0.0329***
(0.0005) (0.0005) (0.0018) (0.0020)

COVID#Gender 0.0025** 0.0036
(0.0012) (0.0047)

Age -0.0000** -0.0000** 0.0001** -0.0000*** -0.0001 -0.0001 0.0003* -0.0001**
(0.0000) (0.0000) (0.0000) (0.0000) (0.0001) (0.0001) (0.0002) (0.0001)

Constant 0.3321*** 0.3322*** 0.3428*** 0.3328*** 0.0999*** 0.1000*** 0.1199*** 0.1025***
(0.0005) (0.0005) (0.0013) (0.0005) (0.0020) (0.0020) (0.0053) (0.0020)

Observations 184,277 184,277 31,894 152,383 184,277 184,277 31,894 "152,383"
R-squared 0.030 0.030 0.036 0.025 0.014 0.014 0.020 0.011

Panel 2
Model USE POS

All All Female Male All All Female Male
COVID19 cases -0.0005** -0.0005** -0.0003 -0.0006** -0.0067*** -0.0065*** -0.0069*** -0.0068***

(0.0002) (0.0002) (0.0006) (0.0002) (0.0008) (0.0009) (0.0023) (0.0009)
Gender 0.0141*** 0.0141*** 0.0340*** 0.0351***

(0.0005) (0.0005) (0.0018) (0.0020)
Case#Gender 0.0001 -0.0014

(0.0003) (0.0010)
Age -0.0000** -0.0000** 0.0001** -0.0000*** -0.0001 -0.0001 0.0003* -0.0001**

(0.0000) (0.0000) (0.0000) (0.0000) (0.0001) (0.0001) (0.0002) (0.0001)
Constant 0.3321*** 0.3322*** 0.3432*** 0.3327*** 0.0996*** 0.0995*** 0.1224*** 0.1017***

(0.0005) (0.0005) (0.0013) (0.0006) (0.0020) (0.0020) (0.0055) (0.0021)
Observations 184,277 184,277 31,894 152,383 184,277 184,277 31,894 152,383
R-squared 0.030 0.030 0.036 0.025 0.013 0.013 0.020 0.011

Table 2. Estimated effect of the outbreak of COVID-19 (Panel 1) and number of new COVID-19 cases (Panel 2) on users’
music sentiment. Robust standard errors are in parentheses; gender indicates female (1) or male (0). All models employ
country and week-fixed effects (*** p < 0.01, ** p < 0.05, * p < 0.1). For columns (1) to (4), the dependent variable
is USE. From columns (5) to (8), the dependent variable is POS. Columns (1) and (5) report the regression results based
on the models that include control variables, i.e., gender and age for all sampled users; columns (2) and (6) indicates the
regression results based on the models with control variables and an interaction term between COVID-19/Case and gender;
columns (3), (4) and columns (7), (8) show the results based on the models with either female or male users.

an example that ensures a causal relationship through the
different of differences method. Wide spread outbreaks
of infectious diseases often cause psychological distress
and symptoms of mental illness [3, 35]. Our results sug-
gest that the average sentiment of artists users listened
to becomes more negative after the first COVID-19 case
was confirmed in a country, which is consistent with re-
ported detrimental effect of pandemics on public men-
tal health [30, 33, 37]. We further find that in countries
where more new COVID-19 are confirmed, users’ music
sentiment turns more negative. During this acute public
health crisis, people might experience fears of infection
and worry about the pandemic’s consequences. The dis-
ruption of daily routines and the social isolation imposed
by the "stay at home orders" adopted in many countries
also cause compounding personal stress and anxiety. The
unemployment and financial losses caused by physical iso-
lation may also strengthen feelings of distress. These nega-
tive emotions, as shown by our results, have been reflected
by the sentiment of artists users listened to during the pan-
demic.We find that females’ music sentiment is less influ-
enced by the outbreak of COVID-19, which is probably
due to the gender differences in socio-economic roles that

females might be less financially stressed than males [53].

6. CONCLUSION
This study applies the difference of differences method to
find that, after the first COVID-19 case in a country was
confirmed, the weekly sentiment of artists users listened to
became more negative. This negative effect is pronounced
for males. We further find a negative association between
the number of new COVID-19 cases in a week and users’
music sentiment. The results could provide useful impli-
cations for the design of music recommendation systems
during public health crises or other disasters, which could
help manage users’ mood, enhance mental health, and mit-
igate negative psychological impacts of pandemics. The
findings also provide empirical evidence that large-scale
aggregation of music listening data can help monitor col-
lective sentiment of listener populations.
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ABSTRACT

This paper explores sequential modelling of polyphonic
music with deep neural networks. While recent break-
throughs have focussed on network architecture, we
demonstrate that the representation of the sequence can
make an equally significant contribution to the perfor-
mance of the model as measured by validation set loss. By
extracting salient features inherent to the training dataset,
the model can either be conditioned on these features or
trained to predict said features as extra components of the
sequences being modelled. We show that training a neural
network to predict a seemingly more complex sequence,
with extra features included in the series being modelled,
can improve overall model performance significantly. We
first introduce TonicNet, a GRU-based model trained to
initially predict the chord at a given time-step before then
predicting the notes of each voice at that time-step, in con-
trast with the typical approach of predicting only the notes.
We then evaluate TonicNet on the canonical JSB Chorales
dataset and obtain state-of-the-art results.

1. INTRODUCTION

Computational modelling of polyphonic music is now a
decades-old practice, with documented attempts dating
back over sixty years [1]. Recent years have seen great
progress in these models’ ability to capture the semantics
of a musical corpus, with much of this progress due to ad-
vances in artificial neural network algorithms and their ap-
plication to the music domain.

Some of the most significant breakthroughs of late
have experimented with applying newly-developed archi-
tectures to the problem of modelling symbolic music [2-
3], training or pre-training on a large cross-domain corpus
[2][4], or introducing Gibbs-like sampling methods to or-
derless models [5-6]. We instead focus on the sequence
being modelled itself, and provide observations and en-
hancements that might improve results across a wide range
of approaches.

We conduct experiments with two architectures: a
multi-layer Transformer encoder [7] with input masking

c� Omar Peracha. Licensed under a Creative Commons At-
tribution 4.0 International License (CC BY 4.0). Attribution: Omar
Peracha, “Improving Polyphonic Music Models with Feature-Rich En-
coding”, in Proc. of the 21st Int. Society for Music Information Retrieval

Conf., Montréal, Canada, 2020.

and a model based on the Gated Recurrent Unit [8] to
which we give the nickname TonicNet. Using the JSB
chorales dataset, split into training, validation and test sets
as per [9], the models are trained to predict each token of
the samples one-by-one in a sequential manner.

We observe that increasing the amount of musical infor-
mation these models are trained to predict tends to improve
overall performance of both models as measured by vali-
dation set loss. In particular, by training to first predict the
chord at a given time step before then predicting the notes
of each voice at that time step, both models show improve-
ments in validation loss, despite the modelled sequences
being longer and containing a larger possible output space
than would be the case if predicting only the notes. We
also train TonicNet on smaller subsets of the samples by
restricting the number of voices being modelled, and again
observe that results improve when more musical informa-
tion is contained in the sequence being predicted.

These observations allow better results to be achieved
without the need to use models with an ever-larger num-
ber of parameters. Concretely, TonicNet is approximately
an order of magnitude smaller than Music Transformer,
yet obtains a lower validation set loss on the JSB chorales
dataset than that reported by [3] as a result of being trained
to predict both chords and notes. It also generates sam-
ples much faster than reported in [5] by avoiding Gibbs-
like sampling, and achieves state-of-the-art validation loss
without requiring pre-training on a larger cross-domain
corpus, saving a significant amount of training time.

All code for this paper is made publicly available, in-
cluding the ability to load and sample from the pre-trained
TonicNet model. 1 Samples generated by TonicNet are
also made available in both MIDI and audio form.

2. RELATED WORK

Recurrent Neural Networks have been noted for their abil-
ity to model sequential data, with the LSTM [10] in par-
ticular being a favoured approach for a number of applica-
tions. RNNs have been widely-used in recent attempts to
model musical data, which lends itself well to a sequence-
based representation. The earliest such examples used
RNNs to model monophonic music [11-12].

In [9] RNNs were combined with Restricted Boltzmann
Machines to model polyphonic music, while RNNs and
LSTMs were combined with Deep Belief Networks for the

1 https://github.com/omarperacha/TonicNet
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same task by [13] and [14] respectively. BachBot [15] also
uses an LSTM-based neural network, and both the archi-
tecture and hyperparameters described in their paper are
influential in this work. All of these polyphonic models
have been evaluated on the Bach chorales, although not all
with the same dataset split. BachBot is trained to predict
not only the notes, but also whether a fermata, the sym-
bol used by Bach to mark phrase endings, coincides with
each given note. This is deemed to improve sample quality,
however the version of the dataset used in this work does
not contain information regarding presence of fermatas.

The Transformer and its derived architectures have been
popular choices for more recent polyphonic music mod-
els, and are emerging as strong alternatives to RNNs more
broadly due to the self-attention mechanism demonstrat-
ing great effectiveness at capturing long-term dependen-
cies in training data [7]. Music Transformer adds a novel
relative attention mechanism to the vanilla Transformer
and is evaluated on the JSB chorales dataset. LakhNES
[4] uses the Transformer-XL architecture [16] and is pre-
trained on a large corpus of four-part music before being
fine-tuned on the NES Music Database [17]. An event-
based encoding is preferred which allows for more precise
rhythm than the most commonly seen approach of slicing
the input sample along a 16th-note (or some other suitable,
dataset-dependent value) grid. MuseNet [2] is based on the
GPT-2 Transformer model [18] and is trained on a mas-
sive corpus of polyphonic music. The data representation
used has similar qualities to the event-based representation
described by [4], and allows the trained model to sample
while taking into account specific instrumentation and mu-
sical style. The encoding also includes information relat-
ing to note loudness.

Chords have been used in some previous approaches to
improve the quality of monophonic music models. Chords
are used as extra inputs to aid the generation of melodies
by [19], who use a dual LSTM network Product of Experts
system [20], and by [21], who propose training a convolu-
tional generative adversarial network to generate melodies
one bar at a time. However, neither of methods learn to
predict the chords being used as input for each proceeding
step, but rather provide them as fixed inputs.

HARMONET [22], comprises an ensemble of multiple
neural networks trained with the ultimate goal of harmon-
ising a given melody in the style of Bach. The first step
is to derive the chords at each quarter-note step from the
melody, relative to the key, including the inversion (and
therefore the bass part). The inner parts are then predicted
in a second step.

In the method proposed in this paper, chords are in fact
included in the sequence as a de facto extra voice which
must be predicted along with the other four voices, rather
than being used as a secondary conditioning input. Inver-
sions are not encoded in the chord representation, as the
bass part is included later in the sequence.

DeepBach [5] is also trained on a representation includ-
ing extra musical features as added voices. In this case, it
is the presence of a fermata at each time step. The model

is not trained to predict this, however, but fermata informa-
tion is instead provided as a fixed input which helps guide
the musical structure of the generated samples. Chord to-
kens are not used by the DeepBach model.

Both DeepBach and COCONET [6] are trained with the
primary goal of completing partially-filled musical scores,
for example harmonising a given melody, though both are
able to generate entire four-voice samples from an empty
or randomly-initialised score. They do both require the
length of the sample in time-steps to be preset in order to
facilitate the orderless Gibbs-like sampling methods used,
and DeepBach further requires fermata information to be
provided. TonicNet instead uses ancestral sampling to gen-
erate scores, and is trained to predict successive tokens in a
purely autoregressive fashion, requiring absolutely no pre-
set information relating to length or phrasing. This ulti-
mately inhibits sample quality as the phrase lengths may
not display the consistent symmetry over time observed in
the training corpus, however the model still obtains a lower
validation set loss on the JSB chorales dataset than the up-
per bound reported by [3] for orderless evaluation of CO-
CONET (i.e. evaluating COCONET’s ability to correctly
fill in the missing notes in partially-completed scores),
when averaging purely over the note predictions and ig-
noring the chords which do not originally appear in the
benchmark dataset.

A powerful advantage of DeepBach and COCONET is
that they lend themselves far more naturally to interactive
applications. Theoretically one could fix the chords or the
notes of a given voice when sampling from TonicNet by
ignoring predicted output for the relevant part, instead us-
ing the token from the corresponding time-step of the fixed
sequence as input to the model at the next time-step. How-
ever, this kind of forced sampling has not been tested em-
pirically and so sample quality under these conditions can-
not be attested.

3. DATASET

3.1 JSB Chorales

The JSB chorales are the most commonly-used benchmark
for measuring the performance of polyphonic music mod-
els to date. They are a set of short, four-voice pieces
well-noted for their stylistic homogeneity. The chorales
were originally composed by Johann Sebastian Bach in the
18th century. He wrote them by first taking pre-existing
melodies from contemporary Lutheran hymns and then
harmonising them to create the parts for the remaining
three voices. The version of the dataset used here con-
sists of 382 such chorales, with a train/validation/test split
of 229, 76 and 77 samples respectively. 2

2 The version of the dataset used can be accessed at
https://github.com/czhuang/JSB-Chorales-dataset
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3.2 Representation

3.2.1 Serialisation

The dataset is pre-serialised onto a 16th-note grid, which
captures full resolution of the original chorales. Only the
pitch information of the four voices at each time-step is
encoded in the canonical dataset; other symbolic data that
may appear in a musical score, such as loudness or fer-
mata, are absent. Furthermore, information regarding note
boundaries in the case of repeated pitches is not present.
The consequence of this is that it is not possible to truly
accurately model Bach’s original rhythms, unlike other ap-
proaches, e.g. [5], where the version of the dataset used
allows note boundary information to be preserved using a
special ’hold’ token, despite 16th-note serialisation. A par-
tial workaround to lack of repeated note boundaries during
sampling is to simply tie together consecutive occurrences
of the same pitch in a voice, which we refer to as rhythmic
’smoothing’, however this inevitably sacrifices some rhyth-
mic integrity of the original chorales. While it may seem
unideal to serialise music onto a fine-resolution rhythmic
grid, as this has the consequence of vastly extending the
length of the sequences being modelled, it in fact acts as
a highly effective form of data augmentation; brief experi-
ments which encoded the true duration values of the notes,
using the Bach chorales as made available by the music21
toolkit [23], ultimately performed significantly worse than
the representation presented in this work, both in terms of
validation loss and sample quality.

We include chords in our encoding. We first derive
the chords for each 16th-note time-step by analysing the
pitches of the four voices at said time-steps, using the mu-
sic21 chord module. We then create a single ordered se-
quence for each sample in the form C0, S0, B0, A0, T0, C1,
S1, B1, A1, T1... CN-1, SN-1, BN-1, AN-1, TN-1, <END>,
where C, S, A, T and B represent the Chord, Soprano,
Alto, Tenor and Bass inputs at each respective step, and
N is the total number of 16th-note time-steps in the given
sample. The model is fed the elements of the sequence
one-by-one and tasked with predicting the next element in
each case, thus it must predict the chord governing each
16th-note time-step before then predicting the actual pitch
values observed in the dataset at that time-step. The ef-
fect of predicting the Bass note before the Alto and Tenor
notes seems to be negligible, but has not been thoroughly
tested and so may be considered arbitrary. The longest se-
quence observed in the dataset given the described repre-
sentation, is 2,881 tokens in length, taking into account the
appended <END> token, but the lengths vary quite consid-
erably across the dataset.

3.2.2 Symbolic Encoding

Pitches and chords are all represented by distinct integer
values. We restrict pitches purely to those observed in the
dataset (MIDI values 36-81 inclusive assuming a value of
60 to be Middle C). The MIDI pitch value 37, despite not
in fact appearing in the dataset, is included so as to bet-
ter facilitate data augmentation by transposition, described

in the next section. Chords are represented as belonging
to one of 50 classes, comprised by 12 major chords (one
chord per pitch class in the western chromatic scale), 12
minor chords, 12 diminished chords, 12 augmented chords
and a special <OTHER> token which accounts for any
chord which is not interpreted as fitting into the previous 48
classes. A <CHORD REST> token completes the set used
to represent chord classes, and denotes instances when all
four voices have rests at that time-step. Any voice-wise
occurrence of a rest in the dataset is itself represented by a
distinct <REST> token, and finally the <END> token com-
pletes the set of possible model input/output classes, taking
the total to 98.

3.3 Conditioning

In addition to chord/pitch inputs, which we refer to as X-
input, we condition the model a second input that relays
information about note repetition. Concretely, alongside
each X-input value Xn,i, where i is used to index the chords
and voices, we also input an integer, Zn,i, corresponding to
the number of consecutive times the value represented by
Xn,i has so far appeared in voice i, resetting to 0 each time
a new value is observed in that voice or if Zn,i exceeds 79
(equating to 5 bars in 4/4 timing). This value was chosen
because only one sample features Z-input values greater
than 79, with this sample’s maximum Z-input value of 143
being a clear outlier.

The motivation for this is that we might more explicitly
capture some of the inter-voice rhythmic relationships that
exist in the music, and indeed we observe that it improves
model performance (Table 1). We also experimented with
instrument labelling, as in [3], and found that while it
somewhat improved model performance, repetition encod-
ing had a more significant impact and combining both rep-
etition encoding and instrument labels did not perform bet-
ter than repetition encoding alone. From this we can infer
that repetition encoding, as well as helping the model to
better learn timing information relating to note and chord
changes, also fulfils a role similar to instrument labelling.
We refer to repetition encoding inputs as Z-inputs.

3.4 Augmentation

We perform two kinds of dataset augmentation on the
training set alone, leaving the validation and test sets un-
changed. Firstly, we transpose all pieces as many times as
possible so that each piece only contains pitches that are
within the set of pitches observed in the original dataset,
and so that there are no instances of a pitch exceeding the
natural range of the voice-type in which it appears. This
takes the total number of training examples up to 1,968.
We found that transposition makes a significant impact on
the model’s ability to generalise (Table 1).

We also crudely convert all major pieces to minor, and
vice versa, by raising all occurrences of the minor 3rd, 6th
and 7th in minor pieces and flattening occurrences of the
major 3rd and 6th in major pieces, leaving the 7th raised.
This ultimately had negligible impact on model perfor-
mance and harmed sample quality, while significantly in-
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creasing the training time due to effectively doubling the
number of samples. We therefore do not consider this an
effective technique for dataset augmentation in the context
of the JSB chorales. We hypothesise that this weakness
may be due to the use of chromaticism and presence of
key modulations within samples in the dataset, which may
not maintain their stylistic integrity when the overall mode
of the piece is converted in the naive manner described.

4. MODELS

4.1 TonicNet

TonicNet takes two inputs: the integer corresponding to
the previous time-step’s class label (X-input) and the inte-
ger corresponding to its repetition count (Z-input). These
inputs are each converted to one-hot vector representa-
tions and by a 256-dimension and 32-dimension embed-
ding respectively. The embedding outputs are then end-
concatenated. Both the X embedding and the Z embedding
are learned during training.

The concatenated embedding outputs have Variational
Dropout [24] applied with a rate of 0.1, before then being
input to a three-layer, 256-unit GRU, with dropout applied
after each of the first two GRU layers, using a rate of 0.3.

The Z embedding output is reintroduced by end-
concatenating with the GRU output, before applying Vari-
ational Dropout with a probability of 0.3. The resulting
tensor is then fed to a final 98-unit affine layer.

We train TonicNet using a batch size of one for 60
epochs, employing the 1cycle policy [25] with Stochas-
tic Gradient Descent as the optimiser. We begin training
with an initial learning rate of 0.008, which is increased
to 0.2 over the first 18 epochs. The learning rate is then
decreased to 0.0002 over the remaining epochs via cosine
annealing. We also cycle momentum inversely to the learn-
ing rate between values of 0.8 and 0.95. During training we
clip the norm of the gradients to 5, which prevents gradient
explosion. Training on the transposed dataset took roughly
3.25hrs on a T4 Tensor Core GPU.

Model hyperparameters, including number of recurrent
layers, hidden units and dropout rate, were inspired by
[15], and corroborated by initial experimentation. The
sizes of both the Z and X embeddings were chosen naively
and the effect of varying these has not been determined
through experimentation, so there may be room to fur-
ther tune the parameters of this model and improve results,
which we leave to future work.

4.2 Transformer

We use a 5-layer Transformer encoder model. We encode
absolute position in the sequence using a fixed sinusoidal
position embedding as described in [7], with 256 dimen-
sions. The model also learns a 256-dimension input em-
bedding. The outputs of the two embeddings are end-
concatenated. We use 8 attention heads and set the model
dimension, D, to 512. The feedforward layer within the en-
coder module has 1024 units, and dropout is set to 0.1. The
hyperparameters of this model are largely derived from the

Figure 1. Diagram of the TonicNet model architecture..

Vanilla Transformer decoder model used as a baseline in
[3]. Input is masked to ensure the model can only attend
to previous time-steps when making a prediction. Neither
instrument labelling or repetition encoding are used when
training this model.

We again utilise a batch size of one and employ the 1cy-
cle policy with SGD. In this case we train for 30 epochs,
increasing the learning rate from 0.0006 to 0.06 over the
first 9 epochs before decreasing to 0.00006 with cosine an-
nealing over the remaining epochs. Momentum is cycled
inversely to learning rate between values of 0.8 and 0.95,
and the gradient norm is clipped to 5. This model trains
faster than TonicNet when measuring time taken per batch,
but direct comparison is not possible as it was trained on
CPU in our experiments.

4.3 Common Implementation Details

In both cases, we derive the maximum learning rate used
during training by first performing an LR Range Test [26].
The models are trained using cross-entropy as the objective
function, and always see the ground truth values for the
previous steps of the sequence when predicting the current
step.

While the benchmark dataset contains only notes, and
therefore we are arguably more interested in minimising
the loss when predicting the pitches of the voices than
when predicting chords, we train the model to minimise
the average loss across the entire sequence with no bias
shown to steps including note predictions. Both models are
implemented and trained using the PyTorch library [27].
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5. EVALUATION

5.1 Quantitative Evaluation

The Transformer model is evaluated only on the un-
augmented dataset, due to resource constraints. We com-
pare performance when training on just notes of the four
voices (SATB), and when training on sequences also in-
cluding chords (CSATB). TonicNet is tested on a wider
range of related tasks including modelling a variety of part
combinations, from one part only up to the maximum five
parts. We also show the effect of repetition encoding and
training set augmentation. Table 1 shows the results of
these experiments as measured by validation set loss, and
compares performance against two high-performing base-
lines on the dataset, namely COCONET and Music Trans-
former.

In Table 1, each model variant shows the parts trained
and evaluated on in parentheses, where NLL = Negative
Log Likelihood, C = Chords, S = Soprano, A = Alto, T =
Tenor and B = Bass. NCL stands for No Chord Loss, indi-
cating that the model was only evaluated on the note pre-
dictions, ignoring the loss at time-steps corresponding to
chord predictions when averaging NLL. The use of trans-
position to augment the dataset is denoted by Tr, and MM
signifies training set augmentation via major-to-minor key
conversion (and vice versa). TonicNet_Z here indicates the
inclusion of repetition encoding Z-inputs when training the
model.

The results show a trend whereby training the network
to predict more musical information improves overall per-
formance. Both models perform better when trained to pre-
dict chords before predicting notes at each 16th-note time-
step, as compared with training to predict only the notes.
Even when evaluating on the entire CSATB sequence, in-
cluding the chords in the reported loss, we see that Tonic-
Net_Z with transposition outperforms Music Transformer,
the previous highest-performing ordered model as evalu-
ated on the pure SATB dataset, despite being an order of
magnitude smaller. When we ignore loss on chord time-
steps, the average NLL is significantly lower, perform-
ing better than the upper bound for unordered evaluation
of COCONET. The improvement when comparing perfor-
mance on pitch-wise loss alone is echoed by the Trans-
former (CSATB) model. From this we can derive that pre-
dicting the chords has the impact of significantly improv-
ing model confidence when predicting pitches, which is
perhaps intuitive.

5.2 Qualitative Evaluation

We evaluate the quality of samples from TonicNet via hu-
man domain expert analysis. We define a domain expert
as someone holding a post-graduate degree in a subject
directly related to Western Classical Music, and who has
formally studied Bach’s chorales as part requirement for
obtaining an academic qualification. This is favoured as it
allows for a more objective, thorough and strict criticism
than a layperson-targeted listening test. We use random
sampling to generate chorales from TonicNet, after first

Model & Dataset Variation Validation NLL
Transformer (SATB)
Transformer (CSATB)
Transformer (CSATB, NCL)

0.544
0.503
0.394

Music Transformer* (SATB) 0.335
COCONET* (SATB, chronological)
COCONET* (SATB, orderless)

0.436
 0.238

TonicNet (C)
TonicNet (B)
TonicNet (S)
TonicNet (CS)
TonicNet (SB)
TonicNet (CSB)
TonicNet (SATB)

0.936
0.716
0.521
0.588
0.555
0.516
0.523

TonicNet_Z (SATB)
TonicNet_Z (CSATB)
TonicNet_Z (CSATB, Tr)
TonicNet_Z (CSATB, Tr+MM)
TonicNet_Z (CSATB, Tr, NCL)
TonicNet_Z (CSATB, Tr+MM, NCL)

0.497
0.422
0.321
0.317
0.224
0.220

Table 1. Validation loss on JSB chorales at 16th-note time-
steps.

selecting a starting minor or major chord at random. Ex-
periments with beam search decoding tended to produce
overly-short samples, even when normalising sample prob-
ability for length, therefore random sampling according to
the output probability distribution is preferred. Stochastic-
ity during beam search has not been subject to experimen-
tation.

We find that TonicNet_Z (CSATB, Tr) produces the best
samples. Voice leading is typically stylistic, especially on
a local scale, as is the generated melodic contour, although
there is a tendency to diverge from what is clearly the in-
tended phrase within a part for a single 16th-note, usually
by a single scale degree or semitone, before then returning,
causing an undesirable ornamentation effect.

Harmonisation and harmonic trajectory is also consis-
tently plausible, however there are occasional instances of
a phrase which clearly starts in a major key suddenly mod-
ulating to a minor key, or vice versa, in a manner that is un-
characteristic to the corpus. The worst generated samples
may in fact display poor, overly-chromatic harmonisation
and lack stylistic harmonic direction. Some instances of
sample weakness may be artefacts of the exposure bias in-
troduced by using teacher forcing when training TonicNet.

The most significant issue detected in samples ulti-
mately relates to phrasing; Bach’s chorales feature sym-
metric phrases, typically two, four or eight bars long, end-
ing in a cadence. Generated pieces have a tendency to fea-
ture asymmetry between consecutive phrases, which is not
stylistic. Including fermata or other phrase-based infor-
mation in the modelled sequence could help mitigate this
issue, as demonstrated in [5] and [15]. Samples do con-
sistently end on a perfect cadence as expected, and voices
never misalign due to a misordering in the generated se-

*Figures reproduced directly from [3]
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Val NLL Val Acc. Test NLL Test Acc.
Full 0.317 90.928 0.311 90.787
NCL 0.220 93.468 0.214 93.419

Table 2. Model loss and accuracy when evaluating Tonic-
Net_Z (CSATB, Tr+MM) on validation and test sets, both
when including and ignoring chord predictions (Full ver-
sus NCL).

quence; rather, each voice clearly completes its phrase, and
the duration of each voice’s phrase coincides exactly with
the others. Samples displaying a range of quality are in-
cluded in the code repository for fair analysis.

6. CONCLUSIONS

We first extracted salient features from the existing dataset,
in the form of chords and intra-voice token repetition, and
then included these extra features among the training in-
puts. The fact that exposing the model to more features
should improve results is unsurprising; more unexpected
is that including new features as extra elements within the
series being modelled should dramatically enhance perfor-
mance. Furthermore, it was noted that confidence when
predicting pitches is much higher if the model is first
tasked with predicting chords. This suggests a worthwhile
area for further research is to improve confidence when
predicting the chords, and we conjecture that a method to
achieve this may be to include yet more related features in
the sequences themselves, such as fermata information or
a representation of floating tonality, given our findings.

State-of-the-art validation loss on the JSB chorales
dataset was achieved with a variation of TonicNet and ef-
fective dataset augmentation, and we demonstrated that de-
spite this there are still some specific weaknesses in sample
quality which other approaches have mitigated. We also
noted the superior human interactability of COCONET
and DeepBach, which we believe gives those proposals a
greater potential for real-world application. However, the
findings presented in this paper could be applicable to a
wide range of approaches to statistical modelling of poly-
phonic music, and their merit was demonstrated on two
such approaches.

We also surveyed the effects of serialising music by
splitting notes across a fine-resolution temporal grid.
While the benefit of this in terms of data augmentation
was noted, we also presented weaknesses relating to true
rhythmic integrity in the case of repeated note boundaries,
and vast extension of sequence length which has the effect
of increasing both training and sampling time. Ultimately
we would like to move towards utilising encodings includ-
ing true rhythmic duration, with the aim of being able to
train more general polyphonic music models that are not
confined to a temporal grid, and therefore to styles of mu-
sic whose rhythmic resolution can be encompassed by this
grid. It is not viable to simply serialise music into increas-
ingly finer-resolution rhythmic units in order to accommo-
date datasets which include some occurrences of tuplet du-

rations, for example, as this continues to extend the overall
sequence length. Future work will explore solutions to this
drawback.
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174



[12] D. Eck and J. Schmidhuber. “Finding Temporal Struc-
ture in Music: Blues Improvisation with LSTM Recur-
rent Networks”, in Proc. of the 12th IEEE Workshop

on Neural Networks for Signal Processing, 2002.

[13] K. Goel, R. Vohra and J. Sahoo, “Polyphonic Music
Generation by Modelling Temporal Dependencies Us-
ing a RNN-DBN”, in Proc. of the International Confer-

ence on Artificial Neural Networks, 2014, pp. 217-224.

[14] R. Vohra, K. Goel and J. Sahoo, "Modelling Temporal
Dependencies in Data Using a DBN-LSTM", in Proc.

of the IEEE International Conference on Data Science

and Advanced Analytics, 2015.

[15] F. Liang, “Bachbot: Automatic Composition in the s
Style of Bach Chorales,” M.Phil thesis. University of
Cambridge, 2016.

[16] Z. Dai, Z. Yang, Y. Yang, J. Carbonell, Q. Le
and R. Salakhutdinov, “Transformer-XL: Attentive
Language Models Beyond a Fixed-Length Context”,
ArXiv:1901.02860 [cs], 2018.

[17] C. Donahue, H. Mao and J. McAuley, “The NES Music
Database: A Multi-Instrumental Dataset with Expres-
sive Performance Attributes”, in Proc. of the Interna-

tional Conference on Music Information Retrieval, pp.
475-482, 2018.

[18] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei and
I. Sutskever, Language Models are Unsupervised Mul-

titask Learners. 2019.

[19] D. Johnson, R. Keller and N. Weintraut, "Learning
to Create Jazz Melodies Using a Product of Experts",
in Proc. of the International Conference on Computa-

tional Creativity, 2017.

[20] G. Hinton, “Products of Experts”, in Proc. of the Inter-

national Conference on Artificial Neural Networks, pp.
1-6, 2002.

[21] L. Yang, S. Chou and Y. Yang, "MidiNet: A Convolu-
tional Generative Adversarial Network for Symbolic-
Domain Music Generation”, in Proc. of the Interna-

tional Conference on Music Information Retrieval, pp.
324-331, 2017.

[22] H. Hild, J. Feulner and W. Menzel, "HARMONET: A
Neural Net for Harmonizing Chorales in the Style of J.
S. Bach", in Advances in Neural Information Process-

ing Systems, pp. 267-274, 1991.

[23] M. Cuthbert and C. Ariza, "music21: A Toolkit
for Computer-Aided Musicology and Symbolic Music
Data," in Proc. of the International Conference on Mu-

sic Information Retrieval, pp. 637–642, 2010.

[24] D. Kingma, T. Saliman and M. Welling, "Variational
Dropout and the Local Reparameterization Trick”, in
Advances in Neural Information Processing Systems,
pp. 2575-2583, 2015.

[25] L. Smith, "A Disciplined Approach to Neural Network
Hyper-Parameters: Part 1 – Learning Rate, Batch Size,
Momentum, and Weight Decay", ArXiv:1803.09820
[cs], 2018.

[26] L. Smith, "Cyclical Learning Rates for Training Neural
Networks”, ArXiv:1506.01186 [cs], 2015.

[27] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang,
Z. DeVito, Z. Lin, A. Desmaison, L. Antiga and A.
Lerer, "Automatic Differentiation in PyTorch”, Neural

Information Processing Systems Autodiff Workshop,
2017.

Proceedings of the 21st ISMIR Conference, Montréal, Canada, October 11-16, 2020
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ABSTRACT

This paper studies composer style classification of piano
sheet music images. Previous approaches to the composer
classification task have been limited by a scarcity of data.
We address this issue in two ways: (1) we recast the prob-
lem to be based on raw sheet music images rather than a
symbolic music format, and (2) we propose an approach
that can be trained on unlabeled data. Our approach first
converts the sheet music image into a sequence of musi-
cal “words" based on the bootleg feature representation,
and then feeds the sequence into a text classifier. We show
that it is possible to significantly improve classifier perfor-
mance by first training a language model on a set of un-
labeled data, initializing the classifier with the pretrained
language model weights, and then finetuning the classifier
on a small amount of labeled data. We train AWD-LSTM,
GPT-2, and RoBERTa language models on all piano sheet
music images in IMSLP. We find that transformer-based ar-
chitectures outperform CNN and LSTM models, and pre-
training boosts classification accuracy for the GPT-2 model
from 46% to 70% on a 9-way classification task. The
trained model can also be used as a feature extractor that
projects piano sheet music into a feature space that charac-
terizes compositional style.

1. INTRODUCTION

We’ve all had the experience of hearing a piece of music
that we’ve never heard before, but immediately recogniz-
ing the composer based on the piece’s style. This paper
explores this phenomenon in the context of sheet music.
The question that we want to answer is: “Can we predict
the composer of a previously unseen page of piano sheet
music based on its compositional style?"

Many previous works have studied the composer clas-
sification problem. These works generally fall into one of
two categories. The first category of approach is to con-
struct a set of features from the music, and then feed the
features into a classifier. Many works use manually de-
signed features that capture musically meaningful infor-
mation (e.g. [1] [2] [3] [4]). Other works feed minimally

c© TJ Tsai, Kevin Ji. Licensed under a Creative Commons
Attribution 4.0 International License (CC BY 4.0). Attribution: TJ Tsai,
Kevin Ji, “Composer Style Classification of Piano Sheet Music Images
Using Language Model Pretraining”, in Proc. of the 21st Int. Society for
Music Information Retrieval Conf., Montréal, Canada, 2020.

preprocessed representations of the data (e.g. 2-D piano
rolls [5] [6] or tensors encoding note pitch & duration in-
formation [7] [8]) into a convolutional model, and allow
the model to learn a useful feature representation. The sec-
ond category of approach is to train one model for each
composer, and then select the model that has the highest
likelihood of generating a given sequence of music. Com-
mon approaches in this category include N-gram language
models [9] [10] [11] and Markov models [12] [13].

Our approach to the composer classification task ad-
dresses what we perceive to be the biggest common ob-
stacle to the above approaches: lack of data. All of the
above approaches assume that the input is in the form of a
symbolic music file (e.g. MIDI or **kern). Because sym-
bolic music formats are much less widely used than audio,
video, and image formats, the amount of training data that
is available is quite limited. We address this issue of data
scarcity in two ways: (1) we re-define the composer classi-
fication task to be based on sheet music images, for which
there is a lot of data available online, and (2) we propose
an approach that can be trained on unlabeled data.

Our work takes advantage of recent developments in
transfer learning in the natural language processing (NLP)
community. Prior to 2017, transfer learning in NLP was
done in a limited way. Typically, one would use pre-
trained word embeddings such as word2vec [14] [15] or
GloVe [16] vectors as the first layer in a model. The prob-
lem with this paradigm of transfer learning is that the en-
tire model except the first layer needs to be trained from
scratch, which requires a large amount of labeled data.
This is in contrast to the paradigm of transfer learning in
computer vision, where a model is trained on the ImageNet
classification task [17], the final layer is replaced with a
different linear classifier, and the model is finetuned for a
different task. The benefit of this latter paradigm of trans-
fer learning is that the entire model except the last layer is
pretrained, so it can be finetuned with only a small amount
of labeled data. This paradigm of transfer learning has
been widely used in computer vision in the last decade
[18] using pretrained models like VGG [19], ResNet [20],
Densenet [21], etc. The switch to ImageNet-style transfer
learning in the NLP community occurred in 2017, when
Howard et al. [22] proposed a way to pretrain an LSTM-
based language model on a large set of unlabeled data,
add a classification head on top of the language model,
and then finetune the classifier on a new task with a small
amount of labeled data. This was quickly followed by sev-
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Figure 1. Overview of proxy classifier training. A lan-
guage model is first trained on a set of unlabeled data, the
classifier is initialized with the pretrained language model
weights, and then the classifier is finetuned on a small set
of labeled data.

eral other similar language model pretraining approaches
that replaced the LSTM with transformer-based architec-
tures (e.g. GPT [23], GPT-2 [24], BERT [25]). These
pretrained language models have provided the basis for
achieving state-of-the-art results on a variety of NLP tasks,
and have been extended in various ways (e.g. Transformer-
XL [26], XLNet [27]).

Our approach is similarly based on language model pre-
training. We first convert each sheet music image into a
sequence of words based on the bootleg score feature rep-
resentation [28]. We then feed this sequence of words into
a text classifier. We show that it is possible to significantly
improve the performance of the classifier by training a lan-
guage model on a large set of unlabeled data, initialize the
classifier with the pretrained language model weights, and
finetune the classifier on a small amount of labeled data.
In our experiments, we train language models on all pi-
ano sheet music images in the International Music Score
Library Project (IMSLP) 1 using the AWD-LSTM [29],
GPT-2 [24], and RoBERTa [30] language model architec-
tures. By using pretraining, we are able to improve the ac-
curacy of our GPT-2 model from 46% to 70% on a 9-way
classification task. 2

2. SYSTEM DESCRIPTION

We will describe our system in the next four subsections.
In the first subsection, we give a high-level overview and
rationale behind our approach. In the following three sub-
sections, we describe the three main stages of system de-
velopment: language model pretraining, classifier finetun-
ing, and inference.

2.1 Overview

Figure 1 summarizes our training approach. In the first
stage, we convert each sheet music image into a sequence
of words based on the bootleg score representation [28],
and then train a language model on these words. Since
this task does not require labels, we can train our language

1 http://imslp.org/
2 Code can be found at https://github.com/tjtsai/

PianoStyleEmbedding.

Figure 2. A short section of sheet music and its corre-
sponding bootleg score. Staff lines in the bootleg score
are shown for reference, but are not present in the actual
feature representation.

model on a large set of unlabeled data. In this work, we
train our language model on all piano sheet music images
in the IMSLP dataset. In the second stage, we train a clas-
sifier that predicts the composer of a short fragment of mu-
sic, where the fragment is a fixed-length sequence of sym-
bolic words. We do this by adding one or more dense lay-
ers on top of the language model, initializing the weights
of the classifier with the language model weights, and then
finetuning the model on a set of labeled data. In the third
stage, we use the classifier to predict the composer of an
unseen scanned page of piano sheet music. We do this by
converting the sheet music image to a sequence of sym-
bolic words, and then either (a) applying the classifier to a
single variable length input sequence, or (b) averaging the
predictions of fixed-length crops sampled from the input
sequence. We will describe each of these three stages in
more detail in the following three subsections.

The guiding principle behind our approach is to max-
imize the amount of data. This impacts our approach in
three significant ways. First, it informs our choice of data
format. Rather than using symbolic scores (as in previ-
ous approaches), we instead choose to use raw sheet music
images. While this arguably makes the task much more
challenging, it has the benefit of having much more data
available online. Second, we choose an approach that can
utilize unlabeled data. Whereas labeled data is usually ex-
pensive to annotate and limited in quantity, unlabeled data
is often extremely cheap and available in abundance. By
adopting an approach that can use unlabeled data, we can
drastically increase the amount of data available to train
our models. Third, we use data augmentation to make
the most of the limited quantity of labeled data that we do
have. Rather than fixating on the page classification task,
we instead define a proxy task where the goal is to predict
the composer given a fixed-length sequence of symbolic
words. By defining the proxy task in this way, we can
aggressively subsample fragments from the labeled data,
resulting in a much larger number of unique training data
points than there are actual pages of sheet music. Once the
proxy task classifier has been trained, we can apply it to the
full page classification task in a straightforward manner.

Proceedings of the 21st ISMIR Conference, Montréal, Canada, October 11-16, 2020
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Figure 3. Overview of AWD-LSTM, GPT-2, and
RoBERTa language models (top) and classifiers (bottom).
Boxes in blue are trained during the language modeling
phase and used to initialize the classifier.

2.2 Language Model Pretraining

The language model pretraining consists of three steps, as
shown in the upper half of Figure 1. These three steps will
be described in the next three paragraphs.

The first step is to convert the sheet music image into a
bootleg score. The bootleg score is a low-dimensional fea-
ture representation of piano sheet music that encodes the
position of filled noteheads relative to the staff lines [28].
Figure 2 shows an example of a section of sheet music and
its corresponding bootleg score representation. The boot-
leg score itself is a 62 × N binary matrix, where 62 in-
dicates the total number of possible staff line positions in
both the left and right hands, and where N indicates the
total number of estimated simultaneous note onset events.
Note that the representation discards a significant amount
of information: it does not encode note duration, key signa-
ture, time signature, measure boundaries, accidentals, clef
changes, or octave markings, and it simply ignores non-
filled noteheads (e.g. half or whole notes). Nonetheless, it
has been shown to be effective in aligning sheet music and
MIDI [28], and we hypothesize that it may also be useful
in characterizing piano style. The main benefit of using
the bootleg score representation over a full optical music
recognition (OMR) pipeline is processing time: computing
a bootleg score only takes about 1 second per page using
a CPU, which makes it suitable for computing features on
the entire IMSLP dataset. 3 We use the code from [28] as
a fixed feature extractor to compute the bootleg scores.

The second step is to tokenize the bootleg score into a
sequence of word or subword units. We do this differently
for different language models. For word-based language
models (e.g. AWD-LSTM [29]), we consider each bootleg
score column as a single word consisting of a 62-character
string of 0s and 1s. We limit the vocabulary to the 30, 000
most frequent words, and map infrequent words to a spe-
cial unknown word token <unk>. For subword-based lan-
guage models (e.g. GPT-2 [24], RoBERTa [30]), we use
a byte pair encoding (BPE) algorithm [32] to learn a vo-
cabulary of subword units in an unsupervised manner. The
BPE algorithm starts with an initial set of subword units

3 In contrast, the best performing music object detectors take 40-80
seconds to process each page at inference time using a GPU [31].

(e.g. the set of unique characters [33] or the 28 = 256
unique byte values that comprise unicode characters [34]),
and it iteratively merges the most frequently occurring pair
of adjacent subword units until a desired vocabulary size
has been reached. We experimented with both character-
level and byte-level encoding schemes (i.e. representing
each word as a string of 62 characters vs. a sequence of 8
bytes), and we found that the byte-level encoding scheme
performs much better. We only report results with the byte-
level BPE tokenizer. For both subword-based language
models explored in this work, we use the same shared BPE
tokenizer with a vocabulary size of 30, 000 (which is the
vocabularly size used in the RoBERTa model). At the end
of the second step, we have represented the sheet music
image as a sequence of words or subword units.

The third step is to train a language model on a set of
unlabeled data. In this work, we explore three different
language models, which are representative of state-of-the-
art models in the last 3-4 years. The top half of Figure 3
shows a high-level overview of these three language mod-
els. The first model is AWD-LSTM [29]. This is a 3-layer
LSTM architecture that makes heavy use of regularization
techniques throughout the model, including four different
types of dropout. The output of the final LSTM layer is
fed to a linear decoder whose weights are tied to the input
embedding matrix. This produces an output distribution
across the tokens in the vocabulary. The model is then
trained to predict the next token at each time step. We
use the fastai implementation of the AWD-LSTM model
with default parameters. The second model is openAI’s
GPT-2 [24]. This architecture consists of multiple trans-
former decoder layers [35]. Each transformer decoder
layer consists of a masked self-attention, along with feed-
forwards layers, layer normalizations, and residual connec-
tions. While transformer encoder layers allow each token
to attend to all other tokens in the input, the transformer
decoder layers only allow a token to attend to previous to-
kens. 4 Similar to the AWD-LSTM model, the outputs of
the last transformer layer are fed to a linear decoder whose
weights are tied to the input embeddings, and the model
is trained to predict the next token at each time step. We
use the huggingface implementation of the GPT-2 model
with default parameters, except that we reduce the vocabu-
lary size from 50, 000 to 30, 000 (to use the same tokenizer
as the RoBERTa model), the amount of context from 1024
to 512, and the number of layers from 12 to 6. The third
model is RoBERTa [30], which is based on Google’s BERT
language model [25]. This architecture consists of multiple
transformer encoder layers. Unlike GPT-2, each token can
attend to all other tokens in the input and the goal is not to
predict the next token. Instead, a certain fraction of the in-
put tokens are randomly converted to a special <mask> to-
ken, and the model is trained to predict the masked tokens.
We use the huggingface implementation of RoBERTa with
default parameter settings, except that we reduce the num-
ber of layers from 12 to 6.

4 This is because, in the original machine translation task [35], the
decoder generates the output sentence autoregressively.
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2.3 Classifier Finetuning

In the second main stage, we finetune a classifier based
on a set of labeled data. The labeled data consists of a
set of sheet music images along with their corresponding
composer labels. The process of training the classifier is
comprised of four steps (lower half of Figure 1).

The first two steps are to compute and tokenize a boot-
leg score into a sequence of symbolic words. We use the
same fixed feature extractor and the same tokenizer that
were used in the language model pretraining stage.

The third step is to sample short, fixed-length fragments
of words from the labeled data. As mentioned in Section
2.1, we define a proxy task where the goal is to predict the
composer given a short, fixed-length fragment of words.
Defining the proxy task in this way has three significant
benefits: (1) we can use sampling to generate many more
unique training data points than there are actual pages of
sheet music in our dataset, (2) we can sample the data in
such a way that the classes are balanced, which avoids
problems during training, and (3) using fixed-length in-
puts allows us to train more efficiently in batches. Our
approach follows the general recommendations of a recent
study on best practices for training a classifier with im-
balanced data [36]. Each sampled fragment and its corre-
sponding composer label constitute a single (Xi, yi) train-
ing pair for the proxy task.

The fourth step is to train the classifier model. The bot-
tom half of Figure 3 shows how this is done with our three
models. Our general approach is to add a classifier head
on top of the language model, initialize the weights of the
classifier with the pretrained language model weights, and
then finetune the classifier on the proxy task data. For
the AWD-LSTM, we take the outputs from the last LSTM
layer and construct a fixed-size representation by concate-
nating three things: (a) the output at the last time step, (b)
the result of max pooling the outputs across the sequence
dimension, and (c) the result of average pooling the out-
puts across the sequence dimension. This fixed-size repre-
sentation (which is three times the hidden dimension size)
is then fed into the classifier head, which consists of two
dense layers with batch normalization and dropout. For
the GPT-2 model, we take the output from the last trans-
former layer at the last time step, and then feed it into a
single dense (classification) layer. Because the GPT-2 and
RoBERTa models require special tokens during training,
we insert special symbols <s> and </s> at the beginning
and end of every training input, respectively. Because of
the masked self-attention, we must use the output of the
last token in order to access all of the information in the
input sequence. For the RoBERTa model, we take the out-
put from the last transformer layer corresponding to the
<s> token, and feed it into a single dense (classification)
layer. The <s> takes the place of the special [CLS] token
described in the original paper.

We integrated all models into the fastai framework and
finetuned the classifier in the following manner. We first
select an appropriate learning rate using a range test, in
which we sweep the learning rate across a wide range of

Figure 4. Statistics on the target dataset. The top two
histograms show the distribution of the number of pages
(top left) and number of bootleg score features (top right)
per composer. The bottom figure shows the distribution of
the number of bootleg score features per page.

values and observe the impact on training loss. We initially
freeze all parameters in the model except for the untrained
classification head, and we gradually unfreeze more and
more layers in the model as the training converges. To
avoid overly aggressive changes to the pretrained language
model weights, we use discriminative finetuning, in which
earlier layers of the model use exponentially smaller learn-
ing rates compared to later layers in the model. All train-
ing is done with (multiple cycles of) the one cycle training
policy [37], in which learning rate and momentum are var-
ied cyclically over each cycle. The above practices were
proposed in [22] and found to be effective in finetuning
language models for text classification.

2.4 Inference

The third main stage is to apply the proxy classifier to the
original full page classification task. We explore two dif-
ferent ways to do this. The first method is to convert the
sheet music image into a bootleg score, tokenize the boot-
leg score into a sequence of word or subword units, and
then apply the proxy classifier to a single variable-length
input. Note that all of the models can handle variable-
length inputs up to a maximum context length. The second
method is identical to the first, except that it averages the
predictions from multiple fixed-length crops taken from
the input sequence. The fixed-length crops are the same
size as is used during classifier training, and the crops are
sampled uniformly with 50% overlap. 5

3. EXPERIMENTAL SETUP

In this section we describe the data collection process and
the metrics used to evaluate our approach.

The data comes from IMSLP. We first scraped the web-
site and downloaded all PDF scores and accompanying
metadata. 6 We filtered the data based on its instrumen-
tation in order to identify a list of solo piano scores. We

5 We also experimented with applying a Bayesian prior to the classifier
softmax outputs, as recommended in [36], but found that the results were
not consistently better.

6 We downloaded the data over a span of several weeks in May of
2018.
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then computed bootleg score features for all of the piano
sheet music images using the XSEDE supercomputing in-
frastructure [38], and discarded any pages that had less
than a minimum threshold of features. This latter step
is designed to remove non-music pages such as the title
page, foreword, or table of contents. The resulting set of
data contained 29, 310 PDFs, 7 255, 539 pages and a total
of 48.5 million bootleg score features. This set of data is
what we refer to as the IMSLP dataset in this work (e.g. the
IMSLP pretrained language model). For language model
training, we split the IMSLP data by piece, using 90% for
training and 10% for validation.

The classification task uses a subset of the IMSLP data.
We first identified a list of composers with a significant
amount of data (composers shown in Figure 4). We limited
the list to nine composers in order to avoid extreme class
imbalance. Because popular pieces tend to have many
sheet music versions in the dataset, we select one version
per piece in order to avoid over-representation of a small
subset of pieces. Next, we manually labeled and discarded
all filler pages, and then computed bootleg score features
on the remaining sheet music images. This cleaned dataset
is what we refer to as the target data in this work (e.g.
the target pretrained language model). Figure 4 shows
the total number of pages and bootleg score features per
composer for the target dataset, along with the distribu-
tion of the number of bootleg score features per page. For
training and testing, we split the data by piece, using 60%
of the pieces for training (4347 pages), 20% for valida-
tion (1500 pages), and 20% for testing (1304 pages). To
generate data for the proxy task, we randomly sampled
fixed-length fragments from the target data. We sample
the same number of fragments for each composer to en-
sure class balance. We experimented with fragment sizes
of 64/128/256 and sampled 32400/16200/8100 fragments
for training and 10800/5400/2700 fragments for valida-
tion/test, respectively. This sampling scheme ensures the
same data coverage regardless of fragment length. Note
that the classification data is carefully curated, while the
IMSLP data requires minimal processing.

We use two different metrics to evaluate our systems.
For the proxy task, accuracy is an appropriate metric since
the data is balanced. For the full page classification task
– which has imbalanced data – we report results in macro
F1 score. Macro F1 is a generalization of F1 score to a
multi-class setting, in which each class is treated as a one-
versus-all binary classification task and the F1 scores from
all classes are averaged.

4. RESULTS & ANALYSIS

In this section we present our experimental results and con-
duct various analyses to answer key questions of interest.
While the proxy task is an artificially created task, it pro-
vides a more reliable indicator of classifier performance
than the full page classification. This is because the test set
of the full page classification task is both imbalanced and

7 Note that a PDF may contain multiple pieces (e.g. the complete set
of Chopin etudes).

Figure 5. Model performance on the proxy classification
task. This comparison shows the effect of different pre-
training conditions and fragment sizes.

very small (1304 data points). Accordingly, we will report
results on both the proxy task and full page classification
task.

4.1 Proxy Task

We first consider the performance of our models on the
proxy classification task. We would like to understand the
effect of (a) model architecture, (b) pretraining condition,
and (c) fragment size.

We evaluate four different model architectures. In ad-
dition to the AWD-LSTM, GPT-2, and RoBERTa models
previously described, we also measure the performance of
a CNN-based approach recently proposed in [7]. Note that
we cannot use the exact same model in [7] since we do
not have symbolic score information. Nonetheless, we can
use the same general approach of computing local features,
aggregating feature statistics across time, and applying a
linear classifier. The design of our 2-layer CNN model
roughly matches the architecture proposed in [7].

We consider three different language model pretrain-
ing conditions. The first condition is with no pretraining,
where we train the classifier from scratch only on the proxy
task. The second condition is with target language model
pretraining, where we first train a language model on the
target data, and then finetune the classifier on the proxy
task. The third condition is with IMSLP language model
pretraining. Here, we train a language model on the full
IMSLP dataset, finetune the language model on the target
data, and then finetune the classifier on the proxy task.

Figure 5 shows the performance of all models on the
proxy task. There are three things to notice. First, re-
garding (a), the transformer-based models generally out-
perform the LSTM and CNN models. Second, regarding
(b), language model pretraining improves performance sig-
nificantly across the board. Regardless of architecture, we
see a large improvement going from no pretraining (con-
dition 1) to target pretraining (condition 2), and another
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Figure 6. Results on the full page classification task.

large improvement going from target pretraining (condi-
tion 2) to IMSLP pretraining (condition 3). For exam-
ple, the performance of the GPT-2 model increases from
37.3% to 45.2% to 57.5% across the three pretraining con-
ditions. Because the data in conditions 1 & 2 is exactly the
same, the improvement in performance must be coming
from more effective use of the data. We can interpret this
from an information theory perspective by noting that the
classification task provides the model log29 = 3.17 bits of
information per fragment, whereas the language modeling
task provides log2V bits of information per bootleg score
feature where V is the vocabulary size. The performance
gap between condition 2 and condition 3 can also be inter-
preted as the result of providing more information to the
model, but here the information is coming from having ad-
ditional data. Third, regarding (c), larger fragments result
in better performance, as we might expect.

4.2 Full Page Classification

Next, we consider performance of our models on the full
page classification task. We would like to understand the
effect of (a) model architecture, (b) pretraining condition,
(c) fragment size, and (d) inference type (single vs. multi-
crop). Regarding (d), we found that taking multiple crops
improved results with all models except the CNN. This
suggests that this type of test time augmentation does not
benefit approaches that simply average feature statistics
over time. In the results presented below, we only show
the optimal inference type for each model architecture (i.e.
CNN with single crop, all others with multi-crop).

Figure 6 shows model performance on the full page
classification task. There are two things to notice. First, we
see the same general trends as in Figure 5 for model archi-
tecture and pretraining condition: the transformer-based
models generally outperform the CNN and LSTM mod-
els, and pretraining helps substantially in every case. The
macro F1 score of our best model (GPT-2 with fragment
size 64) increases from 0.41 to 0.51 to 0.67 across the three
pretraining conditions. Second, we see the opposite trend

Figure 7. t-SNE plot of the RoBERTa model activations
for five novel composers. Each data point corresponds to
a single page of sheet music for a composer that was not
considered in the classification task.

as the proxy task for fragment size: smaller fragments have
better page classification performance. This strongly indi-
cates a data distribution mismatch. Indeed, when we look
at the distribution of the number of bootleg score features
in a single page (Figure 4), we see that a significant frac-
tion of pages have less than 256 features. Because we only
sample fragments that contain a complete set of 256 words,
our proxy task data is biased towards longer inputs. This
leads to poor performance when the classifier is faced with
short inputs, which are never seen in training. Using a frag-
ment size of 64 minimizes this bias.

4.3 t-SNE Plots

Another key question of interest is, “Can we use our model
to characterize the style of any page of piano sheet music?"
The classification task forces the model to project the sheet
music into a feature space where the compositional style of
the nine composers can be differentiated. We hypothesize
that this feature space might be useful in characterizing the
style of any page of piano sheet music, even from com-
posers not in the classification task.

To test this hypothesis, we fed data from 5 novel com-
posers into our models and constructed t-SNE plots [39] of
the activations at the second-to-last layer. Figure 7 shows
such a plot for the RoBERTa model. Each data point corre-
sponds to a single page of sheet music from a novel com-
poser. Even though we have not trained the classifier on
these five composers, we can see that the data points are
still clustered, suggesting that the feature space can de-
scribe the style of new composers in a useful manner.

5. CONCLUSION

We propose a method for predicting the composer of a
single page of piano sheet music. Our method first con-
verts the raw sheet music image into a sequence of musical
words based on the bootleg score feature representation,
and then feeds the sequence into a text classifier. We show
that by pretraining a language model on a large set of un-
labeled data, it is possible to significantly improve the per-
formance of the classifier.
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ABSTRACT

Many music information retrieval tasks involve the com-
parison of a symbolic score representation with an audio
recording. A typical strategy is to compare score–audio
pairs based on a common mid-level representation, such
as chroma features. Several recent studies demonstrated
the effectiveness of deep learning models that learn task-
specific mid-level representations from temporally aligned
training pairs. However, in practice, there is often a lack of
strongly aligned training data, in particular for real-world
scenarios. In our study, we use weakly aligned score–audio
pairs for training, where only the beginning and end of
a score excerpt is annotated in an audio recording, with-
out aligned correspondences in between. To exploit such
weakly aligned data, we employ the Connectionist Tempo-
ral Classification (CTC) loss to train a deep learning model
for computing an enhanced chroma representation. We
then apply this model to a cross-modal retrieval task, where
we aim at finding relevant audio recordings of Western
classical music, given a short monophonic musical theme
in symbolic notation as a query. We present systematic
experiments that show the effectiveness of the CTC-based
model for this theme-based retrieval task.

1. INTRODUCTION

Music appears in many different modalities, for example,
as audio or video recordings, in the form of symbolic rep-
resentations, or as graphical sheet music [1]. In partic-
ular, audio recordings and symbolic representations are
of great importance in many music information retrieval
(MIR) tasks. An example is cross-modal retrieval, where a
symbolic score is given as a query, and the task is to iden-
tify relevant audio recordings [2–4]. A general strategy
for matching such different modalities is to use a common
mid-level representation. In music processing, chroma fea-
tures are widely used as mid-level [1,5,6]. These features,
which capture the energy in the twelve chromatic pitch
class bands, are robust against changes in octave, instru-
mentation, and timbre.

c© Frank Zalkow, Meinard Müller. Licensed under a Cre-
ative Commons Attribution 4.0 International License (CC BY 4.0). Attri-
bution: Frank Zalkow, Meinard Müller, “Using Weakly Aligned Score–
Audio Pairs to Train Deep Chroma Models for Cross-Modal Music Re-
trieval”, in Proc. of the 21st Int. Society for Music Information Retrieval
Conf., Montréal, Canada, 2020.
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Figure 1. Illustration of a weakly aligned score–audio pair.

In recent years, many studies have shown the benefits
of deep learning models to compute task-specific mid-level
representations [7–10]. These learned features have proven
their effectiveness in many scenarios, for example, audio–
audio retrieval [11–13], chord recognition [9, 10, 14], or
pitch tracking [7, 15, 16]. Training deep neural networks
(DNNs) usually requires aligned training pairs, i.e., in
MIR, music recordings with temporally aligned annota-
tions. For example, the training pairs for a deep salience
model by Bittner et al. [7] consist of time–frequency repre-
sentations (more details in Section 2.2) with fundamental
frequency annotations, where inputs and annotations corre-
spond to each other for all time frames. For popular music,
annotated data sets [17] have led to significant advances in
research on pitch salience representations. However, creat-
ing such strongly aligned training pairs is labor-intensive,
and, for many music scenarios, such data is hardly avail-
able. In contrast to the difficulty in annotating local align-
ments, it may be much easier to annotate global correspon-
dences. In this paper, we use training pairs, where only
global correspondences have been annotated. We denote
these pairs as weakly aligned.

In our contribution, we use a deep learning model to
compute enhanced chroma features, which we then use
as a mid-level representation for a cross-modal retrieval
task. Given a symbolic representation of a monophonic
musical theme as a query and an audio database of West-
ern classical music, the task is to find all audio recordings
in which the theme is played [18, 19]. To obtain a task-
specific chroma variant, we train a deep learning model
with weakly aligned score–audio pairs, where only the be-
ginning and end of a musical theme is annotated in an au-
dio recording. Figure 1 illustrates such a pair for the fa-
mous first theme of Beethoven’s Symphony No. 5. As our
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Themes Audio Recordings
# Mean Dur. Total Dur. # Mean Dur. Total Dur.

2048 00:00:09 04:54:58 1114 00:06:26 119:28:27

Table 1. Dat set overview. Duration format: hh:mm:ss.

main contribution, we combine a deep salience model [7]
with a training procedure for weakly aligned data. 1 This
procedure, called Connectionist Temporal Classification
(CTC) [20], allows us to use training pairs of audio ex-
cerpts (in the form of spectral features) as input and musi-
cal themes (as sequences of chroma labels) as output. Us-
ing this CTC-based strategy, we train a model to compute
enhanced chroma features for musical themes. We evalu-
ate these features using more than 2000 themes and 1000
audio recordings and show that they improve the state of
the art for our cross-modal retrieval scenario.

In Section 2, we review several prerequisites, such as
cross-modal retrieval (Section 2.1), deep salience and deep
chroma models (Section 2.2), and the CTC loss (Sec-
tion 2.3). Then, in Section 3, we describe our adaption
of the deep salience model, which computes chroma fea-
tures and can be trained with the CTC loss. We present our
experiments in Section 4 and conclude with Section 5.

2. PRIOR WORK AND PREREQUISITES

2.1 Cross-Modal Retrieval

For our retrieval scenario, we use a data set based on “A
Dictionary of Musical Themes” by Barlow and Morgen-
stern (BM) [21], which contains roughly 10000 musical
themes of instrumental Western classical music. Most of
these themes have also been available as symbolic versions
(MIDI) on the internet. 2 For a subset of the themes, we
annotated their occurrences in audio recordings. In these
annotations, a theme corresponds to exactly one recording,
which, in turn, can correspond to several themes. The an-
notations comprise global correspondences, i.e., the begin-
ning and end of the occurrences, as well as transpositions.
Table 1 shows some statistics for our data set, which con-
sists of 2048 themes from the BM book and 1114 corre-
sponding recordings. The BM book already inspired sev-
eral MIR studies [22, 23]. Some of them [18, 19] used the
same subset for retrieval. We slightly corrected some an-
notations for this paper. A previous study [18] pointed
out the challenges of the task, which are due to the dif-
ferences in modality (symbolic vs. audio), tuning, trans-
position, tempo, and polyphony between the query and the
recordings. The last point means that the themes are mono-
phonic, but they usually appear in polyphonic context in
the recordings (further discussion in Section 5). Previous
work [19] has shown that pitch salience representations are
capable of overcoming the differences in polyphony. In

1 Pre-trained models and code to apply them are available at
https://www.audiolabs-erlangen.de/resources/MIR/
2020-ISMIR-ctc-chroma.

2 Unfortunately, the page is now offline. It is still reachable
with the Wayback Machine without access to the MIDI files:
https://web.archive.org/web/20160209045946/http:
//www.multimedialibrary.com/barlow/index.asp

this paper, building upon these findings, we introduce an
approach for learning a task-specific salience representa-
tion.

2.2 Deep Salience and Deep Chroma Models

Many studies have demonstrated the effectiveness of us-
ing deep learning models to compute task-specific feature
representations. One example is the use of deep salience
models to compute enhanced time–frequency representa-
tions (measuring the saliency of frequencies over time) for
tasks such as melody or multi-pitch tracking [7, 15, 16].
Another example is the use of deep chroma models for
computing enhanced chroma features (encoding the energy
in the twelve chromatic pitch class bands) for chord recog-
nition [9, 10, 14].

This paper is inspired by the deep salience approach by
Bittner et al. [7]. They introduced a feature representa-
tion named harmonic CQT (HCQT) as input for a con-
volutional DNN. The HCQT is a three-dimensional ten-
sor, where the three dimensions are time, frequency (loga-
rithmic scaling), and harmonics. The third dimension en-
sures that harmonically related frequency bins are neigh-
bors across the depth of the tensor. This way, the convolu-
tional kernels of the network can easily exploit harmonic
relationships. Many studies use this deep salience repre-
sentation as a baseline [16,24] or build upon this model for
diverse tasks such as dominant melody estimation [8], in-
strument recognition [25], tempo estimation [26], or chord
recognition [27]. In Section 3, we describe how we adapt
the deep salience model for computing enhanced chroma
features.

The study of Wu et al. [27] is related to ours in two
respects. First, they also use the HCQT representation,
and, second, they use weakly aligned training data. How-
ever, they aim for chord recognition instead of learning a
mid-level representation for cross-modal retrieval. Unlike
us, they take a three-step approach: First, they use a pre-
trained deep chroma extractor to compute features. Sec-
ond, they strongly align their annotations to the chroma
features using a hidden Markov model. Third, they use
a frame-wise DNN classifier for chord recognition. In
our paper, we present a single-step approach to realize the
alignment within the DNN training procedure.

2.3 CTC Loss

Graves et al. [20] originally introduced Connectionist Tem-
poral Classification (CTC) as the task of labeling unseg-
mented feature sequences with recurrent DNNs in the con-
text of speech recognition. However, their training tech-
nique can be used with any DNN architecture. Further-
more, the task can be generalized to any scenario, where
the aim is to map feature sequences to sequences of sym-
bols. If the training data consisted of strongly aligned pairs
of feature and symbol sequences (i.e., each vector of the
feature sequences is labeled with a symbol), then a stan-
dard classification approach could be taken. The key aspect
of CTC is that there is no need for strongly aligned train-
ing data, i.e., the feature and symbol sequences may be of
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Figure 2. Network architectures. Upper: Original archi-
tecture proposed by Bittner et al. [7]. Lower: Adapted
architecture used in this paper. Illustration inspired by [7].

different length, and the temporal correspondence between
both sequences is unknown and may be non-linear.

Several studies from the MIR community used CTC,
e.g., for optical music recognition [28], monophonic
audio-to-score transcription [29], lyrics alignment [30],
and audio tagging [31]. An alternative to CTC for se-
quence learning without aligned training data is the us-
age of an attention mechanism, which, e.g., was used for
monophonic singing voice transcription [32].

In the following, we give the main idea of the CTC loss
function introduced by Graves et al. [20] We describe the
computation of the CTC loss for a single pair consisting of
an audio feature sequence and a symbol sequence. Let

X = (x1,x2, . . . ,xN ) (1)

denote the feature sequence of length N ∈ N, which con-
sists of feature vectors xn ∈ RD for n ∈ [1 : N ] :=
{1, 2, . . . , N} of dimensionality D ∈ N. The second se-
quence of the pair is a symbol sequence

Y = (y1,y2, . . . ,yM ) (2)

of length M ∈ N, which consists of elements ym ∈ A for
m ∈ [1 : M ]. The alphabet A of size A := |A| is the set of
symbols that can occur in the symbol sequence. Typically
M � N . For example, in the case of lyrics alignment,
the alphabet is the set of all considered characters [30]. In
our case, it is the set of the twelve different chroma labels.
The feature sequence X is transformed by a DNN fθ with
parameters θ to a sequence of probability vectors

fθ(X) = P = (p1,p2, . . . ,pN ) (3)

having the same lengthN as the feature sequence and con-
sisting of probability vectors pn ∈ [0, 1]A. We interpret
the probability vector element pn,a for a ∈ [1 : A] as the
probability that the nth feature vector xn corresponds to
the ath symbol in A (assuming an order of the set).

We can now compute the probability of the symbol se-
quence Y given the feature sequence X . For a fixed align-
ment between X and Y , one multiplies all values of the
probability sequence P that correspond to that alignment.
Since the alignment is unknown, instead of a specific one,
all possible alignments between X and Y are taken into

Layer Output Shape Activation Parameters

Input (N , 216, 6)

Conv2D 64 × (3, 3, 6) (N , 216, 64) LReLU 3520
Conv2D 32 × (3, 3, 64) (N , 216, 32) LReLU 18464
Conv2D 32 × (3, 3, 32) (N , 216, 32) LReLU 9248
Conv2D 32 × (3, 3, 32) (N , 216, 32) LReLU 9248
Conv2D 8 × (42, 3, 32) (N , 216, 8) LReLU 32264
Conv2D 1 × (1, 1, 8) (N , 216, 1) Sigmoid 9

Pooling (N , 13) Softmax 217

Table 2. Details of the used DNN model (72970 parame-
ters in total).

account. Let us denote this overall probability as p̂ ∈ R.
Graves et al. [20] described how to compute p̂ in a dif-
ferentiable and efficient way using dynamic programming
similar to the forward algorithm for hidden Markov mod-
els [33]. The final CTC loss for a single training pair is

Lθ(X,Y ) = − log p̂. (4)

This loss function is used in batch gradient descent to up-
date the parameters θ by averaging the loss value over mul-
tiple training pairs in a batch. By this procedure, the pa-
rameters of the network improve to produce probability
sequences that make the ground-truth symbol sequences
more probable.

In our explanation, we left out a crucial detail of the
procedure. For a fixed alignment between X and Y , the
aligned symbol sequence can be represented by an “un-
folded” sequence of lengthN that contains the active sym-
bol for each time step. Let us consider the case of an un-
folded sequence having multiple neighboring time steps
with the same active symbol. So far, we cannot tell if
this means one symbol occurrence with a long duration or
multiple successive occurrences of the same symbol with
shorter durations. To solve this ambiguity, an additional
symbol named blank ε is part of the alphabet A. This sym-
bol serves two purposes: First, it means that no symbol is
active. Second, it indicates a repeated occurrence of the
same symbol if a succession of the same active symbol in
the unfolded sequence is only interrupted by ε.

3. DEEP SALIENCE MODEL ADAPTATION

The DNN model used in this paper is inspired by the deep
salience model proposed by Bittner et al. [7]. In this sec-
tion, we explain our adaption of the model.

Bittner et al. [7] approached the task of melody and
multi-pitch tracking, using a strongly aligned data set of
10 hours. In our case, we aim to learn an enhanced chroma
representation for cross-modal retrieval, employing our
weakly aligned 5-hour data set of 2048 themes. We sim-
plified the original model in several ways to reduce the
number of parameters and memory requirements. Addi-
tionally, we adapted the network so that it can be trained
with the CTC loss and used as a deep chroma extractor.
Figure 2 illustrates the original network architecture and
our adapted version, and Table 2 gives further details for
our version. Compared to the model by Bittner et al. [7],
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we introduce the following modifications: First, we use a
frame rate of 25 Hz instead of 86 Hz. Second, we use a
frequency resolution of a third semitone instead of a fifth
semitone. This resolution results in 216 instead of 360 fre-
quency bins. Third, we reduced the number of filter kernels
as well as the size of some of the filter kernels. The latter
reduction accounts for the decreased frequency resolution.
Forth, we use leaky ReLU activations instead of ReLU ac-
tivations to avoid zero gradients [34]. Fifth, we do not use
batch normalization at all, which was used at the input to
each layer in the original model. Instead, we `2-normalize
all columns of the input to the network for being invariant
to dynamic changes. Sixth, we add a pooling layer at the
end, which we explain in the next paragraph.

After the last convolutional layer (with sigmoid activa-
tion), we obtain a representation that we could interpret as
a kind of pitch salience of size N × 216. In our case, we
aim for an output size ofN×13, where theN columns are
probability vectors over the set of the twelve chroma labels
and an additional ε symbol:

A := {C,C#,D, . . . ,B} ∪ {ε}. (5)

Let us consider a single column of size 216 as input, which
we want to transform to a probability vector of size 13. To
compute the first twelve entries, we add up all pitch bins
corresponding to the respective chroma bins. This fixed
pooling has no learnable parameters. To compute the last
entry for the ε symbol, we apply a standard dense layer
(linear activation) to the input column. This layer has 217
learnable parameters (216 weights and a bias). Finally, we
apply the softmax function to the resulting 13-dimensional
vector. We repeat this process for all columns of the input.

In summary, our adapted model differs from the original
model [7] in two important aspects: First, we reduced the
number of parameters from 407 thousand to 73 thousand.
Second, the output of the model is a probability matrix over
the set A instead of a pitch salience representation.

We train this adapted model with the CTC loss, as
described in Section 2.3. The input to the network is
an HCQT tensor computed for an excerpt from an au-
dio recording, where a musical theme is played. Fig-
ure 3a shows a slice of the HCQT features for a record-
ing of the first theme of Beethoven’s Fifth Symphony.
The corresponding symbol sequence is the sequence of
chroma labels of the theme with neither any rhythmic in-
formation nor any temporal alignment to the input. For
our Beethoven example (see also Figure 1), this sequence
is Y = (G,G,G,E[,F,F,F,D). Figure 3b visualizes
the probability sequence for the Beethoven example after
training. We see that the ε symbol has the largest probabil-
ity for most of the time, and the chroma labels only have
large probabilities at the beginning of the corresponding
note events. To use the network output as a feature repre-
sentation, we remove the row corresponding to the ε sym-
bol and interpret the resulting matrix as chroma features.
Finally, we `2-normalize the 12-dimensional chroma vec-
tors to increase the energies in the time segments, where ε
was dominating. Figure 3c shows the normalized chroma
features, which correspond well with the symbol sequence.
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Figure 3. Representations for the first theme of
Beethoven’s Fifth Symphony. (a) HCQT input represen-
tation X (slice corresponding to the first harmonic). (b)
Network output P . (c) Features used for matching.

4. EXPERIMENTS

4.1 Training Details

We split our data set into five folds, where we use three
folds for training, one for validation, and another one for
testing. We ensure that all themes by a composer are part
of precisely one fold. As a consequence, we do not use
themes from the same composer for training and evalua-
tion, thus avoiding a “composer overfitting.” For the train-
ing folds, we perform transpositions (up to a minor third
upwards and downwards) as data augmentation. We per-
form batch gradient descent with a batch size of eight us-
ing the Adam optimizer [35] and a learning rate annealing
procedure. In the first phase of this procedure, the initial
learning rate is 0.001, and we train the model until the loss
for the validation fold does not improve for five epochs. In
the next phase, we halve the learning rate and continue the
training with the model that has the lowest validation loss
among the models of all previous epochs. We repeat ten
such phases. When we finished training, we use the model
with the lowest validation loss as a chroma feature extrac-
tor, and evaluate its effectiveness in the retrieval scenario,
using the query themes from the test fold.

4.2 Retrieval-Based Evaluation

We shortly describe our retrieval pipeline and our evalua-
tion measures following [18, 19]. First, we have a set Q
of symbolic (MIDI) encodings of musical themes, which
serve as queries. Furthermore, we have a collection of au-
dio recordings, which we denote as database documents.
These are actual recordings, not synthesized MIDI files.
For each query, there is exactly one audio document that
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(a)
Top-01 Top-05 Top-10 Top-20 Top-50 MRR

CBG1 0.754 0.835 0.861 0.885 0.913 0.792
CBit 0.693 0.788 0.823 0.853 0.896 0.739

(b)
Top-01 Top-05 Top-10 Top-20 Top-50 MRR

CBG1 0.820 0.892 0.910 0.925 0.952 0.854
CBit 0.763 0.844 0.867 0.895 0.931 0.802

Table 3. Retrieval results of the baseline methods (a) using
a feature rate of 10 Hz as reported in previous work [19],
(b) using a feature rate of 25 Hz.

contains a globally corresponding rendition of the query
theme (i.e., matching duration and transposition). For a
fixed symbolic query, the aim is to retrieve the correspond-
ing audio document. To compare the query with a doc-
ument, we convert both into chroma sequences. For the
symbolic query, we simply compute a binary chroma rep-
resentation. For converting the audio recording, we em-
ploy a salience representation (from our CTC or a base-
line approach). Then, we use Subsequence Dynamic Time
Warping (SDTW) to compare the query with subsequences
of the document [1]. In particular, we use the cosine dis-
tance, the step size condition Σ := {(2, 1), (1, 2), (1, 1)},
as well as the weights wvertical = 2 and whorizontal =
wdiagonal = 1. As a result of SDTW, one obtains a match-
ing function, where local minima point to locations with
a good match between the query and a document subse-
quence. We consider the minimal value of the matching
function as the distance between query and document.

To solve the retrieval task, we compute distances be-
tween all documents and the query. We then order the doc-
uments according to ascending distance values. The docu-
ment’s position in this ordered list is called the rank r ∈ N
of the document. The top-K evaluation metric yields a
value of one if the relevant document is among the top K
matches, i.e., r ≤ K. We then average this metric across
all queries. Furthermore, we report the mean reciprocal
rank (MRR), which is the average of 1/r across all queries.

In the cross-validation iterations of our evaluation, we
only use the query themes from the respective test fold to
search within the 1114 documents of our database. The re-
ported average evaluation measures (�) are weighted with
the number of queries from the respective test fold.

4.3 Baseline

As for our baselines, we consider the best-performing rep-
resentations from a previous study [19], namely CBit, using
the original deep salience model for melody estimation by
Bittner et al. [7] 3 , and CBG1, using a model-based salience
representation by Bosch and Gómez [36]. The latter one is
a combination of a source-filter model with harmonic sum-
mation, using threshold parameters (named “BG1”) that
are particularly suited for orchestral music [37].

Table 3a cites the results from the previous study [19],
where a 10 Hz feature rate was used. Since we use an in-

3 Original weights (“Melody 2”). CBit was denoted by CCNN in [19].

|Q| Top-01 Top-05 Top-10 Top-20 Top-50 MRR

1 559 0.891 0.946 0.961 0.971 0.977 0.918
2 373 0.823 0.887 0.917 0.938 0.954 0.855
3 372 0.839 0.911 0.933 0.944 0.954 0.872
4 372 0.903 0.949 0.952 0.962 0.976 0.922
5 372 0.855 0.919 0.935 0.949 0.976 0.885

� 0.865 0.925 0.941 0.955 0.968 0.893

Table 4. Retrieval results for CCTC.

creased feature rate of 25 Hz in this paper, we reproduced
the experiments with this rate. The results are shown in
Table 3b. Just by changing the feature rate, we see a sub-
stantial improvement of the results. For example, for CBit,
the top-1 rate increases from 0.693 to 0.763, which means
that 7 % more themes achieved a rank of 1. Since we cor-
rected some errors in the data set, an improvement of up to
2 % may be due to the revision, but the main improvements
are due to the increased time resolution. The reason for this
may be the following: A fast tempo of Presto corresponds
to up to 200 BPM. Having a quarter-note beat, in such a
tempo, a sixteenth note has a duration of 75 ms, which is
shorter than the length of a frame given the feature rate of
10 Hz. In such cases, the increased feature rate is neces-
sary to represent the musical content in a more meaningful
way.

For both feature rates, the representation CBG1 performs
better than CBit. For example, the respective top-1 rates
are 0.820 and 0.763 for the 25 Hz rate. The results for
CBit may be lower because the training data of the under-
lying DNN consisted mainly of popular music (for overall
240 training tracks, only 22 are tagged as “classical” in
version 1 of MedleyDB [17]). Another possible reason is
that the saliency characteristics in the training data (com-
ing from the “Melody 2” definition of MedleyDB) are dif-
ferent from the characteristics of musical themes.

4.4 CTC-Based Results

We now discuss the results we achieved with our CTC-
based approach CCTC. Table 4 shows the evaluation re-
sults for the five cross-validation iterations. The second
column (|Q|) gives the number of query themes in the re-
spective test fold. This number is larger in the first fold
(559) because this fold contains all BM themes by Ludwig
van Beethoven, which is the most prominent composer of
our data set. The other folds have fewer queries (372 or
373) and are more diverse in terms of composers, having
12 or 13 different composers each. The retrieval results
have some diversity, ranging from a top-1 rate of 0.823 for
test fold 2 up to 0.903 for test fold 4. The last row of the
table shows an average of the results, weighted by the num-
ber of queries used. Overall, we see a substantial improve-
ment compared to the baseline approaches (Table 3b). For
example, the average top-1 rate is 0.865 for CCTC, com-
pared to 0.763 for CBit and 0.820 for CBG1. Improvements
for larger ranks can also be seen, such as in the top-50 rate
(0.968 compared to 0.931 and 0.952, respectively). The re-
sults show that our approach is able to outperform the base-
lines, which have been the state of the art for the task [19].
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Top-01 Top-05 Top-10 Top-20 Top-50 MRR

CCTC 0.865 0.925 0.941 0.955 0.968 0.893
CCCE 0.814 0.890 0.907 0.929 0.951 0.849

Table 5. Retrieval results (�) using cross-entropy.

Top-01 Top-05 Top-10 Top-20 Top-50 MRR

CBG1 0.820 0.892 0.910 0.925 0.952 0.854
CCTC 0.865 0.925 0.941 0.955 0.968 0.893
Oracle 0.904 0.947 0.958 0.967 0.983 0.924

Table 6. Retrieval results (�) for an oracle of the baseline
by Bosch and Gómez [36] and our CTC approach.

4.5 Importance of CTC-Alignment

To verify the need for the CTC procedure in our sce-
nario, we performed an additional experiment, where we
assumed a linear temporal alignment between the symbolic
themes and the corresponding excerpts in the audio record-
ings. Here, we changed the training procedure from our
CTC strategy to a standard classification approach, using
categorical cross-entropy (CCE). As output labels, we used
binary chroma representations that we obtained by linearly
scaling the symbolic themes to the same length as the cor-
responding audio excerpts. The ε symbol here only indi-
cates rests in a theme. Note that, in this experiment, we
used the rhythm information and note durations from the
MIDI files, which we did not use in the CTC approach.

The trained model was used as chroma extractor and
then evaluated in the theme retrieval context. The first row
of Table 5 repeats the average evaluation measures from
Table 4 for convenience and the second row presents the
average results for the CCE approach. The evaluation mea-
sures are lower compared to the CTC-based results, e.g.,
having a top-1 rate of 0.814 compared to 0.865. This dif-
ference is due to the non-linear temporal correspondence
between audio recordings and the symbolic themes.

4.6 Oracle Experiment

The model-based approach CBG1 also shows excellent per-
formance for this task. To investigate the relationship be-
tween CBG1 and the CCTC, we evaluated both strategies
with an oracle procedure. For each query, we took the bet-
ter rank: either achieved with CBG1 or CCTC. Table 6 re-
peats the results for the baseline and CTC approaches for
convenience and shows the oracle results in the third row.
The oracle further improves the results for CCTC. For ex-
ample, the top-1 rate is 4 % larger (0.904 instead of 0.865).
For top-K rates with larger K, there are still some small
improvements. The oracle indicates that for some queries,
CBG1 is a slightly better feature representation than CCTC.

5. CONCLUSION

In this paper, we showed the potential of CTC [20] for
training a deep salience model with weakly aligned data.
Adapting a model by Bittner et al. [7] to compute a task-
specific mid-level representation, we improved state-of-
the-art results for a cross-modal retrieval task for musical
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(a)

Figure 4. Second theme of Beethoven’s Piano Sonata
Op. 2, No. 2, first movement. (a) Full score with the
chroma sequence of the theme, (b) standard chroma fea-
tures using the full spectral content, (c) CBG1, (d) CCTC.

themes. To achieve these improvements, the feature com-
putation procedure has to reduce the potential polyphony
of the audio recording, which is a major challenge. We
close our paper with a qualitative example to show the fea-
ture’s properties for a representative polyphonic example.

Figure 4a shows the full score and the chroma sequence
for the second theme in the first movement of Beethoven’s
Piano Sonata Op. 2, No. 2. In this case, the theme is
played by the right hand (upper staff), and the left hand
(lower staff) plays an accompaniment. The sixteenth notes
of the accompaniment present a minor triad (E,G,B) in
the first half and a diminished triad (F],A,C) in the sec-
ond half. Ideally, for our retrieval scenario, we aim for a
chroma representation that only captures energy from the
theme and not from the accompaniment. Figures 4b, 4c,
and 4d show chroma features for the full spectral content,
the baseline salience approach CBG1, and our CTC strategy
CCTC, respectively. In all representations, the main notes
of the theme are well represented. However, some shorter
notes of the theme (e.g., fourth note G or seventh note F])
are most evident in CCTC. In general, CCTC attenuates the
energy in the chroma bands corresponding to the accom-
paniment. The ability to represent the chroma energy of
a musical theme is the main reason why our CTC-based
features are a powerful tool for cross-modal retrieval.

In this study, we excluded the challenges due to differ-
ences in transposition. This could be taken into account by
circularly shifting the chroma features [18], or by incorpo-
rating it into the learning procedure [38]. Furthermore, our
oracle experiment suggests a possible next step of combin-
ing our strategy with traditional salience approaches [36].
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ABSTRACT

Singing Voice Separation (SVS) tries to separate
singing voice from a given mixed musical signal. Re-
cently, many U-Net-based models have been proposed for
the SVS task, but there were no existing works that eval-
uate and compare various types of intermediate blocks
that can be used in the U-Net architecture. In this paper,
we introduce a variety of intermediate spectrogram trans-
formation blocks. We implement U-nets based on these
blocks and train them on complex-valued spectrograms to
consider both magnitude and phase. These networks are
then compared on the SDR metric. When using a particu-
lar block composed of convolutional and fully-connected
layers, it achieves state-of-the-art SDR on the MUSDB
singing voice separation task by a large margin of 0.9 dB.
Our code and models are available online. 1

1. INTRODUCTION

Singing Voice Separation (SVS), a special case of Mu-
sic Source Separation (MSS), aims at separating singing
voice from a given mixed musical signal. Recently, many
machine learning-based methods have been proposed for
SVS and MSS tasks. They can be categorized into two
groups: waveform-to-waveform models and spectrogram-
based models. While the former tries to generate the vocal
waveforms directly, the latter estimates spectrograms (usu-
ally magnitude) of vocal waveforms.

Typical spectrogram-based models apply Short-Time
Fourier Transform (STFT) on a mixture waveform to ob-
tain the input spectrograms. Then, they estimate the vo-
cal spectrograms based on these inputs and finally restore
the vocal waveform with inverse STFT (iSTFT). A vari-
ety of spectrogram-based models have been proposed in

1 https://github.com/ws-choi/ISMIR2020_U_Nets_SVS

c© Woosung Choi, Minseok Kim, Jaehwa Chung, Daewon
Lee, Soonyoung Jung. Licensed under a Creative Commons Attribution
4.0 International License (CC BY 4.0). Attribution: Woosung Choi,
Minseok Kim, Jaehwa Chung, Daewon Lee, Soonyoung Jung, “Investi-
gating U-Nets with various Intermediate Blocks for Spectrogram-based
Singing Voice Separation”, in Proc. of the 21st Int. Society for Music
Information Retrieval Conf., Montréal, Canada, 2020.

the music information retrieval community and the ma-
chine learning community. For example, [1] employed
the U-Net [2] architecture, an encoder-decoder structure
with symmetric skip connections. These symmetric skip
connections allow models to recover fine-grained details
of the target object during decoding effectively. Several
works [3–6] also used similar architectures.

They have revealed that U-Net-like architectures can
provide promising performance for SVS and MSS. Exist-
ing works have proposed various types of neural networks
for intermediate blocks. While some models [1, 3] used
simple Convolutional Neural Networks (CNNs) for inter-
mediate blocks, other advanced models tried more com-
plex intermediate blocks. For instance, MMDenseLSTM
[6] used densely connected CNNs followed by Long Short-
Term Memory (LSTM) networks to efficiently model long-
term structures, where LSTM is a variant of Recurrent
Neural Networks (RNNs). However, a thorough search of
the relevant literature indicated that there were no existing
works that evaluate and directly compare these different
types of blocks.

In this paper, we conduct a comparative study of U-Nets
on various intermediate blocks. We designed several types
of blocks based on different design strategies, which we
present in section 3. For each type of block, we imple-
mented at least one SVS model, which are all based on an
identical U-Net framework for fair comparisons. In sec-
tion 4, we summarize the experimental results and discuss
the effect of each design choice. We validate hypotheses
such as that inserting time-distributed operations (see §3.1)
into intermediate blocks can significantly improve perfor-
mance, which led to state-of-the-art (SOTA) performance
on the MUSDB [7] SVS task.

Finally, our U-Net framework directly estimates the tar-
get complex-valued spectrogram (viewing real and imagi-
nary as separate channels), when many existing models es-
timate the target magnitude without phase. In general, con-
sidering phase information improves the separation qual-
ity, as discussed in [8, 9]. Several phase-aware meth-
ods have been proposed for speech enhancement, such as
phase reconstruction methods [8,9], or using raw complex-
valued STFT outputs [10, 11]. In section 4, we show that
the latter method is an efficient way to improve magnitude-
only models, only needing a few minor adjustments.
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2. U-NET-BASED SVS FRAMEWORK

In this section, we describe a U-Net-based SVS frame-
work, which is shared by several models in §4. We first
introduce the ‘Complex as Channel framework’ (CaC), a
spectrogram-based SVS framework, and then define our
U-Net architecture for spectrogram estimation in CaC.

2.1 Complex as Channel Framework

CaC is a singing voice separation framework based on
complex-valued spectrogram estimation. It takes a c-
channeled mixture signal, and outputs c-channeled singing
voice signal. As shown in Figure 1, CaC consists of three
parts as follows:

1. The spectrogram extraction layer extracts a mixture
spectrogram by applying STFT to the c-channeled
input signal. The output of STFT is a complex-
valued spectrogram with c-channels. Consider-
ing the imaginary and real parts as separate real-
valued channels, we view the mixture spectrogram
Mcomplex ∈ Cc×T×F as a (2c)-channeled real-
valued spectrogram M ∈ R(2c)×T×F , where T de-
notes the number of frames and F denotes the num-
ber of the frequency bins in the spectrogram.

2. The complex-valued spectrogram estimation net-
work is a neural network that takes the spectrogram
M of a mixture signal as input and estimates the tar-
get spectrogram T̂ ∈ R (2c)×T×F , which is used for
reconstructing the vocal signal later.

3. The signal reconstruction layer reshapes the esti-
mated spectrogram T̂ into the complex-valued spec-
trogram T̂complex ∈ C c×T×F , as shown in Figure
1. It then restores the estimated singing voice signal
via inverse-STFT on T̂complex.

Figure 1. The Complex as Channel Framework

For a given mixture spectrogram M, we train the
complex-valued spectrogram estimation network in a su-
pervised fashion to minimize the mean square error be-
tween the output T̂ and the ground-truth spectrogram T
of the singing voice signal.

It should be noted that the shape of M and T̂ is (2c) ×
T × F , considering real and imaginary parts of a spec-
trogram as separate real-valued channels. This approach
allows CaC to fully utilize the information in complex-
valued spectrograms for both the input and the output.
Meanwhile, current SOTA models (e.g., SA-SHN [4] and
DGRU-DGConv [12]) decompose a complex-valued spec-
trogram into magnitude and phase, and only use the mag-
nitude for the input of their networks. Although SA-SHN
and DGRU-DGConv yielded impressive results by intro-
ducing novel attention method [4] and by adopting dilated
1-D convolutions [12] with Gated Recurrent Units (GRU)
[13] respectively, they do not consider phase information.
In §4.5, we compare the Source-to-Distirtion (SDR) [14]
performance of models based on the CaC framework and
that of models based on the Magnitude-only framework.

2.2 U-Net Architecture for Spectrogram Estimation

For spectrogram estimation in CaC, we use a U-Net-based
architecture. It consists of an encoder and a decoder: the
encoder transforms M into a downsized spectrogram-like
representation, and the decoder takes it and returns the es-
timated target spectrogram T̂ . Before we describe them in
detail, we introduce two types of main components in the
architecture as follows.

• An intermediate block transforms an input
spectrogram-like tensor into an equally-sized tensor
(possibly with a different number of channels).

• A down/up sampling layer halves/doubles the scale
of an input tensor either in the time, frequency, or
Time-Frequency domain.

Figure 2. U-Net Architecture for Spectrogram Estimation

As shown in Figure 2, the number of down-sampling
layers and the number of up-sampling layers are the same.
Also, it uses the same number of intermediate blocks in
the encoding and the decoding phase. It has an additional
block in between its encoder and decoder. Thus, the total
number of blocks should be an odd integer. It has skip con-
nections that concatenate output feature maps of the same
scale between the encoder and the decoder.
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Besides basic components, our architecture has two ad-
ditional convolution layers, as illustrated in Figure 2. We
use them to increase or restore the number of channels. Be-
fore describing them, let us introduce some notations. We
denote the input of the l-th intermediate block by X(l−1),
and the output by X(l). The size of X(l−1) is denoted
by c

(l)
in × T (l) × F (l), where c

(l)
in represents the number

of channels and and T (l) × F (l) represents the size of the
spectrogram-like tensor. Also, we denote the size of X(l)

by c
(l)
out × T (l) × F (l), where c

(l)
out is the number of chan-

nels. Using these notations, we denote the input of the
first block by X(0), and its size by c

(1)
in × T (1) × F (1). To

increase the number of channels, it applies a 1 × 2 con-
volution with c

(1)
in output channels followed by ReLU [15]

activation to the given input M. To adjust the number of
channels, it also applies a final 1×2 convolution with (2c)
output channels to the output of the final block. Note that
the last layer is not followed by any activation function
since target TF bins can be negative. We empirically set
the parameter c

(1)
in to be 24 in our experiments. Models

with smaller c(1)in (e.g., 12) are trained faster, but usually
perform inferior than models with larger size of c(1)in .

We can implement various SVS models based on this
architecture in the CaC framework because multiple op-
tions are available for intermediate blocks. In section 3,
we present several neural networks which can be used as
intermediate blocks in this paper.

3. INTERMEDIATE BLOCKS

We present several types of intermediate blocks based
on different design strategies. We first present time-
distributed blocks and then present time-frequency blocks.

3.1 Time-Distributed Blocks

Some existing models use CNNs (e.g., [16]) for intermedi-
ate blocks to extract timbre features of the target source.
However, the authors of [8] reported that conventional
CNN kernels are limited for this task. They found that
long-range correlations exist along the frequency axis in
the spectrogram of voice signals, which Fully-connected
Neural Networks (FCNs) can efficiently capture. They
proposed a model named Phasen for speech enhancement,
which uses the Frequency Transformation Block (FTB)
that has a single-layered FCN without bias. This FCN is
applied to each frame of the internal representation in a
time-distributed manner.

Inspired by TFB, we introduce time-distributed blocks,
which are applied to a single frame of a spectrogram-like
feature map. These blocks try to extract time-independent
features that help singing voice separation without using
inter-frame operations. We first introduce an FCN-based
block and then propose an alternative time-distributed
block based on 1-D CNNs.

3.1.1 Time-Distributed Fully-connected networks

We present an FCN-based intermediate block, called Time-
Distributed Fully-connected network (TDF). As illustrated

in Figure 3, a TDF block is applied to each channel of each
frame separately and identically.

Figure 3. Time-Distributed Fully-connected networks

Suppose that the l-th intermediate block in our U-Net
structure takes input X(l−1) into an output X(l). As shown
in Figure 3, a fully-connected network is applied separately
and identically to each frame (i.e., X(l−1)[i, j, :]) in order
to transform an input tensor in a time-distributed fashion.
While an FTB of Phasen [8] is single-layered, a TDF block
can be either single- or multi-layered. Each layer is defined
as consecutive operations: a fully-connected layer, Batch
Norm (BN) [17], and ReLU [15]. If it is multi-layered,
then each internal layer maps an input to the hidden feature
space, and its final layer maps the internal vector to RF (l)

.
The number of hidden units is bF (l)/bnc, where we denote
the bottleneck factor by bf . We can reduce parameters if
we use two-layered TDFs of bf > 2. We investigate the
effect of adding additional layers in §4.2.

3.1.2 Time-Distributed Convolutions

We propose an alternative time-distributed block named
Time-Distributed Convolutions (TDC), which is applied
separately and identically to each multi-channeled frame.
It is a series of 1-D convolution layers. Inspired by [5,6], it
takes form of a dense block [18] structure. A dense block
consists of densely connected composite layers, where
each composite layer is defined as three consecutive op-
erations: 1-D convolution, BN, and ReLU. As discussed
in [5, 6, 18] the densely connected structure enables each
layer to propagate the gradient directly to all preceding lay-
ers, making a deep CNN training more efficient.

Figure 4. Time-Distributed Convolutions

3.2 Time-Frequency Blocks

The performances of U-Nets with time-distributed blocks
were above our expectation (see §4.2), but were still infe-
rior considerably to those of current SOTA methods. The
reason is that features observed in musical sources include
sequential patterns (e.g., vibrato, tremolo, and crescendo)
or musical patterns (e.g., rhythm, repetitive structure),
which cannot be modeled by time-distributed blocks.
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While time-distributed blocks cannot model the tem-
poral context, time-frequency blocks try to extract fea-
tures considering both the time and the frequency dimen-
sions. We introduce the Time-Frequency Convolutions
(TFC) block, which is used in [5]. We also propose two
novel blocks that combine two different transformations.

3.2.1 Time-Frequency Convolutions

The Time-Frequency Convolutions (TFC) is a dense block
of 2-D CNNs, as shown in Figure 5. The dense block con-
sists of densely connected composite layers, where each
layer is defined as three consecutive operations: 2-D con-
volution, BN, and ReLU. It is applied to the spectrogram-
like input representation in the time-frequency domain.
Every convolution layer in a dense block has kernels of
size (kF , kT ). Its 2-D filters are trained to jointly capture
features along both frequency and temporal axes.

Figure 5. Time-Frequency Convolutions

3.2.2 Time-Frequency Convolutions with TDF

We propose the Time-Frequency Convolutions with Time-
Distributed Fully-connected networks (TFC-TDF) block.
It utilizes two different blocks inside: a TFC block and
a TDF block. Figure 6 describes a TFC-TDF block. It
first maps the input X(l−1) to a same-sized representation
with c

(l)
out channels by applying the TFC block. Then the

TDF block is applied to the dense block output. A residual
connection is also added for efficient gradient flow.

Figure 6. Time-Frequency Convolutions with TDF

Phasen [8] has shown that inserting time-distributed
operations into intermediate blocks can improve speech
enhancement performance. We validate whether it also
works for SVS or not in §4.3.

3.2.3 Time-Distributed Convolutions with RNNs

We propose an alternative way to consider both the time
and frequency dimensions. A Time-Distributed Convolu-
tions with Recurrent Neural Networks (TDC-RNN) block
uses two different blocks: a TDC block for extracting tim-
bre features and RNNs for capturing temporal patterns. It
extracts timbre features and temporal features separately,
unlike a TFC block. We validate whether this approach can

outperform the 2-D CNN approach by comparing TDC-
RNNs with TFCs in §4.3.

The structure of a TDC-RNN block is similar to that of
a TFC-TDF block. It applies the TDC block to an input
X(l−1), and obtains a same sized hidden representation
with c

(l)
out channels. The RNNs compute the hidden rep-

resentation and output an equally sized tensor. A residual
connection is added, as is a TFC-TDF block.

4. EXPERIMENT

We evaluate U-Nets with different types of blocks intro-
duced in §3. We compare the performance of models in
§4.2 and §4.3. Also, we compare our models with SOTA
models in §4.4. We compare the spectrogram estimation
framework in §4.5. We discuss reusable insights in §4.6.

4.1 Setup

4.1.1 Dataset

Train and test data were obtained from the MUSDB dataset
[7]. The train and test sets of MUSDB have 100 and 50 mu-
sical tracks each, all stereo and sampled at 44100 Hz. Each
track file consists of the mixture and its four source audios:
‘vocals,’ ‘drums,’ ‘bass’ and ‘other.’ Since we are evaluat-
ing on singing voice separation, we only use the ‘vocals’
source audio as the separation target for each mixture track.

4.1.2 Model Configurations

We implemented U-Nets with different blocks (§3). Each
model is based on the U-Net architecture (§2.2) on the
CaC framework (§2.1). We set c(1)in , the number of internal
channels to be 24, as mentioned in §2.2. Each model uses
a single type of block for its intermediate blocks. We usu-
ally used an FFT window size of 2048 and a hop size of
1024 for STFT. However, we used a larger window size in
some models for a fair comparison with SOTA methods.

4.1.3 Training and Evaluation

Weights of each model were optimized with RMSprop
[19] with learning rate lr ∈ [0.0005, 0.001] depending on
model depth. Each model is trained to minimize the mean
square error between T̂ and T as mentioned in §2.1. We
use the default validation set (14 tracks) as defined in the
MUSDB package, and use the Mean Squared Error (MSE)
between target and estimated signal (waveform) as the val-
idation metric for validation. Data augmentation [20] was
done on the fly to obtain fixed-length mixture audio clips
comprised of the source audio clips from different tracks.

We use the official evaluation tool 2 provided by the
organizers of the SiSEC2018 [21] to measure Source-to-
Distortion Ratio (SDR) [14]. We use the median SDR
value over all the test set tracks to obtain the overall SDR
performance for each run, as done in the SiSEC2018. We
report the average of ‘median SDR values’ over three runs
for each model.

2 https://github.com/sigsep/sigsep-mus-eval
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block type # blocks # params SDR
TDC (w/ sampling) 17 0.54M 4.86
TDC (w/o sampling) 17 0.52M 3.78
TDC (w/o sampling) 3 0.09M 3.56
TDF (w/o hidden layer) 17 2.83M 4.75
TDF (w/ hidden layer) 17 1.44M 4.05
TDF (w/ hidden layer) 3 1.19M 4.01

Table 1. Evaluation results of Time-Distributed Blocks.

4.2 U-Nets with Time-Distributed Blocks

We implemented and trained U-nets with TDC and TDF
blocks. We also implemented models with TDC blocks
that do not use down/up-sampling to investigate the ef-
fect of down/up-sampling in the frequency axis. The other
models use 1-D convolution/transposed-convolution layers
with stride 2 for down/up-sampling. Every TDC block is a
dense block with 5 composite layers with the growth rate
24 (used in dense blocks [18]). The kernel size of each
convolution layer in a dense block is 3. Each TDF block is
either single-layered or two-layered. The bottleneck factor
bf of each TDF block is set to be 4. All models have 17
intermediate blocks except for two shallow models.

We summarize evaluation results in Table 1. The TDC
block-based U-Net with sampling achieves an SDR of
4.86, the highest among the three models. Results show
that the use of down/up-sampling in TDC-based U-Nets
was significant, although the model without sampling can
exploit higher resolution of internal representations. It
may indicate that enlarging receptive fields via sampling
may help the model to capture long-term dependencies bet-
ter, and long-term dependencies are preferred over local
features when distinguishing unique time-independent fre-
quency patterns. (at least for these configurations).

Although FCNs can capture long-ranged patterns along
the frequency domain, as mentioned in [8], TDF-based U-
Nets did not perform well enough compared to the TDC-
based models in a deep architecture. Among TDF-based
models, the U-Net equipping single-layered TDFs (the
fourth row of Table 1) outperforms the other models. How-
ever, it is notable that we can reduce parameters when we
use two-layered TDFs. Also, we found that the TDF blocks
can outperform TDC blocks in a shallow architecture (the
third and sixth row of Table 1). The reason is that the
U-Nets with few TDC blocks has a small receptive field,
while a single TDF block has a full receptive field in the
frequency dimension, which has led us to inject it in a time-
frequency block instead of TDC (see §3.2.2).

4.3 U-Nets with Time-Frequency Blocks

We implemented U-Nets with time-frequency blocks. All
models are trained on 3 seconds (128 STFT frames) of mu-
sic. Since the number of frequency bins is much larger
than the number of frames, models with more than 7 neu-
ral transforms use both 2 × 2 or 2 × 1 sized down/up-
sampling layers to scale the frequency axis more than 3

model sampling # blocks # params SDR
TFC O 17 1.56M 6.89
TFC X 17 1.56M 6.75
TDC-RNN O 17 2.08M 6.69
TFC-TDF O 7 0.99M 7.07
TFC-TDF O 17 1.93M 7.12

Table 2. Evaluation results of Time-Frequency Blocks.

times while maintaining the number of scales in the tem-
poral axis to 3. Exceptionally, we use different down/up-
sampling layers for one model to investigate the effect of
down/up-sampling in the temporal axis.

We set every TFC block to have 5 convolution layers
with kernel size 3× 3. We set the growth rate to be 24, the
same growth rate of §4.2. By using this TFC block config-
uration, we implemented a TFC-based U-Net (the first row
of Table 2). We set the model in the second row to use dif-
ferent down/up-sampling layers to investigate the effect of
down/up-sampling in the temporal axis. Every kernel size
used in each down/up-sampling layer of this model is 2×1
to preserve the temporal resolution while scaling frequency
resolution. The first two rows of Table 2 summarize the
experiment results of two TFC-based models. The model
that preserves the temporal resolution was slightly inferior
to the other model. It is also notable that our U-Nets with
TFC blocks achieve comparable results with state-of-the-
art methods 4.4, even using lower frequency resolution.
Compared to the frequency axis where the TDC-based U-
Net with down/up-sampling outperforms the counterpart
model, no significant SDR was gained by enlarging the re-
ceptive field by down/up-sampling.

We reused the configuration of TDC in of §4.2, for
TDCs in TDC-RNN blocks. The RNN layers were im-
plemented with bidirectional GRUs with a single hidden
layer, which has f/16 hidden units, where f is the number
of input frequency bins. Although having more parame-
ters and a better potential for capturing long temporal de-
pendencies than the two fully convolutional models, TDC-
RNN performs lower than them. Increasing the number of
hidden units or hidden layers could have increased SDR
since many other state-of-the-art recurrent models use a
hidden size that is at least 512. Increasing the number of
STFT frames, thus training on longer clips of music, might
have also worked. Although it performs the worst among
the time-frequency blocks, it is superior to all the time-
distributed blocks. It indicates that inter-frame operations
are necessary for higher quality separation.

The fourth and fifth rows of the Table 2 shows promis-
ing results regarding the U-Nets with TFC-TDF blocks.
We reused the same TFC setting above, and we set bf to
be 16 for each TDF. The 7-blocked U-Net with TFC-TDFs
outperforms the other 17-blocked models. These results
show that inserting FCNs into intermediate blocks can be
useful for MSS as well as for Speech Enhancement [8].
Also, results show that it is also achievable with fewer pa-
rameters by using FCNs with a bottleneck layer.
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model # parameters SDR (vocals)
DGRU-DGConv more than 1.9M 6.99

TAK1 1.22M 6.60
UMX 8.89M 6.32

TFC-TDF (small) 0.99M 7.07 ±.08
TFC-TDF (large) 2.24M 7.98 ±.07

Table 3. Comparison: SDR median value on test set.

esimation n_fft # blocks # params SDR
CaC 2048 7 0.99M 7.07
Mag 2048 7 0.99M 6.43
CaC 4096 9 2.24M 7.98
Mag 4096 9 2.24M 7.24

Table 4. Comparison of TFC-TDFs: CaC vs Mag

4.4 Comparison with SOTA models

We compare our models with other spectrogram-based
models on the MUSDB benchmark. The first three rows
of Table 3 shows the SDR performance of SOTA models,
namely DGRU-DGConv [12], TAK1 [6], and UMX [22].
Their SDRs can be found in [12], SiSEC2018 repository 3 ,
and UMX repository 4 . We estimated the lower bound
of the number of parameters of DGRU-DGConv with 1-
D CNN parameters without considering its GRUs.

Comparing with Table 2, we can see that our models
perform comparably to or even outperform existing models
even with less frequency resolution and fewer parameters.
On top of that, our TFC extensions do not use recurrent
layers, which is a key factor in the other previous models.
It may lead to shorter forward/backward propagation time.
Also, it is worth noting that previous models adopt Multi-
channel Wiener Filtering as a post-processing method to
further enhance SDR. Ours directly use the signal recon-
struction output without such post-processing.

For a fair comparison with SOTA models, we trained
an additional U-Net with 9 TFC-TDF blocks (notated as
‘large’ in Table 3) with the same frequency resolution
as the other SOTA models (FFT window size = 4096)
and achieved outstanding results with a 0.9 dB gain over
DGRU-DGConv.

4.5 Spectrogram Estimation: Complex vs Magnitude

For our final experiment, we see how much SDR was
gained by extending a magnitude-only model into a CaC
model. Our TFC-TDF-based U-Nets in Table 4 are com-
pared to their magnitude-only form (referred to as ‘Mag’).
They use the same hyperparameter set except for c(0)in , the
input/output number of channels. Mag also has an addi-
tional ReLU after the final 1 × 1 convolution to obtain
non-negative-valued output spectrograms. Results show
that training with raw STFT outputs instead of magnitudes

3 https://github.com/sigsep/sigsep-mus-2018
4 https://github.com/sigsep/open-unmix-pytorch

significantly boosts SDR performance. It is also notable
that the Mag model with n_fft of 4096 still outperforms all
previous state-of-the-art models in Table 3.

4.6 Discussion: Developing Reusable Insights

Our work provides a practical guideline for choosing fun-
damental building blocks to develop an SVS or MSS model
based on the U-Net architecture as follows.

• TDC-based models are sensitive to the number of
blocks, compared to TDF-based models.

• Using down/up-sampling is important for CNN-
based blocks, especially in the frequency dimension.

• Stacking 2-D CNNs is a simple but effective way to
capture T and F features, compared to TDC-RNNs.

• Injecting a time-distributed block to a time-
frequency block can improve SDR.

• A simple extension from a magnitude-only U-Net to
a CaC U-Net can improve SDR.

Our work is not limited to the U-Net-architecture nor
MSS. Blocks can be used as core components in more
complex architectures as well. We can use different types
of blocks for a single model, meaning that a lot of space
remains for improvement. Also, our observations can be
exploited in other MIR tasks such as Automatic Music
Transcription (AMT) or Music Generation: for example,
we expect that injecting TDFs to intermediate blocks for
f0 estimation model can improve performance since fully-
connected layer can efficiently model long-range correla-
tions such as harmonics.

5. CONCLUSION AND FUTURE WORKS

In this paper, we designed several types of blocks based on
different design strategies. We implemented U-Net mod-
els with these blocks for SVS and evaluated their perfor-
mance. Our experiments provide abundant material for
future works by comparing several U-Nets with different
types of blocks. Also, one of our models outperforms
SOTA methods. For future work, we would like to extend
this model to utilize attention networks for modeling long-
term dependencies observed in both the frequency and the
temporal axis.
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ABSTRACT

The computational analysis of music has traditionally seen
a sharp divide between the “audio approach” relying on
signal processing and the “symbolic approach” based on
scores. Likewise, there has also been an unfortunate gap
between any such computational endeavour and more tra-
ditional approaches as used in historical musicology. In
this paper, we take a step towards ameliorating this situa-
tion through the application of a computational method for
visualizing local key characteristics in audio recordings.
We exploit these visualizations of diatonic scale content by
discussing their musicological implications, being aware
of methodological limitations as for the case of minor keys.
As a proof of concept, we use this method for investigating
differences between the traditional sonata-form model and
selected Beethoven piano sonatas in the context of sonata
theory from the end of the 18th century. We consider this
scenario as an example for a rewarding dialogue between
computer science and historical musicology.

1. INTRODUCTION

The analysis of musical works in terms of their compo-
sitional style and context is at the core of historical mu-
sicology. Scholars engage with a reasonably large body
of works over the course of their career and make obser-
vations about these works through manual analysis. As
valuable as this is, it is a time-consuming and individu-
ated approach that poses difficulties for making meaning-
ful observations at scale. In this paper, we seek to demon-
strate how a question of musicological relevance could be
complemented by using computational analysis methods.
While such methods can never achieve the flexible and in-
terconnected consideration of the human mind nor capture
the compositional intricacies of a specific work, we aim to
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show that suitable visualizations can assist in the process
of expert interpretation in a rewarding way.

Numerous computational methods for harmony analy-
sis have been developed over the past decades, centered
on global key detection [1–4], local key estimation [5–7],
chordal analysis [8–10], and their combination into func-
tional harmony analysis systems [11–13]. Many of these
are based on symbolic encodings of music notation such as
MIDI or MusicXML. However, symbolic music datasets
are rarely available, in particular when requiring symbolic
encodings of high quality covering an entire corpus of mu-
sic (not just individual pieces). Optical Music Recogni-
tion (OMR) software for automatically converting graph-
ical formats into symbolic data does not yet offer reli-
able results, meaning that time-consuming manual post-
processing is often required [14, 15].

Beyond such practical problems, we should remember
that Western music notation is essentially “prescriptive”:
a set of instructions for performance that requires reading
and interpretation. As an alternative to the processing of
sheet music, analyses can be carried out on the basis of au-
dio recordings [4, 7, 10]. In this paper, we make use of an
existing audio-based method [16] for visualizing the dia-
tonic scale content of a music recording over time in order
to complement and facilitate the close analytical reading
by human experts. We address this paper to both musicol-
ogists and computer scientists alike and thus explain the
relevant background from both domains.

We first set out the musicological context (Section 2),
describe the computational method (Section 3), and ex-
plain its musical implications through the example of three
piano sonatas by L. v. Beethoven (Section 4), which have
been subject to automatic analysis [9, 12, 17]. Using our
visualizations, we discuss the implications for sonata form
theories (Section 5). Finally, we summarize our findings
and the rewards of an interdisciplinary dialogue between
computer science and musicology (Section 6).

2. MUSICOLOGICAL BACKGROUND

Our focus in this paper is on large-scale tonal structures
that are attested to play a crucial role in sonata form. This
section provides a short, simplified introduction to sonata
form for readers unfamiliar with it and serves to introduce
the main musicological question addressed in this paper.
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Sonata form is a central model for describing the first
movement of most multi-movement works in classical mu-
sic from about 1770 far into the 19th century. The term
is applicable not only to sonatas but also to symphonies,
string quartets, and other genres, and thus has a wide ex-
planatory potential for the music of the time, with a focus
on these works’ first movements.

The definition of sonata form widely adopted by musi-
cians and musicologists seems to stem primarily from the
writings of A. B. Marx [18], which were driven mainly by
an effort to understand the music of then recently deceased
Ludwig van Beethoven (1770–1827). According to this
model, the sonata is divided into three main sections: a
first section, later denoted as exposition (in two or more
keys, often repeated), a central development, and a recapit-
ulation of the exposition (set mainly in one key). This is
the core structure which may be framed by an introduction
at the start, and/or a coda at the end [19]. Automatically
detecting these large-scale segments and their tonal rela-
tions has been approached both for Mozart’s string quar-
tets [20, 21] and Beethoven’s piano sonatas [17].

The exposition is tasked with setting out the melodic
material (e. g., themes or motives) and the main key rela-
tionships. It is usually divided into a first subject area, fol-
lowed by a transition into a second subject area, and a short
cadential passage (Schlussgruppe). Crucially, the two focal
areas are defined by contrasts both in theme (melody) and
key (tonality). The typical tonal pairing is of a major key
and its dominant key (the major key one fifth higher, e. g.,
C major and G major), or of a minor key with its relative
major key (e. g., A minor and C major).

Our primary focus will be on key, which we approxi-
mate in the broader sense with our visualizations of dia-
tonic pitch class content. With this computational method,
we elucidate the tonal relations in specific early Beethoven
piano sonatas. In this paper, we focus on works in major
keys overall and on the exposition sections of those works.

3. COMPUTATIONAL APPROACH

In this work, we employ a computational method for vi-
sualizing local keys or, more precisely, the diatonic pitch
class content over the course of a piece, closely following
the approach proposed in [16]. The method operates on
audio recordings, i. e., performances of the pieces, thus al-
lowing for scalability to a wide repertoire (see Section 1).

3.1 Chroma-based Scale Estimation

Our method is based on the measurement of spectral ener-
gies over time. These energies are summarized into twelve
chroma bands irrespective of their octave, according to the
pitch classes of the twelve-tone equal-tempered scale. The
resulting chroma features can be represented as twelve-
dimensional vectors whose entries refer to the pitch classes
C, C], . . ., B in chromatic order. For chroma extraction,
we use the filter-bank approach provided by the chroma
toolbox [22] with a feature rate of 10 Hz (i. e., ten chroma
vectors per second). For each frame, we match the chroma

vector with binary diatonic scale templates using the inner
product (cosine similarity). For instance, the template for
the “0 diatonic scale” (corresponding to the pitch classes
of the C major and A natural minor scales) is given by

t0 = (1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1)
>
. (1)

Assuming enharmonic equivalence (C]=D[), there are a
total of 12 diatonic scales, whose templates are obtained
by circularly shifting the template t0 shown above. Thus,
we obtain for each frame an analysis given by a twelve-
dimensional vector. We will discuss our choice of using
binary diatonic templates in Section 3.4.

3.2 Pre-processing

Before the template matching step described above, we ap-
ply several pre-processing steps. Since local keys or scales
refer to the pitch class content of larger sections of mu-
sic, we smooth the chromagrams (with an initial feature
rate of 10 Hz) using a window of size w ∈ N in frames
and a hopsize of 10 frames (one second). The musical im-
plications of the window size parameter will be discussed
in Section 4.3. Additionally, we normalize the smoothed
chroma features according to the `2-norm.

3.3 Post-processing and Visualisation

In this interdisciplinary work, we do not aim for a fully au-
tomatic “key detection,” which locally decides on the most
likely key or scale. Instead, following [16], we propose the
use of suitable visualization techniques allowing for a di-
rect interpretation of the continuous-valued diatonic scale
probabilities in the musicological discussion. For gener-
ating this visualization, we obtain re-scaled local analyses
by using the softmax function, thus suppressing weak com-
ponents and enhancing large ones. Using a normalization
with respect to the `1-norm, we can interpret the analysis
as pseudo-probabilities of diatonic scales, which we then
visualize in grayscale, where darker gray corresponds to
higher probabilities (see Figure 1 for an example).

We adopt a musical criterion for arranging the order of
scales in this visualisation. There are two main options of
ordering the scales, either chromatically (C, C], . . . ) or
according to the circle of fifths (C, G, . . . ). Motivated by
[23, 24], we prefer the latter arrangement accounting for
the similarity of fifth-related scales, which have six out of
seven pitch classes in common. We set the diatonic scale
corresponding to the piece’s global key in the center of the
visualization, with upper-fifth-related scales (more sharps)
above and lower-fifth-related scales (more flats) below that
center scale. This “global key normalization” facilitates
the comparison between movements in different keys.

3.4 Scale versus Local Key

Our analytical approach directly maps the locally pre-
dominant pitch class content (as measured from the audio
recordings) to probabilities for diatonic scales. While there
have been many such template-based approaches based on
psychological and empirical studies [25, 26], our choice
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Figure 1. L. v. Beethoven, piano sonata Op. 7 in E[ major, 1st mvmt. Allegro molto e con brio, exposition. Computational
tonal analysis with a window size of w = 4 seconds.

of straightforward diatonic templates allows for an inter-
pretable and objective investigation of the tonal content.

There are certainly limitations to this approach. Most
importantly, it relates to the notion of local key only in
a loose way since there is a methodological gap between
“scale” and “key.” In particular, pitch class content is not
the only determinant of musical key. Furthermore, the
pitch class content is rarely exclusively diatonic, which is
especially the case for pieces in minor, where scale degrees
outside the natural minor scale (]6̂ and ]7̂) play a crucial
role. Moreover, our method cannot resolve relative key
differences such as C major – A minor, which would be
relevant particularly for minor key movements. 1 On the
other hand, it provides an easier overview (only 12 scales)
and is not susceptible to relative key confusions.

Leaving aside these methodological gaps, even identify-
ing a scale can be problematic. For example, certain chords
such as the (relatively rare) augmented triad and the (not at
all rare) diminished seventh chord pose challenges because
they cannot be unambiguously assigned to a diatonic scale.
Moreover, frequent modulations constitute a problem for
assigning a single scale to a specified time window. That
being said, this computational issue reflects a genuine mu-
sical problem: hearing a tonal moment in isolation would
leave the allocation of a key highly ambiguous—and com-
posers (Beethoven very much included) exploit this po-
tential for ambiguity. It is only through context that we
are able to make clear assertions. We remain mindful of
these limitations as we proceed to consider how these vi-
sualizations may yet be useful in support of a better under-
standing of sonata form in general and, more precisely, in
Beethoven’s early piano sonatas.

4. APPLICATION TO SONATA EXPOSITIONS

Consequently, we apply the method described above to
several exposition sections of Beethoven’s early sonatas
(first movement, respectively). The time stamps are given
in MM:SS and refer to Daniel Barenboim’s 1984 set of
recordings for Deutsche Grammophon.

1 We provide an overview of all 28 first movements in sonata form (in-
luding minor key examples) on www.audiolabs-erlangen.de/
resources/MIR/BeethovenSonataAnalyses

4.1 Sonata Op. 7 in E[ major

Figure 1 provides an example of our visualization method
for the exposition from Beethoven’s piano sonata Op. 7 in
E[ major, first movement. As E[ major is the global key of
this movement, the relative diatonic level 0 on the y-axis of
this figure refers to an absolute scale of –3, corresponding
to the key signature of E[ major and its relative minor (C
minor, both with a key signature of three [s). Likewise, +1
refers to the key signature of B[ major (and G minor), –1
stands for A[ major (and F minor), and so on.

In addition to the time stamps, the figure (and all subse-
quent figures) also provide vertical lines (in red) to divide
the sections on the basis of Donald F. Tovey’s iconic guide
to Beethoven’s piano sonatas [27]. These lines add addi-
tional score-related timestamps given in measure numbers
(in blue) and are paired with the formal labels that Tovey
used, following the standard terms for the sonata form’s
main parts discussed above. The vertical lines on Figure 1
use the following abbreviations: “1” stands for the first
group, “T” for the transition, “2” for the second group, and
“C” for the cadence group. The following section takes
a closer look at the example with a view to both the vi-
sualization method and the implications for understanding
sonata form in this specific repertoire.

4.2 A Closer Look

The visualization in Figure 1 provides a straightforward,
easily readable overview of the diatonic scale content in
the exposition of the first movement. The movement be-
gins with a moment of ambiguity, centered on the central
(0) scale (corresponding to E[ major), and quickly settles
much more emphatically into that tonal region for the first
22 seconds (until m. 24). A phase of tonal instability fol-
lows, befitting the transition phase of a sonata form exposi-
tion, which traverses at least the scales –1 (4[ or A[ major /
F minor) to –2 (5[), and then +1 (2[) to +3 (no accidentals).

At 0:37 (m. 41), a longer section starts in the +1 area,
neatly corresponding to what is traditionally called the
“Second Theme” or “Second Group.” At 1:11 (m. 79), the
proportions (with a second subject equal in length to the
first) might lead us to expect the exposition to close. In-
stead, about a minute more music follows, with only the
last approx. 10 seconds being displayed in the anticipated
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+1 area (mm. 127–136, largely corresponding to the final
group). The course of the movement from 1:11 to 1:57
(mm. 79–127), by contrast, seems to be characterized by
greater harmonic mobility, centered on the +1 axis, but not
restricted to it. Regardless of any designation of the formal
parts, the graphic shows a clear distinction in the course
of the exposition from 0:38 (m. 41) into a tonally stable
part until 1:11 (mm. 78–79), a more flexible part until 1:57
(m. 127), and again a stable one until the end.

4.3 Effects of the Window Size

As one of the essential properties of our methodology, we
have to specify the window size parameter w, which de-
fines the temporal context of the local scale analysis. The
use of a window size of four seconds in Figure 1 affects the
result we see in that visualization. In order to demonstrate
the effect of this parameter, Figure 2a–e shows five differ-
ent visualizations of the same example with window sizes
varying from 2–20 seconds.

Naturally, shorter time windows portray a more “at-
omized” harmonic course, emphasizing the moment-to-
moment details, while longer windows diminish the indi-
vidual moments in favor of the “bigger picture.” Any gain
in uniformity and clarity comes at the cost of a correspond-
ing loss in detail. In this respect, a computational analysis
does not differ from a manual one, in which the analyst also
has to decide whether to focus on fine-grained details or to
favour better readability and clarity. This speaks to mu-
sic theory’s attention to the “level” of reductive analysis
[28]—an approach to which the variable window size on
offer here may be highly suitable. Multi-scale approaches
for simultaneously using several window sizes suggest an
alternative [29]. However, these visualizations require a
third dimension (usually color-coded), which complicates
readability in our application scenario. Moreover, interac-
tive visualizations with a flexible adjustment of the window
size can be realized with user interfaces or websites.

To better illustrate the behaviour of our method, we now
proceed to discuss the effects of the window size at the ex-
ample of several specific passages. With a window size
of four seconds (Figure 1), the dominant seventh chord G-
B[-D[-E[ of A[ major in m. 10 (at 0:08) does not lead to
any deviation from the level 0. With a resolution of two
seconds (Figure 2a), it causes a much stronger gray col-
oration, which reaches down to the –3 level (correspond-
ing to G[ major / E[ minor). Similarly, the diminished sev-
enth chord F]-A-C-E[ in mm. 79–89 (1:11–1:22) triggers
a whole range of possible interpretations. First, the chord
eludes the assignment to a single diatonic scale, and sec-
ond, through the pitch class F], it does not fit into the pre-
vious B[ major context (–2), nor through F] and E[ into
the subsequent C major context (0). In the case of longer
windows, these uncertainties are smoothed out and there-
fore no longer catch the eye (see Figure 2d–e).

An even larger window size, e˙ g. of 20 seconds (Fig-
ure 2e), shows that only certain resolutions make sense for
a specific work. Such large windows neither increase clar-
ity nor do all the gray shadings of ambiguity disappear. In

Figure 2. L. v. Beethoven, piano sonata Op. 7 in E[ major,
1st mvmt. Allegro molto e con brio, exposition. Computa-
tional tonal analysis with a window size w of (a) 2 sec., (b)
6 sec., (c) 8 sec., (d) 12 sec., (e) 20 sec.

Figure 2e, the C major section in mm. 81ff. (1:12–1:22)
is no longer visible as +3 (C major / A minor); instead,
it blurs with the +2 level. At the same time, the tonally
stable final group (+1), which only lasts about 10 seconds
(mm. 127–136), shows considerably more shades of gray
on the 0 level than visualizations with shorter windows,
which is caused by the previous measures and the subse-
quent repetition of the exposition. The choice of very large
windows not only leads to an increased smoothing of the
visualization but also reaches limits beyond which the re-
sults are no longer meaningful.

In the present sonata, window sizes of 4–12 seconds
have proven to be useful, illuminating most of the rele-
vant phenomena. In particular, these visualizations clearly
highlight phases of tonal stability and instability as well as
diatonic regions, which are of high importance for the for-
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Figure 3. L. v. Beethoven, piano sonata Op. 2 No. 3 in C major, 1st mvmt. Allegro con brio, exposition. Computational
tonal analysis with a window size of w = 4 seconds.

Figure 4. L. v. Beethoven, piano sonata Op. 2 No. 3 in C major, 1st mvmt. Allegro con brio, mm. 25–28.

mal organization of expositions. Based on these observa-
tions, we now examine two further sonata expositions that
have received frequent attention in the literature: sonatas
Op. 2 No. 3 in C major and Op. 10 No. 3 in D major.

4.4 Sonata Op. 2 No. 3 in C major

Spanning 90 measures, the exposition of the sonata
Op. 2 No. 3 in C major is even more extensive than that
of Op. 7. The computational analysis (Figure 3) shows that
the piece remains in a C major context for an unusually
long time. These first 26 measures include the main sub-
ject (mm. 1–13) followed by playful figurations, which sur-
prisingly do not modulate (mm. 13–21), and a cadence pas-
sage (mm. 21–26), which ends after a G major scale on the
single tone G without having modulated (see Figure 4). 2

From m. 27 (0:43) on, this is followed by the melodic motif
in G minor mentioned above, which is repeated in D minor
(m. 33) and continued towards A minor (m. 39).

The visualization makes it clear that this G minor
passage is by no means the beginning of the “Second
Group (or Transition and Second Group) in Dominant”—
as marked in Figure 3 after Tovey—but the beginning of
the modulation to the upper-fifth key, i. e., the “transition.”
First of all, the abrupt tonal change in m. 27 (0:43) is vis-
ible. 3 However, the visualization does not show G minor
(–2) but D major (+2), which may be caused by the fre-
quent occurrence of the leading notes F] and C]. In the fol-
lowing modulation, we observe level 0 at 1:03 (mm. 39ff.,
pointing to in A minor), then again level +2 at 1:09-–1:14
(mm. 43–45, pointing to D major), thereby terminating the
transition to the second group (mm. 47–61; 1:15–1:40).
The second group starts at level +1, then from m. 53 (1:26)
on mainly represented as +2 due to several neighbor notes

2 This ending constitutes a clear example of a so-called “bifocal
close” [30].

3 See also [17] for a method to highlight such changes.

C] and the secondary dominant chord A major sounding
for a whole measure. This is followed by a longer ca-
dence section, initially at the 0 level (C major) from 1:40
(mm. 61ff.) and then confirms level +1 with smaller swings
to the levels +2 and 0. The largely stable level +1 in the fi-
nal group is then clearly visible (mm. 77–90).

4.5 Sonata Op. 10 No. 3 in D major

The visualization of the sonata Op. 10 No. 3 gives a com-
pletely different picture (Figure 5). After about 20 seconds
(m. 22), the initial tonality (D major, level 0) is left, fol-
lowed by a longer section on the level +1 (mm. 23–45). In
fact, we find here a lyrical motif in B minor, which ac-
tually corresponds to level 0. Due to the frequent occur-
rence of the leading note A], however, there seems to be a
kind of “statistical averaging” between B minor (0) and B
major (+3). The occurrence of C] major and F] minor in
mm. 31–34 leads to a small shade of gray in the +4 level at
0:31. The second group in A major is then reached at 0:48
(m. 54). The repetition of the second subject in –2 (point-
ing to A minor) is briefly visible at 0:54 (mm. 60–63). It is
then striking that the second group again ends more or less
in the middle of the movement and is followed by a longer
developmental passage at 1:00–1:18 (mm. 67–87).

5. MUSICOLOGICAL DISCUSSION

Section 4 examined the use of this visualization method for
illuminating the details of three exemplary cases. We now
broaden the scope to consider its potential contribution to
the wider question of sonata form itself.

The visualizations discussed above have shown a multi-
faceted structure within the tonal course of the exposi-
tion. The plots point out that the musical course cannot
be unproblematically reconciled with the traditional sonata
form schema of first group – transition – second group –
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Figure 5. L. v. Beethoven, piano sonata Op. 10 No. 3 in D major, 1st mvmt. Presto, exposition. Computational tonal
analysis with a window size of w = 4 seconds.

cadence group [19], a problem raised by Carl Dahlhaus
decades ago [31, p. 101–103]. This leads us to reconsider
other, earlier theories of sonata form from the late 18th

century which emphasize the idea of a musical discourse
as opposed to a thematic dualism.

A detailed description of such an 18th-century form
model is given by Francesco Galeazzi in the second vol-
ume of his Elementi teorico-pratici di musica (Rome 1796)
[32]. Galeazzi’s model differs from the theory more fa-
miliar today in two principal respects: the presence of a
contrasting second motif before or at the beginning of the
transition and a cadential period ahead of what he calls the
coda (i. e., a codetta or final group).

For the section we now denote as exposition (which
Galeazzi simply calls prima parte), Galeazzi sets out an
alternative schema of seven elements [32, p. 324]:

1. Prelude (preludio)
2. Principal motive (motivo)
3. Second motive (secondo motivo)
4. Departure to [...] related keys (uscita di tono)
5. Characteristic passage / middle passage (passo

caratteristico / passo di mezzo)
6. Cadential period (periodo di cadenza)
7. Codetta (coda)

Of these seven parts, according to Galeazzi [32], parts 2,
4, and 6 (in modern terms: first key subject, transition, and
cadential confirmation of the second key) are compulsory,
the remainder are optional. Accordingly, Galeazzi bases
his model on a main motif that dominates the musical dis-
course like the topic of a speech and that can be followed
by a whole series of new, partly related thoughts:

“The motive [...] must be very conspicuous
and perceptible because inasmuch as it is the
theme of the discourse, if it is not well under-
stood, neither will the consecutive discourse
be understood.” [32, pp. 326–327] 4

If one starts from such a discursive form idea, the occur-
rence of a new thought before or in the transition (e. g.

4 Galeazzi does not at all favor a monothematic structure as found
sometimes in the works of Joseph Haydn. The model described by him is
open to new motives in any part of the exposition, not just in the sense of
two contrasting themes as modelled by Marx [18].

Op. 2 No. 3 mm. 27–39, Op. 10 No. 3 mm. 23–30) and of
a longer form part after the “middle sentence” (Op. 2 No. 3
mm. 61–77, Op. 7 mm. 81–127, Op. 10 No. 3 mm. 67–105)
in no way leads into “insoluble theoretical difficulties”
[31]. Even though some detailed structures might differ
from a human analysis, the computational visualizations
show something that was taken for granted for composers
and audiences of the late 18th century: the individual for-
mal parts are not opposed in a dualistic tension, but rather
formed a series, where uniformity and diversity, tonal sta-
bility and modulation are combined into a living, discur-
sive whole. Beethoven’s early piano sonatas—differing
considerably from the traditional model as codified by
Marx—fit perfectly in this context [33]. Beethoven as well
as Mozart before him [30] seem to have been influenced by
Italian music. Galeazzi’s account of sonata form—based
on Italian composers of the 1770s and 1780s (Mozart and
Beethoven were unknown to him)—points towards such an
understanding as reflected in our visualizations.

6. CONCLUSIONS AND OUTLOOK

In this paper, we have demonstrated the use of a computa-
tional analysis system for shedding new light on a research
question at the heart of historical musicology. The method
relies on audio recordings and visualizes the diatonic scale
content of a piece in an objective and interpretable way,
providing an easy, at-a-glance insight into the phases of
stability, instability, and tonal transition. Being aware of
several alternative analysis strategies, we plan to work on
a closer interrogation of the method, its relation to local
key analysis, and the comparison of the output to system-
atic human analyses as provided by [12, 34, 35].

Even though any type of automated approach can never
achieve the flexibility of human analysis, we have shown
that it can provide an overview of large-scale structures,
thus aiding the research process of historical musicology.
Since this approach can be scaled up easily without requir-
ing human annotations [36], it allows for corpus studies in
a novel order of magnitude, which can enrich musicolog-
ical research. In future work, we thus intend to apply this
method to a wider range of musical contexts involving ex-
tensive corpora and individual large-scale works, both of
which would benefit from these “at-a-glance” reductions.
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ABSTRACT

Grammatical models which represent the hierarchical
structure of chord sequences have proven very useful in
recent analyses of Jazz harmony. A critical resource for
building and evaluating such models is a ground-truth
database of syntax trees that encode hierarchical anal-
yses of chord sequences. In this paper, we introduce
the Jazz Harmony Treebank (JHT), a dataset of hierar-
chical analyses of complete Jazz standards. The analy-
ses were created and checked by experts, based on lead
sheets from the open iRealPro collection. The JHT is
publicly available in JavaScript Object Notation (JSON),
a human-understandable and machine-readable format for
structured data. We additionally discuss statistical proper-
ties of the corpus and present a simple open-source web
application for the graphical creation and editing of trees
which was developed during the creation of the dataset.

1. INTRODUCTION

Jazz music exhibits hierarchical relations between chords.
This is particularly apparent in the fact that virtually any
chord of a Jazz standard can be prepared by an applied
dominant or subdominant. In fact, many chord sequences
can be explained as the recursive application of such prepa-
rations [41]. Chords that are far apart in time can therefore
be directly related, establishing long-range dependencies
that can span whole formal sections of pieces. Such hi-
erarchical structures also correlate with empirical findings
from music perception research [25]. This is by no means
to say that hierarchies are the only relevant relations be-
tween chords. Hierarchical chord relations are, however,
underrepresented in computational models of harmony to
date; the here presented dataset is intended to ease the de-
velopment of hierarchical models.

Inspired by Schenkerian theory [3, 45] and genera-
tive syntax formalisms for natural language, generative
theories of harmonic syntax model the hierarchical rela-
tions in chord sequences based on formal grammatical

c© D. Harasim, C. Finkensiep, P. Ericson, T. J. O’Donnell,
and M. Rohrmeier. Licensed under a Creative Commons Attribution 4.0
International License (CC BY 4.0). Attribution: D. Harasim, C. Finken-
siep, P. Ericson, T. J. O’Donnell, and M. Rohrmeier. “The Jazz Harmony
Treebank”, 21st International Society for Music Information Retrieval
Conference, Montréal, Canada, 2020.

devices such as context-free grammars. Recent research
uses formal grammars to represent hierarchical relations in
melodies [1,10,13,16,24,34], chord sequences [15,19,43],
and rhythms [18,29]. The fields of application include mu-
sic theory [37, 40], music psychology [25, 42], automatic
harmonic analysis [7, 8], and automatic music transcrip-
tion [11, 30, 35].

The aim of this article is to present the Jazz Har-
mony Treebank (JHT), a dataset of hierarchical harmonic
analyses of Jazz standards by music experts in a human-
understandable and machine-readable format. We report
on the creation of the treebank, describe the musical in-
terpretation of the syntax trees, and explain the decisions
that were made to meet the challenges of the annotation
procedure. The dataset is available on GitHub. 1

Treebanks are of particular importance for the study of
hierarchical models and their applications. In linguistics,
they have been and remain instrumental for many natural
language processing tasks. The well-known Penn Tree-
bank [28], first published in the early nineties, is an instruc-
tive example since it has been used as an object of study in
and of itself [12], as a basis for publishing additional tree-
banks with different paradigms [21] and for different lan-
guages [27], and–most prominently–as a dataset for train-
ing and evaluating machine-learning methods [22, 31, 44].

The present article describes the creation process of the
JHT. We take this as an opportunity to study the details of
harmonic syntax using several concrete examples of Jazz
standards. The major challenge of this application lies in
the many individual decisions analysts have to take to ad-
dress the ambiguity of music. Importantly, our goal is not
to create uniform syntax trees of Jazz chord sequences, but
to describe individual and subjective listening experiences
in an unambiguous formal representation. Harmonic rela-
tions in sufficiently long chord sequences can be perceived
in several ways, without one interpretation being clearly
preferable. Therefore, the syntax trees of the JHT are best
understood as proposals with a clear interpretation. The
trees provide a basis for further analytical discussions, so-
phisticated computational models, and for education.

1.1 Related Symbolic Datasets

Many existing collections of symbolic data about chord
sequences concentrate on providing chord labels for har-
monic entities. Two prominent datasets of time-aligned

1 https://github.com/DCMLab/JazzHarmonyTreebank
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chord symbols were created by Harte et al. [20] and Bur-
goyne et al. [2] to study automatic chord transcription from
audio. Neuwirth et al. [36] take a more music-theoretically
motivated approach by proposing a chord-symbol repre-
sentation for Western classical music and apply it to scale
degree analyses of Beethoven’s string quartets. Chen and
Su [5] and Devaney et al. [9] similarly label excerpts from
common-practice tonality. Micchi et al. [32] combine ex-
isting Roman numeral analyses into a meta-dataset.

The datasets just mentioned use chord labels to analyze
music given as audio data or in a symbolic representa-
tion. Since we analyze the relations between the chords
of such sequences, this study is located at a higher level
of abstraction. Only a few datasets of hierarchical anal-
yses of sequential musical data are available in divergent
formats [39]. Hamanaka et al. [17] and Kirlin [23] created
two datasets of tree analyses of melodies of Western Clas-
sical Music. Gotham and Ireland [14] study musical form
by the creation of datasets in a hierarchical representation.
Moss et al. [33] study Brazilian Choro using a dataset with
hierarchical form encoding. Granroth-Wilding and Steed-
man [15] provide a dataset of 76 sub-sequences of Jazz
standards with partial harmonic grouping labels. In con-
trast to previous research that analyzed snippets of musical
pieces, the JHT consists of 150 full chord sequences of
Jazz standards with complete harmonic syntax trees.

2. HARMONIC SYNTAX

A harmonic syntax tree, as shown in Figure 1a, denotes a
mental representation of a musical piece as a whole. Un-
like sequential models that describe how, for instance, a
sequence of chord symbols is generated chord by chord
from the start to the end, hierarchical models describe how
the skeleton of a piece is generated and recursively elabo-
rated [43]. In Jazz, the most prominent of those elaboration
operations are the duplication of chords and the prepara-
tion of a chord by an applied dominant. Each application
of an operation establishes a direct relation between two
chords. A syntax tree consists exactly of the sum of all
those relations. It is therefore not directly a model for first-
time listening of a musical piece, but rather for the abstract
representation of musicians or listeners who are (implic-
itly or explicitly) aware of a piece’s harmonic relations.
This usage of the word syntax is closely related to genera-
tive syntax formalisms of natural language that address the
question of which relations between words a listener must
notice to understand the meaning of a sentence [6].

The scope of this paper is limited to tonal Jazz, includ-
ing Swing, Bossa Nova, Jazz Blues, Bebop, Cool Jazz,
and Hard Bop, and excluding parts of traditional Blues,
Modal Jazz, Free Jazz, and Modern Jazz. We further-
more excluded tunes such as Groovin’ High whose har-
monic structure requires even more expressive representa-
tions than trees. 2 The general idea of harmonic syntax
is, however, also applicable to other musical styles such as
Western classical music.

2 Groovin’ High exhibits crossing harmonic dependencies between a
tonic prolongation from m1 to m5 and a dominant preparation from m4
to m7. A similar tune is Out of Nowhere.

2.1 Prolongation and Preparation as Fundamental
Principles

In the following, we present the syntactic formalism with
a particular emphasis on its musical interpretation. The
concept of functional harmony describes an expectation-
realization structure between musical objects such as
notes, chords, and keys. Consider for example the chords
of the final cadence of the Jazz standard Birk’s Works, Fm6
Abm7 Db7 G%7 C7 Fm6, where G%7 denotes a half-
diminished seventh chord with root G. Figure 1b shows the
expectation-realization structure of this chord sequence.
The first Fm6 establishes the tonic and as such creates
the expectation that the progression ends with Fm6. The
chords Abm7 and Db7 function as the tritone-substituted
subdominant and dominant of C7, respectively. They
therefore create expectation that resolves in the (tempo-
rally distant) chord C7. The chord G%7 functions as a sub-
dominant chord in F minor. It therefore creates expectation
that resolves with the dominant chord C7 which itself re-
solves into the last tonic chord Fm6. We say that the tonic
chords constitute a prolongation. The subdominant chords
prepare the dominant chords and the dominant chords pre-
pare the tonic chord. Abstractly, we say that a chord X
refers to a chord Y if X either prolongs or prepares Y . 3

Prolongation and preparation are the two fundamental
principles of functional harmonic syntax [41]. They can be
formalized as rules of a context-free grammar with chord
symbols both as terminals and nonterminals. In the for-
malization, strong prolongations that prolong chords of the
same root and chord form are distinguished from weak pro-
longations that prolong a chord with a functionally equiv-
alent chord (e.g., prolongation of C with Am). Note that
this concept of weak prolongation is more general than in
the GTTM where prolonging chords are for instance re-
quired to have the same root [26]. Strong prolongation is
represented by rules of the form X −→ X X for chord
symbols X (e.g., Fm6 −→ Fm6 Fm6). For chord symbols
X and Y , rules of the form X −→ Y X and X −→ X Y
represent weak prolongations if X and Y are functionally
equivalent (e.g., Fm6 −→ Ab Fm6). If otherwise X and
Y are not functionally equivalent, X −→ Y X represents
a preparation (e.g., Fm6 −→ C7 Fm6).

The practise of having no separate alphabet of nonter-
minal symbols, and requiring each binary rule to have a
left-hand side symbol also on the right-hand side, is re-
lated to dependency grammars [38] and categorical gram-
mars [47] which are well-known in computational linguis-
tics and natural language processing. The symbol that ap-
pears both on the left-hand side and the right-hand side is
called the head of the rule. In our setting of prolongation
and preparation, the prolonged (resp. prepared) chord is
the head. Therefore, weak prolongation rules may be left-
or right-headed, while preparation rules are always right-
headed. In sum, our harmony grammar consists of the fol-
lowing rules which model strong prolongation, weak pro-

3 In contrast to models based on the Generative Theory of Tonal Music
[26], we exclude the concept of departure as a primitive relation, because
it is not consistent with our formalization of the expectation-realization
structure.
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longation, and preparation, respectively,

X −→ X X for any chord X (strong prol.)

X −→ Y X | X Y for any chord X and a (weak prol.)

functionally equivalent

chord Y

X −→ Y X for any chord X and a (preparation)

chord Y that prepares X

The tree in Figure 1a is a parse tree of the chord se-
quence Fm6 Abm7 Db7 G%7 C7 Fm6 under such a gram-
mar of harmonic structure. Those parse trees represent
exactly the same information as expectation-realization
structures such as shown in Figure 1b: Undirected edges
correspond to strong prolongations and directed edges cor-
respond to either weak prolongations or preparations. This
short example is unambiguous–it has only one plausible
syntactic structure. In general, however, there are many
syntax trees possible for a chord sequence. Grammar rules
and syntax trees can then be weighted by probabilities that
capture the plausibility of an analysis [1, 19, 24]. To iden-
tify the syntax tree that most accurately describes one’s
perception of the harmonic structure, other dimensions
such as rhythm, form, and melody must also be taken into
account. Even the artistic interpretation of a musical per-
formance and the individual musical background of listen-
ers have the potential to influence the perceived harmonic
structure of a piece. A formal grammar that purely mod-
els chord symbols can therefore only answer the question
“Is this a plausible syntax tree for a Jazz standard?”, but
not the question “Is this tree a good analysis of that par-
ticular tune in a particular context?”. Until more complete
models of musical structure are developed that integrate all
relevant musical dimensions, the second question can only
be answered by humans.

2.2 Complete Constituents and Open Constituents

Constituents formalize the notion of a musical unit such
as a chord or a phrase. In the syntax tree shown in Fig-
ure 1a, the complete constituents are exactly the subse-
quences that are leafs of single subtrees, such as the sub-
sequence Abm7 Db7 G%7 C7. Formally, we call a subse-
quence a complete constituent if it contains a chord, called
the head, that is transitively referred to by all other chords
of the sequence. 4 For instance, the chord C7 is the head
of the phrase Abm7 Db7 G%7 C7 and Fm6 is the head
of the whole sequence Fm6 Abm7 Db7 G%7 C7 Fm6.
In cases in which a constituent is constituted by a strong
prolongation (e.g., for the whole sequence of this exam-
ple), we use the convention that the head is the right chord
symbol. Since only the head of a complete constituent
is allowed to refer to a chord outside the constituent, the
concept of expectation-realization references is generaliz-
able to complete constituents: we say that a complete con-
stituent refers to a chord X if its head refers to X .

4 Note that the word head is used both for rules and constituents. This
is not a problem since the head of a constituent is always the head of the
top-most rule of its (sub-)tree analysis.

Fm6

Fm6

Fm6C7

C7

C7G%7

Db7

Db7Abm7

Fm6

(a) Part of the harmonic syntax tree of Birks’s Works from the
treebank.

Fm6 Abm7 Db7 G%7 C7 Fm6

(b) Harmonic expectation-realization structure. This graph
stands in 1-to-1 relation to the syntax tree shown in (a). Directed
and undirected edges denote preparations and prolongations, re-
spectively.

[.Fm6
Fm6
[.Fm6

[.C7
[.Db7

Abm7
Db7 ]

[.C7
G\%7
C7 ] ]

Fm6 ] ]

(c) String representation of the syntax tree in tikz-qtree format.
This string is created using the tree annotation app shown in (d).
The tree plot is shown in (a).

(d) Screenshot of tree annotation app. Each button represents a
tree node. The user is selecting the green buttons to combine
them to the full tree.

{"label": Fm6, "children": [
{"label": "Fm6", "children": []},
{"label": "Fm6", "children": [
{"label": "C7", "children": [

{"label": "Db7", "children": [
{"label": "Abm7", "children": []},
{"label": "Db7", "children": []}]},

{"label: "C7", "children": [
{"label: "G%7", "children": []},
{"label: "C7", "children": []}]}]},

{"label": "Fm6", "children": []}]}]}

(e) Tree string in JSON format, automatically converted from
tikz-qtree format shown in (c).

Figure 1: Syntax tree of the final chords of the Jazz stan-
dard Birk’s works in different representations.

Proceedings of the 21st ISMIR Conference, Montréal, Canada, October 11-16, 2020

209



Dm7

Dm7A7*

A7

A7Bb7

Bb7B%7/C

Dm7

(a) Syntax tree using an open constituent that is marked with an
asterisk.

Dm7 B%7/C Bb7 A7 Dm7

(b) Harmonic expectation-realization structure of the syntax tree
in (a). Since that tree contains an open constituent, the syntax
tree and the expectation structure do not stand in 1-to-1 relation.

Dm7

Dm7

Dm7A7

A7Bb7

Bb7B%7/C

Dm7

(c) Resolution of the open constituent in the syntax tree shown
in (a). This tree stands in 1-to-1 relation to the expectation-
realization structure in (b).

Figure 2: Hierarchical analysis of the initial chords of the
Jazz standard Why Don’t You Do Right? using open con-
stituents (marked with asterisks).

In addition to complete constituents, one other con-
stituent type is used in the JHT analyses. Consider for
example the first four measures of the Jazz standard Why
Don’t You Do Right?,

| Dm7 B%7/C | Bb7 A7 | Dm7 B%7/C | Bb7 A7 |,

where B%7/C denotes a half-diminished seventh chord
with root B and a C in the bass. The first two measures
constitute a phrase following the Lamento schema (a step-
wise descending movement of the bass from scale degree
I to scale degree V [4]) that is repeated multiple times in
the song. Since the transition from A7 to Dm7 does not
sound like a resolution but more like a jump or an interrup-
tion (partly because of the repetition of the first two mea-
sures), we assume that A7 does not resolve into the follow-
ing tonic Dm7, but into a tonic later in the song. Therefore,
the phrase Dm7 B%7/C Bb7 A7 does constitute some kind
of unit as shown in Figure 2a.

Since Dm7 and A7 both refer to a chord outside the
phrase (see Figure 2b), the phrase does not have a head. It
is therefore not a complete constituent. We call such con-
stituents, in which multiple chords refer to a chord outside
of the phrase, open constituents. The chords of an open
constituent that refer to a chord outside of the constituent
are called chords with open references. In the example of

Why Don’t You Do Right?, the chords Dm7 and A7 are the
chords with open references of the open constituent Dm7
B%7/C Bb7 A7. Both chords Dm7 and A7 refer to the
same tonic chord Dm7.

The JHT allows a single type of open constituent, called
restricted open constituent, which consists of two adja-
cent constituents that refer to the same chord later in the
piece. Since all constituents considered in the JHT are re-
stricted in that way, we simple refer to them as open con-
stituents. The restriction enables a further generalization
of expectation-realization references to open constituents:
We say that an open constituent refers to the chord to which
all of its chords with open references refer. As shown in
Figure 2a, the topmost node of an open constituent is la-
beled by the chord symbol of the right child of the node
and additionally marked with an asterisk.

Other examples of open constituents are (i) I-VI-II-V-
like phrases in I Got Rhythm and I Can’t Give You Anything
But Love and, in particular, (ii) tunes of form ABAC in
which the B-part ends in a half cadence such as All of Me,
How High the Moon, and A Fine Romance. Summertime,
shown in Figure 3, is a prototypical example of a song with
a ABAC form and a half cadence at the end of the B sec-
tion. The interruption after the half cadence is supported
by the movement from scale degree 3 to scale degree 2 in
the melody and denoted using an open constituent.

2.3 Interpretation of Open Constituents as
Prolongation-Preparation Structures

Syntax trees containing open constituents are interpretable
as expectation-realization structures as shown in Figure 2.
The interpretation procedure transforms a syntax tree that
contains open constituents (e.g., Figure 2a) in to a tree
that only represents prolongation and preparation opera-
tions (e.g., Figure 2c). This transformed tree then char-
acterizes the expectation-realization structure (e.g., Figure
2b). Since open constituents are explicitly marked with
asterisks, their interpretation is unambiguous.

To formalize the interpretation of open constituents, let
Y ∗ be the chord symbol labeling an open constituent con-
sisting of two constituents labeled with chord symbols X
and Y . Let further be Z the chord symbol that is referenced
by both X and Y . The reference is expressed by Z being
the right sibling of the open constituent. The conversion
then transforms

Z

ZY*

YX

Z

Z

ZY

Xinto

In the more general case of nested open constituents, the
conversion is recursively applied from the root to the leaves
of the tree (i.e., top-down).

The JHT contains trees for both representations, with
open subtrees and in pure preparation-prolongation form.
A python script was used to automatically transform the
former into the letter. The script and additional utilities
such as for tree traversal and drawing are provided with
the treebank.
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Am7

Am7

Am7

Am7

Am7E7

E7B%7

C47

Am7C47

C47G7

G7D7

Am7

Am7

Am7E7

Am7

Am7Am7

E7*

E7

E7

E7

E7B7

F7

Dm7

Dm7A7

Am7

Am7

Am7

Am7Am7

E7

Am7

Am7Am7

Figure 3: Complete syntax tree of the Jazz standard Summertime (turnaround omitted). The top levels of the tree reflect
the ABAC form the song using an open constituent.

3. TREE ANNOTATION TOOL

The trees of the JHT are created using a graphical inter-
face implemented as a simple web application, which was
developed during the creation of the treebank. The source
code of the application is written in ClojureScript (which
compiles to JavaScript) and publicly available on GitHub.
The application itself is hosted on GitHub pages and can
be used independently of this dataset. 5 A screenshot of
the application is shown in Figure 1d. The main part of the
user interface displays a syntax tree that is represented by a
hierarchical button layout. The user interface also contains
an input-output section and buttons for creating, deleting,
and deselecting tree nodes.

To create a syntax tree, the user inputs a sequence of
space-separated strings such as chord symbols. To create
an inner node of the tree, the nodes that become the child
nodes of the new inner node are selected and combined
by pressing a button or a key shortcut. Since the trees are
mostly right-headed, the label of the rightmost child is used
for the new node by default, but the label of a node can be
changed arbitrarily. The output of the application is given
as a string representation of the tree in tikz-qtree format
as shown in Figure 1c and in JSON format as shown in
Figure 1e. 6 Existing trees can be edited by loading them in
any of these two formats. Since the application is designed
to be agnostic to annotation conventions, it allows arbitrary
labels and rule arities.

4. ANNOTATION PROCEDURE

All analyses in the dataset begin from chord sequences
drawn from the iRealPro collection of Jazz standards. This
collection was created by the user community of the iReal-
Pro app 7 and transferred into kern format by Shanahan et
al. [46]. 8 We transformed the data into a JSON-like for-
mat and occasionally corrected individual chord symbols
when we noticed serious differences between the iRealPro
data and publicly available Real Books (i.e., collections of
lead sheets.). Annotations of bass notes and optional chord

5 Link to tree annotation app: https://dcmlab.github.io/
tree-annotation-code/

6 https://www.ctan.org/pkg/tikz-qtree
7 https://irealpro.com/
8 The iRealPro dataset is available in kern format at http://doi.

org/10.5281/zenodo.3546040.

tones such as ninths and elevenths were excluded from the
chord symbols. Chord symbols with a duration of more
than one measure were split into multiple chord symbols.
150 Jazz standards were selected for analysis (i) by filter-
ing pieces that are within the scope of the theory of har-
monic syntax described in Section 2 and (ii) by preferring
shorter pieces. If applicable, turnarounds at the end of a
lead sheet were deleted or a final tonic chord not contained
in the lead sheet was added. All repetitions were unfolded
and codas were appended at the positions indicated in the
lead sheet. The selected Jazz standards were initially ana-
lyzed by the first author and a student assistant. The analy-
ses were then reviewed by the second and the third author
and discussed in the group. To ensure consistent analy-
ses across all 150 Jazz standards, all final tree editing was
performed by the first author.

Every hierarchical analysis denotes at least one author’s
mental representation of the harmonic structure of a Jazz
standard. Each analysis is therefore also influenced by
other musical features such as harmonic rhythm, phras-
ing, musical form, and melody. In ambiguous cases, the
analyst chose the option that he seemed most important.
These choices were necessary, because a single syntax tree
can only encode one harmonic function for each chord. For
example in the key C major, a C major triad can act as a
tonic or as a preparation of a following F major chord. For
five particularly ambiguous tunes, we provide alternative
analyses in the treebank.

Since the iRealPro lead sheets were created and col-
lected by the community of the application, the chord sym-
bol usage is not fully consistent across the pieces. For
instance, a Fm6 chord symbol can denote a tonic chord
in F minor over a Dorian scale or a Bb9 chord with
omitted root and fifth in the bass. Another example is
that fourth-voicings are commonly denoted as suspension
chords while actual suspensions of the scale degree V (e.g.,
suspension of C and E by B and D in a G major triad) are
sometimes denoted as chords over the scale degree I (with
or without explicitly mentioning the second inversion).

Furthermore, some chords do not have a proper har-
monic function, but are better explained as voice-leading
connections between two chords. The chords C C#o7 G/D
at the beginning of the final 8 measures of Bill Bailey are
an example of such a voice-leading connection (see Fig-
ure 4). Moreover, these final measures are an example of
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Figure 4: Syntax tree of the final 8 measures of Bill Bailey
(turnaround omitted).

a common closing pattern. This pattern starts on the scale
degree IV in its first measure, then transitions to a suspen-
sion of the scale degree V in measure 3, jumps away, and
finally approaches the tonic through the cycle of fifths.

5. DATASET SUMMARY

The JHT is provided as a single file in JavaScript Object
Notation (JSON) format. For each Jazz standard, this file
contains the chord sequence with rhythmical information
(measures and beats), metadata about title, composer(s),
year of composition, time signature, and key (root & ma-
jor/minor) as well as the tree analyses. 9

In addition to the hierarchical analyses, some pieces
contain a turnaround annotation represented as an integer.
A value of zero means that the Jazz standard ends with a
tonic chord. A positive value n means that the lead sheet
of the piece ends with a turnaround of length n. For ex-
ample, the chord sequence of I love Paris (in C major) has
a turnaround length of n = 2, because it ends with the
chords Dm7 G7 C6 D%7 G7. A negative turnaround an-
notation means that the tonic of the piece is not at the end
of the piece, but at the beginning. A value of −1 indicates,
for example, that the first chord of the chord sequence is
the tonic of the piece, like in Solar. In rare cases, the tonic
is not the first chord but the n-th chord which is represented
by a turnaround annotation of −n.

The 150 chord sequences analysed in the treebank have
an average length of 27.75 and consist of 11697 chords
in total with 92 unique chord symbols. The syntax trees
consist in total of 3899 binary rule applications with 512
unique rules and 268 open constituents. The average tree
height is 7.57.

Further descriptive statistics of the JHT are visualized
in Figure 5. The first plot shows that the subset of the an-
alyzed pieces is chosen relatively independently from the
year of composition. The second plot shows the bias for
short pieces in this subset. The third plot shows that the
length of turnarounds, if present, usually ranges between
1 and 3. The two last plots show separately for major and
minor keys how often a context-free grammar rule is used
in the hierarchical analyses. For these plots, all chord se-
quences were transposed to C major or to C minor, respec-
tively. Prolongations of the tonic, preparations of the tonic
by the fifth scale degree, and preparations of the fifth scale
degree by the second are by far the most common rules.

9 The metadata was copied from the iRealPro dataset without detailed
validity checking. It is provided for convenience.

Figure 5: Plots of summary statistics of the tree analyses.
See the main text for further explanation.
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ABSTRACT

The human ability to track musical downbeats is robust to
changes in tempo, and it extends to tempi never previously
encountered. We propose a deterministic time-warping
operation that enables this skill in a convolutional neural
network (CNN) by allowing the network to learn rhyth-
mic patterns independently of tempo. Unlike conventional
deep learning approaches, which learn rhythmic patterns
at the tempi present in the training dataset, the patterns
learned in our model are tempo-invariant, leading to bet-
ter tempo generalisation and more efficient usage of the
network capacity.

We test the generalisation property on a synthetic
dataset created by rendering the Groove MIDI Dataset
using FluidSynth, split into a training set containing the
original performances and a test set containing tempo-
scaled versions rendered with different SoundFonts (test-
time augmentation). The proposed model generalises
nearly perfectly to unseen tempi (F-measure of 0.89 on
both training and test sets), whereas a comparable conven-
tional CNN achieves similar accuracy only for the training
set (0.89) and drops to 0.54 on the test set. The gener-
alisation advantage of the proposed model extends to real
music, as shown by results on the GTZAN and Ballroom
datasets.

1. INTRODUCTION

Human musicians easily identify the downbeat (the first
beat of each bar) in a piece of music and will effortlessly
adjust to a variety of tempi, even ones never before en-
countered. This ability is the likely result of patterns and
tempi being processed at distinct locations in the human
brain [1].

We argue that factorising rhythm into tempo and tempo-
invariant rhythmic patterns is desirable for a machine-
learned downbeat detection system as much as it is for the
human brain. First, factorised representations generally re-
duce the number of parameters that need to be learned.
Second, having disentangled tempo from pattern we can

© Bruno Di Giorgi, Matthias Mauch, Mark Levy. Licensed
under a Creative Commons Attribution 4.0 International License (CC BY
4.0). Attribution: Bruno Di Giorgi, Matthias Mauch, Mark Levy,
“Downbeat Tracking with Tempo-Invariant Convolutional Neural Net-
works”, in Proc. of the 21st Int. Society for Music Information Retrieval
Conf., Montréal, Canada, 2020.

transfer information learned for one tempo to all others,
eliminating the need for training datasets to cover all com-
binations of tempo and pattern.

Identifying invariances to disentangle representations
has proven useful in other domains [2]: translation invari-
ance was the main motivation behind CNNs [3] — the
identity of a face should not depend on its position in an
image. Similarly, voices retain many of their characteris-
tics as pitch and level change, which can be exploited to
predict pitch [4] and vocal activity [5]. Crucially, meth-
ods exploiting such invariances don’t only generalise better
than non-invariant models, they also perform better over-
all.

Some beat and downbeat trackers first estimate tempo
(or make use of a tempo oracle) and use the pre-calculated
tempo information in the final tracking step [6–15]. Doing
so disentangles tempo and tempo-independent representa-
tions at the cost of propagating errors from the tempo es-
timation step to the final result. It is therefore desirable to
estimate tempo and phase simultaneously [16–20], which
however leads to a much larger parameter space. Factoris-
ing this space to make it amenable for machine learning is
the core aim of this paper.

In recent years, many beat and downbeat tracking
methods changed their front-end audio processing from
hand-engineered onset detection functions towards beat-
activation signals generated by neural networks [21–23].
Deep learning architectures such as convolutional and re-
current neural networks are trained to directly classify the
beat and downbeat frames, and therefore the resulting sig-
nal is usually cleaner.

By extending the receptive field to several seconds,
such architectures are able to identify rhythmic patterns at
longer time scales, a prerequisite for predicting the down-
beat. But conventional CNN implementations learn rhyth-
mic patterns separately for each tempo, which introduces
two problems. First, since datasets are biased towards
mid-tempo songs, it introduces a tempo-bias that no post-
processing stage can correct. Second, it stores similar
rhythms redundantly, once for every relevant tempo, i.e.
it makes inefficient use of network capacity. Our proposed
approach resolves these issues by learning rhythmic pat-
terns that apply to all tempi.

The two technical contributions are as follows:

1. the introduction of a scale-invariant convolutional
layer that learns temporal patterns irrespective of
their scale.
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2. the application of the scale-invariant convolutional
layer to CNN-based downbeat tracking to explicitly
learn tempo-invariant rhythmic patterns.

Similar approaches to achieve scale-invariant CNNs,
have been developed in the field of computer vision [24,
25], while no previous application exists for musical sig-
nal analysis, to the best of our knowledge.

We demonstrate that the proposed method generalises
better over unseen tempi and requires lower capacity with
respect to a standard CNN-based downbeat tracker. The
method also achieves good results against academic test
sets.

2. MODEL

The proposed downbeat tracking model has two compo-
nents: a neural network to estimate the joint probability of
downbeat presence and tempo for each time frame, using
tempo-invariant convolution, and a hidden Markov model
(HMM) to infer a globally optimal sequence of downbeat
locations from the probability estimate.

We discuss the proposed scale-invariant convolution in
Sec. 2.1 and its tempo-invariant application in Sec. 2.2.
The entire neural network is described in Sec. 2.3 and the
post-processing HMM in Sec. 2.4.

2.1 Scale-invariant convolutional layer

In order to achieve scale invariance we generalise the con-
ventional convolutional neural network layer.

2.1.1 Single-channel

We explain this first in terms of a one-dimensional in-
put tensor x ∈ RN and only one kernel h ∈ RN∗

, and
later generalise the explanation to multiple channels in
Sec. 2.1.2. Conventional convolutional layers convolve x
with h to obtain the output tensor y ∈ RN−N∗+1

y = x ∗ h, (1)

where ∗ refers to the discrete convolution operation. Here,
the kernel h is updated directly during back-propagation,
and there is no concept of scale. Any two patterns that are
identical in all but scale (e.g. one is a “stretched” version
of the other) cannot be represented by the same kernel.

To address this shortcoming, we factorise the kernel
representation into scale and pattern by parametrising the
kernel as the dot product hj = 〈ψj , k〉 between a fixed
scaling tensor ψj ∈ RN∗×M and a scale-invariant pattern
k ∈ RM . Only the pattern is updated during network train-
ing, and the scaling tensor, corresponding to S scaling ma-
trices, is pre-calculated (Sec. 2.1.3). The operation adds an
explicit scale dimension to the convolution output

yj = x ∗ hj = x ∗ 〈ψj , k〉. (2)

The convolution kernel is thus factorised into a constant
scaling tensor ψ and trainable weights k that learn a scale-
invariant pattern. A representation of a scale-invariant con-
volution is shown in Figure 1.

h = 〈ψ, k〉

y = x ∗ h

y = x ∗ 〈ψ, k〉

h

x

y

=

k

=
x

y

Time

S
c
a
le

Time

Standard Convolution

Scale-Invariant Convolution

Figure 1. The figure shows a representation of the stan-
dard and scale-invariant convolution operations with in-
put/output channel dimensions removed for simplicity. In
order to achieve scale invariance, we parametrise the ker-
nel as the dot product of two tensors ψ and k, where ψ is
a deterministic scaling tensor and k is the trained part that
will learn scale-invariant patterns. The resulting kernel h
contains multiple scaled versions of k.

layer input
variable single-channel multi-channel

# frames N
# pattern frames M
# scales S
# input channels 1 Cx

# kernels 1 H
signal x RN RN×Cx

patterns k RM RM×Cx×H

kernel h RN∗×S RN∗×Cx×S×H

output y R(N−N∗+1)×S R(N−N∗+1)×S×H

scaling tensor ψ RN∗×M×S

scale indices j = 0, . . . , S − 1

Table 1. Variables and dimensions.

2.1.2 Multi-channel

Usually the input to the convolutional layer has Cx > 1
input channels and there are H > 1 kernels. The formu-
las in Section 2.1 can easily be extended by the channel
dimension, as illustrated in Table 1.

2.1.3 Scaling tensor

The scaling tensor ψ contains S scaling matrices from size
M to sjM where sj are the scale factors.

ψn,m,j =

∫
s̃

∫
ñ

δ(ñ− s̃m)κn(n−ñ)κs(sj− s̃)dñds̃, (3)

where δ is the Dirac delta function and κn, κs are defined
as follows:

κn(d) = sin(πd)/(πd)

κs(d) = α cos2(αdπ/2)H(1− α|d|),
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whereH is the Heaviside step function. The inner integral
can be interpreted as computing a resampling matrix for a
given scale factor and the outer integral as smoothing along
the scale dimension, with the parameter α of the function
κs controlling the amount of smoothing applied. The size
N∗ of the scaling tensor ψ (and the resulting convolutional
kernel h) is derived from the most stretched version of k:

N∗ = max
j
sjM. (4)

2.1.4 Stacking scale-invariant layers

After the first scale-invariant layer, the tensor has an addi-
tional dimension representing scale. In order to add further
scale invariant convolutional layers without losing scale in-
variance, subsequent operations are applied scale-wise:

yj = xj ∗ 〈ψj , k〉. (5)

The only difference with Eq. (2) is that the input tensor
x of Eq. (5) already contains S scales, hence the added
subscript j.

2.2 Tempo invariance

In the context of the downbeat tracking task, tempo be-
haves as a scale factor and the tempo-invariant patterns are
rhythmic patterns. We construct the sequence of scale fac-
tors s as

sj =
rτjB

M
, τj = τ02

j
T (6)

where τj are the beat periods, r is the frame rate of the in-
put feature, B is the number of beats spanned by the con-
volution kernel factor k, τ0 is the shortest beat period, and
T is the desired number of tempo samples per octave. The
matrix k has a simple interpretation as a set of rhythm frag-
ments in musical time with M samples spanning B beats.

To mimic our perception of tempo, the scale factors in
Eq. (6) are log-spaced, therefore the integral in Eq. (3) be-
comes:

ψn,m,j =

∫
j̃

∫
ñ

δ(ñ−sj̃m)κn(n−ñ)κs(j− j̃)dñdj̃, (7)

where the parameter α of the function κs has been set to 1.
A representation of the scaling tensor used in the tempo-
invariant convolution is shown in Figure 2.

2.3 Network

The tempo-invariant network (Fig. 3) is a fully convolu-
tional deep neural network, where the layers are concep-
tually divided into two groups. The first group of layers
are regular one-dimensional convolutional layers and act
as onset detectors. The receptive field is constrained in or-
der to preserve the tempo-invariance property of the model:
if even short rhythmic fragments are learned at a specific
tempo, the invariance assumption would be violated. We
limit the maximum size of the receptive field to 0.25 sec-
onds, i.e. the period of a beat at 240 BPM.

Listening Time

M
u
s
ic

a
l 
T

im
e

Scale

ψ

Figure 2. The scaling tensor ψ is a sparse 3-dimensional
constant tensor. In the figure ψ is represented as a cube
where the 0 bins are rendered transparent. ψ transforms
the rhythm patterns contained in the kernel k from musical
time (e.g. 16th notes) to listening time (e.g. frames) over
multiple scales.

Convolution Layers

Tempo Invariant Convolution Layers

Receptive field

p(D, τ)

p(¬D)

Time

input

output

Figure 3. A global view of the neural network. The first
group of layers are regular convolutional layers and act as
onset detectors. They have a small receptive field, in order
to focus on acoustic features and avoid learning rhythmic
patterns, which will be learned by the successive tempo-
invariant layers. The output tensor represents joint proba-
bilities of downbeat presence D and tempo τ .

The second group is a stack of tempo-invariant convolu-
tional layers (as described in Sec. 2.1, 2.2). The receptive
field is measured in musical-time, with each layer spanning
B = 4 beats. The last layer outputs only one channel, pro-
ducing a 2-dimensional (frame and tempo) output tensor.

The activations of the last layer represent the scores
(logits) of having a downbeat at a specific tempo. An ad-
ditional constant zero bin 1 is concatenated to these acti-
vations for each frame to model the score of having no
downbeat. After applying the softmax, the output o repre-
sents the joint probability of the downbeat presence D at a
specific tempo τ

oj =

{
p(D, τj) j = 0, . . . , S − 1

p(¬D) j = S
(8)

1 We can keep this constant because the other output values will adapt
automatically.
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The categorical cross-entropy loss is then applied frame-
wise, with a weighting scheme that balances the loss con-
tribution on downbeat versus non-downbeat frames. 2

The target tensors are generated from the downbeat an-
notations by spreading the downbeat locations to the neigh-
bouring time frames and tempi using a rectangular window
(0.1 seconds wide) for time and a raised cosine window
(2/T octaves wide) for tempo. The network is trained with
stochastic gradient descent using RMSprop, early stop-
ping and learning rate reduction when the validation loss
reaches a plateau.

2.4 Post-processing

In order to transform the output activations of the network
into a sequence of downbeat locations, we use a frame-
wise HMM with the state-space [26].

In its original form, this post-processing method uses
a network activation that only encodes beat probability at
each position. In the proposed tempo-invariant neural net-
work the output activation models the joint probability of
downbeat presence and tempo, enabling a more explicit
connection to the post-processing HMM, via a slightly
modified observation model:

P (oj |q) =
{

c(τj , τq)oj q ∈ D, j < S

oS/(σS) q ∈ ¬D
(9)

where q is the state variable having tempo τq , D is the set
of downbeat states, c(τj , τq) is the interpolation coefficient
from the tempi modeled by the network τj to the tempi
modeled by the HMM τq and σ approximates the propor-
tion of non-downbeat and downbeat states (|¬D|/|D|).

3. EXPERIMENTS

In this section we describe the two experiments conducted
in order to test the tempo-invariance property of the pro-
posed architecture with respect to a regular CNN. The first
experiment, described in Sec. 3.1, uses a synthetic dataset
of drum MIDI recordings. The second experiment, out-
lined in Sec. 3.2, evaluates the potential of the proposed
algorithm on real music.

3.1 Tempo-invariance

We test the robustness of our model by training a regular
CNN and a tempo-invariant CNN on a tempo-biased train-
ing dataset and evaluating on a tempo-unbiased test set. In
order to control the tempo distribution of the dataset, we
start with a set of MIDI drum patterns from the magenta-
groove dataset [27], randomly selecting 4 bars from each
of the 40 eval-sessions, resulting in 160 patterns.
These rhythms were then synthesised at 27 scaled tempi,
with scale factors εi = 2i/26 (−13 ≤ i ≤ 13) with respect
to the original tempo of the recording. Each track starts
with a short silence, the duration of which is randomly cho-
sen within a bar length, after which the rhythm is repeated

2 The loss of non-downbeat frames is reduced to 1/3.
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Figure 4. Tempo invariance experiment using a dataset
of 27 time scaled versions of a set of drum patterns. The
scale factors εi = 2i/26 range from 0.707 to 1.414. A
tempo-invariant CNN (inv) and a standard CNN (noinv)
are trained on the non scaled versions (scale=0) and tested
on all others. A standard CNN trained on scales [−1, 1]
(noinv_aug) simulates the effect of data augmentation.
Figure (a) shows that the invariant model is able to gener-
alise on seen patterns at unseen tempi. Figure (b) shows
that the effect of the tempo-biased training set: for non-
invariant models the benefit is localised, while the invari-
ant model distributes the rhythmic information across the
entire tempo spectrum.

4 times. Audio samples are rendered using FluidSynth 3

with a set of 40 combinations of SoundFonts 4 and in-
struments, resulting in 172800 audio files. The synthe-
sised audio is pre-processed to obtain a log-amplitude mel-
spectrogram with 64 frequency bins and r = 50 frames per
second.

The tempo-biased training set contains the original
tempi (scale factor: ε0 = 1), while the tempo-unbiased
test set contains all scaled versions. The two sets were ren-
dered with different SoundFonts.

We compared a tempo-invariant architecture (inv) with
a regular CNN (noinv). The hyper-parameter configura-
tions are shown in Table 2 and were selected maximising
the accuracy on the validation set.

The results of the experiment are shown in Fig. 4 in
terms of F1 score, using the standard distance threshold

3 http://www.fluidsynth.org
4 https://github.com/FluidSynth/fluidsynth/wiki/SoundFont
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architecture
group inv noinv

1
CNN
3× 32

CNN
3× 32

2
TI-CNN
2× 16
1× 1

dil-CNN
3× 64
1× 1

#params 60k 80k

Table 2. Architectures used in the experiment. Groups of
layers are expressed as (number of layers × output chan-
nels). All layers in group 1 have kernel size equal to 3
frames. dil-CNN is a stack of dilated convolution layers
with kernel size equal to 7 frames and exponentially in-
creasing dilation factors: 2, 4, 8, 16. The specific hyper-
parameters of the tempo-invariant network TI-CNN are
configured as follows: T = 8, τ0 = 0.25, S = 25,M =
64, B = 4. ReLU non-linearities are used on both archi-
tectures.

of 70 ms on both sides of the annotated downbeats [28].
Despite the tempo bias of the training set, the accuracy of
the proposed tempo-invariant architecture is approximately
constant across the tempo spectrum. Conversely, the non-
invariant CNN performs better on the tempi that are present
in the training and validation set. Specifically, Fig. 4a
shows that the two architectures perform equally well on
the training set containing the rhythms at their original
tempo (scale equal to 0 in the figure), while the accuracy
of the non-invariant network drops for the scaled versions.
A different view of the same results on Fig. 4b highlights
how the test set accuracy depends on the scaled tempo. The
accuracy of the regular CNN peaks around the tempi that
are present in the training set, showing that the contribu-
tion of the training samples is localised in tempo. The pro-
posed architecture performs better (even at the tempi that
are present in the training set) because it efficiently dis-
tributes the benefit of all training samples over all tempi.

In order to simulate the effect of data augmentation on
the non-invariant model, we also trained an instance of the
non-invariant model (noinv_aug) including two scaled
versions (εi with |i| ≤ 1) in the training set. As shown in
the figure, data-augmentation improves generalisation, but
has similar tempo dependency effects.

3.2 Music data

In this experiment we used real music recordings. We
trained on an internal dataset (1368 excerpts from a va-
riety of genres, summing up to 10 hours of music) and
the RWC dataset [29] (Popular, Genre and Jazz subsets)
and tested on Ballroom [30,31] and GTZAN [32] datasets.
With respect to the previous experiment we used the same
input features, but larger networks 5 because of the higher
amount of information contained in fully arranged record-

5 In terms of number of channels, layers and convolution kernel sizes,
optimized on the validation set.
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Figure 5. Results of the experiment on music data in terms
of F-measure. Track scores are used to compute the aver-
age and the confidence intervals at 95% (using bootstrap-
ping). The proposed tempo-invariant architecture is able to
better generalise over unseen data with respect to its stan-
dard CNN counterpart.

ings, with inv having 170k trainable parameters and
noinv 340k.

The results in Fig. 5 show that the proposed tempo-
invariant architecture is performing worse on the training
set, but better on the validation and test set, with the com-
parisons on train and test set being statistically significant
(p < 0.001). Here the tempo-invariant architecture seems
to act as a regularisation, allocating the network capacity
to learning patterns that better generalise on unseen data,
instead of fitting to the training set.

4. DISCUSSION

Since musicians are relentlessly creative, previously un-
seen rhythmic patterns keep being invented, much like
“out-of-vocabulary” words in natural language process-
ing [33]. As a result, the generalisation power of tempo-
invariant approaches is likely to remain useful. Once tuned
for optimal input representation and network capacity we
expect tempo-invariant models to have an edge particularly
on new, non-public test datasets.

Disentangling timbral pattern and tempo may also be
useful to tasks such as auto-tagging: models can learn that
some classes have a single precise tempo (e.g. ballroom
dances [30]), some have varying tempos within a range
(e.g. broader genres or moods), and others still are com-
pletely invariant to tempo (e.g. instrumentation).

5. CONCLUSIONS

We introduced a scale-invariant convolution layer and used
it as the main component of our tempo-invariant neural
network architecture for downbeat tracking. We experi-
mented on drum grooves and real music data, showing that
the proposed architecture generalises to unseen tempi by
design and achieves higher accuracy with lower capacity
compared to a standard CNN.
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ABSTRACT

More and more music is becoming available digitally, in-
creasing the need to navigate through large numbers of au-
dio tracks easily. One approach for improving the brows-
ing experience is music thumbnailing: the procedure of
finding a continuous fragment that can represent the whole
musical piece. This paper proposes a human-centred ap-
proach to creating thumbnails based on listeners’ percep-
tion, directly asking listeners to identify the most charac-
teristic fragment. We carried out a user study to assign
representativeness scores to multiple fragments from a se-
lection of popular music tracks. To strengthen the results,
we performed a replication of the same user study with
new participants and a different set of music. Thereafter,
we used audio features, a segmentation algorithm, and par-
ticipants’ overall familiarity with the songs to predict rep-
resentativeness scores. The results suggest that neither
segmentation nor familiarity have a significant impact on
users’ thumbnail preferences: even segments with starting
points that pay no regard to song structure can be suitable
thumbnails. Three high-level audio characteristics, how-
ever, do impact the perceived representativeness of a frag-
ment: Raw Intensity, Melodic Conventionality, and Con-
ventionality of Intensity. Based on these findings, we pro-
pose a new, easy-to-apply method for music thumbnailing.

1. INTRODUCTION

With the rise of the digital age, more and more music is
becoming available; streaming services and websites make
music readily accessible to the public. The availability of
so much music increases the need to navigate through large
numbers of audio tracks easily, e.g., the results of search
queries or long playlists. One approach to improve the
browsing experience is to create music thumbnails. Mu-
sic thumbnailing, or audio thumbnailing, is the procedure
of finding a continuous segment within a musical piece
which represents the whole piece [1–4]. By using these
shorter fragments of audio, music thumbnails allow users
to explore large quantities of music without spending too

c© Arianne N. van Nieuwenhuijsen, John Ashley Burgoyne,
Frans Wiering, Mick Sneekes. Licensed under a Creative Commons At-
tribution 4.0 International License (CC BY 4.0). Attribution: Arianne
N. van Nieuwenhuijsen, John Ashley Burgoyne, Frans Wiering, Mick
Sneekes, “A Simple Method for User-Driven Music Thumbnailing”, in
Proc. of the 21st Int. Society for Music Information Retrieval Conf.,
Montréal, Canada, 2020.

much time listening to or seeking within complete musi-
cal pieces [2, 5]. Audio thumbnailing should not be con-
fused with music summarisation, which combines snippets
of different parts of the song [2,6], or audio fingerprinting,
which creates a simpler representation of musical piece in
the form of a vector or sequence [7, 8].

One practical example of music thumbnails even out-
side the major streaming services is Muziekweb, a Dutch
music library that aims to make music and information
about music available to everyone. 1 On their website, ex-
cerpts can be played to get a sense of the musical pieces
on offer. To be able to assess the musical pieces, repre-
sentative music thumbnails are a must. Currently, how-
ever, Muziekweb simply chooses its thumbnails randomly,
which makes it likely that these excerpts do not represent
the musical pieces very well.

There is no consensus about what approach works
best to create good music thumbnails, and even the con-
cept of music thumbnails is ambiguous [3–5, 9–11]. Ap-
proaches in previous studies include identification of the
most repeated part [1, 4], finding the segment which is
the most similar to the average sound [2], chorus detec-
tion [3–5, 9, 11], and structural identification of the "main
part" [10]. Nonetheless, there is overlap between these
approaches as the chorus is often the most repeated part
in pop music [4] and is also likely to be the most memo-
rable [3].

This paper proposes a user-driven approach by using
the listeners’ perception to improve upon Muziekweb’s
current thumbnailing method. Previous research has dis-

1 https://www.muziekweb.nl/

Figure 1. Example of three playable audio fragments of
the same tune as displayed in the user study. To be able to
distinguish the fragments, the players are displayed with
differently filled squares. The numbers show the ranking
chosen by the participant.
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cussed that the best thumbnail could be the segment con-
taining the most memorable and distinguishable part of the
musical piece [1, 3]. This aligns with the cognitive defi-
nition of hooks: hooks are the most salient segments in a
musical piece, making them the most recognisable part of
a song [12]. Suggestions have already been made about
the potential of hooks and catchiness for music search en-
gines [13]. Therefore, the method here is inspired by pre-
vious studies on catchiness to identify the most represen-
tative part as a music thumbnail.

To use listeners’ perception for thumbnailing, we set up
a user study to gain information on the representativeness
of different fragments of the same tunes. The main task in
this user study asked participants to rank three segments of
the same song with respect to how well they conveyed a
general idea of the song (see Figure 1). Thereafter, fea-
tures were extracted from the audio fragments with the
CATCHY toolbox [14]. To increase the interpretability of
these features, we conducted an exploratory factor analysis
for dimensionality reduction. These factors, the segmen-
tation method, and the participant’s familiarity with the
songs were used to create an approximation of the scores
from the user study with a linear model. Finally, we com-
bined the feature loadings of the factors and the parame-
ters of the linear model to create a function that can rate
the relative representativeness of fragments within a song.
The best-rated fragment in any set of candidates would be
chosen as the audio thumbnail. To confirm our findings,
we repeated the user study with new participants and a dif-
ferent music set and found a very similar result. Based on
the findings, we propose a new user-driven method for mu-
sic thumbnailing. Although we are certainly not the first
researchers to test a thumbnailing algorithm on users, to
our knowledge, this is the first published study to derive an
algorithm for music thumbnailing algorithm directly from
user preferences.

2. METHOD

2.1 Music Selection

Consistent with previous studies on catchiness [12,14,15],
our study focused on popular music. The music came
from lists of the 100 most-played songs on Muziekweb’s
website in 2017 and 2018, to ensure the data consisted of
well-known music. Where the lists contained more than
one song in languages other than English or Dutch (the
two languages that would be most familiar to Muziekweb
users), we retained only the most-played song. The result-
ing list was further reduced by removing songs with low
play counts from artists or albums that appeared multiple
times on the lists, in order to keep the music as diverse as
possible. This resulted in a set of 60 songs, which Muziek-
web provided to us as FLAC files. 2

2 The song list, segment start times, computed features, and anal-
ysis code can be found at https://github.com/arianne-n/
ISMIR-2020-User-Driven-Music-Thumbnailing

2.2 Segmentation

Because hooks mostly occur at the start of structural sec-
tions [12, 13], we used a boundary detection algorithm to
identify the start of these structural sections. Specifically,
we used an algorithm that identifies boundaries based on
structural features and time series similarity [16], as im-
plemented in the Python package MSAF [17]. 3 We used
Pitch Class Profiles (PCPs) as the underlying time series
for segmentation, as the audio features we use to analyse
the results are also mostly harmonic. The other harmonic
time series available in MSAF were either too slow or re-
sulted in too few boundaries to be feasible. Moreover, us-
ing PCPs aligns with previous thumbnailing studies that
describe the importance of chroma [1, 11].

Thumbnails are by their nature short, and as such, our
user study used only short excerpts from the original audio:
9.95 seconds, starting from one of the detected boundaries.
Muziekweb is only allowed to make 29.9 seconds of music
per song available on their site due to copyright, and ex-
cerpts of this length allow users to compare three segments
from each song without causing copyright violations. Pre-
vious studies have assumed the middle of the song to be
the most characteristic [3, 5], while others have noted the
intro can also serve as a hook [18,19]; given the conflicting
opinions in the literature, we simply chose four segments
at random among all the detected boundaries.

To check whether the segmentation method impacts the
representativeness of fragments, we also created two extra
baseline segments per song. The first is based on Muziek-
web’s current method: it picks any random point in a song
as the start of the segment. The second baseline segment
starts at the 1-minute mark in the song, skipping the intro,
but staying away from the end. This resulted in six seg-
ments for each of the 60 songs.

2.3 User Study Design

The aim of the user study was to provide scores of the rep-
resentative power for each of the six segments of the 60
songs. The study was carried out as a web-based survey,
accessible between 3 April 2019 and 27 May 2019. Partic-
ipants were recruited via social media and the Muziekweb
website. Consent from the institutional ethics committee
was acquired prior to collecting any data.

The main task in the survey was similar to the predic-
tion task in the Hooked on Music study of catchiness [12],
but rather than asking participants to make a binary choice,
participants needed to provide an ordered ranking. Each
question would display the title and artist of a song along
with three audio fragments (see Figure 1). The participants
were asked to rank the fragments on how well they helped
them to get a sense of what the song is about (“een idee van
het nummer”). This phrasing was intended to trigger par-
ticipants to follow their gut feeling about the song, with-
out thinking too much; asking for a ranking was intended
to encourage participants to provide finer-grained distinc-
tions than we might have obtained from a traditional rating

3 https://msaf.readthedocs.io/
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scale. The participants were also asked whether they were
familiar with the song with a simple yes–no question.

The survey was implemented in the online survey plat-
form Qualtrics. 4 Qualtrics offers a built-in drag-and-drop
option whereby users can drag alternatives and place them
in their preferred order. To help users distinguish among
the different options visually, we gave each fragment one
of six differently filled squares as a drag handle. These fill
patterns have no apparent ordering in and of themselves,
so as to avoid any bias during the ranking.

The survey started with a short explanation of the task,
an informed consent form, and two practice songs. Then,
the 60 songs were presented to each participant in random
order, with a random selection of three of its segments also
initially presented in random order. We elected for three
segments instead of all six in order to keep the task man-
ageable for participants. Participants were allowed to par-
ticipate only once to reduce chances of bias. Participants
were not required to complete all 60 songs and could end
the survey whenever they wished.

2.4 Measures

Based on the data from the user study, we compute a repre-
sentativeness score for each fragment. The data are in the
form of partial rankings: for each song, we know each par-
ticipant’s relative ordering of three segments, but we have
no information about their perception of the other three
segments. The easiest way to model data in this form is to
use a type of discrete-choice model known as the Plackett–
Luce or exploded logit model [20]. We used the vari-
ant of the model implemented in the R package Placket-
tLuce [21]. The model is similar to a softmax function or a
sort of logistic regression for rankings: specifically, it esti-
mates the probability that, were participants given a choice
among all six segments of a song, they would choose a par-
ticular segment as the most representative thumbnail. This
probability is called the segment’s worth.

In the user study, participants were also asked whether
they were familiar with the songs they ranked. We convert
these ratings to a continuous familiarity score by dividing
the number of responses that indicated that a participant
was familiar with the song by the number of responses
where a participant was not familiar. As a continuity cor-
rection, we add one extra count to the numerator and to the
denominator. Finally, we take the log of this ratio, and the
standard score (I) of the result:

familiarity = I

{
log

known + 1
unknown + 1

}
. (1)

2.5 Audio Features

We evaluate the core measures from the user study with
the help of audio features from the CATCHY toolbox [14].
This toolbox can compute psychoacoustic features such as
loudness, roughness, and sharpness as well as more com-
mon MIR features such as MFCCs, melodic pitch height
estimates, and chroma based on HPCPs. Additionally,

4 https://www.qualtrics.com

the CATCHY toolbox introduces three higher-dimensional
harmonic and melodic features that attempt to bring some
of the concepts available in symbolic music processing to
audio. The first is the Harmonic Interval Co-occurrence
(HIC), which describes the distribution of triads based on
their interval representation. The Melodic Interval Bigram
(MIB) indicates how often triples of successive melodic
pitches occur in the melody. Lastly, the Harmonic Interval
(HI) measures how often pitches in the melody are accom-
panied by harmonic pitches measured in the chroma.

The last feature of the toolbox is the implementation
of first-order and second-order features for audio. First-
order features are computed using the intrinsic content of
the music or audio itself, such as the average note dura-
tion within the melody [14, 15, 22]. Second-order features
reflect the characteristics of the music in context of a cor-
pus. This means that corpus-based second-order features
describe the commonality of a segment as it describes the
segment in the context of the complete corpus. Song-based
second-order features outline the recurrence of the seg-
ment within the song as it measures characteristics of a
segment in relation to the whole song.

Like most MIR toolboxes, CATCHY creates a larger set
of features than desirable for interpretability, and there is
substantial overlap among some subsets of features. We
conducted an Exploratory Factor Analysis (EFA) on all
the features as a means of dimensionality reduction sim-
ilar to [14]. Closely related to PCA, EFA looks for shared
variance to identify a smaller underlying latent structure
responsible for a larger set of observed features [23]. We
used Spearman rank correlations instead of Pearson corre-
lations as the basis for our EFA to avoid problems with the
non-normality of some CATCHY features. Given a corre-
lation matrix, several algorithms for EFA are in wide use;
we chose the standard minimum residual method, which
is commonly used for exploratory and descriptive analy-
ses [24]. In order to maximise interpretability, we then
rotated the latent factor space using Varimax, a common
orthogonal rotation that pushes as many loadings as possi-
ble either toward 0 or toward the extremes (correlation of
−1 or 1 with a latent factor) [23].

2.6 Regression

The last step is to combine the features to obtain in-
sights into what contributes to the representativeness of
segments. We model a segment’s representativeness with
a log-linear regression implemented as a generalised lin-
ear model (GLM) [25, 26]. In this case, the independent
variables are the features derived from the audio, the famil-
iarity score, and the segmentation method; the non-linear
dependent variable is the Plackett–Luce worth. Although
more complex models would be possible, given the ap-
plied nature of this research, we are aiming for simplic-
ity as much as accuracy: linear relations among indepen-
dent variables make the models both easy to interpret and
easy to implement for non-experts. By using the resulting
model to assign a worth to an unseen fragment, new frag-
ments can be evaluated and the fragment of a song with the
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highest value can thereafter be used as a music thumbnail.

2.7 Replication Study

As a final check, we ran a bilingual replication study with
a new set of data from Muziekweb. The data set for this
study consisted of an arbitrary list of 32 songs derived from
the Dutch “Top 2000” of 2019. Although it is less directly
connected to Muziekweb users, it should nonetheless also
represent music that would be well known to its users. The
only substantial difference in the replication was that we
did not ask participants explicitly whether they were fa-
miliar with the songs. Results of the original study indi-
cated that familiarity had no impact on how segments were
perceived, and we hoped to encourage participants to rate
more songs by reducing the number of extraneous ques-
tions. Ethical consent was also acquired for the replication
study and the survey was available from 24 March 2020
until 30 April 2020.

3. RESULTS

3.1 Number of Responses

The original survey received 148 responses, of which 76
participants quit without completing more than the exam-
ple questions, 14 participants completed the survey com-
pletely (i.e., all 60 songs), and 58 partially. The mean num-
ber of songs ranked per participant was 25 (SD = 21). This
resulted in each segment being ranked by a mean of 15 par-
ticipants (SD = 3). Segments in the replication study were
ranked 17 times on average (SD = 3).

3.2 Dimensionality Reduction

To aid interpretability, we conducted an EFA based on all
the CATCHY features computed for the two studies com-
bined. As there is much disagreement in the literature
about how to choose the optimal number of factors in EFA,
we used a simple heuristic that each factor had to have at
least three features with high loadings (correlation higher
in magnitude than 0.4) to facilitate easier interpretation of
factors [27]. This led to a maximum of five factors. Under-
factoring is more harmful than overfactoring, and as four
factors started to have more overlap between factors, we
retained all five factors to improve identifiability.

Table 1 shows the CATCHY features which had load-
ings of magnitude greater than 0.4 for one of the five latent
factors. To get a sense of what these factors are measur-
ing, we consider the features with the highest loadings per
factor.

3.2.1 Harmonic and Melodic Entropy

The first factor consists of second-order features describ-
ing harmony and melody. High absolute entropy is com-
bined with high cross-entropy with respect to segments’
own songs and with respect to the entire corpus of songs
we considered. Sharpness also positively influences the
factor, but does so with a far lower loading. This factor

Factors

Feature 1 2 3 4 5

HI Entropy 0.90 0.20 0.05 -0.01 0.05
MIB Entropy 0.90 0.35 -0.03 0.00 0.04
HI × Song Entropy 0.89 -0.29 0.13 -0.02 -0.01
MIB × Corpus Entropy 0.88 0.26 -0.05 0.00 0.04
MIB × Song Entropy 0.88 0.31 -0.05 -0.01 0.01
HI × Corpus Entropy 0.87 -0.33 0.13 -0.01 0.01
HIC Entropy 0.86 -0.29 0.09 0.02 0.02
HIC × Corpus Entropy 0.85 -0.31 0.14 0.00 0.01
HIC × Song Entropy 0.85 -0.28 0.14 -0.01 0.00
Sharpness 0.46 0.17 0.23 0.16 0.31
HI | Song -0.33 0.52 0.01 0.15 0.06
HIC | Corpus -0.20 0.47 0.19 0.17 0.13
HI | Song -0.29 0.47 0.00 0.18 0.13
MIB | Corpus 0.11 0.45 0.01 0.25 0.09
HIC | Song -0.21 0.41 0.15 0.16 0.15
Loudness 0.08 -0.01 0.92 0.00 -0.03
Roughness 0.30 0.01 0.82 0.07 0.05
Melodic Pitch Height 0.12 -0.08 0.50 -0.02 -0.10
MFCC Variance 0.21 -0.13 -0.49 0.02 0.00
MFCC Mean | Corpus 0.16 0.21 0.45 0.14 0.25
Loudness SD 0.32 -0.07 0.43 0.10 0.07
MIB Entropy | Corpus -0.02 0.10 0.04 0.79 -0.02
HI Entropy | Corpus -0.03 0.09 0.04 0.77 0.03
HI Entropy | Song -0.01 -0.04 0.03 0.55 0.15
MIB Entropy | Song -0.03 -0.04 0.01 0.53 0.08
Loudness | Corpus 0.10 0.09 -0.25 0.02 0.55
Loudness | Song 0.08 0.08 -0.05 0.08 0.50
Roughness | Song 0.08 0.08 0.28 0.06 0.50
Roughness | Corpus 0.13 0.05 0.41 0.02 0.42

Table 1. Factor loadings for Minimum Residual EFA for
the features with loadings above 0.4 for one of the factors.
The factors group features together that explain the same
variance. 1. Harmonic and Melodic Entropy; 2. Harmonic
Conventionality; 3. Raw Intensity; 4. Melodic Convention-
ality; 5. Conventionality of Intensity.

thus describes unpredictability or lack of motivic repeti-
tion in the harmony and melody; we call it Harmonic and
Melodic Entropy.

3.2.2 Harmonic Conventionality

The second factor also consists of second-order features
for harmony and melody. For this factor, however, the
loadings prefer higher values for the commonality and re-
currence of these features rather than entropy calculations.
Note that the commonality of HIC and HI is of high im-
portance both with within songs and across the entire cor-
pus, whereas the melody-based MIB loads only against
the full corpus. There is, of course, a high correlation be-
tween melody and harmony, and so we call this factor Har-
monic Conventionality, while acknowledging that it may
also have some melodic aspects. This factor can indicate
repetition within a song itself, as well as tonal language
that does not stray too far from our corpus norm.

3.2.3 Raw Intensity

The third factor mostly relies on high positive values for
loudness (mean and standard deviation) and roughness. It
also prefers a lower MFCC variance, which means a frag-
ment is more consistent, a high MFCC mean in compari-
son to the complete corpus, which could be caused due to
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Overall Result Original – Replication

Feature 1 SE ? 1 SE ?

Intercept 0.15 0.06 0.006 −0.22 0.11 0.044

Audio Factors
Harmonic and Melodic Entropy 0.03 0.04 0.448 −0.32 0.09 <0.001
Harmonic Conventionality 0.11 0.05 0.014 0.01 0.09 0.912
Raw Intensity 0.20 0.04 <0.001 −0.12 0.09 0.149
Melodic Conventionality 0.19 0.04 <0.001 0.19 0.09 0.036
Conventionality of Intensity 0.27 0.05 <0.001 0.16 0.09 0.082

Segmentation Strategies
MSAF −0.21 0.06 <0.001 0.14 0.13 0.249
Random 0.13 0.11 0.238 0.06 0.15 0.585
1-minute 0.10 0.08 0.205 −0.43 0.16 0.009

Table 2. GLM results showing how features contribute to perceived representativeness of thumbnails ('2 = 0.09). The
left-most part shows estimates using the data from both the original and replication study. The right-most results shows the
differences in estimates between the two studies. For each of these results, the estimate or coefficient (1), the standard error
(SE), and ?-value are given.

MFCCs also measuring loudness, and a high melodic pitch
height. We call this factor the Raw Intensity of a fragment,
as fragments that score high on this factor sound noticeably
more “aggressive” than those that do not.

3.2.4 Melodic Conventionality

The fourth factor is heavily based on corpus as well as
song-based second-order features for the MIB and HI en-
tropy. This means that the values for this factor rise when
the dispersion of MIB and HI is typical for a song or the
corpus. Remember also that HI is a measure that explicitly
incorporates melodic information. Thus, this factor pri-
marily describes the commonality and recurrence of the
dispersion of melodic bigrams and the melody aligning
with the harmony. We call it Melodic Conventionality, al-
though it is somewhat less directly linked to conventional-
ity than the Harmonic Conventionality factor.

3.2.5 Conventionality of Intensity

The last factor comprises corpus- and song-based second-
order features for the most important components of Raw
Intensity. It is easy to understand but hard to name; we call
it Conventionality of Intensity.

3.3 Log-Linear Model

A GLM based solely on the data of the original user study
showed that familiarity had no significant impact on how
participants ranked the segments (1 = −0.08, SE = 0.07,
? = .27). As mentioned above, we excluded familiarity
from the replication study in order to lessen the burden on
our participants. We also exclude it from further analysis.

Table 2 showcases the results of a larger GLM with both
the original and replication studies combined ('2 = .09).
The left part shows how each variable contributes to the
representative worth of a fragment overall. The right side
shows the differences in these parameter estimates between
the original and replication studies. The results indicate

that the Raw Intensity, Melodic Conventionality, and Con-
ventionality of Intensity are the most important factors to
approximate a segment’s worth, each having a positive ef-
fect. Although there is a statistically significant difference
between the two studies with respect to the size of the ef-
fect of Melodic Conventionality, the direction of the ef-
fect is the same in both studies. The role of Harmonic
and Melodic Entropy is less clear: its effect on worth goes
in opposite directions between the original study and the
replication. Harmonic Conventionality has a small posi-
tive effect in each study. The effects of segmentation are
less consistent (there is a significant Segmentation × Ex-
periment interaction, j2 (2) = 6.80, ? = .03) but with one
surprising finding: in both studies, choosing thumbnails
that line up with (estimated) structural boundaries seems
to make users’ opinions worse.

4. DISCUSSION

The results show that the most significant features that
could contribute to the representative worth of a fragment
are the Raw Intensity, Melodic Conventionality, and Con-
ventionality of Intensity. Conventionality of Intensity has
the highest impact on the representative worth: users pre-
fer typical levels of intensity, neither too “hard” nor too
“soft”, for thumbnails. In addition to Conventionality of
Intensity, higher-intensity thumbnails are preferred, as well
as thumbnails with typical, familiar melodic patterns. The
effect of Harmonic Conventionality is statistically signifi-
cant, but its effect size is quite small; if anything, it may
have a small positive effect on the perceived quality of a
thumbnail.

Our results also show that the effect of Harmonic and
Melodic Entropy seems to differ between the original and
replication study. As both data sets had the same data for-
mat and were used to create the factors, the difference is
most likely caused by the songs themselves. The replica-
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tion study contained primarily pop-rock songs, whereas the
original study also contained a broader of popular styles,
e.g., rap and trance. Harmonic and melodic entropy are
fundamental and sometimes genre-defining musical char-
acteristics, and as such, it is not surprising that the effect
of this factor would differ. This possibly genre-dependent
aspect of thumbnails could be an interesting area for future
work.

The impact of the segmentation method on the repre-
sentative worth shows that in contrast to our hypothesis,
segments chosen by a segmentation method do not outper-
form the base cases: in fact, boundary-aligned thumbnails
seem to perform worse. While a thumbnail may benefit
from containing the most memorable and recognisable part
of a song, it does not necessarily need to start at that point.
In practice, an algorithm for selecting thumbnails is go-
ing to be more successful if it simply has many candidate
thumbnails to choose from, without worrying about where
they start.

Altogether, users most prefer music thumbnails with
high intensity and conventional, frequently recurring inten-
sities and melodic patterns. This aligns with previous auto-
matic thumbnailing studies, which have mostly focused on
detecting the most repeated section or chorus [1,3–5,9,11].
Moreover, previous research shows that the chorus is gen-
erally louder, has a higher and more salient pitch, and has
less dynamic diversity [28], which overlaps with the factor
for Raw Intensity in this study.

A similarity can also be found with research on catchi-
ness, which shows that the most memorable parts of a song
have a more typical sound, more conventional melodies,
more recurrence in the timbral aspects, as well as a promi-
nent vocal line [14]. Earworms, which are related to catch-
iness, also seem to appear more in often recurring frag-
ments with a faster tempo and a common melodic contour
[22, 29]. In short, our findings about listeners’ thumbnail
preferences are consistent with previous studies on thumb-
nails, choruses, and catchiness.

4.1 Proposed Thumbnailing Method

Based on these results, we propose a new method for mu-
sic thumbnailing. First, several fragments should be ob-
tained from the song. The results of this study show that
there is no preferred segmentation method and therefore
that any method that results in a reasonable amount of frag-
ments suffices. Then, the CATCHY features for each of
these fragments need to be computed. An approximation
of the factors in this study can be computed by multiplying
standardised feature values by the highest factor loadings
for the Raw Intensity, Melodic Conventionality, and Inten-
sity Conventionality. Thereafter, these approximations are
multiplied by the estimates of the GLM of the combined
results to gain a representative score. The fragment of a
song with the highest score can be selected as the music
thumbnail.

4.2 Limitations

Like any user study, our research has some limitations.
First, this study only focuses on pop music; the results can-
not necessarily be transferred to other musical genres [11].
Apart from the musical genre, the choice of a linear model
might also have been too simplistic to grasp fully how
audio features are related to perceived representativeness.
More insights might be gained by also considering non-
linear models that could pick up more intricate relation-
ships. While this study does consider features for psycho-
acoustics and harmony, rhythm is not considered. Further
research might look into the effects of rhythm features on
representativeness. Lastly, the segmentation method used
here had a negative impact on the representativeness score;
perhaps a different algorithm might have yielded better re-
sults. Nonetheless, it is clear from our findings that simple
heuristics like starting at a fixed time point or even a fully
random starting point can also yield effective thumbnails.

5. CONCLUSION

This study aimed to create a user-driven music thumb-
nailing method based on easily computable audio features
and an easy-to-implement scoring strategy. Segments of
well-known pop songs were obtained and audio features of
these segments were derived with the CATCHY toolbox.
Thereafter, the segments were presented in two user stud-
ies where participants could rank segments on their rep-
resentativeness. Using the data from the user studies, we
used a log-linear model to understand how audio features
might explain the perceived worth of a potential thumbnail.
The results were significant: representativeness seems to
be positively influenced by a higher intensity, and a higher
commonality and recurrence of intensity and melodic dis-
persion. Based on these findings, we propose a new, easy-
to-apply method for music thumbnailing.
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ABSTRACT

Choral music recordings are a particularly challeng-
ing target for source separation due to the choral blend
and the inherent acoustical complexity of the ‘choral tim-
bre’. Due to the scarcity of publicly available multi-
track choir recordings, we create a dataset of synthesized
Bach chorales. We apply data augmentation to alter the
chorales so that they more faithfully represent music from
a broader range of choral genres. For separation we em-
ploy Wave-U-Net, a time-domain convolutional neural net-
work (CNN) originally proposed for vocals and accom-
paniment separation. We show that Wave-U-Net outper-
forms a baseline implemented using score-informed NMF
(non-negative matrix factorization). We introduce score-
informed Wave-U-Net to incorporate the musical score into
the separation process. We experiment with different score
conditioning methods and show that conditioning on the
score leads to improved separation results. We propose a
‘score-guided’ model variant in which separation is guided
by the score alone, bypassing the need to specify the iden-
tity of the extracted source. Finally, we evaluate our mod-
els (trained on synthetic data only) on real choir recordings
and find that in the absence of a large training set of real
recordings, NMF still performs better than Wave-U-Net in
this setting. To our knowledge, this paper is the first to
study source separation of choral music.

1. INTRODUCTION

In this paper, we set out to investigate the application of
source separation to choral music. We aim to take a record-
ing of choral music and extract from it individual record-
ings for each of the choir sections (normally soprano, alto,
tenor, and bass).

Audio source separation refers to extracting one or more
sound sources of interest from a recording that involves
multiple sound sources [1]. The musical applications of
audio source separation include separating instruments in
a recording and generating ‘karaoke’ tracks of songs by
separating the accompaniment and the lead vocals [2]. To
the best of our knowledge, this paper is the first to attempt
separation of choral music. Separation of choral music en-

c© Matan Gover, Philippe Depalle. Licensed under a Cre-
ative Commons Attribution 4.0 International License (CC BY 4.0). Attri-
bution: Matan Gover, Philippe Depalle, “Score-Informed Source Sep-
aration of Choral Music”, in Proc. of the 21st Int. Society for Music
Information Retrieval Conf., Montréal, Canada, 2020.

ables applications such as fine-grained editing, analysis,
and automatic creation of practice tracks (recordings of in-
dividual choir parts used by singers as an aid for learning
new music) from professional choir recordings.

At the outset, choral music separation would seem a
challenging task. Every choir section is composed of mul-
tiple singers singing simultaneously with slight variations
in pitch and in timing, and every singer has a unique voice
timbre. It follows that the resulting ‘choral timbre‘ has ex-
tremely varied acoustical characteristics. Furthermore, an
important goal in choral performance is achieving blend
between singers, so that the choir is perceived by listeners
as one coherent sound source [3]. This blend can naturally
hinder the operation of an algorithm wishing to separate
the choir. Choral music is often recorded in highly rever-
berant spaces such as churches, and the reverberations con-
stitute yet another hurdle for separation. Finally, choirs are
seldom recorded in a ‘one voice per track’ setting [4], and
this lack of multi-track recordings makes it harder to de-
sign and validate source separation systems.

The rest of this paper is structured as follows. In Sec-
tion 2 we review related work. In Section 3, we present
a dataset of synthesized Bach chorale harmonizations. In
Section 4, we establish baseline separation performance
for choral music using NMF [5]. In Section 5, we apply a
deep learning separation technique called Wave-U-Net [6]
to choral music and in Section 6 we extend it to incorporate
musical scores into the separation process. In Section 7,
we present the results of several experiments conducted to
determine the effectiveness of the proposed techniques.

2. RELATED WORK

Recently, the state of the art in source separation has ad-
vanced considerably, with some applications in speech
even surpassing ideal time-frequency magnitude masking
[7]. In music, one of the most common applications is vo-
cals and accompaniment separation [8]. In this task, deep
learning methods show the best performance among sepa-
ration techniques [9]. Some state-of-the-art techniques op-
erate on spectrograms [10,11] while others operate directly
on the signal [6,7,12–14]. The reader is referred to [15] for
a review of deep learning for speech separation and to [2,8]
for overviews of music separation.

U-Net [16] is a prominent deep learning separation
technique. Originally used for semantic segmentation
of biomedical images [17], U-Net employs an encoder-
decoder CNN architecture with skip connections to pro-
cess the input on multiple scales. Wave-U-Net [6] extends
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U-Net but instead of processing spectrograms it is applied
directly to the signal. Demucs [12] is also based on a U-
Net architecture and operates on the time-domain signal,
with added features such as gated linear units and a recur-
rent layer between the encoder and the decoder.

2.1 Score-Informed Source Separation

The musical score, when available, is an invaluable source
of detailed information on the mixture, such as instrumen-
tation, pitch, and timing. Score-informed separation tech-
niques use this information to guide the separation process
[18]. One of the earliest techniques is synthesizing a sig-
nal from the target source’s score and then using this sig-
nal as a reference [19–21]. Another technique is creating
harmonicity-based masks or constraints driven by the note
pitches and timings specified in the score [22–24]. Scores
have also been used extensively as factorization constraints
in the framework of NMF and its extensions [25–30].

More recently, scores have also been integrated into
deep learning-based separation techniques. In [31], an
autoencoder network was trained while imposing score-
based constraints on the latent representation so that each
latent unit represents a single note. Separation was then
performed on a note-by-note basis. A technique for or-
chestral music separation [32] used a CNN that operates
on ‘score-filtered’ spectrograms.

3. SYNTHESIZED BACH CHORALES DATASET

For training source separation techniques based on super-
vised learning, a large dataset of multi-track recordings
is required. For example, the MUSDB18 dataset [9] for
vocals and accompaniment separation contains 150 songs
with a total duration of about 10 hours. Unfortunately, such
a dataset of choir recordings does not currently exist. The
Mixing Secrets dataset 1 contains some multi-microphone
choral recordings, but there is significant leakage between
the microphones. Choral Singing Dataset [33] is a good
multi-track dataset, but it consists of only three songs.

In the absence of a large choral music dataset, we opt
to use a synthesized dataset. Recently, a method for choir
synthesis was proposed based on voice cloning [34], but
unfortunately the implementation and the dataset are not
publicly available. Choir audio tracks are often produced
using commercial sample libraries 2 that contain thou-
sands of professionally recorded choir samples. Unfortu-
nately, these sample libraries are prohibitively expensive.

Previous work has shown that synthetic training data
does not have to sound realistic for a model to general-
ize well [35, 36]. In light of this, we choose a relatively
simple and cheap approach. We use the FluidSynth soft-
ware synthesizer [37], which converts MIDI messages to
audio by using audio samples and synthesis rules stored
in a SoundFont file. We use the ‘Choir Aahs’ preset from
the MuseScore_General SoundFont 3 . Each sample

1 http://www.cambridge-mt.com/ms/mtk/
2 e.g., http://soundsonline.com/hollywood-choirs
3 https://bit.ly/musescore-general

in this preset is a short recording of a single choir sec-
tion singing a sustained note on an ‘aah’ vowel with a
single pitch. To synthesize a pitch that does not have an
associated sample, FluidSynth pitch-shifts the sample that
has the closest pitch. To synthesize a note that is longer
than the corresponding sample, a predefined segment of
the sample is looped.

3.1 Bach Chorale Harmonizations

We construct our dataset from a well-known corpus of
chorale harmonizations by J. S. Bach. A chorale is a
Lutheran church hymn [38]. Bach harmonized around 400
chorales as part of large-scale vocal compositions as well
as shorter works [39]. Bach’s chorales are highly struc-
tured and this makes them good candidates to serve as a
coherent dataset for source separation. They are written
for four voices in homorhythmic texture [39]. The rhythm
consists mainly of quarter notes and eighth notes. Struc-
turally, the chorales are built as a sequence of short phrases,
each ending with a fermata (musical pause).

3.2 Data Augmentation

Real-world choir recordings possess many sources of vari-
ability that are absent from Bach chorales. In order to
make our dataset more closely resemble real-world record-
ings, we augment it with three added features: simulated
breaths, random omitted notes, and tempo variations.

To simulate breaths between phrases, we insert a one-
beat-long rest in all voices simultaneously every eight
beats. To simulate sections in which one or more voices
are silent while the other voices continue to sing, we ran-
domly choose 10% of the notes in each voice and change
them into rests. To add tempo variation, we synthesize
each chorale at a random tempo between 70 and 100 BPM.

3.3 Synthesis Procedure

To synthesize our dataset we read the corpus of Bach
chorales in MusicXML format using the music21 library
[40]. From the 371 chorales in the Riemenschneider edi-
tion we exclude 20 chorales that contain instrumental parts
or more than four vocal parts. The 351 remaining chorales
are split into three partitions: training (270 chorales), vali-
dation (50), and test (31). For each chorale we export four
MIDI files, one file per voice, and synthesize them using
FluidSynth. 4 The total duration of the dataset is 3h 48m.

4. BASELINE: SCORE-INFORMED NMF

We establish a baseline for separation performance on our
dataset using a classic separation technique: non-negative
matrix factorization (NMF) [5,41]. NMF factorizes a mix-
ture spectrogram into two matrices: basis signals and tem-
poral activations. To constrain the NMF separation process
we use a score-based initialization scheme for the basis

4 The code to generate the dataset is available at: https://
github.com/matangover/synthesize-chorales

Proceedings of the 21st ISMIR Conference, Montréal, Canada, October 11-16, 2020
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signals and activations matrices [25]. We dub this tech-
nique SI-NMF. Our implementation is available online. 5

We use the variant dubbed IWH in the original paper, which
imposes constraints on both basis signals and activations.
For the STFT we use a Hann window with a size of 2,048
samples (the dataset sampling rate is 22,050 Hz). The SI-
NMF score-based constraints allow some tolerance to ac-
count for slight pitch and timing variations in the mixture.
Since in our dataset the scores are perfectly aligned to the
mixture, we use onset tolerance of 0 and offset tolerance
of 0.2 seconds (to account for note decay). We use pitch
tolerance of 1 semitone. These parameters were found to
give the best results after comparing several alternatives.

5. WAVE-U-NET FOR CHORAL MUSIC

To improve on the SI-NMF baseline, we propose to ap-
ply Wave-U-Net (described in Section 2). Wave-U-Net
attained good results in the SiSEC 2018 evaluation cam-
paign [9] and its code is publicly available. Since Wave-
U-Net operates in the time domain, it may be well suited
for separating sources with overlapping partials, which are
ubiquitous in choral music and may pose a challenge for
methods that rely on spectrogram masking [12].

We follow the training procedure used in the original
Wave-U-Net paper. Every training batch consists of 16
short (6-second) segments extracted from the training set
at random positions. The Adam optimizer [42] is used with
the mean squared error loss and an initial learning rate of
0.0001. The validation set is used for early stopping.

In the original implementation of Wave-U-Net, a sin-
gle model is trained to extract all sources at the same time.
This is economical in terms of model weights and training
time, but it forces the latent representations to be generic
enough to fit all sources. Instead, we propose to train a sep-
arate model for each extracted source. This way the model
can be specifically geared to extract each of the sources.

6. SCORE-INFORMED WAVE-U-NET

We propose to condition Wave-U-Net on the musical score
of the separated sources to improve separation quality. 6

The pitch and timing information contained in the score
can help overcome the challenges of separating choral mu-
sic. Timbre is generally a useful differentiating factor for
separation, but the timbres of the women’s voices (soprano
and alto) are similar to each other, and so are the men’s
(tenor and bass). Relying on the pitch range of each choir
part is also not sufficient for separation because the ranges
have considerable overlap. For example, an F4 note (F
above middle C) could easily be sung by the soprano, alto,
or tenor, and in rare cases also by the bass [3, p. 234]. The
standard SATB (soprano-alto-tenor-bass) ordering of the
voices could sometimes be used for separation, but this or-
dering is not always kept, and in any case it could only
be used in sections where all voices sing at the same time.

5 https://git.io/si-nmf
6 https://git.io/si-Wave-U-Net

Hence, in many cases the musical score may be the only
way to associate notes to a specific voice in choral music.

6.1 Score Representations

Our dataset provides the score for each part as a mono-
phonic MIDI file indicating each note’s onset time, offset
time, and pitch. We transform the MIDI note sequence into
a representation that can be efficiently processed by Wave-
U-Net. In choral music, every part sings at most one note
at a time. (In the case of divisi, such as when soprano is
split into soprano 1 and soprano 2, we can treat every di-
visi section as a distinct source.) Therefore, we represent
a part’s score as a time series that indicates the active pitch
(if any) at every time point. To keep the score aligned with
the network’s audio input, we use the same sampling rate
for the audio and the score representation. We investigate
four different score representations [43].

normalized pitch. A part’s score is represented as a
vector in which every element indicates the active pitch at
the corresponding time instant. Since the range of MIDI
note numbers (0 to 127) is radically different from the
range of the audio input (-1 to 1), we normalize the note
number to the range [0, 1], and use the special value -1 to
indicate no note is active. Given a MIDI note number M ,
the normalized pitch Sn is computed as:

Sn(M) =
M −Mmin

Mmax −Mmin
, (1)

whereMmin andMmax are the minimum and maximum ex-
pected note pitches, respectively. We set Mmin = 36 and
Mmax = 84, based on the normal choral voice ranges: from
C2 (very low bass note) to C6 (very high soprano note).

pitch and amplitude. In order to better encode the dif-
ference between sung notes and silence, we introduce a
two-channel representation, in which one channel repre-
sents pitch and the other represents amplitude. The pitch
channel Sp is normalized to the range [−1, 1], as given by:
Sp(M) = 2Sn(M)−1. The amplitude channel is boolean:
its value is 1 when a note is active and 0 otherwise. When
no note is active the pitch channel is set to -1.

piano roll. The score is represented as a one-hot matrix
of size p × n where p is the number of available pitches
(p =Mmax−Mmin+1) and n is the length of the network’s
audio input. The matrix element at row pi and column
nj is set to 1 if a note with pitch pi is active at time nj .
Otherwise, the element is set to 0.

pure tone. Since the model inputs are audio, we pro-
pose to represent the score in a simplistic audio-like form.
We use a pure tone signal constructed as a piecewise sine
function where the frequency is controlled by the active
note’s pitch. For simplicity, we do not create smooth note
transitions, so any note onset will result in a discontinuity.
The pure tone frequency f is determined by the standard
MIDI note number to frequency mapping:

f(M) = 440 · 2
M−69

12 . (2)

When there is no active note, f is set to 0. The score vector
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Figure 1. Conditioning locations for Wave-U-Net (show-
ing a model that extracts a single source, see Section 5)

then receives the following value at each sample index i:

St(M, i) = sin

(
2πf(M) ∗ i

Fs

)
, (3)

where Fs is the sample rate of the model’s audio input.
All four score representations do not differentiate be-

tween a sustained note and a repeated note: consecutive
notes with the same pitch are represented the same as one
note with a longer duration. Devising a score representa-
tion that does encode this difference is left to future work.

6.2 Conditioning Method

Common methods for conditioning neural networks in-
clude concatenation, in which a conditioning tensor is con-
catenated to the input tensor; biasing, in which a condi-
tioning tensor is added to the input tensor; and scaling, in
which the input tensor is multiplied element-wise by a con-
ditioning tensor [44]. In this work we use concatenation,
which is equivalent to biasing with a linear transformation
applied to the conditioning [44].

We investigate three conditioning locations in the Wave-
U-Net architecture (see Figure 1): input conditioning
(score is concatenated to the input audio before the de-
coder), output conditioning (score is concatenated to the
decoder’s output before the output layer), and input-output
conditioning (a combination of both). Other conditioning
locations are also possible, but they would require a trans-
formed score representation. Conditioning at the bottle-
neck, for example, would necessitate resampling the score
information to the bottleneck’s much lower temporal reso-
lution, thus discarding important timing information con-
tained in the score. Conditioning at the bottleneck could
work well when the conditioning has no temporal dimen-
sion, such as instrument labels [45].

6.3 Multi-Source Training

In addition to the standard method of training the network
to extract specific voices, we propose a multi-source model
variant which can separate any one of the four voices given
only that voice’s score. To achieve this, we train a model

to extract a single voice from the mixture, where every
training example consists of a mixture segment (used as
input to the model), the score of one random voice out
of the four voices (used to condition the model), and the
corresponding audio for that voice as the target to extract
(used to compute the loss). Since training examples do
not explicitly specify which voice they correspond to, the
model learns to extract the desired voice based on its score
alone. Whereas a normal score-informed model could use
the score to improve separation results, the multi-source
model must make use of the score. In this sense, the sep-
aration is not only score-informed, it is score-guided. A
multi-source model also gives greater flexibility by allow-
ing users to choose individual notes to extract, possibly al-
ternating between voices. Furthermore, multi-source train-
ing can enable a model trained only on four-voice mixtures
to be used on recordings with any number of voices.

7. EXPERIMENTS AND RESULTS

To evaluate model performance, we use the SDR met-
ric [46] provided by the BSS Eval library (version 4) [9]
with its default settings 7 . Like SiSEC 2018 and subse-
quent works, we report median SDR rather than mean in
order to reduce the effect of outliers. We compare all pro-
posed model variants in 6 experiments, listed in Table 1.
Audio examples are available online. 8 We assess whether
certain methods perform better than others by reporting p-
values from pairwise Conover–Iman tests [47] (also used
by [9]; we adjust for multiple comparisons using the Bon-
ferroni method [48]), always after rejecting the Kruskal–
Wallis [49] null hypothesis with P < 0.001.

Experiment Method Score-Informed Model Type

1 SI-NMF yes -
2 Wave-U-Net no one model for all voices
3 Wave-U-Net no one model per voice
4 Wave-U-Net yes one model for all voices
5 Wave-U-Net yes one model per voice
6 Wave-U-Net yes one model: multi-source

Table 1. List of experiments

7.1 Experiments 1–3: SI-NMF and Wave-U-Net

A comparison of separation performance of SI-NMF and
Wave-U-Net on the test set is shown in Figure 2. While
SI-NMF achieves decent results, Wave-U-Net consistently
outperforms it in all voices by a large margin (P < 0.001).

In SI-NMF, interferences between estimated sources are
very low due to the hard constraints imposed using the
score. However, estimated sources contain noticeable am-
plitude modulation artifacts. These are likely caused by
the use of static spectral templates, which cannot effec-
tively model the continuous evolution of spectral param-
eters in choral music. Source-filter signal models can be
integrated into NMF to improve its performance in such
cases [50–52]. The effectiveness of such models for choral

7 We also provide supplementary SIR, SAR, and ISR evaluations. 8

8 https://www.matangover.com/choirsep-ismir
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Figure 3. Results from Experiment 4 (with score; score
type: normalized pitch, conditioning location: input) com-
pared to Experiment 2 (without score)

music may be limited, however, as a choir section is ac-
tually composed of multiple sound sources (singers). Fig-
ure 2 further shows that single-voice Wave-U-Net (Exper-
iment 3) is superior to all-voice Wave-U-Net (Experiment
2) (P < 0.001).

Examination of segments in which the model achieved a
particularly low SDR reveals that the most common source
of errors is misclassified notes (that is, when the model
assigns notes to the wrong voice) [43]. One cause for
misclassified notes is voice crossings, which occur when
the normal voice ordering is violated. The fact that voice
crossings cause misclassification shows that the model has
learned to rely on the standard ordering of the voices. Mis-
classified notes also occur in segments in which one voice
is silent while the other voices continue to sing. In such
segments the model cannot always infer which voice is
silent due to the overlap between voice ranges.

7.2 Experiment 4: Score-Informed, Extract All Voices

In Experiment 4 we examine the effect of adding score
conditioning to the model from Experiment 2. We train
12 score-informed model variants: all combinations of 4
score representations and 3 conditioning locations. Fig-
ure 3 shows that adding the score improves median SDR
in all voices (P < 0.001) except for soprano (P > 0.05).

Figure 4 compares all score conditioning methods.
Conditioning location has no consistent effect on soprano

Figure 4. Results from Experiment 4 by voice, score type,
and conditioning location

and bass separation. For alto and tenor, however, output
conditioning is overall worse than both input and input-
output conditioning (P < 0.001). We suspect that out-
put conditioning performs poorly because the Wave-U-Net
output layer is a simple sample by sample dot-product
(convolutional layer with kernel of size 1).

7.3 Experiment 5: Score-Informed, Extract Single

Figure 5 compares the performance of score conditioning
methods for tenor extraction in Experiment 5. We compare
results for tenor specifically because it is the most chal-
lenging to separate (it achieved the lowest median SDR in
most experiments). Output conditioning gives the worst
performance and has no significant effect compared to no
score at all (P > 0.05). It appears the models conditioned
at the output have learned to simply ignore the score. For
input and input-output conditioning, the choice of score
type has no effect, and all score types perform consider-
ably better than no score at all (P < 0.001), with an im-
provement of up to 2.7 dB in median SDR.

7.4 Experiment 6: Score-Informed, Multi-Source

This experiment tested the effect of score conditioning
method on multi-source training (described in Section 6.3).
We do not include a figure due to limited space, see
website 8 for results. Models using output conditioning
perform very poorly, confirming the results of Experiments
4 and 5. Other than that, conditioning method does not
have an effect in this experiment. The difference in me-
dian SDR between the best method (pitch and amplitude,
input) and the worst method (piano roll, input-output) is
only 0.4 dB.
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Figure 5. Comparison of score conditioning methods in
Experiment 5 (on tenor only), with the non-score-informed
counterpart (Experiment 3) shown for reference

7.5 Overall Comparison

In Figure 6 we compare results from all experiments. For
the score-informed models we use the conditioning method
that performed best, taking into account all experiments
and all voices (score type: pitch and amplitude, condition-
ing location: input). As expected, using the score improves
performance mainly for the inner voices (alto and tenor),
as they are more prone to induce misclassified notes due to
voice crossings and vocal range overlap (see Section 7.1).
Examination of frames with misclassified notes confirms
that using the score eliminates this problem [43, p. 95].

The score-informed single-source model has the best
performance overall. For alto and tenor, this model
achieves a 2.7 dB improvement in median SDR compared
to the best non-score-informed model (P < 0.001). For
soprano, the improvement is only 0.5 dB (P < 0.001) and
for bass performance is degraded by 0.06 SDR (P < 0.01).
Compared to the NMF baseline, score-informed Wave-U-
Net improves median SDR by 6.2 to 8.1 dB (P < 0.001).

Interestingly, for tenor and alto, the multi-source model
outperforms the non-score-informed single-source model
(P < 0.001), even though the multi-source model uses
only a quarter of the parameters (because it uses a single
model for all four voices).

Listening to audio results of score-informed models, 8

we notice that most score conditioning methods result in
audible clicks at note boundaries. This is likely caused by
the discontinuity of the score representations at these loca-
tions. These clicks hardly affect the SDR evaluations be-
cause they are highly localized. Using the pure tone score
representation eliminates these clicks almost completely.

7.6 Evaluation on Real-World Recordings

Although our models have only been trained on synthe-
sized data, we also evaluate using real choir recordings
from the Choral Singing Dataset [33]. In this evaluation,
non-score-informed Wave-U-Net (Experiment 3 model)
performs poorly with a median SDR of 0 dB (for all voices

Figure 6. Comparison of results from all experiments

combined). Score-informed Wave-U-Net performs better
with SDR of 1.4 and 1.5 dB (models from Experiments 5
and 6, respectively). SI-NMF outperforms Wave-U-Net by
a large margin with SDR of 5.6 dB (P < 0.001).

Listening to estimated sources we notice that score-
informed Wave-U-Net predicts all the right notes, but can-
not faithfully generate the lyrics and unique timbre of the
specific choir, likely due to it being trained on a dataset
containing only a single choir without any lyrics. SI-NMF
predictions also omit many of the lyrics and timbre varia-
tions, but are nonetheless better than Wave-U-Net in this
case. This shows that to be effective on real-world record-
ings, Wave-U-Net needs to be trained on a more represen-
tative dataset. We postulate that if score-informed Wave-
U-Net (or similar methods) could be trained on a diverse
dataset of choral recordings, it would achieve an improve-
ment over SI-NMF that is comparable to the improvement
that it has achieved on the synthesized dataset.

8. CONCLUSIONS

In this paper we investigated source separation of choral
music. Due to the lack of publicly available datasets, we
developed a dataset of synthesized Bach chorales. We es-
tablished baseline separation performance using a score-
informed NMF method. We then showed that NMF is
outperformed by Wave-U-Net, a deep learning separation
technique. We further proposed to condition Wave-U-Net
on musical scores. Our experiments with several condi-
tioning methods showed that using the score improves sep-
aration quality. We introduced multi-source training, in
which a single model separates any of the four choir voices
using only the score as a guide. We found that multi-source
training performs comparably to single-source training,
even though it requires much less resources.

When evaluated on real choir recordings, SI-NMF still
outperforms Wave-U-Net. Hence, a major challenge that
remains is compiling a multi-track choir recording dataset
to be used for training. Until such a dataset is available,
better choir synthesis methods could be used. Another av-
enue for improvement would be to consider more versatile
conditioning methods, such as FiLM layers [53, 54].
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ABSTRACT

Copyright restrictions prevent the widespread sharing of
commercial music audio. Therefore, the availability of
resharable pre-computed music audio features has be-
come critical. In line with this, the AcousticBrainz plat-
form offers a dynamically growing, open and community-
contributed large-scale resource of locally computed low-
level and high-level music descriptors. Beyond enabling
research reuse, the availability of such an open resource
allows for renewed reflection on the music descriptors we
have at hand: while they were validated to perform suc-
cessfully under lab conditions, they now are being run ‘in
the wild’. Their response to these more ecological condi-
tions can shed light on the degree to which they truly had
construct validity. In this work, we seek to gain further
understanding into this, by analyzing high-level classifier-
based music descriptor output in AcousticBrainz. While
no hard ground truth is available on what the true value of
these descriptors should be, some oracle information can
still be derived, relying on semantic redundancies between
several descriptors, and multiple feature submissions be-
ing available for the same recording. We report on multi-
ple unexpected patterns found in the data, indicating that
the descriptor values should not be taken as absolute truth,
and hinting at directions for more comprehensive descrip-
tor testing that are overlooked in common machine learn-
ing evaluation and quality assurance setups.

1. INTRODUCTION

In many music information retrieval (MIR) applications, it
is useful to include information related to music content.
However, many large-scale music audio collections of in-
terest cannot legally be shared as-is. As a compromise,
efforts have been undertaken to locally pre-compute music
audio descriptors and make these available through APIs
or as part of research datasets. Parties without in-house ac-
cess to large audio corpora need to rely on such data for

c© Cynthia C. S. Liem, Chris Mostert. Licensed under a
Creative Commons Attribution 4.0 International License (CC BY 4.0).
Attribution: Cynthia C. S. Liem, Chris Mostert, “Can’t trust the feel-
ing? How open data reveals unexpected behavior of high-level music
descriptors”, in Proc. of the 21st Int. Society for Music Information Re-
trieval Conf., Montréal, Canada, 2020.

subsequent use. Indeed, large-scale pre-computed descrip-
tor corpora have been feeding into further machine learn-
ing pipelines, empowering music applications, facilitating
benchmarking initiatives [1, 2], and leading to inferences
and statements about the nature of music preferences and
listening behavior at an unprecedented scale [3–6].

Audio-based music descriptors are commonly divided
into low- and high-level descriptors. Low-level descrip-
tors can closely be related to the audio signal, while high-
level descriptors are more semantically understandable to
humans. This does not make high-level descriptors easier
to extract; many of them cannot objectively and directly
be measured in the physical world, and thus consider con-
structs rather than physically measurable phenomena.

The performance of automated music descriptor extrac-
tion procedures is reported according to the common eval-
uation methodologies in the field. For descriptors based
on supervised machine learning, this normally includes a
performance report on a test set that was partitioned out
of the original dataset and not seen during training, or on
cross-validation outcomes. However, descriptors that are
reported and assumed to be successful may still be prone
to sensitivities not explicitly accounted for in their design
and evaluation. In lower-level music descriptors, imple-
mentations of MFCC and chroma descriptors showed sen-
sitivities to different audio encoding formats [7], while
common textual descriptions of audio extractor pipelines
turned out insufficiently specific to yield reproducible re-
sults [8]. For higher-level descriptors, seemingly well-
performing trained music genre classifiers turned out to be
unexpectedly sensitive to subtle, humanly interpretable au-
dio transformations [9]. Such sensitivities are not restricted
to music genre classification; for example, trade-offs be-
tween accuracy and semantic robustness have also been
observed in deep music representations [10]. Generally, in
many MIR tasks, ground truth relies on human judgement
and labeling. This may be imprecise and subjective, lead-
ing to low inter-rater agreement. In its turn, this leads to
questions on whether a clear-cut ground truth exists at all,
while this often is fundamental to machine learning tech-
niques and their evaluation [11–14].

Can we tell whether automated descriptors are as
trustable as initially assumed? Do they truly measure what
they are intended to measure? Do they match broader, less
explicitly encoded assumptions we have on them? These
are important questions to ask: in case of negative an-
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swers, the descriptors may not provide a valid basis for
subsequent work to build upon. However, finding sensi-
tivities that were unnoticed in original evaluation contexts
is non-trivial, requiring a broader, more meta-analytic per-
spective. In this work, we focus on this, by providing an
analysis of music descriptor values obtained through the
AcousticBrainz [15] platform. By soliciting community-
contributed submissions of locally run, but largely stan-
dardized music feature extractors, the platform offers a
large-scale perspective on music that ‘people felt worth
the upload’. As such, it offers a more ecological ‘in-the-
wild’ data perspective than what was studied in the lab,
when the descriptors were originally designed. Indeed,
through cross-collection evaluation procedures employing
independent ground truth validation sets, several well-
known genre classification models were shown not to gen-
eralize well beyond their original evaluation datasets [16].

The AcousticBrainz data is unusually transparent and
rich: more so than e.g. the popular Million Song
Dataset [17]. Many descriptor fields are available for each
submission, multiple submissions can be added for the
same MusicBrainz recording, each submission is encoded
with additional metadata on characteristics of the input
audio and the extractor software, and the extractor soft-
ware is open source [18]. We use this richness to com-
prehensively analyze existing computed descriptor values
in AcousticBrainz. Rather than relying on explicit and
clear-cut ground truth, we look at the data through a meta-
scientific lens, and impose more general assumptions on
descriptor behavior, inspired by psychological and soft-
ware testing techniques. This way, we will reveal several
unexpected patterns in the descriptor values. As original
music audio is not attached to the descriptor entries, we
will not (yet) be able to fully replicate how descriptors
were computed, nor will we be able to recreate experimen-
tal conditions on this data, in which possible reasons for
unexpected behavior can cleanly be statistically controlled.
Still, our analysis will help in pinpointing concrete direc-
tions towards future controlled studies.

In the remainder of this paper, we will discuss related
work in Section 2. Then, we will introduce the data
used for our analyses in Section 3, after which we will
present analyses into intra-dataset correlations (Section 4),
descriptor stability (Section 5), and descriptor value dis-
tributions (Section 6), followed by the conclusion and an
outlook towards future work.

2. RELATED WORK

In conducting science, it is non-trivial to assess whether
the outcomes we are observing, the inferences we are mak-
ing and the conclusions we are drawing are truly correct.
These questions of validity were first acknowledged in
the domain of psychological testing, where the focus was
on measuring psychological constructs: abstracted human
characteristics (e.g. ‘conscientiousness’) that are not di-
rectly and physically observable, but that can still be mea-
sured (e.g. through well-designed surveys). Various sub-
categories of validity exist [19]. Among these, one of the

most intuitive to understand, yet hardest to pinpoint, is the
notion of construct validity: the question whether a mea-
surement procedure can indeed be considered to yield a
“measure of some attribute or quality which is not “oper-
ationally defined”” [20].

The traditional viewpoint on ways to assess construct
validity, is to consider a measure procedure as part of a
nomological network, and relate its outcomes to those of
other procedures, that have previously been shown to be
valid [20]; in practice, in much of psychological research,
this is done by assessing correlations between construct
measurements that are theorized to have an interpretable
relation to one another. This does create dependencies un-
der uncertainty, still boiling down to a philosophical ques-
tion of ‘what the first truth is to start with’—something
that may be disproven during the research process, as more
evidence will come in and further comparisons are being
made. It has therefore been argued that comprehensive in-
quiry into construct validity will not only lead to better as-
sessments, but also leads to fundamental questionings and
improvements of the complete scientific process [21].

Within MIR, while comprehensive meta-scientific ques-
tions on this have not been asked, criticisms of current
evaluation practices, referring to the notions of both valid-
ity and reliability and the way in which they have been used
in the Information Retrieval field, have been presented by
Urbano et al. [22]. In addition, Sturm’s criticisms of ‘horse
systems’ in MIR [9] (machine learning-based systems that
performance-wise appear to make humanly intelligent de-
cisions, but that turn out to pick up on irrelevant confounds
in data) can again be related to construct validity.

As a method to assess whether a system is a ‘horse sys-
tem’, Sturm proposes to investigate how systems react to
input data transformations that are considered ‘irrelevant’
(i.e. imperceptible) to humans. Interestingly, this tech-
nique has been used in another research field focused on
‘testing’: the field of software testing, in which it would
be called metamorphic testing [23]. While software testing
appears to be a much more objective and precise procedure
than psychological testing, from a formal, logical perspec-
tive, many real-life programs may actually be considered
non-testable, and the problem of determining whether a
software artefact is bug-free is undecidable [24]. While
one cannot pinpoint one exact oracle truth, it still may be
possible to derive partial oracle truth through transforma-
tions based on known data relationships [25], e.g. by ap-
plying input transformations that should not change a sys-
tem’s output, which is done in metamorphic testing.

3. ACOUSTICBRAINZ

In our studies, we study descriptor values as found through
the AcousticBrainz platform. More specifically, we will
depart from the most recent high-level descriptor data
dump obtained through the AcousticBrainz website 1 . We
are interested in the high-level descriptors, as they should

1 https://AcousticBrainz.org/download.
The data dump used in our analyses is
AcousticBrainz-highlevel-json-20150130.tar.bz2
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mimic humanly understandable semantic concepts, which
should be relatable in humanly interpretable ways.

The data dump considers 1,805,912 entries of
community-contributed high-level descriptor values, that
can be broken down into genres, moods, and other cate-
gories (e.g. danceability); a full overview can be found in
([15], Table 4). Unless indicated otherwise, our analyses
will consider this full data dump. In all cases, descrip-
tor values consider classification outputs, obtained through
machine learning; for each possible class label within a de-
scriptor (e.g., jazz in the genre_dortmund classifier), the
classifier confidence for that class label is given as a float
value. The performance of each of the classifiers is doc-
umented on the AcousticBrainz website; where possible,
performance is reported on publicly available datasets 2 .

4. INTRA-DATASET CORRELATIONS

Following the psychological concept of the nomologi-
cal network, one way to assess validity is to assess how
the outcomes of related measurement procedures correlate
with each other. For this, we take advantage of semantic
redundancy within the AcousticBrainz high-level descrip-
tors. For example, several musical genres literally re-occur
as class labels within the various genre classifiers. Then,
it is not unrealistic to assume that, given the same audio
input, the output of alternative jazz classifiers should pos-
itively correlate. Furthermore, some ‘softer’ assumptions
on meaningful relationships can be made: e.g., aggressive
music is likely not relaxed, and happy music is likely not
sad. We defined multiple of these relationships for which
we would expect to observe (strong) positive correlations
between classifier label predictions, and computed their
Pearson correlations. The results are displayed in Table 1.

The found correlations were unexpected; we were espe-
cially surprised by the very low correlations found for the
genre classifiers, while they should target the same con-
cepts. A scatter plot of rock classifier confidences in
genre_rosamerica and genre_tzanetakis (which yielded a
negative correlation) is given in Figure 1. It appears that
confidences outcomes do not uniformly distribute over the
full [0.0, 1.0] confidence range; we will investigate this
further in the following sections.

Out of all ‘softer’ assumptions that were compared, the
lowest correlation (.13) is between happy and not sad,
implying that music classified as happy could be sad at the
same time. The classifiers used in AcousticBrainz indeed
allow for this, as separate binary classifiers exist for happy
and sad moods; however, this contradicts Russell’s 2D cir-
cumplex model of affect [26], in which happiness and sad-
ness would have opposite scores on the valence dimension.

5. STABILITY

Our correlation analyses showed unexpected results. How-
ever, as different classifiers were trained on different
datasets, they may have considered different characteristics
of the input data. Inspired by the idea of derived oracles,

2 https://AcousticBrainz.org/datasets/accuracy

Figure 1: Scatter plot of classifier confidences. Each point
indicates an AcousticBrainz submission, with confidences
for genre_rosamerica, roc and genre_tzanetakis, roc.

we can however also consider relationships that should be
closer to the identity, and thus should lead to (nearly) iden-
tical outcomes.

In AcousticBrainz, multiple submissions can be made
for the same MusicBrainz recording ID (MBID). Seman-
tically, a MusicBrainz recording really references one and
the same recording. So while users may have encoded the
recording audio in different ways, and may be using differ-
ent versions of the feature extractor, we should intuitively
be able to assume that re-submissions of one and the same
recording should yield descriptor values that are very close
to one another. In other words, we wish for re-submissions
for the same MBID to display stability.

For this, we need to consider the MBIDs in our
data dump that have more than one associated submis-
sion. Filtering for this led to a corpus of 941,018 sub-
missions for 299,097 different MBIDs. If n submis-
sions are available for a given MBID, a given classi-
fier c and a given classifier label l, the corresponding
classifier confidences for these submissions can now be
grouped into a population (MBID, c, l) of size n. Con-
sidering we have k unique MBIDs in our dataset (in our
case, k = 299,097), we can then enumerate the popu-
lations as [(MBID1, c, l), (MBID2, c, l), ..., (MBIDk, c, l)],
and operate within and/or across them when calculating in-
stability metrics.

We consider two alternative ways to quantify instabil-
ity. First, for each of the submission populations, we can
compute the variance observed for classifier confidences,
for each label l in classifier c. As there may be a varying
amount of submissions within a population, we normalize
for this by computing the pooled variance var(c, l) over
our filtered corpus as follows:

var(c, l) =
Σk

i=1(ni × var((MBIDi, c, l)))

Σk
i=1ni

(1)
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Classifier, label A Classifier, label B Pearson’s r p

genre_rosamerica, cla genre_tzanetakis, cla .29 <.001
genre_dortmund, rock genre_rosamerica, roc .24 <.001
genre_dortmund, jazz genre_rosamerica, jaz .22 <.001
genre_dortmund, pop genre_rosamerica, pop .11 <.001
genre_dortmund, jazz genre_tzanetakis, jaz .08 <.001
genre_rosamerica, pop genre_tzanetakis, pop .06 <.001
genre_rosamerica, hip genre_tzanetakis, hip .05 <.001
genre_rosamerica, jaz genre_tzanetakis, jaz .02 <.001
genre_dortmund, blues genre_tzanetakis, blu .01 <.001
genre_dortmund, pop genre_tzanetakis, pop -.05 <.001
genre_dortmund, rock genre_tzanetakis, roc -.06 <.001
genre_rosamerica, roc genre_tzanetakis, roc -.07 <.001
mood_aggressive, aggressive mood_relaxed, not_relaxed .59 <.001
mood_acoustic, acoustic mood_electronic, not_electronic .58 <.001
danceability, danceable mood_party, party .53 <.001
mood_electronic, electronic genre_dortmund, electronic .48 <.001
danceability, danceable genre_rosamerica, dan .33 <.001
mood_happy, happy mood_party, party .20 <.001
mood_happy, happy mood_sad, not_sad .13 <.001

Table 1: Pearson correlations between high-level classifier outcomes, theorized to positively correlate with another.

where ni is the sample size of the ith population in our
enumeration.

As there are multiple possible labels within the same
classifier, but we want to discuss outcomes at the classifier
level, we then take the mean pooled variance, var(c), over
all possible labels l ∈ Lc for classifier c.

When using variances, classifier confidences are con-
sidered to be informative. Alternatively, one could choose
to rather consider each classifier label as a binary label. To
reflect this perspective, for each population and for each
classifier, we can compute the normalized information en-
tropy Ĥ(MBIDi, c), which uses the Shannon entropy [27],
but normalizes by the amount of possible labels |Lc| for c:

Ĥ(MBIDi, c)

= −Σl∈Lc

P ((MBIDi, c, l)) log2 P ((MBIDi, c, l))

log2 |Lc|
= −Σl∈Lc

P ((MBIDi, c, l))log|Lc|P ((MBIDi, c, l))

(2)

where P ((MBIDi, c, l)) is the probability of label l in
classifier c, following the observed empirical distribution
within the population corresponding to MBIDi. Then, to
have a weighted measure per classifier over the whole fil-
tered corpus, we calculate the pooled normalized entropy
Ĥ(c), similarly to how we computed the pooled variance.

While we want for descriptor values to be stable within
a submission, it is usually not the intention that for a given
descriptor, the classifier would be so stable that it always
predicts a single l throughout the whole corpus. This e.g.
happens for the genre_dortmund classifier, which unright-
fully classifies many AcousticBrainz submissions as elec-
tronic music, as also noticed in [16]. To quantify the un-
biasedness of a classifier, we compute the normalized en-
tropy for each classifier over our complete (unfiltered) cor-
pus, denoted as Ĥ(c)all. A higher Ĥ(c)all denotes a more
uniform distribution over the different possible class labels
for c across the corpus, and thus lower classifier bias.

Plots in which we illustrate var(c) and Ĥ(c) (pooled

with regard to recordings with multiple submissions) vs.
Ĥ(c)all (taken across the whole, unfiltered corpus) are
shown in Figure 2. As we can see, indeed, the genre classi-
fiers turn out stable but highly biased. While in most cases,
observed trends are comparable for the two possible insta-
bility measures, some exceptions are found, most notably
on the gender classifier, which is considered stable when
using var(c), but unstable when using Ĥ(c). Seemingly,
confidences for this classifier are close to 0.5, meaning that
male/female classifications easily flip within a submission.

6. VALUE DISTRIBUTIONS

From Figure 1, it was observed that descriptor values
clustered together in small bands. This behavior oc-
curs for several genre and mood classifiers. To illustrate
this, Figure 3 displays a histogram of descriptor values
for the mood_acoustic, mood_relaxed, mood_electronic
and mood_sad classifiers, as observed across the com-
plete AcousticBrainz corpus. Some confidence values
seem disproportionally represented: in the histogram,
sharp spikes occur for mood_acoustic, mood_relaxed,
mood_electronic, and a minor spike for mood_sad.

There are various reasons why this may be the case.
Possibly, the community may have fed skewed data to the
classifier. Alternatively, the feature extractor may have
shown anomalous responses to specific inputs. For each
submission, we have rich metadata, which e.g. includes
information about audio codecs, bit rates, song lengths,
and software library versions that were used when the sub-
mission was created. While, in the absence of a con-
scious experimental design underlying the data, we can-
not cleanly test for contributions of individual facets, we
still can examine whether major distributional differences
occur for submissions with scores within the anomalous-
looking spikes, when comparing these to submissions with
scores outside of these.

For this, for each of the classifiers, we manually define
range intervals for the classifier confidences, within which
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(a) Instability based on mean pooled variance var(c).

(b) Instability based on pooled normalized entropy Ĥ(c).

Figure 2: Submission instability vs. corpus-wide unbi-
asedness (Ĥ(c)all).

we consider a submission to belong to an anomalous clas-
sifier confidence value spike. We then compare the meta-
data value distributions of submissions within each classi-
fier spike to those of submissions that do not occur in any
of the four anomalous spikes (1,239,882 submissions for
855,266 unique MBID recordings).

To investigate whether the observed anomalies may
have been skewed towards any particular genre, we also
study a subset of our corpus, which was cross-matched
against the AcousticBrainz genre dataset [28]. More
specifically, we only kept MBIDs which also occurred
in all three publicly available ground truth sets (Discogs,
last.fm and tagtraum) of the AcousticBrainz genre dataset,
reducing the corpus to 402,279 submissions for 164,826
unique MBID recordings. Examining confidence value
distributions for this filtered dataset, we still observed
the same anomalous spikes for the same range intervals.
Therefore, we will apply the same range intervals as be-
fore to select values associated to anomaly spikes, and will

Figure 3: Histogram of descriptor values for several clas-
sifiers, considered across the whole corpus.

again compare distributional differences between these and
non-anomalous submissions (now amounting to 267,394
submissions for 128,687 unique MBID recordings), in this
case to see whether certain genres are overrepresented in
the anomalous spikes. For each classifier of interest, an
overview of anomalous spike interval ranges and counts of
corresponding unique recording MBIDs and submissions
is given in Table 2.

To quantify distributional differences, we use the
Jensen-Shannon (JS) distance metric:

JS_distance(p, q) =

√
D(p‖m) + D(q‖m)

2
(3)

where m is the pointwise mean of p and q and D is the
Kullback-Leibler (KL) divergence [29]. The JS distance
is based on the JS divergence [30]; as advantages over the
KL divergence, the JS divergence is symmetric and always
has a finite value within the [0, 1] range [31].

For each metadata category in our overall corpus, and
for each genre category in our genre-filtered corpus, we
calculate the JS distance between the frequency occurrence
profiles of category values, counted over all submissions
within an anomalous spike, vs. all submissions without any
anomalous spike. As some categories can assume many
different values (e.g. replay_gain), we only do compar-
isons for values that occur at least 10 times in both fre-
quency profiles. JS distance values for the metadata com-
parisons are listed in Table 3, while JS distance for the
genre comparisons are listed in Table 4.

As can be observed in Table 3, comparing submissions
within and outside of the anomalous spikes, major distri-
butional differences are found for used extractor software
versions. These go up to the level of Essentia Git com-
mit and build versions that were used for low-level feature
extraction. In addition, we also observe distributional dif-
ferences for bit_rate and codec, likely confirming earlier
observations [7] that low-level feature extractors may dis-
play sensitivities with regard to different audio codecs and
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Classifier Anomalous range Full Genre
#MBIDs #submissions #MBIDs #submissions

mood_acoustic, acoustic [0.09, 0.10] 282,605 358,747 60,261 94,268
mood_relaxed, relaxed [0.805, 0.815] 373,555 485,184 72,739 119,050
mood_electronic, electronic [0.972, 0.982] 315,626 401,151 64,944 101,915
mood_sad, sad [0.346, 0.362] 57,697 75,688 8,854 14,242

Table 2: Details of anomalous spike data slices used for distributional comparisons. For each classifier of interest, we
indicate the classifier confidence range for which a submission was considered to be anomalous. We also list the counts of
unique MBID recordings and overall submissions, both for the full corpus and our genre-filtered corpus.

acoustic relaxed electronic sad

bit_rate .42 .32 .39 .17
codec .34 .26 .32 .06
length .15 .15 .15 .32
lossless .28 .21 .27 .02
essentia_low .61 .52 .59 .15
essentia_git_sha_low .67 .58 .66 .23
essentia_build_sha_low .70 .62 .69 .24

Table 3: JS distances between frequency profiles over metadata categories, for anomalous vs. non-anomalous submissions
considering the four classifiers of interest. For metadata categories that are not listed, found JS distances were always 0.

acoustic relaxed electronic sad

Discogs .12 .09 .11 .11
last.fm .14 .12 .13 .14
tagtraum .14 .11 .13 .14

Table 4: JS distances between frequency profiles over
genre categories, for anomalous vs. non-anomalous sub-
missions considering the four classifiers of interest.

compression rates. In contrast, Table 4 shows that JS dis-
tances are equivalent and low across genre taxonomies and
types of anomalies: from this, it seems more likely that the
anomalies were caused by submission extraction contexts,
rather than the inclusion of anomalous data.

7. CONCLUSIONS AND FUTURE WORK

In this work, we analyzed patterns in high-level descriptor
values in AcousticBrainz. As we showed, while the de-
scriptors were successfully validated under lab conditions,
they show unexpected behavior in the wild, raising ques-
tions on the extent to which they have construct validity.

The unexpected behavior could have two potential
causes. First of all, the construct underlying several
high-level descriptors may be conceptually problem-
atic by itself. For example, the concept of genre [32], as
well as its use in machine learning classification tasks [33]
has been criticized by musicologists and musicians. Fur-
thermore, within music psychology, there have been find-
ings that sad music does not necessarily elicit sad emo-
tions [34, 35]. Further interdisciplinary research will be
needed to better understand these phenomena.

Our current analyses also accumulated evidence that
the AcousticBrainz community confronted the descrip-
tors with audio and extraction contexts that were too
different from the contexts on which classifiers origi-
nally were trained. It should be noted that original train-

ing datasets for the classifiers were far smaller in size (sev-
eral hundreds to thousands of data points) than the current
scale of AcousticBrainz, and that this logically may not
have managed capturing all intricacies of larger-scale, eco-
logically valid data. However, our analyses suggest that
anomalous behavior may also be due to audio codecs, com-
pression rates and different versions of software implemen-
tations and builds that were used during extraction, which
are rarely explicitly considered and reported in evaluation
setups. As for the software versions, it should further be
noted that, while we focused on high-level descriptors, all
found differences occurred in the extraction procedures of
low-level descriptors (feature representations), while the
high-level machine learning models stayed constant. Thus,
low-level descriptor performance should explicitly stay in
scope when studying high-level descriptors.

With this work, we wished to shed light on current
challenges regarding the reproducibility and generalizabil-
ity of research outcomes, and on elements of processing
pipelines that are under-represented in applied machine
learning and signal processing literature, yet play a criti-
cal role for the pipeline’s performance [8, 36]. Inspired by
literature in both psychological and software testing, we
also offered several possible strategies to assess descriptor
validity, even in the absence of a clear ground truth.

While we exposed several potentially problematic pat-
terns, we explicitly do not wish for this work to be seen as a
criticism of AcousticBrainz and/or Essentia. No other MIR
resource or API currently offers similar levels of trans-
parency that allow for analyses like we performed here,
and we would like to explicitly thank the teams behind
these initiatives for their openness. It also is this openness
that will allow for us to perform further research in the near
future—with more systematic testing strategies and exper-
imental designs—towards more holistic quality assurance
procedures for applied machine learning procedures in the
context of humanly-interpretable signal data.
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245



8. REFERENCES

[1] A. Schindler and R. Mayer and A. Rauber, “Facilitat-
ing Comprehensive Benchmarking Experiments on the
Million Song Dataset,” in Proceedings of the 13th Con-
ference of the International Society for Music Informa-
tion Retrieval (ISMIR 2012), 2012.

[2] D. Bogdanov, A. Porter, J. Urbano, and H. Schreiber,
“The MediaEval 2018 AcousticBrainz Genre Task:
Content-based Music Genre Recognition from Mul-
tiple Sources,” in MediaEval Benchmark Workshop,
2018.

[3] J. Serrà, A. Corral, M. Boguñá, M. Haro, and J. L. Ar-
cos, “Measuring the Evolution of Contemporary West-
ern Popular Music,” Scientific Reports, vol. 2, 2012.

[4] M. Interiano, K. Kazemi, L. Wang, J. Yang, Z. Yu,
and N. L. Komarova, “Musical trends and predictabil-
ity of success in contemporary songs in and out of the
top charts,” Royal Society Open Science, vol. 5, no.
171274, 2018.

[5] M. Park, J. Thom, S. Mennicken, H. Cramer, and
M. Macy, “Global music streaming data reveal diurnal
and seasonal patterns of affective preference,” Nature
Human Behaviour, vol. 3, no. 3, pp. 230–236, 2019.

[6] E. Zangerle, R. Huber, M. Vötter, and Y.-H. Yang, “Hit
Song Prediction: Leveraging Low-and High-Level Au-
dio Features,” in Proceedings of the 20th Conference
of the International Society for Music Information Re-
trieval (ISMIR 2019), 2019.

[7] J. Urbano, D. Bogdanov, P. Herrera, E. Gómez, and
X. Serra, “What is the Effect of Audio Quality on the
Robustness of MFCCs and Chroma Features?” in Pro-
ceedings of the 15th Conference of the International
Society for Music Information Retrieval (ISMIR 2014),
2014.

[8] B. McFee, J. W. Kim, M. Cartwright, J. Salamon, R. M.
Bittner, and J. P. Bello, “Open-Source Practices for
Music Signal Processing Research: Recommendations
for Transparent, Sustainable, and Reproducible Audio
Research,” IEEE Signal Processing Magazine, vol. 36,
2019.

[9] B. L. Sturm, “A Simple Method to Determine if a Mu-
sic Information Retrieval System is a “Horse”,” IEEE
Transactions on Multimedia, vol. 16, no. 6, pp. 1636–
1644, 2014.

[10] J. Kim, J. Urbano, C. C. S. Liem, and A. Hanjalic,
“Are Nearby Neighbors Relatives? Testing Deep Mu-
sic Embeddings,” Frontiers in Applied Mathematics
and Statistics, vol. 5, p. 53, 2019.

[11] A. Flexer and T. Grill, “The Problem of Limited Inter-
rater Agreement in Modelling Music Similarity,” Jour-
nal of New Music Research, vol. 45, no. 3, pp. 239–
251, 2016.

[12] A. Flexer and T. Lallai, “Can we increase inter- and
intra-rater agreement in modeling general music simi-
larity?” in Proceedings of the 20th Conference of the
International Society for Music Information Retrieval
(ISMIR 2019), 2019.

[13] H. V. Koops, W. B. de Haas, J. A. Burgoyne,
J. Bransen, A. Kent-Muller, and A. Volk, “Annotator
subjectivity in harmony annotations of popular music,”
Journal of New Music Research, vol. 48, no. 3, pp.
232–252, 2019.

[14] S. Balke, J. Abeßer, J. Driedger, C. Dittmar, and
M. Müller., “Towards evaluating multiple predominant
melody annotations in jazz recordings,” in Proceedings
of the 17th Conference of the International Society for
Music Information Retrieval (ISMIR 2016), 2016.

[15] A. Porter, D. Bogdanov, R. Kaye, R. Tsukanov, and
X. Serra, “AcousticBrainz: A Community Platform for
Gathering Music Information Obtained from Audio,”
in Proceedings of the 16th Conference of the Interna-
tional Society for Music Information Retrieval (ISMIR
2015), 2015.

[16] D. Bogdanov, A. Porter, P. Herrera, and X. Serra,
“Cross-collection evaluation for music classification
tasks,” in Proceedings of the 17th Conference of the
International Society for Music Information Retrieval
(ISMIR 2016), 2016.

[17] T. Bertin-Mahieux, D. P. W. Ellis, B. Whitman, and
P. Lamere, “The Million Song Dataset,” in Proceedings
of the 12th Conference of the International Society for
Music Information Retrieval (ISMIR 2011), 2011.

[18] D. Bogdanov, N. Wack, E. Gómez, S. Gulati, P. Her-
rera, O. Mayor, G. Roma, J. Salamon, J. R. Zapata,
and X. Serra, “Essentia: An Audio Analysis Library
for Music Information Retrieval,” in Proceedings of the
14th Conference of the International Society for Music
Information Retrieval (ISMIR 2013), 2013.

[19] W. R. Shadish, T. D. Cook, and D. T. Campbell, Exper-
imental and Quasi-Experimental Designs for General-
ized Causal Inference. Houghton Mifflin, 2002.

[20] L. J. Cronbach and P. E. Meehl, “Construct Validity in
Psychological Tests,” Psychological Bulletin, vol. 52,
p. 281–302, 1955.

[21] G. T. Smith, “On Construct Validity: Issues of Method
and Measurement,” Psychological Assessment, vol. 17,
no. 4, pp. 396–408, 2005.

[22] J. Urbano, M. Schedl, and X. Serra, “Evaluation in Mu-
sic Information Retrieval,” Journal of Intelligent Infor-
mation Systems, vol. 31, pp. 345–369, 2013.

[23] T. Y. Chen, S. C. Cheung, and S. M. Yiu, “Metamor-
phic Testing: A New Approach for Generating Next
Test Cases,” Hong Kong University of Science and
Technology, Tech. Rep., 1998.

Proceedings of the 21st ISMIR Conference, Montréal, Canada, October 11-16, 2020
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ABSTRACT

This study examines gender representation in current mu-
sic streaming, utilizing one of the world’s largest streaming
services. First, we found listeners generally stream fewer
female or mixed-gender creator groups than male artists,
with differences per genre. Second, while still relatively
low, we found that recommendation-based streaming has
a slightly higher proportion of female creators than “or-
ganic” listening (i.e., tracks that are not recommended by
editors or algorithms). Third, we examined streaming data
from 200,000 US users to determine the proportion of fe-
male artists in organic and recommended streams over a
28-day period and the relationship between recommended
streams and users’ future organic listening. The propor-
tion of female artists in recommended streaming appears
predictive of the proportion of female artists in organic
streaming; these effects are moderated by gender and age.
Fourth, this study also samples creators across different
popularity levels, seeing more female and multi-gender
groups at lower levels than in the middle tiers. However,
(solo) female artists are better represented again in the su-
perstars category, suggesting influence of selected super-
stars and genres. We conclude by discussing potential av-
enues in algorithmic auditing.

1. INTRODUCTION

Music has long presented barriers to success for underrep-
resented groups, including female artists [4, 22]. While
gender inequities existed before the advent of streaming,
the 7.4 billion dollar streaming industry 1 operates at a
scale that merits critical examination. In particular, we
examine whether music streaming presents similar imbal-
ances or instead presents opportunities for greater gender
parity. Music streaming services recommend tracks using
a combination of human editorial and algorithmic deci-
sions. Services learn users’ musical taste and make predic-
tions on tracks that may suit a given users’ current activity,
mood, or curiosity for new artists. Such recommendations

1 http://wwwriaa.com/wp-content/uploads/2019/02/RIAA-2018-Year-
End-Music-Industry-Revenue-Report.pdf

c© Avriel Epps-Darling, Romain Takeo Bouyer, Henriette
Cramer. Licensed under a Creative Commons Attribution 4.0 Interna-
tional License (CC BY 4.0). Attribution: Avriel Epps-Darling, Romain
Takeo Bouyer, Henriette Cramer. “ARTIST GENDER REPRESENTA-
TION IN MUSIC STREAMING”, 21st International Society for Music
Information Retrieval Conference, Montréal, Canada, 2020.

may amplify or counter existing inequities. Research on
music consumption suggests that online consumers of mu-
sic tend to have more diverse listening than consumers who
primarily discover their music through radio and TV [10]
and personalized recommendations can introduce users to
new and potentially more diverse content [17]. However,
prior research has also indicated that personalized recom-
mendations may funnel consumers into narrower content
[7, 18]. Such conflicting results suggest that the impact of
algorithmic recommendation may depend on specific data,
models used, and the context in which they are applied.
This study seeks to understand how one streaming ser-
vice’s recommendations reflect existing gender represen-
tation in the music industry as well as different approaches
to making such assessments.

2. BACKGROUND & LITERATURE

2.1 Gender Representation in the Music Industry

Women have historically been underrepresented in the mu-
sic industry relative to society as a whole. This is reflected
in industry charts and awards. Smith et al, [22] found
that 10.4% of Grammy nominees between 2013 and 2019
were female. In 2018’s Hot 100 year-end Billboard Chart,
17.1% were female; a m:f ratio of 4.8 to one, lowest of the
7 years prior evaluated.

Women throughout history have been music role mod-
els and artists [11, 20], but barriers have limited their pro-
portional representation in industry. Historically, women
for example were not always allowed to be hired as musi-
cians, or to play certain instruments at all [4]. Contempo-
rary barriers reported by female artists include discounting
of their abilities, lack of connections, unwanted stereotyp-
ing or sexualization, uncomfortable studio cultures, finan-
cial instability and lack of female role models [22].

Artists have to contend with expectations of genres and
subcultures, including gendered trends and themes. In
a content analysis of US music videos, Emerson [9] de-
scribes how black female artists appear to navigate both
empowerment themes and aesthetic and social expecta-
tions. More specific genre (sub)cultures can play a role
as well. In country music, Watson [24] found a decline
between 1996 and 2016 in individual female artists played
on country radio, and cites explicitly asserted beliefs by
decision makers that playing more female artists would
lead to less advertising revenue. In electronic dance mu-
sic, Gavanas & Reitsamer [12] report female DJs navigat-
ing an environment where male entrepreneurs and DJs are
much more visible and networked. In rock, the “groupie”
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description is a distinctly lower status label almost exclu-
sively applied to women, even sometimes to those working
in the industry, reinforcing a consumer rather than creative
or production role [16].

Many music scenes however also explicitly provide
space to explore non-conforming identities and roles [2,
13, 25]. Previous research has hypothesized that increased
access to music afforded by the Internet disrupts barriers.
For example, Epps & Dixon’s [10] study on the consump-
tion of hip hop music suggests that listeners who find the
majority of their rap online consume more diverse tracks
than listeners who consume most of their rap music on tra-
ditional media outlets. The same study also found that hip
hop music on the Billboard charts (before streaming was
included in these rankings) was less diverse on measures
of lyrical themes, artist gender, and artist race than hip hop
music shared online. While this work suggests that an in-
crease in choice afforded by the internet is related to an in-
crease in diversity of music consumption, few studies have
been extended to evaluate the impact of music recommen-
dation systems.

2.2 Bias in Algorithmic Recommendation Systems

A growing body of research examines biases in algorith-
mic systems. Often, these biases are extensions of biases
that exist in broader society [6,23]. We might expect to see
biases in algorithmic systems that mirror those in the music
industry. However, impact also depends on objectives set,
which can include a variety of metrics designed to broaden
content consumption and diversity [15]. Choices within al-
gorithmic models, which features to include, types of mod-
els used, also influence their output [5]. For gender and
book recommendations, Ekstrand et al. [8], for example,
found that when using skewed input, most collaborative
filtering algorithms reflected user’s profile tendencies, but
that this effect was substantially stronger for implicit feed-
back recommendations (behavioral, e.g. clicks or reading)
than explicit feedback (e.g. ratings).

In industry practice, a multitude of models build on top
of each other. Algorithms designed to recommend mu-
sic on streaming platforms utilize predetermined content
and meta-data traits (e.g., tempo, genre, artist, historical
period, etc.), as well as collaborative filtering techniques
based on listening behavior by similar users. Some ‘bi-
ases’ are by design, such as when recommending only new
releases on a new artists playlist, a playlist focused on
women in rock only featuring women, or playlists focused
on mood that may not include genres less suitable to that
context. Other biases may be unintended, but can still be
examined. For music, Aguiar et al. [1] examined gender
imbalances on Spotify. They had insufficient evidence to
conclude that female underrepresentation in streams was
due to platform bias, they found pro-female bias in some
playlists, and asserted a potential supply imbalance.

However, their work raises questions on the availabil-
ity of baselines of streaming as a whole, the comparison
at scale of programmed vs. non-programmed streams, and
the influence of both streaming services and artist supply
into these services. In this article, we build on their work

by analyzing a larger data set of streams, providing insight
into streaming behavior, as well as a hand-labeled sample
of ‘supply’ in the hopes to provides the research commu-
nity with baselines for further research.

We show that recommendation-based streaming has a
slightly higher proportion of female artists than “organic”,
non-programmed listening. However, listeners generally
stream fewer female or mixed-gender creator groups than
male artists, making the proportion as a whole much lower
than representation of women in society. We identify dif-
ferences per genre that merit further investigation. Third,
we find that indeed there is a relationship between recom-
mended streams and users’ future organic listening, mod-
erated by gender and age. Fourth, we find that while sup-
ply of starting female artists plays a role, differing pat-
terns of female representation at different popularity levels
suggest differing investment patterns and again differences
between genres. We conclude by discussing potential av-
enues in algorithmic auditing.

3. ORGANIC VS. PROGRAMMED STREAMS

Streams can be either programmed or non-programmed.
Programmed streams originate from recommendations
such as in algorithmic or editorial playlists, whereas non-
programmed, ’organic’ streams are explicitly asked-for
through user-initiated actions such as search, or picking a
playlist from a user’s personal library.

Programmed streams include editorial playlists (curated
by professional editors), and algorithmic playlists (those
that are primarily created by machine learning models).
Note that in practice, the latter distinction can be hard to
make; editors manually selecting tracks for playlists still
have algorithmic tools at their disposal. Similarly, algo-
rithmic playlists are still human-designed with a specific
purpose in mind (e.g. to discover new music), or may com-
bine approaches using both editorial pools and algorithmic
ranking, as discussed in Bonini & Gandini [3].

4. RESEARCH QUESTIONS

This study addresses the following questions through an
analysis of data from a global music streaming service:

• RQ1: What is the current distribution of artist gender
in music streaming, and how do recommended and
user-initiated streams differ?

• RQ2: Does the proportion of female artist streams
in recommended playlists predict the proportion of
organic streams?

• RQ3: How do these results relate to gender distribu-
tion in creator ‘supply’ at different popularity levels?

For the first, we analyze a sample of a month of streams
from a popular streaming service, and existing commer-
cially available gender metadata. For the second, we
take a sample of users, and investigate the relationship
between their programmed and non-programmed (self-
selected) streams, and the impact of listener character-
istics. For the third, to counter the inherent popularity
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biases in our large-scale (meta)data, we take a random
sample of creators at different levels of popularity, hand-
label these creators and investigate the ’supply’ proportion
of female, male, non-binary and multi-gender artists and
groups. Each of these will be discussed in their own sec-
tion below.

5. REPRESENTATION IN STREAMING
PATTERNS (RQ1)

We start this study by comparing programmed and non-
programmed streams, and understanding the proportion of
female-artist streams within this setting.

5.1 Methods

To obtain a baseline understanding of the artist-gender
makeup of streaming, we present a sample containing 30
days of streams starting in early April 2020, from Spo-
tify, a music streaming service with Millions of worldwide
users 2 .

For purposes of this study, a stream is defined as a 30
second or longer play of a track recording. This time
threshold minimizes the impact of skipped songs on our
analysis. Note that some tracks may be streamed never,
while others may get millions of streams. This means that
popular artists and their streams will have a large impact
on the analysis presented here, which is why we investi-
gate representation at different levels of popularity in the
section addressing RQ3.

For our analyses of streams, artist characteristics are
supplied from commercially available metadata. Our focus
here is on the main performing artist, not potential featured
artists, songwriters, composers or producers. This data set
has coverage on gender for around 86% of all streams sam-
pled. For each artist entity in the data set, a gender entry
states whether they are female, male, a mixed multi-gender
creator group (e.g. a band, duo), or unknown/other. The
latter covers both non-binary as well as unknown gender
artists, meaning that we cannot distinguish between other
gender identities in our at-scale analysis than male, female
and multi-gender groups. This means this analysis is not
inclusive to non-binary gender artists, even though binary
conceptualization of gender is an inaccurate conceptualiza-
tion [14, 21].

5.2 Results

In the 30 days analyzed, for all streams where gender infor-
mation is available, around 1 in 5 have a female performing
artist associated with them, see Fig 1. Of particular rele-
vance to RQ1 was the comparison between programmed
and organic streams. Female artists receive slightly more
streams in programmed content than in organic streams
(Pearson’s χ2 = 8e07, df = 2, p < 2.2e − 16, see Fig
1).

Streams with either a female artist or multi-gender
group comprised respectively 21.75% of non-programmed
(e.g. user search or library) streams, and 23.55% for pro-
grammed (recommended) streams.

2 For recent numbers, see https://newsroom.spotify.com/company-info

Figure 1. ‘Programmed’ vs. ‘organic’ streams, stream
%. As discussed in section 5.1, non-binary gender not in-
cluded due to data limitations.

Figure 2. Proportions of streams for most popular genre
groupings (cut-off for inclusion: 2% of streaming). Com-
bined programmed and non-programmed streams.

We found considerable differences between genre
streams (Fig 2), suggesting that subcultures can impact
representation. For example, 95% of rap/hip hop streams
were associated with male-only performing artists. For
pop, around 40% of performers included a female artist
or at least one female group member. For metal, all-female
performer streams were rare ( 0.7%), with 7.0% mixed-
gender groups.

This suggests the need for not only industry-wide,
genre-agnostic follow up studies, but also genre-specific
deep-dives that take into account sub-cultural processes,
networks and industry structures.

6. PREDICTING ORGANIC CONSUMPTION
(RQ2)

To better understand the relationship between programmed
and non-programmed ’organic’ listening, and the potential
influence of recommendations, we then conducted an anal-
ysis centering user-level listening. This analysis uses a ran-
dom US sample, and investigates whether the proportion
of female artist streams in recommended playlists predict
the proportion of organic streams listened to with various
controls.

6.1 Methods

6.1.1 Sample

We limited our sample to US users who had a paid sub-
scription and were between the self-reported ages of 13
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and 90. We limited our sample to US users under the as-
sertion that gender preferences in musical taste (whether
explicit or implicit) are culturally dependent, and thus a
cross-national analysis would present additional complex-
ities beyond the scope of this project. Because of this, we
decided to focus on US listeners because it was the largest
population of users in our data set, and the market with
which our research team was most familiar. One obvious
alternative to this choice would be an international strati-
fied sample; we hope future research will consider this ap-
proach. Gender was also self reported by users. From this
larger population, we randomly sampled 200,000 active
users for whom we had organic, editorial, and algorithmic
streaming data in a 28-day period ending on September
30th, 2018. We chose a fall month to avoid seasonal and
holiday-based differences in listening patterns, which are
most pronounced at the end of the calendar year [19]. We
allocated 60% of these data for training (n = 120, 000),
20% for testing (n = 40, 000), and 20% for validation
(n = 40, 000).

User characteristics, including gender and age, are gath-
ered through the sampled streaming service’s on-boarding
process, during which new users set up their profile.
Within our total sample (N = 200, 000), 46% of listen-
ers were female and 0.06% identified as non-binary. We
also grouped participants into age categories.

For the purpose of this research, a user’s “top genre”
is defined as the highest-ranking genre when dividing their
total streams by the number of streams in each genre. In
total, there were 30 top genre categories. For 51% of lis-
teners, pop was the most listened-to genre. Rock was the
second, with a distant 15.6% of listeners.

6.1.2 Statistical Analysis

Our outcome variable of interest was the proportion of fe-
male artists in tracks streamed organically. In first assess-
ing the data, we modeled the proportion of female artists
in organically streamed tracks using ordinary least squares
regression. We then introduced controls shown to be im-
portant in the larger literature. Finally, we included inter-
action terms between all main effects features and control
features in the OLS regression. The final model equation
is:

Ŷ = β1X + β2Z + β3X · Z + ε (1)

In this equation, Ŷ is the predicted proportion of fe-
male artists streamed organically over a 28-day period, X
represents the matrix of the main effects features plus the
constant, Z represents the matrix of control variables, and
ε is the error term.

In the end, we retained five dependent variables and the
interactions between them, given that they were theoret-
ically significant, had a reasonable amount of predictive
power, and showed no collinearity with other variables. Ta-
ble 1 summarizes the features selected for our final analysis
without their interaction terms.

Thereafter, we applied several basis functions to see
whether the model could be improved by including higher
order polynomial features. The best fitting basis func-
tion was φ(X) = (x11, x

2
1, ..., x

6
1, ...x

1
D, x

2
D, ..., x

6
D) (α =

0.01, R-Squared = .40). However, the small increase in
R-squared statistic did not seem to justify increased model
complexity and decreased interpretability. Five-fold cross
validation was used to ensure the final model was not over-
fit to the data.

Variable Description

Outcome Variable

organic Share of female artists
streamed organically for
longer than 30 seconds
during a 28-day period

Main Effects Features

algo Share of female artists
streamed via algorithmi-
cally programmed playlists
for longer than 30 seconds
during a 28-day period

editor Share of female artists
streamed via editor pro-
grammed playlists for
longer than 30 seconds
during a 28-day period

Control Features

gender Gender of user. One-hot
encoded into female, male,
and non-binary

age Age of user. Self-reported
age bucketed and one-
hot encoded as categorical
variables: 0-17, 18-24, 25-
29, 30-34, 35-44, 45-54,
and 55+

top genre User’s most listened to
genre. One-hot encoded
variable categorizes a
user’s most listened to
genre. Such as afropop,
atmospheric, blues, brazil,
children, christian, classi-
cal, comedy, country, edm,
hip hop, etc.

Table 1. Feature descriptions for RQ2

6.2 Results

For addressing RQ2, we used a randomly sampled dataset
of US users and their streaming behavior. We iteratively
built three models 3 to predict the effect of female artist

3 Ideally, we would include all variables and their coefficients for the
iterative models, considering space limitations we have limited the de-
scription to the final and best fitting model.
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Figure 3. Plotting proportion of female artists in algorith-
mically recommended content on organic streaming of fe-
male artists when controlling for user age, gender, and top
genre. Line style indicates moderation by listener gender.

share in algorithmic and editor programmed content on or-
ganic streaming of female artists. Additionally, we con-
trolled for user age, gender, and top genre, and moderated
by user age and gender. This final model’s results are dis-
cussed below.

6.2.1 User Demographic Differences in Listening

Chi-squared tests revealed that there are no statistically sig-
nificant differences between male and female users with
regard to the share of female artists they stream (Pearson’s
χ2 = 0.04, p = 0.98). Additionally, Chi-squared tests
revealed that there were no statistically significant differ-
ences between users of different age categories with regard
to the female artist stream share (Pearson’s χ2 = 0.01, p =
1.0). With this, we conclude that gender and age are inde-
pendent of female artist stream share.

6.2.2 Linear Regression

In fitting our model, our null hypotheses were that the (1)
there is no effect of programmed female artist share on
organic female artist share and (2) effect of programmed
female artist share on organic female artist share is not
moderated by any of our demographic variables. With re-
gard to listener gender, we found that the estimated effects
for men were larger than corresponding effects for women
(βalgoXmale = .076, p < .001). That is, compared to the
women in our sample, men who streamed more female
artists in algorithmically-programmed playlists were also
more likely to listen to female artists organically. Figure
3 illustrates the moderated effects of algorithmic female
share on organic female share by gender.

There are similar, yet weaker, associations for the in-
teraction between gender and editor programmed content
(βeditorXmale = 0.014, p < .001), as well as age and algo-
rithmically programmed content. Notably, we found that
the estimated effects for 18-24 year-olds (βalgoX18−24 =
.026, p < .001) and 25-29 year-olds (βalgoX25−29 =
.047, p < .001) were larger than corresponding effects for
45-54 (βalgoX45−54 = −.054, p < .001) and 55+ year-
olds (βalgoX45−54 = −.060, p < .001). That is, compared

to the 18-29 year-olds in our sample, those over the age
of 45 who streamed more female artists in algorithmically-
programmed playlists were less likely to listen to female
artists organically. The interaction terms for age and algo-
rithmically programmed content for 30-44 year-olds were
not statistically significant.

Further, the strength of the model, as evaluated with the
R-squared (r-squared = .374) and Root Mean Square Error
(rmse =.152) statistics, was moderate. When evaluating
this model’s fit using the test set (n = 40, 000), we found
the r-squared statistic of the validation set was .361, mean-
ing the model was not overfit to the training set and was
the best performing model we built.

While main effects are often not interpretable in the
presence of an interaction term, we can relax this guide-
line in this model because both features are captured by
dichotomous variables where 0 is a meaningful value and
within the range of the variable. For example, where a
listener self-identifies as a woman, the interaction term
is 0. In any cases when the interaction term is equal
to 0, we can interpret the main effects. However, addi-
tional post-hoc tests were needed to conclude if the dif-
ference we have observed is, in fact, statistically signifi-
cant, and can be inferred at the population level. When
we conducted a GLH test of their joint population equal-
ity (F (1, 59) = 1285, p < .001), we found that we could
reject this null hypothesis.

We conclude that we have sufficient evidence that there
is a moderate, positive relationship between the proportion
of female artists streamed on programmed playlists and the
proportion of female artists listened to organically. Addi-
tionally, this relationship is moderated by both user gender
identity and age in the population.

7. SUPPLY SIDE ANALYSIS (RQ3)

Large-scale analyses may offer insight in the proportion
of streams that go to female artists or multi-gender groups
being lower than male artists, but do not provide insight
whether this reflects the ‘supply’ of female creators and
multi-gender groups.

There is a long tail of less popular artists for whom data
is scarce. Self-identification at this scale is not feasible
for all artists who are streamed, not in the least for those
deceased or without direct service access. This means
that, for example, playlists focused on discovery of new
artists, or those highlighting historic artists who are less
well-known will have less complete, and potentially less
accurate, associated metadata. To further investigate the
presence, or supply, of female creators at different levels
of popularity, we followed up with a manual sample across
a wider range of creators.

7.1 Method

For our analyses of creator supply, we randomly sampled
artists from six different levels of popularity. This, in an
effort to reflect a spectrum of the artist community, from
early projects to global superstars. Levels of popularity are
defined as such: artists in the first level have 10 times more
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252



Figure 4. Percentage of Female, non-binary and multi-
gender group ‘supply’ from least to most popular artists.
Error bars: confidence levels of total (female + non-binary
+ multi-gender) % due to sample size vs. large (Millions)
creator population at lower popularity levels

streams than the ones in the second level, who have 10
times more streams than the next, and so on. These were
sampled in Feb 2020, and based on streams within the last
90 days. A professional team of data curators labeled 1330
creators in a similar manner to [22] (who manually sam-
pled 800 chart entries). We here focused on a wider sam-
ple beyond charts, as well as including non-binary artists
and multi-gender groups. It is noteworthy that information
could not be found for at least 300 more creators, even by
the expert data curation team.

7.2 Results

Representation of the aggregate of female + non-binary
+ multi-gender groups appears to differ at different lev-
els of popularity (χ2 = 12.865, df = 5, p-value = 0.02468).
At entry-level, female representation is higher than at the
middle levels, where it goes down slightly (see Figure
4). However, there is an uptick of female artists better in
the superstars category, while less multi-gender groups are
present. This suggests success of selected superstars, and
influence of popular genres with higher female representa-
tion such as pop and R&B.

Even though more data collection would be necessary
at lower popularity levels to get to results with higher con-
fidence levels, we do now have a clear indication that both
supply and demand matter. This suggests that the research
community and services should address representation in
streams overall, but that we as a community should espe-
cially also pay attention to how certain artists climb -or
not- in popularity across platforms, and what factors lead
to that climb.

8. DISCUSSION & CONCLUSION

In summary, this study resulted in several key findings.
First, we found listeners generally stream fewer female or
mixed creator groups than male artists. Second, we found
that recommendation-based streaming has a slightly higher
proportion of female creators than organic listening, but

this proportion is still relatively low. Third, we found that
gender and age of listener are independent of female artist
stream share. Fourth, higher proportions of female artists
in recommended streaming is predictive of higher propor-
tions of female artists in organic streaming; these effects
are moderated by gender and age. Younger age groups ex-
hibited larger effect sizes, which may indicate that younger
listeners are more open to taking (new) recommendations,
or potentially more influenced by them. An alternative ex-
planation may be that outside factors, such as terrestrial ra-
dio exposure, may be more salient for groups with smaller
effect sizes. Future research should investigate the role of
age, gender, and other identity markers in more depth. Fi-
nally, we find that in lower popularity levels, more multi-
gender groups and more female creators appear to exist
than in the middle - while at the top level (solo) female
artists appear more present again. We have also high-
lighted the influence of hits on high-level stream numbers,
as well as genre.

It is noteworthy that while examining gender represen-
tation is important, gender labeling in itself can be prob-
lematic. Performing labeling without self-identification
can cause errors, and demographic data collection in it-
self presents significant risks. This results in a dilemma
between inclusive representation vs. data minimization. In
addition, some data ambiguity will always remain. Peo-
ple’s expressed gender identities are not necessarily static;
artists may come out as non-binary mid-career. Chal-
lenges also especially apply for historical as well as in-
ternational art, and large collectives. Backing bands may
or may not be taken into account in credits, orchestras and
bands change and add or remove members. Information is
scarce for lesser known artists, may be in other languages
or terms than data curation or research teams may under-
stand. Thus, striving for comparisons and repeated sam-
pling rather than exact numbers and ‘completeness’ may
be more productive tasks.

In this study, we primarily looked at streaming out-
comes in aggregate, rather than who is ‘shown’ as a rec-
ommendation in a specific product context. Results may
be skewed by top-level streaming outcomes, and higher
popularity genres such as pop which have higher female
representation than other genres. Although the results in
this study are not causal, they do suggest that further work
on the ability of content recommendations to diversify user
listening habits are warranted. We primarily discussed de-
scriptive baselines; future studies should explore alterna-
tive models and sampling approaches, potentially consider
causal inference methods that do not require experimen-
tation, or experimental designs that thoughtfully contend
with the ethical concerns of manipulating user experiences
on a commercial platform. Future work should also study
how gender intersects with genre and subculture, as well as
other factors such as race/ethnicity, locale and congruence
with existing cultural expectations.

We conclude that there are barriers to entry, and to
climbing to the top, but that streaming services may be
able to challenge structural inequities by spotlighting un-
derrepresented artists in their recommendations.
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ABSTRACT

Data cleansing is a well studied strategy for cleaning er-
roneous labels in datasets, which has not yet been widely
adopted in Music Information Retrieval. Previously pro-
posed data cleansing models do not consider structured
(e.g. time varying) labels, such as those common to music
data. We propose a novel data cleansing model for time-
varying, structured labels which exploits the local structure
of the labels, and demonstrate its usefulness for vocal note
event annotations in music. We frame the problem as an
instance of contrastive learning, where we train a model to
predict if an audio-annotation pair is a match or not. We
generate training data for this model by automatically de-
forming known correct annotations to form incorrect anno-
tations. We demonstrate that the accuracy of a transcription
model improves greatly when trained using our proposed
strategy compared with the accuracy when trained using
the original dataset. Additionally we use our model to es-
timate the annotation error rates in the DALI dataset, and
highlight other potential uses for this type of model.

1. INTRODUCTION

Labeled data is necessary for training and evaluating super-
vised models, but the process of creating labeled data is of-
ten error prone. Labels may be created by human experts,
by multiple human non-experts (e.g. via crowd sourc-
ing), semi-automatically, or fully automatically. For many
problem settings, even in the best case scenario where
data is labeled manually by experts, labels will almost in-
evitably have inconsistencies and errors. The presence of
label noise is problematic both for training and for eval-
uation [1]. During training, it can cause models to con-
verge slower and to require much more data, or overfit the
noise thus resulting in poor generalization. During evalu-
ation, it can lead to unreliable metrics with artificially low
scores for models with good generalization and artificially
high scores for models which overfit noisy data. This issue
is particularly timely and relevant for the music informa-

c© Gabriel Meseguer-Brocal, Rachel Bittner, Simon Du-
rand, Brian Brost. Licensed under a Creative Commons Attribution 4.0
International License (CC BY 4.0). Attribution: Gabriel Meseguer-
Brocal, Rachel Bittner, Simon Durand, Brian Brost, “Data Cleansing
with Contrastive Learning for Vocal Note Event Annotations”, in Proc.
of the 21st Int. Society for Music Information Retrieval Conf., Montréal,
Canada, 2020.

tion retrieval (MIR) community as recent datasets such as
LakhMIDI [2], DALI [3] or the Free Music Archive [4]
take advantage of large music collections accessible from
the Internet but often rely on noisy annotations. Addition-
ally, many common annotation tasks are particularly costly
as they have to be aligned in time and require a participant
with musical expertise to be done accurately.

Data cleansing is a well studied technique in the ma-
chine learning community for mitigating the effects of la-
bel noise, with a focus on improving model generalization
when training on noisy datasets [1]. A common and ef-
fective approach is to build a model to identify and dis-
card data points with incorrect labels. Most methods tak-
ing this approach do not assume any structure or correla-
tion between different labels. This is appropriate for many
common tasks, such as image recognition. However, in
music, labels are often highly structured and time-varying,
and the label noise is not random. For example, musical
note-annotations, which we focus on in this work, are lo-
cally stable in time and follow certain common patterns.
Typical noise for note events include incorrect pitch values,
shifted start times, and incorrect durations, among others.

Our contributions are as follows. We propose a novel
contrastive learning-based [5, 6] data cleansing model
which can exploit sequential dependencies between labels
to predict incorrectly labeled time-frames trained using
likely correct labels pairs as positive examples and and lo-
cal deformations of correct pairs as negative examples. We
focus our experiments on a model for detecting errors in
vocal note event annotations, which we believe extends
easily to other types of music transcription labels. We
then demonstrate the usefulness of this data cleansing ap-
proach by training a transcription model on the original and
cleaned versions of the DALI [3] dataset. Further, we use
the model to estimate the error rates in the DALI dataset,
and highlight other potential uses for this type of model,
including for reducing manual labeling efforts. Finally, the
code used in this work, including the pre-trained error de-
tection model, is made freely available 1 along with the
outputs of the model for the DALI dataset 2 .

2. BACKGROUND AND RELATED WORK

We first introduce prior work on learning in the presence
of label noise, and conclude by summarizing the work rel-

1 https://github.com/gabolsgabs/contrastive-data-cleansing
2 https://zenodo.org/record/3576083
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evant to our example use case of note event annotations.

2.1 Classification in the presence of label noise

We consider the problem of training a classifier on a dataset
where some of the labels are incorrect. One class of solu-
tions attempts to solve the problem by mitigating the ef-
fect of label noise, rather than modifying the data used for
training. This is commonly done by modifying the loss
function to directly model the distribution of label noise,
for example, by creating a noise-robust loss with an addi-
tional softmax layer to predict correct labels during train-
ing [7], or with a generalized cross-entropy that discards
predictions that are not confident enough while training,
looking at convergence time and test accuracy [8], or by
inferring the probability of each class being corrupted into
another [9]. However, these approaches are restricted to
specific types of loss functions or make restrictive assump-
tions about the statistical distribution of noise.

Data cleansing [10] and outlier detection [11] based
approaches aim to identify the correctly labeled data points
and train only on them. The vast majority of data cleansing
methods are model prediction-based [1]. In their simplest
form, model prediction-based methods train a model to re-
move items from the dataset where the label predicted by
the model disagrees with the dataset label. Note that in
many cases, the choice of model for data cleansing is often
the same as the choice of model used after data cleansing.

These data cleansing approaches have several advan-
tages over learning directly with noisy labels. First, the fil-
tering does not depend on the downstream inference task,
thus a cleansing method can be applied to filter data used
to train many different models. Second, we can train less
complex downstream models, as they do not need to ac-
count for label noise. To the best of our knowledge how-
ever, prior data cleansing approaches do not exploit the
structured nature of labels often seen in MIR tasks.

In addition to developing data cleansing methods, or
learning methods that are robust to label noise, there are
a variety of less closely related paradigms for dealing with
data quality issues. In semi-supervised learning reliably
labeled data is combined with a large amount of unlabeled
data [12]. In weakly supervised learning [13–15] low-
quality or insufficiently granular labels are used to infer
the desired target information. Finally, active learning es-
timates the most valuable unlabeled points for which to
solicit additional labels [16, 17].

2.2 Note Event Annotations

Automatic music transcription, one of the core tasks in
MIR, involves converting acoustic music signals into some
form of music notation [18]. Musical note events are a
common intermediate representation, where a note event
consists of a start time, end time and pitch. They are useful
for a number of applications that bridge between the au-
dio and symbolic domain, including symbolic music gen-
eration and melodic similarity. Instruments such as the
piano produce relatively well-defined note events, where

each key press defines the start of a note. Other instru-
ments, such as the singing voice, produce more abstract
note events, where the time boundaries are often related
with changes in lyrics or simply as a function of our per-
ception [19], and are therefore harder to annotate correctly.

Datasets providing note event annotations are created
in a variety of ways, all of which are error prone. Notes
may be manually labeled by music experts, requiring the
annotator to specify the start time, end time and pitch
of every note event manually, aided by software such as
Tony [20]. MIDI files from the Internet can in some
cases be aligned automatically as in the LakhMIDI [2] and
DALI [3] datasets, with varying degrees of accuracy and
completeness. Note data has also been collected automat-
ically using instruments which “record” notes while be-
ing played, such as a Disklavier piano in the MAPS [21]
and MAESTRO [22] datasets, or a hexaphonic guitar in the
GuitarSet dataset [23]. Data collected in this way is typi-
cally quite accurate, but may suffer from global alignment
issues [22] and can only be achieved for these special types
of instruments. Another approach is to play a MIDI key-
board in time with a musical recording, and use the played
MIDI events as note annotations [24] but this requires a
highly skilled player to create accurate annotations.

Figure 1 shows an example of correct and incorrect note
annotations in the DALI dataset. The types of errors pro-
duced by the previous methods can vary. A single note can
be imprecise in time, resulting in an incorrect start time or
duration, or the pitch value can be annotated wrong. Addi-
tionally, notes can be annotated where there are no actual
notes in the audio, and conversely, notes in the audio can be
missed all together. Systematic errors include global shifts
and stretches in time and shifts in key/octave. Local errors
are difficult to detect, and systematic errors can cause ev-
ery note event to be wrong in some way. At the individual
time-frame level, notes with incorrect start/end times will
have errors at the beginning/ending frames, but can still be
correct in the central frames.

Figure 1. Example of two incorrect note annotations from
the DALI dataset, outlined in red, figure from [25].

3. DATA CLEANSING FOR NOTE EVENTS

Given an input space X and a label space Y , we propose a
model prediction based approach, but rather than training
a classifier h : X → Y , we directly train a model g : (X ×
Y) → [0, 1] which approximates the probability that the
label is incorrect. We denote this probability by g(x, ŷ).

Note that this is mathematically equivalent in the ideal
case to the previous model prediction based approaches:
Given a perfect estimator h which always predicts a cor-
rect label y, g(x, y) = 1h(x)6=y where 1 is the indicator
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function. However, for complex classification tasks with
high numbers of classes and structured labels, modeling h
can be much more complex than modeling g. For instance,
consider the complexity of a system for automatic speech
recognition, versus the complexity needed to estimate if
a predicted word-speech pair is incorrect. Intuitively, you
don’t need to know the right answer to know if something
is right or wrong.

This idea is similar to the “look listen and learn” [26]
concept of predicting the “correspondence” between video
frames and short audio clips – two types of structured data.
It is also similar to CleanNet [27], where a dedicated model
predicts if the label of an image is right or wrong by com-
paring its features with a class embedding vector. How-
ever, this approach operates on global, rather than position-
dependent labels.

In our approach, we generate training data for g by di-
rectly taking pairs (x, y) from the original dataset as posi-
tive examples and creating artificial distortions of y to gen-
erate negative examples. In this section, we study the use
of an estimator g(x, ŷ) for detecting local errors in noisy
note-event annotations. See Figure 2 for an overview of
the system.

3.1 Input Representations

As our input representation, instead of using the raw au-
dio signal itself, we compute the Constant-Q Transform
(CQT) [28] as a matrix X , where Xij is a time-frequency
bin. The time index i corresponds to the time stamp
ri = υ · i where υ is a constant defining the spacing be-
tween time stamps, and the frequency index j corresponds
to a frequency qj in Hz. The CQT is a bank of filters
transformation centered at geometrically spaced frequen-
cies. We use a frequency bin resolution with 6 octaves,
1 bin per semitone, a sample rate of 22050 Hz and a hop
size of 256, resulting in a time resolution of υ = 11.6 ms.
We compute the CQT from the original mixture and from
the isolated vocal version derived from the mixture using
a source separation technique [29]. We include the CQT
of the isolated vocals to boost the information in the signal
related to the singing voice, and couple it with the CQT of
the mixture to include information we may have lost in the
separation process.

We define the annotated label Ŷ as a binary matrix cre-
ated from the original note-event annotations. For a given
track, let K be the set of note annotations, let t0k and t1k be
the start and end time of note k in seconds, and fk be its
frequency in Hz. Then Ŷ is defined as:

Ŷij =

{
1, if t0k ≤ ri ≤ t1k, qj−1 < fk ≤ qj , k ∈ K

0, otherwise
(1)

and has the same time and frequency resolution as X .

3.2 Learning Setup

We estimate the label noise at the time frame level. Let
` ∈ L be an index over the set of tracks L, I` be the index
of all time frames for track `, and X` and Ŷ ` be its CQT

and label matrices respectively. Let X`
i and Ŷ `

i indicate
a time frame of X` and Ŷ ` that contains all its frequency
bins j, so we index the data points according to their time
index only. Finally, let X`

a:b and Ŷ `
a:b denote the sequence

of time frames of X and Ŷ between time indices a and b.
Our goal is to identify the subset of time frames i ∈ I`

which have errors in their annotation for each track in a
dataset by training a binary data cleansing model. Our data
cleansing model is a simple estimator that can be seen as a
binary supervised classification problem that produces an
error detection model. Given a datapoint centered at time
index i, g predicts the likelihood that the label Ŷi is wrong.
Critically, we take advantage of the structured labels (i.e.
the temporal context); as input to g we use Xa:b and Ya:b
to predict if the center frame Ŷ(a+b)/2 of Ŷa:b is incorrect.
That is, we aim to learn g such that:

g(Xa:b, Ŷa:b) =

{
0, if Ŷ(a+b)/2 is correct
1, if Ŷ(a+b)/2 is incorrect

(2)

Thus, in order to evaluate if a label Ŷi is cor-
rect using n frames of context, we can compute
g(Xi−n:i+n, Ŷi−n:i+n). In the remainder of this work, we
will define

gn(Xi, Yi) := g(Xi−n:i+n, Ŷi−n:i+n) (3)

as a shorthand. In this work, we use n = 40.
Let

D =
⋃
`∈L

I` (4)

be the set of all time indices of all tracks in L. Our aim is
to use g to create a filtered index F , where:

F = {i ∈ D : gn(Xi, Ŷi) = 0} (5)

3.3 Training data generation

Let zi be a binary label indicating whether the center frame
Ŷi for an input/output pair (Xi−n:i+n, Ŷi−n:i+n) is incor-
rect. To train g, we need to generate examples of correct
and incorrect data-label pairs

(
(Xi−n:i+n, Ŷi−n:i+n), zi

)
.

We will again introduce a shorthand ((Xi, Yi), zi) to refer
to data points of the form

(
(Xi−n:i+n, Ŷi−n:i+n), zi

)
.

Incorrect Data To generate “incorrect” data points
(where zi = 1), we can simply randomly distort any of
the existing labels in the dataset by applying a modifica-
tion function µ(Ŷi). These modifications µ(Ŷi) are not
random but rather specific to match the characteristics of
typical note-event errors (issues in the positions of the start
or end times, incorrect frequencies, or the incorrect ab-
sence/presence of a note). These distorted Ŷi should be
contextually realistic, meaning that notes should have a re-
alistic duration and should not overlap with the previous or
next note. To do this, we modify the original note events
(t0k, t

1
k, fk) described in Section 3.1 by randomly shifting

start and end times, frequency values, and by randomly
deleting or adding notes. Given these new note events, we
generate a new label matrix µ(Ŷi) as described in Eqn (1).
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Figure 2. Overview of our data cleansing system. The training data for our error detection model g is generated automat-
ically. 1- We predict the f0 for the whole noisy dataset and compare it with the annotated label. 2- We select as “likely
correct” examples those where the prediction is similar to the label, distorting them to generate the incorrect examples. 3-
We train our g using this new training set. 4- We filter the noisy dataset obtaining the clean version.

Some note-level modifications may still result in the cen-
ter frame being “correct” – for example, if a note begins a
few frames late, the following frames will still be correct –
thus, after modifying creating µ(Ŷ ), we sample examples
from frames where the center frame µ(Ŷi) 6= Ŷi.

Likely Correct Data Since we do not have direct ac-
cess to the true label Yi (indeed this is what we aim to
discover), we first use a “simple classifier” proxy for se-
lecting likely correct data points. There are many possible
choices for this proxy – for example, if there is a manually
verified subset of a dataset, it can be used directly as the
set of likely correct data points – in this work we outline
one specific example. We first compute the output of a pre-
trained f0 estimation model s(Xi) that given Xi outputs a
matrix with the likelihood that each frequency bin contains
a note [30]. s(Xi) is trained on a different dataset than
we use in the subsequent experiments and has been proven
to achieve state-of-the-art results for this task [30]. s(Xi)
produces f0 sequences, rather than note events, which vary
much more in time than note events, so we define an agree-
ment function in order to determine when the labels agree.
s(Xi) is not a perfect classifier, and while its predictions
are not always correct, we have observed that when the
agreement is high, Ŷi is usually correct. However, we can-
not use low agreement to find incorrect examples, because
there are many cases with low agreement even though Ŷi
is correct. Therefore, we only use κ to select a subset of
“likely correct” data points.

We compute both “local” (single-frame) and “patch-
level” (multi-frame) agreement, and use thresholds on both
to select time frames which are likely correct. The local
agreement, κl is computed as:

κl(Ŷi, s(Xi)) = max
j

(
Ŷij · s(Xi)j

)
(6)

and the patch-level agreement κp is a k point moving av-
erage over time of κl. For the test set of g, we use very
strict thresholds and select (Xi, Ŷi) pair to be a likely cor-
rect if κl > .999 and κp > .85. For the training set,
we use more relaxed thresholds, and select points with
0.9 < κl ≤ 0.999 and 0.7 < κp ≤ 0.85. These val-
ues have been found manually and assure the selection of
good “likely correct” examples. This procedure gives us
a set of positive examples in non-silent regions, but does

not take into account the silent areas. In order to select
correctly labeled points from silent regions, we take addi-
tional (Xi, Ŷi) points from regions with low energy in the
isolated vocals and no annotations in a window of length
v. In this work we use v = 200 (≈ 2, 32 s).

Finally, the combination of “likely correct” and “incor-
rect” data results in a dataset of {((Xi, Ŷi), zi)}with which
we can train g.

3.4 Error Detection Model Architecture

We propose a standard convolutional architecture for our
error detection model gn(Xi, Ŷi) = zi, as shown in
Figure 3. The input of the model is a matrix with 72
frequency bins, 81 time frames (0.94 seconds) and three
channels: the two CQTs (mixture and vocals) {Xi−n:i+n}
and the label matrix {Ŷi−n:i+n}. It has five convolutional
blocks with 3× 3 kernels, ‘same‘ mode convolutions, with
leaky ReLU activations for the first block and batch nor-
malization, dropout and leaky ReLU for the rest. The
strides are [(2, 1), (2, 3), (3, 3), (3, 3), (2, 3)] and the num-
ber of filters [16, 32, 64, 128, 256] generating features
maps of dimensions (36 × 81 × 16), (18 × 27 × 32),
(6 × 9 × 64), (2 × 3 × 128), (1 × 1 × 256). Then, we
have two fully-connected layers with 64 and 32 neurons,
a ReLU activation and dropout and a last fully-connected
layer with one neuron and a sigmoid activation. The model
is trained using a binary cross entropy loss function.

4. EXPERIMENTS

We test our approach using the DALI dataset, version
2 [25], which contains 7756 user-submitted vocal MIDI
annotations from karaoke websites, automatically matched
and aligned to polyphonic audio files. The MIDI annota-
tions are crowd sourced and thus have highly varying qual-
ity, while the alignment is done automatically and likely to
contain mistakes. This dataset is then particularly relevant
for this work. The contrastive learning-based error detec-
tion model g is trained as described in Section 3.4 using
the data generation method described in Section 3.3. The
trained model g had a frame-level accuracy of 72.1% on
the holdout set, and 76.8% on the training set.
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Figure 3. Error detection model architecture.

4.1 Training with Cleaned Data

Figure 4. (Top) The output of the error detection model
for a short segment. (Bottom) the corresponding CQT and
annotated notes (in white). The error is high at the begin-
ning of the fourth note because it starts late, and at end of
the last note because it is too long.

Validating the performance of g is challenging, as we
only have likely correct and artificially created wrong ex-
amples, but we do not have any “real” ground truth correct
and incorrect examples. Thus, we first manually verified
the predictions of the error detection model in many ran-
dom examples (see Figure 4), and found that they appeared
to be strongly correlated with errors in yi. However, a man-
ual perceptual evaluation of the error detection model is
both infeasible and defeats the purpose of automating the
process of correcting errors. Instead, we validate the use-
fulness of this approach by applying it to model training.
In this section, we address the question: Is the error de-
tection model useful? How much?

The ultimate goal of a data cleansing technique such
as this one is to identify incorrect labels and remove
them from the dataset in order to better train a classifier.
Thus, one way to demonstrate the effectiveness of the data
cleansing method is to see if training a model using the fil-
tered dataset results in better generalization than training
on the full dataset.

To validate the usefulness of gn(Xi, Ŷi) for improving
training, we train the Deep Salience vocal pitch model [30]
three times 3 using three different training sets. The train-
ing sets are subsets of DALI, and contain the Ŷi of all the
songs that have a Normalized Cross-Correlation > .9 [3].
This results in a training set of 1837 songs. The three sets
are defined as follows:

1. All data. Trained using all time frames, D (Eqn (4)).

2. Filtered data. Trained using the filtered, “non-error”
time frames, F (Eqn (5)), where the output of g has

3 We train each new model from scratch, not using transfer learning

been binarized with a threshold of 0.5. With this
data we tell the model to skip all the estimated noisy
labels.

3. Weighted data. Trained using all time frames, D,
but during training, the loss for each sample is
weighted by 1−gn(Xi, Ŷi). This scales the contribu-
tion of each data point in the loss function according
to how likely it is to be correct.

We test the performance of each model on two poly-
phonic music datasets that contain vocal fundamental fre-
quency annotations: 61 full tracks with vocal annotations
from MedleyDB [31] and 252 30-second excerpts from
iKala [32]. We compute the the generalized 4 Overall
Accuracy (OA) which measures the percentage of cor-
rectly estimated frames, and the Raw Pitch Accuracy
(RPA) which measures the percentage of correctly esti-
mated frames where a pitch is present, which are standard
metrics for this task [33,34]. The distribution of scores for
each dataset and metric are shown in Figure 5.
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Figure 5. Distribution of scores for the three training
conditions. Each condition is plotted in a different color.
Scores for MedleyDB are shown in row 1 and scores for
iKala are in row 2. Raw pitch accuracy is shown in column
1 and overall accuracy is shown in column 2. The y-axis
in all plots indicates the number of tracks.

While the scale of the results are below the current state
of the art [30] – likely due to the noisiness of the train-
ing data! – we see a clear positive impact on performance
when data cleansing is applied. The overall trend we see
is that training using filtered data outperforms the baseline
of training using all the data with statistical significance

4 using continuous voicing from the model output and binary voicing
from the annotations

Proceedings of the 21st ISMIR Conference, Montréal, Canada, October 11-16, 2020
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Figure 6. Histogram of the estimated error rate per track.

(p < 0.001 in a paired t-test) for all cases, indicating that
our error detection model is successfully removing time
frames which are detrimental to the model. We also see
that, overall, training using all the data but using the error
detection model to weigh samples according to their like-
lihood of being correct is even more beneficial than simply
filtering. This suggests that the likelihoods produced by
our error detection model are well-correlated with the oc-
currence of real errors in the data. These trends are more
prominent for the iKala dataset than for the MedleyDB
dataset – in particular, the difference between training on
filtered vs. weighted data is statistically insignificant for
MedleyDB while it is statistically significant (p < 0.001
in a paired t-test) for the iKala dataset. The iKala dataset
has much higher proportion of voiced frames (frames with
a pitch annotation) than MedleyDB. This suggests that the
weighted data is beneficial for improving pitch accuracy,
but may not bring any improvement over filtering for de-
tecting whether a frame should have a pitch or not (voic-
ing). Nevertheless, both conditions which used the error
detection model to aid the training process see consistently
improved results compared with the baseline.

4.2 Estimated Quality of The DALI Dataset

As a final experiment, we ran the error detection model
on the full DALI dataset (version 2) in order to estimate
the prevalence of errors. We compute the percentage of
frames per-track where the likelihood of being an error is
≥ 0.5. A histogram of the results is shown in Figure 6. We
estimated that on average, 21.3% of the frames of a track
in DALI will have an error in the note annotation, with
a standard deviation of 12.7%. 31.1% of tracks in DALI
have more than 25% errors, while 18.2% of tracks have
less than 10% errors. We also measure the relationship
between the percentage of estimated errors per track and
the normalized cross correlation from the original DALI
dataset [3], and found no clear correlation. This indicates
that while the normalized cross correlation is a useful indi-
cation of the global alignment, it does not reliably capture
the prevalence of local errors.

We manually inspected the tracks with a very high per-
centage of estimated errors (> 70%) and found that all of
them were the result of the annotation file being matched
to the incorrect audio file (see [25] for details on the match-
ing process). On the other hand, we found that the tracks
with a very low percentage of estimated errors (< 1%) had
qualitatively very high quality annotations. For example,
Figure 7 shows an excerpt of the track with the lowest error

Figure 7. The CQT of an excerpt of the track in DALI with
the lowest percentage error (< 1% error), with it’s annota-
tions overlaid. The audio for this excerpt can be found at
https://youtu.be/Wq4tyDRhU_4?t=40.

rate along with a link to listen to the corresponding audio.
While this is only qualitative evidence, it is an additional
indicator that the scores produced by the error detection
model are meaningful. The outputs of our model on DALI
are made publicly available.

An error detection model that estimates the quality of a
dataset can be used in several ways to improve the qual-
ity of a dataset. For one, we can use it to direct manual
annotation efforts both to the most problematic tracks in
a dataset, but also to specific incorrect instances within a
track. Additionally, one of the major challenges regarding
automatic annotation is knowing how well the automatic
annotation is working. For example, the creation of the
DALI dataset used an automatic method for aligning the
annotations with the audio, and it was very difficult for
the creators to evaluate the quality of the annotations for
different variations of the method. This issue can now be
overcome by using an error detection model to estimate the
overall quality of the annotations for different variations of
an automatic annotation method.

5. CONCLUSIONS AND FUTURE WORK

In this paper we presented a novel data cleansing technique
which considers the time-varying structure of labels. We
showed that it can be successfully applied to a dataset of
vocal note event annotations, improving Raw Pitch Accu-
racy by over 10 percentage points simply by filtering the
training dataset using our data cleansing model. Our ap-
proach is particularly useful when training on very noisy
datasets such as those collected from the Internet and auto-
matically aligned. We also used our proposed error detec-
tion model to estimate the error rate in the DALI dataset.

For future work, while our experiments focused on vo-
cal note event annotations, we believe this technique could
be directly applied to any kind of note event annotation,
as well as extended for other types of time-varying anno-
tations such as chords or beats. We also believe the error
detection model could be applied to scenarios other than
training. First, a natural use of such a model is to stream-
line manual annotation efforts by using the model to se-
lect time regions that are likely wrong and send them to
an expert for correction. Similarly, it could be used as an
objective measure to guide the design of automatic annota-
tion methods, which are otherwise forced to rely on manual
evaluation. We would also like to explore how this idea can
be generalized to other domains beyond music and to test
the contribution of different factors including the amount
of noise in a dataset and the nature of the noise.
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ABSTRACT

The GrooveToolbox is a new Python toolbox implementing
various algorithms, new and pre-existing, for the analysis
and comparison of symbolic drum loops, including rhythm
features, similarity metrics and microtiming features. As
part of the GrooveToolbox we introduce two new metrics
of rhythm similarity and four features for describing the
significant properties of microtiming deviations in drum
loops. Based on a two-part perceptual evaluation, we show
these four new microtiming features can each correlate to
similarity perception, and be used with rhythm similarity
metrics to improve personalized similarity models for
drum loops. A new measure of structural rhythmic
similarity is also shown to correlate more strongly to
similarity perception of drum loops than the more com-
monly used Hamming distance. These results point to
the potential application of the GrooveToolbox and its
new features in drum loop analysis for intelligent music
production tools. The GrooveToolbox may be found at:
https://github.com/fredbru/GrooveToolbox

1. INTRODUCTION

Growing attention has been drawn to the applications of
Music Information Retrieval (MIR) within the realm of
music creation to improve upon conventional workflows
and enhance creativity [13]. Due to their popularity in con-
temporary music, research into the analysis of drum loops
is a field with strong potential to provide genuine value in
real-world music production applications.

The problem of similarity modelling is a key element
of this research. The ability to compare drum loops ac-
cording to perceptually relevant qualities is an essential en-
abling factor in many plausible systems, such as drum loop
recommendation systems, automatic drum loop generation
systems and interfaces for navigating drum loop libraries.

For the purposes of this paper, one example use case
for drum loop similarity modelling is to enable intelligent

c© Fred Bruford, Olivier Lartillot, SKoT McDonald, Mark
Sandler. Licensed under a Creative Commons Attribution 4.0 Interna-
tional License (CC BY 4.0). Attribution: Fred Bruford, Olivier Lar-
tillot, SKoT McDonald, Mark Sandler. “Multidimensional similarity
modelling of complex drum loops using the GrooveToolbox”, 21st Inter-
national Society for Music Information Retrieval Conference, Montréal,
Canada, 2020.

drum loop searching tools within BFD3, a virtual drum kit
plugin [8]. BFD3 generates realistic drum sounds based on
audio renderings of expressive and unquantized symbolic
sequences recorded by real drummers on an electronic
drum kit. Including third-party expansions, over 7000 of
these symbolic loops are available, providing rich poten-
tial for intelligent navigation or recommendation tools.

In Section 2, we give an overview of work related to in-
telligent drum production tools (IDPTs) and discuss possi-
ble improvements to their methods of drum loop analysis.
In Section 3 we introduce the GrooveToolbox, a Python
toolbox primarily aimed towards use in drum loop analy-
sis research. It contains implementations of many existing
rhythm features and similarity measures for the analysis
and comparison of symbolic drum loops with fixed tempo
and metre. New algorithms are also provided: models of
rhythmic structural similarity, and models of microtiming
accounting for timing styles and mixtures of metrical sub-
divisions. This section gives an overview of the algorithms
implemented in the GrooveToolbox.

In Section 4, we investigate the effectiveness of the al-
gorithms contained within the GrooveToolbox via applica-
tion to modelling similarity for drum loops. We test the ef-
fectiveness of our new polyphonic rhythm similarity mea-
sures against the commonly used Hamming distance, and
test to what extent high-level rhythm feature-based simi-
larity models can be improved with low-level rhythm sim-
ilarity metrics and microtiming features to build individu-
alized predictive models that could be used in user-aware
IDPTs. In Section 5 we summarize conclusions of this
work, and detail further work required on the GrooveTool-
box itself and in drum loop analysis generally.

2. BACKGROUND

2.1 Intelligent tools for drum loop production

The primary application of the GrooveToolbox is towards
research into IDPTs. Much of this centres on the sym-
bolic level rather than audio, and it largely centres on two
applications: automatic generation of drum loops, and in-
telligent interfaces for exploring libraries of drum loops.

In general the goals of automatic drum loop genera-
tion in a music production context can be both to speed
up the production process and help stimulate new ideas in
the producer [17]. Much of the work in this area aims to

263



generate variations on existing patterns to help producers
create evolving drum parts. Genetic algorithms have been
applied to achieve this, with the target vector derived from
similarity metrics like the Hamming distance [21] or a fea-
ture set [16]. Also using genetic algorithms, [15] presents
a system that interpolates between two existing drum pat-
terns via a feature space. Variational autoencoders have
also been used, generating loop variations that adapt to fit
structural changes in an existing song [32] or to fit within a
musical trio alongside melody and bass instruments [23].

A second area is in intelligent interfaces for exploring
drum loop libraries. The design of intelligent user inter-
faces for improved music collection exploration is a well
researched area with many successful applications [18].
Similarly, the mapping of drum loops on a 2D space via
a similarity measure or dimensionality reduction of a fea-
ture space has potential to enable improved navigation of
a large library. In [3], the authors map a large library of
drum loops via the Self-Organizing Map, using a modified
version of the Hamming distance as the similarity mea-
sure. In [11], the authors present a continuous, genera-
tive 2D space for drum patterns based on applying Multi-
dimensional Scaling (MDS) to a set of rhythm features.

2.2 Improving drum loop analysis

In the IDPTs described above, symbolic drum loops are an-
alyzed using rhythm features, such as density and syncopa-
tion, or rhythmic similarity measures such as the Hamming
distance [30]. These may not capture all the important
characteristics of complex loops. Two possible areas of
improvement, informed by recent musicological research,
are in the analysis of microtiming and rhythmic structure.

2.2.1 Microtiming

Microtiming can be defined as sub-rhythmic quasi-random
or systematic timing deviations from a metrical grid in hu-
man performance. Representations of rhythms that are fit
to a metrical grid are a requirement for many rhythm simi-
larity measures, such as the Hamming distance, or features
relying on metrical profiles like syncopation [20]. How-
ever, fitting rhythms to a grid removes microtiming infor-
mation, which can be musically significant.

The timing ‘feel’ or ‘groove’ of a performance may be
an important perceptual factor of drum loops; it has been
shown that drummers can control the ‘pushed’ or ’laid-
back’ feel of their performance [5]. In [25], timing strate-
gies in drumming for ‘laid-back’, ‘ontop’ and ‘pushed’
styles are measured for a group of drummers based on
the typical back-beat rhythmic structure. It was found that
their strategies can be formalized as specific timing inter-
actions occurring on downbeat metrical positions. These
are between the kick or snare and the hi-hat, or the met-
rical grid (or metronome) when there is no hi-hat present.
The reference to hi-hat as well as grid was based on the un-
derstanding that when present the hi-hat usually acts as the
time-keeper of the pattern. Detecting these timing inter-
actions may be important for analysing groove in human-
performed (or human-imitating) drum loops.

Secondly, gridded representations of rhythms do not ac-
count for swung rhythms, or loops where multiple subdivi-
sions of a beat occur. Calculating a pattern-based rhythm
similarity metric may still be desirable in these cases how-
ever. For example, a swung and unswung version of the
same rhythm will be somewhat similar. Or, a loop in 4/4
time may have one instance of a triplet rhythm, in a fill for
example. By incorporating a measure of deviation outside
of a grid, we can manage these cases, whilst keeping the
metrical reference required by other rhythm features.

2.2.2 Rhythmic Structure

The Hamming distance for rhythm similarity works by
stepping through each metrical position in two rhythms,
and counting the distance (difference) as the number of in-
stances where rhythms contain different values (one a rest
and the other an onset) in the same positions. Hence, in
Figure 1, the Hamming distance would be 3. This measure
is adapted to variable dynamics by using the difference in
intensity or velocity as a weighting factor.

Though possibly the most popular rhythm similarity
metric, the Hamming distance’s stepwise nature fails to
pick up regional rhythmic similarities. Onsets in similar
but non-identical positions do not register as similar in the
Hamming distance, even though perceptually they may be.

A measure of structural similarity may pick this up but
requires the derivation of a structural representation. The
recent rhythmic transformation model of [26] provides a
means of doing so. In [26], an algorithm is described for
characterizing rhythms as combinations of three types of
ornamentation: syncopation, pickup (anacrusis) and den-
sity. Each of these is classified in terms of its position
within a metrical profile and surrounding onsets. Syncopa-
tions are onsets placed in weak metrical positions, not fol-
lowed immediately by an onset in a stronger position. Den-
sity ornamentations are placed in weak positions between
two events in stronger positions. Pickups are placed in
weak positions but followed immediately by an onset on a
stronger position. Any rhythm can be defined as an ordered
combination of these ornamentations against metrical pro-
file, and any rhythm can be decomposed to a ‘metronome’
- an onset on each downbeat - in the same manner by re-
versing (removing) these ornamentations. This decompo-
sition process can be used to simplify rhythms in a musi-
cologically sound manner, where the simplified rhythmic
representation is analogous to a structure.

3. GROOVETOOLBOX

GrooveToolbox is a Python toolbox for analysing and com-
paring rhythmic and microtiming qualities of drum loops
in various formats. The toolbox contains functions for a
variety of pre-existing features and new ones that account
for rhythmic structure and microtiming. They fall within
three groups: rhythm features, microtiming features and
similarity measures. As the toolbox is designed to work
with loops of fixed tempo, it does not contain features for
tempo tracking or conventional metre detection. Nor does
it provide timbral analysis as it works on a symbolic level.
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Figure 1. Measuring similarity of two short rhythms.
Hamming distance = 3. With 16th note steps at 120BPM
fuzzy Hamming distance = 2.26

Two Python toolboxes in the public domain relate to
the GrooveToolbox. The Rhythm Toolbox [10] presented
as part of [9] provides a starting point for drum loop analy-
sis, with functions for two different types of syncopation
features plus density features. However the feature set
is limited, and it only supports MIDI files. The Groove-
Toolbox adds many algorithms to this set. It also supports
BFD3 [8] format Groove files as an alternative to MIDI,
MIREX format [1] and audio files through the integrated
ADTLib drum transcription library [29].

The SynPy toolbox [28] also provides related function-
ality, consisting of implementations of seven syncopation
models. While useful, the toolkit is designed for use on
monophonic rhythms, and as such do not immediately ap-
ply to drum loops. In the GrooveToolbox, we implement
one syncopation model [20] also found in SynPy, and add
another designed specifically for drum patterns [34].

The algorithms implemented in the GrooveToolbox
are collected from a range of research, with the aim of
enabling comprehensive modelling of the perceptual qual-
ities of drum loops. For re-implemented algorithms, we
chose those which were experimentally verified as percep-
tually relevant and ensured they could account for variable
onset velocities. The algorithms currently provided in
the GrooveToolbox are listed in Table 1. In this section,
we will describe the two new similarity models and
four microtiming features. More details may be found at:
https://github.com/fredbru/GrooveToolbox.

3.1 New Rhythm Similarity Models

3.1.1 Fuzzy Hamming distance

The fuzzy Hamming distance extends the Hamming dis-
tance by incorporating one metrical step of displacement
along with the microtiming deviations of each onset.
Where there is an onset in one rhythm but not the other,
the algorithm looks ahead one step to look for a nearby on-
set. An instance of this is shown in Figure 1. If there is
a nearby onset, the distance is reduced depending on how
close that onset is. The microtiming deviations are also
considered when two onsets occur at the same metrical po-
sition. In each case the timing difference between the two
nearby onsets is incorporated in the similarity calculation.
If present, the difference in onset velocity may also be used
as a weighting factor as with the Hamming distance.

For the example of Figure 1, the value 1 in position 3 is
the same as for the Hamming distance. The final two po-
sitions add 1 each to the Hamming distance, but the fuzzy
Hamming counts the first of these as the timing difference

between the two onsets, divided by the time of two metri-
cal steps. At 120BPM, one 16th note lasts 125ms, so the
similarity at this position = (125− 20− 40)/250 = 0.26.

With this proximity accounted for, the final position is
calculated as usual, adding 1 to the distance. The overall
distance is therefore 2.26 - close to the Hamming distance
(3) but scored as more similar due to the proximity of the
last two onsets. In a different case where the microtim-
ing deviations in the two nearby onsets were removed, the
fuzzy Hamming distance would be 2.50, higher to reflect
the increased distance between the two onsets.

By accounting for possible similarity between nearby
onsets, this method reduces the Hamming distance’s lim-
itation in detecting regional similarities. It also accounts
for rhythms with microtiming deviations, such as swung
rhythms, by not discarding them. Accounting for micro-
timing differences between onsets in the same position
may also capture the overall difference in microtiming feel.

3.1.2 Structural Similarity

The structural similarity metric measures the similarity of
a structural representation of two loops, derived follow-
ing [26]’s transformation model (see Section 2.2.2). First,
we remove any ‘ghost notes’, below a loudness threshold.
Ornamentations are then found and reversed (removed) un-
til any onsets only occur on downbeats. This results in
representations of rhythmic structure at the downbeat level
upon which the Hamming distance can be calculated.

3.2 Microtiming features

To develop features that describe the perceptual properties
of microtiming deviations in drum loops, the first stage is
to represent them in a form from which features can be ex-
tracted. In the context of drum pattern analysis, a sparse
matrix format has been used by [12] to express microtim-
ing. Here a matrix shows the timing deviation from the
grid in milliseconds, positive (behind the beat) or negative
(in front of the beat), for each onset. Figure 2 shows this
for a simple 2 beat pattern. The features extracted from
this representation measure two types of microtiming ef-
fect: swing or metrical feel and performance styles.

Figure 2. Matrix representation of timing deviations (ms)
from 16th note positions in a 2 beat 120BPM kick, snare
and hihat pattern (Laid-back event highlighted).

3.2.1 Swing and metrical feel

Using a sparse matrix representation of microtiming devi-
ations alongside a rhythmic representation, swing can be
detected along with the presence of triplets in a quadruple-
time pattern. Swung onsets are detected as significantly
delayed second eighth-notes, approximating the typically
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Type Feature Name Description
Syncopation Monophonic Comparing onset pattern with hierarchical metrical profile [20]

Polyphonic Comparing interaction between instruments with metrical profile [34]
Weak-Strong Ratio Number of onsets not occurring on downbeats vs on downbeats [15]

Density Absolute Density Total onsets divided by number of possible onsets for any number of parts
Relative Density Density of one part divided by total density (cf. hiness feature [9])
Syncopation Density Syncopation divided by total number of onsets (cf. hisyness feature [9])

Complexity Rhythmic Complexity Quadratic mean of density and syncopation [27]
Periodicity Autocorrelation Skewness Skewness of autocorrelation curve [22]

Autocorrelation Max Amplitude Maximum amplitude of autocorrelation curve [22]
Harmonicity Harmonicity of autocorrelation curve, (primarily pulse clarity) [19]
Symmetry Proportion of onsets at the same position in 1st and 2st half of pattern. [22]

Intensity Average Mean of all velocity values in pattern [15]
Standard Deviation Standard deviation of all velocity values in pattern [15]

Swing and Swing-ness Whether loop is swung, weighted by number of swung notes
metrical feel Triplet-ness Whether loop contains any triplets, weighted by number of triplet notes
Microtiming Laidback-ness Microtiming style as number of push/laid-back events
style Timing accuracy Mean of absolute timing deviation from grid of all onsets
Similarity Hamming distance Counting number of metrical positions where values (onset/rest)‘ are different
measures Fuzzy Hamming distance Hamming with 1 step lookahead, distance weighted by microtiming

Structural similarity Similarity of patterns simplified using [26]’s transformation algorithm

Table 1. List of features and similarity measures currently implemented in the GrooveToolbox. New features are in bold.

Figure 3. Matrix representation of timing deviations
(ms) for 16th note metrical positions in a 2 beat 120BPM
rhythm. Red = swung events, green = triplet events.

understood 2:1 eighth-note swing ratio. Although musi-
cally these are considered as eighth notes, they fall into
sixteenth note positions when quantized, with significant
negative (ahead of the position) deviations. The ‘swing-
ness’ feature first records whether these timing deviations
occur or not, returning 0 for no swing or 1 for swing. This
is then weighted by the number of swung onsets to model
perceptual salience of the swing. The deviation thresh-
old for swing is calculated dependent on the tempo of the
rhythm. The ‘triplet-ness’ feature is calculated in the same
way, but also records the second note of a triplet as signif-
icantly delayed second eighth note. A triplet note detected
from a microtiming matrix is shown in green in Figure 3.

3.2.2 Microtiming style

Overall timing accuracy is calculated as the mean of all
absolute timing deviations per onset in a loop. For on-
sets classed as swung or triplets, the deviation is calculated
from the ‘ideal’ triplet or swung note position.

Following the timing interaction classification of [25] as
described in Section 2.2.1 the laidback-ness feature counts
the number of laid-back timing events subtracted from
pushed events, with a negative score meaning an overall
‘pushed’ loop and positive a ‘laid-back’ loop. Thus a pat-
tern’s feel is calculated based on the detection of specific
timing discrepancies above a perceptual threshold, known
to impart a given feel from drumming performance analy-
sis. We modified [25] by also counting for ride cymbal in
place of hihat due to their similar musical roles.

Based on analysis of timing accuracy in BFD3’s library,
we chose a threshold of 12ms as a one that would disregard

performance noise. However, ideally this would be calcu-
lated per drummer as in [25]. An example ‘laid-back’ pat-
tern is shown in Figure 2. The highlighted event is ‘laid-
back’, as there is a discrepancy on the downbeat between
(in this case) snare and hihat that is above the threshold.
For this pattern, the timing accuracy value would be 8.5,
and laidback-ness 1.

4. EVALUATION
To evaluate our new algorithms and address open questions
in drum loop analysis, a two-part experiment was carried
out into modelling similarity for BFD3’s drum loops, using
perceptual data from humans collected via listening test.
Three research questions were addressed:

1. Should models of similarity for drum loops rely on
rhythm similarity metrics, feature sets or both?
One approach to modelling drum loop similarity is
to adapt rhythm similarity metrics [30] that mea-
sure distances between onset patterns, used for ex-
ample in [3, 21, 31]. An alternative is to model sim-
ilarity as a combination of higher-level rhythm fea-
tures [11, 16]. While the two are not usually com-
bined, both may be important as they emphasize dif-
ferent information.

2. Can the models of microtiming proposed be used in
modelling similarity of drum loops?
Existing IDPTs, described in Section 2.1, tend to as-
sume simpler quantized and unswung rhythms. To
apply this work to complex loops that are unquan-
tized or swung, or include multiple subdivisions of
the metre, models that can account for microtiming
deviations could be important.

3. How do the new rhythm similarity models compare
to the Hamming distance?
We investigate alternate ways of measuring rhythmic
similarity by testing the two new rhythm similarity
measures proposed against the Hamming distance.
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4.1 Data collection

The dataset consisted of similarity ratings for 80 pairs of
BFD3’s drum loops (160 total) as provided by 21 partici-
pants in a listening test, first collected in [4]. Loops were
generated through the same virtual kit, BFD3’s 70s Rock
kit, chosen due to its generic timbre. Loops were collated
equally from 8 genre groups: Blues/Country, Rock, Metal,
Jazz, Funk, Reggae/Latin, Pop and Dance/Hiphop. Tempo,
metre and loop length were fixed at 120bpm, 2 bars and 4/4
time. Some were swung, and a small number contained
triplet rhythms. The test was distributed online using the
Web Audio Evaluation Tool [14], with participants repre-
senting a range of musical and technical experience.

The listening test used a pairwise comparison method-
ology. Participants rated how similar two loops were on a
continuous scale with five equally spaced markers (Com-
pletely Different, Different, Slightly Different/Slightly Sim-
ilar, Similar, Identical). This was to maximize the number
of loops in the study, whilst keeping the test length rea-
sonable (30-40 minutes), ensuring multi-genre validity but
giving more fine similarity ratings than in the common tri-
adic comparison test design [2]. 5 training pairs were given
at the start of the test, and 10 pairs were repeated at the
start and end to test participants’ internal consistency. The
inter-rater reliability (IRR) calculated for all raters across
all comparisons using the intraclass correlation coefficient
(ICC) in (2,1) form, was 0.73, a moderate-to-good agree-
ment. This is expected, as it is known that musical similar-
ity perception is very individualized [33], with low IRR a
challenge in musical similarity studies [7]. The average in-
ternal consistency of all participants, calculated as the me-
dian ICC (2,1) between ratings for the 10 repeated pairs,
was 0.85, equal to good consistency.

4.2 Evaluation Design

Based on this perceptual data, our evaluation was formed
in two parts to address the three research questions. The
evaluation was designed with consideration of the individ-
ualized nature of similarity perception.

4.2.1 Overall perceptual relevance of new models

First we evaluated the new similarity and microtiming
models based on their correlation to listeners’ similarity
ratings. The extent to which the models relate to perceived
similarity was measured as the Pearson correlation be-
tween the feature score and median similarity rating of the
21 participants. The spread of ratings per pair was approx-
imately normally distributed (D’Agostino-Pearson test p >
0.01) so the median across raters is used. While this in-
dicates if the features proposed relate to overall perceived
similarity, limited IRR means that more precise analysis of
the performance of these features against an average of rat-
ings may not be valid. The second part of the experiment
therefore uses individuals’ ratings instead.

4.2.2 Building Individualized Similarity Models

In this part, the third research question is addressed. This
experiment will find to what extent rhythm feature-based

models can be adapted for use in complex drum loops
when combined with microtiming features, and whether
a combination of rhythm similarity metric and feature set
can offer a better similarity model than either alone can.
The aim here is to build similarity models that are predic-
tive, investigating the utility of the models in practical use-
cases that may require precise, fine-grained models. Due
to low IRR, this requires we develop models for individu-
als’ ratings separately, echoing the concept of ‘user-aware’
MIR [24]. The models are tested against individual ratings
of 7 participants, chosen as those with highest internal con-
sistency (for repeated pairs median ICC = 0.92), and whose
ratings were normally distributed (D’Agostino and Pear-
son test p > 0.01), meaning regression models were appli-
cable. Not all participants’ individual ratings fit a normal
distribution, and not all had high enough internal consis-
tency for precise prediction, so not all could be used.

For each participant we tested seven feature combina-
tions: rhythm features, microtiming features, the best sim-
ilarity metric from Section 4.3.1 and each combination of
the three. We used all features in Table 1. The density fea-
tures were calculated across three instrument groups sep-
arately: low (kick), mid (snare and toms) and high (cym-
bals) as in [11]. All other features were calculated with all
instruments combined. Fitting a regression model to the 7
participants for 7 conditions, we measured the predictive
power of the models as the explained variance (R-squared)
for each feature combination and participant.

For the single similarity measure we used linear regres-
sion. For the feature sets, Partial Least-Squares (PLS) re-
gression was chosen [35]. This was chosen because the
features exhibit a high degree of colinearity, due to the
large number of features and the inherent co-dependence of
musical qualities. This combined with the high predictor-
cases ratio means that linear modelling does not work.
PLS regression combines elements from multiple linear
and principal component regression, and has been found
to work well in multidimensional musical emotion predic-
tion [6]. Its use of principal component analysis to cre-
ate latent prediction variables alleviates the problems of
colinearity and high predictor-cases ratio, but limits inter-
pretability of the significance of specific features. This
is partly why we evaluate features differently in Section
4.3.1. To choose the best number of principal components
for each model consistently, we used the Bayesian Infor-
mation Criterion (BIC), which accounts for overfitting by
penalising model complexity against model performance.

4.3 Results & Discussion

4.3.1 Overall perceptual relevance of new models

The correlation between the features and median similarity
ratings is shown in Table 2. All models exhibited statisti-
cally significant correlation (p < 0.05).

The structural similarity measure exhibits higher cor-
relation to the median similarity ratings than the ordinary
velocity-weighted Hamming distance (t=1.69, p=0.046). It
could therefore be the case for complex drum loops that
listeners compare rhythms at a more global structural level
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Feature/Model Correlation r p
Hamming Distance 0.59 9.7e-9
Structural Similarity 0.65 6.1e-11
Fuzzy Hamming Distance 0.56 6.1e-8
Swing-ness 0.46 1.9e-5
Triplet-ness 0.49 3.4e-6
Timing accuracy 0.33 2.9e-3
Laidback-ness 0.22 0.046

Table 2. Pearson r and p-value between median similarity
ratings and model difference values.

rather than a precise low level. Alternatively, the structural
representation could indicate shared genre between loops
by showing the approximate locations of events. Given this
seemingly strong performance, using the structural similar-
ity measure over Hamming distance may be advantageous.

For the laidback-ness feature, an issue was that values
were typically low, as there is often not a significant dif-
ference in microtiming styles between loops. Based on the
12ms deviation threshold, in only 21 of the 80 compar-
isons was there a difference between timing styles, with
the remaining three quarters of the comparisons returning
0. Looking at the correlation between the laidback-ness
feature and similarity ratings just for these 21 comparisons
where timing style is different, correlation is stronger (r
= 0.47, p = 0.0033). One interpretation is that a feature
like this, which models a precise low-level quality, is only
relevant for a similarity comparison when there is a signif-
icant difference in this quality. While further investigation
is required, this may point to the use of adaptive feature
weightings for similarity comparisons that select features
based on the relevance to a particular comparison.

The other microtiming features exhibited moderate to
good correlation, with the swing-ness and triplet-ness fea-
tures being approximately the same. This may be because
loops in our dataset with onsets matching to second triplet
positions likely have notes in swung positions too, so there
is little practical difference in their values. For a larger
dataset this difference may be more significant. The fuzzy
Hamming distance did not differ significantly from the reg-
ular Hamming distance. The correlations of both the swing
and microtiming style features indicate that a better way to
incorporate microtiming in similarity models could be as a
separate set of features modelling global characteristics of
microtiming, rather than being inserted into rhythmic sim-
ilarity measures. Overall, it appears that these features are
able to some extent to capture perceptually salient features
of microtiming deviations in drum loops.

4.3.2 Building Individualized Similarity Models

The results of this part are shown in Figure 4. Comparing
the median r2 score for the 7 participants, it can be seen
that the combination of rhythm and microtiming features
with structural similarity measure results in the best pre-
dictive model (r2 = 0.56), closely followed by rhythm fea-
ture and microtiming model (r2 = 0.51). This confirms that
both microtiming and structural similarity models can im-
prove rhythm feature-based similarity models in this case.
However, there is still improvement required before they
can accurately predict similarity perception.

Figure 4. Model performance as R-squared value for com-
binations of rhythm R and microtiming MT feature sets
with structural similarity feature SS for each participant.

There are a few possible reasons for this. As mentioned
in Section 4.3.1, the system of deriving a fixed weight-
ing of features in a multidimensional similarity model may
not be the best way to model similarity; instead, adaptive
weighting schemes may be required that weigh features ac-
cording to their relevance in a given comparison. While the
feature set seems comprehensive, there may be some qual-
ities of drum loops that are not effectively being modelled,
in particular features that explicitly detect style or genre.
Similarity ratings from more listeners should be collected
in the future to construct further personalized models and
verify these findings for a wider range of listeners.

5. CONCLUSIONS & FURTHER WORK

We presented a new toolbox for drum loop analysis, with
implementations of pre-existing algorithms and new ones
for analysing and comparing rhythmic structure and micro-
timing. These were found to correlate to perceived similar-
ity of drum loops. The rhythmic structural similarity met-
ric was shown to correlate at least as well as the conven-
tional Hamming distance to similarity perception in drum
loops. It has been shown that the ideal model of similarity
for complex drum loops combines rhythm and microtim-
ing features with a rhythm similarity metric. These results
all have implications in future work on IDPTs.

As further work, new algorithms should be developed
to improve similarity models in the GrooveToolbox, in
particular ones that explicitly model stylistic similarity.
Here more investigation into rhythmic grouping or struc-
ture could be useful. Due to the complex nature of simi-
larity perception it is difficult to infer the practical utility
of similarity models from this evaluation. For a more eco-
logically valid understanding, we will next evaluate them
in the context of an IDPT. An approach to combining fea-
tures that accounts for the possibly attention-based nature
of similarity perception could also be a valuable direction.
Given the added requirement for personalized models, the
next step is to investigate methods such as active learning
to learn an adaptive similarity model from a user.
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ABSTRACT

The task of melodic segmentation is a long-standing MIR
task that has not yet been solved. In this paper, a rule
mining algorithm is employed to find rule sets that clas-
sify notes within their local context as phrase boundaries.
Both the discovered rule set and a Random Forest Classi-
fier trained on the same data set outperform previous meth-
ods on the task of melodic segmentation of melodies from
the Essen Folk Song Collection, the Meertens Tune Col-
lections, and the set of Bach Chorales. By inspecting the
rules, some important clues are revealed about what con-
stitutes a melodic phrase boundary, notably a prevalence of
rhythm features over pitch features.

1. INTRODUCTION

Melody is one of the basic aspects of music. As such, it
has been the object of study in numerous research projects
in various fields, including music theory, ethnomusicology,
music cognition, and music information retrieval. In virtu-
ally all those studies, it is generally accepted that a given
melody can be analysed in terms of smaller constituents.
The availability of a musically sensible segmentation facil-
itates various music information retrieval tasks [1]. There
is, however, no coherent theoretical answer to the ques-
tions what exactly are these constituents and how to isolate
them from the holistic construct of a melody.

One line of research has been to design computational
models to detect segment boundaries at the surface level
of the melody. Typically, these models have been tested
on a corpus of melodies in which segment boundaries are
annotated, mainly the Essen Folk Song Collection [2].

Computational models that have been proposed to par-
tition a melody into a sequence of segments, basically take
one of two approaches. In the first approach, which is
theory-driven, a set of rules is designed based on theories
of human perception and cognition of melodic informa-
tion, typically drawing on a combination of Gestalt Psy-
chology [3] and Music Theory. These rules are then for-
malised and quantised in such a way that they can be im-
plemented in software to automatically detect possible seg-
ment boundaries in the melodies. The underlying assump-

c© P. van Kranenburg. Licensed under a Creative Commons
Attribution 4.0 International License (CC BY 4.0). Attribution: P. van
Kranenburg, “Rule Mining for Local Boundary Detection in Melodies”,
in Proc. of the 21st Int. Society for Music Information Retrieval Conf.,
Montréal, Canada, 2020.

tion is that these rules reflect the way humans detect pat-
terns in sensory input.

In the other approach, which is data-driven, a model is
learnt from data without strong a-priori theoretic assump-
tions. This approach is based on the idea that a human lis-
tener learns to recognise musical events (such as segment
boundaries) by exposure.

In this article, we apply a rule mining algorithm that
infers from a large corpus of segmented melodies a rule-
based model of what is a phrase boundary. The choice for
rule mining is motivated by the explainability of the result-
ing models, which consist of human readable sets of rules.
By examining the discovered rules we gain a better under-
standing of what constitutes a melodic segment boundary,
and what features play a role for detecting segment bound-
aries. We include many features to allow the mining algo-
rithm to choose which features are necessary for the task.
We apply the rule-mining algorithm RIPPER [27] as wel as
a Random Forest classifier [29] on several subsets of fea-
tures. By using other data sets next to the Essen Folk Song
Collection, we broaden the information on which the mod-
els are based, and we are able to compare phrase bound-
aries across different melodic styles.

2. RELATED WORK

In this section, we review relevant related work. First,
we present theory-driven, rule-based approaches (Section
2.1), and then data-driven approaches (Section 2.2).

2.1 Theory-Driven Approaches

The seminal book on Emotion and Meaning in Music by
Leonard Meyer [4] was one of the first to explicitly re-
late music expectation to principles of gestalt theory. This
publication initiated major lines of research in music cog-
nition and music theory. Tenney and Polansky [5] were
among the first to define an implementable, quantitative
model for detecting segment boundaries. Their model is
based on the principles of proximity (in time) and similar-
ity (in pitch). Several other models are based on gestalt
principles as well: the Local Boundary Detection Model
(LBDM) by Cambouropoulos [6, 7], the Grouper model
by Temperley [8], the preference rules for grouping as de-
fined in A Generative Theory of Tonal Music (GTTM) by
Lerdahl and Jackendoff [9], the quantisation of these rules
by Frankland and Cohen [10], the Implication-Realization
theory by Narmour [11, 12], and the partial quantisation
of this theory by Schellenberg [13]. More recently, vari-
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ous theory-based approaches have been proposed by Ro-
dríguez López [14]. A rule-based model not explicitly
grounded on gestalt principles was proposed by Cenkerová
et al. [15].

2.2 Data-Driven Approaches

Explicitly challenging the gestalt principles, Bod [16] in-
troduces Data Oriented Parsing (DOP). A DOP-Markov
parser learns probabilities for rewrite rules from a set of
examples. One of the applications of this model was the
prediction of segment boundaries in the Essen Folk Song
Collection. In an error analysis, Bod shows that the DOP-
Markov parser is able to learn regularities in phrase-ending
patterns that do not adhere to gestalt rules.

Various data-driven approaches are based on informa-
tion theory. Generally, a phrase boundary is inferred either
before an unexpected melodic event or after an event for
which the continuation is hard to predict. Methods differ in
the way of computing the conditional probability of events
given their preceding context. Juhasz [17] takes this ap-
proach to segment a collection of Hungarian folk songs.
The multiple viewpoint statistical modelling method by
Conklin and Witten [18] has been used for many sym-
bolic music processing tasks such as generation, classi-
fication, and pattern discovery. The IDyOM model [19]
employed the multiple viewpoint method for melodic seg-
mentation. Lattner [20] employs a Restricted Bolzmann
Machine to model the probability of a melodic event. This
approach outperforms IDyOM, and sets the state-of-the-art
for recognising phrase boundaries in the Essen Collection.

Rodríguez López [14] also introduced a data-driven
component. A part of his segmentation system needs to
be trained on a corpus.

3. DATA

An often used collection of segmented melodies is the Es-
sen Folksong Collection (EFSC). This collection contains
thousands of folk song melodies mainly from Germany,
but also from other parts of Europe, and a relatively small
number of melodies from other continents. In the process
of creating this collection, the melodies have been seg-
mented into phrases. Therefore, it offers a large amount
of data on melodic segmentation which allows for statisti-
cal evaluation. Following earlier work, we use the database
Erk, a subset of EFSC consisting of c. 1,700 melodies.

We also employ a recently published corpus from the
Meertens Tune Collections (MTC), consisting of collec-
tions of thousands of instrumental and vocal songs from
Dutch sources [21]. The collection we use in this paper is
MTC-FS-INST-2.0, more specifically, those melodies that
have lyrics, are dated after 1850, and have a time signa-
ture. This results in a selection of c. 7,500 melodies. For
reasons that will be explained in section 3.1.2 we apply a
further selection: from each tune family, we randomly se-
lect one melody. This results in a set of 1,323 melodies.

The third corpus we use is the collection of 371 harmon-
isations of chorales (CHOR) by Johann Sebastian Bach

Dataset #songs #boundary #noboundary total
MTC 1,323 7,054 63,856 70,910

ESSEN 1,632 7,703 62,490 70,193
CHOR 370 1,907 15,455 17,362

Table 1. Overview of the datasets indicating the number
of songs and the sizes of the classes (number of 5-grams).

(1685–1750). 1 Since our focus is on melodic segmenta-
tion, we only use the melodies (i.e., the soprano parts).

An overview of the datasets, the number of songs, and
the class sizes is included in Table 1.

3.1 Some Caveats

Employing a collection of folk song melodies has some
important consequences that have often not been discussed
in previous work. We focus on two problems: tune family
relations, and the rest as notational device.

3.1.1 Tune Families

One defining property of folk music is that it has been in
oral circulation [22]. In the process of oral transmission,
changes are introduced to the melodies and texts. There-
fore, in a typical collection of folk songs, several variants
of the same melody are included, exhibiting minor to large
differences among each other. Such a group of related
melodies is often designated as a tune family [23]. EFSC
and MTC are no exceptions to this. For the collections
in MTC, the tune families have largely been identified by
collection specialists at the Meertens Institute. The tune
family labels are included in the metadata that comes with
the collection. For the ESFC this has not been done. From
the titles of the songs, which are available in the metadata,
it is clear that duplicates and variants of melodies are in-
cluded, but there is no account of precisely which melodies
are related.

The consequence of this for a data mining approach is
that the independence of the train and test sets is not guar-
anteed since members of the same tune family may end up
in both the train and test sets. Especially when the differ-
ences are small, this is problematic.

To solve this issue, we take advantage of the tune family
labels as provided in the metadata of MTC.

3.1.2 Rests

In related work, the presence of a rest appeared to be a
strong indicator of a phrase boundary. For example, one
of the quantised GTTM preference rules (GPR 2a) states
that the boundary strength is proportional to the length of a
rest. In LBDM, next to pitch and inter-onset-intervals, rests
are explicitly incorporated as one of the three features that
contribute to the resulting local boundary strength. Fur-
thermore, the occurrence of a rest is the first of Narmour’s
six conditions of melodic closure [11, p. 11].

There is, however, a difference between the meaning of
a rest in composed music and in folk song transcriptions.

1 This corpus is available as part of the humdrum-data repository:
https://github.com/humdrum-tools/humdrum-data
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Figure 1. Transcriptions of two variants of the same
melody showing different uses of the rest as notational de-
vice.

Again, this is related to the process of oral transmission. A
composer typically uses common music notation as the pri-
mary device to communicate a piece of music to perform-
ers. Here, the notation of a rest is prescriptive, indicating
the performers not to make sound. On the contrary, mu-
sic notation as found in folk song collections is typically
descriptive. The melodies have been transcribed from au-
dio recordings, or from aural observation. Here, the rest is
an indication of something a performer already has done.
The example from the MTC that is shown in Figure 1 il-
lustrates the resulting confusion that can arise if various
transcribers contribute independently (or if one transcriber
works inconsistently). In the upper transcription, the fi-
nal note of each phrase is extended to fill the measure,
while in the lower transcription, rests are included at the
phrase boundaries. Crucially, inspecting the audio record-
ings that are the sources of these two transcriptions, 2 no
noticeable differences are observable between the way the
singers separate the phrases.

It appears that the rest as a symbol has a use in folk song
transcription to represent a phrase boundary, rather than to
indicate absence of sound. As a consequence, using the
rest as a feature actually includes the ground truth in the
feature set, which obviously results in an optimistic esti-
mation of classification performance. We will therefore re-
port results without using rests, and results including rests
– and other ground truth dependent features – separately.

2 These are available at http://www.liederenbank.nl/
index.php?lan=en by entering the respective record numbers
(73639 and 74427) in the search field.

4. METHOD

The approach in this paper largely is a feature engineer-
ing exercise. From previous studies and from general mu-
sic theoretic considerations, we take inspiration of what
features may contribute to the establishment of a phrase
boundary. Next, we apply two machine learning algo-
rithms: RIPPER and Random Forest. Thus, we do not take
an a-priori theoretical basis, such as the gestalt principles,
but we let the learning algorithm explore which features
are of value and in what combination.

4.1 Objects and Features

The target of the classification is to find those notes af-
ter which a phrase ends. As object of classification we
take each note in the melody with its local context of the
two preceding and the two following notes, resulting in se-
quences of five notes, 5-grams. Since the aim is segmen-
tation, the final phrase end, which also ends the melody,
is excluded from the data set. Those 5-grams of which
the third note is the final note of a phrase get the class la-
bel boundary, while all other 5-grams get the class label
noboundary.

For each of the 5-grams we extract a large number of
features. Each of those features can be considered a hy-
pothesis of which information contributes to the concept
of phrase boundary. We discern various groups of features.
For extracting the feature values, the music21 toolkit has
been used [24].

Elementary pitch features include for each of the five
notes: the scale degree, the absolute pitch value in MIDI-
representation, the interval with the previous note in semi-
tones, the pitchcontour (up, down, equal), and the Har-
mony and the Center of Gravity as defined in [25].

Elementary rhythm features include the meter ‘numera-
tor’ and ‘denominator’, the duration of the beat, the num-
ber of beats in the measure, and for each of the five notes:
the metric weight, the duration (inter-onset-interval) in
units of the beat-length, whether the note starts on or off
the beat, and whether the duration increases for each of the
first three notes. Furthermore, following the reasoning of
Temperley [8, p. 70], we include a boolean feature that is
True when the onset time of the fourth note is at the same
position in the measure as the onset of the very first note
of the melody. This accounts for the preference to start
phrases at corresponding positions in the measures. To al-
low a more fine-grained version of this preference, we also
include a boolean feature that is True if the onset time of
the fourth note completes the time-span of a beat, starting
the first time-span at the onset of the first note (which pos-
sibly is not on the beat in case of an anacrusis). The metric
weight (beatstrength) and the length of the beat, both in-
cluded as feature, are computed with the music21 toolkit.

Elementary lyric features (MTC only) include for each
of the five notes: whether the lyric syllable is stressed,
whether the lyric is a content word, whether the lyric sylla-
ble ends a content-word that rhymes with another content-
word anywhere in the lyrics, whether the lyric syllable is
the final syllable of a word, and whether the note is part
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of a melisma. For labeling non-content words, detection
of rhyme, and determining the word stress, the methods as
described in [26] are used. Furthermore, we measure the
distance between the third note of the 5-gram and the most
recent rhyming syllable, both as number of notes and as
number of beats.

Wherever applicable, we include the first-order contour
of these elementary features as separate features, register-
ing whether the value for a note is higher, equal, or lower
than the value for the previous note. This provides the rule
mining algorithm with relational information for the con-
secutive notes, which is beneficial because RIPPER is not
able to include comparisons between features into the con-
ditions that constitute the rules. Each condition consists of
a single feature compared to an absolute value.

Next to these elementary features, we include features
that are derived from previous models. For each of the five
notes, the following values are included as feature:

• the sum of the values for the quantised GTTM GPRs
2a, 2b, 3a, and 3d, as defined in [10];

• the Local Boundary Strength as computed by the
LBDM [7];

• the values for pitch proximity and pitch reversal as
defined in [13];

• the prediction of Grouper [8];

• the information content as computed by the IDyOM
model according to [19];

• features that are based on the conditions of closure
as stated by Narmour [11, p. 11]: the metric weight
contour for the third note, whether the third note is
longer than the second, whether the interval between
the first and second notes is larger than the interval
between the second and third notes, and whether the
direction of the melodic contour changes between
the second and the third note.

Finally, we include several features that are not indepen-
dent of earlier annotated segment boundaries. In an inspec-
tion of classification results, it appeared that often a bound-
ary very close to the beginning of a phrase was predicted.
To prevent this, we include the distance between the third
note of the 5-gram and the beginning of the phrase, both
as number of notes, and as number of beats. Furthermore,
we include a boolean feature that is True if the onset of the
fourth note is at the same position in the bar as the onset of
the first note in the phrase. Lastly, we include for each of
the five notes whether a rest follows the note.

In total, we have 162 features (excluding the class la-
bel), 31 of which are lyric features. 3 The lyric features
are only computed for the MTC dataset, since lyrics are
not present in the ESSEN and CHOR collections.

4.2 Learning Algorithms

RIPPER [27] is a rule mining algorithm that infers a set
of classification rules from a data set. The basic procedure

3 The full feature set is included in the supplementary material.

that is implemented in this algorithm is to split the train-
ing data into two folds (1/3 and 2/3), grow a rule on the
2/3 split, prune the rule using the 1/3 split, and remove the
objects that are covered by the rule from the training set.
This is repeated until no objects remain in the training set.
Each iteration results in a rule that is added to the rule set.
The algorithm starts finding rules that target the minority
class, which is appropriate for the segmentation problem
in which phrase boundaries are a minority class. The re-
sulting rules are not independent. To reach a classification,
the rules have to be applied in the order as provided by the
mining algorithm. The advantage of a rule-set as resulting
model is its interpretability. From the rules it is clear how
a classification is established.

One important parameter of the RIPPER algorithm is
the minimum number of objects per rule. By setting this
to a low value, many rules result that might be too specific,
while setting this to a high value results in less, and more
general rules. We found that in general for our purpose
32 is a sensible value. Smaller values lead to much more
rules, without considerably improving classification per-
formance. Furthermore, since songs in general have much
less than 32 phrase boundaries, this value forces the algo-
rithm to generalise over songs. We use the implementation
that is provided in the Weka workbench [28].

To better show the potential of the feature set, we also
use a Random Forest classifier [29]. During training, a
large number of decision trees are fitted to random sub-
sets of the data. The classification is a majority vote of
these individual trees. The models that result from this
approach are not easily interpretable, but they generally
reach a higher classification performance compared to a
single decision tree or rule set. We experimentally found
that the optimal number of trees in the forest is around 40.
Larger forests do not considerably add to the classification
performance. We use the implementation as provided in
the Python module sklearn [30]. For evaluation, we em-
ploy a 5-fold cross-validation procedure, both for RIPPER
and Random Forest. To further raise the independence be-
tween test and train sets in case of the Random Forest, we
make the splits between the train and test sets at the level
of melody. Thus, the 5-grams from the same melody all
are either in the test or in the train set. For MTC, this im-
plies that also tune families are always separated, while for
EFSC and CHOR this cannot be guaranteed. The code for
this paper is publicly available. 4

5. RESULTS

Table 2 shows the classification results for the three
datasets, the two classifiers, and various feature subsets.

5.1 General Remarks

The separate groups of elementary features (pitch, rhythm,
lyrics) only reach moderate performance. Rhythm fea-
tures consistently score better than pitch features. Lyric
features clearly have considerable discriminative power,

4 https://github.com/pvankranenburg/ismir2020
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MTC
RIPPER Random Forest

Features Pr Rc F1 Pr Rc F1
El. Pitch 0.58 0.17 0.26 0.43 0.26 0.32
El. Rhythm 0.75 0.53 0.62 0.72 0.57 0.63
El. Lyrics 0.64 0.38 0.48 0.56 0.43 0.49
El. NoLyr 0.73 0.61 0.67 0.80 0.58 0.68
El. All 0.77 0.73 0.75 0.85 0.69 0.76
Prev. 0.81 0.62 0.70 0.83 0.62 0.71
NoLyr 0.79 0.66 0.72 0.86 0.64 0.73
All 0.82 0.76 0.79 0.89 0.72 0.80
NoLyr+GT 0.84 0.80 0.82 0.90 0.76 0.82
All+GT 0.86 0.87 0.87 0.92 0.82 0.87

EFSC
RIPPER Random Forest

Features Pr Rc F1 Pr Rc F1
El. Pitch 0.57 0.18 0.27 0.49 0.31 0.38
El. Rhythm 0.78 0.53 0.63 0.77 0.62 0.69
El. Lyrics - - - - - -
El. NoLyr 0.78 0.63 0.69 0.83 0.69 0.76
El. All - - - - - -
Prev. 0.81 0.66 0.73 0.88 0.64 0.74
NoLyr 0.83 0.68 0.75 0.90 0.70 0.79
All - - - - - -
NoLyr+GT 0.90 0.88 0.89 0.95 0.87 0.90
All+GT - - - - - -

CHOR
RIPPER Random Forest

Features Pr Rc F1 Pr Rc F1
El. Pitch 0,68 0.49 0.57 0.77 0.65 0.71
El. Rhythm 0.76 0.66 0.71 0.84 0.69 0.76
El. Lyrics - - - - - -
El. NoLyr 0.84 0.75 0.79 0.94 0.85 0.89
El. All - - - - - -
Prev. 0.81 0.73 0.77 0.93 0.82 0.87
NoLyr 0.85 0.77 0.81 0.95 0.86 0.90
All - - - - - -
NoLyr+GT 0.94 0.84 0.89 0.98 0.91 0.94
All+GT - - - - - -

Table 2. Classification results (precision, recall, and F1
for the boundary class) on MTC, EFSC, and CHOR for
various feature subsets, both for the rule miner (RIPPER)
and for the Random Forest classifier. “El.” denotes the
elementary features. “NoLyr” denotes all features except
for the lyrics features. “Prev.” denotes the features from
previous models. “GT” denotes the group of features that
are not independent of the annotated phrase boundaries.

as is observable in the increase of the recall between the
“El. NoLyr” and “El. All” subsets for MTC.

Comparing the performance between using elementary
features only and using all features shows some improve-
ment in the later case for MTC and EFSC, but not for
CHOR. The “Prev.” subset on its own consistently shows a
good performance. This implies that the explainable power
of the elementary features is comparable to the explainable
power of the previous models. A large part of the bound-
aries remains unexplained with either which method.

Overall, MTC is the hardest to classify. Undoubtedly,
this is a consequence of the careful compilation, ensuring
only one melody per tune family. Since we have no tune
family labels for EFSC and CHOR, the independence of

train and test sets cannot be fully guaranteed. Therefore,
the classification results might be too optimistic.

5.2 Rule Sets

The contents of the rules as found by the RIPPER algo-
rithm reveals which features are paramount in detecting
phrase boundaries. Although all rule sets give rise to in-
teresting observations, it is not possible to discuss them all
within the scope of this article. We show for two cases
the first few rules, which typically cover many objects.
As these rules are not directly derived from a theory of
melodic perception, we are specifically interested to see
to what extent the rules confirm existing understanding of
melodic closure. Furthermore, these rules have the poten-
tial to lead to new hypotheses about what establishes clo-
sure in a melody.

First, we focus on the cases in which only elementary
features are used. These are the first three discovered rules
for MTC using the elementary pitch and rhythm features: 5

Rule 0:
(IOIbeatfractionthirdfourth = -) and
(completesmeasuresong = True) and
(IOIbeatfractionthird >= 1.25) and
(meternumerator >= 4) and
(IOIbeatfractionfirst <= 0.666667)
=> class=boundary (739.0/54.0)

Rule 1:
(IOIbeatfractionthirdfourth = -) and
(completesmeasuresong = True) and
(IOIbeatfractionthird >= 1) and
(IOIbeatfractionsecondthird = +) and
(beatstrengthfourth >= 1)
=> class=boundary (705.0/88.0)

Rule 2:
(IOIbeatfractionthirdfourth = -) and
(completesmeasuresong = True) and
(IOIbeatfractionthird >= 1.25) and
(IOIbeatfractionfifth <= 1.5) and
(VosHarmonyfourth >= 4) and
(intervalsecond <= 0) and
(diatonicpitchthird <= 30)
=> class=boundary (272.0/15.0)

Rule 0 classifies 739 5-grams from the train set
correctly, and additionally covers 54 false positives.
IOIbeatfraction denotes the duration of the note in
units of the beat-length. The first rule mainly states that
the fourth note should be shorter than the third, the third
note ends at the position in the measure that is parallel to
the start of the first note of the melody, the third note is
longer than the beat (>=1.25 times), the first note is fairly
short, and the meternumerator is 4. The last condition
excludes all songs in e.g., 6/8 or 3/4 meter. The condi-
tions that have been selected for these rules confirm con-
siderations for several previous models. One of the central
properties of a phrase-closing note seems to be its length,
which should be longer than the beat. Furthermore, these
rules all state that the length of the fourth note should be
shorter than the third. This condition is present in 22 of
the 30 discovered rules in this set. It contrasts with one of
Narmour’s conditions of closure [11, p. 11], which states
that the closing note is longer than the previous note. Ap-
parently, the data indicates that the relation with the next

5 The full rule set is included in the supplemental material.
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Dataset RIPPER Random Forest IDyOM Grouper LBDM Rest Always
MTC 0.73 0.61 0.67 0.80 0.58 0.68 0.65 0.51 0.57 0.69 0.67 0.68 0.60 0.51 0.55 0.92 0.26 0.40 0.10 1.00 0.18
EFSC 0.78 0.63 0.69 0.83 0.69 0.76 0.71 0.49 0.58 0.70 0.61 0.65 0.60 0.47 0.53 0.96 0.31 0.47 0.11 1.00 0.20
CHOR 0.84 0.75 0.79 0.94 0.85 0.89 0.61 0.39 0.47 0.64 0.59 0.62 0.48 0.42 0.45 0.99 0.09 0.17 0.11 1.00 0.20

Table 3. Classification performance of related models. For each model, precision, recall, and F1 (bold) for the boundary
class are reported. Results for RIPPER and Random Forest are for the featureset El. NoLyr.

note is more indicative, instead. One could speculate that
the perception of closure at the third note is reinforced in
retrospective when noticing that the next note is shorter.
The rules that are found for the EFSC bear a similarity to
those for MTC. The rules for CHOR differ more. But for
all three data sets rhythm features dominate the top rules.
This confirms earlier results as reported by Weyde [31].
The pitch features that are included mainly refer to pitch
contour and the level of dissonance of the melodic interval
(as registered by the features based on [25]).

Next, we consider the top rules that are discovered for
MTC with the feature subset of all features (“All”): 6

Rule 0:
(grouperthird = True) and
(rhymesthird = True) and
(lbdmthird >= 0.280929)
=> class=boundary (2413.0/149.0)

Rule 1:
(grouperthird = True) and
(wordendthird = True) and
(informationcontentfourth >= 7.252784) and
(contourthird = -) and
(lbdmfifth <= 0.159635)
=> class=boundary (641.0/33.0)

It is clear that the combined models of LBDM and
Grouper, and the condition of rhyme constitute a very pow-
erful rule that covers 2,413 boundary 5-grams in the train-
ing set, and only 149 noboundary 5-grams. In the second
rule, also the information content as computed by IDyOM
plays a role. But also some elementary features are used.

5.3 Existing Models

Table 3 shows a comparison with the performance of sev-
eral existing models. The values for the RIPPER and Ran-
dom Forest classifiers are those for the set of elementary
features without the lyrics. This is not the best performing
feature subset, but the larger subset would include IDyOM,
Grouper and LBDM as features, which would not ren-
der a fair comparison. The IDyOM segmentation is com-
puted with the implementation of IDyOM as available on
GitHub. 7 Grouper is available as part of the Melisma Mu-
sic Analyzer. 8 LBDM is implemented according to [7].
The threshold for peak-picking is chosen such that the re-
sulting F1-value is maximised. The Rest model assumes
a phrase boundary wherever a rest is notated in the score.
This quantifies the effect of including the rest as a feature
in a segmentation model that is evaluated on a collection
of folk song melodies. As can be seen, the rest model typ-
ically results in high-precision, low-recall segmentation.

6 The full rule set is included in the supplemental material.
7 http://mtpearce.github.io/idyom/
8 https://www.link.cs.cmu.edu/music-analysis/

Dataset MTC ESFC CHOR
MTC 0.80 0.58 0.68 0.83 0.57 0.67 0.85 0.49 0.62
ESFC 0.76 0.61 0.68 0.83 0.69 0.76 0.83 0.68 0.74
CHOR 0.77 0.32 0.45 0.80 0.37 0.51 0.95 0.86 0.90

Table 4. Performance of cross-evaluation. The rows show
the train sets, the columns the test sets. The values are:
precision recall F1 (bold) for the boundary class.

For both MTC and EFSC the occurrence of a rest explains
around 30% of the phrase boundaries. This is a consider-
able effect. Finally, a baseline model is included that clas-
sifies each note as a phrase boundary. The Random Forest
classifier with the elementary feature set outperforms the
other methods for ESFC and CHOR, and performs com-
parable to Grouper on MTC, although precision and recall
are more balanced with Grouper. It also outperforms Lat-
tner’s RBM approach on EFSC (0.80 0.55 0.63) [20]. No-
tably the recall is higher. However, the currently presented
approach is supervised and uses more features.

5.4 Cross Relations

We now examine the performance of the classifiers on the
datasets they are not trained on. We use the Random For-
est classifier and the feature subset “El. NoLyr”. Most no-
table in the results as shown in Table 4 is the compara-
ble cross-performance between ESFC and MTC. Appar-
ently, the phrase endings in the Dutch and German folk
song styles have comparable properties. The higher self-
performance of ESFC might partly be caused by the tune-
family problem (Section 3.1.1). The low performances of
the classifiers trained on CHOR are mainly caused by low
recall. This could indicate that some types of phrase end-
ings that occur in MTC and ESFC are absent in CHOR.

6. CONCLUSION

We presented an approach to melodic segmentation that
builds on and integrates elementary melodic features and
existing segmentation models in a theory-agnostic way. By
deriving a rule-set using a large number of features, we
get an indication of which features are crucial for detect-
ing phrase boundaries in melodies. A notable observation
is that a phrase boundary is mainly detectable with rhythm
features. By employing a Random Forest classification, we
get an indication of the discriminative power of the con-
sidered feature sets. The resulting classifier outperforms
all earlier approaches to the problem of automatic melodic
segmentation. By cross-evaluation, we detect a connection
between MTC and EFSC.
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ABSTRACT

Recent work have addressed the automatic cover detection
problem from a metric learning perspective. They employ
different input representations, aiming to exploit melodic
or harmonic characteristics of songs and yield promis-
ing performances. In this work, we propose a compara-
tive study of these different representations and show that
systems combining melodic and harmonic features dras-
tically outperform those relying on a single input repre-
sentation. We illustrate how these features complement
each other with both quantitative and qualitative analy-
ses. We finally investigate various fusion schemes and
propose methods yielding state-of-the-art performances on
two publicly-available large datasets.

1. INTRODUCTION

Music retrieval has come a long way in the last 25 years.
Since the earlier works on symbolic music retrieval [1, 2],
applications with increasing complexity have been devel-
oped. In the mid-1990’s, query-by-humming aimed at re-
trieving songs based on melodic similarity with a short
hummed or whistled audio excerpt [3,4], while fingerprint-
ing in the early 2000’s aimed at identifying a song based on
one of its excerpts [5]. Music matching at large – the task
of retrieving an excerpt based on its musical similarity with
another – was developed in the mid-2000’s, typically com-
paring sequences of harmonic features via dynamic pro-
gramming methods [6–8].

Automatic cover detection – the task of retrieving cov-
ers of a given track from an audio corpora – emerged at
the same period, and was largely inspired by the previous
decade of music retrieval research. Some of the early cover
detection systems were relying on dominant melody to as-
sess musical similarity [9, 10], and one of them reached
the 3rd place (out of 8 participants) at the first MIREX 1

1 https://www.music-ir.org/mirex
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ras, Furkan Yesiler, Joan Serrà, Emilia Gómez, Geoffroy Peeters, “Com-
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Society for Music Information Retrieval Conf., Montréal, Canada, 2020.

cover song identification contest in 2006. The same year
however, 1st and 2nd ranking algorithms were relying on
harmonic features – chroma vectors or estimated chords
series [11–13]. These results seem to have fostered the use
of harmonic representations – chroma in particular – over
melodic ones for cover detection, and all algorithms sub-
mitted to the next 2007 MIREX edition were using a tonal
representation [14–16]. Enhanced chroma and time series
comparison via dynamic programming then became the de
facto standard method in the field – and remained the state
of the art for more than a decade [17, 18].

During the following years, the community focused on
improving both accuracy and scalability of existing ap-
proaches. As to accuracy, it was proposed to aggregate the
results obtained with different methods [19–21] or differ-
ent input features [22–24]. As to scalability, several strate-
gies were investigated to compress the original representa-
tions and to reduce the similarity comparison function to a
lightweight distance computation [25–28] or a fast lookup
operation in a database index [29, 30].

The advent of efficient machine learning methods in
other fields – such as image recognition – encouraged the
community to shift from these previous methods based on
ad-hoc and handcrafted features toward a new approach
based on data-driven feature learning [31–33]. Recently,
promising results were obtained using the metric learning
paradigm in a cover detection context. The principle is to
train a neural network to represent each track as a compact
vector – its embedding – so that the distance between em-
beddings of a cover pair is smaller than that of non-cover
pairs. Features used as input data were as varied as the
Constant-Q Transform [34], dominant melody or multi-
pitch [35, 36] or chord-informed chroma [37].

In this work, we propose a comparative study of these
input features and investigate their combinations to im-
prove cover detection performance. In Section 2, we
briefly review different works inspiring our approach. In
Section 3, we present the features that we consider for this
study and their respective performances. In Section 4, we
discuss the results obtained using different combinations of
these features with a simple averaging fusion scheme, and
explain them with a qualitative analysis. We then propose
in Section 5 an architecture able to learn to combine vari-
ous features efficiently. We conclude with future potential
improvements.
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Figure 1: MICE architecture.

2. RELATED WORK

We present here the main concepts inspiring this work: in-
put features combination and metric learning paradigm.

2.1 Combination of input features

A first attempt to combine information from various in-
put features for cover detection was made by Foucard et
al. using a source separation algorithm to obtain three in-
puts: the mixed original track, the dominant melody –
assumed to correspond mainly to the solo singing voice
– and the accompaniment [22]. In another study, Sala-
mon et al. argued that, albeit closely related, dominant
melody, bass line and harmonic progression embed differ-
ent and complementary information. To prove this idea,
they proposed to compare the systems that use each fea-
ture separately and their combinations with different fusion
schemes [23]. More recently, Tralie et al. investigated an-
other multi-representation approach, fusing harmonic and
timbral features [24]. These studies showed that systems
combining several input features outperformed those using
each feature individually.

2.2 Classification vs. metric learning paradigm

Different teams recently proposed data-driven feature
learning methods to address the cover detection problem.
A common approach is to use a Convolutional Neural Net-
work (CNN) to extract a compact representation – an em-
bedding – from a low- or mid-level spectral representa-
tion of the audio, for instance Harmonic Pitch Class Pro-
file (HPCP) [38] or Constant-Q Transform (CQT) [34,39].
These authors considered the problem as a classification
task, introducing an additional dense layer as a classifier.

Similarly, Doras et al. used dominant melody or multi-
pitch representations [35, 40], while Yesiler et al. used
crema-PCP [41], a chord-informed chroma representation
[37] to extract the embedding. These input features were
obtained with specialized neural networks [36, 41]. These
authors also adopted a metric learning approach in which
the CNN is trained with a triplet loss to produce embed-
dings whose pairwise Euclidean distance is lower for cov-
ers than for non-covers. Using these melodic or harmonic
input features along with the metric learning paradigm
yielded promising results and inspired this present work.

3. COMPARING INPUT FEATURES

We compare here performances obtained with a full
spectral feature (CQT), two melodic features (domi-
nant melody and multi-pitch) and two harmonic features
(chroma and crema-PCP). For brevity, we denote them Cq,
Dm, Mp, Ch, and Cp, respectively.

3.1 Input features

We computed Cq and Ch using Librosa v0.7 [42]. We
obtained Dm and Mp with the convolutional network we
previously described in [36], and we obtained Cp with the
model publicly released by [41], as done in [37].

Temporal resolution All features were computed for
an audio duration of 180 seconds as in [35], with a frame
duration of 93ms (1937 bins). For tracks longer that 180
seconds, the beginning of the 180 seconds is taken at ran-
dom, while shorter tracks were zero-padded, as in [37].

Frequency resolution All features were computed with
a resolution of 1 bin per semi-tone. Cq was computed
across 6 octaves. Dm and Mp are originally extracted with
a resolution of 5 bins per semi-tone and their resolution is
downsampled by a factor 5 via 2D-interpolation, follow-
ing [35]. For each Dm, only the 3 octaves around its mean
pitch are considered, as done in [35]. To account for all
possible circular shifts in chroma features, we concatenate
on top of the Ch and Cp their 11 lowest frequency bins,
following [37, 38]. To summarize: Cq, Dm, Mp, Ch and
Cp have 72, 36, 72, 23 and 23 frequency bins, respectively.

Normalization Cq and Ch are log-compressed and
trimmed at -80dB. Finally, each feature is globally normal-
ized between 0 and 1.

3.2 Model

Yesiler et al. introduced MOVE, a network containing a
convolutional part specially designed to capture Cp pat-
terns and a temporal attention part [37, 43], while Doras et
al. used a plain convolutional network to capture Dm and
Mp patterns [35, 40]. We introduce here a new model that
reuses the plain convolutional part of the latter and the tem-
poral attention mechanism of the earlier. The rationale be-
hind this architecture is twofold: we need a generic model
that can be used for all types of input features in order to
conduct fair performance comparisons, and we observed in
preliminary experiments that the temporal attention mech-
anism improves the results of the plain CNN. We call this
model MICE (Musically Informed Cover Embeddings).
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As shown on Figure 1, the first part of the model is the
5-layer CNN of [35]. Each layer block consists of a batch
normalization layer, a convolution layer with 3×3 kernels
and a mean-pooling layer with 2×2 kernel and 2×2 stride.
The number of kernels K of the first layer is doubled at
each level. Output is then averaged along the frequency
axis, and a dense layer is applied to output a number of
channels of 2E, where E is the final embedding size.

The attention mechanism is then introduced: the tensor
is split in 2 on its channels dimension to obtain two ten-
sors of E channels. A softmax function is then applied on
the time axis for the first tensor, and the output is multi-
plied element-wise with the second tensor. The resulting
values are then summed along the time axis, which gives
a vector of size E. The softmax followed by the multipli-
cation and the sum implements a weighted average along
the time axis per channel. The network is thus trained to
give preference to the parts along the time dimension that
are the most relevant to meet the objective function. The
embedding vector is then L2-normalized. We used K=64
and E=512.

3.3 Experiments

In these first experiments, we train a different instantiation
of MICE for each type of input feature and evaluate their
cover detection performances.

Datasets We used the publicly available training set
SHS5+

2 , containing Cq, Dm, Mp, Ch and Cp features
for ~62k covers of ~7.5k works. It was split into a train-
ing/validation set with a ratio of 80/20 with respect to the
works, i.e. all covers of a given work belong to one or the
other set. We tested our model for each feature with two
publicly available test datasets: SHS4-

2 , containing ~50k
covers of ~20k works, and Da-TACOS 3 , containing 13k
covers of 1k works and 2k confusing tracks [44].

Loss We used a triplet loss to train this network [45].
Formally, if we let {a, p, n} denote a triplet of track em-
beddings, where a is an anchor, and p or n is one of its
covers or non-covers, respectively, the loss to minimize is
expressed as L = max(0, dap + α − dan), where α is a
margin and dap and dan are the distances between anchor
a and p or n, respectively. We set α = 1.

In practice, we used online semi-hard negative pairs
mining [46], where triplets are built within each training
batch: instead of using all possible triplets, each track in
the batch is successively considered as an anchor, and com-
pared with all its covers in the batch. For each of these
positives pairs, if there are negatives such as dan < dap,
only the one with the highest dan is kept. If no such nega-
tive exists, only the one with the lowest dan is kept. Other
negatives are not considered.

Training We train MICE with Adam optimizer [47],
with an initial learning rate of 1e−4, divided by 2 each
time the loss on the validation set has not decreased af-
ter 5k training steps. Training is stopped after 50k steps, or
if the learning rate falls below 1e−7. The batch size is 64.

2 https://gdoras.github.io/topics/coversdataset
3 https://github.com/MTG/da-tacos

Testing For each feature, we use the corresponding
trained model to compute the embeddings on the two test
datasets. For SHS4-, one cover per work is used as a
query against the entire test set to compute a 20k×50k
distance matrix. For Da-TACOS, each cover is used as
a query against the entire dataset to compute a 13k×15k
distance matrix. The Mean Average Precision (MAP), the
mean number of correct answers in the ten first answers
(MT@10) and the mean rank of first correct answer (MR1)
are then computed.

3.4 Quantitative analysis

We report in Table 1 the performance scores obtained on
Da-TACOS and SHS4-for each type of input feature.

Da-TACOS SHS4-

Input MAP MT@10 MR1 MAP MT@10 MR1
Cq 0.215 2.468 94 0.397 0.718 886
Dm 0.311 3.521 111 0.412 0.722 1431
Mp 0.293 3.290 71 0.422 0.760 862
Ch 0.121 1.476 117 0.174 0.371 1465
Cp 0.375 4.084 86 0.499 0.842 1169

Table 1: Results on SHS4-and Da-TACOS for each feature.

Consistently, the Cp yields by far the best results, fol-
lowed by the Dm and the Mp. This confirms our initial
intuition that both melodic line and harmonic progression
are prominent common musical facets between covers. Cq,
representing the full spectrum, yields lower performance,
which suggests that, albeit also embedded in the spectrum,
the melodic and harmonic information is obfuscated, e.g.
by percussive sounds information. Finally, the tonal infor-
mation embedded in the Ch does not seem to be efficiently
caught by our model.

From a practical point of view, crema-PCP is probably
the best feature among those considered in this work, as it
yields the best results with the lowest memory footprint.

4. COMBINING INPUT FEATURES

In this set of experiments, we now investigate if combin-
ing different features can improve the performance of each
feature considered individually.

4.1 Are features complementary ?

We first compare pairwise embedding distances computed
for the same pairs of tracks but obtained with different in-
put features, as shown on Figure 2. The leftmost plot for
instance compares the pairwise distances obtained for Dm
and Cp. If each track’s embeddings extracted from differ-
ent input features were carrying the same information, the
pairwise distance would be the same for a given pair of
tracks, independently of the feature used. Figure 2 shows
on the contrary that the same pair of tracks can obtain a
low distance when using a given input feature, but a no-
tably higher distance when using another one.
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Figure 2: Comparison of the normalized distance obtained for the same pairs from SHS4− (cover pairs in green and non-
cover pairs in red) with different features: Dm vs. Cp (left), Mp vs. Cq (middle), Cp vs. Ch (right). Other combinations are
not shown due to space constraints. For clarity, only 500 pairs randomly picked are drawn (250 covers and 250 non-covers).

All features seem relatively consistent when labeling
non-cover pairs (red points exhibit high distances on both
axes). Conversely, cover pairs (green points) are more scat-
tered. Dm and Cp in particular seem to give very distinct
results, as many pairs are spread far from the diagonal,
which means that some cover pairs are more efficiently
scored by one or the other feature. Intuitively, it seems log-
ical that Dm and Cp are encoding complementary melodic
and harmonic facets. This suggests that combining these
features could benefit of this complementarity. We now
conduct a quantitative and a qualitative analysis to confirm
this intuition and to understand why certain representations
yield better results for certain songs and vice-versa.

4.2 Quantitative analysis

We first experiment with a simple fusion scheme, which
consists of averaging the pairwise distances obtained for
the same pair with different features. We then re-compute
the evaluation metrics based on this new averaged distance
matrix for each possible feature combination. The ratio-
nale behind this approach is that we expect pairs incor-
rectly clustered with one representation to benefit from the
correct clustering obtained with another representation.

The results are summarized in Table 2 for all combina-
tions of Cq, Dm, Mp and Cp representations (we did not
consider Ch here). We also computed the scores obtained
by an oracle, which always picks among the distances ob-
tained for each feature the lowest (resp. highest) distance
for positive (resp. negative) pairs.

It appears clearly that any combination yields a better
performance than any feature isolated (see Table 1). It also
appears that the combinations where the Cp is used yield
higher scores than the others, which was expected as Cp
alone was already obtaining the highest scores. But more
interestingly, we observe that the best improvements are
obtained when combining melodic and harmonic features,
i.e. Dm+Cp or Mp+Cp. The Mp probably embeds some of
the information also carried by the Cp, as the improvement
is lower when combining Mp+Cp than Dm+Cp.

All in all, the combination Dm+Cp yields the best per-
formances, and an improvement of 15%-20% compared to
Dm or Cp alone. Considering a third feature along Dm+Cp

Test set Da-TACOS SHS4-

Input MAP MT@10 MR1 MAP MT@10 MR1
Cq+Dm 0.359 4.002 62 0.590 0.982 567
Cq+Mp 0.324 3.603 62 0.530 0.909 623
Cq+Cp 0.427 4.636 46 0.621 1.024 581
Dm+Mp 0.394 4.347 61 0.571 0.956 614
Dm+Cp 0.547 5.861 37 0.679 1.098 529
Mp+Cp 0.496 5.330 40 0.627 1.034 593
Cq+Dm+Mp 0.403 4.434 51 0.624 1.030 498
Cq+Dm+Cp 0.524 5.640 36 0.713 1.143 430
Cq+Mp+Cp 0.480 5.184 40 0.660 1.078 505
Dm+Mp+Cp 0.553 5.939 35 0.702 1.133 453
Dm+Cp (O) 0.800 8.360 4 0.873 1.344 115
Cq+Dm+Cp (O) 0.881 9.072 1 0.935 1.419 51
Dm+Mp+Cp (O) 0.874 9.022 2 0.924 1.405 63

Table 2: Comparison on Da-TACOS and SHS4-of input
feature combinations. Results obtained with the embed-
dings produced by MICE architecture trained for each fea-
ture (O=Oracle).

(Cq or Mp) improves the results slightly further.
We also observe that the oracle scores about 20%

above the highest scores obtained with the averaging fu-
sion scheme, which suggests that further improvements are
theoretically possible (we also experimented a minimum
fusion scheme, which yielded lower performances).

From a practical perspective (e.g. memory footprint),
the best trade-off seems to concentrate only on the Dm and
the Cp. We will now investigate why the combination of
these two features yields a better performance than others.

4.3 Qualitative analysis

To this aim, we selected the tracks where the first feature
(e.g. Dm) gives particularly correct results and where the
second feature (e.g. Cp) gives particularly incorrect re-
sults, or vice-versa. In other terms, we analyzed the pairs
of songs for which the two features would give the most
contradictory results for positive and negative pairs. The
Dm and the Cp obtained for some of these cover and non-
cover pairs 4 are shown on Figure 3.

4 The audio of the songs described here can be listened on Youtube
with the following IDs: Figure 3(a) clBw3cWgPnE and PNQeBX-
tUdgc, Figure 3(b) -uJ61jgFCMM and xXvPFsoNnD4, Figure 3(c)
7nPBAiE76qY and bRrVMte9IQQ, Figure 3(d) pFrTXGEmU2Q and
3IOD9SqSfY4. Last accessed 11/5/2020.
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"Je abiny"

(a) dDm=0.15, dCp=0.73
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"Fade Into You"

(b) dDm=0.65, dCp=0.07
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(c) dDm=0.75, dCp=0.12
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(d) dDm=0.22, dCp=0.84

Figure 3: Examples of cover pairs (top, (a) and (b)) and non-covers pairs (below, (c) and (d) where Dm and Cp gives
contradictory results due to the melodic or harmonic content of each version. For each pair, Dm is displayed above and Cp
below, and the corresponding distances dDm and dCp obtained for each feature are indicated.

Cover pairs Figure 3(a) displays two versions of
"Jeřabiny", by Czech composer Karel Kryl (left, singing
voice and guitar accompaniment) and Sestry Irglovy (right,
purely a cappella, and poorly caught by the Cp). The pair
is identified as covers thanks to the dominant melody.

Figure 3(b) displays two versions of "Fade Into You",
by Mazzy Star (left) and Catman Cohen (right). The ac-
companiment is similar, but Catman Cohen’s voice is very
hoarse and rough, thus poorly caught by the dominant
melody. The pair is identified as covers thanks to the Cp.

Non-cover pairs Figure 3(c) displays two different
tracks: "La paloma" interpreted by a choir (left, mainly
choir voices) and "Tom Dooley" by German singer Heino
(right, voice and guitar accompaniment). Both songs share
the same succession of two chords (but transposed), so the
Cp are very similar. The pair is identified as non-covers
thanks to the Dm, which are different.

Figure 3(d) displays two different tracks: "I Got a Feel-
ing", by Four Tops (left) and "Stop Her on Sight (S.O.S.)"
by Rare Earth (right). Both songs exhibit leading voice,
backing voices, piano or strings section, and a brass instru-
ments section. Both Dm appear very confused and look
similar. The pair is identified as non-covers thanks to the
Cp, which are different.

We could intuitively expect these results: Dm is bet-
ter suited for songs where a melody is clearly prominent,
while Cp is better suited for songs where no clear melody
is present or is hidden by a prominent accompaniment.
As such, there is no "better" feature: they simply perform
differently on different tracks, and their combination per-
forms statistically better on large corpora than separately.

5. LEARNING TO COMBINE FEATURES

Despite its encouraging results, the simple averaging fu-
sion scheme has two flaws. Firstly, it does not guarantee
that averaging the distances is the most optimal manner
to merge the information contained in different representa-
tions. Many tracks might end up scoring around the mean
of all distances, which will not help to decide whether they
are covers or not. Secondly, it requires to train one model
per representation, and consequently to store one embed-
ding per representation, which complicates the operational
usage of the system (e.g. indexing various embeddings and
combining several search results is sub-optimal). In this
section, we study the possibility to train a single model to
learn how to fuse several input features efficiently.

We consider here only the combination of Dm and Cp
features, as they individually yielded the most promising
results with the averaging fusion scheme, while remaining
practical from a memory footprint perspective.

5.1 Late fusion scheme

To address these flaws, we propose a two-branch architec-
ture, where each input feature is processed by a dedicated
model into an embedding, as previously. These two em-
beddings are then concatenated and merged into a single
one by a final dense layer. We can now use different mod-
els for each feature, as we are not comparing their indi-
vidual performance as previously. In particular, we use
MOVE to process the Cp, as it was specially designed for
this feature, and keep MICE to process the Dm, as shown
on Figure 4.
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Figure 4: The late fusion architecture.

Let eDm and eCp denote the embeddings output by the
Dm and Cp branches, e the final embedding and W the
dense layer parameters. It comes:

e = W
[

eDm

eCp

]
= WDmeDm + WCpeCp (1)

where WDm and WCp are the parameters of W that are ap-
plied to eDm and eCp, respectively. Normalizing e to unit
norm, we can interpret the embedding resulting from this
fusion as a weighted mean of the initial embeddings moved
to another location on the unit sphere to optimize the loss.

5.2 Experiments

We compare here three training options: a) each branch
and the last layer are trained simultaneously with random
initialization from scratch; b) each branch is first pre-
trained individually with its corresponding input feature as
previously; then their trained weights are reloaded in the
late fusion architecture, and are fine tuned while training
the last layer; c) is the same as b), but the weights of each
branch are frozen once reloaded in the fusion model, and
only the weights of the final dense layer are learned.

For these three options, we train each architecture on the
same proprietary training set that was used in [37]. This set
contains 98k tracks and is much larger than the one used
in features comparison experiments of Section 4.2. Mod-
els trained with this proprietary training set were evaluated
with Da-TACOS in order to compare the results with the
baseline established in [37]. We also conduct the same ex-
periments for each architecture trained on SHS5+ and eval-
uated with SHS4- as previously, in order to compare the
results with the baseline established in [40].

The training procedure for all three options is the same
as described in Section 3.3, except that the learning rate is
initialized at 5e−6 for option b) and at 1e−1 for option c).

5.3 Results

The results of the late fusion learning experiments are sum-
marized on Table 3. We indicated the scores obtained for
each feature (Dm and Cp) individually, as well as the cor-
responding distance averaging score for comparison.

For both sets, the two-branch model outperforms the
ones where each feature is considered individually, which
shows that it jointly learns from both input features. Late
fusion with end-to-end training from scratch (option a))
scores below the other two options, which suggests that
the model learns from each feature but does not make an
optimal use of the available information.

Late fusion with fine tuning of the pre-trained branches
(option b)) yields better results. However, it does not
outperform the late fusion where only the dense layer is
trained (option c)). A possible explanation could be that
one feature tends to yield better results than the other
(probably the Cp, as seen in Section 3), and allowing the
update of branches might confuse the previously acquired
knowledge of the weaker one. This assumption should
however be investigated further in another work.

Da-TACOS SHS4-

Input MAP MT@10 MR1 MAP MT@10 MR1
Dm (MICE) 0.360 4.032 94 0.412 0.722 1431
Cp (MOVE) 0.484 5.214 59 0.533 0.890 1188
Dm+Cp (A) 0.621 6.613 32 0.697 1.120 517
Dm+Cp (LF-a) 0.570 6.101 29 0.617 1.017 686
Dm+Cp (LF-b) 0.592 6.318 32 0.655 1.059 655
Dm+Cp (LF-c) 0.635 6.744 30 0.660 1.080 657
Doras et al. [40] n/a n/a n/a 0.323 0.615 1476
Yesiler et al. [37] 0.507 - 40 n/a n/a n/a

Table 3: Comparison on Da-TACOS (resp. SHS4-) of
all fusion schemes trained on [37] proprietary training set
(resp. SHS5+). A=averaging, LF=Late fusion. Note that
Cp and Dm+Cp (A) scores are higher here than in Table 2
because Cp is now processed by MOVE.

Training a dense layer on top of two pre-trained frozen
branches (option c)) thus yields the best scores, similar to
the ones obtained by the averaging scheme.

We finally compare these performances to the current
state of the art for each set. We observe that all late fusion
schemes notably outperform the results obtained in [40]
and [37], for the same training and test sets.

6. CONCLUSION

We proposed in this work a comparative study of differ-
ent input features that have been used in recent works ad-
dressing the cover detection problem with a metric learn-
ing approach. We observed that the best feature of the
one we studied is the crema-PCP, a harmonic feature. We
then showed that combining this feature with a domi-
nant melody representation drastically improves the results
compared to each feature considered alone. We showed
that this can be explained by the fact that using both
melodic and harmonic features helps to disambiguate pairs
of tracks that don’t have a clear melodic or harmonic struc-
ture. We finally proposed a late fusion scheme learning to
combine input features, which yields to new state-of-the-
art performances on two publicly available datasets.

This system could be improved in several ways. As sug-
gested by the oracle results, further strategies could be de-
veloped to force the model to focus more adequately on the
available features. Also, the need to maintain several dedi-
cated branches in the late fusion scheme could be avoided
with a single architecture merging the two branches earlier
in the process. But perhaps more importantly, considering
the variety of other features commonly shared by covers,
such as lyrics, could be a fruitful strategy to build future
cover detection systems.
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ABSTRACT

Music loops are essential ingredients in electronic mu-
sic production, and there is a high demand for pre-recorded
loops in a variety of styles. Several commercial and com-
munity databases have been created to meet this demand,
but most are not suitable for research due to their strict li-
censing. We present the Freesound Loop Dataset (FSLD),
a new large-scale dataset of music loops annotated by ex-
perts. The loops originate from Freesound, a community
database of audio recordings released under Creative Com-
mons licenses, so the audio in our dataset may be redis-
tributed. The annotations include instrument, tempo, me-
ter, key and genre tags. We describe the methodology used
to assemble and annotate the data, and report on the dis-
tribution of tags in the data and inter-annotator agreement.
We also present to the community an online loop annota-
tor tool that we developed. To illustrate the usefulness of
FSLD, we present short case studies on using it to esti-
mate tempo and key, generate music tracks, and evaluate
a loop separation algorithm. We anticipate that the com-
munity will find yet more uses for the data, in applications
from automatic loop characterisation to algorithmic com-
position.

1. INTRODUCTION

Repurposing audio material to create new music—also
known as sampling—was a foundation of electronic music
and is a fundamental component of this practice. Loops are
audio excerpts, usually of short duration, that can be played
repeatedly in a seamless manner [28]. These loops can
serve as the basis for songs, which music makers can com-
bine, cut and rearrange, and have been extensively used in
Electronic Dance Music (EDM) tracks [4].

Audio loops have been made available for amateur and
professional music makers since the early ages of elec-

c© António Ramires, Frederic Font, Dmitry Bogdanov, Jor-
dan B. L. Smith, Yi-Hsuan Yang, Joann Ching, Bo-Yu Chen, Yueh-Kao,
Hsu Wei-Han, Xavier Serra. Licensed under a Creative Commons Attri-
bution 4.0 International License (CC BY 4.0). Attribution: Ramires
et. al. “The Freesound Loop Dataset and Annotation Tool”, 21st Inter-
national Society for Music Information Retrieval Conference, Montréal,
Canada, 2020.

tronic music. Currently, large-scale databases of audio of-
fer huge collections of audio material for users to work
with. Some databases, like Freesound 1 and Looperman 2 ,
are community-oriented: people upload their sounds so
that other users can employ them in their works. More
commonly, these collections are commercially oriented:
loops are available to paying costumers, either through a
subscription service (e.g. Sounds.com, 3 Splice 4 ) or by
allowing customers to buy packs of loops (e.g. Loopmas-
ters, 5 and Prime Loops 6 ).

Despite the number of loops available on these
databases, the technologies used to analyse and navigate
these databases still rely on human annotations and hu-
man content curation to, for instance, group sounds into
packs for specific genres or styles. Loops are being man-
ually annotated with information like instrument, tonal-
ity (key), tempo (bpm) and music genre. This is a time-
consuming task which is often unfeasible, which results in
badly annotated databases and poor user experience when
browsing them. In the field of Music Information Retrieval
(MIR), a substantial effort has been put into automatically
identifying the aforementioned characteristics for musical
pieces. However, loops are inherently different from music
pieces (i.e. with reduced instrumentation and short length).
Therefore, existing MIR algorithms need to be tested and
(possibly) adapted to work successfully in this scenario.
Furthermore, new MIR tasks are emerging with the study
of music loops including loop retrieval [12], loop detec-
tion [18], loop discovery [19] and extraction [27], loop rec-
ommendation [5], exploration of large loop databases [29],
and automatic loop generation [26].

In this paper, we present FSLD, an open dataset
with 9,455 music loops to support reproducible research
in MIR. FSLD contains production-ready loops from
Freesound which are distributed under Creative Commons
licenses and can, therefore, be freely shared among the re-
search community and industry. Part of the dataset has
been manually annotated with information about rhythm,
tonality, instrumentation and genre, in a similar way as

1 https://freesound.org/
2 https://www.looperman.com/
3 https://sounds.com/
4 https://splice.com/
5 https://www.loopmasters.com/
6 https://primeloops.com/
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commercially available loop collections are annotated. The
annotation service is made public 7 so that the commu-
nity can work on enlarging the annotations of this collec-
tion. We expect this dataset to have an impact on the re-
search community as it supports further research into sev-
eral timely research topics which are also of great interest
to the industry.

The rest of the paper is structured as follows. In Sec. 2,
we present some of the datasets used in the literature for
loop analysis. Sec. 3 details how the proposed dataset was
collected and annotated. In Sec. 4, general statistics of the
dataset are given. In Sec. 5 and 6, we present some po-
tential applications and provide a benchmark of the dataset
using some classic MIR tasks. Finally, in Sec. 7, we con-
clude and suggest future work directions.

2. RELATED WORK

Early work on the retrieval of loops focused on tempo
extraction and transcription from drum loops [11, 15].
Gouyon et al. compared several tempo induction algo-
rithms proposed in the ISMIR 2004 competition [15]. The
loop dataset used in this work has been commonly used
for evaluating tempo estimation algorithms and is divided
into three subsets. One of these comprises two thousand
audio loops (with tempo annotations) from Sound Effects
Library. 8 These audio loops are not free and a license
needs to be obtained to use them for research.

Automatic transcription of drum loops focuses on iden-
tifying when the different percussion instruments occur in
a loop. Gillet and Richard used a collection of 315 drum
loops for evaluating their system and provided “a com-
pressed version of a few drum loops” [11]. The URL to
the webpage the authors provide is broken and, presum-
ably, the lower quality versions of the loops do not repre-
sent commercial-quality content. The authors also use this
dataset for automatically retrieving drum loops from spo-
ken queries [12]. This database was later used by Bello et
al. for automatic rhythm modification and analysis of drum
loops [1, 23].

The work from Gómez-Marín et al. explores rhythmic
similarity measures for audio loops [14]. The authors val-
idate the proposed metric using 9 drum break loops from
Rhythm Lab. 9 The authors do not specify which are the
drum loops used.

Font et al. presented a dataset of audio loops from
Freesound [9] in their work on tempo estimation and a con-
fidence measure for audio loops [10]. The authors use two
commercial datasets, loops bundled with music produc-
tion software Apple’s Logic Pro 10 and Acoustica’s Mix-
craft, 11 and two community datasets. The first one is a
private collection of loops downloaded from Looperman,
which was previously used for research in [24]. Loop-
erman does not allow the re-distribution of loops “as is”,
and considers as misuse the automatic download of their

7 http://mtg.upf.edu/fslannotator
8 http://www.sound-effects-library.com/
9 https://rhythm-lab.com/

10 https://www.apple.com/logic-pro/
11 https://acoustica.com/mixcraft

loops. 12 A collection of 4000 loops from Freesound, ob-
tained by searching Freesound for sounds with the queries
“loop” and “bpm” is also proposed. The sounds’ file-
names, tags and textual descriptions are parsed to identify
tempo annotations provided by the users. However, these
annotations are not always accurate, and, to enable further
work on audio loops, more information besides the tempo
is desired.

In short, existing academic work which employs loops
resorts to commercial samples as the source of data and
open datasets do not have complete and reliable annota-
tions. This makes it difficult to reproduce existing re-
search. To promote open and accessible research on au-
dio loops, we propose a free and distributable database of
loops from Freesound, which provides production-ready
sounds with high-quality annotations.

3. DATASET CREATION

In this section the process we have followed to create the
dataset is described. We show how we collected the loops
to annotate, how they were pre-analysed for a faster anno-
tation procedure and explain what was annotated and how
the annotation tool was implemented. Finally, we present
how the dataset is distributed and organised.

3.1 Loop Selection

To select an initial pool of candidate loops, we followed
the same methodology as in [10]: i.e., we retrieved sounds
with both “loop” and “bpm” keywords on Freesound, re-
sulting in 9,490 sounds. Using the Freesound API, it was
straightforward to obtain these loops and their metadata—
title, tags, textual description, and author’s username.

3.2 Loop Annotation

We want the loops in our dataset to be annotated in a way
which is similar to commercially available loops. This
way, we make sure that the loop characterisation is com-
patible with industry standards. For this, we decided to
annotate the loops’ instrumentation, tempo, time signa-
ture, key and genre, as described below. The annotation
was performed by 8 MIR researchers and students, with
knowledge of electronic music production. To make the
annotation procedure as efficient as possible, we created
a web application for the annotators with several tools at
their disposal, which can be seen in Fig. 1. This applica-
tion was developed using Flask, 13 a web framework for
Python.

This interface provides fields for the annotators to fill in
the desired information, which will be described in the fol-
lowing sections. The instructions are provided on tooltips
for quick access by annotators.

3.2.1 Instrumentation

Instead of annotating instruments in a traditional way,
which would not be straightforward in heavily processed

12 https://www.looperman.com/help/terms
13 https://flask.palletsprojects.com/
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Figure 1. The user interface provided to the annotators, available online. 7

audio or more experimental loops, we chose to annotate
general roles which can be useful for both music makers
and automatic generation of music. We asked annotators
to tick all the roles that apply to each loop. Usually, spe-
cific instruments could be easily assigned to a specific role.
We present the roles along with some examples in Table 1.

Role Example Instruments
Percussion Drums, glitches, tuned percussion
Bass Synth bass, fingered bass
Chords Piano chords, guitar chords, synth pads
Melody Instrument playing a melody, arpeggiator
Sound FX Risers, cinematic sounds, foley, scratching
Vocal Singing voice, spoken word, vocoder

Table 1. Instrumentation roles and the examples provided
for each category.

3.2.2 Rhythmic Characteristics

We asked for annotations on three rhythmic aspects:
Tempo provides an easy measure of rhythmic compat-

ibility and is the most common information provided in
commercial loop databases. We ask annotators if the loop
has a clear and steady tempo, to identify loops with con-
stant tempo and clear beat (BPM value and steady tempo),
with changing tempo (BPM value of the initial tempo

and no steady tempo), and loops with no clear beat but
where the tempo can be inferred (BPM value and no steady
tempo).

Meter is not a feature we see annotated as often as
BPM, which might be due to the common use of 4/4 me-
ter in electronic music. This feature is relevant to annotate,
for calculating the number of bars in a loop, from its meter,
tempo and duration.

Finally, as sometimes the length of the audio file is not
the length of the loop, we also annotate if it is well-cut. If
there is some silence at the beginning or the end of the file
or if there is a “tail” (e.g. a decay of a reverb effect) when
the audio is exported, it might not loop correctly just by
staring the loop again when it finishes playing.

3.2.3 Tonal Characteristics

We annotate if the loop has prominent tonal content and, if
so, to indicate a root key and mode that matches the tonal
content of the loop (i.e., root note from a chromatic scale
and Major/Minor mode). We explained “prominent tonal
content” as whether it is easy to sing along to the loop or
to find a meaningful root note for the loop. For root key
annotations, we asked to choose a note from a dropdown
with 12 notes, or “Unknown” in case the key could not be
found. For annotating mode, the annotators had the choice
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289



of “Major” or “Minor” if the loop sounded good with one
of these modes; “None” if the loop could not be clearly
assigned to either “Major” or “Minor” (e.g. loop contains
a single note); or “Unknown” for other cases.

3.2.4 Genre

We annotate genre in non-exclusive categories, where each
is assigned to a loop if it can be used to make music in that
genre. To create a taxonomy which would be similar to
commercially available ones, we merged the taxonomies
of Sounds.com and Splice. These were chosen as they pro-
vided several examples for each genre and had similar par-
ent categories. We present the taxonomy in Table 2.

Genre Examples
Bass Music Dubstep, Drum and Bass, Jungle
Live Sounds Rock, Jazz, Disco
Cinematic Sound FX, Filmscore, Sci-Fi
Global Reggae, Dancehall, Indian Music
Hip Hop Trap, Boom Bap, Lofi Hip Hop
Electronic Ambient, IDM, Chill Out
House / Techno Deep House, Electro, Tech House
Other Dance Music EDM, Psy Trance, Hardstyle

Table 2. Taxonomy of genres used for the annotation and
examples for each category.

3.2.5 Loop Pre-Analysis and Annotation Tools

We performed a pre-analysis on the loops to obtain tempo,
key and genre suggestions. To obtain the tempo informa-
tion, we followed the same approach of [10], parsing the
title, description and the tags of the loop for tempo infor-
mation provided by users. To propose an initial key and
mode to the annotators, we analysed the loops using the
algorithm proposed by Faraldo et al. [7], which is imple-
mented in the Essentia audio analysis library [3]. Finally,
by taking the genre information from the textual metadata
of the loops, we were able to map some of the sounds to
the genres to annotate. The checkboxes were selected for
the genres which either were mentioned or had a sub-genre
mentioned in the textual metadata. Our annotators were
familiar with the annotation procedure and took the pre-
annotations only as suggestions to speed-up the annotation
process.

In the annotation tool, at the top of the display is the
loop’s metadata: its unique sound id, title, author’s user-
name, and the tags and textual description provided by the
author (see Fig. 1). The waveform of the loop and a play-
head is also shown, which are linked to an audio player.
The audio player always restarts the playback of the loop
when it finishes, and triggers a metronome with the BPM
provided in the BPM annotation field. We provide stop,
play and pause controls for the loop and metronome and
volume controls for the loop. A button which restarts only
the metronome is also present. To ease finding a key and
mode which suits the loop, we present a synthesizer which
plays the chord present in the tonal annotation section. In
case the mode selected is “None” or “Unknown”, the syn-
thesizer will just play the root note of the key selected.
Using the computer’s keyboard, the annotator can cycle

through the options for key and mode, in several octaves.
Finally, buttons are provided for submitting the annotation
when it is finished, saving the sound for later and discard-
ing the sound in case it is not a loop.

3.3 Dataset Availability

The loops and corresponding annotations (provided in a
JSON file) are publicly available on Zenodo. 14 This
dataset can be divided into three subsets, defined by their
level of annotations. These are:

• Multiple-annotations (MA): the loops annotated by
at least two researchers. It contains 1,472 loops.

• Single-annotation (SA): the loops annotated by a
single researcher. Currently contains 1,464 loops.

• Automatic-annotations (AA): the loops annotated by
the analysis algorithms mentioned in Section 3.2.5.
Contains 9,455 loops: the loops in MA and SA and
6,519 more.

In addition to the main dataset, we provide a repository 15

with the code used for the annotation tool interface and
server, the pre-analysis that generated the subset of auto-
matic annotations, and the analysis and potential applica-
tions presented in Sections 4, 5 and 6.

4. DATASET ANALYSIS

To understand the diversity and reliability of the dataset,
we investigate the distribution of annotated characteristics
and inter-annotator agreement.

4.1 Annotation Distribution

The human-annotated part of the dataset contains 1,579
sounds which, in total, have been annotated 2,809 times.
The distribution of genres, instrumentation, and keys are
shown in Tables 3 and 4 and the tempo histogram in Fig-
ure 2. It is well-balanced in terms of instrument and genre;
reasonably balanced in terms of tempo, although 120 bpm
dominates; and highly imbalanced in terms of key, with C
Major and Minor dominating.

Percussion 54.95%
Bass 19.10%
Chords 11.90%
Melody 21.31%
FX 24.80%
Vocal 2.29%

Bass Music 32.04%
Live Sounds 21.38%
Cinematic 19.95%
Global 14.26%
Hip-hop 17.29%
House/Techno 29.05%
Other Dance Music 25.63%

Table 3. Distribution of the instrument roles and genre in
our dataset.

4.2 Inter-annotator Agreement

To measure the agreement of the annotators in our dataset,
we measure the inter-annotator agreement for the MA an-
notations subset. To do this, we use two metrics: propor-
tion of overall agreement (Agr.) for all the annotations,

14 https://zenodo.org/record/3967852
15 https://github.com/aframires/

freesound-loop-annotator
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Figure 2. Distribution of BPMs in FSLD.

Key Maj Min None Unknown
C 9.63% 8.38% 3.65% 0.95%
C# 1.38% 2.84% 0.60% 0.43%
D 3.31% 5.37% 1.85% 0.39%
D# 1.29% 2.49% 0.73% 0.21%
E 2.28% 3.65% 1.20% 0.26%
F 4.64% 4.43% 1.16% 0.34%
F# 1.12% 2.49% 1.12% 0.13%
G 2.66% 4.25% 1.93% 0.43%
G# 1.72% 2.58% 0.90% 0.13%
A 3.01% 5.50% 1.68% 0.26%
A# 1.50% 1.89% 0.52% 0.04%
B 0.82% 3.01% 0.64% 0.21%

Table 4. Distribution of the keys in our dataset.

and positive and negative agreement (PA and NA) [8] for
binary classification tasks. The proportion of overall agree-
ment reflects the number of cases when both annotators
agree on a label, and is calculated by dividing their num-
ber by the total number of annotations. This overall metric
does not distinguish the agreement in positive and negative
cases, so for the binary annotation tasks we also calculated
the positive and negative agreement. The formulas for cal-
culating these are given in Eq. 1, where the variables rep-
resent the annotations by the annotators (e.g., NP = first
annotator answered negative, second positive).

PA =
2PP

2PP +NP + PN
, (1)

NA =
2NN

2NN +NP + PN
, (2)

Table 5 presents the results for this analysis. We can see
that overall, the values for the agreement are high. Bass,
melody and chords have a lower positive agreement value,
despite the high negative agreement. This might indicate
that annotators are not able to easily distinguish if an el-
ement should fit in one of the 3 roles, but can say when
it is not present. The lower value for root key agreement
indicates that several keys are used to describe the same
sounds. This fits our annotating indications, where we
asked annotators to select a key which sounds good with
the loop and therefore, personal taste may arise in this
choice. Finally, the positive agreement for genres always
has values lower than 65%, which might be due to how
genre might be perceived subjectively between annotators.

5. BENCHMARKING MIR TASKS
To demonstrate the usefulness of this dataset, we use it in
several short case studies. To benchmark tempo, we fol-

Char. Sub-Char. Agr. PA NA
Inst. Percussion 85.16% 86.62% 83.35%

Bass 76.73% 45.83% 85.19%
Melody 82.33% 60.57% 88.61%
Chords 87.40% 47.35% 92.84%
FX 72.04% 43.61% 81.41%
Vocal 98.66% 71.88% 99.31%

Tempo BPM 87.84% NA NA
Signature 97.84% NA NA
Well Cut 86.88% 92.73% 32.82%

Key Root 67.56% NA NA
Mode 69.80% NA NA

Genre Bass Music 69.50% 53.26% 77.37%
Live Sounds 80.09% 55.28% 87.19%
Cinematic 81.66% 57.14% 88.33%
Global 82.33% 51.53% 89.19%
Hip-Hop 79.05% 31.30% 87.64%
House/Techno 69.35% 48.56% 78.17%
Other 73.53% 45.64% 82.50%

Table 5. Inter-annotator agreement for the MA subset.

lowed the evaluation approach of [10] and used the Accu-
racy 1 and Accuracy 2 presented in [16], together with the
Accuracy 1e proposed in [10]. Due to space constraints,
here we only report the mean of the 3 accuracies. Full
results can be seen in an accompanying website. 16 The
algorithms selected for the tempo benchmarking were the
following (details for each algorithm can be found in re-
spective papers):

• Percival [21]: We use both the original implemen-
tation and the one provided in Essentia.

• Zapata [31]: Implementation provided in Essentia.
• Degara [6]: We also use Essentia’s implementation.
• Böck [2]:We use the 3 variants available in the Mad-

mom library 17 : COMB, ACF and DBN.

We validate tempo estimation algorithms on the 3 pro-
posed subsets. Key estimation is only validated on the MA
and SA subsets as we do not have original uploader an-
notations for key. The MA subset, which has at least 2
annotations per loop, was analysed in two ways: BOTH
and EITHER. In BOTH, we run the MIR algorithms ex-
clusively on the loops which have the same labels from
both annotators. In EITHER, the output of the algorithm
was deemed correct if it was at least one of the annotated
labels. The results are presented in Table 6

Algorithm AA SA BOTH EITHER
Percival14 58.09 62.98 65.75 84.13
Percival14e 57.82 64.00 65.49 84.98
Zapata14 51.81 58.79 58.99 77.97
Degara12 52.32 58.77 59.31 79.16
Bock15COMB 44.42 51.17 52.92 71.35
Bock15ACF 48.65 51.96 54.75 74.90
Bock15DBN 45.76 50.60 52.32 70.90

Table 6. Evaluation of tempo estimation algorithms in the
proposed subsets.

16 https://aframires.github.io/
freesound-loop-annotator/

17 https://github.com/CPJKU/madmom
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We can see that the results are similar to the ones
obtained in [10], with Percival14 having better accuracy
across all the datasets. We can see that the accuracy in-
creases from AA to SA, and from SA to BOTH. This might
be due to the user-annotated loops having incorrect anno-
tations; it may also be that when both annotators agree on
a tempo, the tempo is strong and defined. The EITHER
evaluation gives the largest accuracies, which may be due
to its broader criteria for considering tempos correct.

For benchmarking key estimation algorithms, we used
the evaluation metrics from MIREX, 18 which evaluates
how close the estimated key and the annotated key are to
provide an accuracy. The algorithms compared in the eval-
uation were the following:

• EDMKey [7]: We use the implementation in Essen-
tia, with 4 key profiles: Krumhansl [17], Temper-
ley [30], Shaath [25] and the one proposed in [7].

• EssentiaBasic [3]: Essentia’s implementation of the
algorithm presented by Gomez [13].

• QMUL [20]: We use the Key Detection implemen-
tation available in QM Vamp Plugins. 19

In Table 7, we present part of the results of the key es-
timation evaluation. Due to lack of space, only the final
MIREX scores for each dataset are presented. The full re-
sults can be seen in the accompanying website. 16

Algorithm SA BOTH EITHER
Edmkey 72.26 88.25 85.63
EdmkeyKrumhansl 66.99 84.85 82.98
EdmkeyTemperley 61.46 71.78 71.77
EdmkeyShaath 72.38 88.25 85.63
EssentiaBasic 71.25 88.80 85.30
QMULKeyDetector 35.09 42.15 46.25

Table 7. Evaluation of key estimation algorithms in the
proposed subsets.

We see that EssentiaBasic and EDMkey are the best
performing algorithms here. EDMKey has been specially
tuned to be used for EDM, which might make it more suit-
able to the loops we are annotating. We again see that the
accuracy increases from SA to BOTH, which might indi-
cate again that when the key is clear and defined, the algo-
rithms are also able to correctly identify it.

6. MUSIC GENERATION AND DECOMPOSITION

Another way the dataset is valuable is for creating syn-
thetic datasets of songs for evaluating loop-extraction algo-
rithms, such as [27]. We created 100 random songs, each
using 5 random drum loops and 5 non-drum loops (chosen
from a subset of 4/4, 120-bpm, 1-bar, single-instrument
loops for which there was no disagreement among the an-
notators on the instrument role). Each song is a random
arrangement of the loops, either in a sparse arrangement,
in which one drum and one non-drum loop occurs per bar,
or a dense one, in which 4 loops occur per bar (i.e., 2 drum

18 https://www.music-ir.org/mirex/wiki/2019:
Audio_Key_Detection

19 https://vamp-plugins.org/plugin-doc/
qm-vamp-plugins.html#qm-keydetector

and 2 non-drum). For comparison, we also recreated the
“composed” and “factorial” layouts from [27]. Examples
of each layout are shown on the accompanying website.

We used the public implementation 20 of [27] to extract
loops for each song, informed with the true number of loop
segments (4 or 10) and the true downbeat boundaries. The
metrics SDR, SIR and SAR (the signal to distortion, in-
terference and artefacts ratios [22]) are reported in the left
part of Table 8.

These are normally computed by trying all permutations
of estimated sources to true sources and using that which
maximises the score. This is infeasible for permutations of
10 items, so we first find the permutation that maximises
the similarity between the source and true loop spectra.

Layout SDR SIR SAR F1 Acc.
Sparse –5.2 –3.9 15.8 0.194 0.691
Dense –7.9 –7.3 14.4 0.294 0.542
Composed 12.5 18.4 22.6 0.585 0.546
Factorial 19.8 29.2 24.1 0.560 0.551

Table 8. Evaluation of loop source quality (SDR, SIR,
SAR) and estimated layouts (F-measure and accuracy) for
each song layout.

This permutation is also used to evaluate the quality of
the estimated layout. We binarize each row of the esti-
mated layout, using the row’s mean as threshold. We then
compute the raw accuracy (as in [27]), but here we propose
also using the F-measure, so as not to weight true negatives
unduly. The results are in the right columns of Table 8.

SDR, SIR and SAR are all lower for the random 10-part
songs than for the 4-part songs, showing that we have cre-
ated a more challenging testing ground for loop extraction
systems. For the layout evaluation, our evaluation makes
clear that the raw accuracy gives undue weight to true neg-
atives: the highest accuracy was obtained for the sparse
layouts, despite having the lowest F-measure. This short
evaluation is a proof of concept; with more space, we could
study the impact of the instrumentation, number of loops,
loop duration, and other factors on the separation quality.
We can also generate layouts with loops of many durations
and evaluate hierarchical loop extraction systems.

7. CONCLUSION

In this paper, we presented our work on addressing the lack
of standard loop datasets to carry MIR tasks. We presented
FSLD, a dataset of audio loops annotated at a level sim-
ilar to commercial loop collections. These loops are li-
censed for redistribution and can be used and redistributed
for research purposes. We provide a detailed analysis of
the dataset and its annotations and provided several use
cases for tempo and key benchmarking, music generation
and loop separation. Furthermore, we present the online
annotation tool used to build the dataset, and we make it
available online so other researchers and the general pub-
lic can contribute and extend the dataset.

20 https://github.com/jblsmith/loopextractor
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ABSTRACT

Music tags are commonly used to describe and catego-
rize music. Various auto-tagging models and datasets have
been proposed for the automatic music annotation with
tags. However, the past approaches often neglect the fact
that many of these tags largely depend on the user, espe-
cially the tags related to the context of music listening. In
this paper, we address this problem by proposing a user-
aware music auto-tagging system and evaluation protocol.
Specifically, we use both the audio content and user infor-
mation extracted from the user listening history to predict
contextual tags for a given user/track pair. We propose a
new dataset of music tracks annotated with contextual tags
per user. We compare our model to the traditional audio-
based model and study the influence of user embeddings
on the classification quality. Our work shows that explic-
itly modeling the user listening history into the automatic
tagging process could lead to more accurate estimation of
contextual tags.

1. INTRODUCTION

Tags are a popular way to categorise music in large cat-
alogues in order to facilitate their exploration and music
retrieval on demand [17]. Music tags include different cat-
egories such as emotions (sad, happy), genres (rock, jazz),
instrumentation-related (guitar, vocals), or listening activ-
ities (dance, relax, workout). Traditionally, tags were as-
signed to music items by humans, either through editors
or through crowdsourcing. However, with the expanding
availability of online music, there have been also increas-
ing efforts towards developing music auto-tagging models,
i.e. systems that do not require to manually annotate the
tracks [1]. Music auto-taggers are models trained to au-
tomatically predict the correct tags for a given music track
from the track content. Several models have been proposed
that use the audio content, either as raw signal [15, 20, 26]
or pre-processed spectrograms [4, 5, 25, 26], to predict the
appropriate tags. However, certain tags largely depend on

c© Karim M. Ibrahim, Elena V. Epure, Geoffroy Peeters,
Gaël Richard. Licensed under a Creative Commons Attribution 4.0 Inter-
national License (CC BY 4.0). Attribution: Karim M. Ibrahim, Elena
V. Epure, Geoffroy Peeters, Gaël Richard. “Should we consider the users
in contextual music auto-tagging models?”, 21st International Society for
Music Information Retrieval Conference, Montréal, Canada, 2020.

users and their listening preferences, in particular, the tags
referring to the context of music listening such as ‘running’
or ‘relaxing’ [21]. Thus, traditional auto-tagging models
that rely only on the audio content without considering the
case where tags depend on users, are not ideal for describ-
ing music with user-dependent tags like contexts. Addi-
tionally, their evaluation protocol should be also adapted
to account for different users.

Previous studies showed that user context has a clear in-
fluence on the user’s music selection [10, 18]. Hence, con-
text is progressively becoming the focus of music stream-
ing services for reaching a personalized user experience
[14]. The user context, e.g. activity or location, can change
frequently while listening to music, which leads to changes
in user preferences. Consequently, users often need dif-
ferent recommendations. Automatically inferring the user
context is often not feasible due to privacy issues. Hence,
giving users the option to select a specific context and pro-
pose him/her related personalized tracks is a potential al-
ternative [7]. Another use case is automatic continuation or
generation of context-specific playlists for each user which
are made available to them to select based on their cur-
rent context [2]. Thus, describing tracks with contextual
tags provides a means to improve music exploration and
playlist generation in a dynamic way, suitable for the fre-
quent changes in the user context. However, previous work
[13] showed that using only the audio might not be suffi-
cient to predict the right contextual tag of a track without
putting the user in the loop. Here, we investigate the im-
pact of including user information in context auto-taggers.

In this paper, we propose the following contributions: 1)
a dataset of ∼182K user/track pairs labelled with 10 of the
most common context tags based on the users’ contextual
preferences presented in Section 2, which we make avail-
able for future research; 2) a new evaluation procedure for
music tagging which takes into account that tags are sub-
jective, i.e. user-specific in Section 3; 3) an auto-tagging
model using both audio content and user information to
predict contextual tags in Section 4. Our experiments in
Section 5 clearly show the advantage of including the user
information in predicting contextual tags compared to tra-
ditional audio-only-based auto-tagging models presented.

2. DATASET

To properly study the influence of including user informa-
tion in context auto-tagging models, we need a dataset of
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Figure 1. Distribution of the number of contextual tags per
sample (user/track pair) in the initial dataset.
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Figure 2. Distribution of the number of contextual tags per
track in the initial dataset.

tracks labelled with their contextual tags according to dif-
ferent users. For this purpose, we rely on the user-created
context-related playlists. Users often create playlists for
specific contexts and the titles of these playlists may con-
vey these contexts. Thus, similar to [13,19], we exploit the
playlist titles to label tracks with their contextual use. Ad-
ditionally, we put the users in the loop as playlist creators
by explicitly including them in the dataset.

2.1 Dataset Collection

To retrieve contextual playlists, we used a set of contextual
keywords collected from the literature [9,18,24,27]. Then,
we added keywords that were semantically similar. Ninety
six keywords were categorized in one of four categories:
location, activity, time, and mood. This is similar to the
categorization proposed in [14]. To construct our dataset,
we selected, out of all collected context-related keywords,
10 which were the most frequent keywords found in the
playlist titles in the Deezer catalogue 1 . We selected the
keywords that shared a similar number of playlists to avoid
any bias due to the popularity of some contexts. The con-
textual tags we finally selected are: car, gym, happy, night,

1 Deezer is an online music streaming service: www.deezer.com

#Samples #Track #Users
Train 102K 15K 40K
Validation 30K 4.4K 21K
Test 50K 7.5K 16K

Table 1. Number of samples (track/user pairs), unique
tracks and users in the train, validation and test datasets.

relax, running, sad, summer, work, workout.
We collected all the public user playlists that included

any of these 10 keywords in the stemmed title and applied
a series of filtering steps to consolidate the dataset, similar
to our previous work in [13]. We removed all playlists that
contained more than 100 tracks, to ensure that the playlists
reflected a careful selection of context-related tracks, and
not randomly added. We also removed all playlists where a
single artist or album made up more than 25% of all tracks
in the playlist, to ensure that the playlist was not intended
for a specific artist, similar to [13]. Finally, to properly
study the effect of the user on the contextual use of a track,
we only kept the tracks that were selected by at least 5
different users in at least 3 different contexts. Hence, our
dataset reflects how user preferences change the contex-
tual use of tracks. Finally, we tagged each sample, the
track/user pair, with the contextual tag found in the cor-
responding playlist title.

2.2 Dataset Analysis
In Figure 1, by observing the distribution of contextual tags
per track/user pairs in the dataset, we noticed that most of
the pairs were assigned to a unique contextual tag. Let us
remind that the log scale is used and a sample represents
a user/track pair labelled with the contextual tags. It ap-
pears that the majority of users tend to associate a track
with a single context. Out of ∼3 millions samples, ∼2.9
millions are labelled with a single context. Nonetheless,
ascertaining if this observation is generally valid requires
further empirical investigation. For this study though, we
limited our final dataset to track/user pairs with single con-
text tags, i.e. we excluded users that assigned the same
track to multiple contexts.

Observing the distribution of contextual tags per tracks
in Figure 2, we find that tracks often have multiple con-
texts associated with them. This shows that the suitability
of a track for a specific context varies from user to user.
However, as previously outlined, given the user, the track
is most frequently associated with the same unique context.

The final dataset for this study contains ∼182K sam-
ples of user/tracks pairs made of ∼28K unique tracks and
∼75K unique users. We collected the dataset such that
each context is equally represented, ensuring a ratio of
∼ 1

10 of all user/track pairs. We split our dataset in an
iterative way to keep the balance between classes across
subsets, while preventing any overlap between the users
and minimising the overlap between tracks in these sub-
sets [22]. The distribution of our final split dataset is shown
in Table 2.2. The dataset is publicly available to the re-
search community 2

2 https://doi.org/10.5281/zenodo.3961560
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3. PROPOSED EVALUATION PROTOCOL

Previous studies on music auto-tagging [4, 20] performed
the evaluation in a multi-label classification setup, there-
fore focusing on assessing the correctness of the tags as-
sociated with each track. This is suitable for datasets and
tags that are only music-dependent. However, in the case
of tags that are also user-dependent, the previous evalua-
tion procedures are limiting.

3.1 User Satisfaction-focused Evaluation

The purpose of our study is to measure the influence of
leveraging the user information on the quality of the pre-
diction of contextual tags. Consequently, we are interested
in measuring the potential satisfaction of each user when
predicting contexts, instead of relying on a general evalu-
ation approach that could be biased by highly active users
or by the popularity of certain tags. Hence, we propose to
compute the model performance by considering each user
independently. To assess the satisfaction of each user, the
evaluation metrics are computed by considering only the
contextual tags specific to a user. Then, to assess the over-
all user satisfaction, we average the per-user results yielded
by each model.

Formally, let U denote a finite set of users in the test
set, Gu = {0, 1}nu×mu denote the groundtruth matrix for
user u, nu is the number of tracks associated with the user
u, and mu is the number of contextual tags employed by
the user. Similarly, Pu = {0, 1}nu×mu denotes the matrix
outputted by the model for all active tracks and contextual
tags for the given user u. First, we compute each user-
aware metric, hereby denoted by S, for a given user u as:

Su = f(Gu, Pu) (1)

where f is the evaluation function. In our evaluation, we
use standard classification metrics such as the area under
the receiver operating characteristic curve (AUC), recall,
precision, and f1-score [12]. While the protocol is defined
for the general case of multi-label setting, in our current
work, given the dataset, it is applied to the case of single-
label. Then, we compute the final metrics, by averaging
over all users in the test set:

SU =
1

N

∑
u∈U

Su, where N = |U|. (2)

3.2 Multi-label Classification Evaluation

In this work, we develop a system that takes both the audio
and the user information as input. As seen in Section 2.2,
for a given track and user, there is a single groundtruth con-
text to be predicted. The problem is said to be single-label.
However, if we want to compare this system with a system
that only takes audio as input, we need to consider during
training various possible groundtruth contextual tags for a
track, each from a different user. Then, the problem be-
comes multi-label. The comparison of the two systems is
therefore not straightforward. Indeed, for the user-agnostic
case, we can train a multi-label system, i.e. a system with

a set of sigmoid output activations optimized with a sum
of binary cross entropy, and estimate it either as single-
label by taking the output with the largest likelihood, or as
multi-label by selecting all outputs with a likelihood above
a fixed threshold. For these reasons, in the current evalua-
tion, we consider the following scenarios:

1. Multi-output / multi-groundtruth (MO-MG): This is
the classical multi-label evaluation where the model
outputs several predictions and each track is asso-
ciated with several groundtruths. This evaluation is
however independent of the user.

2. Multi-output / single-groundtruth (MO-SG): In this
scenario, a model trained as multi-label (such as a
user-agnostic model) is still allowed to output sev-
eral predictions. However, since the groundtruth
is associated with a given user, there is a single
groundtruth. The obtained results are then over-
optimistic because the model has several chances to
obtain the correct groundtruth.

3. Single-output / single-groundtruth (SO-SG): this is
the case that is directly comparable to our single-
output user-aware auto-tagging model. As opposed
to the MO-SG scenario, models trained as multi-
label are now forced to output a single prediction,
the most likely contextual tag. This prevents them
from being over-optimistic as they only have one
chance to obtain the correct groundtruth, as does the
single-label model too.

4. PROPOSED MODEL FOR CONTEXTUAL TAG
ESTIMATION

We propose to build a user-aware auto-tagging system.
Given that contextual tags are interpreted differently by
different users, we hypothesize that considering the user
information in training a personalized user-aware contex-
tual auto-tagging model may help. For this, we propose to
add to the system, along with the audio input, a user in-
put. We study the effectiveness of representing the user via
‘user embeddings’, obtained from user listening history.

4.1 Traditional Audio-based Auto-tagger

In this paper, we chose the prevalent audio-based auto-
tagging model proposed by Choi et al [4]. The model is
a multi-layer convolutional neural network. The input to
the network is the pre-processed Mel-Spectrogram of the
music track. This multi-label classification model predicts,
for a given track, the set of all possible tags.

We trained the network with the Mel-spectrogram as
an input of size 646 frames x 96 mel bands, which corre-
sponds to the snippet from 30 to 60 seconds for each track.
The output is the predictions for the 10 contextual tags.
The input Mel-Spectrograms is passed to a batch normal-
ization layer then to 4 pairs of convolutional and max pool-
ing layers. The convolutional layers have a fixed filter size
of (3x3) and (32, 64, 128, 256) filters respectively, each
followed by a ReLu activation function. The max pooling
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filters have a size (2x2) each. The flattened output of the
last CNN layer is passed to a fully connected layer with
256 hidden units with ReLU activation function. We apply
a dropout with 0.3 ratio for regularization. Finally, we pass
the output to the final layer of 10 output units each with a
Sigmoid activation function. The loss function is the sum
of the binary cross entropy optimized with Adadelta and
a learning rate initialized to 0.1 with an exponential decay
every 1000 iterations. We applied early stopping after 10
epochs in case of no improvement on the validation set,
and kept the model with the best validation loss.

4.2 Proposed Audio+User-based Auto-tagger

The Audio+User model that we propose is an extension of
the Audio-based auto-tagger described above. Our model
has two branches, one for the audio input and one for the
user embeddings input. The audio branch is identical to the
one described above, i.e. 4 pairs of convolutional and max
pooling layers with ReLu activation. The input to the user
branch is the user embedding of size 256. We apply batch
normalization to it followed by a fully connected layer with
128 units and Relu activation. We concatenate the out-
put of the audio branch and the user branch after applying
batch normalization to each. We pass the concatenated out-
put to a fully connected layer with 256 hidden units with
ReLu activation function and apply a dropout with 0.3 ra-
tio for regularization. The final layer is made of 10 out-
put units with a Softmax activation function. We train the
model with minimizing the categorical cross entropy using
the same configuration as in the previous model, described
in Section 4.1. We present the flowchart of the complete
model in Figure 3

4.3 User Embeddings

The user embeddings are computed by applying implicit
alternating least squares matrix factorization (ALS) [11,
16] on the users/tracks interactions matrix. The matrix rep-
resents the user listening count of the tracks available, with
an exponential decay applied based on the lapse since the
last listening, i.e. the more recent and frequent a track is
listened to, the higher the interaction value. The user em-
bedding is represented as a 256-dimensions vector.

However, the user listening histories are proprietary and
represent sensitive data. Additionally, the detailed deriva-
tion of the embeddings is an internal procedure at Deezer
for the recommendation algorithm. Hence, in order to al-
low the reproducibility of the current work, we directly
release the pre-computed embeddings for the anonymized
users present in our dataset.

5. RESULTS

We evaluate the two models according to the evaluation
protocol proposed in Section 3. First, we evaluate the audio
based model with the 3 scenarios: MO-MG, MO-SG, SO-
SG. Then, we evaluate the User+Audio model in the SO-
SG scenario. Last, we perform the user satisfaction-based
evaluation on both models for the SO-SG scenario. In all
evaluation protocols, the metrics were macro-averaged.
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Figure 3. Architecture of the Audio+User-based model.

AUC Recall Precision f1-score
car 0.56 0.96 0.47 0.63
gym 0.71 0.87 0.58 0.7
happy 0.58 0.87 0.37 0.52
night 0.59 0.97 0.48 0.64
relax 0.77 0.8 0.61 0.69
running 0.65 0.91 0.56 0.69
sad 0.77 0.72 0.54 0.61
summer 0.6 0.97 0.61 0.75
work 0.53 0.99 0.47 0.64
workout 0.75 0.84 0.52 0.64
average 0.65 0.89 0.52 0.65

Table 2. Results of the audio-based model (multi-
label outputs) on the user-agnostic dataset (multiple
groundtruth), MO-MG scenario.

5.1 Audio-based Multi-output Multi-groundtruth
(MO-MG Scenario)

Table 5.1 shows the results of the audio-based multi-label
classification model on our collected dataset without con-
sidering the user. The results are consistent with previ-
ous studies on context auto-tagging [13]. They show that
certain contexts are easier to predict using only the au-
dio input. These are general contexts with similar music
style preferences by different users, e.g. ‘gym’ and ‘relax’.
By contrast, other contexts are harder to predict from au-
dio only as users listen to more personalized music, e.g.
‘work’ and ‘car’. In consequence, we hypothesis that the
variance of the AUC scores across contexts is related to
the context dependency on users. Precisely, some contexts
could depend more on users than others, making the latter
harder to classify without considering the user information.

5.2 Audio-based Multi-output Single-groundtruth
(MO-SG Scenario)

Table 5.2 shows the results of the same audio-based multi-
label classification model which we now evaluate consid-
ering the user. The same audio track will now be presented
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AUC Recall Precision f1-score
car 0.54 0.87 0.09 0.17
gym 0.66 0.6 0.18 0.27
happy 0.57 0.67 0.08 0.14
night 0.57 0.6 0.11 0.19
relax 0.74 0.53 0.25 0.34
running 0.6 0.57 0.15 0.23
sad 0.75 0.52 0.21 0.3
summer 0.58 0.78 0.17 0.29
work 0.52 0.55 0.09 0.15
workout 0.71 0.41 0.17 0.24
average 0.62 0.61 0.15 0.23

Table 3. Results of the audio-based model (multi-label
outputs) on the user-based dataset (single ground-truth),
MO-SG scenario

AUC Recall Precision f1-score
car 0.54 0 0.03 0.001
gym 0.66 0.44 0.17 0.24
happy 0.57 0 0 0
night 0.57 0.004 0.14 0.007
relax 0.74 0.6 0.23 0.33
running 0.6 0.05 0.15 0.07
sad 0.75 0.003 0.16 0.006
summer 0.58 0.36 0.18 0.25
work 0.52 0 0.2 0
workout 0.71 0.13 0.18 0.15
average 0.62 0.16 0.14 0.11

Table 4. Results of the audio-based model (forced
to single-label output) on the user-based dataset (single
ground-truth), SO-SG scenario

several times to the system, i.e. for each user who has an-
notated this track. While the groundtruth is now single-
label and will change for each user, the system will output
the same estimated tags independently of the user, i.e. the
system does not consider the user as input. We observe a
sharp decrease in the precision of the model due to false
positive predictions for each user. Indeed, since the output
of the system is multi-label, it will output several labels for
each track, many of them will not correspond to the cur-
rent user. The high recall of the model shows that it often
predicts the right contextual use for many users. However,
it also predicts wrong contexts for many other users. That
is due to the limitation of the model which predicts all suit-
able contexts for all users.

5.3 Audio-based Single-output Single-groundtruth
(SO-SG Scenario)

Table 5.3 shows the results of the same audio-based multi-
label classification model when restricted to a single pre-
diction per track. While this is not the real-world case of
using the audio-based model, it allows a direct comparison
to the single-label User+Audio based model. In this case,
we see a sharp drop in the recall due to the limitation of a
single prediction per track.

AUC Recall Precision f1-score
car 0.61 0.12 0.13 0.13
gym 0.71 0.16 0.24 0.19
happy 0.64 0.22 0.12 0.16
night 0.61 0.03 0.14 0.05
relax 0.76 0.41 0.29 0.34
running 0.69 0.26 0.22 0.24
sad 0.83 0.5 0.33 0.4
summer 0.65 0.2 0.3 0.24
work 0.58 0.03 0.12 0.04
workout 0.75 0.37 0.2 0.26
average 0.68 0.23 0.21 0.2

Table 5. Results of the audio+user model (single-label out-
put) on the user-based dataset (single ground-truth), SO-
SG scenario.

Accuracy Recall Precision f1-score
Audio 0.21 0.204 0.243 0.216
Audio+User 0.254 0.246 0.295 0.26

Table 6. Comparison of user-based evaluation for the two
models

5.4 Audio+User Single-output Single-groundtruth
(SO-SG Scenario)

Table 5.4 shows the results for the proposed Audio+User
model. Comparing these results with the ones presented
in Table 5.3, we observe that the model is performing bet-
ter than the audio-based model for almost all metrics and
labels. The f1-score almost doubles when adding the user
information. Additionally, for certain labels as car, happy,
running, sad, summer, work, the influence of adding the
user information is obvious compared to all cases of audio-
based evaluation when comparing the AUC values. This is
consistent with our hypothesis that for certain labels the in-
fluence of user preferences is much stronger than for other
labels.

5.5 User Satisfaction-focused Scenario

Finally, we assess the user satisfaction by evaluating the
performance of the two models on each user indepen-
dently. We replace the AUC metric with accuracy because
AUC is not defined in the case of certain users where a
specific label is positive for all samples. Table 5.5 shows
the average performance of each model when computed
per user. In this case, we observe how the Audio+User
model satisfies the users more on average in terms of all
evaluation metrics. By investigating the recall and preci-
sion, we noticed that our model results in a larger number
of true positives, i.e. predicting the correct context for each
user, and a lower number of false positives, i.e. less pre-
dictions of the wrong contextual tags for each user. The
audio-based model is prone to a higher false positives due
to predicting the most probable context for a given track
regardless of the user. To sum up, including the user in-
formation in the model has successfully proven to improve
the estimation of the right contextual usages of tracks.
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6. CONCLUSION AND FUTURE WORK

Predicting the contextual use of music tracks is a challeng-
ing problem with multiple factors affecting the user prefer-
ences. Through our study, we showed that including the
user information, represented as user embeddings based
on the listening history, improves the model’s capability of
predicting the suitable context for a given user and track.
This is an important result towards building context-aware
recommendation systems that are user-personalized, with-
out requiring the exploitation of extensive user private data
such as location tracking [3]. However, there is still large
room for improvement to successfully build such systems.

Our current model relies on using the audio content,
which is suitable for the cold-start problem of recommend-
ing new tracks [6, 23]. However, constructing representa-
tive user embeddings requires active users in order to prop-
erly infer the listening preferences. Future work could in-
vestigate the impact of using different types of user infor-
mation, such as demographics [8], which could be suitable
for the user cold-start or less active users too.

Additionally, we focused on the case of a single con-
textual tag for each user and track pair. In practice, a user
could listen to the same track in multiple contexts, i.e. tag
prediction would be modelled a multi-label classification
problem at the user level. Future studies could further in-
vestigate this more complex case of adding the user infor-
mation in the multi-label settings.

Finally, while we have proven the advantage of our sys-
tem on a subset of contexts. Extending the study to a larger
number of possible contexts still needs to be addressed.
In reality, users listen to music in more diverse contexts,
adding levels of complexity to the addressed problem.
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ABSTRACT

This paper addresses the extraction of multiple F0 values
from polyphonic and a cappella vocal performances us-
ing convolutional neural networks (CNNs). We address
the major challenges of ensemble singing, i.e., all melodic
sources are vocals and singers sing in harmony. We build
upon an existing architecture to produce a pitch salience
function of the input signal, where the harmonic constant-
Q transform (HCQT) and its associated phase differentials
are used as an input representation. The pitch salience
function is subsequently thresholded to obtain a multiple
F0 estimation output. For training, we build a dataset
that comprises several multi-track datasets of vocal quar-
tets with F0 annotations. This work proposes and evalu-
ates a set of CNNs for this task in diverse scenarios and
data configurations, including recordings with additional
reverb. Our models outperform a state-of-the-art method
intended for the same music genre when evaluated with
an increased F0 resolution, as well as a general-purpose
method for multi-F0 estimation. We conclude with a dis-
cussion on future research directions.

1. INTRODUCTION

Ensemble singing is a well-established practice across cul-
tures, found in a great diversity of forms, languages, and
levels. However, all variants share the social aspect of col-
lective singing, either as a form of entertainment or ex-
pressing emotions. In The Science of the Singing Voice [1],
Sundberg claims that choral singing is one of the most
widespread types of singing. In Western classical music,
a choir is usually a group of singers divided into four sec-
tions: soprano, alto, tenor, bass (SATB); however, there
exist many other forms of polyphonic singing, involving a
diverse number of singers, parts, and vocal ranges. One
example of such variants is a vocal quartet, where four
singers—commonly with distinct vocal ranges—sing in

c© H. Cuesta, B. McFee, and E. Gómez. Licensed under
a Creative Commons Attribution 4.0 International License (CC BY 4.0).
Attribution: H. Cuesta, B. McFee, and E. Gómez, “Multiple F0 Estima-
tion in Vocal Ensembles using Convolutional Neural Networks”, in Proc.
of the 21st Int. Society for Music Information Retrieval Conf., Montréal,
Canada, 2020.
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Figure 1. Overview of the proposed method. (a) Input
features. (b) Convolutional architecture diagram. (c) Out-
put salience map. (d) Peak picking and thresholding step
to obtain F0 values from the salience activation in (c). (e)
Multiple F0 representation, output of the framework.

harmony. Vocal quartets usually follow the SATB config-
uration; therefore, they are different from a standard choir
in that there is only one singer per section.

Ensemble singing has not been widely studied in the
field of Music Information Retrieval (MIR) in the recent
years. We find a few early works focused on the acoustic
properties of choral singing [2–4], and also a few more re-
cent studies about some expressive characteristics of poly-
phonic vocal music, such as singer interaction and intona-
tion [5–10], analysis of unison singing [11, 12], or choir
source separation [13]. Most of these studies rely on in-
dividual recordings of each voice in the ensemble, which
enable the automatic extraction of fundamental frequency
(F0) contours from each isolated voice. The general ap-
plicability of these approaches is limited by the fact that
vocal groups are rarely recorded with individual micro-
phones. Another common strategy is using the polyphonic
audio recordings along with their associated synchronized
scores. However, the process of synchronizing a choral au-
dio recording to a score is not straightforward, and there-
fore results are not always entirely trustworthy. Manual an-
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notation is also one solution to obtain reliable F0 contours,
but the process is highly time-consuming and expensive.

An alternate approach is to analyze a mixed, polyphonic
recording to produce multiple F0 estimations simultane-
ously. This process enables the use of polyphonic singing
recordings in the wild, and eliminates the need for sepa-
rate audio recordings for each singer. However, multi-F0
estimation in polyphonic vocal music has been less often
studied, likely due to the complexity and variety of sounds
that a singer can produce, the timbre similarity between
singers’ voices, as well as the scarcity of annotated data of
this kind [14].

In this paper, we focus on multiple F0 estimation for
vocal ensemble audio mixtures. We build upon previous
work on using neural networks to obtain an intermediate
salience representation suitable for several tasks, includ-
ing multi-F0 estimation [15]. In particular, we experiment
with a set of convolutional neural networks (CNN), and
combine magnitude and phase information, which is com-
monly neglected in the literature. We experiment with dif-
ferent fusion strategies and analyze the generalization ca-
pabilities of deep learning models in the presence of uni-
son and reverbs. Figure 1 shows a diagram of the proposed
method.

Following research reproducibility principles, data gen-
eration scripts and models are accessible 1 .

2. RELATED WORK

Multiple F0 estimation (also referred to as multi-F0 esti-
mation, or multi-pitch estimation) is a sub-task of auto-
matic music transcription (ATM) that consists of detecting
multiple concurrent F0 values in an audio signal that con-
tains several melodic lines at the same time [14, 16, 17].
Benetos et al. [17] summarize the main challenges of ATM
as follows: polyphonic mixtures having multiple simulta-
neous sources with different pitches, loudness, and tim-
bre properties; sources with overlapping harmonics; and
the lack of polyphonic music datasets with reliable ground
truth annotations, among others. They organize ATM ap-
proaches into four categories: frame-level (or multi-F0 es-
timation), note-level (or note-tracking), stream-level (or
multi-F0 streaming), and notation-level. Our work focuses
on the first category.

While monophonic F0 estimation is a well-researched
topic, with state-of-the-art systems with excellent perfor-
mances [18–21], multiple F0 estimation is still challeng-
ing. Research on this topic is commonly divided into
several groups according to the nature of the employed
methods. For instance, in [17] they report four categories:
traditional signal processing methods, probabilistic meth-
ods, non-negative matrix factorization (NMF) methods,
and neural networks.

Klapuri [22] proposed a signal processing based method
for multi-F0 estimation in polyphonic music. He calculates
the salience of F0 candidates by summing the amplitudes
of its harmonic partials, and then uses an iterative method

1 Companion code and models: https://github.com/
helenacuesta/multif0-estimation-vocals

where at every step an F0 is estimated and cancelled from
the mixture before moving to the next iteration to estimate
the next F0. The same author presented in [23] a simi-
lar method that incorporates information about human per-
ception by means of an auditory model before the iterative
process.

The system presented by Duan et al. [24] uses
maximum-likelihood approach with the power spectrum
as input. Spectral peaks are detected and two separate
regions are defined accordingly: the peak region and the
non-peak region, using a tolerance of half semitone from
the detected peaks. In the maximum-likelihood process,
both sets are treated independently, and the process of de-
tecting F0 consists of optimizing a joint function that max-
imizes the probability of having harmonics that explain
the observed peaks and minimizing the probability of hav-
ing harmonics in the non-peak region. The F0 estimates
are post-processed using neighbouring frames’ estimates
to produce more stable F0 contours.

A recent example of a multiple F0 estimation frame-
work that employs neural networks is the system by Bittner
et al. [15], DeepSalience (DS): a CNN trained to produce
a multi-purpose pitch salience representation of the input
signal. It is designed for multi-instrument pop/rock poly-
phonic music, and it provides an intermediate representa-
tion for MIR tasks such as melody extraction and multi-
F0 estimation, outperforming state-of-the-art approaches
in both cases. Following the premise that a pitch salience
function is a suitable representation to extract F0 val-
ues, also exploited in [22, 23, 25, 26], this work keeps up
with the advancements of deep neural networks to build
data-driven salience functions. They use the harmonic
constant-Q transform (HCQT) as input feature, which is
a 3-dimensional array indexed by harmonic index h, fre-
quency f , and time t: H[h, f, t]. It comprises a set of
constant-Q transforms (CQT) stacked together, each of
them with its minimum frequency scaled by the harmonic
index: h · fmin.

While the above methods are well-suited for multi-
ple F0 estimation in multi-instrumental music, a cappella
polyphonic vocal music has several particularities that jus-
tify the need for dedicated techniques. One of the most
significant challenges of analyzing vocal ensembles is due
to harmonies occurring between distinct, overlapping vo-
cal ranges. The timbre similarity, strong harmonic rela-
tionships, and overlapping frequency ranges hinder the ex-
traction of concurrent F0 values in such music signals.

McLeod et al. [27] present a system for automatic tran-
scription of polyphonic vocal music, which includes an ini-
tial step of estimating multiple F0s, and a second step of
voice assignment, where each detected F0 is assigned to
one of the SATB voices. They combine an acoustic model
based on the factorization of an input log-frequency spec-
trogram for the multi-F0 estimation with a music language
model based on hidden Markov models (HMM) for the
voice assignment step. An earlier version of this method
was presented in [14]; however, in the latter work the au-
thors include a model integration step where the output of
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Dataset # of songs Duration
(hh:mm:ss)

Choral Singing Dataset [8] 3 songs 00:07:14
Dagstuhl ChoirSet [29] 2 songs 00:55:30
ESMUC Choir Dataset 3 songs 00:21:08
Barbershop Quartets 2 22 songs 00:42:10

Bach Chorales 3 26 songs 00:58:20

Table 1: Overview of the datasets used in this paper. The
reported durations refer to the original mixtures before re-
mixing stems and data augmentation. Dagstuhl ChoirSet
and ESMUC Choir Dataset contain several takes per song.

the music language model is further used in the acoustic
model to improve the estimation of F0s. Their results show
that integrating both parts of the system improves the per-
formance of the voice assignment, and also of the multi-F0
estimation, since it eliminates many false positives.

Su et al. [28] also address some of the aforementioned
issues by proposing an unsupervised method for multi-F0
estimation of choir and symphonic music. Their approach
uses time-frequency reassignment techniques such as the
synchrosqueezing transform (SST), which aims to better
discriminate closely-located spectral components, such as
unisons. They use an improved technique called ConceFT,
which is based on the idea of multi-taper SST, but was
proved to estimate instantaneous frequencies in noisy sig-
nals more precisely. These methods measure pitch salience
and enhance the stability and localization of the F0 features
needed for multi-F0 estimation.

3. DATASET

The lack of an appropriate and large enough annotated
dataset has been a bottleneck in the use of machine
learning techniques for multiple F0 estimation in ensem-
ble singing. We address this difficulty by constructing
a dataset that comprises several multi-track datasets of
polyphonic singing with F0 annotations. We created a
dataset by aggregating several existing multi-track poly-
phonic singing datasets. Table 1 shows an overview of the
characteristics of each dataset individually. In this section,
we describe them in more detail, as well as explain the pro-
cess of data augmentation.

We use five datasets of similar characteristics. First,
the Choral Singing Dataset (CSD) [8], a publicly avail-
able multi-track dataset of Western choral music. It com-
prises recordings of three SATB songs performed by a
choir of 16 singers, four per section (4S4A4T4B), and it
contains separate audio stems for each singer. Besides,
it includes F0 annotations for each singer, which are au-
tomatically extracted and manually corrected. Similarly,
the ESMUC Choir Dataset (ECS) is a proprietary dataset
that comprises three songs performed by a choir of 13
singers (5S3A3T2B); it also includes audio stems for each

2 https://www.pgmusic.com/barbershopquartet.htm
3 https://www.pgmusic.com/bachchorales.htm
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Figure 2. Input features examples for 10-seconds excerpt
of a file from the training set. HCQT magnitude is depicted
in the left column, and HCQT phase differentials in the
right column, for h = 1 (top) and h = 3 (bottom).

singer and F0 annotations. The third dataset with compa-
rable characteristics is the Dagstuhl ChoirSet (DCS) [29]:
it consists of recordings of two songs performed by a choir
of 13 singers (2S2A4T5B), and two different SATB quar-
tets. This dataset also provides the audio stems and auto-
matically extracted F0 annotations. Finally, we also add
two commercial datasets: the Bach Chorales (BC) 3 and
the Barbershop quartets (BSQ) 2 . They contain 26 and 22
songs, respectively, performed by vocal quartets—SATB
in the first case, and tenor, lead, baritone, bass in the second
case—as well as automatically extracted F0 annotations.

We exploit the multi-track nature of all datasets to create
artificial mixtures of stems. We use PySox [30] to create
all the possible combinations of singers, with the constraint
of having one singer per part (SATB). In parallel, we also
generate the multi-F0 annotations by combining the indi-
vidual F0 contours of each singer in the mixture.

Besides creating the audio mixtures from individual
recordings, we include two additional steps to improve
generalization. First, we augment our dataset by means of
pitch-shifting individual voices and re-mixing them. Par-
ticularly, we use pitch-shifting at a semitone scale: −2 to
+2 semitones from the original signal. Second, our dataset
contains two versions of each audio clip: the original one
(obtained by mixing together individual stems), and the
same song with reverb. We use the Great Hall impulse
response (IR) from the Room Impulse Response Dataset
in Isophonics [31], and convolve it with the audio mixtures
of our dataset. For both tasks, we use MUDA, a software
framework for musical data augmentation [32].

The dataset consists of 22910 audio files of diverse du-
rations, from 10 seconds to 3 minutes. We split it into
training (75%, 17184 files), validation (10%, 2291 files),
and test (15%, 3435 files) subsets.

4. PROPOSED METHOD

In this section, we describe the input features, the target
representations, the convolutional architectures we design,
and the experiments we conduct.
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Figure 3. Proposed convolutional architectures. (a) Early/Shallow and Early/Deep: the two layers inside the orange dotted
rectangle are only part of Early/Deep. (b) Late/Deep: the concatenation of both inputs’ contribution happens later in the
network. In all networks, each layer is preceded by a batch-normalization step and the output of each layer is passed
through a rectified linear unit activation function, except for the last layer, which uses a sigmoid.

4.1 Input features

Our networks have two separate inputs: the HCQT mag-
nitude and the HCQT phase differentials. The HCQT is a
3-dimensional array H[h, t, f ], indexed by harmonic (h),
frequency (f ), and time (t). It measures the hth harmonic
of frequency f at time t, where h = 1 is the fundamen-
tal. This representation is based on computing a stan-
dard constant-Q transform (CQT) for each harmonic where
the minimum frequency (fmin) is scaled by the harmonic
number, h · fmin. Detailed descriptions of the HCQT are
presented in [15, 33]. For the HCQT calculation we use
60 bins per octave, 20 cents per bin, 6 octaves, and a min-
imum frequency of 32.7 Hz, which corresponds to a C1.
We use five harmonics, so that h ∈ {1, 2, 3, 4, 5} to com-
pute the frequencies of the partials. Phase information is
often discarded from neural network inputs, which com-
monly use magnitude representations such as the magni-
tude of the short-time Fourier transform (STFT). However,
we also use the associated phase differentials. From sig-
nal processing theory we know that the phase differential
of a signal contributes to a more precise calculation of the
instantaneous frequency (ωins) [34]:

ωins =
δϕ(t)

δt
−→ fins =

1

2π

δϕ(t)

δt
(1)

where ϕ(t) is the phase spectrum of the audio signal.
All audio files are resampled to a sampling rate of 22050

Hz, and we use a hop size of 256 samples. An example of
the two input features examples is displayed in Figure 2.

4.2 Output representation

The output targets we use to train our networks are time-
frequency representations with the same dimensions (2-
D) as one of the input channels, i.e., H[1]. We use the

ground truth F0 annotations (see Section 3) and assign
each F0 value to the nearest time-frequency bin in the 2-
D representation—which has the same time and frequency
resolutions as the input—with a magnitude of 1. Non-
active bins are set to 0, and we apply Gaussian blur with
standard deviation 1 in the frequency direction to account
for possible imprecisions in the predictions. We follow the
same procedure as in DeepSalience and set the energy de-
cay from 1 to 0 to cover half a semitone in frequency.

4.3 Models

Figure 3 depicts three convolutional architectures we pro-
pose: Early/Shallow, Early/Deep, and Late/Deep.

4.3.1 Early/Shallow and Early/Deep models

These models, inspired by DeepSalience, are illustrated in
Figure 3a. They both consist of a fully convolutional ar-
chitecture with two separate inputs: one for the HCQT
magnitude and a second one for the HCQT phase differ-
entials. Each of these inputs is first sent to a convolutional
layer with 16 (5 × 5) filters. Then, the outputs of these
two layers are concatenated. (5 × 5) filters cover approxi-
mately 1 semitone in frequency and 50 ms in time. After
the concatenation, data passes through a set of convolu-
tional layers including two layers with 32 (70 × 3) filters,
which cover 14 semitones in frequency and are suitable
for capturing harmonic relations within an octave. In the
Early/Deep model we add two 64 (3× 3) layers before the
last layer with 8 filters that cover all frequency bins.

4.3.2 Late/Deep model

Late/Deep diagram is displayed in Figure 3b, and it fol-
lows a similar structure to Early/Shallow and Early/Deep.
However, in this case both inputs are handled separately
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until the layer with (70 × 3) filters; then, we concatenate
both data streams and add the same layers: two layers with
64 filters (3× 3), and the last layer with 8 filters that cover
the whole frequency dimension, i.e., 360 bins.

In all models, batch normalization is applied at the input
of every layer, and the outputs are passed through rectified
linear units (ReLU), except for the output layer, which uses
logistic activation (sigmoid) to map the output of each bin
to the range [0, 1]. Using sigmoid at the output enables the
interpretation of the activation map as a probability func-
tion, where the value between 0 and 1 represents the proba-
bility that a specific bin belongs to the set of F0s present in
the input signal. All models in the experiments described
next are trained to minimize binary cross-entropy between
the target, y[t, f ], and the prediction, ŷ[t, f ], both of them
values in the range [0, 1]:

L(y, ŷ) = −y log(ŷ)− (1− y) log(1− ŷ) (2)

We use the Adam optimizer [35] with a learning rate of
0.001, and train for 100 epochs with a batch size of 16
patches of shape (360, 50). We perform early stopping
when the validation error does not decrease for 25 epochs.

4.4 Experimental setup

4.4.1 Evaluation metrics

We evaluate the models using the frame-wise metrics Pre-
cision, Recall, F-Score (or F-measure) as they are defined
in the MIREX multiple-F0 estimation task [36] using the
mir_eval library [37].

4.4.2 Experiment 1: fusion strategy

In the first experiment we use the whole dataset split into
train-validation-test subsets (see Section 3), to measure the
general performance of the three models. With this ex-
periment we study the influence of magnitude and phase
information fusion at an early stage of the network, i.e.,
Early/Shallow-Deep, or later, i.e., Late/Deep. For each
model, we use the validation set to optimize the threshold
we apply to the peaks extracted from the output salience
representation. The optimal threshold is the one that maxi-
mizes the average accuracy across the validation set in each
case. In addition, we train the Late/Deep model without
the phase information, i.e., we remove the branch of the
network dedicated to the phase. We intend to verify the
hypothesis that including the phase as input to the network
leads to more precise results.

4.4.3 Experiment 2: comparative analysis

In this experiment we evaluate the performance of our best-
performing model from Experiment 1 on the BSQ 2 . This
is one of the datasets used in [27, 38], allowing for a di-
rect comparison between their method—also designed for
ensemble singing—and the model we propose. These data
are part of our original training dataset, but in this experi-
ment we train the model excluding all the BSQ audio files,
and then use them for exclusively for evaluation.

4.4.4 Experiment 3: generalization

In this last experiment, we aim to explore the effect of
unison and reverb. Since vocal ensembles are commonly
captured using a room microphone, such recordings usu-
ally contain reverb or similar effects, caused by the room
acoustics. We train our best-performing model excluding
all audio files with reverb from the dataset, and then eval-
uate it with conventional choir recordings from the dataset
presented in [28], which is not part of our working dataset.
In addition, we evaluate this model on a subset of reverb
files from the original test set and compare the performance
of this model to the model trained in Experiment 1.

5. RESULTS

5.1 Experiment 1: fusion strategy

Results for Experiment 1 are depicted in Figure 4. While
the three models have similar results, Late/Deep is slightly
better in terms of F-Score, suggesting that the late fusion of
magnitude and phase information is more robust than the
early fusion. Figure 5 shows an excerpt of the multiple F0
output (red) together with their associated ground truth ref-
erence (black). We compare these results to DeepSalience
using a detection threshold of 0.2 (optimized beforehand
on the evaluation material), which has a lower perfor-
mance, which we attribute to distribution shift from its
training set. Additionally, we observe how the Late/Deep
without phase information has a similar F-Score but lower
precision, showing that including phase differentials as in-
put is helpful for obtaining more accurate results. Since
Late/Deep is the model with the best performance, we use
it in the subsequent experiments.

5.2 Experiment 2: comparative analysis

Experiment 2 results are summarized in Table 2 in terms
of F-Score, and Precision and Recall (when available).
We evaluate the predictions from our model on the BSQ
dataset, and compare the results to the ones reported with
MSINGERS [14], and VOCAL4-VA, the fully-integrated
model from [27]. We use two different pitch tolerances:
one semitone (100 cents) and 20 cents. While one semi-
tone resolution is enough for transcription purposes, for
analysis such as the ones described in Section 1, i.e., in-
tonation and singer interaction, more pitch resolution is
required. We observe that our model outperforms both
baseline methods with two different pitch tolerances. In
the 20 cents evaluation, the baseline models experience
a performance drop (−17% and −26%), whereas the de-
crease in our model is much smaller, around−2% in the F-
Score. This difference presumably resides in the fact that
our model uses phase information to refine F0 estimates,
therefore extracting a more precise value.

5.3 Experiment 3: generalization

Results from this experiment show that our model outper-
forms the method in [28] on their choir dataset: when we
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Method 100 cents 20 cents

F P R F P R

MSINGERS [14]
0.708 0.685 0.736 0.537 0.620 0.477
(0.06) (0.06) (0.07) (0.07) (0.07) (0.08)

VOCAL4-VA [27]
0.757

- - 0.490 - -
(0.06)

Late/Deep
0.846 0.812 0.884 0.831 0.797 0.868
(0.03) (0.03) (0.04) (0.03) (0.03) (0.04)

Table 2: Multi-F0 estimation results (F-Score (F), preci-
sion (P), and recall (R)) on the Barbershop quartets, for
different pitch tolerances. Values in parentheses refer to
the standard deviation. Best scores are highlighted in bold.

calculate the average F-Score across the whole dataset, us-
ing the threshold optimized on the validation set, we ob-
tain 0.704, while their best-performing method reaches an
average F-Score of 0.653. Note that this dataset contains
short excerpts of commercial choir recordings, with several
singers per section and a large reverb effect, which differs
from our training material. Therefore, these results sug-
gest that our model is robust to recordings in such context.
However, a larger experiment with similar data would be
necessary, since this dataset is very small. The second part
of this experiment is the evaluation of a subset of ten re-
verb files from the test set. In terms of F-Score, and as ex-
pected, the model that includes reverb files in the training
set (Experiment 1) improves by slightly more than 10% on

average with respect to the model that excludes these files
(Experiment 3). Therefore, we conclude that the presence
of both reverb and dry signals in the training set is ben-
eficial for the performance of a wider range of recording
conditions such as reverb.

6. CONCLUSIONS

In this paper, we proposed a set of novel convolutional ar-
chitectures for multiple F0 estimation in a cappella ensem-
ble singing, combining magnitude and phase information.
For training, we created an annotated dataset of polyphonic
singing voice by aggregating several existing datasets, and
augmented it by means of pitch-shifting and reverberation.

We conducted several experiments to evaluate different
aspects of the detection process. We evaluated the overall
performance of three models as compared to a deep learn-
ing based multi-purpose multiple F0 estimation system,
and found that our models outperform the baseline when
applied on ensemble singing. We also verified that using
phase information at the input, together with the magni-
tude, improves the precision of the F0 estimates. We com-
pared our best-performing model to one existing approach
for multiple F0 estimation in vocal ensembles, and demon-
strated that it outperforms it with two different F0 resolu-
tions (100 and 20 cents). In addition, we compared our
model to an approach specifically designed for choir and
symphonic music and found that our model is robust in
conditions of unison and high reverb. However, further
experiments with a larger amount of data are required to
verify these findings.

Although our results are a strong contribution to ad-
dressing the limitations of deep learning architectures for
vocal music, there are some further steps that would poten-
tially improve the performance of our models. Informal ex-
periments showed that post-processing the output F0 con-
tours increases their time continuity; therefore, the overall
quality of the output improves. Further steps also include
not only estimating the F0 values frame-wise, but also as-
signing each of them to a singer, which is a challenging
task if the number of singers is not known a priori.
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308



[22] A. P. Klapuri, “Multiple fundamental frequency es-
timation by summing harmonic amplitudes,” in Pro-
ceedings of the International Society for Music Infor-
mation Retrieval Conference (ISMIR), 2006, pp. 216–
221.

[23] A. Klapuri, “Multipitch analysis of polyphonic music
and speech signals using an auditory model,” IEEE
Transactions on Audio, Speech, and Language Pro-
cessing, vol. 16, no. 2, pp. 255–266, Feb 2008.

[24] Z. Duan, B. Pardo, and C. Zhang, “Multiple Fun-
damental Frequency Estimation by Modeling Spec-
tral Peaks and Non-peak Regions,” IEEE Transactions
on Audio, Speech, and Language Processing, vol. 18,
no. 8, pp. 2121–2133, 2010.

[25] M. P. Ryynänen and A. P. Klapuri, “Automatic tran-
scription of melody, bass line, and chords in poly-
phonic music,” Computer Music Journal, vol. 32, no. 3,
pp. 72–86, 2008.

[26] J. Salamon and E. Gómez, “Melody extraction from
polyphonic music signals using pitch contour charac-
teristics,” IEEE Transactions on Audio, Speech and
Language Processing (TASLP), vol. 20, pp. 1759–
1770, 08 2012.

[27] A. McLeod, R. Schramm, M. Steedman, and E. Bene-
tos, “Automatic transcription of polyphonic vocal mu-
sic,” Applied Sciences, vol. 7, no. 12, 2017.

[28] L. Su, T.-Y. Chuang, and Y.-H. Yang, “Exploiting fre-
quency, periodicity and harmonicity using advanced
time-frequency concentration techniques for multip-
itch estimation of choir and symphony.” in Proceed-
ings of the International Conference on Music Infor-
mation Retrieval (ISMIR), New York City, USA, 2016,
pp. 393–399.

[29] S. Rosenzweig, H. Cuesta, C. Weiss, F. Scherbaum,
E. Gómez, and M. Müller, “Dagstuhl ChoirSet: A Mul-
titrack Dataset for MIR Research on Choral Singing,”
Transactions of the International Society for Music In-
formation Retrieval (TISMIR), vol. 3, no. 1, pp. 98–
110, 2020.

[30] R. M. Bittner, E. Humphrey, and J. P. Bello, “Pysox:
Leveraging the audio signal processing power of sox in
python,” in Proceedings of the International Society for
Music Information Retrieval Conference Late Breaking
and Demo Papers, 2016.

[31] R. Stewart and M. Sandler, “Database of omnidirec-
tional and b-format room impulse responses,” in Pro-
ceedings of the IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP),
2010, pp. 165–168.

[32] B. McFee, E. J. Humphrey, and J. P. Bello, “A software
framework for musical data augmentation.” in Pro-
ceedings of the International Society for Music Infor-
mation Retrieval Conference (ISMIR), 2015, pp. 248–
254.

[33] R. M. Bittner, B. McFee, and J. P. Bello, “Multitask
learning for fundamental frequency estimation in mu-
sic,” ArXiv, vol. abs/1809.00381, 2018.

[34] B. Boashash, “Estimating and Interpreting the Instan-
taneous Frequency of a Signal. I. Fundamentals,” Pro-
ceedings of the IEEE, vol. 80, no. 4, pp. 520–538,
1992.

[35] D. P. Kingma and J. Ba, “Adam: A Method for
Stochastic Optimization,” ArXiv, vol. abs/1412.6980,
2014.

[36] M. Bay, A. F. Ehmann, and S. J. Downie, “Evaluation
of multiple-f0 estimation and tracking systems",” in
Proceedings of the 10th International Society for Mu-
sic Information Retrieval Conference (ISMIR), 2009,
pp. 315–320.

[37] C. Raffel, B. McFee, E. J. Humphrey, J. Salamon,
O. Nieto, D. Liang, and D. P. Ellis, “mir_eval: A trans-
parent implementation of common mir metrics,” in In
Proceedings of the 15th International Society for Mu-
sic Information Retrieval Conference (ISMIR), 2014.

[38] R. Schramm, A. McLeod, M. Steedman, and E. Bene-
tos, “Multi-pitch detection and voice assignment for a
cappella recordings of multiple singers,” in Proceed-
ings of the International Society for Music Information
Retrieval Conference (ISMIR), 2017.

Proceedings of the 21st ISMIR Conference, Montréal, Canada, October 11-16, 2020
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ABSTRACT

Despite the manifold developments in music emotion
recognition and related areas, estimating the emotional im-
pact of music still poses many challenges. These are of-
ten associated to the complexity of the acoustic codes to
emotion and the lack of large amounts of data with ro-
bust golden standards. In this paper, we propose a new
computational model (EmoMucs) that considers the role
of different musical voices in the prediction of the emo-
tions induced by music. We combine source separation
algorithms for breaking up music signals into independent
song elements (vocals, bass, drums, other) and end-to-end
state-of-the-art machine learning techniques for feature ex-
traction and emotion modelling (valence and arousal re-
gression). Through a series of computational experiments
on a benchmark dataset using source-specialised models
trained independently and different fusion strategies, we
demonstrate that EmoMucs outperforms state-of-the-art
approaches with the advantage of providing insights into
the relative contribution of different musical elements to
the emotions perceived by listeners.

1. INTRODUCTION

The ability of music to express and induce emotions
[15,21] and act as a powerful tool for mood regulation [28]
are well-known and demonstrable. Indeed, research shows
that music listening is a commonly used, efficacious, and
adaptable device to achieve regulatory goals [31], includ-
ing coping with negative experiences by alleviating nega-
tive moods and feelings [17].

Crucial to this process is selecting the music that can
facilitate the listener to achieve a determined mood reg-
ulation target, which often is not an easy task. In order
to support listeners in this process, emotion-aware music
recommendation systems became popular as they offer the

c© Jacopo de Berardinis, Angelo Cangelosi, Eduardo
Coutinho. Licensed under a Creative Commons Attribution 4.0 Interna-
tional License (CC BY 4.0). Attribution: Jacopo de Berardinis, Angelo
Cangelosi, Eduardo Coutinho. “The multiple voices of musical emotions:
source separation for improving Music Emotion Recognition models and
their interpretability”, 21st International Society for Music Information
Retrieval Conference, Montréal, Canada, 2020.

possibility to explore large music libraries using affective
cues. Indeed, recommending music based on the emotion
of the listener at home [10] or background music person-
alised for the ones present in a restaurant would provide a
more personal and enjoyable user experience [14].

At the core of these systems is music emotion recog-
nition (MER), an active field of research in music infor-
mation retrieval (MIR) for the past twenty years. The au-
tomatic prediction of emotions from music is a challeng-
ing task due to the subjectivity of the annotations and the
lack of considerable data for effectively training supervised
models. Song et al. [29] also argued that MER methods
tend to perform well for genres such as classical music and
film soundtracks, but not yet for popular music [25]. In
addition, it is difficult to interpret emotional predictions in
terms of musical content, especially for models based on
deep neural networks. Although a few approaches exist for
interpretable MER [5], the recognition accuracy of these
methods is compromised, with the resulting performance
loss often referred to as “cost of explainability".

As different voices within a composition can have a
distinct emotional impact [13], our work leverages state-
of-the-art deep learning methods for music source sep-
aration (MSS) to reduce the complexity of MER when
limited training data is available. The proposed architec-
ture (EmoMucs) is based on combining source separation
methods with a parallel block of source-specialised models
trained independently, subsequently aggregated with a fu-
sion strategy. To benchmark our idea, we evaluated Emo-
Mucs on the popular music with emotional annotations
(PMEmo) dataset [38], and compared its performance with
two reference deep learning models for MER. Experimen-
tal results demonstrate that our method achieves better per-
formance for valence recognition, and comparable ones for
arousal, while providing increased interpretability.

The main technical contributions are manifold: (i) we
provide an in-depth evaluation of two reference models for
MER, (ii) we propose a computational model that achieves
an improved performance on the current baselines, under
similar experimental conditions, and finally (iii) we show
that our model provides no cost of interpretability.

The rest of the paper is structured as follows: Section 2
gives a primer on MER and an overview of related work on
content-based methods, whilst Section 3 outlines the base-
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Figure 1. An overall architecture illustrating our proposed model, EmoMucs.

line architectures and our novel EmoMucs model. Sec-
tion 4 details the experimental evaluation carried out, in-
cluding our results on interpretability. Finally, Section 5
draws conclusions and gives direction for future work.

2. BACKGROUND AND RELATED WORK

2.1 A primer on music emotion recognition

Prior to introducing content-based methods for MER, we
provide the reader with the fundamentals concepts of the
task and refer to [3, 16, 34, 35] for a detailed overview.
Induced vs perceived emotions. Perceived emotions
refers to the recognition of emotional meaning in music
[29]. Induced (or felt) emotions refer to the feelings expe-
rienced by the listener whilst listening to music.
Annotation system. The conceptualisation of emotion
with its respective emotion taxonomy remains a longstand-
ing issue in MER [29]. There exist numerous emotion
models, from miscellaneous [19] to domain specific [36],
categorical [11] and dimensional [24], with the latter two
being the prevailing ones. Whilst the categorical model fo-
cuses on all the emotions evolving from universal innate
emotions like happiness, sadness, fear and anger [11], the
dimensional model typically comprises an affective two-
dimensional valence-arousal space. Valence represents
a pleasure-displeasure continuum, whilst arousal outlines
the activation-deactivation continuum [24].
Time scale of predictions. Predictions can either be static
or dynamic. In the former case, the representative emotion
of a song is given by one valence and arousal value [16].
Emotion annotations can also be obtained over time (e.g.
second-by-second valence-arousal labels), thus resulting in
dynamic predictions [27].
Audio features. Musical compositions consist of a rich
array of features such as harmony, tempo, loudness and
timbre and these all have an effect on emotion. Previ-
ous work in MIR has fuelled around developing informa-
tive acoustic features [16]. However, as illustrated in other
works [18, 22, 26] and to the best of our knowledge, there
exists no dominant single feature for MER.

2.2 Methods for content-based MER

The field of MIR has followed a similar path to other ma-
chine learning ones. Prior to the deep learning era, most
methods relied on manual audio feature extraction. Huq
et al. [12] give an overview on how musical features were
traditionally extracted and fed into different architectures
such as support vector machines, k-nearest neighbours,
random forests, deep belief networks and other regression
models. These methods were tested for MER on Russell’s
well-established arousal and valence emotion model [24].

These were succeeded with deep learning methods.
Such techniques, like binarised and bi-directional long
short-term memory recurrent neural networks (LSTM-
RNN) and deep belief networks, have also been suc-
cessfully employed for valence and arousal prediction
[33]. Other methods again used LSTM-RNNs for dynamic
arousal and valence regression, on the acoustic and psy-
choacoustic features obtained from songs [6]. Most of
these works stemmed from entries in the MediaEval emo-
tion challenge [2]. Multimodality has also been an interest
for this research community, where [9] looked into MER
based on both the audio signal and the lyrics of a musical
track. Again, deep learning methods such as LSTM-RNNs
are at the core of the architectures proposed.

An important factor in machine learning has been to
build interpretable models, to make them applicable to a
wider array of applications. To the best of our knowledge,
only a few works have attempted to build an interpretable
model for MER. In [37], different model classes were built
over the extracted and selected features. These vital fea-
tures were filtered and wrapped, followed by shrinkage
methods. In [5], a deep network based on two-dimensional
convolutions is trained to jointly predict “mid-level percep-
tual features", related to emotional qualities of music [1],
with emotion classes in a categorical annotation space.

Our work focuses on the prediction of induced emotions
at a global time scale (static predictions). This is done in
a continuous annotation space, as adopting a categorical
one would not exhibit the same richness in induced hu-
man emotion [35]. The idea of using MSS methods for
MER was first investigated in [32]. Our work differs in
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the following: (i) we focus on valence-arousal MER and
address the former as a regression task; (ii) our methods
rely on state-of-the-art deep learning methods with no need
of traditional methods for audio feature extraction; (iii)
we investigate different fusion strategies and training ap-
proaches, and (iv) we provide an insightful analysis for the
interpretability of our models.

3. METHODOLOGY

Our approach is based on the observation that different mu-
sical sources in a composition can evoke distinct emotional
responses from the listeners [13]. Given a music piece,
they can contribute differently to the overall induced emo-
tion. For instance, the bass and the vocal lines of a track
can be more informative to predict valence, whereas drums
might have more impact on arousal. Nevertheless, our aim
here is not to provide a general explanation of the emo-
tional influence of musical parts, as this is often an indi-
vidualistic property belonging to each track.

Instead, we propose a computational model for MER
based on a decomposition of the original audio signal to the
possible sources (e.g. vocals, drums, bass) that can be de-
tected from it. By doing so, it will be easier for the model
to process the audio stream whilst searching for emotion-
related patterns in every single source. The aggregation
of the resulting source-specific models within a single ar-
chitecture would also account for the possible inter-source
relationships. This approach can thus be considered as a
way to provide prior knowledge to a model in order to re-
duce the complexity of the learning task when limited data
is available – a recurring issue in MER.

Considering the technical challenges in MER, the de-
sign of a computational model based on music source sep-
aration has the potential to (i) improve the performance
of the current solutions with the same amount of training
data; (ii) provide a modular architecture which can be fur-
ther adapted and fine-tuned with respect to each source-
specific module, and (iii) quantify the contribution of each
source to the final prediction for improved interpretability.

Our model, EmoMucs, achieves this through a multi-
plexed framework for emotion recognition. The architec-
ture of our model is illustrated in Figure 1, with its building
blocks explained in the following subsections.

3.1 Music source separation module

In the final step of music production, the tracks corre-
sponding to each individual instrument 1 are mixed to-
gether in a single audio file known as mix-down. Music
source separation (MSS) aims at reconstructing the indi-
vidual sources from a mix-down. A reference categori-
sation of these sources is the SiSec Mus evaluation cam-
paign [30], which is based on the following classes: (i)
vocals, (ii) drums, (iii) bass and (iv) other. Given a mix-
down, the goal of a MSS model is to generate a waveform
for each of the four original sources.

Most of the approaches for MSS operate on the spec-
trograms generated by the short-time Fourier transform

1 We use voice, instrument and source interchangeably.

(STFT). They are trained to produce a mask on the magni-
tude spectrums for each frame and source [8]. The out-
put audio is then obtained through an inverse STFT on
the masked spectrograms, reusing the input mixture phase.
However, a technical limitation of these approaches is the
information loss resulting from the mix of sources, which
cannot be easily recovered through masking.

For this reason we use Demucs [8], a recent deep learn-
ing model for MSS directly operating on the raw input
waveform. Instead of relying on a masking approach, De-
mucs is inspired by models for music generation in the
waveform domain. It implements a U-net architecture
with a convolutional encoder-decoder, and a bidirectional
LSTM between them to increase the number of channels
exponentially with depth [7].

Given an audio track, our system starts by feeding it to
Demucs. This results into four different source tracks –
one for each SiSec Mus class. To ensure comparability of
our architecture with the baseline methods for MER, we
compute the log-mel spectogram of each source track.

3.2 Source models and fusion strategies

As illustrated in Figure 1, the log-mel spectogram of each
source track is then passed to the specific model associated
to that source (e.g. the vocal’s spectogram is fed to the
vocal model). By disentanglement, each sub-model pro-
cesses a single voice independently, and learns the cor-
responding source-specific musical features for emotion
recognition. This approach thus provides a high degree
of flexibility, as it makes it possible to design the architec-
ture of each sub-model specifically for the corresponding
source. Nonetheless, to guarantee a fair comparison of our
architecture with the current methods for MER, we use one
of our baselines as the architecture for all source models.

The baseline models are based on two common deep
learning architectures for MER, illustrated in Figure 2.
The first is a one-dimensional convolutional neural net-
work (C1D) that was proposed in [9] as an audio model
for multimodal MER. The architecture consists of two one-
dimensional convolutional layers followed by max-pooling
and batch normalisation. Its resulting feature maps are then
passed to two fully-connected layers with dropout masks to
improve generalisation. The second baseline comprises a
VGG-style network, demonstrated to be effective in sev-
eral MIR tasks [4]. This musically-engineered model,
C2D, consists of 5 two-dimensional convolutional blocks,
each separated by max pooling and dropout layers. The
two-dimensional pooling operators progressively decrease
the size of each feature map, while keeping the same num-
ber of kernels (32) after each block. After the convolu-
tional blocks, two-dimensional average pooling is applied
to ensure that the resulting feature map is of size 32 × 1.
Following dropout, a single fully-connected layer is then
employed to predict arousal and valence.

The architecture of our source models can be either
C1D or C2D, resulting in two different implementations of
EmoMucs – EmoMucs-C1D and EmoMucs-C2D. To yield
a final prediction of valence (V) and arousal (A), the fea-
tures from the source models are concatenated and passed
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Figure 2. The baseline models our system C1D and C2D. These are the building blocks for the source models.

to two fully-connected layers with dropout. Assuming
C1D is chosen as the architecture for our source models,
there are three possible ways to access the features of a
source model. This gives three fusion strategies: early (E),
mid (M) and late (L), depicted in Figure 2. The first strat-
egy considers the features obtained after the convolutional
layers; mid fusion concatenates the features learned after
the first fully-connected layers; and the late strategy con-
siders the output of each source model, which correspond
to the VA predictions. From the definition of C2D, the mid-
level fusion strategy is not possible with this architecture.

3.3 Our training approach
Considering the different role of each source model, there
are three main strategies for training EmoMucs: full, freeze
and fine-tune. The first approach consists in training the
whole network from scratch and propagating the gradient
back to the source models from the last fully-connected
layer of EmoMucs. In contrast, the last two strategies are
based on pre-training each source model separately as a
first step. The full network is then trained until the concate-
nation level, for the freeze mode, or until the first convolu-
tional layer of each source model, for the fine-tune mode.
This last choice can be considered as a sort of fine-tuning
strategy and should be implemented with small learning
rates to avoid the source models to catastrophically forget
what they have already learned independently.

4. EXPERIMENTS
Our method is validated using the baseline models C1D
and C2D trained on the mix-downs as reference models.
These are denoted as C1D-M and C2D-M respectively.
The performance of the baselines is then compared with
each source model trained independently. In particular, we
compare CXD-M with CXD-{V | B | D | O}, where V, B, D,
O denote the vocals, bass, drum, and other sources respec-
tively, and X is a placeholder for 1, 2. This allows to verify
how informative each source model is, and whether one of
them outperforms the correspondent mix-down baseline.

Secondly, we experiment with the different fusion and
training strategies of EmoMucs using all the source mod-
els. Similarly to the previous case, the performances of
EmoMucs with either C1D or C2D architectures for its
source models (denoted as EmoMucs-C1D and EmoMucs-
C2D) are compared to C1D-M and C2D-M.

We evaluate the accuracy of the valence-arousal predic-
tions with the root-mean-squared error (RMSE) and the
R2 score. The latter is the coefficient of determination,
with the best score being 1 when the variability of the tar-
get data is fully captured by the regressor. Conversely, a
score equal to 0 corresponds to a model always predict-
ing the expected value of the target. To avoid biasing our
evaluations on a single test set, each run employs nested
cross-validation with 5 splits for the outer and inner folds.

4.1 Dataset

As mentioned in [25, 29], the current methods for MER
perform well for genres such as classical music and film
soundtracks, but their performances are still poor for pop-
ular music. For this reason, we chose the popular music
with emotional annotations (PMEmo) dataset [38] for our
experiments. This collection contains valence-arousal in-
duced emotions for 794 songs, annotated by 457 subjects,
and also provides: song metadata, music chorus clips in
MP3 format and pre-computed audio features.

For our experiments, we consider the static valence-
arousal annotations. As our model needs raw-audio data
to feed Demucs and generate the separated sources from
a given mix-down, we use 20-second randomly selected
clips from each chorus. For 59 tracks with duration shorter
than 20 seconds, we apply zero padding at the end of the
clip to ensure fixed-size input. On average, the padding
operation is used to compensate for 4.35 seconds. The
arousal and valence annotations are scaled to the [−1, 1] in-
terval for improving the stability of the model. We choose
not to augment the dataset as such strategy can potentially
affect the emotional impact of music on listeners.

4.2 Implementation details

We use Librosa 0.7.2 [20] for computing the log-mel spec-
tograms from the tracks, with a fast Fourier transform
(FFT) window size of 512, 256 samples between succes-
sive frames and 96 Mel bands. Our models are imple-
mented in PyTorch [23], and the source code to repli-
cate these experiments is available at github.com/
jonnybluesman/emomucs.

4.3 Experimental results

The results of our experiments are reported in Tables 1 and
2. From Table 1, we notice that the C2D architecture is
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more accurate than C1D in all scenarios. In addition, the
former baseline is also a more parsimonious model, due to
the less number of parameters. All the baselines trained
on the mix-down are considerably better than the source
models considered independently. For both the architec-
tures, we find that the drums model is the best between
the source models at predicting valence, whereas the bass
model is the worst for arousal. The performance disagree-
ment for the source models using different architectures
(e.g. C1D-V and C2D-V) suggests that the convolutional
architecture plays a crucial role for the type of musical fea-
tures that can be learned.

RMSE R2
Baseline # params Input V A V A

M .2600 .2444 .3489 .5573
V .3048 .3214 .1131 .2426
B .2890 .3311 .2029 .1963
D .2710 .2961 .3000 .3572

C1D 86354

O .2723 .2936 .2925 .3679
M .2466 .2285 .4143 .6100
V .2701 .2750 .3039 .4455
B .2762 .2924 .2718 .3732
D .2587 .2855 .3613 .4024

C2D 37698

O .2633 .2748 .3381 .4462

Table 1. Evaluation of the baseline models trained on
the mix-down (C1D-M, C2D-M) together with the corre-
sponding source models. V, B, D, O denote vocals, bass,
drums and other and they refer to the source models. Bold
text highlights the best results for each baseline model. For
both cases, the mix-down model achieves the best results.

As can be seen from Table 2, combining all source mod-
els in a single network has a crucial impact on the perfor-
mance of the model. We conjecture that this is achieved by
the architecture of EmoMucs, which makes it possible to
account for all the possible inter-source relationships. In
particular, EmoMucs-C1D with mid-level feature fusion
and freeze mode training achieves a R2 score of 0.4332
for valence, which is a considerable increase compared to
0.3489 for C1D. This is also reflected with a decrease of

the RMSE for valence, accounting for 0.2428 instead of
0.26. Considering that the valence-arousal annotations are
scaled to the [−1, 1] interval, we divide these values by
2 for a more intuitive interpretation of the error. Hence,
0.2428 and 0.26 can be considered as errors of 12.14% and
13% in the annotation interval. Analogously, EmoMucs
C2D with late fusion and freeze mode training achieves va-
lence R2 = 0.4814 and RMSE = 0.2320 (11.6%), instead
of R2 = 0.4143 and RMSE = 0.2466 (12.33%) for the
C2D baseline. On the other hand, the arousal predictions
of EmoMucs are comparable to those of the baselines.

4.4 Interpretability

As the architecture of EmoMucs is based on a concatena-
tion of features learned by each source model at a specific
layer, it is possible to trace the contribution of each voice
as well as those emerging from their interrelated connec-
tions. This form of interpretability is architecturally sup-
ported by our deep neural network, and it comes at no per-
formance loss. This contrasts the work of Chowdhury et
al. [5], who measured the “cost of explainibility" of their
model by trading accuracy for interpretability.

A simple way to interpret EmoMucs is to isolate the per-
formance of each model independently, as done in Table 1.
It is also compelling to analyse the regression accuracy for
each track in the dataset and visualise them together with
the target annotations in the valence-arousal space. In Fig-
ure 3, this is done separately for valence and arousal by as-
sociating each target data point with a colour related to its
best source model (the one with lowest valence and arousal
RMSE for that target). If source models specialise in cer-
tain regions of the annotation space, e.g. drums and high
arousal, we would expect them to form clusters in the an-
notation space. However, this hypothesis is rejected as Fig-
ure 3 does not suggest any clear specialisation of the source
models in the annotation space. This supports our previous
observation that each track has intrinsic features related to
its emotional impact. For instance, two distinct tracks with
very similar annotations can have a considerably different
emotional influence from their sources.

Figure 4 reports the performance (R2 score for valence
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Early Mid Late
RMSE R2 RMSE R2 RMSE R2

Model Training V A V A V A V A V A V A

EmoMucs-C1D
freeze .2536 .2580 .3803 .5064 .2428 .2435 .4332 .5615 .2453 .2475 .4208 .5470

finetune .2562 .2624 .3655 .4878 .2516 .2492 .3875 .5395
na

full .2536 .2628 .3787 .4850 .2625 .2651 .3371 .4794

EmoMucs-C2D
freeze .2373 .2307 .4584 .6046

na
.2320 .2322 .4814 .6004

finetune .2444 .2442 .4256 .5560
na

full .2541 .2543 .3793 .5212

Table 2. Comparison of EmoMucs models with different fusion and training strategies.

B-O B-V D-B D-O D-V O-V B-O-V D-B-O D-B-V D-O-V V-B-D-O
Source model combination
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0.6

R2
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e

Valence

B-O B-V D-B D-O D-V O-V B-O-V D-B-O D-B-V D-O-V V-B-D-O
Source model combination

R2
 sc

or
e

Arousal

Figure 4. EmoMucs-C2D trained with different combinations of source models.

and arousal) of EmoMucs-C2D using late fusion and freeze
training mode for different combinations of source models.
The best performance is achieved when using all sources
(V-B-D-O). The contribution of source models varies with
their combination. When using two sources, the combina-
tion of the bass and the other models gives better perfor-
mance in the valence space, but for the arousal space an
improved result is achieved when combining vocals with
other. When three sources are considered, the combination
of drums, bass and other achieves the best R2 for valence,
whereas, for arousal, excluding bass gives comparable re-
sults to EmoMucs-C2D with all the sources.

5. CONCLUSIONS

The task of computational music emotion recognition
(MER) is particularly challenging due to several factors
such as subjectivity within annotations, scarcity of labelled
data for training supervised models, and inadequate data
augmentation strategies. There is common belief that the
current models perform well for classical music and film
soundtracks, but their performances are still poor for pop-
ular music. To the best of our knowledge, improving the
interpretability of MER models jeopardises their perfor-
mance, thus introducing a “cost of explainability".

In this paper we introduced EmoMucs, a deep learning
architecture for MER based on music source separation.
First, our method separates the audio signal into different
sources associated to vocals, drums, bass and other voices
of the mix-downs. Different sub-models are then used to
process each source independently, with their features be-
ing aggregated according to a fusion strategy.

We evaluated EmoMucs on the popular music with
emotional annotations (PMEmo) dataset, and compared its
performance with two common deep learning models for

MER trained on the mix-downs. Our results demonstrate
that EmoMucs outperforms the baseline models for va-
lence, and achieves comparable performance for arousal,
while providing increased interpretability.

Our work achieves the following: (i) improved perfor-
mance of the current solutions with the same amount of
training data; (ii) a modular architecture which can be fur-
ther adapted and fine-tuned with respect to each source-
specific module, and (iii) a quantified contribution of each
source to the final prediction for more interpretability.

The implementation of EmoMucs considered in our ex-
periment is designed to prioritise the comparability of our
approach to other baselines. In our future endeavours, we
plan on optimising the architecture and hyper-parameters
of each source model in order to specialise their design to
the corresponding sources. Additionally, a study based on
the analysis of the activations of the fusion layer would
provide more detailed insights regarding the contribution
of each source-model, thereby increasing the interpretabil-
ity of our method and its potential applications.
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315



[4] Keunwoo Choi, George Fazekas, Mark B. Sandler, and
Kyunghyun Cho. Transfer learning for music classi-
fication and regression tasks. ArXiv, abs/1703.09179,
2017.

[5] Shreyan Chowdhury, Andreu Vall, Verena
Haunschmid, and Gerhard Widmer. Towards ex-
plainable music emotion recognition: The route via
mid-level features. In ISMIR, 2019.

[6] Eduardo Coutinho, George Trigeorgis, Stefanos
Zafeiriou, and Björn Schuller. Automatically estimat-
ing emotion in music with deep long-short term mem-
ory recurrent neural networks. pages 1–3, 01 2015.

[7] Yann N Dauphin, Angela Fan, Michael Auli, and
David Grangier. Language modeling with gated con-
volutional networks. In Proceedings of the 34th Inter-
national Conference on Machine Learning-Volume 70,
pages 933–941. JMLR. org, 2017.

[8] Alexandre Défossez, Nicolas Usunier, Léon Bottou,
and Francis Bach. Music source separation in the wave-
form domain. arXiv preprint arXiv:1911.13254, 2019.

[9] Rémi Delbouys, Romain Hennequin, Francesco Pic-
coli, Jimena Royo-Letelier, and Manuel Moussallam.
Music mood detection based on audio and lyrics with
deep neural net. In ISMIR, 2018.

[10] S. Dornbush, K. Fisher, K. McKay, A. Prikhodko, and
Z. Segall. Xpod - a human activity and emotion aware
mobile music player. In 2005 2nd Asia Pacific Confer-
ence on Mobile Technology, Applications and Systems,
pages 1–6, 2005.

[11] Paul Ekman. An argument for basic emotions. 1992.

[12] Arefin Huq, Juan Pablo Bello, and Robert Rowe. Auto-
mated music emotion recognition: A systematic evalu-
ation. Journal of New Music Research, 39(3):227–244,
2010.

[13] David Huron, Neesha Anderson, and Daniel Shana-
han. “you can’t play a sad song on the banjo:” acoustic
factors in the judgment of instrument capacity to con-
vey sadness. Empirical Musicology Review, 9(1):29–
41, 2014.

[14] Alejandro Jaimes, Nicu Sebe, and Daniel Gatica-Perez.
Human-centered computing: A multimedia perspec-
tive. pages 855–864, 01 2006.

[15] Patrik N Juslin and John A. Sloboda. Handbook of mu-
sic and emotion: Theory, research, applications. 2011.

[16] Youngmoo Kim, Erik Schmidt, Raymond Migneco,
Brandon Morton, Jeffrey Scott, Jacquelin Speck, and
Douglas Turnbull. Music emotion recognition: A state
of the art review. Proceedings of the 11th International
Society for Music Information Retrieval Conference,
ISMIR 2010, 01 2010.

[17] Emmanuel Kuntsche, Lydie Le Mével, and Irina
Berson. Development of the four-dimensional motives
for listening to music questionnaire (mlmq) and associ-
ations with health and social issues among adolescents.
Psychology of Music, 44:219–233, 2016.

[18] Karl F MacDorman, Stuart Ough Chin-Chang Ho. Au-
tomatic emotion prediction of song excerpts: Index
construction, algorithm design, and empirical compar-
ison. Journal of New Music Research, 36(4):281–299,
2007.

[19] Stephen Mcadams, Bradley Vines, Sandrine Vieillard,
B. Smith, and R. Reynolds. Influences of large-scale
form on continuous ratings in response to a contempo-
rary piece in a live concert setting. Music Perception,
22:297–350, 12 2004.

[20] Brian McFee, Vincent Lostanlen, Matt McVicar,
Alexandros Metsai, Stefan Balke, Carl Thomé, Colin
Raffel, Ayoub Malek, Dana Lee, Frank Zalkow,
Kyungyun Lee, Oriol Nieto, Jack Mason, Dan Ellis,
Ryuichi Yamamoto, Scott Seyfarth, Eric Battenberg,
Rachel Bittner, Keunwoo Choi, Josh Moore, Ziyao
Wei, Shunsuke Hidaka, nullmightybofo, Pius Friesch,
Fabian-Robert Stöter, Darío Hereñú, Taewoon Kim,
Matt Vollrath, and Adam Weiss. librosa/librosa: 0.7.2,
January 2020.

[21] Leonard B Meyer. Emotion and meaning in music.
University of chicago Press, 2008.

[22] Luca Mion and Giovanni De Poli. Score-independent
audio features for description of music expression.
IEEE Transactions on Audio, Speech, and Language
Processing, 16(2):458–466, 2008.

[23] Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani,
Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Jun-
jie Bai, and Soumith Chintala. Pytorch: An imperative
style, high-performance deep learning library. In Ad-
vances in Neural Information Processing Systems 32,
pages 8024–8035. Curran Associates, Inc., 2019.

[24] Jonathan Posner, James A Russell, and Bradley S Pe-
terson. The circumplex model of affect: An integrative
approach to affective neuroscience, cognitive devel-
opment, and psychopathology. Development and psy-
chopathology, 17(3):715–734, 2005.

[25] Pasi Saari, Tuomas Eerola, and Olivier Lartillot. Gen-
eralizability and simplicity as criteria in feature se-
lection: Application to mood classification in music.
IEEE Transactions on Audio, Speech, and Language
Processing, 19(6):1802–1812, 2010.

[26] Erik M Schmidt and Youngmoo E Kim. Prediction of
time-varying musical mood distributions from audio.
In ISMIR, pages 465–470, 2010.

Proceedings of the 21st ISMIR Conference, Montréal, Canada, October 11-16, 2020
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ABSTRACT

This paper develops the hypothesis that symbolic drum
patterns can be represented in a reduced form as a sim-
ple oscillation between two states, a Low state (commonly
associated with kick drum events) and a High state (often
associated with either snare drum or high hat). Both an
onset time and an accent time is associated to each state.
The systematic inference of the reduced form is formal-
ized. This enables the specification of a rhythmic struc-
tural similarity measure on drum patterns, where reduced
patterns are compared through alignment. The two-state
representation allows a low computational cost alignment,
once the complex topological formalization is fully taken
into account. A comparison with the Hamming distance, as
well as similarity ratings collected from listeners on a drum
loop dataset, indicates that the bistate reduction enables to
convey subtle aspects that goes beyond surface-level com-
parison of rhythmic textures.

1. INTRODUCTION

One of the most fundamental areas of both Music Infor-
mation Retrieval (MIR) and music cognition research con-
cerns the modelling of musical similarity, due to the es-
sential importance of similarity in music perception and
the practical utility of similarity models in music retrieval
applications such as recommendation systems. Modelling
similarity for drum patterns is a particular challenging vari-
ant of this research, though one with potential applica-
tion in a wide range of intelligent music production tools
such as drum pattern recommendation systems or auto-
matic drum pattern generation systems.

The challenges of drum pattern similarity modelling
lies in the complex nature of polyphonic rhythm percep-
tion. The integration of coincident rhythms into a resultant
‘multirhythm’ has been argued to be an essential feature of
polyphonic rhythm perception, especially in the context of
drumming music [1]. Rhythmic interactions may also be
a significant aspect of polyphonic rhythm perception, with
complex rhythmic structures said to emerge from the inter-
action between rhythmic levels [2]. In the context of drum

c© Olivier Lartillot, Fred Bruford. Licensed under a Cre-
ative Commons Attribution 4.0 International License (CC BY 4.0). At-
tribution: Olivier Lartillot, Fred Bruford, “Bistate reduction and com-
parison of drum patterns”, in Proc. of the 21st Int. Society for Music
Information Retrieval Conf., Montréal, Canada, 2020.

patterns specifically, rhythmic interaction and instrumental
configuration has been shown to have a significant affect
on the perception of syncopation, a fundamental rhythmic
property [3]. However, in much existing work on drum pat-
tern similarity modelling, similarity is modelled as a linear
combination of monophonic rhythm similarity models cal-
culated on each instrument part, without consideration to
rhythmic interactions or integration.

Our aim is to design new models of similarity for drum
patterns that take into account both rhythmic interaction
and rhythmic integration. The bistate reduction algorithm
proposed in this paper attempts to extract the core struc-
ture of drum pattern as an interaction between two states,
‘Low’ and ‘High’, and to use this reduced representation
to compare drum patterns through alignment.

The drum patterns used in this paper are part of a varied
set of 160 stylistically accurate symbolic patterns recorded
by human drummers on an electronic drum kit, taken from
the Groove library of BFD3 [4], a commercially available
virtual drum kit plugin. Originally collected by [5], the pat-
tern dataset is drawn from a wide range of genres and sub-
genres, with 8 genre groups used: Hiphop/Dance, Funk,
Blues/Country, Pop, Reggae/Latin, Rock, Metal and Jazz.
In addition to multiple genres, they are of varied complex-
ity and function, with some containing fills.

In Section 2, we discuss in greater detail approaches
to modelling monophonic rhythm similarity and assess the
state-of-the-art in drum pattern similarity modelling and its
limitations. In Section 3 and Section 4, we begin discus-
sion of the bistate reduction algorithm and bistate sequence
alignment technique respectively as a novel means of rep-
resenting complex drum patterns and estimating the per-
ceived similarity between them. In Section 5, the sequence
alignment algorithm is evaluated in its ability to predict
human similarity ratings for pairs on drum patterns in our
dataset.

2. RELATED WORK

Models of rhythmic similarity are significant in both music
perception and music informatics research due to rhythm’s
fundamental importance in music. For drum patterns
in particular, models of rhythmic similarity have various
practical applications such as automatic generation of vari-
ations on drum patterns [6,7], or in visually mapping drum
patterns by similarity to facilitate exploration of drum pat-
tern libraries [8, 9].
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1 2 3 4 5 6 7 8

closed 
 high hat

snare

kick

Figure 1. Drum pattern Early RnB 33. Velocity is repre-
sented in grey level, from 0 in white to maximum value in
black.

1 2 3 4 5 6 7 8

high

low

Figure 2. Reduction of Early RnB 33. State accents are
shown in black and state onsets (if different from accents)
in grey. ‘Low’ corresponds to ↓ and ‘high’ to ↑.

Many models of rhythmic similarity for drum patterns
are based on monophonic rhythm similarity models. These
methods are based on multiple possible representations of
rhythms. The most common method is as a vector consist-
ing of either an onset or silence at each metrical position of
the rhythm. The Hamming distance, a simple and popular
model, works by counting the number of metrical positions
in two rhythm vectors that differ in value (one onset, the
other rest) [10]. The swap or directed-swap distance can
also be calculated between rhythm vectors by counting the
number of swap operations (exchanges between adjacent
metrical positions) that need to be performed to turn one
rhythm into the other [11]. Other possible rhythm similar-
ity measures use inter-onset intervals (IOIs), vectors of the
distance between each successive onset as a multiple of the
smallest possible metrical position. An example of this is
the chronotonic distance [10]. A thorough overview of nu-
merous approaches to rhythm similarity modelling can be
found in [10].

Typically, drum pattern similarity is modelled by stack-
ing these monophonic rhythm similarity models calculated
on each part separately. This has been found to be success-
ful in a few cases; [7] found that the Hamming distance
and directed-swap distance correlated strongly with human
ratings of similarity for drum patterns, with the Hamming
distance outperforming the directed-swap. In [8], the au-
thors found a 2D projection of the Hamming distance could
partially cluster drum patterns in a way that matched their
genre tags for a small dataset of patterns. In a pilot study,
a model similar to the Hamming distance was also found
to correlate to listeners’ similarity ratings for drum pat-
terns [12]. This model counts whether the number of met-
rical positions where rhythms differ, but adds a weighting
metric based on metrical awareness.

The limitation of these models is that by stacking mono-
phonic rhythm similarity measures calculated on each part
separately, they fail to account for effects of rhythmic in-
teraction between instrument parts, or the perception of re-

1 2 3 4 5 6 7 8

open 
 high hat

closed 
 high hat

snare

kick

Figure 3. Drum pattern Reggae Grooves Fill 3.

1 2 3 4 5 6 7 8

high

low

Figure 4. Reduction of Reggae Grooves Fill 3.

sultant ‘multirhythms’ due to the perceptual integration of
simultaneous rhythmic streams. Additionally, while fixed
weighting schemes have been used to weight more percep-
tually important kit instruments [6], these may not be flexi-
ble enough to account for the possibly changing contextual
importance of different instruments in a drum pattern.

3. BISTATE REDUCTION

Basic drum patterns are usually defined by the alterna-
tion of, typically, bass (or “kick”) drum and snare drum
strokes, with a further subdivision on the ride cymbal or
hi-hat 1 . The ordering in this definition implicitly indicates
that the bass and snare drums alternation is of higher level
of salience, while the cymbal or hi-hat subdivision is of
lesser importance.

3.1 Dominant Drum Selection

The first hypothesis guiding the approach presented in this
paper is that drum patterns can be reduced by only focusing
on these two most dominant classes of drum strokes. In the
definition of basic drum patterns above, the two dominant
drums are said to be bass and snare drums. But sometimes
the snare drums can be replaced by, for instance, closed
hi-hat.

For a given drum pattern, we propose a simple method
for selecting the two dominant drums. It consists in or-
dering the drums in a decreasing hierarchical order, and
selecting the two first drums, in this ordered list, that are
active in the given drum pattern. The first selected drum
will be called the Low drum, as it often relates to the bass
drum and to the use of lower frequencies, while the second
selected drum will be called the High drum.

For the drum patterns discussed throughout the paper,
the reduction was performed by using the following hier-
archical ordering: 1. kick drum, 2. snare drum, 3. closed
hi-hat. It was not necessary to consider other drums, since
at least two of these three drums were active in each drum

1 Cf. for instance https://en.wikipedia.org/wiki/Drum_
beat
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pattern. In other words, a drum pattern featuring kick drum
and closed hi-hat, but no snare drum, will use kick drum as
Low and closed hi-hat as High. A drum pattern featuring
snare drum and closed hi-hat but no kick drum will use
snare drum as Low and closed hi-hat as High.

For the example shown in Figures 1 and 3, the closed
hi-hat sequence is considered as of less importance and
therefore ignored.

3.2 Two-State Alternation

The second hypothesis developed in the proposed ap-
proach is that drum patterns can be reduced as an alter-
nation between the Low and High drums. This can be for-
malised as an alternation between two states, respectively
designated ↓ and ↑. Figures 2 and 4 shows the reduction
corresponding to the sequences in Figures 1 and 3.

3.2.1 Handling of Simultaneous Strokes

At first sight, to detect the ↓ and ↑ states, we would sim-
ply need to look for the location of alternation between the
Low and High drums. The difficulty comes from the fact
that the two drums are often played together. In such occa-
sions, inference of ↓ or ↑ state relies on the context defined
by the recent past.

For instance in Figure 3, kick and snare drums are
played together at the beginning of beats 5, 6 and 8. Be-
cause the kick drum plays a clear ↓ at the beginning of
beat 4 (i.e., 4.1), which continues with snare drum play-
ing gently (from 4.2 to 4.4). We haven’t heard any clear
↑ state. Therefore, when snare drum and kick drums are
superposed on the next beat (5.1), this is perceived as a ↑.
But because the snare drum is played loudly on the next
tick (5.2), the next beat (6.1) is rather perceived as a ↓.
Same for 8.1.

We propose to explain this phenomenon by hypothesis-
ing that the categorisation ↓ vs. ↑ is based on comparing
each new drum stroke (or superposed strokes) to mental
models of ↓ and ↑ states. And in our modelling, this can be
simplified by comparing to only the mental model related
to one of the states ↓ and ↑, namely the state considered as
currently active.

More precisely, the mental model is represented by a
state s ∈ {↓, ↑, 0} (where state 0 is used solely when start-
ing the analysis, before the first actual state ↓ or ↑ has
been detected) altogether with a series of two velocities
(vM↓ , vM↑ ) ∈ [0, 1]2, called profile of the mental model,
and first initiated to (0, 0). The profile is updated with the
current configuration

(vM↓ , vM↑ ) = (v↓, v↑) (1)

every time there is a state transition.
At any given successive point in the drum pattern, fea-

turing at that instant a Low drum stroke of velocity v↓ ∈
[0, 1] (with 0 indicating no stroke) and a High drum stroke
of velocity v↑ ∈ [0, 1], we consider the following alterna-
tives, which are tested in the indicated order until a suitable
condition is found:

0.2
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0.2
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1 0
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1 2 3 4 5 6 7 8
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down

Figure 4. Reduction of Reggae Grooves Fill 3. When
a state is repeated twice successively, the first square
(lighter) corresponds to the onset time and the second
square to the accent time, with its velocity indicated in
gray-scale. ‘down’ corresponds to # and ‘up’ to ".

3.2.1 Handling of Simultaneous Strokes170

At first sight, to detect the # and " types 2 , we would sim-171

ply need to look for the location of alternation between the172

Down and Up drums. The difficulty comes from the fact173

that the two drums are often played together. In such occa-174

sions, inference of # or " type relies on the context defined175

by the recent past.176

For instance, a Down event followed by a simultaneous177

Down + Up event would be generally reduced to (#, ").178

Similarly, an Up event followed by a simultaneous Down179

+ Up event would be generally reduced to (", #). But this180

would not be necessarily true if the velocity 3 is not con-181

stant. For instance, although a loud Down followed by a182

loud Up followed by a loud Down + Up would be reduced183

to (#, ", #), a loud Down followed by a soft Up followed by184

a loud Down + Up would instead be reduced to (#, ", ").185

For instance in Figure 3, kick and snare drums are186

played together at the beginning of bars 5, 6 and 8. Be-187

cause the kick drum plays a clear # at the beginning of188

bar 4 (i.e., 4.1), which continues with snare drum play-189

ing gently (from 4.2 to 4.4). We haven’t heard any clear190

" state. Therefore, when snare drum and kick drums are191

superposed on the next beat (5.1), this is perceived as a ".192

But because the snare drum is played loudly on the next193

tick (5.2), the next beat (6.1) is rather perceived as a #.194

Same for 8.1.195

We propose to explain this phenomenon by hypothesis-196

ing that the categorisation # vs. " is based on comparing197

each new drum stroke (or superposed strokes) to mental198

models of # and " types. And in our modelling, this can be199

simplified by comparing to only the mental model related200

to one of the types # and ", namely the type considered as201

currently active.202

More precisely, the mental model is represented by a203

type tM 2 {#, "} altogether with a series of two veloci-204

ties (vM
# , vM

" ), called profile of the mental model, and first205

initiated to (�1,�1). At any given time, with a Down206

event of velocity v# and an Up event of velocity v", we207

consider the following alternatives:208

1. If v# > v" + .2, the new event is #. Besides, if209

v# > vM
# � .2, the mental model is set to tM =#210

as well, and its profile is identified with the current211

event:212

(vM
# , vM

" ) = (v#, v") (1)
2 We will avoid using the term state here, as it will be used more specif-

ically in section 3.2.2.
3 In this paper, velocity designates the dynamics of drum strokes.

1 2 3 4 5 6 7 8

Figure 5. Drum pattern N Country Intro with kick drum
(lower row), closed hi-hat (middle row). Velocity is repre-
sented in grey level, from 0 in white to maximum value in
black.

1 2 3 4 5 6 7 8

up

down

Figure 6. Reduction of N Country Intro. See Figure 4
caption for an explanation.

2. If tM =# and v" > vM
" + .2, the new event is " and213

the mental model is updated to tM =" and its profile214

updated according to equation 1.215

3. If v# = 0, the new event is ". If tM =" as well, its216

profile is updated if v" > vM
" , or if v" >

vM
"
2 and217

v# < vM
# � .2.218

4. Similar to point 2 above, if tM =" and v# > vM
# +.2,219

the new event is # and the mental model is updated to220

tM =# and its profile updated according to equation221

1.222

5. If the current velocity (v#, v") is close to the profile223

of the mental model224

|vM
# � v#| < .1, |vM

" � v"| < .1, (2)

the new event’s type corresponds to the mental225

model’s one, and the profile is updated according to226
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tick (5.2), the next beat (6.1) is rather perceived as a #.194
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Figure 5. State transition diagrams, where the current state
is respectively 0 (left diagram), ↓ (middle) and ↑ (right).
For given values for v↓ (X axis) and v↑ (Y axis) is indicated
the next state: ↓ (red) ↑ (blue), 0 (white). See the text for
more explanation.

1. If v↓ > v↑ + .2, the next state is ↓. This corresponds
to the region in dark red in each diagram in Figure
5. The profile is updated. In other words, when the
Low stroke is significantly stronger than the High
stroke, the new state is clearly ↓.

2. Similarly, if v↑ > v↓ + .2, the next state is ↑ (dark
blue region in Figure 5) and its profile updated.

3. If the current state is 0 (i.e, undefined), the next state
is ↓ if v↓ > .2 (light red region in the left diagram of
Figure 5). In other words, at the very beginning of
a drum pattern, an ambiguous mixture of Low and
High drums is associated with ↓, because it is con-
sidered as the default state (while ↑ is a departure
from the default state). If on the contrary v↓ ≤ .2
the next state is ↑ if v↑ > .2 or if v↓ = 0 (light blue
region).

4. If v↓ = 0 and if the current state is ↓, the next state

is ↑ if v↑ >
vM
↑
2 . If on the contrary the current state

is already ↑, the profile is updated only if v↑ > vM↑ .

5. If the current state is ↓ and v↑ > vM↑ + .2, the next
state is ↑ (light blue region in the middle diagram
of Figure 5). In other words, a significant increase
in velocity of the High strike (even if the velocity
remains lower than the Low strike’s one) triggers a
transition to the ↑ state.

6. Similarly, if the current state is ↑ and v↓ > vM↓ +
.2, the next state is ↓ (light red region in the right
diagram of Figure 5).

3.2.2 State Onset and Accent Times

The approach presented in the previous section leads to the
generation of a sequence of states ↑ and ↓. Successive rep-
etitions of a same state are reduced into one single state.
This practically means in particular that successive repeti-
tions of a given drum (while the other drum remains silent)
are collapsed into one single state.

However, if the most accented stroke is not the first one,
this needs to be specifically indicated in the pattern de-
scription, as it plays an important role in the pattern char-
acteristics. For that reason, with each state (excepted the
initial 0 state) are associated three attributes:
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↓! (↓) ↑! (↑)
↓! S ↓ S ↓ O A ↓
(↓) S ↓ B ↑
↑! O A ↑ S ↑ S ↑
(↑) B ↓ S ↑

Table 1. Alignment configurations, triggered by state tran-
sitions, in the first sequence (left column) or/and in the sec-
ond sequence (top row). In the absence of transition in any
of the two sequences, no alignment configuration needs to
be defined.

• whether it is ↓ or ↑

• the onset time, i.e., the temporal position of the first
stroke in that successive repetition of strokes

• the accent time, i.e., the temporal position of the
most accented stroke.

4. BISTATE SEQUENCE ALIGNMENT

The third hypothesis developed in this paper is that the per-
ceived distance between two drum patterns can be approxi-
mated by aligning the two corresponding bistate sequences
and estimating the alignment mismatches.

4.1 Alignment principle

To allow the formalisation of this alignment, the set of two
states {↓, ↑} is further decomposed into four states {↓!, ↑
!, (↓), (↑)} in order to take into account all the temporal
relationships:

• ↓! and ↑! corresponds to a new transition to, respec-
tively, ↓ and ↑.

• (↓) and (↑) indicates a continuation of the corre-
sponding states ↓ and ↑.

This leads to a 4× 4 matrix of possible alignment con-
figurations, shown in Table 1. We can distinguish three
types of alignment configurations:

• The two sequences are in same state (“S”), both low
(“S ↓”) or both high (“S ↑”).

• One sequence introduces the opposite state ahead
of the other sequence: “A” if it the first sequence
ahead, “B” if it the second sequence.

• The two sequences are in opposite states (“O”).

The possible transitions between configurations are the
following, as described in Table 1:

• Starting from the same state (for instance S ↓), then
both sequences transition at the same time (for in-
stance S ↑).

• Starting from the same state (for instance S ↓), then
one sequence transitions first (for instance A ↑).

Figure 6. Alignment between two reduced drum patterns
A and B. Penalties are given for each individual state, in-
dicated with a number or ’P’. See the text for more expla-
nation.

• From configuration A or B, if only one sequence
transitions, this leads to S, while if both sequences
transition at the same time, this leads to opposite
states O.

• From O, another double-transition leads to another
O, while a single transition leads to either A or B.

4.2 Numerical distance estimation

The proposed distance model is based on an evaluation of
how well each of the two drum patterns aligns with the
other. For each successive state of each drum pattern, a
penalty is given if that state is not found in the other se-
quence around the same temporal position. Offset in the
temporal positions of the state on the two sequences also
contributes to the penalty.

The basic mechanisms are illustrated below using the
toy example shown in Figure 6. In this first example, we
assume that both sequences start at the same state (↓).

• The first state starts at the same time (t = 1) on
both sequences, leading to a S ↓ configuration with
0 penalty (shown in green in the Figure).

• The next event appears first in sequence A (A ↑ at
t = 2). The same transition appears next in sequence
B (S ↑ at t = 3). It is thus a quasi-synchronised tran-
sition, with 1 tick delay between the two sequences.
A penalty of 1 is therefore given to the new state in
each sequence. (The onset of each state is shown
in orange while the position of the opposite state is
shown in yellow.)

• A transition B ↓ at t = 4 is followed by another
transition back to S ↑. This state ↓ is deleted by
giving the maximum penalty P (in red) and the new
state ↑ at t = 5 (in blue) is ignored.

• A transition A ↓ at t = 6 is followed by a double
transition O at t = 8, which is considered as both
a 2-tick-delayed transition of B to state ↓ and as the
start of a new transition A ↑. Same for the subse-
quent double transition O at t = 9. The new tran-
sition A ↓ being followed by a transition S ↑, that
state ↓ is removed.
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Figure 7. Alignment between two reduced drum patterns
A and B. Boxed series of cells show states containing re-
peated strokes, where the accent is the rightmost cell.

• Sequence A continuing after the end of sequence B,
any transition to the opposite state A ↓ (here only at
t = 11) is deleted.

In Figure 7, the sequences starting in opposite states, an
additional ↓ state is added before the start of sequence B,
to which is given a penalty of 4. In this example, since the
next event is a ↓ in sequence B, the previous ↑ is removed.

The rest of Figure 7 illustrates the handling of states
containing repeated strokes with the accentuated stroke ap-
pearing after the initial onset. Concerning the transition to
↑ first by B at t = 3 and then by A at t = 5, the penalty
is only 1 because it is computed between the accent in se-
quence B (at t = 4) and the onset of sequence A. For the
same reason, the next transition to ↓ at t = 7 is considered
without penalty. While B remains in ↓, with its attack at
t = 9, A transitions to ↑ with an attack at t = 8, which is
therefore deleted.

Each penalty is weighted with respect to the corre-
sponding accent velocity. For instance in the case of a
drum stroke of very low intensity (such as a ghost note),
the contribution of this penalty to the overall distance will
be low. Finally the distance between the two sequences is
defined as the maximum between the two weighted sums.

5. EVALUATION

To investigate the potential use of the bistate sequence
alignment algorithm for drum pattern similarity modelling,
we examined its calculated distances between 80 pairs of
drum patterns in our dataset in relation to human-provided
perceptual similarity ratings.

5.1 Methodology

We collected similarity ratings for the drum patterns via
an online listening test. The symbolic patterns were first
synthesized into audio via a generic sampled drum kit. 21
listeners rated similarity for the 80 pairs of patterns using a
continuous scale. Median internal consistency for all par-
ticipants calculated using the ICC (2,1) for the repeated
pairs was 0.85, equaling good agreement. The inter-rater
agreement for the 21 listeners calculated using the same
ICC (2,1) was 0.73, equally moderate-to-good agreement.
The spreads of ratings for each comparison were normally

Similarity Model r p
Hamming Distance 0.604 2.97e-9
Hamming Distance (2 channels) 0.539 2.58e-7
Bistate Sequence Alignment 0.556 8.49e-8
min(Hamming (2 chan), Alignment) 0.606 2.65e-9
min(Hamming, Alignment) 0.692 1.21e-12

Table 2. Pearson correlation coefficient r and p-value be-
tween mean similarity ratings and distance models.

distributed. More information on the collection of this
dataset may be found in [5].

To test the overall extent to which the bistate sequence
alignment algorithm corresponds to perceived similarity,
we calculated the Pearson correlation between the distance
calculated by the bistate sequence alignment algorithm and
the mean of human-supplied similarity ratings. We used
the established Hamming distance as a reference for eval-
uation, since, as indicated in Section 2, it gave the best
results in previous works. The first step of our approach,
presented in section 3.1, can be studied separately by also
computing the Hamming distance on the two main chan-
nels of the drum patterns.

5.2 Results and Discussion

The results can be seen in Table 2. Various values for the
parameter P were tried and the best results were obtained
with P = 8. The Hamming distance’s correlation on the
complete drum patterns is slightly stronger than the bistate
sequence alignment, which is itself very slightly better than
the Hamming distance computed on the two main drum
channels.

When combining the Hamming distance (computed on
the whole drum loops) with the alignment by taking the
minimum of them both, the correlation is better than the
Hamming distance alone, with a correlation of 0.692 vs
0.604. This increase in correlation was found to be statisti-
cally significant (t=1.748, p=0.04). This could indicate that
both these two algorithms capture fundamentally different
aspects of similarity, with the Hamming distance capturing
low-level similarities between rhythms, and the bistate se-
quence alignment capturing qualities relating to rhythmic
interaction and structure.

The difference between the distances can be seen in Fig-
ure 8 where the similarity ratings of all 80 pairs are plotted
alongside distances calculated by both the Hamming dis-
tance and the bistate sequence alignment algorithm.

The differences between the bistate sequence alignment
algorithm and Hamming distance can be further demon-
strated through viewing of some particular examples. Fig-
ure 9 shows a pair of Soul Grooves patterns that share very
similar kick and snare drum patterns while differing on
other drum tracks. Since the similarity was judged by the
listeners as high, this demonstrates the interest, in partic-
ular cases such as this one, in focusing the comparison of
drum patterns on the main kick and snare drums. And in-
deed, computing the Hamming distance on those two main
channels leads to a similarly low distance value (cf. red
arrow in Figure 8).
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Figure 8. Comparison of the Z-score of the new proposed distance (in blue), the Hamming distance (in yellow), the
Hamming distance on the two main channels (in purple) and the listeners’ ratings (in red), for each of the 80 pairs of drum
patterns. The red and blue arrows indicate the examples shown in, respectively, Figures 9 and 10.
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Figure 9. Alignment between drum patterns Soul Grooves
2 (top left and center) and Soul Grooves 31 (top right and
bottom). The only penalties contributing to the distance is
a 1-tick offset (in orange) and a deleted state (in red).

Figure 10 illustrates the interest of the method beyond
the simple selection of two main channels. In this example,
the two sequences differ significantly at the surface level,
even if we restrict the scope on the kick and snare drums.
On the other hand, the corresponding reduced bistate se-
quences are similar and show a clear alignment, leading
to a relatively low distance on par with the listeners’ juge-
ment.

6. CONCLUSIONS

This article proposed an attempt to reduce drum patterns
into an underlying core structure with the aim to compare
drum patterns by aligning their reduced representation one
with each other. Clearly the problem of rhythmic reduction
is of high complexity, and is addressed here solely as an in-
termediary step for the establishment of a distance measure
between drum patterns. These mechanisms of selection of
dominant drums and of inference of Low and High states
could be studied further in order to provide more advanced
description of drum patterns.
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Figure 10. Alignment between drum patterns Batucara 3
and Cascara 5 using the same conventions as in Figure 9.

As it could have been expected, the comparison be-
tween the proposed distance and a simple surface-level
Hamming distance concerning their abilities to mimic lis-
teners similarity judgments shows that for the most part,
listeners rely on surface characteristics of the overall rhyth-
mic texture to compare drum patterns. However, in par-
ticular cases the underlying core structure can be of im-
portance as well, and this is where the proposed distance
can be of interest. Combining surface-level and deeper-
level representations seems to improve the overall similar-
ity modelling. We may hypothesise that further progress
in this endeavour could be made possible through the inte-
gration of more refined cognitive models.
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324



 
 
 
 
 
 
 

Paper Session 3 

  





MULTI-INSTRUMENT MUSIC TRANSCRIPTION BASED ON DEEP
SPHERICAL CLUSTERING OF SPECTROGRAMS AND PITCHGRAMS

Keitaro Tanaka1,∗ Takayuki Nakatsuka1 Ryo Nishikimi2
Kazuyoshi Yoshii2 Shigeo Morishima3

1 Waseda University, Japan 2 Kyoto University, Japan
3 Waseda Research Institute for Science and Engineering, Japan

∗phys.keitaro1227@ruri.waseda.jp

ABSTRACT

This paper describes a clustering-based music transcription
method that estimates the piano rolls of arbitrary musical
instrument parts from multi-instrument polyphonic music
signals. If target musical pieces are always played by par-
ticular kinds of musical instruments, a way to obtain piano
rolls is to compute the pitchgram (pitch saliency spectro-
gram) of each musical instrument by using a deep neural
network (DNN). However, this approach has a critical lim-
itation that it has no way to deal with musical pieces in-
cluding undefined musical instruments. To overcome this
limitation, we estimate a condensed pitchgram with an ex-
isting instrument-independent neural multi-pitch estimator
and then separate the pitchgram into a specified number of
musical instrument parts with a deep spherical clustering
technique. To improve the performance of transcription,
we propose a joint spectrogram and pitchgram clustering
method based on the timbral and pitch characteristics of
musical instruments. The experimental results show that
the proposed method can transcribe musical pieces includ-
ing unknown musical instruments as well as those contain-
ing only predefined instruments, at the state-of-the-art tran-
scription accuracy.

1. INTRODUCTION

The problem of estimating the fundamental frequencies of
multiple periodic signals, which is called multi-pitch esti-
mation (MPE) [1], is an important task of music informa-
tion retrieval (MIR) since it plays a basic role in automatic
music transcription (AMT), which is a task of converting
music signals into a symbolic form of music notation [2].
The conventional approaches to MPE primarily focused
on transcribing single-instrument music signals. The ac-
curacy of this single-instrument MPE (SI-MPE) has been
greatly improved by deep learning. Recently, some stud-
ies have extended SI-MPE and have tackled the problem

c© K. Tanaka, T. Nakatsuka, R. Nishikimi, K. Yoshii, and S.
Morishima. Licensed under a Creative Commons Attribution 4.0 Interna-
tional License (CC BY 4.0). Attribution: K. Tanaka, T. Nakatsuka, R.
Nishikimi, K. Yoshii, and S. Morishima, “Multi-Instrument Music Tran-
scription Based on Deep Spherical Clustering of Spectrograms and Pitch-
grams”, in Proc. of the 21st Int. Society for Music Information Retrieval
Conf., Montréal, Canada, 2020.

Condensed Pitchgram Piano Roll 1
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Spherical Latent Space

Deep
Spherical
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Figure 1. Each bin of a condensed pitchgram is embedded
on a spherical latent space taking into account the timbral
characteristics. Piano rolls of each instrument part is ob-
tained by deep spherical clustering on the space.

of multi-instrument MPE (MI-MPE) for further general-
ization. An MI-MPE is a task which estimates the pitch-
grams (pitch saliency spectrograms) of every musical in-
strument from a music signal consisting of multiple instru-
ments. The difficulty of MI-MPE in addition to SI-MPE
is the necessity of estimating the corresponding instrument
part which the pitchgram belongs to. To alleviate this dif-
ficulty, previous studies [3, 4] for MI-MPE limited their
target musical instruments to a small number of predefined
instruments. One of the solutions to this problem is apply-
ing a classification technique to MI-MPE and separate the
music signal into each pitchgram.

These classification-based methods have been success-
ful [3, 4] in the framework of supervised learning, espe-
cially for classical music where the constituent instruments
are mostly fixed. However, in modern music (e.g.Pops and
EDMs) where a larger number of instruments often appear,
it would be ideal to have no limit on target instruments in
order to achieve better AMT.

In the field of speech separation, several studies [5–7]
have attempted a similar task of separating arbitrary speak-
ers. When handling arbitrariness of the target sources in
DNNs, technical problems related to permutations arise.
Specifically, DNNs deterministically map inputs to a de-
fined set of sources in each dimension, and thus does
not allow permutation between different targets. To solve
this permutation problem, a method called deep clustering
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has been proposed that treats speech separation for arbi-
trary speakers as a clustering problem, rather than a clas-
sification problem [5]. This approach avoids the above-
mentioned problem and achieves optimal clustering at the
same time by constructing an affinity matrix.

In this paper, we propose a new method to estimate
the piano rolls of arbitrary musical instrument parts from
multi-instrument polyphonic music signals based on deep
clustering (Figure 1). We estimate a condensed pitch-
gram which shows all played pitches, with an existing
instrument-independent neural multi-pitch estimator, and
then separate the pitchgram into a specified number of mu-
sical instrument parts with a deep spherical clustering tech-
nique. Also, by considering the spectrogram in addition
to the pitchgram in clustering phase, the optimal part esti-
mation can be performed based on both the timbral and
pitch characteristics of the instruments contained in the
music signal. Furthermore, since there is a complemen-
tary relationship between MPE and sound source separa-
tion [8–10], we propose a joint spectrogram and pitchgram
clustering method which can improve the transcription ac-
curacy.

To verify that our method can transcribe arbitrary musi-
cal instruments, we conducted experiments of MI-MPE for
various musical instruments. Experimental results show
that the method can successfully handle a wide variety of
instruments including those unseen during training. Al-
though our method does not set any limitation on applica-
ble instruments, the results suggest that it performs com-
parably to the state-of-the-art classification method [3].

Our main contribution of this study is the proposal of
a new clustering-based method to transcribe arbitrary mu-
sical instrument parts from a music signal. To our knowl-
edge, this is the first attempt of MI-MPE at frame-level
without any restriction on used instruments. Furthermore,
we show that the deep clustering method can be applied to
tasks other than speech separation, and describe its poten-
tial in several sound related tasks.

2. RELATED WORK

In this section, we limit our scope to studies related to
MI-MPE and methods dealing with arbitrariness of DNNs.
Brief explanations of each study will be provided in the
following subsections.

2.1 Multi-instrument Multi-pitch Estimation

Although AMT has been well studied, it still remains a
challenging task [11]. Among the various tasks associated
to AMT, MI-MPE is particularly difficult because it re-
quires to simultaneously perform SI-MPE and instrument
part estimation for each estimated note [2].

MI-MPE has commonly been tackled as a problem of
stream-level transcription: grouping estimated notes and
making continuous pitch contours for each part. Duan
et al. [12] proposed a constrained clustering approach
against the result of MPE. The clustering is performed un-
der the constraint of consistency in each part of uniform

discrete cepstrum. Their method can be used in comple-
ment with various MPE algorithms [13–15], and does not
require any source model trained with isolated recordings
of the underlying instruments. Following this study, Arora
et al. [16] took a similar approach. They used probabilis-
tic latent component analysis for MPE and source-specific
feature extraction, and hidden Markov random fields for
clustering into each instrument part. These two methods
can deal with a variety of instruments, but due to their al-
gorithms, each instrument must be a monophonic instru-
ment which plays only one note at a time. Unlike these
methods, Benetos et al. [17] focused on the differences in
the sounds played by each instrument. They used spec-
tral templates that correspond to sound states, supported
by the shift-invariant probabilistic latent component anal-
ysis method. To conduct MPE for each instrument, they
controlled the order of these templates by using hidden
Markov model-based temporal constraints.

In recent years, some studies have tackled MI-MPE
as a frame-level simultaneous MPE and musical instru-
ment recognition problem. Wu et al. [3] proposed a DNN
model based on the DeepLabV3+ [18] and U-Net struc-
ture [19]. They considered MI-MPE as a semantic segmen-
tation problem on the time-frequency bins generated from
music signals, where each object class represents a certain
musical instrument. Most recently, Cerberus Network was
proposed by Manilow et al. [4]. This model was built upon
the preceding Chimera Network [20] which was developed
for speech separation, adding a module that produces sep-
arated piano rolls for each instrument. The drawback of
these methods is that only musical instruments included in
the predefined set can be transcribed. In order to apply
classification-based methods to source separation, output
classes and object instances must be represented explicitly.
Therefore, it is difficult to use these methods in the general
case.

2.2 Arbitrariness with DNNs

In order to allow extraction of a piano roll of arbitrary in-
struments from an audio signal, the prediction itself must
take place in a process where the instruments are unidenti-
fied, i.e., individual piano rolls are referred to as instrument
one, two, three instead of their specific identity such as pi-
ano, guitar, violin, etc. However, when doing so by using a
DNN based approach, a problem of permutation arises as
previously mentioned. Specifically, when the piano rolls
of individual instruments are extracted but the instrument
type is unknown, the loss between predicted piano roll and
ground truth cannot be calculated straightforwardly since
the correspondence of instrument type between these two
remains unknown.

A similar problem has been addressed in the studies for
speaker-independent speech separation [5–7], whose goal
is to separate a piece of audio consisting of multiple peo-
ple speaking simultaneously into individual speakers au-
dio. Unless given an image or video of the target speaker,
correspondence between separated audio and ground truth
audio cannot be established, and hence the task poses the
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Figure 2. Overview of the proposed method. We extract two audio features Xpi and Xti from an input music signal and
concatenate them as an intermediate feature X in. The feature X in is mapped into two latent space, piano roll space V pi

and timbre space V ti. We generate binary masks Mpi and M ti from each space by clustering. These masks are applied to
corresponding features, and we obtain piano rolls for each musical instrument part Y pi and separated spectrograms Y ti.

same problem of permutation. To address this problem,
methods such as permutation invariant training (PIT) [6],
and deep clustering [5] have been proposed recently.

PIT tackled the permutation problem by calculating a
loss function for all possible pairs of predicted values and
ground truth, while optimization is only conducted for the
pair with minimum loss. Although its implementation is
simple and it can be combined with other learning tech-
niques, its computational complexity remains considerably
high. In details, when N sources are included in the target
mixture, N ! possible permutations must be calculated in
their algorithm.

On the other hand, deep clustering avoids the permuta-
tion problem by optimizing an embedded representation of
the desired output, so that the class separation can be con-
ducted via clustering in the embedded space at inference
time. Given a X ×D matrix A as the embedded repre-
sentation, where X is the time-frequency index and D is
the embedding dimension, the affinity matrix AAT is cal-
culated. In the same manner, the affinity matrix BBT is
obtained for the ground truth data B which is a X ×N
matrix, where N represents the number of speakers. The
optimization is conducted to minimize the distance be-
tween the two affinity matrices ||AAT −BBT||2F . Here,
deep clustering succeeds in circumventing the permutation
problem as (AP )(AP )

T
= AAT for anyD ×D permu-

tation matrix P . Furthermore, since optimization is con-
ducted on the transformed X ×X matrix, the target data
may include any number of sources. For these advantages,
we adopt the deep clustering method in our framework as
described in Section 3.

3. PROPOSED METHOD

This section describes our proposed clustering-based
method for the transcription of arbitrary musical instru-
ment parts (Figure 2). Our framework consists of three
parts: a feature extraction part, a feature embedding part
to obtain piano roll space and timbre space, and an esti-

mation part based on deep spherical clustering. We first
pretrain the feature extraction part and the feature embed-
ding part individually for the stabilization of early learning
stages, then optimize both parts in conjunction through the
entire learning.

3.1 Problem Configuration

Let S = {sk ∈ Rl}Kk=1 be a set of mixture audio sig-
nals, where l = 44.1 [kHz] × 10 [sec] is a length of the
signal, and K is the number of mixture audio signals. We
assume that each sn consists of three instrument parts. Let
Y pi = {ypi

n ∈ [0, 1]
T×C}N+1

n=1 be a set of pitchgrams of
piano rolls, where T is the number of time frames, C is the
number of constant-Q transform (CQT) frequency bins and
N is the number of musical instrument parts. Our goal is to
train a DNN f that maps S to Y pi. Here, we incorporated
two key ideas into f for the performance improvement and
the stable training. Let Y ti = {yti

n ∈ RT×F }Nn=1 be a set
of corresponding spectrograms of the piano rolls, where F
is the number of short-time Fourier transform (STFT) fre-
quency bins. We train f that maps S to not only Y pi, but
also Y ti for improving the performance of a transcription.
To achieve this with the stable training, we introduce an
intermediate supervision, which consists of two semantic
features. Let Xpi ∈ [0, 1]

T×C and Xti ∈ RT×F be a
set of pitch characteristics and a set of timbral character-
istics, respectively. We divided the f into two networks:
feature extraction network g that maps S to Xpi, and fea-
ture embedding network h that maps the concatenation of
Xpi and Xti to Y pi and Y ti. Firstly, the network g and h
are trained individually for the stable training, and then our
full network f (= h ◦ g) are jointly trained for the overall
optimization.

3.2 Feature Extraction

In the feature extraction stage, a pitchgram and spectro-
gram are obtained from the input music signal, as pitch
and timbral characteristics of each instrument are impor-
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tant for estimating piano rolls of each musical instrument
part. For pitch, we computed a condensed pitchgram of the
given music signal, in a form similar to a logarithmic fre-
quency spectrogram using an instrument-independent neu-
ral multi-pitch estimator [21]. This network receives har-
monic constant-Q transform (HCQT) as its input and out-
puts a condensed pitchgram denoted by Xpi. A value of
each pitchgram bin is proportional to its salience.

We computed an STFT spectrogram Xti of the given
music signal. Although there are other possible represen-
tations for timbral characteristics, we use STFT following
the original deep clustering [5]. To reduce variations in to-
tal volume of input signals, the STFT spectrogram is nor-
malized so that each time-frequency bin has a mean of zero
and a standard deviation of one. Details are in Section 4.1.

3.3 Feature Embedding

We adopt joint learning of piano roll transcription and
sound source separation. They are known to have a com-
plementary relationship and have been reported to im-
prove performance when they are learned simultaneously
[8–10]. Following this knowledge, we propose a network
based on deep spherical clustering that allows joint learn-
ing of transcription and separation. To learn the obtained
pitch and timbral feature at the same time, we concate-
nate them along each frequency axis. This input feature
X in ∈ RT×(C+F ) is used as the input to our network. The
network maps the input feature X in to two separate latent
spaces: piano roll space V pi and timbre space V ti. The
structure of our network is shown in Figure 3, whereD and
D′ are the embedded dimensions of piano roll and timbre
space. It consists of a three layer Bidirectional Long short-
term memory (BLSTM), a fully connected (FC) layer for
each space with tanh activation, and finally L2 normaliza-
tion. L2 Normalization is conducted so that the piano roll
space and timbre space respectively form a D and D′ di-
mensional hypersphere.

The binary masks are made from the two latent spaces
and applied to the pitchgram and the spectrogram later. In
order to generate masks by clustering, all time-frequency
bins have to be located ideally on the spherical la-
tent spaces, i.e., bins of the same source are close and
bins of different sources are far apart. This can be
achieved by constructing the affinity matrix of each space,
V pi,tiV pi,tiT. Since V pi,ti is L2 normalized, TC × TC
or TF × TF matrix V pi,tiV pi,tiT show cosine similar-
ity of all time-frequency bins. Let TC × (N + 1) matrix

M̂
pi

and TF × N matrix M̂
ti

represent correct masks,
whereN is the number of musical instrument parts. We as-
sume that each time-frequency bin is attributed to only one
source. If more than one source share the same bin, the bin
is assigned to the dominant source which has the largest
volume (MIDI velocity) or the largest power spectrogram.
M̂

pi,ti
thus take binary value, one for assigned bin and

zero for the opposite, and affinity matrix M̂
pi,ti

M̂
pi,tiT

also have binary value. We can train this network using

M̂
pi,ti

M̂
pi,tiT

as target affinity matrix of V pi,tiV pi,tiT.

Note that we prepare an extra dimension for M̂
pi

. Be-
cause the condensed pitchgram Xpi is a prediction, Xpi

may include misestimations, i.e., false negatives and false
positives. Among them, false positives should be treated
as exceptions because they have no true instrumental attri-
bution. We therefore prepare an additional dimension for
bins which are silent in the ground truth, thus true neg-
atives and false positives are put in this dimension. We
also retain Xti bins whose magnitude is greater than the
original maximum magnitude minus 40 dB. This prevents
the network from considering about small power bins too
much.

3.4 Training Strategy

Training of the multi-pitch estimator is conducted by min-
imizing the cross entropy loss shown in Eqn (1),

LDS = −X̂
pi
log(Xpi)− (1− X̂

pi
) log(1−Xpi) (1)

where X̂
pi

and Xpi represent the ground truth condensed
pitchgram and the estimated condensed pitchgram. Both
have values ranging from zero to one. Training of simulta-
neous embedding part is conducted to minimize Eqn (2).

LDC
pi,ti = ||V pi,tiV pi,tiT − M̂

pi,ti
M̂

pi,tiT

||2F (2)

To reduce computational costs, we used a variation of
Eqn (2) in practice.

LDC
pi,ti = ||V pi,tiTV pi,ti||2F − 2||V pi,tiTM̂

pi,ti
||2F

+ ||M̂
pi,tiT

M̂
pi,ti
||2F (3)

Direct construction of the original affinity matrix is
avoided in Eqn (3) because TC and TF are much greater
than D and D′ [5]. Using these two kinds of losses, the
total loss function is described as Eqn (4).

Ltotal = LDS + αLDC
pi + βLDC

ti (4)

α and β in Eqn (4) are parameters to decide weights of
each loss. We set them both at 0.000001 in our experiment.

For the stabilization of early learning stage, we first
pretrained multi-pitch estimator and simultaneous embed-
ding network respectively using the loss in Eqn (1) and
Eqn (3). After pretraining, global optimization was con-
ducted through end-to-end training by Eqn (4). We used
Adam optimizer [22] for every training.

3.5 Estimation

At inference time, we generate two binary masks
{Mpi

i }i=1,...,N+1 and {M ti
j }j=1,...,N for Xpi and Xti re-

spectively from learned latent spaces V pi and V ti. Mask
generation is conducted by clustering the embedded fea-
tures. Here, since the two spaces are hyperspherical
shaped, we execute clustering by means of spherical k-
means [23] though original deep clustering simply uses k-
means. Because spherical k-means groups features based
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Figure 3. Details of simultaneous embedding part in
Figure 2. 2H is the number of hidden nodes in BLSTM.

on their distance on a hypersphere, i.e. cosine distance, this
should be applied for our purpose rather than k-means. Pi-
ano rolls of each musical instrument part and silent part
{Y pi

i }i=1,...,N+1 are calculated by Eqn (5).

Y pi
i = Xpi ⊗Mpi

i (5)

Additionally, spectrograms of each part {Y ti
j }j=1,...,N are

obtained by Eqn (6), which can be converted to separated
sounds of each instrument via inverse STFT.

Y ti
j = Xti ⊗M ti

j (6)

In Eqn (5) and Eqn (6), element wise product is described
as ⊗. Since M ti

j is only for retained bins of Xti, other
bins are shared with all sources.

4. EVALUATION

4.1 Data

We used the Slakh2100-orig dataset [24] for our evalua-
tion. The dataset contains 1500 training tracks, 375 vali-
dation tracks, and 225 test tracks. Each track is composed
of multiple instruments, and the dataset consists of both
mixed and separated sound sources with their MIDI data.
It contains twelve kinds of instruments: piano, bass, guitar,
drums, strings, synth pad, reed, brass, organ, pipe, synth
lead, and chromatic percussion. We eliminated drums and
chromatic percussion from the data to focus on instruments
where pitch is important, i.e., we used the other ten instru-
ments for the experiment. To demonstrate the capability of
estimating the piano rolls of arbitrary musical instrument
part, we only used seven instruments (piano, bass, guitar,
strings, synth pad, reed, and brass) for the training and vali-
dation data. We evaluated the performance using test data;
above seven for the closed condition (seen instruments),
and ten for the open condition (unseen instruments).

Training samples are constructed by cutting the tracks
into ten seconds segments. Ground truth for condensed
pitchgram is prepared by overlaying the MIDI data for the

constituent sound sources. To make the mixture signal and
the ground truth of condensed pitchgram, we overlaid both
cut sound sources and MIDI data. Here, segments that do
not have instrument sound for more than five seconds are
omitted. The mixture MIDI data are binarized and gaus-
sian blurred according to [21]. The musical recordings are
mono-channel and their sampling rates are 44.1kHz. We
computed STFT using Hann window with a size of 2048
time frames ≈ 50ms. The hop size is 512 frames ≈ 11ms
for both STFT and HCQT. HCQT is computed for harmon-
ics of {0.5, 1, 2, 3, 4, 5} with the minimum frequency
32.7Hz (C1) over six octaves. Our implementation uses
the librosa library [25]. In total, 11 hours of training data
and 3 hours of validation data were generated. For test
data, 6 hours of data were generated for each condition.

4.2 Experimental Conditions

We evaluated the frame-level accuracy of transcriptions for
each instrument part in the mixture. For the experiment,
we fixed the number of mixed instruments to three, i.e.,
N = 3. The transcription accuracy is evaluated by preci-
sion, recall, and F-measures. We count the pitchgram bin
of a certain instrument as correct when binary values of es-
timation result and ground truth match with a correct part
attribution. These metrics are calculated with Eqn (7),

P =
TP

TP + FP
, R =

TP

TP + FN
, F =

2PR

P +R
(7)

where TP, FP, and FN are the number of true positive, false
positive, and false negative, respectively. These values are
calculated by the mir_eval [26] library.

To compare with the existing state-of-the-art
classification-based method, we reimplemented [3]
with eight output classes: the seven known instruments
above and a non-instrument class. For a fair comparison
between our clustering approach and the existing classifi-
cation approach while considering the correctness of part
attribution, we set evaluation conditions as follows:

1. In the clustering approach, part attribution is not con-
ducted explicitly. Thus, clusters are assigned to each
instrument source by optimizing the F-measure.

2. In the classification approach under the closed condi-
tion, estimated parts are directly used as part assign-
ments.

3. In the classification approach under the open condi-
tion, by design, part attribution cannot be conducted
for unknown instrument sources. Thus, estimated
parts are reassigned to each instrument source in-
cluded in the audio by optimizing the F-measure.

4.3 Experimental Results

The experimental results are shown in Table 1. Our
proposed method outperformed the state-of-the-art
classification-based method [3] in the transcription of
unknown instruments under the open condition. Fur-
thermore, the F-measure score of unknown instruments
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Closed condition Open condition

[3] Our method [3] Our method

Instrument P R F P R F P R F P R F

Piano 51.28 46.50 45.87 62.02 39.61 44.07 52.51 48.04 47.37 61.87 38.90 43.64
Bass 73.75 58.79 64.04 39.72 50.78 42.24 74.27 59.66 64.67 40.59 51.88 43.23
Guitar 46.64 36.72 37.69 52.91 35.45 39.46 44.59 37.12 37.25 53.45 36.50 40.32
Strings 55.27 56.79 52.74 66.35 48.74 52.40 53.21 56.97 52.05 65.31 48.40 52.04
Synth pad 43.72 44.80 42.07 49.65 35.12 38.70 44.42 46.89 43.91 51.99 36.58 40.81
Reed 28.53 33.90 29.27 29.87 37.37 31.53 26.92 31.72 27.53 28.87 35.46 30.04
Brass 35.24 25.12 24.50 37.10 30.23 29.53 37.66 25.67 25.89 36.78 30.64 30.26

Organ — — — — — — 20.14 19.01 16.89 36.62 28.57 29.11
Pipe — — — — — — 22.62 27.13 23.02 38.37 39.49 35.22
Synth lead — — — — — — 20.58 17.44 17.59 29.41 25.11 24.98

Table 1. Comparative results of MI-MPE on the Slakh2100-orig dataset [24] with classification-based method by [3] and
our method. P , R, and F are precision, recall and F-measure, respectively, defined in Eqn (7).
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Figure 4. Transcribed piano rolls of each instrument part from the mixture signals. The left pairs are successful cases
(Track01879) and the right pairs are failure cases (Track01878). The left column shows the estimated piano rolls (black)
and the right column shows the ground truths (red). Each row shows the corresponding part, respectively.

was comparable to that of known instruments in our
method, while the score significantly decreased in the
classification-based method. Our method also succeeded
in transcribing known instruments under both conditions at
an accuracy equivalent to the classification-based method.

Examples of estimated piano rolls using our method are
illustrated in Figure 4. In the successful cases, although
some errors are present, it can be seen that our proposed
method well-conducted pitch estimation and instrument
assignment. In the failure cases, some notes which have
to appear in piano roll two are transcribed in piano roll one
around three seconds, in addition to many misestimations.

4.4 Discussion

Our method can obtain separated sounds of each instru-
ment part in addition to their piano rolls; however, match-
ing the estimated piano rolls and the instrument part labels
still have to be done manually. One of the most interesting
directions of this research is the automation of this process.

Also, we assume that each time-frequency bin is attributed
to only one source as mentioned in Section 3.3 though dif-
ferent instruments may share the same bin in practice. To
deal with this case, another direction is to introduce the
von Mises-Fisher (vMF) distribution [27, 28] into the hy-
perspherical latent space and perform soft clustering based
on this distribution.

5. CONCLUSION

This paper presented a method for transcription of arbitrary
musical instrument parts based on deep spherical cluster-
ing. Timbral and pitch characteristics of the music signal
are simultaneously considered in the transcription, through
joint clustering of a pitchgram and a spectrogram. The
experimental results showed that the proposed method is
capable of transcribing musical pieces including musical
instruments not in training data. We plan to automate the
matching process and introduce the vMF distribution into
the hyperspherical latent space for future work.
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ABSTRACT

Accurate and flexible representations of music data are
paramount to addressing MIR tasks, yet many of the exist-
ing approaches are difficult to interpret or rigid in nature.
This work introduces two new song representations for
structure-based retrieval methods: Surface Pattern Preser-
vation (SuPP), a continuous song representation, and Ma-
trix Pattern Preservation (MaPP), SuPP’s discrete coun-
terpart. These representations come equipped with several
user-defined parameters so that they are adaptable for a
range of MIR tasks. Experimental results show MaPP as
successful in addressing the cover song task on a set of
Mazurka scores, with a mean precision of 0.965 and recall
of 0.776. SuPP and MaPP also show promise in other MIR
applications, such as novel-segment detection and genre
classification, the latter of which demonstrates their suit-
ability as inputs for machine learning problems.

1. INTRODUCTION

This paper builds on the traditions of matrix representations
of songs started by Foote [1]. Specifically, we are princi-
pally interested in the cover song identification task. Recent
content-based approaches to this task include building ob-
jects that compare one recording against a second one [2,3],
comparing slices of recordings to each other [4], creating
a graph of songs on which to perform clustering [5], and
using deep learning [6].

Structure-based approaches to the cover song task begin
by creating representations encoding songs’ structural in-
formation. These structural representations do not always
explicitly encode where repetitions occur (for example, [7]).
In contrast, the aligned hierarchies encode every possible
repeated structure’s placement within a song [8]. Between

c© Claire Savard, Erin H. Bugbee, Melissa R. McGuirl,
Katherine M. Kinnaird. Licensed under a Creative Commons Attribu-
tion 4.0 International License (CC BY 4.0). Attribution: Claire Savard,
Erin H. Bugbee, Melissa R. McGuirl, Katherine M. Kinnaird, “SuPP &
MaPP: Adaptable Structure-Based Representations for MIR Tasks”, in
Proc. of the 21st Int. Society for Music Information Retrieval Conf.,
Montréal, Canada, 2020.

these approaches is recent work by McGuirl et al. [9] which
develops start-end (SE) and start(normalized)-length (SNL)
diagrams. These structure-based musical representations
seek to balance the amount of structural information pro-
vided by leveraging ideas from Topological Data Analysis
(TDA), a field of applied mathematics.

We address issues of SE and SNL diagrams, discussed in
Section 2.2, by transforming SNL diagrams into surface and
matrix representations, called Surface Pattern Preservation
(SuPP) and Matrix Pattern Preservation (MaPP). SuPP and
MaPP are analogous to TDA persistence surfaces and persis-
tence images [10], respectively. These novel representations
can be thought of as two versions of the same concept, with
SuPP as the complete representation containing all possible
structural information, and MaPP as its down-sampled com-
putationally friendly extension. MaPP can be embedded
into Euclidean space 1 making calculations straightforward
using distance functions. Thus, MaPPs are more usable for
machine learning algorithms than their predecessors.

Additionally, SuPP and MaPP are both adaptable to vary-
ing MIR tasks, such as the cover song task, novel-segment
detection, and genre classification, whereas the aligned hi-
erarchies, SE diagrams, and SNL diagrams were created
specifically for the cover song task. We present ways in
which SuPP and MaPP may be adapted for these differ-
ent tasks with a larger focus on the cover song task and
how these new methods compare with results from SNL
diagrams and another extension of the aligned hierarchies.

2. BACKGROUND

Continuing the work begun with the aligned hierarchies [8]
and extended in SNL diagrams [9], SuPP and MaPP are
consecutive representations that are smoothings of SNL di-
agrams. Additionally, MaPP combines the strengths of
the aligned hierarchies and SNL diagrams to build a rep-
resentation that can be used in standard machine learning
algorithms such as k-means clustering or support vector
machines. In this section, we briefly review aligned hierar-
chies and SNL diagrams while highlighting their limitations
to motivate the novel representations proposed in this work.

1 In fact, MaPP can be embedded into any inner product space.
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2.1 Aligned Hierarchies

The aligned hierarchies representation encodes all possible
hierarchical structure decompositions of a song on a single
common time axis [8]. While this representation clearly
shows the length of each repeated section, it does not vi-
sually emphasize the differences between the lengths of
repeats using white space. Also, the distance measure for
the aligned hierarchies is inefficient to compute and is quite
coarse [8]. First, the distance measure notes only when
two repeats of the same size line up exactly in terms of
placement within the song. Second, comparisons between
songs under this distance measure require both songs to be
the same number of beats. This last limitation makes using
the aligned hierarchies impractical for cover song detection.

2.2 SE and SNL Diagrams

Motivated by TDA theory, SE and SNL diagrams extend the
aligned hierarchies and overcome the rigidity in comparing
songs with aligned hierarchies. While SE and SNL dia-
grams are more flexible and computationally efficient than
their predecessor, they were built with the cover song task
in mind and are difficult to adapt for other MIR tasks. Fur-
thermore, they are not suitable to use with machine learning
algorithms.

2.2.1 Topological Data Analysis Inspiration

Broadly, TDA is concerned with extracting quantifiable
shape features from large, complex datasets [11–14].
Though not extracting topological information typically
sought by TDA methods, SE and SNL diagrams draw their
inspiration from persistence diagrams [11, 12] which track
how topological features persist across an increasing se-
quence of spatial scales. Just as persistence diagrams are
a collection of 2-D points whose x- and y-coordinates rep-
resent the length scales at which the topological features
appear and disappear, SE and SNL diagrams are collections
of 2-D points whose x- and y-coordinates represent the
start and end (or length) times, respectively, of repetitive
sections in a song. An advantage of the correspondence
between persistence diagrams and SE and SNL diagrams is
that rich mathematical theory from TDA can be extended
to the musical representations for computational tasks.

2.2.2 Structure of SE and SNL

SE and SNL diagrams extend the aligned hierarchies by
transforming them into a representation consisting of a
finite collection of points [9]. Specifically, the SE diagram
for a song is defined as {(si, ei)}Ni=1 ⊂ R2

+, where si and ei
are the start and end times, respectively, of the ith repeated
structure. Similarly, the SNL diagram for a song is defined
as {(α(si/M), ei − si)}Ni=1 = {(s̄i, `i)}Ni=1, where α > 0
is a scaling factor and M is a normalization term related to
the length of the song, with si and ei as above. Figure 1
shows the transition from the aligned hierarchies to the SNL
diagram for Chopin’s Mazurka Op. 6, No. 1. Both the SE
and SNL diagrams add visual emphasis for the differences
between the lengths of the repetitions, but lose the visual
width of each repetition.

2.2.3 Shortcomings of Previous Work

Similar to persistence diagrams, the complex structure of
SE and SNL diagrams makes them unsuitable inputs for
most statistical analyses and machine learning tasks. For
example, these diagrams do not live in an inner product
space and simply computing averages in the space of persis-
tence diagrams, and therefore in the spaces of SE and SNL
diagrams, remains a challenge. The notion of an average
persistence diagram is defined through the Fréchet mean,
which views the space of persistence diagrams as a prob-
ability space [15]. The Fréchet mean is computed as the
solution of a minimization problem and is not guaranteed
to be unique. Moreover, it is non-trivial to compute.

Without a unique and easy-to-compute mean or an inner
product structure, the utility of SE and SNL diagrams for
MIR tasks is limited. In particular, SE and SNL diagrams
cannot be used as inputs for most classification and regres-
sion models, such as support vector machines, which would
otherwise be useful for tasks like genre classification.

2.3 SuPP and MaPP Inspiration

This work continues to leverage TDA theory in the creation
of two new structural representations, SuPP and MaPP. Just
as persistence diagrams are transformed into persistence
surfaces and persistence images [10] through a weighted
sum of Gaussian functions centered at each point in a given
persistence diagram, here we transform SE and SNL into
SuPP and MaPP. The mathematical details of this transfor-
mation are provided in Section 3. Like persistence images,
MaPPs can be embedded into an inner product space, such
as Euclidean space, and can therefore be used as inputs for
machine learning algorithms.

3. METHODS

In this section, we define Surface Pattern Preservation
(SuPP) and Matrix Pattern Preservation (MaPP). SuPP is
a surface representation of SNL diagrams [9] that allows
similar repeated sections to be viewed as a single structure.
Since comparing surfaces computationally is difficult, we
introduce MaPP, the discrete matrix version of SuPP. As a
matrix, MaPP allows for pairwise comparisons using com-
mon distances such as the Euclidean and Frobenius metrics.
The procedure 2 for creating SuPP and MaPP from SNL di-
agrams is outlined below and summarized in Algorithm 1.

3.1 Surface Pattern Preservation (SuPP)

SuPP is a smoothing of a song’s SNL diagram that main-
tains structural information of the song. This smoothing is
achieved by placing a 2-D Gaussian at each point in a song’s
SNL diagram and aggregating overlapping Gaussians.

3.1.1 Defining Repeats as Gaussians

Defining the Gaussians that represent the repeated struc-
tures of the piece is the heart of the transformation from

2 Code is available on GitHub: https://github.com/
cgsavard/ICERM_compare_songs
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Figure 1: From left to right, the aligned hierarchies, SNL diagram, and SuPP corresponding to the score of Mazurka Op. 6,
No. 1 by Chopin. The weights applied to SuPP are the weights used for the cover song task found in Section 4.2.1.

the SNL diagram to SuPP. In general, given a SNL diagram
{(s̄i, `i)}Ni=1, we first place a Gaussian (g) over each re-
peated structure so that (s̄i, `i)→ gi(s̄, `) where

gi(s̄, `) =
1

2πσsσ`
e
−
(

(s̄−Ts(s̄i))
2

2σ2
s

+
(`−T`(`i))

2

2σ2
`

)
, (1)

T = (Ts, T`) : R2 → R2 defines the center of each of the
Gaussians, σs is the standard deviation in the start direction,
and σ` is the standard deviation in the length direction.

The Gaussians can either be centered at the beginning of
a repeated structure, so that T (s̄i, `i) = (Ts(s̄i), T`(`i)) =
(s̄i, `i) is the identity, or in the middle of a repeated struc-
ture, so that T (s̄i, `i) = (Ts(s̄i), T`(`i)) = (s̄i + `i

2 , `i).
This choice is based on the task at hand as well as user
preference. Midpoints correspond to the central beat in
each repeated section, and are therefore a good indicator
for where these structures are occurring, on average, in the
song. For our cover song task experiment, we adjust the SNL
diagrams by choosing to center each Gaussian about the
repeated structures’ midpoints rather than their start times
(i.e., T (s̄i, `i) = (s̄i + `i

2 , `i)). Figure 2 illuminates how
using the start or midpoint of the repeated section for the
Gaussians compares visually for the repetitions in aligned
hierarchies. Other distributions aside from a Gaussian can
also be used and may be preferable for certain MIR tasks.

After determining the appropriate placement of the Gaus-
sians, the next step is to set the two standard deviation pa-

Algorithm 1 Algorithm for constructing SuPP and MaPP

Input: Song’s SNL diagram {(s̄i, `i)}i∈I
for i ∈ I do
• Replace (s̄i, `i) with 2-D Gaussian defined by
µ = (s̄i, `i) and σ = (σs, σ`)

end for
• Aggregate all Gaussians to create a surface by using

the maximum function
• Apply weighting function to surface to create SuPP
• Discretize SuPP to create gridded surface
• Integrate the area under each gridded unit and store

resulting values in a matrix to create MaPP
Outputs: SuPP, MaPP

t = 1 10 15 25

• •

•B
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• •

•

Figure 2: How 2-D Gaussians relate to repeated structures
of aligned hierarchies when using the SNL diagram (left) or
the altered SNL diagram with midpoints (right).

rameters that govern the shape of these Gaussians. The
standard deviation σs determines the width of the Gaus-
sians with respect to the start (or time) axis; that is, the
axis representing where each repeat in the song - now rep-
resented as a Gaussian - exists. The standard deviation σ`
determines the width of the Gaussians with respect to the
length axis. These standard deviations control the extent to
which nearby Gaussians will overlap.

3.1.2 Creating the Surface

The next step in the SuPP creation is to aggregate the col-
lection of Gaussians to create a surface. When two or more
Gaussians intersect, which occurs when points in the SNL
diagram are close together, the SuPP value at the intersec-
tion is set to the maximum of the Gaussians rather than
the sum of the Gaussians as is done for persistence sur-
faces [10]. That is, for any SNL diagram {(s̄i, `i)}Ni=1, we
define SuPP as the surface SuPP : R2 → R, where

SuPP(s̄, `) = F (s̄, `) ∗ max
i∈[1,N ]

gi(s̄, `), (2)

for some weighting function F (s̄, `) : R2 → R and gi(s̄, `)
defined in Eqn. 1. Combining the Gaussians over all repeats
allows repetitive structures that are similar in length and
start time to be perceived as the same repeated section. We
use the maximum instead of other aggregators because we
want these similar structures to be treated as one section.
We do not want sections to be more highly weighted if there
are many similar structures in that section. The choices of
σs and σ` determine how close points in SNL need to be for
their Gaussians to substantially blur together.
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The weighting function F (s̄, `) governs which type of
repeated structures are emphasized in the resulting surface.
This weight controls the heights of the Gaussians in SuPP,
lifting important sections of the song and suppressing other
sections. The surface weight can be varied by the user
based on the MIR task at hand. In Section 4, we provide an
example of how one may want to set the weighting function.

3.2 Matrix Pattern Preservation (MaPP)

SuPP is a continuous representation carrying all informa-
tion found in SNL diagrams. Beyond this, user-specified
parameters can be set to emphasize various parts of a song.
However, using a continuous surface representation is com-
putationally complex and thus not feasible for many com-
puting tasks. To address this challenge, a transformation of
SuPP into a discrete representation with a natural embed-
ding and metric for comparison, such as MaPP, is necessary.

To create MaPP, SuPP is first sectioned by placing a
grid over the R2 plane over which SuPP is defined. This
discretization is based on a user-defined resolution. Then,
the volume beneath each grid unit of SuPP is computed
using numerical integration. These volumes are recorded as
entries in a matrix with the same dimensions as the gridded
SuPP, resulting in MaPP.

Namely, for a SNL diagram {(s̄i, `i)}Ni=1, the corre-
sponding MaPP is a P × P matrix such that:

MaPP(SuPP)jk =

∫ βk+1

βk

∫ αj+1

αj

SuPP(s̄, `)ds̄d` (3)

where αj = jRs̄P and βk = kR`P are the individual grid
widths and heights given by the user-defined resolution P
and the ranges Rs̄ and R` of the respective axes in the SuPP.

3.3 Embedding MaPP Representations

Since the MaPP representations are matrices, they can be
embedded into various metric spaces. There are many pre-
existing metrics with strong mathematical theory that can
be applied to compute distances between matrices. We use
the Frobenius norm. The Frobenius distance between two
MaPPs A and B is defined as:

dF (A,B) =
√

Tr((A−B) ∗ (A−B)T ), (4)

where Tr indicates the trace [16]. The Frobenius norm
measures the “average” value within the difference matrix
A−B.

With any suitable embedding, we inherently define a
classification space for MaPP representations and the songs
that they represent. Thus, we can employ various computa-
tional techniques to compare songs. We also note that not
all MIR tasks rely on song comparisons, and MaPP can also
be used for exploration within a song.

4. APPLICATION TO COVER SONG TASK

SuPP and MaPP can be used in structure-based retrieval
methods for a variety of MIR tasks. In this section, we show
how these representations can address the cover song task,
and compare our methods with some previous methods.

4.1 Dataset

To test the efficacy of SuPP and MaPP, we use a collec-
tion of Chopin’s Mazurka scores as ∗∗kern files from the
KernScore online database 3 [17]. There are 52 scores in
the Mazurka dataset, and we extract two versions for each
score. The first version of each piece, referred to as the
“expanded” score, plays each repeated section as marked
in the score. The second version, referred to as the “non-
expanded” score, does not respect these repetition markers
and plays marked repeated sections once. As a result, the
data consists of 104 songs with pairs of expanded and non-
expanded versions for each Mazurka piece.

Each score is initially represented as a thresholded self-
dissimilarity matrix (SDM). Following the procedure from
[8, 18], we first extract a chroma vector for each beat in the
score using the Python library music21. We then build
audio shingles 4 for each beat [19–21] by concatenating
S number of consecutive chroma vectors, encoding local
information for each beat. We set the shingle width to
S = {6, 12} and then compute the cosine-dissimilarity
measure between each pair of audio shingles. We finally
create the SDM by thresholding the matrices using T =
{0.01, 0.02, 0.03, 0.04, 0.05}. This SDM is converted to
the aligned hierarchies [8], and then to SNL diagrams [9].
From the SNL diagram, we create a SuPP which is then
discretized to become a MaPP, as described in Section 3.2.

4.2 Experiment

The cover song identification task, or version detection task,
aims to identify recordings that are performances of the
same piece of music. We address this task by creating SuPP
and MaPP representations for each song and calculating
pairwise Frobenius distances between MaPPs. The distance
between two MaPPs is a measurement of structure dissim-
ilarity, which is used alongside a clustering technique to
deem whether songs are covers of the same work.

4.2.1 Setting SuPP Parameters

As discussed in Section 3.1, to create the SuPP representa-
tion we start by defining where the Gaussians representing
each repetition are centered. For addressing the cover song
task, the SNL diagram is adjusted so the horizontal axis
reflects the midpoints of the repeated structures instead of
their start times. 5 We next define σs, σ`, and the weighting
function to determine the size, shape, and height of the 2-D
Gaussians placed over each point in the SNL diagram.

For these experiments, we use a normalized constant
standard deviation for σs, which determines the width of
the Gaussians on the time axis. Recall that the time axis is
normalized in the SNL diagrams so that all songs are placed
within the same range. We set σs = 1

M beats for each
song, where M is the normalization constant, or the total

3 http://kern.humdrum.org/search?s=t\&keyword=
Chopin

4 While we are not using audio data, we still refer to these objects as
audio shingles, as we are using a technique from [19–21] that uses this
name.

5 Results of our experiment were comparable between using start or
midpoint times on the horizontal axis of SNL diagrams.
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Figure 3: These aligned hierarchies represent songs of
structure ABAABA (left) and ABABA (right). By omitting
a middle “A” section in ABAABA, the longer repetitive
sections break down while the shorter ones are preserved.

song length, inherited from the SNL diagram for a given
song. This means that repeats of the same length that start
within two beats (2σs) of each other will overlap, and thus
combine to form a single structure in the SuPP.

The second parameter is σ`, which determines the width
of the Gaussians in the length direction. We use a constant
value for this parameter, setting σ` = 1. Since the songs are
not normalized along this dimension in the SNL diagrams,
no normalization term is needed here. This means that there
will be overlap between repeats centered at the same beat
and those whose lengths differ by up to two beats.

Lastly, we choose a weighting function to apply to our
surface that will give more importance to shorter structures
than longer structures, due to longer repetitive structures
having more variance between cover songs than shorter
ones. An example of this phenomenon can be seen in
Figure 3; a slight change in the overall song pattern, such as
repeating the chorus one fewer time, breaks down the largest
structures while maintaining the shorter repeats. To encode
this importance on smaller-sized structures, we choose the
following piece-wise linearly decreasing function:

F (s̄, `) =


1 ` ≤ `min
1− `−`min

`max−`min `min ≤ ` ≤ `max
0 ` ≥ `max

(5)

where `min and `max are user-specified bounds on the
lengths of repetitive structures included in SuPP. We set
`min = 0 beats and `max = 80 beats in order to include
98% of structures seen in our data. As the length increases
from `min to `max, the weight decreases from one to zero.

4.2.2 Comparing MaPPs

For the cover song task, we set the MaPP resolution to
P = 200, yielding a 200 x 200 matrix. This choice of
resolution follows the work in [10, 22], which shows that
this parameter value is robust, though other resolutions may
be applied. This process is analogous to the resampling in
[7] but is an aggregation within SuPP instead of a sampling.

After creating a MaPP for each song, we compute pair-
wise Frobenius distances and apply a clustering algorithm.
Noting that MaPP encodes a notion of musical structure,
the Frobenius distance offers a measure of the dissimilar-
ity between the musical structures of two different pieces.
For cover songs, we expect this distance to be low because

songs that cover the same piece of music will likely have
similar repeated musical structures.

For the Mazurka scores dataset, each song has exactly
one match, namely the expanded version with repeat mark-
ers honored and the non-expanded version where the rep-
etition markers are ignored. Therefore, we use mutual k-
nearest neighbors with k = 1 to pair the songs. Under this
technique, two songs are only labeled covers of the same
piece if they both claim each other to be their closest “neigh-
bor,” corresponding to the smallest distance computed. If
there is no mutual nearest neighbor, then that song is not
matched to any other in the dataset.

4.2.3 Results

Ten experiments were performed with varying thresholds
and shingle numbers applied to the SDMs. Overall, preci-
sion and recall values across these experiments were consis-
tent (see Table 1) with mean precision of 0.965 and mean re-
call of 0.776. Figure 4 shows these results to be comparable
to similar experiments on average using SNL diagrams [9]
and aligned sub-hierarchies 6 (AsH) [18]. However, MaPP
results have less variability among the ten experiments and
thus show more stability. Additionally, MaPP is more flexi-
ble in its creation, allowing for more user creativity, and it is
more computationally efficient to compare MaPPs than SNL
or AsH representations, as the latter two include optimal
matching steps in their comparisons.

We found that songs with few repetitive structures (and
thus a scarce SNL diagram) make up the majority of the
songs left without a match or improperly matched. There-
fore, our method works best when analyzing songs with
ample repetitive structures. An example of expanded and
non-expanded versions of a score that were not matched
together is shown in Figure 5, visibly due to scarce amounts
of repeated structures in the non-expanded SNL diagram.

6 AsH are extensions of aligned hierarchies that make aggregate com-
parisons using sections of songs instead of one cohesive structure repre-
sentation as with aligned hierarchies.

Threshold (T ) Shingle (S) Precision Recall
6 0.952 0.769

0.01
12 0.975 0.778
6 0.974 0.731

0.02
12 0.964 0.786
6 0.952 0.769

0.03
12 0.976 0.789
6 0.952 0.769

0.04
12 0.976 0.789
6 0.976 0.789

0.05
12 0.954 0.789

Table 1: Experimental results for the cover song task using
midpoint versions of SNL diagrams, normalized constant
σs, constant σ`, and linearly decreasing weight along the
length axis from Eqn. 5.
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Figure 4: A comparison of precision and recall values for
varying threshold and shingles for three different methods:
MaPP, SNL diagrams, and AsH. The AsH results do not
include the songs which were left unmatched due to empty
AsH representations (which varied between 14% and 65%
of the dataset) as error, thus inflating the results compared
to the other two methods.

5. OTHER APPLICATIONS

Following are two additional examples of how SuPP and
MaPP can be used to address other MIR tasks: novel-
segment detection and genre classification. Preliminary
experimental results show promise with both tasks, and fu-
ture work will include a full analysis of these experiments.

5.1 Novel-Segment Detection

We define novel-segment detection to be finding the bound-
aries between repeated segments and novelty sections. This
is a combination of both the novelty detection and segmen-
tation tasks in MIR [23–25]. These boundaries often distin-
guish between typical segments within a musical piece, like
a verse or a coda, making the segmentation task a natural
application of such detection [23, 24].

For this task, we extend the analysis of MaPP from Sec-
tion 4 by transforming the matrix into a vector; that is, given
a MaPP, we create a 1-D vector by taking the sum of each
column. This projection yields a time-dependent vector
whose entry at a given time step corresponds to the sum
of the structure activity measured by MaPP at that time.
Global and local minima (as specified by user-specific con-
straints) of this projection correspond to regions between
large amounts of structure. Outliers within the collection of
minima correspond to novelty sections, where no repetitive
structure is present for a long period of time. Preliminary
work using this methodology of locating the minima of the
summation projection of MaPP shows promising results,
highlighting the flexibility of MaPP in other MIR tasks.

5.2 Genre Classification

In genre classification, we seek to classify songs by the
genres assigned to them by their recording company. We
use the collection of 104 Chopin’s Mazurkas along with a
selection of 676 Jazz lead sheets [26] from the iRb Corpus
in the ∗∗jazz format to have two genres.

Given that MaPP representations embed into inner prod-
uct spaces, we can use machine learning algorithms for
MIR tasks. MaPP matrix elements become the features for
each song with the number of features set by the resolution
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Figure 5: Mazurka Op. 68 No. 4 expanded (left) and non-
expanded (right) do not match using k-mutual nearest neigh-
bors with k = 1 on their corresponding MaPPs due to scarce
repeated structures in the non-expanded SNL diagram.

parameter. Various machine learning algorithms, imple-
mented in sklearn, 7 are applied to our set of MaPPs as
constructed in Section 4, representing 104 Mazurka scores
and 676 jazz lead sheets. Logistic regression, a Gaussian
kernel support vector machine (SVM), and a polynomial
kernel SVM distinguish between the Mazurka and jazz
pieces with high accuracy of above 94% for each classifier.

6. CONCLUSION

In this paper, we introduce SuPP and MaPP, two musical
representations influenced by TDA theory. We describe
how SuPP and MaPP are built and give intuition into how
parameters may be chosen when applying these represen-
tations to the cover song task. Our accuracies using MaPP
for this task are comparable to previous studies on average
but indicate greater stability among various SDM thresh-
olds and shingles. Preliminary experiments applying SuPP
and MaPP to novel-segment detection and genre classifica-
tion are plausible, demonstrating the adaptability of these
representations for distinct MIR tasks.

We discuss how SuPP and MaPP overcome limitations of
the aligned hierarchies [8] and SNL diagrams [9], and how
they are adaptable with user-specified parameters allowing
for task-specific representations. Unlike its predecessors,
MaPP is well suited for machine learning. Future work
will demonstrate this through various MIR tasks, such as
genre classification, and by applying similar methods to
additional datasets including audio data, such as the Da-
TACOS dataset [27]. A drawback of SuPP and MaPP is the
necessary manual selection of parameters, requiring a deep
understanding of the task at hand.

SuPP and MaPP, alongside SE and SNL diagrams [9],
offer inspiring insights and open up a realm of opportunities
in the intersection of TDA and MIR. These methods are
both grounded in mathematical theory and have practical
applications to the field of MIR, as seen by the effective use
of MaPP for the cover song task. The experiments in this
paper further highlight the utility of TDA-based methods
and explore new opportunities for future experimentation
in the intersection of TDA and MIR.

7 https://scikit-learn.org/stable/
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ABSTRACT

While common approaches to automatic structural analysis
of music typically focus on individual audio files, our ap-
proach collates audio features of large sets of related files
in order to find a shared musical temporal structure. The
content of each individual file and the differences between
them can then be described in relation to this shared struc-
ture. We first construct a large similarity graph of temporal
segments, such as beats or bars, based on self-alignments
and selected pair-wise alignments between the given in-
put files. Part of this graph is then partitioned into groups
of corresponding segments using multiple sequence align-
ment. This partitioned graph is searched for recurring sec-
tions which can be organized hierarchically based on their
co-occurrence. We apply our approach to discover shared
harmonic structure in a dataset containing a large number
of different live performances of a number of songs. Our
evaluation shows that using the joint information from a
number of files has the advantage of evening out the noisi-
ness or inaccuracy of the underlying feature data and leads
to a robust estimate of shared musical material.

1. INTRODUCTION

Automatic analysis of musical structure from audio is one
of the more challenging tasks in music information re-
trieval (MIR) [1–3]. Reasons for this are the relatively
high-level nature of the problem and its dependence on
lower-level audio descriptors, which have a tendency to be
noisy, as well as the restricted availability of annotated col-
lections in a limited number of musical genres, which are
necessary for tackling the problem with solutions based on
machine learning. However, the growing number of large

© Florian Thalmann, Kazuyoshi Yoshii, Thomas Wilmer-
ing, Geraint A.Wiggins, Mark B. Sandler. Licensed under a Creative
Commons Attribution 4.0 International License (CC BY 4.0). Attribu-
tion: Florian Thalmann, Kazuyoshi Yoshii, Thomas Wilmering, Geraint
A.Wiggins, Mark B. Sandler, “A Method for Analysis of Shared Structure
in Large Music Collections using Techniques from Genetic Sequencing
and Graph Theory”, in Proc. of the 21st Int. Society for Music Informa-
tion Retrieval Conf., Montréal, Canada, 2020.

public and online music collections, which are usually
annotated with user-curated metadata (song titles, artists,
recording information, or dates), can potentially be used
for unsupervised structural analysis which may be of con-
siderable musicological value.

This paper introduces an approach for the detection of
temporal structure in large collections of musical audio
recordings where information from a number of related
recordings is combined to improve the quality of results.
From a given set of input audio recordings, e.g. differ-
ent performances of the same song, our method identi-
fies the most commonly occurring sequential structures,
relates them to each other and organizes them hierarchi-
cally. The individual files can then be described, compared
and aligned with each other by referencing this shared
structure. Inspired by techniques used in genetic sequenc-
ing, we combine the use of different alignment methods,
including dynamic programming (DP) and multiple se-
quence alignment (MSA) with graph representations and
search methods. We evaluate our method on a subset of
the Live Music Archive (LMA) of the Internet Archive and
analyze the harmonic content of a large number of perfor-
mances of a selection of songs. We compare the harmonic
essence thus obtained with existing lead sheets and illus-
trate the differences between individual performances in
a few qualitative comparisons. Although the examples in
this paper focus on formal structure determined by har-
monic progressions, the method can easily be used for
structure determined by other musical aspects.

2. RELATED WORK

With the omnipresence of large digital audio collections of
music, the automatic analysis of large corpora is becoming
an increasingly central task in music information retrieval.
Recent research in this area has mainly focused on large-
scale statistical analysis of audio features [4–6], as well as
making these accessible using interactive browsing tools
[7–9]. While the analysis of temporal structure, includ-
ing the identification of musical patterns, motifs, harmonic
progressions, or form across corpora, are relatively well es-
tablished for collections of symbolic music [10–12], only a
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few have attempted to use similar analysis methods for au-
dio collections [13–15]. Potential reasons for this are often
discussed and may be due to common problems with au-
dio collections, including mislabeling, duplication, differ-
ing recording quality, or noisy audio features [4, 6, 16, 17].

Many of the methods used jointly in this paper have
previously been applied in different musical contexts. Dy-
namic programming is often used to align audio record-
ings of different performances of the same material, either
audio-to-score or audio-to-audio [18–20], sometimes con-
sidering musical variations and structural differences [21].
While immediate uses include score following, automatic
accompaniment, and computer-assisted production, some
have used alignment methods for classification tasks such
as cover song identification [22] and plagiarism [23].

While the alignments methods most commonly used in
MIR are pairwise, i.e. applied to align pairs of sequences,
such as the Smith-Waterman or the Needleman-Wunsch al-
gorithm [24], there are many methods for directly aligning
multiple sequences commonly used in bioinformatics, but
only a few have so far been applied to musical data. [25]
used multiple sequence alignment (MSA) to eliminate con-
flicts and typos in song lyrics retrieved from the Web. [20]
used their own progressive MSA method as well as Profile
HMMs (Hidden Markov Models) to align different record-
ings of performances of classical music and found the two
methods to lead to comparable results. In [26, 27], which
comes closest to the present work, different MSA libraries
were used along with pattern mining to detect harmonic
patterns in symbolic transcriptions of a set of 138 songs.
The authors were able to identify cover songs as well as
genre clusters with their most characteristic progressions.

There are generally three common approaches to au-
tomatically discovering musical structure in sequences of
feature vectors from individual recordings, via repetition,
novelty, or homogeneity [1]. The first identifies repeat-
ing subsequences whereas the other two identify abrupt
changes or comparatively stable areas. Sections often reap-
pear in slightly varied forms, which has been addressed
in [28]. Recent methods often use combined approaches
using both harmonic and timbre features in order to im-
prove results, e.g. [29]. While music is inarguably orga-
nized hierarchically [2], few approaches enable the detec-
tion of hierarchical structure [30].

Our approach is purely repetition-based, however, not
only in individual recordings, but in the entire collection
of interest. This allows the identification of sections oc-
curring only once in a given piece and leads to more ro-
bust descriptions of the found sections. Similar to our ap-
proach, [31] used automatically detected musical structure
to improve chord label quality for individual pieces.

3. METHOD

Our method consists of a five-step process. Given a set of
recordings, we create an alignment graph based on a num-
ber of self-alignments and pairwise alignments. Then, we
use an MSA to partition the alignment graph and create
a structure graph. We then search the structure graph for

(Self-)Alignments 
with SW

Inference of 
HierarchyAlignment Graph Structure Graph

Multiple Sequence 
Alignment with HMM

Inference of 
Section Types

Completion 
and Annotation

Figure 1. Overview of the five-step process.

commonly occurring sections and classify them into sec-
tion types. These section types are then grouped into a
hierarchical structure, based on their co-occurrence. Fi-
nally, we complete the structure graph with material from
the individual recordings that was left out by the MSA and
annotate the recordings with section types. Figure 1 shows
an overview of the process.

3.1 Alignment Graph

Given a collection A of K related audio recordings we ob-
tain a feature sequence Ak = (ak1 , ..., a

k
Nk

) of length Nk
for each recording k = 1, ...,K. Each element aki rep-
resents a time segment, such as a beat, bar, or onset, with
corresponding feature information, such as chroma vectors
or chord labels.

A local alignment between two such sequences As, At

is commonly defined as a sequence of pairs p =
(p1, ..., pL) with pl = (sl, tl) ∈ [1, ..., Ns] × [1, ..., Nt]
with a monotonicity constraint 1 ≤ s1 ≤ . . . ≤ sNs ≤ Ns
and 1 ≤ t1 ≤ . . . ≤ tNt

≤ Nt and a step condition
pl+1 − pl ∈ {(0, 1), (1, 0), (1, 1)}. A local self-alignment
can be defined accordingly with As = At.

In our situation it is advantageous to only consider di-
agonal local alignments in order to reduce ambiguity and
noise in the alignment graph. We can achieve this with
a more strict step condition pl+1 − pl = (1, 1),∀l =
1, . . . , L-1.

Due to repetition and variation in the given musical ma-
terial, many sensible local alignments may exist between
each pair of recordings. For example, if in one record-
ing the first of a pair of musical sections is expanded or
another is inserted between the two sections, two indepen-
dent local alignments are still able to capture the common-
ality between the two recordings. The same is true for
self-alignments, which are able to characterize repetition
at different temporal intervals within recordings.

From a large number of such alignments and self-
alignments we can then create an alignment graph GA =
(NA, EA) for collection A with a node for each segment
aki and an edge between each aligned segment pair pl. Due
to the alignments being local, not every node in the graph
is necessarily connected, and some nodes may have many
incident edges.

Due to the large size of many audio collections of in-
terest and the time complexity of alignment algorithms, it
may not be feasible to calculate the alignments between ev-
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ery possible pair of recordings. However, for our method
it has proven to be sufficient to select a small subset of
all possible pairings, e.g. n random pairings per recording
(n ∗K alignments) plus all K self-alignments.

3.1.1 Alignment and Self-Alignment Methods Used

Common approaches to alignment are usually designed to
find a single global or local alignment for a pair of given
sequences. For the reasons outlined above we are more
interested in finding multiple local diagonal alignments of
reasonable length. Many common approaches can be mod-
ified for this purpose. Here we discuss the Smith-Waterman
algorithm, which we use in our experiments.

Smith-Waterman is a dynamic programming algorithm
developed in the context of genetic sequence alignment
[32]. For two given input sequences As, At, the sim-
plest variant with a linear gap penalty generates a scoring
matrix Hi,j with dimension Ns + 1 × Nt + 1 and with
Hi,0 = H0,j = 0. Each Hi,j with i, j > 0 is then deter-
mined as follows:

Hij = max


Hi−1,j−1 + sim(asj , a

t
j),

Hi−1,j − PG,
Hi,j−1 − PG,
0

(1)

where sim is a similarity function between feature vectors
and PG is a gap penalty. 1 Depending on the nature of
the feature vectors, one may choose sim to be a simple
cosine similarity, or a function that returns a match score
for identical vectors and else a lower mismatch score.

Starting from the highest score in the matrix, the algo-
rithm then finds the most likely alignment path by tracing
back the origins of the score and ending at a position with a
score of 0. Our modification of the algorithm finds diago-
nal paths by limiting trace-back to matching pairs contain-
ing a maximum number of γ ≥ 0 subsequent diagonal gaps
(mismatches). With one iteration of Smith-Waterman, sev-
eral of these paths may be extracted by gradually removing
found paths from the matrix and setting their values to 0.

Furthermore, due to the fact that some potential paths
can be covered up by higher-rated paths nearby, we pro-
pose an iterative variant of Smith-Waterman where every
element in the neighborhood of a previously found align-
ment path p is set to zero, i.e. ∀pl ∈ p we set Hij = 0 for
sl−δ ≤ i ≤ sl+δ and tl−δ ≤ j ≤ tl+δ. The parameter
δ ≥ 0 controls the minimum distance between alignments,
which can be used for limiting the number of results. 2

Additional ways of improving the performance of the
algorithm and the quality of the resulting alignments that
have proven useful are limiting the number of iterations,
setting a score threshold below which alignments are no
longer considered, or setting a minimum segment length.

Many of the existing methods can also be modified for
self-alignment. With Smith-Waterman, we simply treat the

1 In genetic sequence alignment it is generally more appropriate to re-
place PG with a gap penalty function that distinguishes between opening
and closing a gap and decreases for longer gaps.

2 A similar iterative (‘recursive’) variant was introduced in [19]. How-
ever, there each sequence element is involved in at most one pair.

time ->

tim
e ->

Figure 2. The matrix resulting from a diagonal self-
alignment of a recording of China Doll from the dataset
used in Section 4 (10 longest segments).

trivial diagonal alignment as a previously found path p.
Figure 2 shows an example diagonal self-alignment.

3.2 Structure Graph

The next step is to construct a structure graph that encap-
sulates the most common structural characteristics found
in the given collection. The goal is to identify a large sub-
graph G′A of GA that can be partitioned into a sequence of
partitions P1, . . . , PM of corresponding nodes in G′A, i.e.
Pm ⊂ NA. Each partition contains at most one segment
of each recording, i.e. k 6= l, ∀aki , alj ∈ Pm, and the par-
titions are strictly ordered temporally, i.e. i < j, ∀aki ∈
Pm, a

l
j ∈ Pm+1. For example, if the nodes of GA rep-

resent bars in A, each partition contains bars of different
recordings that can be considered equivalent. Subsequent
partitions may be thought of as recurring sequences, al-
though there may be gaps in individual or all recordings
between to adjacent partitions. Note that ∪Pm may likely
not include all nodes of GA due to significant structural
differences between the individual recordings, hence the
definition of G′A. Figure 3 shows the connection matrix of
an example partition where the z-axis shows the number of
connections between partition pairs.

We can infer such a partition directly from the connec-
tions in GA in an iterative manner. We experimented with
various graph search approaches, e.g. searching for the
most densely connected components with at most one node
per recording and aligning these components temporally,
or with beam search with various partition improvement
and modification methods based on functions that rate the
clarity of the connection matrix of the partition.

However, while these methods work well for relatively
similar input sequences, we obtained better and faster re-
sults for more diverse input material with multiple se-
quence alignments using Profile HMMs [24], a method
common in genetic sequencing where a reasonable simul-
taneous alignment is found for all sequences. A Profile
HMM is a particular type of Hidden Markov Model with
three types of states and a given length L. Match statesMj
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temporally ordered partitions ->

tem
porally ordered partitions ->

Figure 3. Connection matrix of the partitioned alignment
graph of China Doll (65 recordings). The z-axis shows the
number of connections between the nodes of each parti-
tion pair. The beginning of the song features a regularly
repeating section (verses and solos), followed by a section
that occurs only once but in most versions (interlude and
chorus), followed by a short repeated ostinato (outro).

Figure 4. Transition structure of a Profile HMM [24].

represent segments shared between sequences, insert states
Ij represent possibly multiple consecutive segments par-
ticular to an individual sequence, and delete states Dj rep-
resent segments missing in a particular sequence (the seg-
ment represented by the corresponding match state), where
j = 1, . . . , L (see Figure 4).

There are L match and L delete states, as well as L+ 1
insert states. The emission distributions for the match and
insert states are chosen depending on the input feature se-
quences, e.g. 12-dimensional multivariate gaussian for
chroma vectors, or multinomial discrete distributions for
chord labels. The model is trained with a number of re-
lated sequences, in our case the Ak, using the expectation
maximization variant of Baum-Welch. L is usually chosen
based on the lengths of the input sequences, e.g. their max-
imum, median, mean, or minimum length. Individual state
sequences for each input sequence can be decoded using
the Viterbi algorithm, i.e. we obtain a state label for each
aki . We can then infer the M partitions from the segments
associated with the L match states (M ≤ L), for example
by only keeping the match states that appear in a propor-
tion of at least 0 ≤ λ ≤ 1 of all the sequences.

We now define a structure graph G′′A = (N ′′A, E
′′
A)

whose nodes correspond to the partitions Pm and whose
edges are determined by the most common mutual con-
nections in G′A between the elements of different parti-
tions. More precisely, we add an edge for each node
pair Pm, Pn ∈ N ′′A where Pm ∈ con(Pn, µ) and Pn ∈

time ->

recordings

Figure 5. Juxtaposition of different recordings of China
Doll where colors represent segment types. The different
horizontal offsets illustrate varying lengths of introductory
tuning or announcements. The empty lines are mislabeled
recordings of different songs.

con(Pm, µ). The function con(x, µ) returns the set of
µ > 0 nodes in N ′′A most strongly connected to x:

con(x, µ) = argmax
y∈N ′

A\xµ

|{e ∈ EA | a, b ∈ e, a ∈ x, b ∈ y}|

(2)
where argmaxµ returns the set of µ arguments for which
the function is maximized. The parameter µ should be rel-
atively small for best results, e.g. 0 < µ ≤ 5. For illustra-
tion, the resulting graph is a pruned simple-graph version
of the multigraph of which a connection matrix is shown in
Figure 3. The pruned graph contains only nodes represent-
ing significantly large partitions are kept and simple edges
are established wherever the multigraph has many edges.

3.3 Inference of Section Types and Hierarchies

The structure graph can then automatically be decom-
posed in order to find types of sections recurring in the
collection and within single recordings. The connected
components Cj in G′′A represent sets of equivalent par-
titions of segments recurring at different points in time.
We sort these components by their lowest partition index
minm(Pm ∈ Cj) and group temporally adjacent ones
where Pm ∈ Cj ⇐⇒ Pm+1 ∈ Cj+1 into sequences.
For each of these sequences we can retrieve the corre-
sponding recurrent sections by simply transposing the two-
dimensional arrays of indexes, i.e. (Cj1, . . . , CjJ)T with
j1, . . . , jJ being the sorted indexes of the components in a
given group. Finally, we merge temporally adjacent groups
of sections G,H if for each section in G there is a directly
temporally adjacent section in H and vice versa. Figure 5
shows a visualization of the section types thus obtained for
the partitioned graph shown in Figure 3.

For music with no recurring sections the above proce-
dure may result in only a few or no section types. We
therefore suggest an additional step of inferring bound-
aries between adjacent connected components Cj , Cj+1.
Let ∆j,j+1 = avgk(nk − mk) be the average differ-
ence in index over all recordings k appearing Cj , Cj+1,
where mk, nk are the indexes of the segments of k, i.e.
akmk

∈ Cj , aknk
∈ Cj+1. If ∆j,j+1 ≥ τ for a given thresh-
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Figure 6. Visualization of the structural hierarchies of five
different songs from the dataset from Section 4.1. The top-
most is the unflattened hierarchy of China Doll (Figures 3
and 5), all others are flattened. The colors indicate section
types, the vertical axis nesting level.

old τ > 1, we introduce a section boundary between Cj
andCj+1. For example, for τ = 5 we add a section bound-
ary between any two subsequent components where there
are on average 4 segments missing per recording.

Finally, we can simplify the structure by inferring a hi-
erarchy from the obtained section types. This can be done
using a simple recursive search method that identifies the
most frequently recurring adjacent section types and either
combines them into a new type or concatenates them if
they always co-occur. This hierarchy can then be simpli-
fied by further merging adjacent types that always appear
together, and finally flattening nested types if their parts
only occur within them. Figure 6 shows a few visualiza-
tions of example hierarchical structures.

3.4 Annotation of Individual Structures

In a final step of the process, each individual recording
in the collection can be annotated using the found shared
structure. First, we label each segment in the structure
graph with a corresponding section type identified as de-
scribed in the previous section. Then, using the alignment
graph GA we can infer section types for segments that are
not in the structure graph, which may for example be the
case if some recordings contain additional repetitions of
sections. We consider for each segment aki in GA \ G′A
and check which partition Pm in G′′A it is most strongly
connected to, i.e. which partition contains the most seg-
ments connected to aki . Note that some segments, sections,
or entire recordings may remain unlabeled, if they were not
aligned or self-aligned in the first step of the process (Sec-
tion 3.1), due to being entirely unrelated or their features
being too noisy (see Figure 5 for some examples).

Finally, we can annotate each segment that received a
section type with a feature value derived from the shared
structure. We determine a value for each position of every
section type by summarizing the original features of all
segments associated with that position. For example, we
may label the first beat of a section type with the chord la-
bel most frequently occurring among all associated beats.

All corresponding segments in individual recordings can
then be annotated with that label.

4. EXPERIMENTS

We tested our approach on material from the Grateful Dead
collection of the Live Music Archive, 3 which holds more
than 13,000 recordings of over 2,000 shows spanning the
years 1965 to 1995. The large number of recordings of
individual songs and the improvised nature of Grateful
Dead’s performances make this collection particularly in-
teresting for our work.

4.1 Dataset and Preparations

We created a dataset 4 with all performed versions of 15
songs from this collection, selected based on the criteria
that a large number of versions exist and that a correspond-
ing studio recording by the Grateful Dead is available that
could potentially be used as a reference in the future. The
fact that these recordings are live recordings poses addi-
tional challenges to the ones outlined in Section 2. Many of
them contain a considerable amount of crowd noise which
may lead to noisy audio features, and most of these record-
ings were made by amateurs using their analog tape equip-
ment, which means that many of them are out of tune due
to varying tape speed. We addressed the second of these
problems and resampled the audio files after comparing
their rotated chroma features with the ones of the respec-
tive studio version. For a ground truth, we transcribed
the chord progressions beat-by-beat and grouped them into
bars and sections for each of the songs with the help of ex-
isting lead sheets. 5 This level of granularity is particularly
important due to the fact that many of these songs are based
on odd meters (e.g. 7/4 in Estimated Prophet) or contain
metrical changes (e.g. abbreviated 2/4 bars in China Cat
Sunflower). Tuning ratios, a script for downloading and re-
sampling, and transcriptions are published with the dataset.

The experiments described here 6 are based on a sub-
set of the dataset with at most 100 versions of every song.
We extracted triadic chord features using [33] (root notes
and one of the four qualities major, minor, diminished, and
augmented) and summarized them to beats extracted using
Madmom. 7 The summarization process is based on the
statistical mode of the chords in each temporal segment,
i.e. for each segment the chord that was played for the
longest. In order to be comparable with the features, we
simplified the transcribed chords to triads as well.

We used our own implementation of a Profile HMM
and initialized it with L = median input length and with
uniform distributions and transition probabilities, except
match-match 0.999 and delete-insert 0.01. Our Smith Wa-
terman implementation led to the quickest and best results

3 https://archive.org/details/GratefulDead
4 https://github.com/grateful-dead-live/

fifteen-songs-dataset
5 e.g. at http://jdarks.com/GDTab.html
6 Code available at https://github.com/

florianthalmann/ismir2020-shared-structure
7 https://madmom.readthedocs.io
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(a) baseline (b) annotated (c) shared
pG 0.691 0.779 0.825
pO 0.411 0.461 0.482

Table 1. Proportion of matched chords in groundtruth and
output for baseline (extracted chords), annotated record-
ings, and shared harmonic structure (averaged over all
recordings in the case of baseline and annotated).

(a) (b) (c)

0.6

0.7

0.8

0.9

Figure 7. Distributions of average proportions of matches
in ground truth pG per song. (a) baseline, (b) annotated
versions, (c) shared structure.

with the following parameter settings: a single iteration,
10 longest alignment segments, minimum segment length
16, γ = 4, δ = 4, λ = .1, µ = 1, τ = 2.

4.2 Results

Due to the fact that there is no previous work with which
to compare our method, we chose to perform an evalua-
tion similar to [31] where structural information is used
to improve chord prediction accuracy. 8 We used Smith
Waterman to align the following sets of sequences with
the ground truth transcriptions: (a) the original extracted
chord sequences as a baseline (b) the sequences annotated
by our method according to Section 3.4 and (c) the shared
harmonic structure identified by our method according to
Section 3.3. We then calculated two measures for each of
the sets of sequences: the proportion of correctly matched
ground truth segments pG as well as the proportion of cor-
rectly matched segments in the output pO, i.e.

pG =
matches in alignment
length of groundtruth

, pO =
matches in alignment

length of output
(3)

Table 1 shows the overall values and Figure 7 shows dis-
tributions of pG per song. pO is lower than pG due to for
example additional repetitions of sections in performances
or the high degree of variation and improvisation in many
of the songs, i.e. there are deviations from the ‘lead sheet’
in individual recordings. However, the fact that on average
the shared harmonic structure matched with the lead sheet
content with an average probability of 82.5% is promising.

8 Note that instead of evaluating the hierarchical structures, which ne-
cessitates a non-trivial generalization of the method suggested in [34] and
will be done in future work, we evaluate the flattened annotations, which
nevertheless result from the process described in sections 3.1 through 3.4.

Figure 8. Visualisation of the segment types for 6 songs
(Box of Rain, Eyes of the World, Franklin’s Tower, Sugar
Magnolia, Casey Jones, and China Cat Sunflower), around
ten recordings each.

4.3 Application

As a more qualitative investigation of the potential of our
approach we created a simple Web application for the in-
teractive exploration of annotations and alignments along
with the underlying recordings. Users can hear the cor-
responding segments of the recordings by clicking on the
colored blocks. Figure 8 compiles six screenshots for dif-
ferent songs that illustrate different shared structures and
individual deviations from them. Whereas Box of Rain
has a very even and simple AABAAB structure with
tiny insertions, other songs, such as Eyes of the World
or Franklin’s Tower, feature longer more open-ended yet
highly repetitive sections. Casey Jones is a combination
of both with four verse/chorus repetitions followed by an
extended jam over part of the chorus.

5. CONCLUSION

We have presented a new method for the extraction of
shared temporal structure from a number of related audio
recordings and shown with both quantitative and qualita-
tive results how such a method could be useful. For exam-
ple, it could provide musicologists a way to systematically
study and explore larger archives of related recordings, or
yield more reliable estimates of audio features for noisy
live music recordings. Besides a more extensive evaluation
and application, future work could include an expansion of
the method for joint use of different kinds of feature vec-
tors, either to improve the inference of sections and hier-
archies for less repetition-based music (analogous to other
approaches to structure inference) or for a more multidi-
mensional analysis of the musical material.
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ABSTRACT

This paper addresses the novel task of detecting chorus
sections in English and Japanese lyrics text. Although
chorus-section detection using audio signals has been stud-
ied, whether chorus sections can be detected from text-only
lyrics is an open issue. Another open issue is whether pat-
terns of repeating lyric lines such as those appearing in cho-
rus sections depend on language. To investigate these issues,
we propose a neural network-based model for sequence
labeling. It can learn phrase repetition and linguistic fea-
tures to detect chorus sections in lyrics text. It is, however,
difficult to train this model since there was no dataset of
lyrics with chorus-section annotations as there was no prior
work on this task. We therefore generate a large amount
of training data with such annotations by leveraging pairs
of musical audio signals and their corresponding manually
time-aligned lyrics; we first automatically detect chorus
sections from the audio signals and then use their temporal
positions to transfer them to the line-level chorus-section
annotations for the lyrics. Experimental results show that
the proposed model with the generated data contributes to
detecting the chorus sections, that the model trained on
Japanese lyrics can detect chorus sections surprisingly well
in English lyrics and that patterns of repeating lyric lines
are language-independent.

1. INTRODUCTION

The digitization of lyrics collections has opened various
areas of lyrics-based research in the Music Information
Retrieval (MIR) community, such as research on lyrics
browsing [1–3], lyrics genre classification [4–6] and lyrics-
to-audio synchronization [7–17]. Lyrics are usually plain
text without any annotations, and some researchers have
analyzed their structure, such as paragraph structure and
topic transitions between paragraphs [18–22]. For example,
Fell et al. [18] and Watanabe et al. [19] estimated section
boundaries in lyrics text without empty lines but were not
able to assign a section label such as verse or chorus to each
estimated section. Chorus sections were not detected in
lyrics text.

The goal of this paper is to achieve automatic chorus-

c© Kento Watanabe, Masataka Goto. Licensed under a Cre-
ative Commons Attribution 4.0 International License (CC BY 4.0). Attri-
bution: Kento Watanabe, Masataka Goto, “A Chorus-Section Detection
Method for Lyrics Text”, in Proc. of the 21st Int. Society for Music
Information Retrieval Conf., Montréal, Canada, 2020.

section detection for lyrics text. This task has not been
studied, though chorus-section detection, as well as music
structure analysis, for audio signals has been a popular topic
of research in the MIR community [23–41]. Since whether
chorus sections can be detected from text-only lyrics is an
open issue, it is worth investigating this issue from academic
viewpoints. Moreover, a chorus-section detection method
for lyrics text has potential applications. For example, when
listeners want to find lyrics with a chorus section having
a particular phrase such as “I love you” for the purpose of
singing, reusing its chorus section in a short video clip, etc.,
it is necessary for a lyrics search system to automatically de-
tect which lines of the lyrics are included in chorus sections.
The detected lyric lines of chorus sections could be used
in a lyrics viewing function of music services displaying
lyrics with those lines highlighted by a different color or
typeface. Automatic lyric video generation technologies
could give those lines more vivid animations.

Chorus sections are the most repeated and memorable
portions of a song [39]. Since it is not easy to explore
heuristic rules to find such sections, most existing chorus-
section detection methods for audio signals have leveraged
repetitive patterns of those sections within a song. In this
paper, we propose a supervised model that can detect cho-
rus sections in English and Japanese lyrics. Our model uses
both structural features that represent patterns of repeating
lyric lines and linguistic features that are calculated from
word2vec [42] and context2vec [43]. To detect chorus sec-
tions using only plain text without any labels or even empty
lines (i.e., section boundaries), we investigate a model and
features effective for chorus-section detection. Experimen-
tal results show that our proposed model outperforms alter-
native baseline models and that combining structural and
linguistic features contributes to better performance.

Although such a supervised model needs a large dataset
of lyrics with line-level chorus-section annotations for its
training, there was no such dataset as there was no prior
work on chorus sections in lyrics text. To address this
issue of lacking training data, we generated a dataset con-
sisting of 9,313 English and 91,459 Japanese lyrics with
chorus-section annotations by utilizing pairs of musical au-
dio signals and their corresponding manually time-aligned
lyrics. We first automatically detected chorus sections in
audio signals of a song [39]. Then, since each lyric line
had the corresponding start time within the song, we could
find lyric lines that temporally correspond to the duration
of each detected chorus section. We thus obtained the an-
notated dataset by assigning a chorus label to those lyric
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2
3
4
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6
7
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9
10
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13
14
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19
20
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31

Self-similarity Matrix
1: ooo I wanna kiss you
2: loving you is my dream tonight
3: ooo hold me tenderly
4: loving me with all your heart
5: boy you never tell me that you love me
6: I'm going crazy wondering about you baby
7: do you really know boy how much I care
8: could you really show me how deep is your love ?
9: just close you eyes and hear my heart

10: the sweet sweet beat of my love
11: can't you tell I'm hungry baby
12: for only you can make me smile
13: ooo I wanna kiss you
14: loving you is my dream tonight
15: ooo hold me tenderly
16: loving me with all your heart
17: can't you understand me my point of view
18: do you really love me beyond all words
19: I just need to hear now from your sweet lips
20: I'm the only girl you ever want to kiss
21: just close your eyes and hear my heart
22: the sweet sweet beat of my love
23: can't you tell I'm hungry baby
24: for only you can make me smile
25: just close your eyes and hear my heart
26: the sweet sweet beat of my love
27: can't you tell I'm hungry baby
28: for only you can make me smile
29: ooo I wanna kiss you
30: loving you is my dream tonight
31: ooo hold me tenderly
32: loving me with all your heart

Text (a sequence of lines 𝑥" in lyrics)
chorus (1)
chorus (1)
chorus (1)
chorus (1)

not-chorus (0)
not-chorus (0)
not-chorus (0)
not-chorus (0)
not-chorus (0)
not-chorus (0)
not-chorus (0)
not-chorus (0)

chorus (1)
chorus (1)
chorus (1)
chorus (1)

not-chorus (0)
not-chorus (0)
not-chorus (0)
not-chorus (0)
not-chorus (0)
not-chorus (0)
not-chorus (0)
not-chorus (0)
not-chorus (0)
not-chorus (0)
not-chorus (0)
not-chorus (0)

chorus (1)
chorus (1)
chorus (1)
chorus (1)

Label 𝑦"

1 322 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Figure 1. Example of lyrics with chorus-section annotations and corresponding self-similarity matrix in which each cell
represents the similarity between two lyric lines. These lyrics are from “How Deep Is Your Love?” (RWC-MDB-P-2001 No.
81 in the RWC Music Database [44]).

lines and a not-chorus label to the other lines. Experi-
mental results show that the model trained with this large
automatically generated dataset performs better than the
model trained with a smaller manually annotated dataset
and that the model trained on Japanese lyrics can detect
chorus sections surprisingly well in English lyrics.

2. LYRICS CHORUS-SECTION DETECTION
TASK

The left side of Figure 1 shows an example of lyrics with
chorus-section annotations (labels). The lyrics of a song
are a sequence of lyric lines, each line having a sentence or
phrase. In this example there are three highlighted chorus
sections that have exactly the same four lines, though in
other songs, lyrics of chorus sections are repeated with some
modifications. To maximize the applicability, as shown in
this example, we assume that the input text of lyrics does
not have any section boundaries. Even though some lyrics
contain empty lines at those boundaries, those lines are
deleted in advance. We also assume that the input text does
not have explicit chorus labels such as “(chorus)” at the
beginnings of chorus sections. Even though some lyrics
contain those labels, they are deleted as well. When lyrics
contain a repetition label such as “(* repeat)”, it is manually
replaced with the corresponding lyric lines.

We formulate this chorus-section detection task as a
sequence labeling problem: predicting the chorus or
not-chorus status for each lyric line. Let Xs be the
lyrics of a song s composed of T lines of text: Xs =
{x1, ..., xt, ..., xT }. Each lyric line xt has a binary label yt.
If yt = 1, xt is in a chorus section. If yt = 0, xt is not in a
chorus section. Ys denotes a sequence of labels correspond-

ing to Xs: Ys = {y1, ..., yt, ..., yT }. In the training step,
the model learns the conditional probability P (Ys|Xs). In
the validation/testing step, the trained model has to predict
labels Ys for given lyric lines Xs.

Chorus sections cannot be detected by simply extracting
repeated lines since those lines often correspond to non-
chorus sections. For example, lyric lines 9–12 and 21–24
in Figure 1 are exactly repeated, but those lines are not in
chorus sections. It is also difficult to manually define a
set of rules to find various chorus sections. We therefore
prepare various features that could be useful for machine
learning to deal with various types of chorus sections.

3. COMPUTATIONAL MODELING OF CHORUS
SECTIONS IN LYRICS

We propose a neural network-based model for sequence
labeling by using structural features that are self-similarity
matrix (SSM) representations. SSM representations are
widely used in computational music structure analysis, but
we use different representations for lyrics. In addition to
structural features, our model utilizes linguistic features
such as word vectors and sentence vectors calculated from
word2vec [42] and context2vec [43], which are widely used
in natural language processing.

In the following sections, we first describe nine SSMs
for capturing patterns of repeating lyric lines and explain
how to encode the SSMs for neural networks (Section 3.1).
We then describe the linguistic features obtained by vec-
torizing the semantic/syntactic information of lines using
word2vec and context2vec (Section 3.2). Finally, we de-
scribe a neural-network-based sequence labeling model
with these structural and linguistic features (Section 3.3).
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352



3.1 Structural Features

Most previous work on music structure analysis for audio
signals [23–41] identifies repeated musical sections by us-
ing a SSM like that shown in Figure 1. Repeated sections
lead to high values in diagonals of the matrix, and those
patterns are used to identify the structure. To capture re-
peated lyric lines that often appear in chorus sections, we
also compute the SSM from lyrics text, but the design of
the similarity measure to compute each cell of the SSM
is important. We propose to use the following nine varia-
tions of similarity measures simm, where m denotes the
variation. Some of the similarities are based on previous
studies [18, 19].
String similarity (simstr): a normalized Levenshtein edit
distance [45] between the characters of two lyric lines.
Head similarity (simhead): a normalized Levenshtein edit
distance between the characters of the first two words of
two lyric lines.
Tail similarity (simtail): a normalized Levenshtein edit
distance between the characters of the last two words of
two lyric lines.
Phonetic similarity (simphone): To capture rhymes in the
lyrics, we calculate a normalized Levenshtein edit distance
between the phonetic transcriptions of two lyric lines. We
use the CMU pronunciation dictionary 1 to extract the pho-
netic transcription. For example, the phonetic transcription
of “I love you” is [AY1, L, AH1, V, Y, UW1].
Part-of-speech similarity (simpos): To capture similari-
ties in grammatical structure, we calculate a normalized
Levenshtein edit distance between the part-of-speech (POS)
sequences of two lines. We use the default POS tagger in
the NLTK package [46].
Word vector similarity (simw2v): To capture the seman-
tic similarity between two lyric lines, we simply average
vectors of the words of each lyric line by using pre-trained
word2vec [42] and compute their cosine similarity. This
“bag of words” representation does not differentiate “dog
bites person” from “person bites dog”.
Context vector similarity (simc2v): To consider the word
order, we vectorize the lyric lines using pre-trained con-
text2vec [43], an extension of word2vec, which encodes
a sequence of words by using Long Short-Term Memory
(LSTM) networks [47]. We then compute their cosine simi-
larity to obtain simc2v .
Word syllable count similarity (simsyW ): Since repeated
phrases sometimes have the same number of syllables even
if their words are different, we use a sequence of word
syllable counts on each lyric line. For example, the word
syllable counts of the two lyric lines “Sometimes you lost
yourself away” and “Everytime you just close your eyes” 2

are {2, 1, 1, 2, 1} and {2, 1, 1, 1, 1, 1}, respectively. When
successive lyric lines have similar syllable count sequences,
they are likely to correspond to the repetition of sections.
We use dynamic time warping (DTW) [48] to calculate the
similarity between syllable count sequences.

1 http://www.speech.cs.cmu.edu/cgi-bin/cmudict
2 This lyrics are taken from the RWC Music Database (RWC-MDB-P-

2001 No.92) [44].
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for identifying the type of similarity measure.
String similarity (simstr): a normalized Levenshtein edit
distance between the characters of two lines.
Prefix similarity (simpre): a normalized Levenshtein edit
distance between the characters of the first two words of
two lines.
Suffix similarity (simsuf ): a normalized Levenshtein edit
distance between the characters of the last two words of
two lines.
Phonetic similarity (simphone): To capture rhymes in the
lyrics, we calculate a normalized Levenshtein edit distance
between the phonetic transcription of two lines. In this
study, we used the CMU pronunciation dictionary to extract
the phonetic transcription of lines. For example the phonetic
transcription of the line “I love you” is [AY1, L, AH1, V, Y,
UW1].
Part-of-speech similarity (simpos): To capture similari-
ties in grammatical structure, we calculate a normalized
Levenshtein edit distance between the sequence of part-of-
speech of two lines.
Word vector similarity (simw2v): To capture the semantic
similarity between two lines, we simply average words’
vectors of each line using pre-trained word2vec embeddings
and compute its cosine similarity.
Context vector similarity (simc2v): The average of word
vector by word2vec assumes a “bag of words” (i.e., the
difference between “dog bites person” and “person bites
dog” cannot be captured in this assumption). To consider
word order, we vectorize the lines using pre-trained con-
text2vec, an extension of word2vec, which encodes lines
using LSTM. We compute similarity simc2v using cosine
similarity.
Word syllable count similarity (simsyW ): As a clue for
detecting chorus sections, we use the sequence of word
syllable counts on each line. For example, word syllable
counts of two lines “Sometimes you lost yourself away”
and “Everytime you just close your eyes” are {2, 1, 1, 2, 1}
and {2, 1, 1, 1, 1, 1} respectively 1 ; lines that have a similar
syllable count sequence are likely to be the same section
in the song. In this study, we use Dynamic Time Warping
(DTW) to calculate the similarity between sequences of
different lengths, such as syllable count sequences.
Line syllable count similarity (simsyL): We can also use
the sum of the syllable counts of all words in each line.
For example, in the lyrics of Figure 1, the total syllable
count of the first line in the chorus section is all six, but
the total syllable count in the second line is eight. For-
mally, we calculated the similarity of the total syllable
count of each line in the following procedure. (1) We shift
a window of four lines over lyrics and extract four lines
Lt = {xt, xt+1, xt+2, xt+3}. (2) The similarity between
the line xt and xt0 is calculated by the DTW of Lt and Lt0 .

We calculated nine self-similarity matrices SSMm 2
RT⇥T , where each cell is a similarity measure as described
above. Then, to calculate feature vectors from the above
nine SSMs, we exploit the Convolutional Neural Network

1 The song is from the RWC Music Database (RWC-MDB-P-2001
No.92) [3].

Figure 3. Convolutional Neural Network to vectorize
SMMs.

(CNN) architecture, as the same as Fell et al, which allows
the neural network to extract translation, scaling, and rota-
tion invariant features anywhere on the input image. Our
study shares the same motivation to capture chorus sections
from various SSM patterns, regardless of SSM location and
relative size.

This CNN structure is illustrated in Figure 3. After the
SSMs are calculated, we extract fixed window sub-matrices
centered on the target line:

St
m = SSMm[t�w +1, ..., t+w] 2 R2w⇥T , where w

is a fixed window size. The input of the CNN is nine sub-
matrices {St

str, ..., S
t
syL} 2 R2w⇥T ⇥9, where the number

of SSMs indicate the number of channels. The kernel size
of the first convolutional layer is (w + 1)⇥ (w + 1) so that
each feature can capture a prospective chorus section. In
this network, all convolutional layers employ batch normal-
ization and the ReLU activation function. Each resulting
tensor is downsampled by max-pooling with w ⇥ w kernel
size. After max pooling, we use a dropout layer (p = 0.1)
for regularization. Then, we apply the 1D convolutional
layer with a kernel size of w and downsample by the vector
of each channel in the last max-pooling layer. We perform
the above procedure independently for each line xt and
obtain the CNN-based feature vector vt.

3.2 Linguistic Features

Some linguistic expressions tend to appear in chorus rela-
tionships. For example, analyzing lyric data with chorus
markup, we found that phrases about the future such as

“I’ll”, “Let’s” and “I wanna” tend to appear in the chorus
section, while phrases about the past such as “have been”
and “didn’t” tend to appear less in the chorus section. To
exploit such a linguistic expression of the chorus section,
we propose two linguistic features.
Average of word vectors (wordave): We use average of
the word vectors of a given line as features. In this study,
the average of word vectors using pre-trained word2vec,
skipping out-of-vocabulary words.
Vector representations for word sequences (wordseq):
Word order cannot be modeled by the average of word
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and “Everytime you just close your eyes” are {2, 1, 1, 2, 1}
and {2, 1, 1, 1, 1, 1} respectively 1 ; lines that have a similar
syllable count sequence are likely to be the same section
in the song. In this study, we use Dynamic Time Warping
(DTW) to calculate the similarity between sequences of
different lengths, such as syllable count sequences.
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the sum of the syllable counts of all words in each line.
For example, in the lyrics of Figure 1, the total syllable
count of the first line in the chorus section is all six, but
the total syllable count in the second line is eight. For-
mally, we calculated the similarity of the total syllable
count of each line in the following procedure. (1) We shift
a window of four lines over lyrics and extract four lines
Lt = {xt, xt+1, xt+2, xt+3}. (2) The similarity between
the line xt and xt0 is calculated by the DTW of Lt and Lt0 .

We calculated nine self-similarity matrices SSMm 2
RT⇥T , where each cell is a similarity measure as described
above. Then, to calculate feature vectors from the above
nine SSMs, we exploit the Convolutional Neural Network
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(CNN) architecture, as the same as Fell et al, which allows
the neural network to extract translation, scaling, and rota-
tion invariant features anywhere on the input image. Our
study shares the same motivation to capture chorus sections
from various SSM patterns, regardless of SSM location and
relative size.

This CNN structure is illustrated in Figure 3. After the
SSMs are calculated, we extract fixed window sub-matrices
centered on the target line:
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of SSMs indicate the number of channels. The kernel size
of the first convolutional layer is (w + 1)⇥ (w + 1) so that
each feature can capture a prospective chorus section. In
this network, all convolutional layers employ batch normal-
ization and the ReLU activation function. Each resulting
tensor is downsampled by max-pooling with w ⇥ w kernel
size. After max pooling, we use a dropout layer (p = 0.1)
for regularization. Then, we apply the 1D convolutional
layer with a kernel size of w and downsample by the vector
of each channel in the last max-pooling layer. We perform
the above procedure independently for each line xt and
obtain the CNN-based feature vector vt.

3.2 Linguistic Features

Some linguistic expressions tend to appear in chorus rela-
tionships. For example, analyzing lyric data with chorus
markup, we found that phrases about the future such as

“I’ll”, “Let’s” and “I wanna” tend to appear in the chorus
section, while phrases about the past such as “have been”
and “didn’t” tend to appear less in the chorus section. To
exploit such a linguistic expression of the chorus section,
we propose two linguistic features.
Average of word vectors (wordave): We use average of
the word vectors of a given line as features. In this study,
the average of word vectors using pre-trained word2vec,
skipping out-of-vocabulary words.
Vector representations for word sequences (wordseq):
Word order cannot be modeled by the average of word

Kernel size:
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Self-similarity matrices

extract fixed
window sub-matrix 

Figure 2. Convolutional neural network for SSMs.

Lyric Line syllable count similarity (simsyL): We can
also use the total syllable count of all words in each lyric
line. For example, in all the chorus sections shown in Fig-
ure 1, the total syllable count of the first lyric line is 6 and
that of the second line is 8. We calculate the similarity of
such total syllable counts of each pair of lyric lines by using
the following procedure. (1) We extract a window of four
lyric lines Lt = {xt, xt+1, xt+2, xt+3} and shift it over the
entire lyrics of a song. (2) The similarity between the lyric
lines xt and xt′ is calculated by DTW of Lt and Lt′ .

We thus calculated nine SSMs Am ∈ RT×T , where each
cell is a simm explained above. Then, to calculate feature
vectors from the above nine SSMs, we exploit a convolu-
tional neural network (CNN) architecture to detect textual
macro structures from various patterns in SSMs regardless
of their locations and relative sizes in SSMs. Except for
network parameters, this CNN architecture is the same as
that of Fell et al. [18], as we share the same motivation: to
extract translation, scaling and rotation invariant features
from the input image (in our case, nine SSMs).

Figure 2 illustrates the CNN structure. After calcu-
lating the nine SSMs, we extract fixed-size elongated-
rectangle sub-matrices centered on the target lyric line:
atm = Am[t−w + 1, ..., t+w; 1, ..., T ] ∈ R2w×T , where
w is a fixed window size. The input of the CNN is nine sub-
matrices {atstr, ...,atsyL} ∈ R2w×T×9, where the number
of channels corresponds to the number of SSMs. The kernel
size of the first 2D-convolutional layer is (w+1)× (w+1)
so that each feature can capture a prospective chorus section.
Each resulting tensor is downsampled by max-pooling with
w × w kernel size. We then apply the 1D-convolutional
layer with a kernel size of w and the last max-pooling layer
downsamples the resulting vector to a scalar. In this net-
work, all convolutional layers employ the ReLU function.
We can perform the above procedure independently for each
lyric line xt and obtain the CNN-based feature vector vt.

3.2 Linguistic Features

Some expressions tend to appear in chorus sections. To
quantify this tendency, we calculate the difference between
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Tri-gram Pc − Pn Tri-gram Pn − Pc

I’m 0.12% there’s 0.04%
don’t 0.11% I’ve 0.03%

oh oh oh 0.05% ’s a 0.03%
I’ll 0.05% I’d 0.02%

we’re 0.04% but I’ 0.02%
you’re 0.04% ’s not 0.01%
’ll be 0.04% what’s 0.01%
I don’ 0.04% na na na 0.01%
Let’s 0.03% yeah yeah yeah 0.01%

you got ta 0.03% ’ve been 0.01%
I can’ 0.03% ’t take 0.01%
can’t 0.03% didn’t 0.01%

Table 1. Frequent word tri-grams in chorus and non-chorus
sections. An apostrophe is regarded as a word.

word tri-gram probabilities in the chorus and non-chorus
sections. Table 1 shows the word tri-grams that frequently
appear in both of the sections. Here, Pc and Pn denote
word tri-gram probabilities in the chorus and non-chorus
sections, respectively. As shown in this table, we found that
phrases about the future (e.g., “I’ll” and “Let’s”) tend to
appear in chorus sections more often than do phrases about
the past (e.g., “have been” and “didn’t”). To exploit such
tendencies, we propose two linguistic features.
Average of word vectors (lingave): We use the average of
word vectors of a given lyric line as a feature. The word
vectors are obtained using pre-trained word2vec [42], skip-
ping out-of-vocabulary words.
Vector representations for word sequences (lingseq): To
consider the word order that cannot be modeled by lingave,
we use pre-trained context2vec [43] that enables vectoriza-
tion of a lyric line by putting a sequence of word vectors
into the LSTM.

We calculate the above linguistic feature vectors for each
lyric line xt and obtain their concatenated vector ut.

3.3 Neural Network-based Sequence Labeling Model

To solve the sequence labeling problem, we use the stan-
dard Bidirectional Long Short-Term Memory (Bi-LSTM)
networks [49] to compute the conditional probability
P (Ys|Xs). The neural network structure is illustrated in
Figure 3.

The input to the Bi-LSTM layer at each time step t (lyric
line) is a concatenation of two different types of feature
vectors: (1) structural feature vectors vt encoded from
nine variations of SSMs in Section 3.1 and (2) linguistic
feature vectors vt encoded in Section 3.2. Formally, the
conditional probability P (Ys|Xs) is calculated by using a
softmax function:

P (Ys|Xs) =
exp(Score(Xs,Ys))∑
Y ′
s
exp(Score(Xs,Y ′

s ))
. (1)

The Score() is defined as

Score(Xs, Ys) =
∑
t

BN(ht[yt]), (2)

where ht[yt] is the output of the Bi-LSTM for each time
step t and BN() denotes batch normalization [50]. In the
model training step, we use a binary cross-entropy loss.
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Figure 3. Neural-network-based sequence labeling model
for chorus-section detection.

4. EXPERIMENT

Inspired by audio-based chorus-section detection [39], we
evaluated the proposed method by using the F-measure (F )
that is a harmonic mean of precision (P ) and recall (R),
F = (2 ·R · P )/(R+ P ), where

P = # of lyric lines in correctly detected chorus sections
# of lyric lines in detected chorus sections .

R = # of lyric lines in correctly detected chorus sections
# of lyric lines in correct (annotated) chorus sections .

We also used the pair-wise F-measure (p-F ), normalized
conditional entropy F-measure (n-F ) and V-measure (V )
that are provided by the Python module mir_eval and
commonly used to evaluate computational music structure
analysis [51].

4.1 Methods Compared

To confirm the effectiveness of our Bi-LSTM method based
on the Bi-LSTM model that can learn dependencies be-
tween adjacent lyric lines, we compared its performance
with that of with two baseline methods:
(1) Heuristic: We implemented the heuristic that “if lines
at the end of the lyrics are repeated with small modifica-
tions, all those repeated lines are chorus sections” by the
following procedure: (i) From the SSM that is the average
of the nine SSMs, we extracted diagonals whose cells had
values higher than a threshold λ, which was tuned on a
development set to be λ = 0.62. (ii) From the extracted di-
agonals, we selected the shortest diagonal among diagonals
placed at the bottom of the SSM (e.g., the diagonal starting
at the cell SSM[29; 1] in Figure 1). (iii) Successive lines
corresponding to the rows where the selected diagonal was
located (e.g., lyric lines 29–32 in Figure 1) were assigned
the label chorus. (iv) Other successive lines that were
similar to the chorus lines (e.g., lyric lines 1–4 and 13–16
in Figure 1) were also assigned chorus labels.
(2) Multi-Layer Perceptron (MLP): Like the Bi-LSTM
method, but with the Bi-LSTM model replaced by a stan-
dard MLP model. This method ignores transitions between
adjacent lyric lines and predicts yt from xt only.
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We chose the number of kernels for the first and second
CNNs to be 200 and 400, respectively. We used w = 3
for the window size. In the MLP and Bi-LSTM methods,
we chose the dimension of the hidden state to be 600. The
word2vec [42] and context2vec [43] were pre-trained on
lyrics and were not updated in the model training step of our
method. The dimension of their output vectors was 300. We
used AdamW for parameter optimization [52]. The initial
learning rate was 0.001 with an exponential decay. We used
a mini-batch size of 64. Training was run for 100 epochs,
and the model used for testing was the one that achieved
the best F-measure on the development set.

4.2 Dataset

To train our computational model that predicts whether the
label of each lyric line is chorus or not-chorus, we
needed a large amount of lyrics data with line-level chorus-
section annotations like those illustrated in Figure 1. Since
there was no dataset for this, we generated a large amount
of such lyrics data by the following procedure:
(1) We prepared 100,772 pairs of musical audio signals
and their corresponding manually time-aligned (temporally
synchronized) lyrics 3 . To avoid unreliable lyrics, we con-
firmed that all lyrics had more than eight lines and less than
120 lines.
(2) We detected chorus sections of every song automatically
by using its audio signals. In our experiments, we used the
RefraiD method [39] to obtain the start and end times of
each chorus section, but other methods could also be used.
(3) If the start time of a lyric line was within any cho-
rus section detected in audio signals, that line was labeled
chorus; otherwise, it was labeled not-chorus.
Of course, not all generated annotations were correct, but
by using over 100,000 training data, the model could be ro-
bustly trained without being influenced by errors or outliers.
The generated training data consisted of 9,313 English and
91,459 Japanese songs, and we called them EN_auto and
JA_auto, respectively. 4

Furthermore, we manually annotated three sets of lyrics
data with more reliable line-level chorus-section annota-
tions for three different purposes:
(a) For training comparison: We annotated 1,103
Japanese lyrics and called them JA_man 5 . By comparing
the performance of the model trained on JA_auto with that
of the model trained on JA_man, we could confirm that our
generated data is reliable enough for training purposes.
(b) For tuning model parameters: We annotated the
lyrics of 21 English and 79 Japanese songs from RWC-
MDB-P-2001 and called them EN_RWC and JA_RWC,

3 In our experiments, English and Japanese lyrics text as well as the start
time of every lyric line were provided by a lyrics distribution company.
Automatic lyrics-to-audio synchronization [7–17] could also be used to
estimate such start times.

4 The main genres are Rock (33%), Pop (25%) and Alternative (12%)
for EN_auto, and J-Pop (53%), Rock (20%) and Anime (9%) for JA_auto.

5 To investigate the accuracy of the automatic annotation method we
used for generating EN_auto and JA_auto, we applied the same method to
the songs (audio signals and corresponding manually time-aligned lyrics)
in JA_man. The accuracy of the generated annotations was F = 68.0%,
thus the automatic annotation method seems to work decently well.

Training data / Testing data
EN_auto / EN_test JA_auto / JA_test

Method F p-F n-F V F p-F n-F V

Heuristic 57.8 73.8 43.0 35.8 57.1 73.2 43.6 36.3
MLP 74.2 76.8 47.7 43.0 80.6 82.8 62.6 59.1

Bi-LSTM 78.1 77.7 50.8 47.3 83.4 83.5 64.9 61.4

Table 2. Experimental result: Comparison of different
methods (the unit is %).

Training data / Testing data
EN_auto / EN_test JA_auto / JA_test

Feature F p-F n-F V F p-F n-F V

simall 77.9 76.1 48.6 45.5 81.2 82.7 63.6 59.6
lingall 57.4 59.9 16.5 6.9 55.2 61.8 22.1 16.7
both 78.1 77.7 50.8 47.3 83.4 83.5 64.9 61.4

Table 3. Experimental result: Importance of using both
structural and linguistic features.

respectively. These were used to tune model parameters.
(c) For testing: We annotated the lyrics of 118 other En-
glish songs and 128 other Japanese songs and called them
EN_test and JA_test, respectively 6 . These were used to
test the chorus-section detection methods.

4.3 Comparison of Different Methods

Table 2 summarizes the evaluated performances of Heuris-
tic, MLP and the proposed Bi-LSTM. We found that MLP
and Bi-LSTM performed better than Heuristic. This indi-
cates that methods based on supervised learning are better
than a rule-based method. We also found that Bi-LSTM
was better than MLP and thus confirmed the importance
of learning dependencies between adjacent lines. Since we
concluded from these results that the proposed Bi-LSTM is
the best for the chorus-section detection task, in the subse-
quent experiments reported here we used only Bi-LSTM.

4.4 Importance of Using Both Structural and
Linguistic Features

To investigate the effectiveness of structural and linguistic
features, we compared their use individually and in com-
bination. Table 3 summarizes the results. We found that
the model with only the structural features simall greatly
outperformed the model with only the linguistic features
lingall. Using both kinds of features further improved the
performance. This not only confirms the importance of us-
ing SSMs, as had been shown for the audio-based detection
of chorus sections, but also confirms that the additional use
of linguistic features is helpful for detecting chorus sections,
which has not been shown before.

4.5 Reliability of Generated Annotations

As stated in Section 4.2, we used JA_man for the proposed
training comparison. Table 4 clearly shows that the model
trained using JA_auto, automatically generated data the
amount of which can be large, outperformed the model
trained using JA_man, manually annotated data, the amount

6 The chorus and not-chorus labels were annotated only on the
lyrics. No audio signal is available for these test data.
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Training data F p-F n-F V

JA_auto (91,459 songs) 83.4 83.5 64.9 61.4
JA_man (1,103 songs) 80.3 77.3 53.3 50.4

Table 4. Experimental result: Reliability of automatically
generated annotations.

Training data Testing data F p-F n-F V

EN_auto (9,313 songs) EN_test 77.9 76.1 48.6 45.5
JA_auto (91,459 songs) EN_test 80.3 80.6 58.1 54.4

EJ_auto (100,772 songs) EN_test 81.0 82.3 60.7 57.4

Table 5. Experimental result: Can the Japanese model
detect English chorus sections?

of which is usually very limited because of the laborious
manual effort its creation requires. The results also confirm
that even if annotations generated automatically are not
perfect they are reliable enough for training the model.

4.6 Training Data Size and Language Dependency

Tables 2 and 3 also show that the performances for English
lyrics were worse than those for Japanese lyrics. Since the
amount of Japanese training data was about 10 times than
that of English training data, we think that the amount of
training data greatly affects the performance of the proposed
model. We are thus interested in answering the question
“Can a model trained on a large amount of Japanese data
detect English chorus sections?” In fact, although linguistic
features are language dependent and the process of comput-
ing SSMs is also language dependent, structural features
based on the resulting SSMs can be language independent
because our SSMs simply represent patterns of repeating
lyric lines, which could be universal in music.

As shown in the upper half of Table 5, which shows
results obtained without using linguistic features, we found
that the structural-feature-based model trained on Japanese
data JA_auto succeeded in detecting English chorus sec-
tions in EN_test and its performance was better than that
of the model trained on the smaller dataset EN_auto. This
result indicates that the SSM-based model trained on a large
amount of data can detect chorus sections regardless of the
language of the test set. Moreover, this result is further
evidence that Japanese and English SSMs (i.e., patterns of
repeating lyric lines) have similar structures.

Obviously, the above result raises another question:
“Can a model trained on both EN_auto and JA_auto per-
form better than one trained on only EN_auto or JA_auto?”
To answer this question, we created training data EJ_auto
by including both EN_auto and JA_auto and constructed
yet another structural-feature-based model with EJ_auto.
As shown in the lower half of Table 5, we found that the
model trained on both languages performed better than the
model trained on only one.

These results confirm that chorus sections can be de-
tected by a model trained on data in another language, that
patterns of repeating lyric lines are language-independent
and that mixing different language data allows the model to
learn the general structure of chorus sections and thereby

perform better. This could have an impact on low-resource
languages because large-scale training data can be created
by mixing other available language resources.

5. RELATED WORK

Previous work in the MIR community has addressed musi-
cal structure analysis and chorus-section detection based on
repeated patterns in musical audio signals [23–41]. Studies
in the chorus-section detection for audio signals typically
used SSMs to capture repeated structures, and we share this
motivation. Our approach differs from those audio-based
approaches in that it exploits multiple lyrics-based SSMs
and linguistic features within chorus sections.

On the other hand, recent work in the NLP community
has tackled lyrics segmentation and summarization tasks by
exploiting SSMs. Fell et al. and Watanabe et al. proposed
a neural network model and logistic regression model for
segmenting paragraphs (sections) without labeling them
by using SSMs as features [18, 19]. Those tasks, however,
are essentially different from detecting all chorus sections
that are the most representative sections in lyrics text. Ad-
dressing a task similar to chorus-section detection, Fell
et al. [53] proposed a method of summarizing lyrics by
combining general document summarization methods with
audio thumbnailing methods. They focus on extracting in-
dividual informative lines as a summary from lyrics text,
not redundant repeated lines. On the other hand, the focus
of our paper is to detect chorus sections whose successive
lines are often repeated in lyrics text.

6. CONCLUSION

This paper has addressed the novel task of detecting chorus
sections in English and Japanese lyrics. We proposed a
neural-network-based sequence labeling model that learns
structural (i.e., phrase-repetition) and linguistic features to
detect lyric lines of chorus sections. We also generated over
100,000 training data with chorus-section annotations. No
previous work has ever conducted chorus-section detection
for text-only lyrics with this much data.

The contributions of this study are summarized as fol-
lows: (1) We designed a variety of features to capture struc-
tural and linguistic properties of chorus sections. (2) We
proposed a sequence labeling model that can detect chorus
sections in lyrics. (3) We showed how to generate a large
training dataset of lyrics with chorus-section annotations.
(4) We demonstrated that our Bi-LSTM-based method out-
performs alternative baseline methods. (5) We thoroughly
investigated this detection task and the nature of chorus
sections of lyrics from different perspectives such as the
importance of features, the amount of training data, and
language dependency.

We plan to extend our method to detect other sections,
such as verse and bridge sections. Future work will also
develop MIR applications using our method, such as those
discussed in Section 1.
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ABSTRACT

Chord symbols, typically notating the root note and the
chord quality, are extensively used yet oversimplified rep-
resentation of tonal harmony and chord progressions in
popular music. In spite of its convenience, the chord sym-
bol notation only provides basic information about the
chordal configuration, and leaves much room for inter-
pretation. With such limitations, an algorithm generating
merely chord symbols is usually insufficient for a wide
range of music genres such as jazz. To solve this problem,
we propose chord jazzification, a process to generate real-
istic chord configurations in jazz style. With deep learning
approaches, we decompose chord jazzification into color-
ing and voicing. Coloring concerns the choice of color
tones, while voicing concerns the configurations of chords.
We also create a new dataset featuring interpretations of
chord symbols in pop-jazz compositions. By conducting
experiments on the new dataset, we show that 1) the two-
stage process outperforms an end-to-end generation ap-
proach in modeling chord configurations, and 2) attention-
based models are better at capturing the structure of chord
sequences in comparison with recurrent neural networks.

1. INTRODUCTION

Harmony and chords are the central topic in the study of
tonal music. To facilitate the study, researchers in the fields
of music information retrieval (MIR) and computational
musicology have developed various techniques, such as au-
tomatic chord recognition [1–5], chord similarity and tonal
distance [6–9], harmonic analysis [10–13], and chord gen-
eration [14–16].

Most of these aforementioned techniques process the
chord data using chord symbol representation, i.e., a sym-
bolic notation system indicating the root note, quality, and
other additional information of the chord. For example,
the chord symbol C:7 stands for the C dominant seventh
chord in root position, whose theoretical configuration is

c© Tsung-Ping Chen, Satoru Fukayama, Masataka Goto, Li
Su. Licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0). Attribution: Tsung-Ping Chen, Satoru Fukayama,
Masataka Goto, Li Su, “Chord Jazzification: Learning Jazz Interpre-
tations of Chord Symbols”, in Proc. of the 21st Int. Society for Music
Information Retrieval Conf., Montréal, Canada, 2020.

Figure 1: Three configurations of the C dominant seventh
chord. In music theory, the C dominant seventh chord in
root position is configured as (a). (b) and (c) are two alter-
ations of the chord.

depicted in Figure 1a. This symbol, however, does not ex-
plicitly point out the actual configuration, e.g., every spe-
cific note performed by a musician. Hence, the notation
system is limited in describing the nuances in real-world
performance. Learning to interpret the chord symbols is
challenging in two aspects. First, expert musicians often
color a chord by adding notes to, or omitting notes from
the chord according to the musical context, although the
chord symbol itself does not specify such alterations. Sec-
ond, chords composed of the same set of pitch classes can
be voiced differently by spacing and doubling the chord
tones. Take the comping technique in jazz music as an
instance. 1 Instead of sticking to the typical configura-
tion of a chord, a jazz pianist may play the C dominant
seventh chord with the configuration shown in Figure 1b,
in which the 5th of the root, G4, is omitted, and the 9th
of the root, D5, is added; while another jazz pianist may
arrange these notes in a totally different way as demon-
strated in Figure 1c, where Bb is doubled and D is spaced
a register lower. In fact, the way how musicians interpret
chord symbols in a given context involves not only their
thorough understanding of various musical styles, but also
their personal tastes. Therefore, to generate the realization
of chord symbols through MIR approaches is a challeng-
ing yet valuable task, despite this topic is rarely discussed
possibly because of the lack of data.

In this paper, we propose chord jazzification, a process
to realize chord symbols with jazz harmony through deep
learning approaches. Based on the two aforementioned as-
pects of interpreting the chord symbols, the chord jazz-

1 Comping means accompanying or complementing a soloist by play-
ing the chords to fill the harmonic and rhythmical vacancies in the music.
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Figure 2: Annotations of the proposed dataset. Chord Symbol specifies the root and the quality of each chord (a bass note
is explicitly notated with a slash when it is not the root note), e.g., Db:M/F stands for a Db major triad with the bass note
F. Time indicates the onset and the duration (measured in beats) of each chord. Voicing represents the configuration of each
chord with a set of scientific pitch notations. Coloring indicates the chord degrees which appear in the voicing but are not
specified by the chord symbol, and vice versa, e.g., (o1,9) indicates that the root is omitted and the 9th is added. Note
that 7 is explicitly qualified by {M, m, d} (major, minor, diminished) to disambiguate its interval. Roman Numeral Analysis
denotes the scale degree on which a chord is built, as well as the quality and the inversion information, e.g., V7 stands for
a dominant seventh chord in root position. Structure includes the annotations of phrase, measure and metrical position. To
specify the phrase a chord belongs to, each chord is labeled with a letter plus a number in a way similar to musical form
analysis. Metrical position shows the position of a chord with respect to the metric grid (starting with 0).

ification task is formulated as two subtasks, namely the
chord coloring and the chord voicing. The chord coloring
task decides which pitch classes are to be played for elab-
orating a chord symbol, while the chord voicing task deals
with the spacing and the doubling of the pitch classes to be
played. Although the jazzification of chord progressions is
not limited to coloring and voicing, we focus on the two
aspects for the primary study. To facilitate the research on
chord jazzification, we also compile a new dataset consist-
ing of chord symbols and corresponding chord configura-
tions in pop-jazz compositions. In comparison with other
jazz-related datasets, such as the Charlie Parker’s Omni-
book data [17], the Jazz Audio-Aligned Harmony (JAAH)
dataset [18], the JazzCorpus [19], and the Weimar Jazz
Database [20], our dataset includes more detailed informa-
tion of chords, especially the chordal configuration. With
the newly compiled dataset, we conduct several experi-
ments to verify the two-stage framework for chord jazzi-
fication. Experiment results indicate that it is effective to
decompose chord jazzification into coloring and voicing,
rather than to adopt an end-to-end approach.

The current work is different from the accompaniment
or harmonization tasks [21,22], in terms of that such works
require melodies as prior knowledge and regard chords as
appendages to melodies. Besides, our work concerns both
the voicings of a chord sequence and the interpretation of
each single chord, thus is distinct from the voice leading
generation task [23, 24]. The jazzification of a chord pro-
gression is part of the music composition process to expand

a tonal structure, i.e., the prolongation described in Hein-
rich Schenker’s music theory [25]. Chord jazzification can
advance other MIR-related tasks such as style analysis and
chord generation [26–29]. We hope that our work can draw
more attention to the musical knowledge regarding the im-
plicit relations between the notated chord symbols and the
actual harmony being performed.

In summary, our contribution is threefold. First, we
address the issue of interpreting chord symbols by chord
jazzification. Second, we compile a new dataset for the
generation of jazzy harmony and for the study of chord
embellishments. Finally, a deep learning framework is pro-
posed to generate jazz-style chord progressions. In the fol-
lowing, we will first present the new dataset (Section 2),
and then formulate the framework of chord jazzification
(Section 3); based on the framework, several experiments
are introduced thereon (Section 4).

2. THE CHORD JAZZIFICATION DATASET

The corpus is composed of 50 musical pieces selected from
published Japanese pop-jazz piano solos, in which chord
symbols are explicitly specified. 2 To obtain the corre-
sponding voicing of each chord symbol, we manually per-
form harmonic reduction for each piece. Concretely, notes
within the region of a chord symbol are selected to build
the configuration of the chord symbol. With the chord

2 The dataset is available at https://github.com/
Tsung-Ping/Chord-Jazzification.
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Figure 3: Chord qualities and chord colorings in the pro-
posed dataset (the long tail of the coloring distribution is
left out). Chord degrees of compound intervals are merged
with simple ones in the coloring figure for simplicity.

symbols and the transcribed voicings, coloring and har-
monic information are annotated. Specifically, there are six
types of annotations in the dataset: Chord Symbol, Time,
Voicing, Coloring, Roman Numeral Analysis [10, 30], and
Structure. Figure 2 gives an example.

A brief introduction of the chord qualities and colorings
used in the corpus is illustrated in Figure 3. Not surpris-
ingly, the three seventh chords, major seventh (M7), minor
seventh (m7), and dominant seventh (7), account for more
than half of the chords, as jazz harmony is notable for the
use of seventh chords. On the other hand, characteristic
colorings of pop-jazz music can also be found in many
chords, such as adding a major second or a compound ma-
jor second (2) and omitting the perfect fifth (o5).

In summary, 796 musical phrases amounting to 6700
chord labels are included in the dataset. These annota-
tions provide information concerning the relationship be-
tween the symbolic notation and the actual configuration
of chords in human compositions. It therefore has the po-
tential to be applied to many MIR-related research top-
ics, such as corpus-based study of tonal harmony in mu-
sic practice, generation of colorful chord progressions, and
computer-aided composition, to name but a few. It has to
be acknowledged that the dataset has some limitations in
describing an actual interpretation of chord symbols, in the
sense that the transcription of chords eliminates the har-
monic and rhythmical variances within the region of each
chord symbol. Nevertheless, the dataset can be a starting
point for performers and composers to learn to elaborate
and develop a tonal structure through the chord jazzifica-
tion process, which is relatively easier compared to learn-
ing the elaboration directly from a complete musical piece.

3. CHORD JAZZIFICATION

The goal of chord jazzification is to endow plain chords
(e.g., a sequence of triads) with jazz harmony. We tackle
the chord jazzification task through two successive steps,
that is, coloring and voicing. The coloring part functions
as an intermediate state which specifies chords in terms of
pitch classes, and the voicing part assigns pitch heights to
the specified pitch classes.

3.1 Coloring

In this paper, 48 triads in root position ({major, minor, aug-
mented, diminished} by 12 semitones) are considered for
coloring. We define the chord coloring task as predicting
the bass note and the pitch classes to render each triad in a
given sequence.

Formally, the input of the coloring task is a triad se-
quence {xi}Ti=1 and a duration sequence {di}Ti=1, where
i denotes time steps, T is the length of the sequence,
xi ∈ R12 is a chroma representation of the ith triad,
and di is the duration of xi. The coloring task pre-
dicts the bass sequence {bc

i}Ti=1 and the pitch class se-
quence {pc

i}Ti=1 for the input sequence, where c stands for
coloring, bc

i ∈ R12 is a softmax-activated chroma vec-
tor indicating the 12 pitch classes’ probabilities to be the
bass of colored xi, and pc

i ∈ R12 is a sigmoid-activated
chroma vector indicating the 12 pitch classes’ probabilities
to be the constituent notes (except the bass) of colored xi.
For example, bc

i = [0.8, 0, 0, 0, 0.2, 0, 0, 0, 0, 0, 0, 0] indi-
cates the pitch classes C and E respectively have a prob-
ability of 80% and 20% to be the bass note, and pc

i =
[0, 0.9, 0, 0, 0.9, 0, 0, 0, 0, 0, 0.9, 0] suggests that there is a
90% chance that Db , E, and Bb are activated to render xi.

We employ a basic sequential learning architecture for
the coloring task. As shown in Figure 4a, the architecture
is composed of three layers: 1) an input embedding layer,
2) a sequential modeling layer, and 3) an output layer.
Specifically, the three layers are formulated as follows:

eci = Wec(dixi), (Input Embedding)

hc
i = f c(eci | ec1:T ), (Sequential Modeling)

pc
i = sigmoid(Wpc

hc
i ), (Output)

bc
i = softmax(Wbchc

i ),

(1)

where Wec ∈ Rd×12, Wpc ∈ R12×d, and Wbc ∈ R12×d

are learnable parameters, f c : Rd → Rd denotes a train-
able neural network, and d is a hyperparameter indicating
the dimensions of the embedding space. Two candidate
networks are employed for the sequential modeling layer:

• Bi-directional Recurrent Neural Network with Long
Short-Term Memory (BLSTM):

hc
i =
−→
h c

i ⊕
←−
h c

i ,
−→
h c

i = LSTM(eci | ec1:i−1),
←−
h c

i = LSTM(eci | eci+1:T ),

(2)

where ⊕ denotes vector concatenation.
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(a) (b) (c)

Figure 4: (a) The coloring model. (b) The voicing model. (c) The two-stage chord jazzification model.

• Multihead Self-attention Network (MHSA):

h
c(l)
i = Wouterσ(Winnerui + b1) + b2,

ui = Wu(u′i1 ⊕ · · · ⊕ u′iJ) + h
c(l−1)
i ,

u′ij = Vj softmax

(
K>j qij√

d

)
,

qij = WQ
j h

c(l−1)
i ,

Kj = WK
j [h

c(l−1)
1 , · · · ,hc(l−1)

T ],

Vj = WV
j [h

c(l−1)
1 , · · · ,hc(l−1)

T ],

(3)

where l denotes the iteration step, and the initial
value h

c(0)
i = eci ; σ represents the ReLU activa-

tion function; J is the number of heads; Wouter
j ∈

Rd×4d,Winner
j ∈ R4d×d,Wu ∈ Rd×d, and

WQ
j ,W

K
j ,W

V
j ∈ R d

J×d are learnable parameters.
This network is equivalent to the encoder of the
Transformer [31], while we leave out layer normal-
ization and position encoding terms for simplicity.
In this paper, we set d = 512, l = 2, and J = 8.

The binary cross entropy (BCE) and the categorical
cross entropy (CCE) are used to calculate the losses. Let
pc∗
i and bc∗

i denote the ground truths of pc
i and bc

i ; the
total loss of the coloring model Lc is defined as:

Lc =
T∑

i=1

[BCE(pc∗
i ,p

c
i ) + CCE(bc∗

i ,b
c
i )] . (4)

3.2 Voicing

We define chord voicing as a task which predicts the voic-
ings of a chord sequence. Formally, given a chord se-
quence of T time steps in terms of their basses {bv

i }Ti=1,
constituent pitch classes {pv

i }Ti=1, and durations {di}Ti=1,
the task predicts the voicings {vi}Ti=1 for the chord se-
quence, where v stands for voicing, bv

i ∈ R12 is a one-
hot chroma vector indicating the bass of the ith chord,

pv
i ∈ R12 is a multi-hot chroma vector representing the

pitch classes of the ith chord except the bass note, and
vi ∈ R88 is a voicing vector indicating the 88 tones’ prob-
abilities to be played on the piano.

Similar to the coloring task, we employ a 3-layer archi-
tecture for the voicing task, as shown in Figure 4b. The
three layers are formulated as follows:

evi = Wev (di(p
v
i ⊕ bv

i )), (Input Embedding)

hv
i = fv(evi | ev1:T ), (Sequential Modeling)

vi = sigmoid(Wvhv
i ), (Output)

(5)

where Wev ∈ Rd×24 and Wv ∈ R88×d are learnable pa-
rameters, and fv : Rd → Rd is a neural network. Like-
wise, the BLSTM and the MHSA networks are two options
for the sequential modeling layer.

Let v∗i ∈ R88 denote the target voicing of the ith chord;
we define the loss as:

Lv =
T∑

i=1

BCE(v∗i ,vi). (6)

As the voicing task is to arrange the constituent notes of
chords on an 88-key piano based on the given basses and
the sets of pitch classes, the outcome of v∗i can be known
to a certain degree. More precisely, a note in v∗i can be
activated only if its pitch class is activated in bv

i or pv
i .

With this consideration, we design corresponding masks
to modify the loss computation. Let bv′

i ∈ R88 and pv′
i ∈

R88 be the extensions of bv
i and pv

i to all octaves of the
piano. Then, the loss constrained by the masks becomes:

Lv′ =
T∑

i=1

BCE(v∗i ,mi � vi),

mi = bv′
i ∨ pv′

i , (Mask)

(7)

where � stands for the Hadamard product, and ∨ denotes
the logical OR operator.
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3.3 Two-stage Chord Jazzification

We stack the chord voicing model on the top of the chord
coloring model by setting bi = bv

i = onehot(arg maxbc
i )

and pi = pv
i = round(pc

i ), as illustrated in Figure 4c. In
other words, the outputs of the coloring model are first con-
verted into binary vectors, and then taken as inputs by the
voicing model. Such an integrated model jazzifies chord
progressions in two stages: first, for a given sequence of
triads {xi}Ti=1 and the corresponding durations {di}Ti=1,
the coloring model generates a colored sequence repre-
sented by {bi}Ti=1 and {pi}Ti=1; based on the colored se-
quence, the voicing model subsequently generates a voiced
chord progression {v}Ti=1 .

4. EXPERIMENTS

4.1 Chord Jazzification with Supervised Learning

With the formulations of chord jazzification as multi-class
classification (for bc

i ) and multi-label classification (for pc
i

and vi) problems, we train the coloring and voicing mod-
els using the new dataset, and perform 4-fold cross valida-
tion. For the coloring task, the input triad sequences and
the input duration sequences are respectively derived from
the Chord Symbol and the Time annotations of the dataset,
while the ground truths of the bass sequences and the pitch
class sequences are obtained from the Voicing labels. As
for the voicing task, the duration sequences and the ground
truth labels of the coloring task are taken as the inputs,
while the Voicing labels are used as the ground truths of
the output sequences. We augment the training set through
transposing the data from 4 semitones down to 5 semitones
up (within the valid range of the piano), leading to 10 times
the training data. As a result, there are 5970 and 199 se-
quences for training and testing respectively.

Evaluation results are shown in Table 1. For both the
coloring and voicing tasks, the employment of either the
BLSTM or the MHSA as the sequential modeling lay-
ers yields comparable performance to the other, while the
MHSA appears to surpass the BLSTM in cases of multi-
label classification, i.e., the predictions of pitch classes and
voicing. When the input embedding layers in the two sub-
tasks are removed, all the performances decrease by from
3.19% to 4.69%. This indicates that the transformation to
dense vectors benefits the learning process when the input
data is sparsely represented. Moreover, the introduction of
the input-related masks to the loss calculation in Eqn (7)
also improves the modeling of voicing; precisely, the F1
score increases 2.66% if the masks are utilized. It is worth
noting that the amount of training data is quite limited, and
therefore the performance seems to be satisfactory in the
current experimental setting.

4.2 End-to-end Chord Jazzification

To motivate the decomposition of chord jazzification into
2 stages, we train a chord jazzification model in an end-to-
end manner for comparison. Technically, we replace the
output module of the coloring model with that of the voic-
ing model; and we employ a 2-layer BLSTM, rather than

Model
Coloring

Voicing
Bass Pitch Classes

BLSTM 81.87 76.52 63.64
MHSA 80.78 77.02 64.86
BLSTM w/o E 77.18 73.33 60.12
BLSTM w/o M - - 60.98
End-to-End - - 37.87

Table 1: Results of the coloring and the voicing tasks. The
lower part shows the ablation tests without the embedding
layer (w/o E) and without masks (w/o M), as well as the
result using end-to-end training. All the values indicate
the average F1 scores (%) over 4 validations.

a 1-layer BLSTM as defined in Eqn (2), for the sequential
modeling layer in order to make the number of parame-
ters comparable to the two-stage chord jazzification model.
The evaluation result is shown in Table 1.

In this end-to-end architecture, the performance drops
substantially to nearly half of the value. This result con-
versely validates the two-stage approach. Given the fact
that the prediction of polyphony is often challenging, it
turns out to be beneficial to generate an intermediate stage,
that is, the chroma representations with respect to coloring,
before the overall jazzification of chords.

4.3 Consistency of Chord Jazzification
Chord progressions often have a repetitive structure, there-
fore it is important for a model to preserve this property
and generate chord sequences of self-consistency. To mea-
sure the consistency of a model’s generations, we com-
pute the self-similarity matrices (SSMs) of each generated
voicing sequence and corresponding label sequence, and
then calculate the difference between each generation-label
SSM pair. Let V = [v1, · · · ,vT ] denote the normal-
ized voicing sequence generated by a model, and V

∗
=

[v∗1, · · · ,v∗T ] denote the normalized label sequence, where
vi = round(vi)

‖round(vi)‖ is a binarized and normalized voicing, and

v∗i = v∗
i

‖v∗
i ‖

is a normalized target voicing; we define the
consistency score (CS) of a generated sequence as follows:

CS = 1− reduce_mean(∆SSM),

∆SSM = |SSMpred − SSMlabel|,

SSMpred = V
>
V,

SSMlabel = V
∗>

V
∗
.

(8)

The more similar the structures of the two sequences are,
the higher the CS score is.

Table 2 shows the average consistency score over 4
cross-validation folds. To provide a benchmark for the
consistency measure, we also show the CS score computed
from label sequences and randomly-generated sequences
(denoted as RANDOM). Both the two models get higher
scores than the random condition, indicating that they learn
some structural information. Besides, the MHSA out-
performs the BLSTM due to an essential difference be-
tween them: the BLSTM processes each time step of a
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Model BLSTM MHSA RANDOM

CS Score (%) 86.91 87.68 72.80

Table 2: Consistency measure of chord jazzification.

Figure 5: The difference of self-similarity matrices. Left:
∆SSM of the BLSTM. Right: ∆SSM of the MHSA. The
origin of the matrices is at the lower left corner.

sequence recurrently, while the MHSA accesses the entire
sequence simultaneously. As a result, the MHSA can cap-
ture more structural features than the BLSTM does, lead-
ing to more consistent generations. Two examples of the
∆SSM are demonstrated in Figure 5. Evidently, there are
fewer bright regions in the ∆SSM of the MHSA, indicat-
ing that the generation by the MHSA is structurally closer
to the ground truth than that by the BLSTM.

4.4 Generating Jazz Harmony

We train the two-stage chord jazzification model using the
proposed dataset, and generate jazzified chord progres-
sions with input triad sequences derived from the JAAH
dataset. 3 In total, 2210 sequences with 23199 chords were
generated. To examine the effect of jazzification, we quan-
titatively analyze the difference between each input triad
and its jazzified counterpart. Particularly, we are interested
in changes with respect to chord coloring: 1) what notes
are added to or omitted from a triad? 2) Is a note other
than the root being chosen as the bass note?

The result is represented in Figure 6. Around 40% of
the input triads are embellished with a minor seventh (m7).
And the addition of a major seventh (M7) also accounts
for around 3.6%, ranked in the top fourth. These frequent
colorings with a major or minor seventh reflect the charac-
teristics of jazz music in which most triads that appear in
lead sheets or fake books can have sevenths added to them.
Moreover, extended chords and inverted chords can also
be found. For instance, the coloring (b2,m7) for a major
triad will lead to a dominant seventh flat ninth chord; and
the coloring None/3 indicates the first inversion of triads.
It is worth mentioning that some generated slash chords are
not inverted chords. An example is shown in the bottom
of Figure 6. With the coloring (2,M7)/2, the last triad
Db:M becomes Db:M7/Eb, which can be interpreted as
an Eb dominant thirteenth chord—the dominant chord of
the relative major mode (assuming F is the tonic). In other
words, this coloring not only breaks the repetitive structure

3 https://github.com/MTG/JAAH

Figure 6: Top: the coloring distribution of the generated
chords (part of the distribution is omitted). Bottom: a gen-
erated example. A number after the slash symbol indicates
the degree of the bass note relative to the root note.

of the input triad sequence, but also implies a new tonality.
In addition to coloring, it can be observed that the linear
progressions of voices are quite smooth, showing that the
model also learns the knowledge of voice leading.

5. CONCLUSION

To learn the interpretation of chord symbols from musical
data, we proposed chord jazzification, a process of generat-
ing realistic jazz-style chord progressions through two mu-
sical techniques: chord coloring and chord voicing. Chord
coloring decides a bass and a set of pitch classes for elab-
orating a triad, while chord voicing arranges the bass and
the set of pitch classes on the piano. We correspondingly
built a dataset which includes coloring and voicing anno-
tations, and hence can be used as the training data of the
chord jazzification task. By formulating the chord color-
ing and chord voicing tasks as classification problems, we
experimentally showed that the two-stage framework is ca-
pable of generating plausible chord configurations from a
sequence of chord symbols.

Chord jazzification has the potential to be applied to
two different yet related practices in music: performing
and composing. For music performing, it is practical and
desirable to interpret the chord symbols on lead sheets
through jazzification. For music composing, the generated
sequence by the chord jazzification model can be regarded
as an intermediate product with which a musician can fur-
ther create a human-machine collaborative musical work.
In future research, we are planning to include more rhyth-
mical and structural information, such as metrical position,
to better represent the harmonic features, and apply more
advanced deep learning techniques to improve the chord
jazzification task.
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ABSTRACT

The dominant approach for music representation learning
involves the deep unsupervised model family variational
autoencoder (VAE). However, most, if not all, viable at-
tempts on this problem have largely been limited to mono-
phonic music. Normally composed of richer modality and
more complex musical structures, the polyphonic coun-
terpart has yet to be addressed in the context of music
representation learning. In this work, we propose the Pi-
anoTree VAE, a novel tree-structure extension upon VAE
aiming to fit the polyphonic music learning. The exper-
iments prove the validity of the PianoTree VAE via (i)-
semantically meaningful latent code for polyphonic seg-
ments; (ii)-more satisfiable reconstruction aside of decent
geometry learned in the latent space; (iii)-this model’s ben-
efits to the variety of the downstream music generation.1

1. INTRODUCTION
Unsupervised machine learning has led to a marriage of
symbolic learning and vectorized representation learning
[1–3]. In the computer music community, the MusicVAE
[4] enables the interpolation in the learned latent space to
render some smooth music transition. The EC2-VAE [5]
manages to disentangle certain interpretable factors in mu-
sic and also provides a manipulable generation pathway
based on these factors. Pati et al. [6] further utilizes the
recurrent networks to learned music representations for
longer-term coherence.

Unfortunately, most of the success has been limited to
monophonic music. The generalization of the learning
frameworks to polyphonic music is not trivial, due to its
much higher dimensionality and more complicated musi-
cal syntax. The commonly-adopted MIDI-like event se-
quence modeling or the piano-roll formats fed to either re-
current or convolutional networks have fell short in learn-

1 Code and demos can be accessed via https://github.com/
ZZWaang/PianoTree-VAE
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sentation learning for polyphonic music”, in Proc. of the 21st Int. Society
for Music Information Retrieval Conf., Montréal, Canada, 2020.

Figure 1: An illustration of the proposed polyphonic syn-
tax.

ing good representation, which usually leads to unsatisfied
generation results [7–9]. In this paper, we hope to pioneer
the development of this challenging task. To begin with,
we conjecture a proper set of inductive bias for the desired
framework: (i)-a sparse encoding of music as the model in-
put; (ii)-a neural architecture that incorporates the hierar-
chical structure of polyphonic music (i.e., musical syntax).

Guided by the aforementioned design principles, we
propose PianoTree VAE, a hierarchical representation
learning model under the VAE framework. We adopt a tree
structured musical syntax that reflects the hierarchy of mu-
sical concepts, which is shown in Figure 1. In a top-down
order: we define a score (indicated by the yellow rect-
angle) as a series of simu_note events (indicated by the
green rectangles), a simu_note as multiple note events
sharing the same onset (indicated by blue rectangles), and
each note has several attributes such as pitch and dura-
tion. In this paper, we focus on a simple yet common form
of polyphonic music—piano score, in which each note has
only pitch and duration attributes. For future work, this
syntax can be generalized to multiple instruments and ex-
pressive performance by adding extra attributes such as
voice, expressive timing, dynamics, etc.

The whole neural architecture of PianoTree VAE can
be seen as a tree. Each node represents the embedding of
either a score, simu_note, or note, where a higher level
representation has larger receptive fields. The edges are
bidirectional where a recurrent module is applied to either
encode the children into the parent or decode the parent to
generate its children.

Through extensive evaluations, we show that PianoTree
VAE yields semantically more meaningful latent represen-
tations and further downstream generation quality gains,
on top of the current state-of-the-art solutions.
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2. RELATED WORK
The complex hierarchical nature of music data has been
studied for nearly a century (e.g. GTTM [10], Schenk-
lerian Analysis [11], and their follow-up works [12–15]).
However, the emerging deep representation-learning mod-
els still lack the compatible solutions to deal with the com-
plex musical structure. In this section, we first review dif-
ferent types of polyphonic music generation in Section 2.1.
After that, we discuss some popular deep music generative
models indexed by their compatible data structure from
Section 2.2 to Section 2.4.

2.1 Different Types of Polyphony
In the context of deep music generation, polyphony can
refer to three types of music: 1) multiple monophonic parts
(e.g., a four-part chorus), 2) a single part of a polyphonic
instrument (e.g., a piano sonata), and 3) multiple parts of
polyphonic instruments (e.g., a symphony).

The first type of polyphonic music can be created by
simply extending the number of voices in monophonic mu-
sic generation with some inter-voice constraints. Some
representative systems belonging to this category include
DeepBach [16], XiaoIce [17], and Coconet [18]. Music
Transformer [19] and the proposed PianoTree VAE both
focus on the generation of the second type of polyphony,
which is a much more difficult task. Polyphonic pieces un-
der the second definition no longer have a fixed number of
“voices” and consist of more complex textures. The third
type of polyphony can be regarded as an extension of the
second type, and we leave it for future work.

2.2 Piano-roll and Compatible Models
Piano-roll and its variations [7, 20–22] view polyphonic
music as 3-D (one-hot) tensors, in which the first two di-
mensions denote time and pitch and the third dimension
indicates whether the token is an onset, sustain or rest. A
common way for deep learning models to encode/decode
a piano-roll is to use recurrent layers along the time-axis
while the pitch-axis relations are modeled in various ways
[20, 21, 23]. Another method is to regard a piano-roll as
an image with three channels (onset, sustain and rest) and
apply convolutional layers [7, 22].

Through the proposal of PianoTree VAE, we argue that
a major way to improve the current deep learning models
is to utilize the built-in priors (intrinsic structure) in the
musical data. In our work, we primarily use the sparsity
and the hierarchical priors.

2.3 MIDI-like Event Sequence and Compatible
Models
MIDI-like event sequence is first used in deep music gen-
eration in performanceRNN [24] and Multi-track Music-
VAE [9], and then broadly applied in transformer-based
generation [19, 25, 26]. This direction of work leverages
the sparsity of polyphonic data to efficiently flatten poly-
phonic music into an array of events. The vocabulary
size of events usually tripples the vocabulary size of MIDI
pitches, including “note-on” and “note-off” events for 128
MIDI pitches, “time shifts”, and so on.

However, the format of MIDI-like events lacks the
proper flexibility. A few operations are made difficult due
to its very nature. For instance, during addition or dele-
tion of notes, often numerous “time shift” tokens must be
merged or split with the “note-on” or “note-off” tokens be-
ing changed all-together. This has caused the model be-
ing trained inefficient for the potential generation tasks.
In addition, this format has a risk of generating illegal se-
quences, say a “note on” message without a paired “note
off” message.

Similarly, we see the note-based approaches [27, 28],
in which polyphonic music is represented as a sequence
of note tuples, as an alternative to the MIDI-like meth-
ods. The representation has resolved the illegal genera-
tion problem but still not revealed much of the intrinsic
music structure. We argue that our work improves on the
note-based approaches by utilizing deeper musical struc-
tures implied by the data. (See Section 3.1 for details.)

2.4 GNN as a Novel Structure
Recently, we see a trend in using graph neural networks
(GNN) [29] to represent polyphonic score [30], in which
each vertex represents a note and the edges represent dif-
ferent musical relations. Although the GNN-based model
offers sparse representation learning capacity, it is limited
by the specification of the graph structure design and it is
nontrivial to generalize it for score generations.

3. METHOD
3.1 Data Structure
We first define a data structure to represent a polyphonic
music segment, which contains two components: 1) sur-
face structure, a data format to represent the music obser-
vation, and 2) deep structure, a tree structure (containing
score, simu_note and note nodes) showing the syntac-
tic construct of the music segment.

Each music segment lasts T time steps with 1
4 beat as

the shortest unit. We further use Kt, where 1 ≤ t ≤ T to
denote the number of notes having the same onset t. The
current model uses T = 32, i.e., each music segment is
8-beat long.

3.1.1 Surface Structure
The surface structure is a nested array of pitch-duration tu-
ples, denoted by {(pt,k, dt,k)|1 ≤ t ≤ T, 1 ≤ k ≤ Kt}.
Here, (pt,k, dt,k) is the kth lowest note starting at time
step t. The pitch attribute pt,k is a 128-D one-hot vec-
tor corresponding to 128 MIDI pitches. The duration at-
tribute dt,k encodes the duration ranging from 1 to T using
a log2 T -bit binary vector. For example, when T = 32
(log2 T = 5), ‘00000’ represents a 16th note, ‘00001’ is an
8th note, ‘00010’ is a dotted 8th note, and so on so forth.
The base-2 design is inspired by the similar binary relation
among different note values in western musical notation.

The bottom part of Figure 2 illustrates the surface struc-
ture of the music example in Figure 1. We see that the data
structure is a sparse encoding of music, and it eliminates
illegal tokens since every possible nested array has a cor-
respondent music.
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Figure 2: An illustration of PianoTree data structure to
encode the music example in Figure 1.

3.1.2 Deep Structure

We further build a syntax tree to reveal the hierarchical
relation of the observation. First, for 1 ≤ t ≤ T, 1 ≤
k ≤ Kt, we define notet,k as the summary (i.e., em-
bedding) of (pt,k, dt,k), which are the bottom layers of the
tree. Then, for 1 ≤ t ≤ T , we define simu_notet as the
summary of notet,1≤k≤Kt , which are the middle layers of
the tree. Finally, we define the score as the summary of
simu_note1≤t≤T , which is the root of the tree. The upper
part of Figure 2 illustrates the deep structure built upon its
surface structure.

The syntax tree, so-called the deep structure has both
musical and linguistic consideration. In terms of music,
note, simu_note and score roughly reflect the musi-
cal concept of a note, chord and grouping. In terms of
linguistics, the tree is analogous to a constituency tree,
with surface structure being the terminal nodes and deep
structure being the non-terminals. Recent studies in nat-
ural language processing have revealed that incorporating
natural language syntax results in better semantics model-
ing [31, 32].

3.2 Model Structure
We use the surface structure of polyphonic music as the
model input. The VAE architecture is built upon the deep
structure.

We denote the music segment in the proposed surface
structure as x and the latent code as z, which conforms to
a standard Gaussian prior denoted by p(z). The encoder
models the approximated posterior qφ(z|x) in a bottom-
up order of the deep structure. First, note embeddings
are computed through a linear transform of pitch-duration
tuples. Second, the note embeddings (sorted by pitch)
are then embedded into simu_note using a bi-directional
GRU [33] by concatenating the last hidden states on both
ends. With the same method, the simu_note embeddings
(sorted by onsets) are summarized into score by another
bi-directional GRU. We assume an isotropic Gaussian pos-
terior, whose mean and log standard deviation are com-
puted by a linear mapping of score. Algorithm 1 shows
the details.

The decoder models pθ(x|z) in a top-down order of
the deep structure, almost mirroring the encoding pro-
cess. We use a uni-directional time-axis GRU to decode
simu_note, another uni-directional (pitch-axis) GRU to
decode note, a fully connected layer to decode pitch at-

Figure 3: An overview of the model architecture. The
recurrent layers are represented by rectangles and the fully-
connected (FC) layers are represented by trapezoids. The
note, simu_note and score events are represented by
circles.

tributes, and finally another GRU to decode duration at-
tribute starting from the most significant bit. Algorithm 2
shows the details.

We use the ELBO (evidence lower bound) [34] as our
training objective. Formally,

L(φ, θ;x) = −Ez∼qφ log pθ(x|z)+βKL
(
qφ||p(z)

)
, (1)

where β is a balancing parameter used in β-VAE [35].
We denote the embedding size of note, simu_note

and score as en, esn and esc; the dimension of latent space
as dz; and the hidden dimensions or pitch-axis, time-axis
and dur GRUs as hp, ht and hd respectively. In this work,
we report our result on the following model size: en = 128,
esn = hp,dec = 2×hp,enc = 512, esc = ht,dec = 2×ht,enc =
1024, hd,dec = 64 and dz = 512.

Algorithm 1: The PianoTree Encoder. n, sn, sc
are short for note, simu_note, score.
/* gru(·): passes a sequence to

bi-directional GRU and ouputs the

concatenation of hidden states from

both ends. */

input: PianoTree
x = {(pt,k, dt,k), 1 ≤ t ≤ T, 1 ≤ k ≤ Kt}

foreach t, k do nt,k ← embenc(pt,k, dt,k);
foreach t do snt ← grupitch

enc (nt,1:Kt );
sc← grutime

enc (sn1:T ) ;
µ← fcµ(sc); σ ← exp(fcσ(sc)) ;
return q(z|x) = N(µ, σ2) ;
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Algorithm 2: The PianoTree Decoder. We still
use the abbreviation n, sn, and sc, defined in Al-
gorithm 1
/* gru(·), same as Algorithm 1. */

/* grucell(·, ·): updates the hidden state

using the current input and the

previous hidden state. The output is

replicated. */

input: latent representation z
sc← z ;
s̃n0, ñ:,0, d:,:,0 = <SOS>;
for t = 1, 2, ...T do

[snt, sc]← grucelltime
dec (s̃nt−1, sc);

for k = 1, 2, ... do
[nt,k, snt]← grucellpitch

dec (ñt,k−1, snt) ;
pt,k ← softmax(fc(nt,k)) ;
for r = 1, 2, ..., 5 do

h = [nt,k, pt,k] ;
[yt,k,r, h] = grucelldur

dec(dt,k,r−1, h);
dt,k,r ← softmax(yt,k,r);

end
dt,k = [dt,k,1:5] ;
if pt,k 6= <EOS> then Kt ← k; break;
ñt,k ← embenc(pt,k, dt,k) ;

end
s̃nt← grupitch

enc (nt,1:Kt );
end
return {(pt,k, dt,k), 1 ≤ t ≤ T, 1 ≤ k ≤ Kt} ;

4. EXPERIMENTS
In this section, we compare PianoTree VAE with several
baseline models. We present the dataset in Section 4.1,
baseline models in Section 4.2,and the training details
in Section 4.3. We present the objective evaluation on
reconstruction accuracy in Section 4.4. In Section 4.5,
we inspect and visualize the latent space of note and
simu_note. After that, we present the subjective evalu-
ation on latent space traversal in Section 4.6. Finally, we
apply the learned representation to downstream music gen-
eration task in Section 4.7.

4.1 Dataset
We collect around 5K classical and popular piano pieces
from Musicalion 2 and the POP909 dataset [36]. We only
keep the pieces with 2

4 and 4
4 meters and cut them into

8-beat music segments (i.e., each data sample in our ex-
periment contains 32 time steps under sixteenth note reso-
lution). In all, we have 19.8K samples. We randomly split
the dataset (at song-level) into training set (90%) and test
set (10%). All training samples are further augmented by
transposing to all 12 keys.

4.2 Baseline Model Architectures
We train four types of baseline models in total using piano-
roll (Section 2.2) and MIDI-like events (Section 2.3) data
structures. As a piano-roll can be regarded as either a
sequence or a 2-dimensional image, we couple it with

2 Musicalion: https://www.musicalion.com.

three neural encoder-decoder architectures: a recurrent
VAE (pr-rnn), a convolutional VAE (pr-cnn), and a fully-
connected VAE (pr-fc). For the MIDI-like events, we cou-
ple it with a recurrent VAE model (midi-seq). All models
share the same latent space dimension (dz = 512). Specif-
ically,
• The piano-roll recurrent VAE (pr-rnn) model is simi-

lar to a 2-bar MusicVAE proposed in [4]. The hidden
dimensions of the GRU encoder and decoder are both
1024.

• The piano-roll convolutional VAE (pr-cnn) architec-
ture adopts a convolutional–deconvolutional architec-
ture. The encoder contains 8 convolutional layers with
kernel size 3×3. Strided convolution is performed at the
3rd, 5th, 7th and 8th layer with stride size (2 × 1), (2 ×
3), (2× 2) and (2× 2) respectively. The decoder adopts
the deconvolution operations in a reversed order.

• The piano-roll fully-connected VAE (pr-fc) architec-
ture uses a time-distributed 256-dimensional embedding
layer, followed by 3 fully-connected layers with the hid-
den dimensions [1024, 768] for the encoder. The de-
coder adopts the counter-operations in a reversed order.

• The MIDI-like event recurrent VAE (midi-seq) adopts
the recurrent model structure similar to pr-rnn. Here,
the event vocabulary contains 128 “note-on”, 128 “note-
off” and 32 “time shift” tokens. The embedding size of
a single MIDI event is 128. The hidden dimensions of
the encoder GRU and decoder GRU are 512 and 1024
respectively.

4.3 Training
For all models, we set batch size = 128 and use Adam
optimizer [37] with a learning rate starting from 1e-3
with exponential decay to 1e-5. For PianoTree VAE, we
use teacher forcing [38] for decoder time-axis and pitch-
axis GRU and for other recurrent-based baselines, we use
teacher forcing in the decoders. The teacher forcing rates
start from 0.8 and decay to 0.0. PianoTree VAE converges
within 6 epochs, and the baseline models converge in ap-
proximately 40 to 60 epochs.

Models PianoTree midi-seq pr-rnn pr-cnn pr-fc
Onset Precision 0.9558 0.8929 0.9533 0.9386 0.9211
Onset Recall 0.9532 0.6883 0.9270 0.8818 0.8827
Onset F1 0.9545 0.7774 0.9399 0.9093 0.9015

Duration Precision 0.9908 0.3826 0.9777 0.9757 0.9688
Duration Recall 0.9830 0.9899 0.9891 0.9796 0.9743
Duration F1 0.9869 0.5519 0.9834 0.9777 0.9715

Table 1: Objective evaluation results on reconstruction cri-
teria. PianoTree is our proposed method. Other columns
correspond to the baseline models described in Section 4.2.

4.4 Objective Evaluation of Reconstruction
The objective evaluation is performed by comparing dif-
ferent models in terms of their reconstruction accuracy of
pitch onsets and note duration [39, 40], which are com-
monly used measurements in music information retrieval
tasks. For note duration accuracy, we only consider the

Proceedings of the 21st ISMIR Conference, Montréal, Canada, October 11-16, 2020
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Figure 4: A visualization of note embeddings after dimensionality reduction using PCA.

notes whose onset and pitch reconstruction is correct. Ta-
ble 1 summarizes the results where we see that the Pian-
oTree VAE (the 1st column) is better than others in terms
of F1 score for both criteria.

4.5 Latent Space Visualization
Figure 4 shows the latent note space by plotting differ-
ent note embeddings after dimensionality reduction by
PCA (with the three largest principal components being re-
served). Each colored dot is a note embedding and a total
of 1344 samples are displayed; note pitch ranges from C-1
to C-8 and note duration from a sixteenth note to a whole
note.

We see that the note embeddings have the desired geo-
metric properties. Figure 4 (a) & (b) show that at a macro
level, notes with different pitches are well sorted and form
a “helix” in the 3-D space. Figure 4 (c) further shows that
at a micro level, 16 different note durations (with the same
pitch) form a “fractal parallelogram” due to the binary en-
coding of duration attributes. One of the advantages of
the encoding method is the translation invariance property.
For example, the duration difference between the upper left
cluster and the lower left cluster is 8 semiquavers, so is the
difference between the upper right and lower right cluster.
The same property also applies to the four smaller-scale
parallelograms.

Figure 5: A visualization of simu_note embeddings after
dimensionality reduction using PCA.

Figure 5 is a visualization of the latent chord space by
plotting different simu_note embeddings under PCA di-

mensionality reduction. Each colored cluster corresponds
to a chord label realized in 343 different ways (we consider
all possible pitch combinations within three octaves, with
a minimum of 3 notes and a maximum of 9 notes). The
duration for all chords is one beat.

The geometric relationships among different chords are
consistent and human interpretable. In specific, Figure 5
(a) shows the distribution of 12 different major chords,
which are clustered in four different groups. By unfolding
the circle in a counterclockwise direction, we can observe
the existence of the circle of the fifth. Figure 5 (b) is the vi-
sualization of seven C major triad chords: forming a ring in
the order of 1-3-5-7-2-4-6 degree in the counterclockwise
direction.

4.6 Subjective Evaluation of Latent Space
Interpolation
Latent space traversal [4, 5, 41] is a popular technique to
demonstrate model generalization and the smoothness of
the learned latent manifold. When interpolating from one
music piece to another in the latent space, new pieces can
be generated by mapping the representations back to the
signals. If a VAE is well trained, the generated piece will
sound natural and form a smooth transition.

To this end, we invite people to subjectively rate the
models through a double-blind online survey. During the
survey, the subjects first listen to a pair of music, and
then listen to 5 versions of interpolation, each generated
by a model listed in Table 1. Each version is a randomly
selected pair of music segments, and the interpolation is
achieved using SLERP [42]. Since the experiment requires
careful listening and a long survey could decrease the qual-
ity of answers, each subject is asked to rate only 3 pairs of
music, i.e., 3 × 5 = 15 interpolations in a random order.
After listening to the 5 interpolations of each pair, subjects
are asked to select two best versions: one in terms of the
overall musicality, and the other in terms of the smoothness
of transition.

A total of n = 33 subjects (12 females and 21 males)
with different music backgrounds have completed the sur-
vey. The aggregated result (as in Figure 6) shows that the
interpolations generated by our model are better than the
ones generated by baselines, in terms of both overall musi-
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cality and smoothness of transition. Here, different colors
represent different models (with the blue bars being our
model and other colors being the baselines), and the height
of the bars represent the percentage of votes (on the best
candidate).

Figure 6: Subjective evaluation results of latent space in-
terpolation.

4.7 Downstream Music Generation
In this section, we further explore whether the poly-
phonic representation helps with long-term music gener-
ation when coupled with standard downstream sequence
prediction models. (Similar tasks have been applied to
monophonic music in [43] and [6].)

The generation task is designed in the following way:
given 4 measures of piano composition, we predict the
next 4 measures using a Transformer decoder (as in [44]).
We compare three different music representations: MIDI-
like event sequence (Section 2.1), pretrained (decoder)
simu_note embeddings, and latent vector z for every 2-
measure music segment (without overlap). Here z is the
mean of the approximated posterior from the encoder. For
all three representations, we use the same Transformer de-
coder architecture (outputs of dimension = 128, number of
layers = 6 and number of heads = 8) with the same train-
ing procedure. Only the loss functions are correspondingly
adjusted based on different representations: cross entropy
loss is applied to midi-event tokens and MSE loss is ap-
plied to both simu_note and latent vector z. We use the
same datasets mentioned in Section 4.1 and cut the origi-
nal piano pieces into 8-measure subsequent clips for gen-
eration purposes. We still keep 90% for training and 10%
for testing.

We then invited people to subjectively rate different mu-
sic generations through a double-blind online survey (simi-
lar to the one in Section 4.6). Subjects are asked to listen to
and rate 6 music clips, each of which contains 3 versions of
8-measure generation using different note representations.
Subjects are told that the first 4 measures are given and the
rest are generated by the machine. For each music clip,
subjects rate it based on creativity, naturalness and musi-
cality.

A total of n = 48 subjects (20 females and 28 males)
with different music backgrounds have participated in the
survey. Figure 7 summarizes the survey results, where
the heights of bars represent means of the ratings and
the error bars represent the confidence intervals computed
via within-subject ANOVA [45]. The result shows that
simu_note and latent vector z perform significantly better

than the midi-event tokens in terms of all three criteria (p
< 0.005).

Figure 7: Subjective evaluation results of downstream mu-
sic generation.

Besides the aforementioned generation task, we also it-
eratively feed the generated 4-measure music clips into the
model to get longer music compositions. Figure 8 shows
a comparison of 16-measure generation results using all
three representations. The first 4 bars are selected from the
test set, and the subsequent 12 bars are generated by the
models. Generally speaking, using simu_note and latent
vector z as data representations yields more coherent music
compositions. Furthermore, we noticed that long genera-
tions using the simu_note representation tend to repeat
previous steps in terms of both chords and rhythms, while
those generations using the latent vector z usually contain
more variations.

(a) A sample generated using midi-event tokens.

(b) A sample generated using simu_note.

(c) A sample generated using latent vector z.

Figure 8: Long music generations given first 4 measures.

5. CONCLUSION AND FUTURE WORK
In conclusion, we proposed PianoTree VAE, a novel
representation-learning model tailored for polyphonic mu-
sic. The key design of the model is to incorporate both
the music data structure and model architecture with the
sparsity and hierarchical priors. Experiments show that
with such inductive biases, PianoTree VAE achieves better
reconstruction, interpolation, downstream generation, and
strong model interpretability. In the future, we plan to ex-
tend PianoTree VAE for more general musical structures,
such as motif development and multi-part polyphony.
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ABSTRACT

Many sounds that humans encounter are hierarchical in na-
ture; a piano note is one of many played during a perfor-
mance, which is one of many instruments in a band, which
might be playing in a bar with other noises occurring. In-
spired by this, we re-frame the musical source separation
problem as hierarchical, combining similar instruments to-
gether at certain levels and separating them at other levels.
This allows us to deconstruct the same mixture in multi-
ple ways, depending on the appropriate level of the hier-
archy for a given application. In this paper, we present
various methods for hierarchical musical instrument sepa-
ration, with some methods focusing on separating specific
instruments (like guitars) and other methods that determine
what to separate based on a user-supplied audio example.
We additionally show that separating all hierarchy levels is
possible even when training data is limited at fine-grained
levels of the hierarchy.

1. INTRODUCTION

The field of source separation has seen notable perfor-
mance improvements with the introduction of deep learn-
ing techniques, most notably in the areas of speech en-
hancement [1–4], speech separation [5–8], and music sepa-
ration [9–12]. These techniques succeed in cases where the
notion of a source is well defined; in the case of speech en-
hancement or separation, the target is always defined as the
speech of a single speaker. However, real-world scenarios
can have more complicated definitions of a source. Con-
sider the case where a band is playing on the radio while
two people are having a conversation: how does one seg-
ment this audio scene? Is the radio one source and the
talkers each a source? Or are each of the instruments in the
band on the radio a source as well? Clearly, there are many
correct answers to this question, but one way to understand
this auditory scene is to apply a hierarchical structure to
its parts. In this work, we re-frame the source separation
problem as hierarchical, focusing on the example of mu-
sic source separation, where we use musical instruments
as elements in a complex hierarchical auditory scene.

When considering music separation, determining what

© E. Manilow, G. Wichern, J. Le Roux. Licensed under a
Creative Commons Attribution 4.0 International License (CC BY 4.0).
Attribution: E. Manilow, G. Wichern, J. Le Roux, “Hierarchical Mu-
sical Instrument Separation”, in Proc. of the 21st Int. Society for Music
Information Retrieval Conf., Montréal, Canada, 2020.

Figure 1. Annotated t-SNE [13] projection of the learned
anchors from a hierarchical query-by-example separation
model on a test set.

constitutes a target source is not well defined. Even in a
well-studied problem like singing voice separation [9–11],
in which the singer is isolated from non-vocal background
music, the definition of what is “singing voice” is some-
what muddled. Many popular songs often contain a lead
vocal part, possibly several additional background vocal
parts, and sometimes additional vocal effect tracks. This
is a simple case; when we consider instrument categories
with a larger variety of possible timbres, like synthesizers
or guitars, deciding what particular instrument part to iso-
late can become even harder to nail down. One may want
to go even further and separate each instrument into unique
notes or chord instances.

Framing a musical scene as hierarchical has precedent
in fields that study human audition. Evidence shows that
human auditory perception has many hierarchical charac-
teristics [14–17]. As Bregman notes in Auditory Scene
Analysis [18]: “It makes sense [...] to think of the audi-
tory perceptual organization of [a musical] duet as having
a hierarchical structure [...]. This argument implies that
there are levels of perceptual belongingness intermediate
between ‘the same thing’ and ‘unrelated things”’. While
perceptual auditory hierarchies can involve timing, timbre,
rhythm, and much more, in this paper we focus on the task
of building hierarchical source separation systems via an
instrument hierarchy.

In the field of musicology, musical instruments have
long been thought of as hierarchical. Almost all hu-
man cultures throughout history have created musical in-
strument classification systems [19], many of which are
inherently hierarchical. One prominent example is the
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Hornbostel-Sachs system [20], which classifies musical
instruments by their sound production mechanisms in a
hierarchical manner similar to the Dewey Decimal Sys-
tem [21]. Another system widely used in Western music
classifies instruments by their musical range, with terms
named after singing voice classifications: soprano, alto,
etc. We use a hierarchy inspired by both of these ap-
proaches for hierarchical source separation.

There is also an element of a musical instrument hierar-
chy when making recordings in the recording studio. Each
track is assumed to be an isolated recording of a single in-
strument, or part of one instrument. At the mixing board,
a sound engineer can mix together multiple tracks into a
“submix”, which acts as a single unit in the recording ses-
sion, having effects and other signal routing configurations
be specific to the submix rather than the individual tracks
therein [22]. The submixes are then manipulated alongside
other tracks, which may contain only a single instrument.
For example, a standard practice is to record every sepa-
rate piece of a drum kit with a single microphone and then
combine those into a drum submix. This configuration is
hierarchical; the engineer can choose to manipulate all of
the drum sounds (the drum submix) or manipulate individ-
ual drum tracks within it.

In this paper, we re-frame the problem of musical
source separation as hierarchical. We propose two main
strategies for hierarchical source separation, one solely
based on the well-studied source-specific mask inference
approach to source separation [3], and another based on
more recently proposed query-by-example source separa-
tion systems [23,24]. In both cases, we learn to simultane-
ously separate submixes of instruments corresponding to
multiple levels of an instrument label hierarchy. By learn-
ing to separate sources at multiple levels of granularity, we
observe performance benefits even in cases where training
data is limited for the most fine-grained source types.

2. RELATED WORK

Music source separation has recently seen a great deal of
success. Most of this success is owed to the availability of
the MUSDB18 [25] dataset. This dataset has avoided the
“source definition ambiguity” by grouping all audio within
a track into four target sources: vocals, bass, drums, and
other. The “other” source contains a variety of different
instruments, like guitars, pianos, strings, and synthesizers.
While MUSDB18 has undoubtedly helped to advance the
field of music source separation, its source groupings re-
main overly coarse for many real-world remixing applica-
tions. In this work, we propose systems to separate sources
historically grouped as the “other” source.

Our proposed work is related to source separation al-
gorithms that attempt to estimate multiple musical sources
with one network. Some works accomplish this by out-
putting a set of masks for each target source, improving
performance via specialized training techniques [26,27] or
by giving the networks additional tasks to solve, like music
transcription [28]. Other works accomplish this by condi-
tioning a network to output different sources depending on

the desired source [23, 29, 30]. None of these approaches
have any requirements that the sources they separate have
any inherent structure in relation to other sources, espe-
cially not in a hierarchical manner as we propose here.

This work also draws inspiration from query-by-
example (QBE) networks. Within the speech separation
literature, the task of using a query to separate a spe-
cific speaker from a mixture with many speakers is called
speaker extraction, and this task has garnered much atten-
tion recently [31–33]. Specifically, this work builds off of
work [34] that extends deep attractor networks [35] for the
QBE case. Deep attractor networks have been successfully
used for music separation [23,36], where QBE music sepa-
ration was considered as an auxiliary benefit of the learned
embedding space. Although systems specifically tailored
to QBE separation of musical instruments have also been
proposed [24], none of these systems assume or enforce
any hierarchical structure on an auditory scene.

3. AUDITORY HIERARCHIES
In this work, we are interested in hierarchies of sound
producing objects, where top levels of the hierarchy cor-
respond to broad groups (e.g., midrange stringed instru-
ments) and lower levels are more specific (e.g., acoustic
guitar). With regard to source separation, we can define
an auditory hierarchy such that sources at higher levels in
the hierarchy are composed of mixtures of sources at lower
levels of the hierarchy. Each source node can potentially be
further separated into child sources and combined with its
siblings to create parent sources. Considering a hierarchy
with L levels, we denote by Sl,c the c-th source type node
at hierarchy level l, for l = 1, . . . , L, where we assume that
the set of leaf source types S1,c cannot be decomposed into
further source types, and SL,1 is the sole source type at the
top of the hierarchy and includes all source types. Further
denoting by Cl,c the set of indices of the child sources at
level l − 1 of Sl,c, the hierarchy can be defined as

Sl,c =
⋃

c′∈Cl,c

Sl−1,c′ ,∀l = 2, . . . , L. (1)

We define a path down the hierarchy as a sequence of
source types from a beginning source type node Sa to a
destination source type node Sb at a lower level.

When using this hierarchy to decompose a mixture x,
we denote by Sl,c the corresponding source component in
x whose source type is Sl,c, where the submix of all signals
of the same type are considered as a single component. By
definition, SL,1 = x. Each c-th source component Sl,c at a
level l can be decomposed into source components Sl−1,c′ ,
such that Sl−1,c′ is the signal corresponding to all sources
belonging to the child source type Sl−1,c′ :

Sl,c =
∑

c′∈Cl,c

Sl−1,c′ , s.t. Sl−1,c′ ∈ Sl−1,c′ , (2)

for l = 2, . . . , L. For simplicity, we use the sum opera-
tor to denote mixing, although the mixing process is often
more complex than a simple summation of signals.

In this paper, we specifically examine auditory hierar-
chies composed of mixtures of musical instruments, but
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we note that this hierarchical formulation can be applied to
mixtures with any type of source content.

4. HIERARCHICAL SOURCE SEPARATION

In general, source separation is formulated as trying to
estimate C complex spectrograms, Sc ∈ CF×T for c =
1, . . . , C, that represent a set of desired sources within the
spectrogram X ∈ CF×T of an audio mixture. In this gen-
eral formulation, there is no requirement that source Sc

have any relationship to source Sd, for c 6= d.
Given an audio mixture X , a hierarchical separation al-

gorithm under a given hierarchy may attempt to extract a
submix of all sources belonging to some source type Sl,c at
a level l. For instance, separating out all guitars (acoustic
and electric) from a mixture that includes electric guitar,
acoustic guitar, piano, and drums (as depicted in Fig. 2).

4.1 Hierarchical Source-Specific Separation

Conventional source-specific separation (SSS) networks
based on mask inference typically attempt to estimate a
real-valued mask M̂c ∈ RF×T for a single target source
c by minimizing some distortion measure between the
source estimate obtained from the mask and a reference Sc.
A commonly used example of such an objective function,
which we use in this work, is the truncated phase sensitive
approximation (tPSA) objective [3]:

LtPSA =
∥∥∥M̂c � |X| − T

|X|
0 (|Sc| � cos(∠Sc − ∠X))

∥∥∥
1
,

(3)

where � denotes element-wise product, |Y | and ∠Y de-
note the magnitude and phase of a spectrogram Y , and
T
|X|
0 (x) = min(max(x, 0), |X|) is a truncation function

ensuring the target can be reached with a sigmoid acti-
vation function. The estimated mask M̂c is element-wise
multiplied with the original mixture spectrogram X to ob-
tain an estimate for the target source Sc.

As a first naive strategy for building hierarchical SSS
networks, we can train single networks which output a sin-
gle node Sn,c at a given level of the hierarchy. Each such
single-level network can be trained to minimize the tPSA
objective above, where the target source is Sn,c, the com-
ponent corresponding to the targeted source type in the hi-
erarchy within the mixture X . Each of these networks out-
puts one mask M̂n,c for its targeted source type, and they
are trained independently of each other.

In order to make further use of the hierarchical struc-
ture of the data, we propose a multi-level strategy in which
we train a network to output multiple levels of the hier-
archy at once. A potential advantage of this strategy is
that the network may be able to leverage learned knowl-
edge about a mask M̂n,c to reinforce and improve its es-
timate for another mask M̂n′,c′ in the hierarchy. A triv-
ial implementation of this strategy would be to output a
mask for each leaf node in the hierarchy, and recompose
the leaf sources as we travel through the hierarchy, train-
ing the network by combining loss functions for all nodes

Figure 2. One of the proposed methods for hierarchical
source separation. We assume that a mixture contains a hi-
erarchy of musical instruments (bottom left), and use an
audio query (the green electric guitar, top left) to sepa-
rate instruments at multiple levels of the hierarchy, with
the closest target at the lowest level (blue electric guitar).

in the hierarchy. However, any sufficiently realistic hierar-
chy likely contains dozens of leaf nodes, leading to mem-
ory and computation issues as well as difficulties balancing
the contributions of all the losses. To avoid these issues,
we consider instead a single network that outputs N masks
for N levels along a single path down the hierarchy, e.g.,
[strings/keys] → [guitars] → [clean guitars] (“Clean” in-
dicates acoustic and electric guitars with no overdrive or
distortion applied).

4.2 Hierarchical Query-by-Example

The approaches described above cannot capture many in-
struments in an instrument hierarchy: using one network
per level only allows the network to learn one node in the
hierarchy at a time, and using a multilevel network only
learns one path down the instrument hierarchy. If we want
to capture relationships between different instruments in a
hierarchy, we need a method for separating multiple instru-
ments at different levels with a single network.

A successful recent strategy involves query-by-example
(QBE) networks that ingest a mixture and an example of
the desired source to separate from the mixture [24]. By
extending this to a hierarchical case, we can model an en-
tire instrument hierarchy for source separation. Note that,
instead of conditioning on a query, we could alternatively
condition the separation on the leaf node label, leading to
a hierarchical extension of conditional source separation
methods [23, 29, 30]. We here focus on QBE, as an audio
query can be considered as a generalization of a class la-
bel, and QBE may further provide the ability to interpolate
to unseen source types during inference.

Our proposed realization of hierarchical QBE relies on
two networks, a query net and a masking net. The query
net calculates a query anchor Aq ∈ Rk for some input
query Q ∈ RF×Tq as a weighted sum of k-dimensional
query embeddings Vq,i produced by the network at each
time-frequency bin i = (f, t) of the query spectrogram
space:

Aq =

∑
i Pq,iVq,i∑

i Pq,i
, (4)
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where Pq ∈ RFTq is a query presence vector for query Q,
defined such that Pq,i = 1 if the magnitude at bin i = (f, t)
is above a threshold (set to -60 dB from the maximum in
our experiments), and 0 otherwise. The query anchor Aq is
concatenated with the frequency vector of the mixture Xt

at each frame t, and used as input to the masking network,
which produces, for each hierarchy layer n of interest, a
mask M̂n,c for a target source Sn,c which is in the same
node Sn,c of the hierarchy as the query Q. This architec-
ture is depicted in Fig. 2.

This QBE system is trained to minimize the tPSA objec-
tive in Eq. 3 based on a target source Sn,c, where the target
source used to train the network is here determined both
by the query and a given level in the hierarchy. Other QBE
systems [24] apply a loss directly on the query embedding
space; while we leave this direction to future work, we note
that we are already able to learn some form of hierarchical
structure without introducing a specific loss on the embed-
ding space, as exemplified in Fig. 1.

Using an acoustic guitar query as example, the train-
ing procedure for a hierarchical QBE system is as follows:
an acoustic guitar query is used to train a network that at-
tempts to extract the corresponding sources at the leaf node
level, in which case the target will consist of the submix
of all clean guitars in the mixture. Note that we leave the
problem of separating instruments of the same fine-grained
type (e.g., multiple clean guitars) using techniques such as
permutation-invariant training [5, 6] for future work. The
same acoustic guitar query may also be used to train a net-
work that attempts to extract the corresponding sources one
level up, in which case the target will consist of the submix
of all guitars in the mixture, regardless of whether they are
clean guitars or not. When there is no target in the mix-
ture corresponding to the query at the given level of the
hierarchy, the target is set to silence.

As with hierarchical SSS networks, we can make a
single-level QBE network for each separate level in the
hierarchy and only separate instruments at that level, as
described in the above example, or we can make a single
hierarchical multi-level QBE network that returns multiple
(or even all) levels of the hierarchy. For the latter strategy,
we can consider enforcing a hierarchical constraint on the
masks, as described below.

4.3 Constraints on Hierarchical Masks

Assuming the components of a mixture exist in some hi-
erarchy, we can leverage knowledge about its structure to
impart constraints on the network. For instance, we can use
the relationship defined in Eq. 2 to require the set of masks
produced by a multi-level hierarchical network to follow
the same structure as the hierarchy, namely that masks at
higher levels be composed of masks at lower levels.

However, this would require us to output masks for ev-
ery node in the hierarchy, which is infeasible for any suf-
ficiently realistic hierarchy. Instead, we consider imposing
a hierarchical constraint that does not depend on knowl-
edge of the whole hierarchy. This hierarchical constraint
requires that masks at higher levels in the hierarchy must

Level Submixes to be separated
3 Keyboards, guitars, and orchestral strings
2 All guitars (both clean and effected)
1 Only clean guitars (both electric and acoustic)

Table 1. Contents of hierarchical levels used for train-
ing and testing the hierarchical single-instrument source-
specific separation (SSS) networks1. Hierarchical SSS can
only learn one path down the hierarchy at a time.

apportion at least the same amount of energy as masks at
lower levels. More precisely, the mask at level l is set as

M̂l = max(M̂ ′l , M̂l−1), (5)

where max is applied element-wise to every TF bin, and
M̂ ′l is the mask estimate output by the network for level l.

5. EXPERIMENTAL DESIGN

We design a set of experiments to determine the validity of
our hierarchical source separation methods outlined above.
We want to understand how well the proposed methods
work in a hierarchical scenario. We look specifically at
the case of a musical instrument hierarchy.

5.1 Dataset and Evaluation

To test the proposed methods in this paper, we required
a large dataset with isolated sources of many instruments
that could be combined in a hierarchical way. Specifi-
cally, we required a dataset with a wide variety of granular
source labels, i.e., not only “guitars”, but “acoustic gui-
tars”, “electric guitars”, “effected guitars”, and so on for
every instrument in the dataset. Because of this, we chose
Slakh2100 [37], which contains 2,100 musical mixtures
along with isolated sources. This dataset has 145 hours
of mixture data split into 34 instrument categories.

Before selecting excerpts from the dataset, we created
a musical instrument hierarchy from Slakh’s included in-
strument categories 1 . For these experiments, we define
a hierarchy with three levels (excluding the trivial level
consisting of the mixtures of all sources). The top level
contains four categories: mid-range strings and keys (gui-
tars, keyboards, and orchestral strings), bass instruments
(acoustic and electric basses), winds (flutes, reeds, and
brass), and percussion (drum sets and chromatic percus-
sion). The middle level has seven categories (e.g., from
mid-range strings: orchestral strings, guitars, keyboards,
and electric keyboards), and the lowest level has eighteen
categories (e.g., from guitars: clean guitars, and effected
guitars). We note that this is just one of many possible hi-
erarchies and almost all of the instruments described here
would be classified as “other” in MUSDB18 [25].

To select examples from the dataset, we create multi-
ple instantaneous submixes for each track, corresponding
to the different levels of the hierarchy. As an example il-
lustrated in Table 1, at the highest level, all pianos, guitars,
and strings are considered one source, while at the next

1 The full hierarchy can be seen at: https://git.io/JJ4gx
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level all guitars are considered one source, and at the low-
est level only clean guitars are considered one source. For
each mixture in the dataset, we compute the saliency of
each hierarchical submix in 10 second chunks, with a hop
size of 2.5 seconds. If the source in the submix has en-
ergy above -30 dB in that chunk, it is considered salient.
For the experiments involving multiple levels, we ensure
that for a given node, its parent (or grandparent) has en-
ergy from child nodes other than itself. In other words, we
want to make sure that a parent is not exactly the same as
the child, meaning that some of the child node’s siblings or
cousins are also salient.

For our experiments, we use the Slakh2100-split2 strat-
ification and downsample the audio to 16 kHz. We do
the mixing on the fly and select chunks randomly from
the pool of salient examples for the specific experiment.
For training, the networks see 20,000 examples per epoch
(≈55.5 h), and we use 3,000 examples (≈8.3 h) for the
validation and test sets. To ensure we have enough exam-
ples and a rich enough hierarchy to train, for the hierarchi-
cal SSS experiments we choose to separate sources down a
path of the hierarchy as shown in Table 1, although the pro-
posed methods can be extended to other paths down this
or other hierarchies. For the QBE networks, we separate
every instrument type in the hierarchy. Query chunks are
selected from the pool of salient chunks such that they are
always leaf nodes along the same path as the target regard-
less of the target level, but originate from different tracks.

For all experiments, we use the scale-invariant source-
to-distortion ratio (SI-SDR) [38] to determine the output
quality of our models. For reference, we also report the
SI-SDR when doing no processing on the mixes.

5.2 Experiments and Model Configurations

In this paper, we evaluate four types of hierarchical source
separation models. We vary models along two dimensions:
whether they are single-instrument (i.e., source-specific
separation, or SSS) or multi-instrument (i.e., query-by-
example, or QBE), and whether they output a single level,
or multiple levels. We describe each configuration below:

• Single-instrument, Single-level: A trio of instrument-
specific SSS models each corresponding to one level of
the hierarchy along one hierarchical path.

• Single-instrument, Multi-level: One SSS model that
outputs a hierarchical set of masks, separating at all lev-
els of a single hierarchical path simultaneously.

• Multi-instrument, Single-level: A trio of multi-
instrument QBE models outputting one mask at one level
of the hierarchy as determined by an input query.

• Multi-instrument, Multi-level: One QBE model that
outputs a hierarchical set of masks for every level of the
hierarchy along a path determined by an input query.

For the single-instrument models, we separate along
one path of the hierarchy as referenced in Table 1. The
multi-instrument, multi-level model is trained to separate a
source based on a query, and thus can learn the full hierar-
chy (i.e., all instruments) instead of just one path as in the
single-instrument, multi-level case.

Model Type HC Level 3 Level 2 Level 1
SSS (Guitar) 3.5 4.0 4.0
SSS (Guitar) 3 3.2 3.6 3.8

QBE 3.2 2.4 0.2
QBE 3 3.3 2.1 1.6

Table 2. Improvement in SI-SDR (dB) for hierarchical
SSS (Guitar) and QBE models. Each model is trained ei-
ther with the hierarchical constraint (HC) described in Sec-
tion 4.3 or with no constraints on the masks produced for
sources at different levels of granularity.

For the multi-level models, we test the effect of the hi-
erarchical constraint proposed in Section 4.3. We can also
test how well they learn with limited data about the leaf
source. To do this, we train the three-level SSS and QBE
models under the assumption that the leaf ground truth is
unavailable either 50% or 90% of the time, in which cases
only the upper levels are directly involved in the objective
function. For comparison, we also evaluate models where
all nodes are missing either 50% or 90% of the time during
training. These experiments can tell us how well the multi-
level network can leverage higher (i.e., coarser) levels of
the hierarchy at the leaf node. Such an ability would be
particularly advantageous as it is typically more difficult
to collect data with fine-grained ground truth sources com-
pared to data with a mixture and only a few source compo-
nents gathered in broad categories, and could potentially
help breaking open the “other” category of MUSDB18
with limited annotations.

All single-level and multi-level networks we test have
the same architecture. The SSS models are composed of
4 bidirectional long short-term memory (BLSTM) layers
with 600 hidden units in each direction and dropout of 0.3,
followed by a fully connected layer with sigmoid activation
function that outputs a mask. As described in Section 4.2,
the QBE models are composed of two sub-networks, a
query net and a masking net. The query net is composed
of 2 BLSTM layers with 600 nodes in each direction and
dropout of 0.3, followed by a fully-connected layer with
linear activation that maps each time-frequency bin to an
embedding space with 20 dimensions. The masking net
is the same as the SSS models, with a larger input feature
vector to accommodate the concatenated query anchor.

All models were trained with the Adam optimizer at a
learning rate of 1e-4 for 100 epochs and a batch size of 25.
The learning rate was halved if the loss on the validation
set did not decrease for 5 straight epochs. The gradient was
clipped to the 10th percentile of historical gradient norms
if the norm of the minibatch was above that value [39].

6. RESULTS

In Table 2, we examine the effect of the hierarchical con-
straint (HC) on multi-level hierarchical networks. We
observe that, for the source-specific separation network
(which in this case only separates guitars), the HC slightly
diminishes performance at all levels, indicating that SSS
models are able to learn the specific hierarchical relation-
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#
lv

ls All Levels Level 3 Level 2 Level 1

Model Type Mix SI-SDR ∆ Mix SI-SDR ∆ Mix SI-SDR ∆ Mix SI-SDR ∆

SSS (Guitar) 1 −3.9 −2.1 1.8 0.9 4.1 3.2 −5.9 −3.2 2.7 −6.6 −7.3 −0.7
SSS (Guitar) 3 −3.9 0.0 3.9 0.9 4.3 3.4 −5.9 −1.9 4.0 −6.6 −2.6 4.0

QBE 1 −4.9 −3.9 1.0 −1.3 2.0 3.3 −5.3 −3.9 1.4 −8.0 −9.8 −1.9
QBE 3 −4.9 −2.5 2.3 −1.3 2.0 3.3 −5.3 −3.2 2.1 −8.0 −6.4 1.6

Table 3. SSS and QBE model results in terms of SI-SDR (dB), where ∆ denotes improvement over the noisy mix. SSS
networks are only trained to separate sources in the hierarchy containing clean guitars (See Table 1), whereas QBE networks
separate any source in the hierarchy. Here we compare single-level networks (denoted by a “1”) to multi-level networks
(denoted “3”). There is only one multi-level network for all three levels, but three single-level networks (one for each level).

Data
Reduction Levels

% type All Level 3 Level 2 Level 1

SS
S

(G
ui

ta
r) 0 - 3.8 3.5 4.0 4.0

50 all 3.3 3.1 3.4 3.4
50 leaf 3.5 3.3 3.6 3.6
90 all 0.1 1.5 −0.7 −0.5
90 leaf 3.6 3.4 3.7 3.7

Mix −3.9 0.9 −5.9 −6.6

Q
B

E

0 - 2.3 3.3 2.1 1.6
50 all −1.5 −2.1 −1.4 −1.1
50 leaf 2.2 3.4 2.1 1.1
90 all −1.8 −2.1 −1.8 −1.5
90 leaf 1.9 3.1 1.7 0.8

Mix −4.9 −1.3 −5.3 −8.0

Table 4. SI-SDR improvement (dB) over the unprocessed
mix (“Mix”) for hierarchical SSS and QBE models (sepa-
rated by the thick broken line). Each model is trained while
removing either just the leaf (“leaf”) or the whole example
(“all”) for a specified percentage of the data. Reducing just
leaf nodes up to 90% shows only a 0.3 dB drop for SSS and
0.8 dB drop for QBE compared to using all of the leaves.

ship for a single source (in this case, guitar) at different
levels without additional help. For the query-by-example
network (which separates all types of instruments), the HC
marginally hinders performance at Level 2, but helps con-
siderably for the leaf node (Level 1). We hypothesize that
QBE networks benefit more because they are unable to
learn the specific mask “shapes” of any individual source,
and thus need the additional help offered by the HC. There-
fore, in all subsequent experiments we include the HC for
QBE networks, but omit it for the SSS networks.

In Table 3, we expand on the results from Table 2 and
compare the results from single-level and multi-level hi-
erarchical models for both SSS and QBE separation mod-
els. In both cases, the multi-level hierarchical networks im-
prove over the single-level models, with the largest gains
occurring at lower hierarchy levels. This implies that the
networks can leverage their shared knowledge of the hier-
archy to aid themselves at the lower levels, where individ-
ual instruments are more difficult to discern in the mix.

From the Level 1 results in Table 3, we see that sepa-

rating sources at this fine level of detail (e.g., clean elec-
tric guitars vs. distorted electric guitars) is extremely dif-
ficult, especially with a MIDI-synthesized data set such as
Slakh2100, where several different instrument types may
sound similar. In fact, when trying to train a single network
to only separate these fine-grained sources, we are unsuc-
cessful as noted by the negative SI-SDR improvements in
the # lvls=1 (single level) rows for Level 1 sources. Train-
ing networks on multiple levels simultaneously mitigates
this to some extent, although we have informally noticed
the multi-level network sometimes outputting nearly iden-
tical separated sources between Level 1 and Level 2. We
also note that the highest output SI-SDR values are ob-
tained when separating Level 3 sources in Table 3, and
we mention that Level 3 sources can be considered simi-
lar to the “other” source class in MUSDB18 [25]. There-
fore, separating sources at the more fine-grained Levels (1
and 2) is more difficult than what is typically attempted in
musical source separation.

In Table 4, we can observe the effect of removing leaf
sources (Level 1 sources, see Table 1 for guitar example)
from the training set. Compared to reducing all of the
data by 50% or 90%, the performance of reducing only the
leaves degrades very minimally. In cases where we have
rich data at higher levels but sparse data at lower levels,
hierarchical multi-level networks can do a respectable job
at separating lower levels. We see the same story for both
SSS and QBE networks: even a small amount of leaf data
can help ward off a large drop in performance.

7. CONCLUSIONS

In this paper, we re-framed the source separation problem
as hierarchical, and demonstrated the benefit of learning to
simultaneously separate sources at different levels of gran-
ularity. In the present work, we considered network ar-
chitectures that output masks for source separation at all
relevant levels together. We showed that in doing so, we
are still able to separate out the most granular source types
when training data is severely limited. A major drawback
of this work is the need for a large quantity of labeled and
curated data, a limitation that we hope future work can
address. Other future directions include architectures that
output relevant levels sequentially, such as cascaded mod-
els [40], or directions inspired by hierarchical audio clas-
sification models [41, 42].
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ABSTRACT

Musical preferences have been considered a mirror of the
self. In this age of Big Data, online music streaming ser-
vices allow us to capture ecologically valid music listening
behavior and provide a rich source of information to iden-
tify several user-specific aspects. Studies have shown mu-
sical engagement to be an indirect representation of inter-
nal states including internalized symptomatology and de-
pression. The current study aims at unearthing patterns and
trends in the individuals at risk for depression as it mani-
fests in naturally occurring music listening behavior. Men-
tal well-being scores, musical engagement measures, and
listening histories of Last.fm users (N=541) were acquired.
Social tags associated with each listener’s most popular
tracks were analyzed to unearth the mood/emotions and
genres associated with the users. Results revealed that so-
cial tags prevalent in the users at risk for depression were
predominantly related to emotions depicting Sadness asso-
ciated with genre tags representing neo-psychedelic-, avant
garde-, dream-pop. This study will open up avenues for an
MIR-based approach to characterizing and predicting risk
for depression which can be helpful in early detection and
additionally provide bases for designing music recommen-
dations accordingly.

1. INTRODUCTION

According to reports from the World Health Organization,
an estimated 322 million people worldwide were affected
from depression, the leading cause of disability [1]. Re-
cent times have witnessed a surge in studies on using social
multimedia content, such as those from Facebook, Twit-
ter, Instagram, to detect mental disorders including de-
pression [2–6]. Music plays a vital role in mental well-
being by impacting moods, emotions and other affective
states [7]. Musical preferences and habits have been as-
sociated with the individual’s need to satisfy and reinforce

c© A. Surana, Y. Goyal, M. Shrivastava, S. Saarikallio, and
V. Alluri. Licensed under a Creative Commons Attribution 4.0 Interna-
tional License (CC BY 4.0). Attribution: A. Surana, Y. Goyal, M.
Shrivastava, S. Saarikallio, and V. Alluri, “Tag2Risk: Harnessing Social
Music Tags for Characterizing Depression Risk”, in Proc. of the 21st Int.
Society for Music Information Retrieval Conf., Montréal, Canada, 2020.

their psychological needs [8, 9]. Empirical evidence exists
linking musical engagement strategies to measures of ill-
health including internalized symptomatology and depres-
sion [10, 11]. Also, increased emotional dependency on
music during periods of depression has been reported [12].
Specifically, the Healthy-Unhealthy Music Scale (HUMS),
a 13-item questionnaire was developed for assessing musi-
cal engagement strategies that identified maladaptive ways
of using music. Such strategies are characterized by us-
ing music to avoid other people, resort to ruminative think-
ing and ending up feeling worse after music engagement.
Such unhealthy musical engagement was found to corre-
late with higher psychological distress and was indicative
of depressive tendencies [13]. Furthermore, the high pre-
dictive power observed from the machine learning models
in predicting risk for depression from HUMS further bol-
sters its efficacy as an indirect tool for assessing mental
states [14]. Research suggests that such musical engage-
ment does not always lead to alleviating depressive symp-
toms [15]. This indeed calls for developing intervention
strategies that allow for altering music listening behavior to
suit the individual’s state, traits, and general musical pref-
erences which may lead to a positive outcome. Thus, it
is of vital importance not only to identify individuals with
depressive tendencies but also to unearth music listening
habits of such individuals that will provide bases for de-
signing music recommendations accordingly.

Past research studying the link between music listening
habits and depression has been done using self-reported
data and controlled listening experiments wherein partici-
pants may have wished to conform to social expectations,
or their responses might be influenced by how they want
other people to perceive them thereby resulting in demand
characteristics [16]. This has also been identified as a limi-
tation by Nave et al. [8], who have proposed collecting data
in more ecologically valid settings, such as user listening
histories from music streaming platforms which are a bet-
ter reflection of the users’ true preferences and behaviours.
To date no studies have looked at the link between active
music listening and depression using the music listening
histories of users which motivates us for this study.

In this age of big data, online music streaming platforms
such as Last.fm, Spotify, and Apple Music provide access
to millions of songs of varying genres and this has allowed
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Figure 1: Methodology

for assessing users’ features from their digital traces on
music streaming platforms. To the best of our knowledge,
Last.fm is the only platform that makes it possible to ex-
tract the listening history of users and other metadata de-
scribing their listening behavior using its own public API.
Last.fm has been used extensively by researchers for var-
ious purposes such as music emotion classification, user
behavior analysis, and social tag categorization [17, 18].
Last.fm has an abundance of social tags that provide a
wide range of information about the musical tracks includ-
ing audio low- and high-level feature description, emotions
and experiences evoked, genre, etc. These tags have been
found to predict short-term user music preferences [19]
and in successfully predicting next played songs in the de-
sign of a recommendation system [20]. Our aim is to iden-
tify the tags and their respective occurrences in the listen-
ing behavior of individuals at risk for depression, which
makes Last.fm an apt choice for this study. The data was
collected using an online survey comprising of Last.fm
music listening histories, in addition to music engagement
strategies (HUMS), and mental well-being scores of the
participants. Specifically, each track in the data was se-
mantically represented by the tags assigned to it. We lever-
age these representations of tags as social descriptors of
music to uncover emotional experiences and concepts that
are associated with users with risk for depression.

1.1 Research Objectives and Hypotheses

In this study we investigated whether people’s music lis-
tening history, in terms of social tags, could be used to
predict a risk for depression. Our research questions were:

• What are the social tags associated with music cho-
sen by At-Risk users?

• What emotions do these tags signify in the context
of musically evoked emotions?

• What genres are mostly associated with At-Risk
users?

• How well can we classify users as At-Risk given
user-specific social tags?

We expected the social tags linked with At-Risk listeners to
contain emotions with low arousal and low valence, being
typical of depressive mood. Owing to the lack of research

associating music genres and risk for depression [15], this
part of the study was exploratory.

2. METHODOLOGY

The methodological approach and procedure of our study
is illustrated in Figure 1. The steps of data collection, pro-
cessing, and analysis are described below.

2.1 Data Collection

An online survey was designed wherein participants were
asked to fill their Last.fm usernames and demographics fol-
lowed by standard scales for assessing their mental well-
being, musical engagement strategies and personality. Par-
ticipants were solicited on the Last.fm groups of social me-
dia platforms like Reddit and Facebook. The inclusion cri-
terion required being an active listener on Last.fm for at
least a year prior to filling the survey. The survey form
required the users’ consent to access their Last.fm music
history.

2.1.1 Participants

A total of 541 individuals (Mean Age = 25.4, SD = 7.3)
were recorded to be eligible and willing to participate in
the study consisting of 444 males, 82 females and 15 oth-
ers. Most of them belonged to the United States and the
United Kingdom accounting for about 30% and 10% of the
participants respectively. Every other country contributed
to less than 5% of the total participants.

2.1.2 Measure of Well-Being, Musical Engagement, and
Personality

The Kessler’s Psychological Distress Scale (K10) ques-
tionnaire [21] was used to assess mental well-being. It is
a measure of psychological distress, particularly assessing
anxiety and depression symptoms. Individuals scoring 29
and above on K-10 are likely to be at severe risk for de-
pression and hence, constitute the "At-Risk" group. Those
scoring below 20 are labeled as the "No-Risk" group [22]
as they are likely to be well. There were 193 partici-
pants in the No-Risk group and 142 in the At-Risk group.
The HUMS survey was administered to assess musical
engagement strategies which resulted in two scores per
participant, Healthy and Unhealthy. Personality informa-
tion was obtained using the Mini-IPIP questionnaire [23]
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which results in scores for the Big Five traits of Person-
ality namely Openness, Conscientiousness, Extraversion,
Agreeableness and Neuroticism. HUMS and personality
data were collected in order to identify if specific person-
ality traits engage more in Unhealthy music listening and
as additional measures to assess internal validity.

2.1.3 Music Listening History

Each participant’s music listening history was extracted
using a publicly available API. The data included tracks,
artists, and social tags associated with the tracks. For
each participant, the top n (n=500,200,100) tracks based
on play-counts were extracted centered around the time t
(t = ± 3 months,2 months) they filled in the questionnaire.
The reason for varying n and t was to find converging ev-
idence in music listening behavior in order to make our
results more robust. For each track, the top 50 social tags
based on tag weight (number of times the tag has been as-
signed to the track) were chosen for subsequent analysis.

2.2 Social Tags Processing

2.2.1 Tag Filtering

Music-related social tags are known to be descriptors of
genre, perceived emotion, artist and album amongst others.
It is therefore important to filter them to organize them ac-
cording to some structure and interpretable dimensions for
the task at hand. The purpose of this preprocessing step
was to retrieve tags that could be mapped onto a semantic
space representing music-evoked emotions. To this end,
we used four filtering stages: first, include lower-casing,
removal of punctuation and stop-words, spell-checking
and checking for the existence of tag words in the English
corpus; second, retain tags that are most frequently as-
signed adverbs or adjectives via POS (Part Of Speech) tag-
ging since POS tags representing nouns and pronouns do
not have emotion relevance in this context; third, remove
tags containing 2 or more words to avoid valence shifters
[24] and sentence-like descriptions from our Last.fm cor-
pus; fourth, manually filter them by discarding tags with-
out any mood/emotion associations.

2.2.2 Tag Emotion Induction

To project the tags onto an emotion space, we used di-
mensional models that represent the emotions. Multiple
research studies have shown the usefulness of both two-
dimensional and three-dimensional models to represent
emotions [25–27]. We therefore used both these models
for further analysis in order to check for trends and the ef-
fect of the third dimension when dealing with emotions.

The first model is one of the most popular dimensional
models, the Russell’s Circumplex Model of Affect [28],
where an emotion is a point in a two-dimensional con-
tinuous space representing Valence and Arousal (VA). Va-
lence reflects pleasantness and Arousal describes the en-
ergy content of the emotion. The second model is an ex-
tension of the Russell’s model with an added Dominance

dimension (VAD), which represents control of the emo-
tional state. The VAD model has been a popular frame-
work used to construct emotion lexicons in the field of
Natural Language Processing. The projection in the VAD
space is based on semantic similarity and has been largely
used to obtain affective ratings for large corpora of English
words [29] [30]. Another common emotion model is the
VAT model wherein the third dimension represents Tension
(VAT) and has been used in retrieving mood information
from Last.fm tags [17]. However, Saari et. al.’s [17] ap-
proach was based on tag co-occurrence rather than seman-
tic similarity. Moreover, a subsequent study by the same
authors reported a positive correlation (r=0.85) between
tension and dominance [31]. Also, multiple studies have
supported the use of the VAD space for analysing emotions
in the context of music [32, 33]. We therefore have chosen
the VAD framework for the purpose of our study. Since VA
dimensions alone were found to sufficiently capture musi-
cal emotions [26], we also repeat our analysis based on the
VA model to observe the effect of the omitted Dominance
dimension.

The tags were projected onto the VAD space using
a word-emotion induction model introduced by Buechel
and Hahn [29]. We used the FastText embeddings of the
tags as input to a 3-layer multi-layer perceptron that pro-
duced VAD values ranging from 1 to 9 on either of the
dimensions. FastText has shown better accuracy for word-
emotion induction [29] when compared to other commonly
used models like Word2vec and GloVe. Moreover, Fast-
Text embeddings incorporate sub-word character n-grams
that enable the handling of out-of-vocabulary words. This
results in a large advantage over the other models [34]. In
addition, FastText works well with rarely occurring words
because their character n-grams are still shared with other
words. This made it a suitable choice since some of the
user-assigned tags may be infrequent or absent in the train-
ing corpus of the embedding model. We used the same ap-
proach to project the tags onto the VA space by changing
the number of nodes in the output layer from 3 to 2.

Both the models were trained using the EN+ dataset
which contains valence, arousal and dominance ratings
(on a 9-point scale) for a majority of well-known English
words [35]. This module resulted in an n-dimensional vec-
tor (n=3 for VAD, n=2 for VA) for each tag. The remain-
der of the pipeline describes the 3-dimensional VAD vec-
tor processing. The same procedure is repeated for the VA
scores.

2.2.3 Tag Emotion Mapping

The social tags were grouped into broader emotion cat-
egories. These categories consisted of 9 first-order fac-
tors of Geneva Emotional Music Scale (GEMS) [36].
These were Wonder, Transcendence, Nostalgia, Tender-
ness, Peacefulness, Power, Joyful activation, Tension and
sadness. Table 1 in the supplementary material displays
the factor loadings for these first-order factors of GEMS.
GEMS contains 40 emotion terms that were consistently
chosen to describe musically evoked emotive states across
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a wide range of music genres. These were subsequently
grouped to provide a taxonomy for music-evoked emo-
tions. This scale has outperformed other discrete and di-
mensional emotion models in accounting for music-evoked
emotions [37]. In order to project these 9 emotion cate-
gories onto the VAD space, we first obtained the VAD val-
ues for the 40 emotion terms. Next, the VAD values were
weighted and summed according to the weights provided
in the original GEMS study to finally obtain VAD values
for each of the emotion categories. Figures 1 & 2 in sup-
plementary material display the projections of these emo-
tion categories onto the VAD and VA spaces. Each of the
tags are then assigned the emotion category based on the
proximity in the VAD space as evaluated by the euclidean
distance.

2.3 User-Specific Emotion Prevalence Score

After every user’s tags had been mapped onto the 9 emo-
tion categories,we calculated an Emotion Prevalence Score
Su,c for every user. This represents the presence of tags
belonging to that particular emotion category in the user’s
listening history.

Su,c =

∑
jεV tr

(Nj,c × tru,j)∑
iεT u tru,i

(1)

where
Nj,c =

∑
kεTagsc

twj,k∑
lεV tg

twj,l
(2)

c : emotion category
Nj,c : the association of track j with c
Tu : all tracks for user u
Vtg : all tags obtained after tag filtering
Vtr : all tracks having at least one tag from Vtg
tru,i : playcount of track i for user u
twj,k : tag weight of tag k for track j
Tagsc : all tags in Vtg which belong to c

Since the objective of this work was to identify which of
the 9 categories are most characteristic of At-Risk individ-
uals when compared to No-Risk individuals, we performed
group-level statistical tests of difference as described in the
following section.

2.4 Emotion-based Analysis : Group Differences and
Bootstrapping

For each emotion category, we performed a two-tailed
Mann-Whitney U (MWU) Test on the Emotion Prevalence
Scores between the No-Risk and At-Risk groups. For a
category, the group having higher mean rank from MWU
Test indicates a stronger association of the category with
that group. For the emotion categories that exhibited sig-
nificant differences (p < .05), we further performed boot-
strapping to account for Type I error and ensure that the
observed differences are not due to chance. Bootstrapping
(random sampling) with replacement was performed with
10,000 iterations. Each iteration randomly assigned par-
ticipants to the At-Risk or No-Risk group. The U-statistic

for each iteration was calculated. As a result, we obtain
a bootstrap distribution for the U-statistic from which we
estimate the significance of the observed statistic.

2.5 Genre-Prevalence Analysis

To further analyse the types of music associated with the
tags of emotion categories, we explored genre-related so-
cial tags. In order to select the genre-related tags from our
data, we collected the results of the multi-stage model pro-
posed by Ferrer et al. [38] which assigned tags of Last.fm
to different semantic layers namely genre, artist, affect, in-
strument, etc. In order to understand the underlying genre
tag structure and obtain broader genre categories, we em-
ployed the approach described by Ferrer et al. [39] to clus-
ter genre tags (details in Equation 1 in the Supplementary
material). In this, music tags were hierarchically organized
revealing taxonomy of music tags by means of latent se-
mantic analysis. The clusters thus obtained were labelled
based on the genre-tags constituting the core points of the
cluster [40].

For the emotion categories that exhibited significant
group differences, the genre tags co-occurring with its tags
were used to calculate a user-specific Genre Prevalence
Score for each genre-tag cluster. The formula used was
similar to Emotion Prevalence Scores with the change in
definition of the following terms: c represents the genre
cluster, Tu is the set of all tracks for user u which have a
tag belonging to the particular emotion category and Vtg
is the set of all genre tags. Finally, we performed a bise-
rial correlation between Genre Prevalence Scores for each
genre-tag cluster and the users’ risk for depression (repre-
sented as a dichotomous variable with 0 = No-Risk; 1 =
At-Risk).

3. RESULTS

3.1 Internal Consistency and Criterion Validity

The Cronbach’s alphas for Unhealthy scores obtained from
HUMS and K10 scores were found to be relatively high
at 0.80 and 0.91 respectively. A significant correlation
(r=0.55, df=539, p<0.001) between Unhealthy Score and
K10 was found which is in concordance with past re-
search studies in the field [13]. Also, in line with pre-
vious research [41, 42], a significant positive correla-
tion was observed between K10 score and Neuroticism
(r=0.68, p<0.0001) adding to the internal consistency of
the data and confirming construct validity. As can be
seen in Figure 2, the At-Risk group displayed higher mean
and median Unhealthy score compared to No-Risk while
Healthy scores were comparable. Partial correlations
between Unhealthy, Healthy, and K10 are presented in
Table 1. K10 scores exhibit significant positive correlation
only with Unhealthy for both the groups. The moderate
correlation between Healthy and Unhealthy scores for the
No-Risk population indicates that both of these subscales
capture a shared element, most likely active music listen-
ing.
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Figure 2: Boxplot of HUMS scores for No-Risk and At-
Risk Groups.

No-Risk At-Risk
Scales Healthy Unhealthy Healthy Unhealthy
Healthy 1.0 0.36** 1.0 -0.14
Unhealthy 0.36** 1.0 -0.14 1.0
K10 0.07 0.26** -0.11 0.22*

Table 1: Partial Correlation Values between HUMS &
K10. (*p<0.01 & **p<0.001)

3.2 Emotion-based Results

The data (t=±3,n=500) consisted of 3,80,261 social tags.
The tag filtering process resulted in a final set of 1254
unique tags (Mean=109, SD = 24 tags per user) which were
then mapped onto the VA and VAD emotion spaces. Fig-
ure 3 in supplementary material displays the tags closest
to each of the Emotion Categories based on VA and VAD
models.

Figure 3: Boxplot of Emotion Prevalence Scores for No-
Risk and At-Risk based on VA.

Figure 3 illustrates the Emotion Prevalence Scores for
both groups for VA mapping (Supplementary Figure 4
displays the same for VAD, showing a similar distribu-
tion). The overall pattern appears similar between both
the groups with minor observable differences for the emo-
tion categories wonder, transcendence, tenderness, ten-
sion, and sadness. Table 2 displays the emotion categories
that exhibited significant differences between the groups
(MWU U-statistic and bootstrap p-values in Table 2 of
Supplementary material). The At-Risk group consistently
exhibits higher Prevalence Scores in Sadness while the No-
Risk group vacillates between Wonder and Transcendence.
The most significant difference was observed in Sadness
(VA model,t=±3,n=100) with a significantly greater Emo-
tion Prevalence Score for the At-Risk group (Median

= 0.0117) than the No-Risk group (Median = 0.0091),
U=11414.5, p=0.009. Significant difference was also ob-
served for Tenderness with greater Emotion Prevalence
Score for the At-Risk group (Median = 0.1271) than the
No-Risk group (Median = 0.1189), U=11905.0, p=0.04.
On the other hand, the Emotion Prevalence Score in Won-
der (VA model,t=±2,n=100) was significantly greater for
the No-Risk group (Median = 0.0131) than the At-Risk
group (Median = 0.0086), U=16270.0, p=0.003. The
word-clouds of tags comprising Sadness and Tenderness
are displayed in Figure 4a and Figure 4b. A score per tag
is computed for each group (Equation 2 in Supplementary
material). A rank was assigned to the tag based on the
absolute difference of the tag scores between No-Risk &
At-Risk groups. The size of the tag in the word-cloud is
directly proportional to its rank in the category. Supple-
mentary figures 5 and 6 depict word-clouds for Transcen-
dence and Wonder.

(a) Sadness (VA,±3,100) (b) Tenderness (VAD,±3,500)

Figure 4: Wordclouds for emotion categories associated
with At-Risk group.

We also assessed the predictive power of social tags
for risk of depression by classifying participants into At-
Risk or No-Risk groups using their tag information (fea-
ture details in Equation 4 in Supplementary material). The
SVM model with ’rbf’ kernel (C=2301, gamma=101) gave
the best results with a 5-fold cross-validation accuracy of
66.4%.

3.3 Genre-Prevalence Results

Out of the 5062 tags assigned to the genre layer in [38],
94% (4766) of the tags were present in our data. The
clustering of the genre tags resulted in 17 clusters and is
displayed in Table 3 of Supplementary material. Figure 7
in Supplementary material displays mean genre prevalence
scores between both groups for these 17 clusters. Overall,
genre-cluster representing indie-,alternative-pop/rock rep-
resented by Cluster 4 is predominant in both groups. Genre
prevalence scores were then evaluated specific to the tracks
associated with the emotion categories that exhibited most
significant group differences, that is, Wonder and Sadness
(VA model, t=±3, n=100). For Sadness-specific tracks, the
highest correlation (r=0.2, p<0.01) was observed between
the Genre-Prevalence scores in the cluster representing neo
psychedelic-, avant garde-, dream-pop and K-10 scores.
Also, genre clusters representing electronic rock (r=0.17,
p<0.01), indie-, alternative-pop/rock (r=0.12, p<0.05), and

Proceedings of the 21st ISMIR Conference, Montréal, Canada, October 11-16, 2020
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Group Top VAD VA
Tracks t=±3 t=±2 t=±3 t=±2

n=100 Sadness* Sadness**
At-Risk n=200 Sadness* Sadness*, Tenderness* Sadness* Sadness*, Transcendence*

n=500 Sadness*, Tenderness* Tenderness* Sadness* Sadness*, Transcendence*
n=100 Transcendence* Wonder**

No-Risk n=200 Transcendence* Transcendence* Wonder* Wonder**
n=500 Transcendence* Transcendence* Wonder* Wonder**

Table 2: Emotion Categories with Significant Differences between At-Risk and No-Risk groups.*p<0.05; **p<0.01

world music (r=-0.11, p<0.05) demonstrated significant
correlations for Tenderness. For Wonder (VA model, t=±2,
n=100), the K-10 scores exhibited significant negative cor-
relation with Genre Prevalence Scores of clusters repre-
senting black metal (r=-0.11, p<0.05) and neo-progressive
rock (r=-0.13, p<0.05).

4. DISCUSSION

This study is the first of its kind to examine the associa-
tion between risk for depression and social tags related to
music listening habits as they occur naturally as opposed to
self-reported or lab-based studies. A clear difference in the
music listening profiles was observed between the At-Risk
group and the No-Risk group, particularly in terms of the
emotional content of the tags. Sadness was significantly
more prevalent in the At-Risk group and the word-cloud of
sadness was highly illustrative of other low-arousal, low-
valence emotions such as dead, low, depressed, miserable,
broken, and lonely. The stronger association of the At-
Risk group with sadness is in concordance with the past re-
search studies in the field [43] and confirms our hypothesis.
The At-Risk group is attracted to music that reflects and
resonates with their internal state. Whether this provides
emotional consolation as an adaptive resource or whether
it only worsens repetitive negative feelings and fuels ru-
mination, remains an open question. Nonetheless, statisti-
cally, such listening style can be seen as a highly predictive
factor of psychological distress.

In addition, Tenderness, which represents low-arousal
and high-valence, was also more prevalent in the At-Risk
group, especially for shorter-term (± 2 months) music lis-
tening habits. Tenderness appears to be more significant
in the shorter time period in addition to Sadness, possibly
indicating that At-Risk people tend to oscillate between
positive and negative states within a general state of low
arousal. These findings appear to be very much in line
with the results found by Houben et al. [44] who found
high levels of emotional inertia and emotional variabil-
ity to be linked with depression and ill-being. The con-
sistent results related to Sadness in our study reflect the
overall inert states in which the At-Risk tend to be. On
the other hand, the Tenderness results reflect their ten-
dency to jump to positive affective states while retaining
low arousal, thereby demonstrating emotional variability.
Furthermore, the omission of the Dominance dimension
causes most of the tags to shift from Tenderness to Tran-
scendence and Transcendence to Wonder, which explains

the results in a reversal of the group association as evi-
denced in the results. Nevertheless, Sadness appears to
be the predominant state as it is largely consistent for ±3
months as well as for ±2 months of music listening histo-
ries.

The At-Risk group also exhibited a tendency to
gravitate towards music with genre tags such as neo-
psychedelic-, avant garde-, dream-pop co-occurring with
Sadness. Such genres are characterized by ethereal-
sounding mixtures that often result in a wall of sound com-
prising electronic textures with obscured vocals. Similarly,
the genres co-occurring with Tenderness (VAD model) or
Transcendence (VA model) comprise similar mixtures with
heavy synthesizer-based sounds (such as mellotron) which
result in sounds that seem otherworldly. Such out-of-this
world soundscapes have been also associated with tran-
scendent druggy and mystical imagery and immersive ex-
periences [45]. These results strengthen the claim that de-
pression may foster musical immersion as an escape from a
reality that is perceived to be adverse. This is somewhat in
line with prior research that has linked depression with the
use of music for avoidant coping [46]. On the other hand,
music listening history of the No-Risk group was charac-
terized by an inclination to listen to music tagged by posi-
tive valence and higher arousal as characterized by Wonder
with a predilection for Heavy metal and Progressive Rock
genres.

The use of only single word tags in the third stage of
tag filtering is one limitation of this study which is due to
lack of compatibility of the word emotion induction model
with multi-word tags. Our results could potentially be ex-
tended to find significant differences in emotional concepts
after considering multi-word social tags. We achieve a de-
cent classification accuracy of 66.4% which is significantly
above the chance level which indicate that social tags in-
deed may be indicative of At-Risk behavior. This may fur-
ther be improved by considering additional descriptors of
music such as acoustic features and lyrical content of the
tracks. Another future direction is to incorporate the tem-
poral evolution of these emotion categories in the listen-
ing histories to characterize depression, since past research
suggests depression to be a result of gradual development
of daily emotional experiences [47]. This study is intended
to be one of many to come that will be helpful in early de-
tection of depression and other potential mental disorders
in individuals using their digital music footprints.
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ABSTRACT 

In May 2015, a consultant for country radio revealed a dec-

ades’ long practice of limiting space for songs by female 

artists. He encouraged program directors to avoid playing 

songs by women back-to-back and advocated for program-

ming their songs at 13-15% of station playlists. His words 

sparked debate within the industry and drew attention to 

growing inequalities on radio and within the genre. The 

majority of these discussions have centered on US country 

radio, with limited attention to the growing imbalance on 

the format in Canada. While country format radio in both 

countries subscribe to a practice of gender-based program-

ming, Canadian program directors are governed by the fed-

eral Broadcasting Act, which regulates dissemination of 

Canadian content. Using metadata extracted from one of 

the main radio monitoring services – Mediabase, this paper 

examines gender-related trends on Canadian country for-

mat radio between 2005 and 2019. Through data-driven 

analysis of Mediabase’s weekly reports, this paper shows 

declining representation of songs by women on Canadian 

country radio and addresses the impact of Canadian con-

tent regulations on this process. 

1. INTRODUCTION 

Gender has long been a central dynamic of programming 

in the country music industry. In the early days of the 

genre, male artists were associated with “public work” and 

commercial success, while women were tucked away in 

domestic, administrative and musically supporting roles 

[1-2]. Despite their significant contributions to the genre 

on the stage and behind the scenes, female artists have his-

torically been limited on radio playlists, tours, television 

programs, and label rosters [3-5]. Since the 1960s, radio 

programmers have employed a form of gender-based 

scheduling as a means to structure and balance playlists; 

claiming they had fewer songs by women, programmers 

“spread out” their songs to avoid repetition [6]. This prac-

tice formalized in the late 1990s through the work of a ra-

dio consultant who developed a system for programming 

songs by women at 13-15% of playlists [7]. In May 2015, 

after nearly two decades of promoting his formula, the 

consultant spoke openly about his method, arguing that the 

format’s majority female fanbase prefers male voices and 

advocated employing his formula to make ratings [7]. 

In the 5 years following this interview, research has ad-

dressed the growing imbalance on terrestrial radio. Data-

driven studies have challenged the industry’s growing 

“anti-female” myth and evaluated the decline in represen-

tation on industry charts [8-11]. Using airplay reports to 

investigate programming practices, recent studies revealed 

a 66% decline in the number of songs by women within 

the Top 150 on Mediabase’s Yearend reports [12] and an 

increase in the ratio of spins for songs by men and women 

from 2 to 1 in 2000 to 10 to 1 by 2018. They also evaluated 

the distribution of spins for songs by women and found 

that women were underrepresented across all dayparts in 

the 24-hour cycle [13]. Taken together, these studies reveal 

the long-term impact of the gender-based programming on 

US country format radio. 

While gender representation on US country format has 

been widely discussed, growing inequalities on terrestrial 

radio in Canada has not received the same attention. A 

September 2019 report took preliminary steps toward eval-

uating representation on Canadian country format radio 

[14], finding similar disparity as in the US but did not fully 

address the impact on Canadian artists. Given the federal 

laws regulating Canadian Content, it is important to con-

sider representation through a geo-cultural lens. The pre-

sent study seeks to extend this framework to consider com-

pliance with federal content regulations and its impact on 

programming female artists on Canadian country radio. 

Adopting methods for Big Data research in the humani-

ties and social sciences [15-18], and influenced by proso-

pography [19-21], this paper presents an approach for us-

ing music industry data to study what airplay and bio-

graphic metadata can tell us about socio-cultural and insti-

tutional frameworks that govern popular cultures. To do 

so, I extracted weekly reports of aggregated radio airplay 

metadata from the Mediabase radio monitoring service’s 

database and built a prosopography of all artists whose 

songs were played on Canadian country radio between 

2005 and 2019. Using RapidMiner, these datasets were 

then joined to enable data-driven analysis of the commu-

nity of artists whose songs are programmed on Canadian 

country radio. This study aims to answer several inter-re-

lated questions about representation. First, does the num-

ber of songs by male artists exceed those by women on 

Canadian country radio as it does in the US? Second, how 

often are songs by women programmed and at what time 

of day? Finally, how does this programming impact con-

tention on weekly charts? Through each of these questions, 

the geo-origins of artists are considered in order to facili-

tate a deeper understanding of how Canadian Content reg-

ulations might help or hinder representational issues. 
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2. CONTEXT – CANADIAN RADIO 

Broadcast radio in Canada began in the early 1920s (like 

the USA), with licenses for purchase from the national De-

partment of Marine and Fisheries by groups that operated 

limited daytime programming [22-23]. As Canadian radio 

developed through the first half of the century, program-

ming did not reflect the country’s cultural heritage. By the 

late 1960s, as a renewed sense of nationalism emerged sur-

rounding the country’s centenary celebrations, there was a 

growing concern of Americanization of Canadian culture 

in general, and on broadcast radio specifically. Terrestrial 

radio was dominated by musical imports: by 1968 only 4% 

to 7% of the songs broadcasted were Canadian, with the 

remaining songs programmed primarily by musicians from 

the USA [22]. With little support from radio, Canadian art-

ists struggled to break through the national market – which 

limited their reach outside of the country [22-23]. 

Debate came to a head in 1971 with the passage of the 

Broadcasting Act, which outlined Canadian content regu-

lations that would be overseen by the newly formed Cana-

dian Radio-Television Commission (CRTC) [24-25]. 

These regulations sought to carve out space for Canadian 

music on AM and (later) FM radio, governing the mini-

mum percentage of songs aired and their time of day – to 

ensure that Canadian songs are not ghettoized in the over-

nights. As of 1998, stations are required to play 35% Ca-

nadian content [26-27]. 

In addition to a content quota, the Broadcasting Act also 

outlines criteria for evaluating a song’s “Canadianness”. 

Known by its acronym MAPL, the system includes the 

following criteria:  

1. Music is composed entirely by a Canadian;  

2. Artist performing the music or lyrics is Canadian;  

3. Performance is (i) recorded wholly in Canada or (ii) 

performed and broadcast wholly in Canada; and  

4. Lyrics are written entirely by a Canadian [28].  

A musical work must fulfill two of these conditions to 

qualify as Canadian and count toward a station’s quota. 

3. DATASET 

The dataset for this study was curated from the weekly air-

play reports generated by Mediabase, a music industry ser-

vice that monitors airplay in the US and Canada. The da-

taset contains 319,369 records capturing the weekly activ-

ity of the 6,675 unique songs played on Canadian country 

format radio between 2005 and 2019. The reports include 

descriptive metadata about the songs played on Canadian 

country radio (artist, featured artist, title, label and release 

year) as well as information about their weekly activity (re-

port date, weekly ranking and status, as well as distribution 

of spins overall and across all 5 dayparts). The 780 weekly 

reports were downloaded directly from Mediabase’s data-

base, cleaned and merged, and then structured to discover 

gender- and race-related trends that characterize program-

ming on country format radio. As such, they were aug-

mented with a metadata capturing the biographic details of 

the artists and ensembles, including genre, ensemble type, 

gender, race/ethnicity and country of origins.  

Country radio programmers use just two labels to code 

artists in their scheduling software: “male” and “female,” 

and apply the latter designation to male-female ensembles 

– even if the group has a male lead [29]. Moving outside 

of the industry’s strict binary coding system, this study fol-

lows the practice employed in previous studies, using three 

codes to define artists their biological and sociological sta-

tus: M for men, W for Women, and M-F for male-female 

ensembles [11-16]. While this coding system still works 

with gender binaries, the aggregated radio reports do not 

include transgender and gender non-binary artists. Thus, 

while more nuanced categories could be used, the absence 

of LGBTQ artists in the dataset is suggestive of larger so-

cio-culture issues within programming that are in dire need 

of attention. This study thus acknowledges their absence 

and advocates for more inclusive programming. 

4. RESULTS 

The stations reporting to country format radio play con-

temporary country music (sometimes referred to as “coun-

try-pop”), not what one might call “classics” (i.e. songs by 

older generations often credited with developing the sound 

and culture of the genre). The reports include both current 

singles vying for chart contention and songs in “recurrent” 

status, which are comprised of songs that have exited the 

chart but still played regularly on radio that have become 

part of a station’s back catalogue of standards. Generally, 

these songs include only those that were released within 

the preceding five years. Sections 4.1 to 4.3 evaluate rep-

resentation across all songs played on radio, and Section 

4.4 focuses just on the charting activity of current singles. 

4.1 Gender representation 

Over the course of this 15-year study period, songs by 

1,309 artists were played on Canadian country format ra-

dio, 59.6% were men, 34.0% were women, 6.4% were 

male-female ensembles. While this amounts to a 60/40 

split for male-only acts and acts that include women (as 

per radio coding), just 27.9% of all artists are played regu-

larly on country format radio and with enough daily sup-

port to make the weekly charts. As such, even fewer fe-

male artists are heard regularly on radio. The overwhelm-

ing majority of these artists – 94.9% – are white, while 

1.4% are Black, 0.8% are Indigenous, 1.1% are multi-ra-

cial, and 0.7% identify as having Filipino, Columbian, His-

panic, Latin, and Portuguese heritage. The ethnicity of 

1.2% of the artists was unverifiable. This preliminary level 

of evaluating the identity of the artists reveals gender im-

balance, to be sure, but also an overwhelming racial ine-

quality that privileges white artists and excludes Black, In-

digenous, Musicians of Colour (hereafter as BIMOC). 

   Table 1 parses data for the 6,675 songs played on country 

radio by gender and geo-origins, summarizing the number 

and percentage of unique songs by Canadians and non-Ca-

nadians played on Canadian country format radio between 

2005 and 2019. Songs by Canadian artists consistently oc-

cupy 46% of the weekly programming. The remaining 

54% of the songs are by non-Canadian artists (mostly from 

the USA). The majority of the songs were by non-Cana-

dian men (37.9%) with those by Canadian men (29.4%) 

coming in second. Songs by Canadian and non-Canadian 

women and male-female ensembles occupy approximately 

the same percentage (16.3%) of songs.  
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This picture changes when evaluating representation of 

all songs on the weekly reports, which reveals how many 

times these songs are included on weekly playlists across 

the country. As Table 2 summarizes, 75.5% of the songs 

were by men, 19.3% were by women, and 5.1% were by 

male-female ensembles. Here, too, non-Canadian men 

dominate the Canadian country format soundscape, with 

both Canadian and non-Canadian women occupying just 

under 10% of weekly radio playlists. These results show 

that there are not just fewer songs by women (Table 1), but 

that they are less frequently included on station playlists 

(Table 2) than those by their male colleagues. The gap thus 

increases from 59.2% unique songs by men and women to 

74.4% when evaluating the rate at which those songs ap-

pear on weekly playlists. 

 
 Canadians Non-Canadians 

Men 1,965 (29.4%) 2,528 (37.9%) 

Women 942 (14.1%) 892 (13.4%) 

Male-female ens. 162 (2.4%) 186 (2.8%) 

Total songs 3,069 (45.9%) 3,606 (54.1%) 

 

Table 1. Gender representation of unique songs played on 

Canadian country format radio 

 
 Canadians Non-Canadians 

Men 105,166 (32.9%) 136,052 (42.6%) 

Women 31,486 (9.9%) 30,230 (9.5%) 

Male-female ens. 6,747 (2.1%) 9,688 (3.0%) 

Total Songs 143,399 (44.9%) 175,970 (55.1%) 

 

Table 2. Gender representation of all songs played on Ca-

nadian country format radio 

 

As with the number of unique artists, 96.4% of the 

unique titles are by white artists. This figure does not 

change when evaluating the full representation of all songs 

on the weekly reports. In both perspectives, songs by Black 

artists make up just 1.3% of the songs played on Canadian 

country radio, with 1.0% by Indigenous artists, 0.4% by 

multi-racial artists and all other ethnicities performing the 

final 0.9%. Few titles by artists who are BIMOC are in-

cluded on Canadian country radio station playlists. 

Figure 1 graphs distribution of songs on the weekly re-

ports by artists’ gender and geographic origins. Songs by 

Canadian artists are displayed in the line graph with those 

by non-Canadians in the columns, with light grey repre-

senting men, dark grey for women, and black for male-fe-

male ensembles. This graph shows that all male artists 

were programmed at a higher rate every year in this study 

period. Although the number of songs by men fluctuates, 

they consistently average 75.6% of the songs played and 

increase to 82% by 2017, as the percentage of songs by 

women decline. Canadian male artists consistently occupy 

33% of the weekly reports, with songs by non-Canadian 

men receiving averaging 43% of the weekly playlists.  

At the start of this period, women were responsible for 

an average of 22.7% of the songs played. But between 

2009 and 2012, there was a 33% decline in the number of 

songs by men and women on the weekly airplay reports. 

Despite the fact that the change appears to have impacted 

men more in this period, both suffered a 33% loss in songs 

on the reports. The gap between men and women remains 

relatively stable through this period of decline, but steadily 

widens to a high of 69.2 percentage points by 2017. As the 

number of songs by women declined between 2009 and 

2012, male-female ensembles increased from 5.3% to 

9.1%, and then declined back to 2.9% by 2019. This shows 

more clearly the impact of coding male-female ensembles 

as “females” in programming, as the ensembles simply re-

place solo female and all-female ensembles in playlists. 

 

 
 

Figure 1. Distribution of songs by Canadians (lines) and 

non-Canadians (columns) 

 

While male artists maintain their strong placement on 

Canadian country format playlists, songs by female artists 

declined from 23.8% in 2005 down to 14.9% by 2017 – a 

period low for women on Canadian country radio. How-

ever, as revealed in Figure 1, this decline had a greater im-

pact on non-Canadian women. Songs by non-Canadian 

women dropped 13.6% of the weekly reports to a 7.3% av-

erage for the last seven years of the study period. Canadian 

women, though certainly underrepresented, are not im-

pacted to the same degree as non-Canadians, as their songs 

consistently make up 10% of the weekly reports.  

4.2 Distribution of spins 

The results above show that an average of 19.3% of the 

songs played on Canadian country radio are by women, but 

that picture begins to change when evaluating how often 

songs are played at the level of accumulated “spins”. Not 

only does this provide a sense of the space available for 

songs by women on radio, but it also aids in understanding 

how often the average listener actually hears women’s 

voices on radio.  

Figure 2 maps the distribution of all songs played on 

radio according to the total spins accumulated weekly, us-

ing the same geo-cultural and gender distribution as Figure 

1. This figure paints a strikingly different picture of Cana-

dian country radio culture. The number of spins for songs 

on country radio increased 55% overall between 2005 and 

2019, with the majority of spins are granted to songs by 

non-Canadian men (averaging 50% of the spins), with 

those by Canadian men coming in second (averaging 

30%). Combined, male artists average 80% of the spins 

over the course of this period. This leaves the remaining 

20% for female artists and male-female ensembles. Songs 

by Canadian women average 7% of the spins on weekly 

playlists, while airplay for non-Canadian women declines 

steadily from 14% in 2005 down to 6% by 2019. 

 Here, too, as with the number of titles included on 

playlists, songs by artists who are BIMOC are drastically 
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underrepresented. White artists received a majority of the 

annual airplay, with more than 90% annually. While this 

level of racial inequity is disheartening, the data shows that 

the percentage of spins for Black and Multi-racial artists 

increased from 0.2% to 8.3% by 2019. These spins are di-

vided between 15 country artists, 10 of which are men who 

receive 7.8% of the spins. The 4 women of colour played 

on radio received a combined 0.5% of the annual spins. 

 

 
 

Figure 2. Distribution of spins for songs by Canadians 

(lines) and non-Canadians (columns) 

 

The picture that emerges in Figure 2 is one of growing 

inequality and cultural imbalance. While the number of 

spins for songs by women increases between 2005 and 

2019, their representation within the full ecosystem de-

creases, dropping 10 percentage points over the course of 

this period. The decline in overall representation of women 

can be explained by an increase in the number of country 

format stations from 21 stations reporting to Mediabase in 

2005 to 36 by 2019. As such, songs aren’t being played 

more, they are spread out across more stations.  

4.3 Time of Day 

It is also important to understand the time of day that these 

songs are heard by the majority of radio listeners. The 24-

hour period at radio is divided into 5 dayparts:  

• Overnights (12:00 a.m. to 6:00 a.m.),  

• Morning (6:00 a.m. to 10:00 a.m.),  

• Midday (10:00 a.m. to 3:00 p.m.),  

• Afternoon (3:00 p.m. to 7:00 p.m.), and  

• Evening (7:00 p.m. to 12:00 p.m.) [30].  

The evening and overnight dayparts register the smallest 

listening audiences (8% and 4% of the listening audience 

[31]), but this is when the majority of songs are played 

with 22% of the spins in the evening and 28% in the over-

nights. The morning, midday and afternoons periods have 

the highest percentages of tuned-in listeners (21%, 26% 

and 21%, respectively [31]); and yet, these three dayparts 

have the lowest percentage of songs played. Just 13% of 

the daytime spins occur in the morning, with 20% in the 

midday and 16% in the afternoon.  

Figures 3a and b map the distribution of spins for men, 

women and male-female ensembles in 2005 and 2019 ac-

cording to the time of day that songs are played and by 

country of origins, drilling further into the distribution of 

spins reported in Figure 2. The columns are presented in 

temporal order from the overnights (left) to the evening 

(right) for each category, with shading to represent geo-

origins of the artists (non-Canadians in a solid shade, with 

Canadians in a patterned shade). While the amount of spins 

for songs by women has increased (as in Figure 2), there is 

an overall decline in representation because of the signifi-

cant increase for songs by men. In 2005, songs by men re-

ceived 74.4% of the daytime spins, with 23.1% for songs 

by women and 2.5% for male-female ensembles. By 2019 

(Figure 3b), male artists were receiving 83.3% of the total 

daytime spins. Despite an increase in spins for songs by 

women over this period, by 2019 songs by women occupy 

a smaller percentage of the daytime spins. 

 

 
 

Figure 3a. Distribution of spins by daypart in 2005 

 

 
 

Figure 3b. Distribution of spins by daypart in 2019 

 

What is more disconcerting is the distribution across all 

five dayparts: songs by women register nearly the same 

percentage overall as men do in a single daypart for both 

periods. What this distribution shows is that songs by 

women are barely heard in daytime hours (6:00 a.m. to 

7:00 p.m.), periods with the most listeners. Graphing dis-

tribution in this manner also shows clearly how the in-

crease in spins for Canadian women factors on a 24-hour 

cycle. While they occupy the same space percentage of 

spins over this period, the number of spins distributed to 

Canadian women increases, while spins for non-Canadian 

women decreases. 

Taking into account the increase in the number of sta-

tions reporting to Mediabase between 2005 and 2019, the 

number of songs per day can then be mapped to each day-

part. As summarized in Tables 2a and 2b, songs by women 

are not being heard more on Canadian country format ra-

dio, they are spread across more stations. Thus, this type 
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of programming marginalizes female artists and ghettoizes 

their songs to a time of day when the majority of the lis-

tening audience is sleeping. 

 
 Canadians Non-Canadians 

 M W MF M W MF 

Overnight 25 8 1 45 14 2 

Morning 13 4 0 19 6 1 

Midday 21 6 0 30 9 1 

Afternoon 17 5 0 23 7 1 

Evening 23 7 1 30 10 1 

 99 29 2 146 47 6 

 30% 9% 1% 44% 14% 2% 

 

Table 2a. Number of songs played by non-Canadian and 

Canadian artists in 2005  

 
 Canadians Non-Canadians 

 M W MF M W MF 

Overnight 25 7 2 51 6 1 

Morning 14 4 1 25 3 0 

Midday 20 5 2 35 4 0 

Afternoon 17 4 1 28 3 0 

Evening 21 6 1 38 4 1 

 96 26 8 177 20 2 

 29% 8% 2% 54% 6% 1% 

 

Table 2b. Number of songs played by non-Canadian and 

Canadian artists in 2019 

4.4 Women on the Charts 

How often a song is played on radio significantly impacts 

its chart contention. Songs that enter and climb the weekly 

airplay charts receive the most weekly spins across Can-

ada’s reporting stations and are most often heard by audi-

ences. Just 32.7% of the unique songs played on country 

radio appeared on weekly airplay charts, 75% by men, 

19% by women and 6% by male-female ensembles. While 

the charts are certainly not a measure of “quality”, they are 

an industry standard of measuring a song’s success and are 

integral to an artist’s development: success on the airplay 

chart is linked to opportunities within the industry, includ-

ing tours, festivals and eligibility for industry awards.  

Between 2005 and 2019, the average amount of spins 

needed for a song to break into the 50-position chart in-

creased 50% from 100 to 150 weekly spins. As this base 

number increased, the number of charting songs by women 

decreased. Figure 4 maps the distribution of these songs on 

the 50-position weekly airplay chart, showing the domi-

nance of non-Canadian men (46.7%), followed by Cana-

dian men (28%). Representation of female artists declines 

from 25.2% to 12.2% in 2018 before increasing to 17.7% 

(with 10.2% for Canadians and 7.5% for non-Canadians). 

Given the racial inequity noted at the level of the full 

weekly reports, it is not surprising that the 50-position 

chart is dominated by white artists. Though significantly 

underrepresented, there have been increasingly more 

songs by artists who are BIMOC – from 1.0% in 2005 to 

9.2% by 2019. These songs, however, are performed by 

just 14 unique artists, 10 of which are men and who are 

responsible for 80% of the 83 charting songs by BIMOC. 

Representation worsens when drilling into the top posi-

tions on the weekly airplay charts. The bar for entering the 

Top 10 positions on the weekly chart increased 59%, from 

390 to 950 weekly spins by 2019. This, coupled with de-

clining number of songs by women, resulted in a gradual 

disappearance of their songs from the top positions. As vis-

ible in Figure 5, the same general geo-cultural pattern is 

maintained: non-Canadian men dominate the chart and Ca-

nadian men come in second. Unlike above, however, Ca-

nadian women are significantly underrepresented in the 

Top 10, with an average of just 2.4% of the songs against 

9.8% by non-Canadian women. By 2019, songs by both 

groups make up 5% of the annual Top 10.  

Representation in the top positions of the chart is par-

ticularly dire when evaluating racial equity: just 3.5% of 

the Top 10 songs are by artists who are BIMOC. Despite 

the noted absence overall, there percentage of Top 10 

songs by artists who are BIMOC increases from 0% in 

2005 to 8.6% by 2019. Just two women of colour – Ojibwe 

artist Crystal Shawanda and Columbian-Canadian Kira Is-

abella – were responsible for five Top 10 songs between 

2008 and 2014, none of which reached the top of the chart. 

Women of colour are thus absent from the top 10 positions 

of the chart, significantly limiting their exposure and shut-

ting them out of opportunities within the industry. 

 

 
 

Figure 4. Distribution of songs in the Top 50 chart by Ca-

nadians (lines) and Non-Canadians (columns)  

 

 
 

Figure 5. Distribution of Top 10 songs in the chart by Ca-

nadians (lines) and non-Canadians (columns) 

 

The picture is most bleak at the top of the chart. Reach-

ing the #1 position on an airplay chart requires a significant 

amount of weekly spins. As with other benchmark posi-

tions, the number of spins required for a song to reach #1 

more than doubled between 2005 and 2019, increasing 

from 550 to 1,370 weekly spins.  

Figure 6 reveals that the majority of the #1 songs in 

2005 were by men (66%), increasing to a high of 96% in 

2015 before declining to 90% by 2019 – and almost exclu-

sively for non-Canadian artists. There is a period high of 

36% for songs by women in the #1 spot in 2006, but this is 

followed by a steady decline to no songs in 2011 and an 
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average of 3% in the final years. Canadian artists are nearly 

absent from the top of the chart in the first 7 years of the 

period. With the exception of one #1 song for Terri Clark 

in 2008, Canadians were completely shut out of the top po-

sition of the chart until 2012, when Canadian male artists 

begin to achieve #1 songs – averaging three a year. Given 

the trends discussed thus far, Canadian women (and male-

female ensembles) are the most underrepresented group, 

with just five #1 songs over 15 years. As the space availa-

ble for women on station playlists declines, that accolade 

becomes increasingly unattainable for female artists.  

 

 
 

Figure 6. Distribution of #1 songs on the weekly chart by 

Canadians (lines) and non-Canadians (columns) 

5. DISCUSSION 

The findings of this study illustrate that gender and racial 

inequality plagues Canadian country format radio. Not 

only do white, male artists have more songs on Canadian 

country radio overall and annually, but their songs are also 

played more often throughout the 24-hour cycle. The find-

ings here echo the inequality identified in studies of US 

country format radio [12-13]. In Canada, as in the US, the 

gap between songs by men and women increases from 

67.9% in 2005 to 76.5% by 2019 – a disparity that holds 

true (and indeed worsens) at the level of weekly airplay, 

time of day programming, and on the weekly charts. Racial 

inequity, though not surprising for this genre, is particu-

larly problematic: while there has been an increase in rep-

resentation of artists who are BIMOC over this period, 

their voices are nearly absent from radio. Only 14 artists 

who are BIMOC had enough airplay to have charting 

songs, just 4 of whom are women. Thus, over the course 

of this 15-year period, not only have songs by women 

started to disappear from the Canadian country charts and 

from the #1 position on the weekly reports, but women of 

colour are excluded from participation.  

The Canadian content regulations offer another layer to 

this discussion. While this study revealed that 44% of the 

songs played on radio are performed by Canadians, those 

songs receive just 38.2% of the annual spins, with 30.3% 

songs by men, and just 6.6% by women and 1.3% by male-

female ensembles. Thus, even though stations are fulfilling 

their content requirements, they average just above the 

quota and privilege non-Canadian artists. Indeed, non-Ca-

nadian men dominate at all levels of programming: they 

have the most songs, the most spins, the highest percentage 

of daytime programming and the most charting songs. Ca-

nadian men are second to non-Canadian men at all levels, 

with the exception of #1 songs – where non-Canadian 

women rank second overall in the number of chart-topping 

songs. While Canadian women are underrepresented, to be 

sure, the trend at all levels of analysis (with the exception 

of the #1 position) is one of decline for non-Canadian 

women against an increase in songs, spins and daytime ac-

tivity for Canadian women. This is not simply a result of 

the dwindling number of songs by women in the broader 

country music market but is suggestive of a trend in which 

program directors are creating more opportunities for the 

Canadian female artists – even if marginal.  

Drilling into these weekly reports in this manner reveals 

the dominance and success of non-Canadians. Canadian 

artists receive enough spins to fulfill federal regulations on 

programming but are not favored enough within daily pro-

gramming to have greater successes within the top posi-

tions of the weekly charts. Their near absence from the top 

of the chart– especially in the case of Canadian women – 

reveals a limit on success for the country’s most prominent 

country artists on Canadian radio. While this of course 

makes business sense when considering that Nashville, 

Tennessee has been the centre of the industry since the 

genre formed, this is a missed cultural opportunity to fur-

ther develop the industry north of the 49th parallel. 

6. CONCLUSION AND FUTURE WORK 

Music industry data offers a unique opportunity to evaluate 

the changing dynamics of a genre’s culture and gain a bet-

ter understanding of the composition of its cultural ecosys-

tem. What emerges in the results of this study is a feedback 

loop that has slowly eliminated opportunities (in the form 

of daily airplay) for female artists, and gradually erases 

them from the industry’s ecosystem. Women of colour are 

most impacted by this practice and excluded from partici-

pation. Program directors use this same airplay data to 

make programming decisions for their stations and then 

use the absence of songs by women on weekly reports and 

popularity charts to justify and maintain a gender-based 

programming practice. This is what data scientists refer to 

as “digital redlining” [32-33], a system by which data in-

directly or directly uses criteria like gender, sexuality, and 

ethnicity to make assessments and recommendations.  

Beyond the impact that these practices have on the live-

lihood of female artists, gender-based programming is also 

culturally damaging. Current practices, which focus heav-

ily on repetition of songs by white, male voices, creates 

increased familiarity with those male artists and results 

over time in a more homogenized sound [34]. In this con-

text, female voices – especially of artists who are BIMOC, 

have become increasingly unfamiliar to country radio au-

diences. This type of programming completely alters the 

public’s perception of who is contributing to country mu-

sic culture and contributes to a growing crisis of inequality. 

Radio airplay is only one part of the story regarding gen-

der inequality. The lack of radio airplay for songs by 

women deters labels and publishers from investing in fe-

male artists, and songwriters are discouraged from writing 

songs for them [35]. As such, next steps in this project will 

evaluate representation across label and publishing rosters 

to better understand how they operate within this system. 

In this regard, gender-identity and sexuality must be incor-

porated into future studies to investigate how these prac-

tices have been structured to establish and maintain the 

white, male, heteronormative discourse that pervades 

country music’s narrative and culture. 
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ABSTRACT

We propose and explore the novel task of dance beat track-
ing, which can be regarded as a fundamental topic in the
Dance Information Retrieval (DIR) research field. Dance
beat tracking aims at detecting musical beats from a dance
video by using its visual information without using its au-
dio information (i.e., dance music). The visual analysis
of dances is important to achieve general machine under-
standing of dances, not limited to dance music. As a sub-
area of Music Information Retrieval (MIR) research, DIR
also shares similar goals with MIR and needs to extract
various high-level semantics from dance videos. While
audio-based beat tracking has been thoroughly studied in
MIR, there has not been visual-based beat tracking for
dance videos.

We approach dance beat tracking as a time series clas-
sification problem and conduct several experiments us-
ing a Temporal Convolutional Neural Network (TCN) us-
ing the AIST Dance Video Database. We evaluate the
proposed solution considering different data splits based
on either “dancer” or “music”. Moreover, we propose a
periodicity-based loss that considerably improves the over-
all beat tracking performance according to several evalua-
tion metrics.

1. INTRODUCTION

One of core tasks of Dance Information Retrieval (DIR) 1

is to extract high-level semantics from dance videos, which
could be similar to what Music Information Retrieval
(MIR) tasks attempt to detect from music. For instance,
some common tasks among the two research fields are:
beat tracking, structure analysis, genre recognition, and au-
tomatic tagging. Although DIR shares similar objectives
with MIR, DIR tasks are typically solved by analyzing
video frames of dance motions (visual information). Of
course, those tasks could also be solved by analyzing au-
dio signals of dance music (audio information) when such

1 Dance Information Retrieval is almost the same as Dance Informa-
tion Processing [1] as Music Information Retrieval often means Mu-
sic Information Processing/Research, but in this paper we use the term
Dance Information Retrieval to focus on tasks analyzing dance informa-
tion, which could be either audio or video.

c© Fabrizio Pedersoli, Masataka Goto. Licensed under a
Creative Commons Attribution 4.0 International License (CC BY 4.0).
Attribution: Fabrizio Pedersoli, Masataka Goto, “Dance Beat Tracking
from Visual Information Alone”, in Proc. of the 21st Int. Society for
Music Information Retrieval Conf., Montréal, Canada, 2020.
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Figure 1. Our approach for dance beat tracking.

signals are given or by analyzing both visual and audio in-
formation (multimodal information). As research on dance
motions has not yet received much attention in the MIR
community [1], the goal of this paper is to initiate dance
beat tracking as a novel DIR task. Dance beat tracking
is named to differentiate it from a standard task of music
beat tracking and is defined as the task of detecting mu-
sical beats by using only visual analysis of video frames.
Figure 1 shows an overview of our approach for dance beat
tracking.

Since dance motions are usually related to the accom-
panying dance music, several dance characteristics can be
inferred by joint analysis of motion and music. In fact,
various researchers have already worked on multimodal
aspects of dance music and motions [2–5]. In the MIR
community, dance music such as traditional dances [6–9],
electronic dance music [10–14], and ballroom dance mu-
sic [15–17] has been a popular target of research. The lit-
erature on analysis of dance motions by using only video
frames, however, is rather limited [1,18,19]. To the best of
our knowledge, no work has focused on dance beat track-
ing using visual information of dance videos and evaluated
its performance.

As music beat tracking is one of the most fundamen-
tal MIR tasks, dance beat tracking is also one of the most
fundamental DIR tasks. Beat is the basic unit of time
and can be used as a basis for further processing. For
example, beat-synchronous analysis is effective and fre-
quently used in the MIR community: music audio sig-
nals and dance videos could be divided into temporal sec-
tions associated with beats, which are then used to ob-
tain beat-synchronous or beat-wise representations for var-
ious higher-level tasks [20–24]. Some direct applications
of dance beat tracking systems would include automatic
synchronization of dancing with music. Although dance
videos usually have video frames synchronized with mu-
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sic audio signals, there are irregular video files such as
those in which the timing of video frames is out-of-sync
with audio signals, and those in which a dancer is dancing
without music or at different tempi. Dance beat tracking
is useful for synchronizing and temporally-aligning (time-
stretching) such video frames, or even identifying such
out-of-sync videos.

Whether it is possible to automatically track beats of
a dance video using only video frames is an open ques-
tion [25]. To answer this question, we developed a dance
beat tracking system that extracts skeletal body keypoints
of a dancer from each video frame and uses Temporal Con-
volutional Neural Network (TCN) architectures to clas-
sify each frame as either a “beat” frame or a “non-beat”
frame. In our experiments with a shared large-scale dance
database, the AIST Dance Video Database [1], we found
that it is possible to achieve dance beat tracking with the
best F-measure performance of 61.20% and there is still
large room for improvement. We also found that TCN ar-
chitectures are more effective than architectures based on
bidirectional Long Short-Term Memory (LSTM) Recur-
rent Neural Networks (RNNs), and that the use of an ad-
ditional loss term based on periodicity, which we propose
in this paper, considerably improves beat tracking perfor-
mances.

2. RELATED WORK

2.1 Audio-based music beat tracking

Initial work on music beat tracking for audio signals
was based on spectral features, such as onset strength.
By relying on these features, previous studies proposed
multiple beat tracking agents [26, 27]. Further research
on beat tracking was based on a dynamic programming
framework [28–30]. Moreover, solutions based on the
Kalman filter for detecting the beat locations were stud-
ied as well [31, 32]. Another popular way of approaching
beat tracking was through the bar pointer model, originally
proposed by Whiteley et al. [33], and improved by oth-
ers [34, 35].

More recently, beat tracking research has largely
adopted deep learning models to predict the beat positions,
mainly by means of RNNs. The core idea of these deep
learning solutions is to feed spectrogram frames, or fea-
tures extracted from them, into an LSTM RNN. The net-
work outputs the beat activation function, which is post-
processed, usually by HMM decoding, to obtain the final
beat locations. Previous work which adopted this process-
ing setup is described in the papers of Durand et al. [36],
Krebs et al. [37], Böck and Schedl [34], Böck et al. [38],
and Cheng et al. [39].

RNN architectures have recently started to be replaced
by more computationally efficient deep learning models
such as Temporal Convolutional Networks (TCNs) [40,
41]. TCNs have also been used for beat tracking, as in
the papers of Davies and Böck [42] and Böck et al. [43].

2.2 Visual or multimodal dance analysis related to
beats

Guedes et al. [44] developed Max/MSP objects to con-
trol the tempo and rhythm of a music performance by us-
ing dance movements instead of a conducting baton. Al-
though those objects extracted musically relevant rhythmic
information from the video frames, they did not detect any
dancer and their purpose was different from dance beat
tracking. Ho et al. [45] developed a multimodal system
that evaluated a street dance performance by estimating
how well dance motions from a Kinect device correlated
with musical beats. The system detected motion velocity
drops as candidate motion beats, which did not necessarily
have regular intervals, and then evaluated the synchroniza-
tion between their candidates and musical beats.

Automatic dance motion generation for artificial char-
acters, such as robot dancers and computer-graphics an-
imation dancers, often needs beat-related audio-visual
dance analysis. Ohkita et al. [46] presented a multimodal
audio-visual beat tracking algorithm that enabled a robot to
dance in synchronization with music and a human dancer.
Audio-visual features were also used in the work of Shi-
ratori et al. [47]. In their work, the authors proposed a
method that synthesized a robot dance performance imi-
tating the performance of a human dancer listening to the
same music.

In addition, Davis et al. [18] presented a method that
extracts visual rhythm from motions in video and aligns
it with its musical counterpart. Visual rhythm was also
at the base of a Xie et al. [48] article. In their work, the
authors extracted several features from video frames, and
proposed the use of an attention network to align them to
the correspondent audio onsets through sequence labeling
layers.

Although the above references do not directly deal with
the task of dance beat tracking, they show its potential ap-
plications.

2.3 Orchestra conductor analysis

In the work of Huang et al. [49] body movements of the
conductor were analyzed with the goal of inferring musical
expressiveness. The authors proposed a multi-task learning
model based on a bidirectional RNN to jointly identify dy-
namic, articulation, and phrasing cues of music from con-
ducting movements.

A similar study on orchestral director movement was
described in Schmidt et al. [50]. Musical beats were de-
tected in correspondence of a director’s hand’s velocity
peaks, where the movements were recorded by using a
wrist e-watch. The paper of Schramm et al. [51] also
focused on a director’s hand gestures acquired by Kinect
with the purpose of detecting duple, triple, and quadruple
patterns by using a probabilistic Dynamic Time Warping
framework.

Although motion analysis of dancers and conductors
could have some technical similarities, conductor motions
tend to give more explicit cues for musical beats. On the
other hand, since dancer motions do not necessarily corre-
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late with musical beats, dance beat tracking is harder than
conductor analysis in general.

3. PROPOSED SYSTEM

Inspired by the success attained in audio-based music beat
tracking, we address dance beat tracking as a sequence
classification problem. According to this framework, a
classifier takes as input a sequence of observations x1:T =
{x1, . . . , xT } , and produces an output of the same length
y1:T = {y1, . . . , yT } where each observation is classified
into “beat” (y = 1) or “non-beat” (y = 0), by taking into
account past observations. In our application each obser-
vation consists of a video frame.

Two main technical challenges of dance beat tracking
are modeling long time sequences and extracting mean-
ingful descriptors from video frames. The former chal-
lenge has been successfully tackled in recent years initially
by using RNNs and then by using TCNs [41]. TCNs, as
explained in Section 3.1, are deep learning architectures
based on stacks of causal dilated convolutions [40] which
serve the same purpose as an RNNs while offering several
advantages over them. TCNs are more computationally
efficient since convolutions can be easily parallelized. In
addition, TCNs do not suffer from exploding/vanishing of
gradients, which is a major drawback when dealing with
long time sequences such as the one used in this appli-
cation. The latter challenge can be dealt with by using
standard computer vision convolutional networks to extract
meaningful features from the video frames.

We thus chose to use a TCN as a sequence classifier.
From each video frame (60 fps) we extract the (x, y) po-
sition of dancer body keypoints by using the OpenPose
framework [52]. Thus, we represent a video as a sequence
of keypoints (Section 4.2). Although extracting the body
keypoints requires preprocessing of the dance video, we
found this description to be at the same time powerful for
effectively modeling dance movements. We do not directly
use video frame pixels since it is difficult to prepare a train-
ing dataset with sufficient variations of dancer clothes, col-
ors, and backgrounds, and using video frame pixels limits
generalization of the model.

3.1 Temporal convolutional networks

TCNs process the input xn by taking into account only the
past information, and produces an output yn of the same
length as the input. To achieve this goal, 1D causal 2 con-
volutional layers with the “same” padding 3 are used. In
order to model long time sequences, the network must have
a large receptive field. We therefore use a stack of dilated
convolutional layers so that we can increase the receptive
field while maintaining the same (small) kernel size of each
layer. Each layer of the stack has the same number of fea-
tures. The dilation factor increases in an exponential way

2 The result of the convolution at time t = T is obtained using inputs
at and before t ≤ T .

3 For a kernel h1, . . . , hM the “same” convolution padding length is
M − 1.

at each convolution stack. More precisely, at a particular
network level i, the dilation factor d is 2i.

Stacking more dilated convolutional layers to model
longer time sequences results in a deeper network, which
is harder to train. It has been shown that for very deep
networks, training on residual connections ensures a better
gradient flow which allows more effective training [53].

In our work we use a TCN in the configuration proposed
by Bai et al. [41]. The authors proposed a deep learning
architecture which is composed of several TCN residual
blocks. Each TCN residual block is composed of two di-
lated causal convolutional layers (of same dilation factor)
and Rectified Linear Units activation (ReLU [54]). In order
to accelerate the training of the model, a weight normal-
ization layer [55] is placed after each dilated causal con-
volutional layer. In addition, a spatial dropout layer [56]
is utilized after activations so that overfitting is mitigated.
Finally, an optional 1×1 convolution is used on the iden-
tity path to match the feature map size of the input to the
output when these two differ.

3.2 Network training

We train our model by using the Adam optimizer [57] with
default PyTorch parameters, a learning rate of 0.5× 10−3,
and batch size of 32. Training is stopped when the loss
on a validation dataset does not improve for subsequent 30
epochs. The best model is then selected according to the
best performance achieved on the validation dataset. For
data augmentation, Gaussian noiseN (0, 1) is added to the
keypoint delta values before feeding them to the network.

3.2.1 Loss function

The basic loss criterion used to train the network is the
cross-entropy, Lce. Giving an input sequence of M obser-
vations, for each observation m = 0, 1, . . . ,M − 1, the
model outputs a softmax distribution ŷm over two classes:
“beat” and “non-beat”. Since probabilities of “beat” and
“non-beat” in the ground truth are largely unbalanced,
we weight the cross-entropy loss with a weight vector w
of empirically chosen values: 1 and 0.1 respectively for
“beat” and “non-beat”. Thus, given a particular sample
pair n of true sequence y(n) and predicted sequence ŷ(n),
the weighted cross-entropy loss is defined as follows:

L(n)
ce = −w

M−1∑
m=0

y(n)
m log

(
ŷ(n)
m

)
. (1)

We also propose an additional loss term that takes ac-
count of periodicity, Lp. It is reasonable to assume that a
dance is characterized by repeating patterns which are cor-
related to the music beats. By using the periodicity loss we
inform the model that predictions made in correspondence
of multiples of the music tempo T should be considered
similar. In a training dataset the music tempo is known a
priori and constant throughout the audio clips. Note that
this additional loss term is used only during training. The
periodicity loss is simply the summation of the absolute
difference of predictions made at multiples of the music
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BPM Street Dance Genre
BR PO LO WA MH LH HO KR JS JB

T0 21 23 23 23 24 25 23 23 21 22
T1 23 23 23 23 24 23 23 23 23 24
T2 23 24 23 24 24 23 24 23 23 22
T3 23 24 23 24 23 24 24 25 21 23
T4 24 23 25 23 23 23 23 23 23 23
T5 24 24 24 24 23 23 22 24 23 24

Table 1. Video counts of the AIST Dance Video Database
subset used in our work.

tempo kT :

L(n)
p =

∥∥∥∥∥∥∥∥∥∥
Nb−3∑
k=0

k′=k+1
k′′=k′+1

ŷ
(n)
kT :k′T − ŷ

(n)
k′T :k′′T

∥∥∥∥∥∥∥∥∥∥
1

, (2)

where Nb is the number of beats contained in the ground
truth sequence. The output sequence is zero-padded to a
multiple of ground truth tempo.

We get the total loss by adding together the weighted
cross-entropy and a scaled version of the periodicity loss.
The scale parameter α is empirically chosen by grid-
search. Finally, we take the average among the training
batch of N samples:

L =
1

N

N−1∑
n=0

L(n)
ce + αL(n)

p . (3)

4. DATASET AND DATA PROCESSING

The AIST Dance Video Database [1] is a large-scale col-
lection of dance videos. This database includes 10 street
dance genres: “Break” (BR), “Pop” (PO), “Lock” (LO),
“Waack” (WA), “Middle Hip-Hop” (MH), “LA-style Hip-
Hop”(LH), “House” (HO), “Krump” (KR), “Street Jazz”
(JS), and “Ballet Jazz” (JB). For each dance genre, 6 mu-
sical pieces of different tempi are used. In particular, the
music tempi are: T0 = 80, T1 = 90, T2 = 100, T3 = 110,
T4 = 120, and T5 = 130 beats per minute (bpm) for all
the genres, except the “House” genre whose tempi are :
T0 = 110, T1 = 115, T2 = 120, T3 = 125, T4 = 130, and
T5 = 135 bpm.

In this work we consider dance videos where a sin-
gle dancer is performing (“Basic Dance” and “Advanced
Dance” in the database), and we use the frontal camera as
the source of information 4 . The total number of dance
videos considered in our experimental evaluation is 1396.
The resolution of the videos is 1920×1080 pixels. Table 1
shows a detailed breakdown of our dataset.

4.1 Data splits

We split the data according to “music” and “dancer”.
For each of the split configurations, we randomly split

4 The frontal view of the dancer is the most reliable for detecting the
body keypoints because body part occlusions are minimized by this visual
perspective

the data samples in training, validation, and test datasets
with percentages of 70 %, 20 %, and 10 %, respectively.
In order to make balanced splits, we adopt the follow-
ing strategy. In the case of the “music” data split, for
each of the 60 music clips, we select the correspondent
videos, and randomly split them according to the afore-
mentioned train/validation/test percentages. We then con-
catenate the individual micro splits to obtain the final “mu-
sic” train/validation/test splits. The same process is exe-
cuted according to the individual dancer for compiling the
“dancer” data splits.

4.2 Data preprocessing

All the dance videos are preprocessed by extracting the
body keypoints by using the OpenPose framework [52].
We use the BODY_25 pose model which represents the
human body by 25 skeletal keypoints. However, in our
application a subset of the BODY_25 keypoints was prob-
lematic to detect with high reliability, and therefore it was
discarded from the body pose. These problematic key-
points correspond to “eyes”, “ears”, “nose”, “heels”, and
“big/small toe”. After removing these keypoints we end
up with a total of 13 keypoints: “neck”, “shoulders”, “el-
bows”, “wrists”, “mid hip”, “hips”, “knees”, and “ankles”.
However, missed detections of body keypoints can still
happen. The missed detections are recovered by spline in-
terpolation.

The body keypoints are defined by their pixel position
(x, y) within a video frame on the basis of the OpenPose
output. However, this representation has the drawback of
not being invariant to the dancer’s position and of being
dependent on the dancer’s body size. To overcome these
issues, we convert the absolute (xn, yn)(i) position of the
i-th keypoint at time n into its displacement (delta values)
in time:

(∆xn,∆yn)(i) = (xn − xn−1, yn − yn−1)(i). (4)

4.3 Beat activation processing

The output of network is the beat activation function; i.e.,
for each video frame, the model predicts its probability of
being a “beat” frame. To obtain the final beat positions, a
postprocessing of the beat activation function is required.
In our work we use the algorithm proposed by Krebs et
al. [35], which is based on HMM decoding.

5. EXPERIMENTAL SETUP

We report performance results by using several beat track-
ing metrics typical of music and by following the practice
described in Davies et al. [58]. For our experimental evalu-
ation, we make use of the mir_eval [59] software pack-
age 5 .

For the evaluation we consider the first 420 frames (7 s)
of each video. In addition, the first 1 s of the predicted beat
sequence is discarded when computing the performance re-
sults.

5 https://github.com/craffel/mir_eval
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5.1 Model selection

In order to select the best-performing configuration of
the model, we conduct hyperparameter grid-search on the
number of stacks Nstack ∈ {3, . . . , 12} and the number of
convolutional features Nfeat ∈ {32, 64, 128, 256}. Since
no pooling is involved in the TCN architecture, the num-
ber of convolutional features is kept constant among the
entire stack. The extreme values (minimum and maxi-
mum) of these hyperparameters are chosen in a way that
the model would respectively under-fit and over-fit the val-
idation dataset.

The training is stopped when the loss on the validation
dataset does not decrease for 30 successive epochs. Ac-
cording to the considered performance metric, the best-
performing model on the validation dataset is selected.
This model is then evaluated on the test dataset.

The hyperparameter grid-search reported that Nstack =
7 and Nfeat = 128 yields, in the majority of the cases,
the best TCN. The evaluation is done for both “dancer”
and “music” data splits. We denote this configuration as
TCN 7

128 and we use it as our baseline.

5.2 Periodicity loss ablation study

With the purpose of assessing the usefulness of the pro-
posed periodicity loss term (Lp), we conduct an ablation
study using TCN 7

128 as the baseline.
Additional hyperparameter grid-search is done for find-

ing the best value of α, see equation (3). This parameter
weights the contribution of Lp to the overall loss and must
be carefully chosen by empirical evaluation. The tested
values are: α ∈ {0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1}. The
grid-search is done for both “dancer” and “music” data
splits by training the TCN 7

128 according to the procedure
previously described.

6. EXPERIMENTAL RESULTS

In the first part of this section we report the baseline per-
formance of TCN 7

128. We also compare the baseline per-
formance between TCN and LSTM architectures and show
that the TCN architecture is the best in our application. Fi-
nally, we elaborate on the results of the ablation study of
the periodicity loss term by showing its effectiveness.

We report the performance in terms of different metrics.
More specifically we consider: F-measure (F), Cemgil’s
score (Cem), and continuity base scores [58]. The con-
tinuity scores are: Correct Metrical Level continuity re-
quired/not required (CMLc/t), and Allowed Metrical Level
continuity required/not required (AMLc/t).

6.1 Baseline loss

Table 2 reports the performance results of TCN 7
128 model

trained with Lce. Results are subdivided according to the
“dancer” and “music” data splits and are reported as per-
centages correct.

Examining the overall results, we acknowledge at first
look the difficulty of this new task. A similar conclusion

Split CMLc CMLt AMLc AMLt Cem F

Dancer 44.28 46.93 47.27 49.04 52.92 55.02
Music 40.14 39.71 44.84 47.53 47.43 53.02

Table 2. TCN 7
128 results trained with the baseline loss.

Split CMLc CMLt AMLc AMLt Cem F

Dancer 38.66 41.49 56.23 53.03 32.17 46.56
Music 27.62 32.45 43.13 46.32 28.35 39.18

Table 3. bLSTM 4
128 results trained with the baseline loss.

about music beat tracking is drawn in when percussion is
not present in the analyzed audio signal. We find that in a
dance, the body movements cannot stress the tempo as effi-
ciently as percussive sounds do. Therefore, a lower perfor-
mance is reasonably expected in dance beat tracking than
in music beat tracking (Section 6.3).

In addition, we notice that the performance on the
dancer data split is ≈ 4 % higher (for all the metrics) than
the performance on the music data split. The dancing style
that characterizes each dancer seems to be easier to capture
by the network, while the difference in choreographies for
the same music piece is less effectively captured by the
model.

In more detail, for both of the data splits, we see that
the continuity scores obtain lower performance. Specifi-
cally, CML is the least performing metric and is followed
by AML. The performance gap between CML and AML
(≈ 3 % for dancer and ≈ 6 % for music) suggests that the
model tends to detect beats at half or double the correct
tempo. An improvement of CML/AML scores is achieved
when continuity is not required (CMLt and AMLt). The
F-measure attains the highest performance for both of the
data splits, while the Cemgil’s score shows a slight de-
crease, which is more evident for the music data split. This
performance decrease indicates that the model tends to de-
tect beats with a slight offset with respect to the ground
truth position.

The main conclusions of this experimental section are
as follows. (1) Detecting beats is more difficult for the
“music” split. (2) Detected beats are prone to errors such
as beat positions with less continuity, with a half or double
tempo, and with a small deviation from the correct beats.

6.1.1 Comparison with LSTM

We provide a baseline comparison with a bidirectional
LSTM RNN, whose performance results are reported in
Table 3. Also in this case, we conduct similar hy-
perparameter grid-search as done for the TCN. In par-
ticular, we tested Nstack ∈ {1, 2, . . . , 6} and Nunits ∈
{32, 64, 128, 256}, and found that in average for the dif-
ferent performance metrics, the best performing configu-
ration is Nstack = 4 and Nunits = 128. We refer to this
model specification as bLSTM 4

128.
From Table 3 we notice that for both “dancer” and “mu-

sic” data splits the bLSTM 4
128 performs worse than the
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Loss CMLc CMLt AMLc AMLt Cem F

Lce 44.28 46.93 47.27 49.04 52.92 55.02
Lce+αLp 53.05 54.30 55.23 57.64 59.02 61.20

Table 4. Performance results for the “dancer” data split
using the proposed loss with α = 0.05.

Loss CMLc CMLt AMLc AMLt Cem F

Lce 40.14 39.71 44.84 47.53 47.43 53.02
Lce+αLp 46.50 48.33 48.27 50.87 54.27 58.25

Table 5. Performance results for the “music” data split
using the proposed loss with α = 0.1.

TCN 7
128 in terms of almost all the considered metrics. The

performance gap is quite significant for Cemgil’s score and
the F-measure. Notably, the AML scores are comparable,
or even better (“dancer” split), than the TCN. In this par-
ticular instance, the recurrent nature of the tested model is
helpful in detecting beat locations that are regularly spaced
according to musical metric (half/double).

6.2 Proposed loss

From Tables 4 and 5 we assess the benefit introduced by
the proposed periodicity loss term. Indeed, the proposed
loss considerably improves each of the performance met-
rics and does so for both of the data splits. The improve-
ment averages≈ 7.5 % points for the dancer split and about
≈ 5.5 % points for the music split. We found by means of
grid-search that the best value for the hyperparameter α is:
0.05 for the “dancer” split and 0.1 for the “music” split.

The performance gap between “dancer” and “music”
data splits is also present in this case. Moreover, a simi-
lar trend of the performance scores also occurs in the com-
bined loss experiments. In fact, sorted in ascending or-
der of the achieved performances, the metrics are: CML,
AML, Cemgil’s score, and F-measure.

In the case of the “dancer” data split (see Table 4), the
continuity metrics are the most improved metrics. With
an improvement of ≈ 8 % points, the periodicity loss term
is beneficial for detecting beats at the correct time spacing.
Although less improved, Cemgil’s score and the F-measure
still indicate an important boost in performance by ≈ 6 %
points. This means that the proposed loss is helpful for
obtaining more accurate detection of beats.

In the case of the “music” data split (see Table 5), the
performance improvement, although slightly less evident
than in the case of the dancer split, is still consistent. For
the music data split, the proposed loss improves all the per-
formance metrics by an average of≈ 5.5 % points. The be-
havior similar to the results of the dancer data split is also
observed in this case. However, for the music data split we
see that improvement for AML metrics is relatively low:
≈ 3 % points. In this case CML and AML results are more
aligned, with the latter being ≈ 2 % points better.

To summarize, the main conclusions of this experimen-

CMLc CMLt AMLc AMLt Cem F

81.34 81.34 94.27 94.89 73.78 88.98

Table 6. Average performance results on the audio clips.

tal section are as follows. (1) The proposed loss based on
periodicity improves performance considerably. (2) The
proposed loss helps in detecting beat locations which are
more aligned with the correct music metric (or half/double
of it). (3) The performance gap between the two data splits
is still present, although slightly mitigated.

6.3 Audio-based music beat tracking

In Table 6, we report the beat tracking performance
achieved on the audio clips of the AIST Dance Video
Database [1] for comparison. We use the model of Böck et
al. [34] in combination with the same HMM postprocess-
ing module used for dance beat tracking.

Since the results are much better than those in Tables 4
and 5, music beat tracking is an easier task than dance beat
tracking in our experiments. This is expected since the
audio clips chosen for the dancing purpose have usually
distinctive beats.

7. CONCLUSION

Our main contributions are as follow. (1) We propose the
task of dance beat tracking which is characterized by the
novelty of using visual information, in the form of mo-
tion patterns, for detecting musical beats. (2) We provide a
baseline evaluation on the AIST Dance Video Database [1]
considering data splits based on “music” and “dancer”. By
comparing the results based on those data splits, we gain
deeper insights about the dance beat tracking task. In ad-
dition, we also provide a performance comparison of deep
learning architectures commonly used for time series clas-
sification. In this regard, we show that TCNs outperform
bidirectional LSTMs for dance beat tracking. (3) We pro-
pose the periodicity loss term, which is scaled and added to
the baseline cross-entropy loss. This novel loss term takes
into account motion repetitions in relationship to beats and
considerably improves the beat tracking performance.

Detecting musical beats from video frames revealed to
be a challenging task, and it encourages further research
in this direction in order to improve the performance re-
sults. In fact, the relationship between dancer body move-
ments and musical beats is difficult to capture due to high
variability of motion patterns among different dancers and
different choreographies. This challenge is similarly faced
in MIR when trying to detect beats from non-percussive
music. In future work we plan to investigate deep learning
architectures that can directly process video frames with-
out needing to extract the body keypoints ahead of time.
Future work will also include investigation of whether it
is possible for human beings to visually track beats of a
dance video without listening to the accompanying sounds,
and will compare machine and human performances.
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ABSTRACT

The bambuco, one of the national rhythms of Colombia,
is characterized by the presence of sesquialteras or the su-
perposition of rhythmic elements from two meters. In this
work, we analyze sesquialteras in bambucos from two per-
spectives. First, we analyze the perception of beat and me-
ter by asking 10 Colombian musicians to perform beat an-
notations in a dataset of bambucos. Results show great
diversity in the annotations: a total of five different me-
ters or meter combinations were found in the annotations,
with each bambuco in the study being annotated in at least
two different meters. Second, we perform a beat tracking
analysis in a dataset of bambucos with two state-of-the-art
algorithms. Given that the algorithms used in the analy-
sis were designed to deal with the rhythmic regularity of a
single meter, it is not surprising that tracking performance
is not very high ('42% mean F-measure). However, a
deeper analysis of the onset detection functions used for
beat tracking, indicate that there is enough information on
the signal level to characterize the bi-metric behavior of
bambucos. With this in mind, we highlight possibilities
for computational analysis of rhythm in bambucos.

1. INTRODUCTION

The focus of this work is the bambuco, one of the national
rhythms of Colombia characterized by the superposition
of musical elements in two meters, 3/4 and 6/8. This phe-
nomenon is called sesquialtera, and while it is not unique
to the bambuco [1, 2], this work focuses on perceptual and
computational aspects particular to the Colombian bam-
buco. Our goal is to better understand how meter in bam-
buco is perceived by cultural insiders. To do so, we con-
ducted a study where Colombian musicians were asked to

c© Estefanía Cano, Fernando Mora-Ángel, Gustavo A.
López Gil, José R. Zapata, Antonio Escamilla, Juan F. Alzate, Moisés
Betancur. Licensed under a Creative Commons Attribution 4.0 Interna-
tional License (CC BY 4.0). Attribution: Estefanía Cano, Fernando
Mora-Ángel, Gustavo A. López Gil, José R. Zapata, Antonio Escamilla,
Juan F. Alzate, Moisés Betancur, “Sesquialtera in the Colombian bam-
buco: Perception and estimation of beat and meter”, in Proc. of the 21st
Int. Society for Music Information Retrieval Conf., Montréal, Canada,
2020.

tap the beat of a selection of bambucos (Section 2.1). We
then investigate whether computational tools can help eth-
nomusicological investigations on tendencies of bambucos
to follow a given meter. We extracted beat information
from a bambuco dataset using state-of-the-art algorithms
and evaluate tracking performance (Section 2.5).

The contributions of this work are summarized as fol-
lows: (1) To the authors’ knowledge, this paper presents
the first study on meter perception in bambucos. (2) We
present an objective evaluation of computational tools for
rhythm analysis on bambucos, and highlight analysis pos-
sibilities for future research. (3) All the data including au-
dios, transcriptions, annotations, and code have been made
publicly available to enable future research on the topic.

1.1 The bambuco

There are references about the presence of bambuco in
Colombia dating back to the mid 19th century; however,
despite numerous discussions about its origin and musi-
cological characteristics, there is no clarity today about
the real origin of this music: Is it indigenous, African or
Hispanic? Is it urban or peasant mestizo? Despite this
uncertainty, the reality is that little by little bambuco be-
came a regional and musical symbol of identity. Like all
the great Latin American genres that fulfilled this purpose
towards the end of the 19th century and the first half of
the 20th (e.g. Habanera, Tango, Chacarera), to become
a worthy representative of this imagined regional identity
and of those who coined it, the bambuco had to undergo a

Figure 1: Bambuco example showing the downbeat, cau-
dal syncopation and a guitar accompaniment pattern.
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transformation process referred to as “whitening” [3]. This
whitening can be understood as a progressive adherence
to the bourgeois ideal of chamber music. This particular
process has been studied by the Colombian ethnomusicol-
ogist Santamaria in [4]: “When relocating to the city since
the mid-19th century, the bambuco progressively stopped
being popular dance music and became music to be per-
formed and listened to in an atmosphere of literary or con-
cert gatherings”.

Bambucos show musical elements typical of ancient
Spanish-Iberian and Colombian peasant dances, typified
as sesquialteras, whose main characteristic is a bi-metric
behavior (3/4 - 6/8) within the melodic line or between
the melodic line and the bass line. This behavior can be
observed in the example in Figure 1 where the guitar ac-
companiment has elements from both 6/8 and 3/4. An-
other characteristic element of bambucos is the presence
of caudal syncopation in its phrases (sixth eighth note tied
to the first eighth note of the following measure -see Fig. 1)
which can result in the perception of a delay or a harmonic
anticipation [5]. Another element of bambucos which adds
to its rhythmic complexity is the characteristic accentua-
tion of the third pulse in the accompaniment patterns in
3/4, which leads to the perception of a downbeat that is not
the first pulse of the bar.

Of the instruments that usually participate in the perfor-
mance of this type of bambucos 1 (such as guitars, tiples,
and bandolas 2 ), the main role of the rhythmic accompani-
ment is usually delegated to the tiple. The tiple is a plucked
string instrument slightly smaller than a guitar, with 12
strings grouped in four tripled courses. One of the instru-
ment’s most characteristic idiomatic playing techniques is
the aplatillado which is achieved by bringing the nails
closer to the strings to alter their timbre. With an alternat-
ing up and down strumming and the aplatillado (see Fig-
ure 2), textural elements are generated that can sometimes
interfere with rhythm perception. This is similar to what
happens in the charango (traditional string instrument) in
certain Bolivian music [6].

Ramón y Rivera [7], proposed the term "free rhythm"
in the context of Latin American music to refer to a certain
elasticity in the unit of time, in breathing and in the exe-
cution of rhythmic groups, as opposed to a rhythmic refer-
ence subject to a measure or bar. This rhythmic freedom is
observed in the set of recordings that are part of this study
and that account not only for particularities of the genre,
but also for a historical moment of the recordings not rigor-
ously subject to a metronomic guide. Additionally, tempo
and micro-timing in bambuco appear to work in general in
a flexible way, with even subtle differences between tim-
ing of the melody and that of the various elements of the
accompaniment. These freedoms could be associated with
the rubato of European music or with the floating rhythm
of jazz; however, it is a different phenomenon that con-
tributes to the rhythmic complexity of bambuco and its per-

1 More information available: https://acmus-mir.github.
io/publication/ismir2020/

2 Instrument descriptions: https://acmus-mir.github.io/
andes-music/

Figure 2: Tiple accompaniment patterns

ception [3].
The different levels of complexity described in this sec-

tion become critical elements when developing computa-
tional tools for musicological analysis of these music tra-
ditions.

1.2 Beat and meter perception

The perception of meter and beat in music is directly as-
sociated with the perception of regularity. It is precisely
this regularity that allows the listener to create expectations
about the musical events in a given time span [8]. While
beat perception is mostly linked to a perceived periodicity,
meter is additionally linked to an accentuation pattern that
differentiates, for example, beats from downbeats. Based
on these ideas, Western music theory defines a hierarchi-
cal relationship between beats, measures (bars), and me-
ter (see Figure 3). For certain musical traditions where a
unique meter cannot always be clearly defined (such as the
bambuco but also Bolivian Easter songs [6], the Southern
Eve dance drumming of the Guinea Coast [2], among oth-
ers), Western music theory (and music notation) can of-
ten fall short in providing an accurate representation of
these traditions. In the particular case of the Colombian
bambuco, its correct music notation has been the source of
many academic discussions [3]. Besides the superposition
of 3/4 and 6/8 meters, bambuco’s characteristic accentua-
tion pattern (due to caudal syncopation and the accentua-
tion of the third beat in 3/4 by the accompaniment - see
Section 1.1) adds another layer of complexity as the tradi-
tional definition of downbeats (Figure 3) do not hold in the
case of bambuco.

Of particular interest in this context is the work by Sto-
bart et al. [6] on rhythm perception of Bolivian Easter
songs. The study outlines how cultural outsiders perceived

Figure 3: Hierarchical relationship between meter, mea-
sures (bars) and beats as defined in Western music theory.
In both 3/4 and 6/8, the beats are indicated with vertical
lines, and the downbeat with a blue arrow.
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these songs as anacrustic 6/8 rhythms, while footfalls of
locals dancing to the rhythm of the music indicated a 2/4
rhythmic perception. The authors highlight that accentua-
tion patterns of the charango (traditional string instrument)
accompaniment as well as stress patterns in the local lan-
guage Quechua in which the songs are sung, are possible
causes of the differences in perception.

1.3 Music Information Retrieval (MIR) approaches
for rhythm analysis

The computational analysis of musical beat has been
widely addressed in the literature, predominately applied
to Western popular music [9] but also applied to non-
Western music [10, 11]. While beat tracking accuracy
for Western popular music can already be very high, beat
tracking of non-Western music presents many more chal-
lenges, and performance highly depends on the rhythmic
complexity of each music tradition. In the particular case
of Latin American music, work on computational analysis
of rhythm has either focused on understanding character-
istic patterns in micro-timing that implant local rhythms
their unique rhythmic feel (e.g. Brazilian Samba [12], and
Uruguayan Candombe [13]), on using rhythmic pattern
templates for beat tracking (e.g. Afro-Cuban rhythms [14],
and Uruguayan Candombe [15]) or on genre classifica-
tion [16].

To the authors’ knowledge, an in-depth computational
analysis of rhythm in the Colombian bambuco has never
been performed. This motivated the preliminary beat
tracking evaluation where the goal was to understand how
state-of-the-art tools for beat tracking perform when me-
ters superpose in music. However, we approach this evalu-
ation not with the expectation that the algorithms will suc-
ceed in tracking rhythmic patterns they were not originally
designed to track; we approach this evaluation with the
goal of understanding the potential of these techniques to
be expanded into meaningful musicological analysis tools
for bambucos and music from the Andes in general.

2. BAMBUCO ANALYSIS

2.1 Dataset

The data used in this study is part of the ACMUS-MIR
dataset (V1.1), 3 a collection of annotated music from the
Andes region in Colombia [17]. To evaluate beat track-
ing performance, all the bambucos in the Rhythm Set of
the ACMUS-MIR dataset were used (N=73). From the
73 bambucos, a smaller selection of 10 bambucos were
used in the perceptual study (see Table 1 for details). 5

The 10 bambucos in the perceptual study were chosen as
they clearly exemplify the bi-metric behaviour of the bam-
buco genre, and include a diversity of instrumental formats
(duets, trios, wind orchestra). Additionally, the majority of
the tracks were composed by Luis Uribe Bueno, a repre-
sentative composer and performer of bambuco in Colom-
bia.

3 ACMUS-MIR: https://zenodo.org/record/3965447

2.2 Participants

A total of 10 Colombian participants took part in the per-
ceptual study (8 male, 2 female, ages 25-50), all of whom
had been exposed to bambuco music throughout their lives
(cultural insiders). All the participants had musical train-
ing, and were either university music students or profes-
sional musicians: five guitarists, two bandola players, two
pianist, one flutist, one singer. The majority of the par-
ticipants had previous experience performing bambucos
within their musical practices.

2.3 Survey

As part of the perceptual study, each participant also an-
swered a short survey consisting of three questions: (1)
Which musical elements guided you when tapping the
beat? (2) Was there any element that made the annotation
process difficult? and (3) Do you have any observations
about the tempo in these bambucos? 1

2.4 Annotations

2.4.1 Beat

For the perceptual study, the 10 participants were asked to
tap the beat to the selection of 10 bambucos using the com-
puter keyboard in Sonic Visualiser. 4 Participants were
given freedom to tap the beats that felt more natural to
them. No indications about meter were given to the partic-
ipants to avoid biasing them. Two sets of annotations were
recorded: (1) Beat annotations tapped while listening to
the audio (without any visual information) without allow-
ing corrections by the participants (Audio Only). (2) Par-
ticipants were allowed to modify their initial beat annota-
tions in Sonic Visualiser using both audio information and
a visual representation of the audio waveform. Participants
were allowed to make as many corrections as necessary for
them to be satisfied with their annotations (Audiovisual +
corrections). If participants were satisfied with the Audio
Only annotations, the correction step was not performed. 5

For the computational beat tracking analysis, the anno-
tations from the Rhythms Set of the ACMUS-MIR (V1.1)
dataset 3 were used. With the awareness that in many cases
a unique meter in bambucos cannot be defined, beat anno-
tations in the dataset were performed independently for the
two predominant meters, 3/4 and 6/8. For the 73 bambu-
cos, these two sets of annotations were used, each assum-
ing a unique underlying meter [17].

2.4.2 Melody, bass and chord annotations

The melody line and the bass of each bambuco in the per-
ceptual study were transcribed by four professional mu-
sicians in Colombia. The transcriptions in MIDI format
were manually aligned to the audio signal resulting in time-
aligned transcriptions. The chord progression of each bam-
buco was also annotated (see Fig. 4 for an example). 5

4 https://www.sonicvisualiser.org/
5 Audio and annotations: https://zenodo.org/record/

3829091#.Xxd3IZ7TuUk
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Title Composer Tempo 3/4
[bpm]

Tempo 6/8
[bpm]

Duration
[sec]

BLIND RE-
VIEW IDs

Mimí Unknown 181 121 19.4 rh_0001
Campanitas de mi pueblo Luis Uribe Bueno 154 102 18.8 rh_0002
El espinaluno Carlos A. Rosso Manrique 213 142 16.4 rh_0003
El marco de tu ventana Luis Uribe Bueno 130 89 13.9 rh_0038
Baile de ranas Luis Uribe Bueno 153 102 16.5 rh_0039
Bambuco instrumental Luis Uribe Bueno 192 128 15.1 rh_0067
Bambuco instrumental Luis Uribe Bueno 195 128 20.1 rh_0079
Bambuco instrumental Luis Uribe Bueno 199 132 17.0 rh_0080
Bambuco instrumental Luis Uribe Bueno 169 113 25.5 rh_0100
Bochicaniando Luis Uribe Bueno 184 123 25.6 if_0172

Table 1: Selection of bambucos from the ACMUS-MIR dataset used in the perceptual study. Each segment corresponds
to a complete musical idea or phrase taken from the original recording. Due to the superposition of 3/4 and 6/8 meters in
these bambucos, tempo annotations for both meters are presented.

Figure 4: Example transcription of the first two measures
of track rh_0067. Conventional music notation and their
MIDI representation is displayed.

2.5 Automatic beat tracking

For beat tracking evaluation, two state-of-the-art algo-
rithms were used to predict the beat positions. The first
set of beat tracking estimations was obtained using Mad-
mom. 6 In the context of the Madmom library, we specifi-
cally used a multi-model approach that uses recurrent neu-
ral networks to track beats [18]. The second algorithm
used for beat estimation was the Multi-Feature Beat tracker
(MultiBT) [19] implemented in Essentia. 7 This algorithm
selects between beat estimations from a single beat track-
ing model with diverse input features. Given the bi-metric
characteristics of bambucos, independent ground-truth an-
notations assuming either a 3/4 or 6/8 meter were used (see
Section 2.4.1).

For evaluation we use a subset of metrics from the stan-
dard evaluation methods described in [20]. Among all the
proposed metrics, we chose the F-measure (F1), along with
the continuity measures originally defined in [21,22]. This
allows us to analyze both the ambiguity associated with the
annotated metrical level and the continuity in the beat esti-
mates. The F-measure (F1) is a generic score often used in
information retrieval. For beat tracking, it is common prac-
tice to use a ±70 ms tolerance window around annotations
to consider a beat prediction as correct. The F-measure
takes into consideration the number of correct beats, the

6 https://madmom.readthedocs.io/en/latest/
7 https://essentia.upf.edu/

number of false positives (extra detections), and the num-
ber of false negatives (missed detections). Under this met-
ric, completely unrelated beat sequences typically score
around 25% by virtue of beats arbitrarily falling within the
range of tolerance windows.

Continuity-based evaluation considers regions of con-
tinuously correct beat estimates relative to the length of
the audio signal. This is the case of the Correct Metri-
cal Level Continuity (CMLc) measure, which computes
the ratio of the longest continuously correct segment to the
length of the input. By definition, continuity is defined
using a tolerance window of ±17.5% around each annota-
tion, considering an estimation as correct if it falls within
this window. To include the effect of beats in other seg-
ments, a less strict measure considers the total number of
correct beats at the correct metrical level without the con-
tinuity criteria (CMLt) [20]. Lastly, to account for ambi-
guity in the metrical level, two additional metrics consider
beats tapped at double or half the annotated metrical level,
with the same continuity criteria as before. This conditions
are considered allowed metrical levels resulting in the Al-
lowed Metrical Level Continuity (AMLc) metric and its
less strict alternative (AMLt) [20]. 8

3. RESULTS AND DISCUSSION

3.1 Meter perception in bambucos

The beat annotations obtained from the 10 participants
(Section 2.4.1) were analyzed by three musicologists in
Colombia to determine the underlying meter(s) perceived
by each participant in each track. 5 Even though partici-
pants were given freedom to tap beats that felt natural to
them, each annotation can be directly mapped back to a
given meter. This can be understood by looking at Figure
3: If a participant taps three beats per bar, these annotations
are mapped back to a 3/4 meter. Conversely, if a participant
taps two beats per bar, the underlying meter is assumed to
be 6/8. In total, five different meters or meter combinations
were observed: 3/4 meter, 6/8 meter, a combination of 3/4
and 6/8, "one count" annotations where participants anno-
tated the first beat of the measure (blue arrows in Fig. 3

8 Code available: https://github.com/ACMUS-MIR/
publications-resources/tree/master/ISMIR2020
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(b) Perceived meter aggregated per participant

Figure 5: (a) Perceived meter aggregated per track over the 10 participants. (b) Perceived meter aggregated per participant
over the 10 tracks. Five distinct meters or meter combinations were observed.

which correspond to the downbeats in Western traditions
but are not the accentuated beat in bambucos), and a com-
bination between 6/8 and "one count" annotations. These
five alternatives are denoted "3/4", "6/8", "3/4-6/8", "1",
and "1-6/8", respectively.

Figure 5a shows a summary of the annotations aggre-
gated per track from the revised annotations (Audiovisual
+ corrections). It can be seen that for each of the 10 bam-
bucos, at least two different meters or meter combinations
were perceived. The 6/8 meter proved to be predominant in
the annotations. It should be noted, that as of today, bam-
buco is written as a convention in 6/8, and hence, there
might be a tendency in trained musicians to default to 6/8.

Similarly, Figure 5b shows a summary of the revised an-
notations aggregated per participant. It can be seen that five
of the 10 participants annotated all the tracks in 6/8 meter.
Two of the participants perceived "6/8" and the "3/4-6/8"
combination, and two participants perceived a "3/4" me-
ter. Of particular interest in participant eight (p8), who
predominantly annotated the bambucos in "1". This is in-
teresting in the sense that this is the only type of annotation
that removes the ambiguity in meter perception as the first
beat coincides in "6/8" and "3/4" (see Fig. 3). The practice
of counting music in "1" is often related to music in fast
tempi, where counting all beats in a bar might no longer be
comfortable. However, this is not the case here. Table 1
shows the tempo distribution of our bambuco dataset. The
fastest bambuco in our dataset is rh_0003, which is mostly
annotated in "6/8", with p8 choosing the "1-6/8" alterna-
tive in this case. Participant p8 annotated seven bambucos
in "1", all of them with slower tempi than rh_0003.

From the 100 annotation instances in this study (10
tracks x 10 participants), a total of 10 instances showed
different meters when comparing the (Audio Only) anno-
tations with the revised annotations (Audiovisual + cor-
rections). Three instances were modified from "3/4-6/8"
to "6/8", two instances were modified from "6/8" to "3/4-
6/8", two from "3/4" to "6/8", two from "6/8" to "1", and
one from "6/8" to "3/4". These results further indicate the
dynamic nature of meter perception in bambucos.

The responses from the participants in the survey show

Algorithm F1 AMLc AMLt CMLc CMLt
3
4

Madmom 75.06 60.76 77.05 50.89 64.27
MultiBT 42.79 23.32 25.24 12.43 14.33

6
8

Madmom 41.13 9.23 10.71 5.64 5.72
MultiBT 45.15 42.87 51.76 32.38 35.54

Table 2: Beat tracking evaluation metrics obtained with
Madmom and MultiBT. Results are presented using two
sets of ground-truths: 3/4 and 6/8. All metrics presented
have a maximum score of 100%.

a tendency to use harmony, as well as a tendency to rely
on parts of the musical discourse that are close to their
personal experience (guitar or tiple players, for example,
focused more on the accompaniment patterns of the gui-
tar and the tiple). According to the participants, the main
difficulties of the analysis process, in addition to flexibil-
ity in tempo, were the conception of the phrasing present
in the sample, the ritardandos and accelerandos performed
between different parts of the musical texture (melody and
accompaniment), and the quality of the recordings. Fi-
nally, the participants observed that the tempo in these
recordings behaves in an organic way, far from the met-
ric rigor typical of the practices of current academic musi-
cians. This is no longer frequent in the way the bambuco
is performed today. This transformation could be related
to the changes in recording techniques and the prescrip-
tive function of the academic institutions and the musical
events in which this type of music circulates.

3.2 Beat tracker performance on bambucos

Two independent evaluations are presented in Table 2 for
each of the two beat tracking algorithms. The top row
presents results obtained when ground-truth annotations
assuming an underlying 3/4 meter are used. The bottom
row presents results with ground-truth annotations in 6/8.
Metrics that enforce continuity (CMLc and AMLc) are in
all cases lower than their less strict counterparts (CMLt
and AMLt). Additionally, metrics that allow estimation in
different metrical levels (AMLc and AMLt) are also higher
than the ones that enforce a correct one (CMLc and CMLt).
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Figure 6: Onsets detection function extracted using Superflux on a segment of track rh_0002. Ground-truth annotations in
3/4 and 6/8 are shown, as well as beat estimations obtained with Madmom and MultiBT.

These results indicate that in certain occasions, the algo-
rithms are tracking a higher metrical level, detecting the
first beat of the bar as the underlying beat (similar to the
"1" annotations in the perceptual study). As previously
mentioned, this is the only beat where 6/8 and 3/4 coin-
cide. When focusing on those metrics that only consider
the correct estimations and not the false positives and false
negatives, namely AMLc, AMLt, CMLc and CMLt, Mad-
mom appears to be consistently better at estimating beats
in 3/4 than in 6/8. In contrast, MultiBT shows better per-
formance for 6/8 for the same set of metrics.

Evaluation results confirmed our initial hypothesis that
the bi-metric nature of our dataset can be challenging for
the beat tracking algorithms. However, to better under-
stand the potential of beat tracking algorithms when work-
ing with our dataset, we analyzed the onset detection func-
tions, as obtained by the spectral flux or the superflux, 6

of the 10 bambucos in our dataset. 8 Onset detection func-
tions are intermediate signal representations often used in
beat tracking algorithms that highlight time instants of the
signal where onsets might be present. A peak in the on-
set detection function suggests that there is a high prob-
ability of an onset occurring in that position. With this
analysis, the goal was to understand whether enough infor-
mation could be found on the signal level to characterize
the bi-metric behaviour of bambucos. Figure 6 shows a
segment of the onset detection function obtained with Su-
perflux on track rh_0002. The ground-truth beat annota-
tions in 6/8 and in 3/4 are also displayed for reference. It
should be noted that the annotations in 3/4 and 6/8 were
extracted independently by different annotators, and hence
the downbeats (which in theory should coincide) do not ex-
actly overlap in all cases. Strong peaks in the onset detec-
tion function can be observed in most beat positions from
the ground-truth annotations (solid orange line (3/4) and
solid green line (6/8) lines). This suggests that regardless
of the rhythmic complexity, there is information that can be
exploited to characterize the metric behavior of bambucos.
For reference, the beat estimations obtained by Madmom

and MultiBT (dashed lines) are also shown in the figure.
The complexity of the task is further confirmed by the fact
that, not surprisingly, the estimations obtained by the Mad-
mom and MuiltiBT also tend to overlap with peaks in the
onset detection function.

4. CONCLUSIONS

This work presented an analysis of beat and meter in the
Colombian bambuco, a rhythm characterized by the pres-
ence of musical elements from two different meters. Our
perceptual study confirmed that even for human listeners,
there is not an unique understanding of the rhythmic struc-
tures of the genre. Even though current conventions as-
sume a 6/8 meter when writing bambucos, our perceptual
study confirmed that reality is much more complex than
that. A total of five metric alternatives were found in the
annotations produced by the participants in the study. Not
surprisingly, results from the computational analysis con-
firmed that beat tracking models developed to deal with
the regularity of a unique meter, do not fully characterize
the complex rhythmic interactions in bambucos. However,
our analysis of onset detection functions suggests that there
is relevant information in these signal representations that
could be leveraged for musicological analysis of bambu-
cos. It is clear from the findings in this study that the de-
velopment of tools for rhythm analysis of bambucos –or
of any other music tradition that shares similar rhythmic
properties– cannot be approached from a binary decision
(right/wrong) perspective. This calls for rhythm analysis
tools with an exploratory nature, where the existence of
several truths is permitted, and the choice of the most rele-
vant one is both task- and context-dependent. Our hope is
that this study as well as the data and annotations collected
in it, will serve as a preliminary step in the development of
computational tools for musicological analysis of bambu-
cos and Andean music.
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ABSTRACT

When making judgements, humans are known to be bet-
ter at choosing a preferred option amongst a small num-
ber of options, rather than giving an absolute ranking of
all the options. This preference-based judgment rank-
ordering method is called Best-Worst Scaling (BWS). In-
spired by this concept, we propose a preference-based
framework to generate a relative rank-ordering of singing
vocals, and therefore, singers. We adopt a twin-neural net-
work (Siamese) that learns to choose a preferred candidate
in terms of singing quality between two inputs. With a
few such pairwise comparisons, this method generates a
relative rank-order of a complete list of singers. Addition-
ally, we incorporate a knowledge-based musically-relevant
pitch histogram representation, as a conditioning vector, to
provide explicit musical information to the network. The
experiments show that this method is able to reliably eval-
uate singing quality and rank-order singing vocals, inde-
pendent of the song or the singer. The results suggest that
the twin-neural network learns the underlying discerning
properties relevant to singing quality, instead of being spe-
cific to the content of a song or singer.

1. INTRODUCTION

Singing is a popular form of entertainment and a desirable
skill to develop [1]. In recent times, many online applica-
tions that provide a platform to showcase singing talent as
well as socially engage through music have become popu-
lar, such as Smule Sing! 1 , Starmaker 2 , Quanmin K Ge 3 ,
and SoundCloud 4 . With high volumes of singing perfor-
mances on such online platforms, there is a need to explore
automated methods of assessing the quality of singing for
the purpose of identifying singing talent as well as provid-
ing meaningful feedback to amateur and aspiring singers.

1 https://www.smule.com/
2 https://www.starmakerstudios.com/
3 https://kg.qq.com/
4 https://soundcloud.com/

c© . Licensed under a Creative Commons Attribution 4.0
International License (CC BY 4.0). Attribution: , “Automatic Rank-
Ordering of Singing Vocals with Twin-Neural Network”, in Proc. of
the 21st Int. Society for Music Information Retrieval Conf., Montréal,
Canada, 2020.

For example, such an automated evaluation method would
be useful for screening of the singers for popular singing
talent reality shows such as American Idol and The Voice.
In this work, we provide a data-driven and preference-
based framework for evaluating singing quality.

Previous work on automatic singing quality evaluation
has focused on comparing a test singing rendition against
the known musical notes of the song [2, 3] or against an
ideal singing rendition of the song by a professional singer
[4–6]. These methods extract audio features such as pitch
contour and mel-frequency cepstral coefficients that are
relevant to perceptual parameters used by music experts
to evaluate singing quality such as intonation accuracy,
rhythm consistency, and timbre brightness [7,8]. However,
such methods are constrained by the need for a reference
or ideal singing rendition for every song. Moreover, the
choice of an “ideal” reference singer introduces a bias of
subjective choice.

Another approach is the assessment of singing quality
without a reference singer. Studies have shown that mu-
sic experts can evaluate singers with a high level of con-
sensus even when the song is unknown to them [9, 10],
which implies that there are underlying inherent charac-
teristics of singing quality that differentiate between pre-
ferred and amateur singing. Previously, Nakano et al. [10]
designed features such as pitch interval accuracy that mea-
sure the offset of the pitch contour from the musical semi-
tone grid to evaluate singing quality without a reference
rendition. Gupta et al. [11, 12] designed hand-crafted fea-
tures that characterize the shape of the pitch histogram and
inter-singer distances to evaluate singing quality without a
reference. Such methods provide insight and explanation
to the objective evaluation, such as the measurement of the
sharpness of peaks in a pitch histogram correlating with the
consistency of hitting musical notes. However, such hand-
crafted features provide an approximate representation of
singing quality, that depend on manual thresholds that are
determined empirically. They do not capture all aspects of
singing and therefore are limited.

Previously in [11], the authors showed that since a song
can be sung correctly in one or a few similar ways, but
incorrectly in many different and dissimilar ways, it im-
plies that the quality of a singer is proportional to his/her
similarity with other singers. However, to obtain a relative
rank-order based on this idea, they needed to calculate the
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distance of every singer in the dataset with respect to every
other singer, which becomes computationally demanding
as the size of the dataset increases. Moreover, this distance
calculation made sense only if the singers were singing the
same song, making the algorithm song-dependent.

Humans are known to be better at relative judgments,
i.e. choosing the most preferred singer among a small set
of singers, than giving an absolute rating [13, 14]. This is
the basis of the best-worst scaling (BWS) method used for
consumer value preference surveys [15]. Motivated by this
human behavior, we would like to develop a singing eval-
uation framework that is song-independent. The task is to
rank-order a list of singing vocals without the need of any
singing reference. We achieve a rank-ordering of a long
list of candidates through a number of pairwise decisions.

2. TWIN-NETWORK FOR RELATIVE SINGING
QUALITY EVALUATION

Twin-neural networks (or Siamese networks) have been
previously used to measure similarity between two audio
inputs, for example for vocal imitation [16–18], singing
style identification [19, 20], and singing query retrieval
[21]. The idea behind using twin-neural network for the
task of singer style identification is to map different singing
and song renditions of the same singer closer to each other
than those of different singers. However, to the best of our
knowledge, twin-neural network has not be explored for
the task of singing quality assessment.

In this work, we modify a twin-neural network such
that it learns which of the two given singing inputs is more
preferable in terms of singing quality. We then obtain the
rank-ordering of singing vocals by counting the number of
times a singing input is preferred in many such pairwise
comparisons across different singers, based on the concept
of BWS. A similar approach has been discussed by Niu et
al. [22] where a twin-neural network is applied for the task
of image quality assessment. The network learns to rank
the quality scores between the two input image patches,
where it applies cross entropy as the loss function. Our
work differs from [22] in that we propose a novel and in-
tuitive preference metric and comparative loss function for
training a siamese neural network to predict ranking.

Additionally, we include explicit musical knowledge in
this framework, by using the pitch histogram as a condi-
tioning vector. The two arms of the twin-network share
the same architecture as well as parameters, i.e., the two
inputs pass through exactly the same networks for feature
learning. Singers share a similar underlying singing vo-
cal production mechanism, however they differ in quality
due to prosodic characteristics such as the ability to consis-
tently hit the right notes. We hypothesize that the two arms
of the network should be able to project each singing vocal
to a compressed latent space that only represents the dis-
criminatory singing quality properties independent of the
song or the singer, thus making it suitable for the task of
singing quality comparison of two singing vocals. Further-
more, BWS rank-ordering method is known to provide a
reliable rank-ordering with fewer number of comparisons,
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Figure 1. Twin-neural network modified for preference-
based singing quality judgment.

which is helpful when the dataset size increases.

2.1 Model
A twin neural network consists of two identical sub-
networks that have the same configuration with the same
parameters and shared weights. During training, the pa-
rameter update is mirrored across both the sub-networks.
The two sub-networks extract features from the two inputs,
and then similarity between the two feature vectors is com-
puted by a distance metric. In general, in a twin neural
network, for a pair of inputs (x1, x2), the distance metric
of the output of the two sub-networks f(x1) and f(x2) is
given by Euclidean distance

D = ||f(x1)− f(x2)||2 (1)

The contrastive loss function, that needs to be minimized,
is defined as

L = yt ·max(1−D, 0)2 + (1− yt) ·D2 (2)

where yt is the ground truth label, such that yt = 1 when-
ever x1 and x2 are from the same class and yt = 0 oth-
erwise. This framework has been successfully used for
similarity detection tasks such as sound search and vocal
imitation detection [16, 18].

We modify this framework such that it learns to choose
the better singer amongst the two input singers, as shown in
Figure 1. To do this, we propose to replace (1) the distance
metric with a preference metric, and (2) the contrastive loss
with a comparative loss.

2.2 Preference Metric
We define the preference metric as the difference between
the L1 norm of the feature vectors,

Dp = |f(x1)| − |f(x2)| (3)

where |f(.)| is the L1 norm of the feature vector. This pro-
vides a direction to the comparison, i.e. if Dp ≥ 0 implies
singer 1 input rendition x1 is better than or similar to singer
2 input rendition x2, and Dp < 0 implies singer 2 is better
than singer 1. In contrast, a distance metric can only pro-
vide the magnitude, but not the direction of the difference.

2.3 Comparative Loss
Given the preference metric Dp, we compute the compar-
ative loss function to be minimized, as

Lc = yt ·max(1−Dp, 0)
2 + (1− yt) · (Dp + 1)2 (4)

where, yt is the ground truth label, such that yt = 1 when-
ever x1 is better than or similar to x2, and yt = 0 other-
wise. Note that the modification in comparative loss com-
pared to contrastive loss is to accommodate for the direc-
tional or signed property of the preference metric Dp. Let’s
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(a) (b)
Figure 2. Pitch histograms of (a) a preferred singer (rank
1) and (b) an amateur singer (rank 99) from the song Let it
go of dataset 1 (Section 4.1.1). (1 bin = 10 cents).

examine this equation closely. If x1 is better than x2, then
yt = 1, so equation 4 will become

Lc = max(1−Dp, 0)
2 (5)

Minimizing this loss function, makes the preference metric
Dp close to 1. On the other hand, if x2 is better than x1,
then yt = 0, so equation 4 will become

Lc = (Dp + 1)2 (6)

For this loss function to be zero, the preference metric Dp

should be optimized to -1, thus preserving the signed prop-
erty of the preference metric Dp.

3. HYBRID TWIN-NEURAL NETWORK WITH
PITCH HISTOGRAM CONDITIONING VECTOR

We use mel-spectrogram as the input time-frequency rep-
resentation of the input audio waveforms. However, mea-
suring pitch correctness is a vital component of singing
quality evaluation. Therefore, we condition the twin-
network with pitch information in the form of pitch his-
togram. This unburdens the network from learning pitch-
related information from the input representation.

The pitch histogram represents the distribution of pitch
values in a sung rendition [23]. As demonstrated by [11],
a pitch histogram is a strong indicator of the quality of
singing. A pitch histogram is computed as the count of
the pitch values (calculated in the unit of cents) folded on
to the 12 semitones in an octave, where one semitone rep-
resents 100 cents on equi-tempered octave. The melody
of a song typically consists of a set of dominant musical
notes (or pitch values). These are the notes that are hit fre-
quently in the song and sometimes are sustained for long
duration. In the pitch histogram of a preferred singing ren-
dition, there are several narrow, sharp, and well-defined
spikes that indicate that the dominant notes are hit repeat-
edly and consistently (Figure 2(a)). On the other hand, an
amateur singing rendition has a dispersed distribution of
pitch values, that reflect that the singer is unable to hit the
dominant notes of the song consistently (Figure 2(b)).

Due to its strong relevance to singing quality, we con-
dition the twin-neural network by concatenating the pitch
histogram vectors of the two inputs, phA and phB to the
output vector of their respective sub-network intermediate
layer, as shown in Figure 3. Such a configuration, called
the hybrid twin-neural network, improves the performance
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Figure 3. Hybrid Twin-neural network conditioned on
pitch histogram.

of the network for singing quality evaluation, by providing
explicit pitch-related information to the network releasing
degrees of freedom to the network to learn other non-pitch
related properties.

4. EXPERIMENTAL SETUP

We conduct experiments to evaluate the performance of the
twin-neural network and the hybrid twin-neural network
for the task of automatic rank-ordering of singing vocals.
We analyse the performance of the framework when the in-
put pair of singing vocals belong to the same song, as well
as when they belong to different songs. We also compare
the performance and capabilities of this framework with
previous similar work in literature.

4.1 Dataset

4.1.1 Singing voice dataset 1

We use the subset of DAMP dataset 5 that was curated
by [11] for the purpose of singing quality evaluation. It
consists of solo-singing recordings (16 kHz sampling rate,
mono) of 4 popular Western songs each sung by 100
unique singers (50 male, 50 female). There were no com-
mon singers across different songs. The selection of songs
was based on the available number of unique singers in the
DAMP dataset, and equal distribution between males and
females, to avoid gender bias. The 4 popular songs are
Let it go (Idina Menzel), Cups (Anna Kendrick), When I
Your Man (Bruno Mars), Stay (Rihanna). All the songs are
rich in steady notes and rhythm, as summarized in Table
III of [11].

We use one 20-30 seconds long snippet from each
singing rendition. This snippet is a common section of the
song for all the singers singing that song. The ground-truth
subjective ranking provided with this dataset was a BWS
score obtained through a crowd-sourcing platform by ask-
ing listeners to choose the best and the worst amongst a
few singers singing the same song. This score resulted in a
rank-order of the singers of each song from 1 to 100, where
rank 1 means the best singer, and rank 100 means the worst
singer. We divide this dataset into a train set that has 80%,
i.e. 80 singers per song, and validation and test sets, each

5 https://ccrma.stanford.edu/damp/

Proceedings of the 21st ISMIR Conference, Montréal, Canada, October 11-16, 2020
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Dataset Division #songs #singers
per song

#singer pairs
per same song

#singer pairs singing
same+different songs

1
Train 4 80 4 x 80 x 79 = 25,280

80x4=320 singers
320x319=102,080 pairs

Validation 4 10 4 x10 x 9 / 2 = 180
10x4=40 singers

40 x 39 / 2 = 780 pairs

Test 4 10 4 x 10 x 9 / 2 = 180
10x4=40 singers

40 x 39 / 2 = 780 pairs

2 Test 2 10 2 x 10 x 9 / 2 = 90
10x2=20 singers

20 x 19 / 2 = 190 pairs

Table 1. Summary of the number of singer pairs from the
different datasets used in this work.

consisting of 10%, i.e. 10 singers per song. To ensure sim-
ilar distribution of singing quality in all of these subsets,
we pick the singers with ranks [1,11,21,...91] for the test
set, [2,12,22,...92] for the validation set, and the rest for
the train set. Note that the test set consists of singers that
are not present in training or validation sets. However, the
songs in all three sets are the same.
4.1.2 Singing voice dataset 2
To test the trained models on unseen songs, we use a small
test dataset provided by [4] that consists of solo-singing
recordings (16 kHz sampling rate, mono) of 2 Western
pop songs (I have a dream (ABBA), Edelweiss (Sound
of Music)) each sung by 10 singers. Since this dataset
was recorded in a lab-controlled environment, the entire
spectrum of singing ability - from amateur singers to pro-
fessionally trained excellent singers - was covered. The
ground-truth singing quality annotations provided in this
dataset are absolute ratings on a scale of 1-5, 5 being the
best, provided by professional music teachers and/or per-
formers in a lab-controlled environment. Additionally, the
music experts evaluate and score the quality of pitch and
rhythm separately.
4.1.3 Singer pair inputs
The number of singer pairs singing the same song and dif-
ferent songs in the two datasets is summarized in Table
1. There exist a total of 25,280 ordered pairs of singers
singing the same song in the training set, and 102,080 or-
dered pairs of singers singing different as well as same
song. We treat ordered pairs, i.e. singer pairs (A,B) and
(B,A) as different training samples for the purpose of data
augmentation. Also this is helpful because the preference
metric is asymmetric. The validation set consists of 180
unordered pairs of singers singing the same, 780 unordered
pairs of singers singing the same and different songs. We
have two test sets, one each from singing vocals datasets 1
and 2. The number of pairs in test dataset 1 is same as the
validation set. The test dataset 2 consists of 90 unordered
pairs of singers singing the same song, and 190 unordered
pairs of singers singing the same and different songs.
4.1.4 Ground-truth Labels
The ground-truth label for each pairwise comparison of
singers is derived from the human scores provided in the
singing datasets 1 and 2. In dataset 1, the BWS score b
provided for every singer that ranges between -1 and 1 is
first normalized between 0 and 1. We then label a pair of
singers A and B as

ytrue =

{
1, if bA ≥ bB
0, otherwise

which implies that if singer A is better or similar to singer
B, the label is 1, and it is 0 otherwise. Similarly, in dataset
2, the absolute human ratings between 1 and 5 is normal-
ized between 0 and 1, and the same method is applied to
give a binary label every pair of singers.

4.2 Setup
The overall structure of the twin network is shown in Fig-
ure 1, and the hybrid twin network is a modified version of
the twin network, as shown in Figure 3.
4.2.1 Pre-processing
Both the input audio waveforms are converted to the 2-
D mel-spectrogram representations with 96 mel-bins over
the frequency range of 0–8 kHz, a window length of 512
and a hop-size of 256. The input waveforms are singing
vocal snippets of approximately 20 seconds in duration.
The number of frames of the two inputs are made equal by
appending zeros to the shorter spectrogram.
4.2.2 Twin-network
Each arm of the twin network consists of a 2D Convolu-
tional Neural Network (CNN) with 1 convolutional layer
having 64 filters with a kernel size of 3x3 and stride size
of 1x1, followed by a sigmoid activation function. They
are then each followed by a 2D global max-pooling layer,
and three fully-connected dense layers. There are 128 neu-
rons in the first dense layer, 10 in the second layer, and 1
in the third. The sigmoid activation function is used in all
of these layers, as it squashes the output of the layers be-
tween 0 and 1. Empirically, we observe that applying the
sigmoid activation at all the layers results in convergence
while training.

The preference metric is computed using the outputs of
these two arms, as discussed in Section 2.2. This value is
viewed as the preference judgment value between the input
singer pair, i.e. which of the two singers is better.
4.2.3 Hybrid twin-network
In order to incorporate musical relevance into the network,
we concatenate the normalized 120 dimensional pitch his-
togram vectors of the two inputs, at the output of the first
dense layer in both the arms of the twin network. We
chose to inject the pitch histogram information here be-
cause of the comparable number of dimensions of the la-
tent space and the histogram. Empirically, an additional
fully-connected layer was needed to gradually project the
dimensions of the output to 1, and for training to converge.

4.2.4 Training
Training the network requires positive (singer A better than
or similar to singer B) and negative pairs (singer B better
than A) of singer inputs. In our training, the ground truth
label is 1 for positive pairs and 0 for negative pairs.

The loss function we minimize is the comparative loss
which is a function of the probability output of the net-
work and the binary ground-truth label, as given in equa-
tion 4. We use the Adam optimization algorithm [24].
The learning rate is 0.0001. The batch size is 10. Max-
imum number of epochs is set to 250, though early stop-
ping based on training loss with patience of 5 epochs is em-
ployed for training termination. Back-propagation is car-
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ried out through the twin-net arms. We choose the model
that shows minimum loss in the validation set.
4.2.5 Prediction
The preference judgment value, i.e. the preference metric
D from equation 3 of the twin network lies between -1 and
1. If this value is >=0, it implies singer A is preferred over
singer B, thus the verdict is 1, and vice versa.

After all the pairwise comparisons, the singers can be
rank-ordered according to the aggregate scores of each
singer, given by the BWS score defined as

B =
nbest − nworst

n
(7)

where nbest and nworst are the number of times the singer
is marked as preferred and not preferred respectively, and
n is the total number of times the singer appears.

4.3 Evaluation Metrics
We use three kinds of metrics to evaluate the performance
of the framework with respect to the human ground-truth
labels as described in section 4.1:
Pair prediction accuracy: This is defined as the percent-
age of input singer pairs for which the preference predic-
tion from the network is correct.
Pearson’s Score Correlation: This is the correlation be-
tween the machine BWS scores and human BWS scores.
Spearman’s Rank Correlation: This is the correlation
between the machine and human annotated singer rank-
orders based on the respective BWS scores.

5. EXPERIMENTS AND RESULTS

The inter-judge correlation between ratings from music ex-
perts is 0.82 [4], which means that experts do not always
agree with each other, and there is, in general, an upper
limit of the achievable performance of any machine-based
singing quality evaluation.

5.1 Twin-Net vs. Hybrid Twin-Net
We test our hypothesis that twin neural network can be ap-
plied for the task of learning singing quality preference in
pairwise comparisons of singers to predict rank-ordering
of singers. We train the twin-network and the hybrid-twin
network on the 25,280 same song singer pairs from the
training set of dataset 1. Since the two singers sing the
same sequence of words, the twin arms focus on learning
the discriminatory characteristics from the input represen-
tations which lie in the differences in the prosodic prop-
erties such as pitch harmonics of the two singing rendi-
tions. The hybrid network further helps in this process as
the pitch histogram provides a direct singing quality dis-
criminatory representation, as discussed in section 3.

From Table 2, we see that the both the twin-networks
are able to converge on the training dataset with a high pair
prediction accuracy and score correlation with humans.
This validates our hypothesis and technique of the adapta-
tion of a Siamese network for preference-based judgment
and hence rank-ordering of singers. We also observe that
the hybrid-twin network outperforms the twin-network on
the test set from dataset 1. This implies that conditioning

Dataset %Accuracy Pearson Corr.
Twin Hybrid Twin Hybrid

Train 88.3 81.3 0.91 0.82
Validation 73.8 73.3 0.63 0.62

Test Dataset 1 72.7 76.1 0.61 0.68

Table 2. Performance of twin-network and hybrid twin-
network in terms of pair classification accuracy and Pear-
son correlation between machine BWS scores and human
BWS scores. All correlation values are statistically signif-
icant with pvalue� 0.05.

the network on pitch histogram frees degrees of freedom
to model non-pitch related information via the network.

5.2 Comparison with Prior Studies
The prior studies that are closest to this work are the ones
by Gupta et al. [11] and Pati et al. [25]. In the former,
the authors studied various hand-crafted features to gener-
ate rank-ordering of singers, such as pitch histogram-based
absolute measures and inter-singer distance based relative
measures. They also performed late-fusion of these ranks
to get a good correlation with human annotations. Pati et
al. trained a supervised regression DNN model that uses
mel spectrograms of pitched wind instruments as input rep-
resentation to predict their subjective human scores.

In this experiment, we compare the performance of our
proposed hybrid twin-network against the relative mea-
sures performance of [11]. Both these techniques involve
same-song pair comparisons, and hence are conceptually
similar. Additionally, we train the absolute score predic-
tion network of [25] on our dataset. The ground-truth, in
this case, are the raw human BWS scores of every singer
that was provided with this dataset. This prediction net-
work is similar to the absolute measures prediction from
[11] in the sense that both involved direct assessment of
singers. Finally, in late-fusion, we compute the average of
the rank-order obtained from our hybrid twin network and
the absolute score prediction network, similar to [11].

In Table 3, we see that the proposed hybrid-twin net-
work performs better than the relative measures of [11].
Moreover, hybrid-twin outperforms the absolute score pre-
diction network. This implies that pairwise comparisons in
combination with pitch histogram representation results in
better modeling of singing quality, than hand-crafted fea-
tures. The late-fusion performances are comparable.

The inter-singer distances of relative measures in [11]
compare the features from one singer with that of the rest
of the singers in the dataset singing the same song. Thus,
the major drawback of this method is that the relative mea-
sures will make sense only if all the singers are singing
the same song. Moreover, for a new unseen song, there
needs to be a large number singers singing that song for
the thresholds designed for relative measures to be reliable.
The above drawbacks make the relative measures highly
song dependent. Moreover, any new test singer needs to be
compared to all the singers in the dataset to get a reliable
ranking. This becomes computationally cumbersome with
increasing size of dataset. In the next sections, we show
how our proposed framework overcomes these drawbacks.
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Gupta et al. [11] This work
Framework Corr Framework Corr

Relative
Measures 0.64 Hybrid

Twin-network 0.68

Absolute
Measures 0.48

Absolute score
prediction

network [25]
0.62

Late-Fusion 0.71 Late-Fusion 0.71

Table 3. Comparison of the Spearman’s rank correla-
tion performance of the proposed hybrid twin network on
dataset 1 with that from a recent previous work on the same
dataset. All correlation values are statistically significant
with pvalue� 0.05.

Framework %Accuracy Pearson’s
Score Corr

Spearman’s
Rank Corr

Twin-net 65.9 0.39 0.41
Hybrid twin-net 77.7 0.63 0.65

Table 4. The performance of twin-net and hybrid twin-net
models on unseen songs from test dataset 2. The mod-
els are trained on the same song input training pairs from
dataset 1. All correlation values are statistically significant
with pvalue� 0.05.

5.3 Performance on Unseen Songs
To test the performance of the trained model on unseen
songs, we evaluate its performance on test dataset 2 (Ta-
ble 1). These songs and singers were not present in train-
ing set. The dataset consists of 90 same song singer pairs.
From Table 4, we observe that the hybrid twin net outper-
forms the twin-net by a significant margin. This shows
that the pitch histograms are a powerful representation of
singing quality that reduces the dependency of the network
on the identity of the song, thus confirming that our pro-
posed framework can reliably evaluate unseen songs.

5.4 Comparing Different Songs
We further test if our proposed framework can compare
singing vocals of different singing content. For this, we
train the hybrid-twin net singer pairs singing same as well
as different songs, for which we use the 102,080 ordered
singer pairs of the training dataset (Table 1). In Table 5,
we observe the performance of this model on the different
song singer pairs from both test dataset 1, where the songs
are seen by the trained model, and test dataset 2, where the
songs are not seen by the trained model. Rank-ordering
singing vocals with different-song singer-pair inputs (Table
5, row 1 and row 3) shows comparable results to same-
song singer-pair comparisons (Table 3 row 1 and Table 4
row 2). Moreover, when rank-ordering is done using both
different-song and same-song pair comparisons, the results
on unseen songs (Table 5, row 4) significantly outperforms
that from the same-song pair trained model (Table 4 row 2).
This experiment shows that our proposed preference-based
framework is able to learn discerning properties of singing
quality such that given any two singers singing the same or
different songs, it learns to choose the better singer.

5.5 Effect of Number of Comparisons
BWS method is known to be able to reliably rank-order
with fewer number of comparisons. We tested this idea by

Test
Dataset

No. of diff. songs
singer pairs

No. of same songs
singer pairs %Accuracy Pearson’s

Score Corr
Spearman’s
Rank Corr

1
600 0 72.3 0.64 0.64
600 180 72.7 0.65 0.65

2
100 0 77 0.68 0.68
100 90 78.6 0.70 0.73

Table 5. Performance of hybrid twin network trained on
the same and different song input pairs. All correlation
values are statistically significant with pvalue� 0.05.

Figure 4. Spearman’s rank correlation as the number of
pairwise comparisons is reduced.

reducing the number of paired comparisons in the test set,
while ensuring that each singer appears at least once. Out
of the 780 pairs, we randomly selected x number of unique
pairs three times, and calculated the average of the perfor-
mance of the three random trials. These average values of
Spearman’s rank correlation are plotted in Figure 4, where
the number of pairs selected ranged from 550 to all of the
780 pairs. We observe that for a reduction of 30% in the
number of pairs for comparison, there is a very small drop
in the correlation value, approximately 6%. This compu-
tational advantage will become more significant when the
size of the dataset increases.

6. CONCLUSIONS
In this work, we propose a preference-based framework in
which we adapt the twin neural network (Siamese) such
that given two input singers, it learns to choose the better
singer. We incorporate structural changes in the Siamese
network framework such as preference metric instead of
distance metric and comparative loss instead of contrastive
loss, so that it is able to learn a preference instead of simi-
larity. We show that with a few pairwise comparisons, this
modified Siamese network effectively gives a reliable rank-
order of singers. We also incorporate the musically rele-
vant pitch histogram representation in a hybrid twin net-
work framework, which shows to provide reliable singing
quality predictions in a singer and song independent way
on unseen data.

7. ACKNOWLEDGMENT

This research work is supported by Academic Research
Council, Ministry of Education (ARC, MOE), Singapore.
Grant: MOE2018-T2-2-127. Title: Learning Genera-
tive and Parameterized Interactive Sequence Models with
RNNs.

Proceedings of the 21st ISMIR Conference, Montréal, Canada, October 11-16, 2020
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ABSTRACT

Music producers who use loops may have access to thou-
sands in loop libraries, but finding ones that are compat-
ible is a time-consuming process; we hope to reduce this
burden with automation. State-of-the-art systems for esti-
mating compatibility, such as AutoMashUpper, are mostly
rule-based and could be improved on with machine learn-
ing. To train a model, we need a large set of loops with
ground truth compatibility values. No such dataset exists,
so we extract loops from existing music to obtain positive
examples of compatible loops, and propose and compare
various strategies for choosing negative examples. For re-
producibility, we curate data from the Free Music Archive.
Using this data, we investigate two types of model ar-
chitectures for estimating the compatibility of loops: one
based on a Siamese network, and the other a pure convolu-
tional neural network (CNN). We conducted a user study
in which participants rated the quality of the combinations
suggested by each model, and found the CNN to outper-
form the Siamese network. Both model-based approaches
outperformed the rule-based one. We have opened source
the code for building the models and the dataset.

1. INTRODUCTION

The emergence of digital audio editing techniques and
software such as digital audio workstations (DAWs) has
changed the way people make music. In a DAW, pro-
ducers can easily produce music by making use of pre-
existing audio as loops. Loops are used in many styles, es-
pecially Electronic and Hip-Hop music. Perhaps noticing
the business value of such loop-based music, many com-
panies such as Splice and LANDR have built up databases
of loops. Community efforts have flourished too, including
Looperman, an audio community that provides free loops
for music producers to use. But having so many resources
to choose from leaves a separate problem: how to navi-
gate the library efficiently and how to choose which loops
to combine. These tasks require human practise, exper-
tise, and patience: to recognize the characteristics of the

c© Bo-Yu Chen, Jordan B. L. Smith, Yi-Hsuan Yang. Li-
censed under a Creative Commons Attribution 4.0 International License
(CC BY 4.0). Attribution: Bo-Yu Chen, Jordan B. L. Smith, Yi-Hsuan
Yang, “Neural Loop Combiner: Neural Network Models for Assessing
the Compatibility of Loops”, in Proc. of the 21st Int. Society for Music
Information Retrieval Conf., Montréal, Canada, 2020.

loop and to determine whether it is suitable for their song.
However, thanks to recent advances in music information
retrieval (MIR), we believe it is possible to make loop se-
lection from large-scale loops database easier.

A few existing systems could potentially solve this
problem. Kitahara et al. [1] presented an intelligent loop
sequencer that chooses loops to fit a user-defined ‘excite-
ment’ curve, but, excitement only accounts for part of what
makes two loops compatible. The AutoMashUpper sys-
tem [2] could also be applied to the loop selection process:
it involves estimating the ‘mashability’ of two songs (i.e.,
how compatible they would be if played at the same time).
It is a rule-based system that computes the harmonic and
rhythmic similarity and spectral balance, and it has proven
useful in other applications [3,4]. However, AutoMashUp-
per has two limitations that could be improved by current
machine learning methods. First, it regards the harmonic
and rhythmic similarity as part of mashability, while it is
actually possible that two music segments match perfectly
despite having different harmonies and rhythms. Second,
hand-crafted representations cannot fully describe all fea-
tures in the music segment.

To capture the more complicated compatible relation-
ship between two music segments, we propose to employ
modern machine learning models to learn to predict the
compatibility of loops. A major obstacle preventing the
development of such a model is the lack of a dataset with
sufficient labelled data. While there are many datasets of
loops, none provide ground truth compatibility values.

We make two main contributions. First, we propose
a data generation pipeline that supplies labelled data for
model-based compatibility estimation (see Section 3). This
is done by using an existing loop extraction algorithm [5]
to yield positive examples of loops that have been used
together in real loop-based music. We also propose pro-
cedures to ensure the quality of the positive data, and in-
vestigate different strategies to mine negative data from the
result of loop separation.

Second, we develop and evaluate two neural network
based models for loop compatibility estimation (see Sec-
tion 4), one based on convolutional neural network (CNN)
and the other Siamese neural network (SNN) [6]. The
two approaches perform loop compatibility estimation us-
ing different approaches: the CNN directly evaluates the
combination of loops in a time-frequency representation,
whereas SNN processes the two loops to be evaluated for
compatibility separately. We report both objective and sub-
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jective evaluations (see Section 5) to study the performance
of these approaches, and to compare the model-based ap-
proaches with AutoMashUpper.

The audio data we employ to build the neural network
is from the Free Music Archive (FMA) [7] (see Section
3.1), which make data re-distribution easier. Moreover,
we have open-sourced the code implementing the pro-
posed CNN and SNN models at https://github.
com/mir-aidj/neural-loop-combiner.

2. RELATED WORK

Along with the growing interest in loop-based music, aca-
demic studies focusing on assisting loop-based music pro-
duction have become popular. An early study [8] proposed
two ways to help create loop-based music: automatic loop
extraction and assisted loop selection. This laid the foun-
dation for this field.

For loop extraction, Shi and Mysore [9] proposed an
interface with automatic and semi-automatic modes for the
producer to find the most suitable segment in a piece of
music to excerpt and use as a loop, by cropping directly.
These algorithms estimate similarity with handcrafted fea-
tures: harmony, timbre, and energy [8, 9]. However, the
segments are excerpted without any attempt to isolate one
part of a potentially multi-part piece of music. One solu-
tion to this used a common quality of loop-based music—
that loops are often introduced one at a time—to recover
the source tracks [10], but not all pieces have this form.
To tackle both problems, Smith et al. [5, 11] proposed to
extract loops by taking into account how they repeat. The
algorithm they proposed can directly extract the loops from
songs using nonnegative tensor factorization (NTF).

For loop selection, Kitahara et al. [1] proposed to se-
lect the loops according to the level of excitement entered
by the user. However, we see three limitations in this work.
First, the study focuses on Techno music only—while ex-
citement is certainly highly relevant to this genre, the ap-
proach may not generalize well to other genres. Second,
the level of excitement has to be manually entered by a
user, which limits its usability. Third, the study does not
take compatibility into consideration. As a result, even
though a user can find loops with the desired excitement
level, the loops may not be compatible with one another.

To the best of our knowledge, the work of Davies et
al. [2,12] represents the first study to investigate mashabil-
ity estimation. Their AutoMashUpper system represents
each music segment (not necessarily a loop) with a chro-
magram, a rhythmic representation, and a spectral band
representation, each made to be beat-synchronous. Given
two songs, it computes the similarity between the chroma-
grams and the rhythmic representations, and the spectral
balance between the songs, to obtain the final mashability
estimate. While AutoMashUpper is developed for general
mashability estimation of longer music pieces, it can also
be applied to loop selection.

Lee et al. [13] extended AutoMashUpper, proposing
that two parts should be more compatible if they have com-
plimentary amounts of harmonic instability. They gener-

Data type # loops # loop pairs # songs

Training set 9,048 12,774 2,702
Validation set 2,355 3,195 7,06
Test set 200 100 100∑

11,603 16,069 3,508

Table 1: Statistics of the dataset, which is derived from
Hip-Hop songs in the Free Music Archive (FMA) [7] using
the data generation pipeline shown in Figure 1.

ated mashups that were preferred by listeners to the out-
put of AutoMashUpper, but they focused on a particu-
lar type of mash-up (combinations of vocal and backing
tracks) whereas we focus on general loop compatibility.
Bernardes et al. [14,15] proposed several harmonic mixing
approaches based on psychoacoustic principles and “tonal
interval space indicators.” Xing et al. [16] used paired au-
dio, MIDI, and lyrics data for mashability estimation, tak-
ing into account similarity in melody, rhythm, and rhyming
lyrics. Among these works, AutoMashUpper stands out as
a general-purpose system requiring only audio data, so we
consider it as our baseline.

3. DATA GENERATION PIPELINE

To create the labeled data needed for training our mod-
els, we obtained a dataset of loop-based music and used
loop extraction [5] to obtain audio loops. We use a new
loop refinement procedure to reduce the number of dupli-
cate loops per song, and a loop pairing procedure to get
pairs of loops that co-occur in songs.

3.1 Dataset

To extract a collection of loops, we first need a large set of
songs that use loops. We chose to use music from the Free
Music Archive (FMA) [7] so that we could redistribute the
audio data. We restricted ourselves to the genre of Hip-
Hop for three reasons: First, we could not manually verify
whether each song used loops, so we needed to use a genre
known for using loops. Second, for the loop extraction
step to work, we needed the music to have a steady tempo.
Third, we expected that a Hip-Hop subset would provide a
useful variety of loops since the genre is known for incor-
porating loops from many other genres

We collected 6,868 Hip-Hop songs in total from FMA
by searching for the tag “Hip-Hop.” We passed these songs
through the proposed data generation pipeline, and kept
the 3,508 songs from which we could find at least one
valid loop pair. Specifically, from these 3,508 songs, we
obtained 11,603 valid loops and 16,069 valid loop pairs.
From the full set of loops, we reserved 200 loops (1 pair
each from 100 different songs) for the evaluations (see Sec-
tion 5), and then split the rest into train and validation sets
in a 4-to-1 ratio (see Table 1). 1

1 To facilitate follow-up research, we plan to share publicly the loops
we extracted from FMA songs. While FMA has looser copyright re-
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Figure 1: The proposed data generation pipeline for creat-
ing positive loop pairs.

3.2 Data Generation

Figure 1 depicts the overall data generation pipeline. We
firstly use the algorithm proposed by Smith and Goto [5]
for loop extraction. The algorithm uses NTF to model a
song as a set of sound templates and rhythm templates, a
set of “recipes” for combining these templates to recreate
the loop spectrograms, and a loop layout that defines when
each loop occurs in the song. In later work, the authors
described how to choose the best instance of a loop to ex-
tract from a piece, and a second factorization step that can
be applied to reduce the redundancy of the loops [11]. As
a result of this process, we get out of a song the loop lay-
out, the reconstructed spectrograms, and the audio files of
loops, as depicted in the first half of Fig. 1.

Despite this extra step, we still found many redundant,
similar-sounding loops from the Hip-Hop dataset. To fur-
ther deduplicate the loops, we introduce a new loop refine-
ment step. The main idea is to consider the reconstructed
spectrograms obtained from the loop extraction algorithms
as an image, and apply the average hash algorithm [17]
used in the identification or integrity verification of images
to detect the duplicate loops. We first construct the hash
from each spectrogram extracted from the same song, then
count the number of bit positions that are different in every
pair of spectrograms. If a pair of spectrograms has fewer
than five bit positions that are different, we regard them as
duplicates and remove one of them.

After this, we refine the loop layout by two steps. First,
we combine all activation values from the duplicate loop in
the loop layout into a single activation value. Second, we
normalize all the activation values in each bar. This leads
a valid loop layout that is ready for loop pairs creation.

Finally, we have to process the real-valued loop layout
to obtain pairs of loops that do co-occur. A straightfor-
ward approach is to threshold the loop layout; we found

strictions, the songs are associated with 7 different Creative Commons
licenses with various degree of freedom in data manipulation and re-
distribution. We will therefore build up our dataset into 7 groups, one
for each unique license, before distributing the loops.

Figure 2: Illustration of various loop-pair ‘negative sam-
pling’ (NS) strategies explored in the paper.

a threshold of 0.2 to work reasonably well. Please note
that, to make all the loops in our dataset comparable, we
time-stretch each to be 2 seconds long.

4. PROPOSED LEARNING METHODS

4.1 Negative Sampling Strategies

We get abundant positive data after the data generation
pipeline. However, we also need negative examples (pairs
of clips known to not match well) to train our mashability
predictor. While there are straightforward ways to collect
such examples, proper and domain-specific negative sam-
pling has been shown to be important [18–22]. We experi-
ment with the two types of methods of negative sampling.
See Figure 2 for an overview of such methods.

4.1.1 Between-Song Negative Sampling

A naive approach to negative sampling, dubbed the ran-
dom method, is to take any two loops from two different
songs, and call that a negative pair. But, it is hard to ensure
the loops collected in this way clash with one another.

We therefore also study a slightly more sophisticated
method that takes instrumentation into account, dubbed the
selected method. Specifically, we noted that many loops
are pure drum or pure bass loops, and they tend to be com-
patible with any loops. Therefore, we use [23] to detect
pure drum or bass loops and avoid selecting them in the
process of random negative sampling. This way may help
emphasize the harmonic compatibility of the loops. With
this strategy, we can experiment whether putting more em-
phasis on harmonic compatibility can indeed improve the
result, or other feature’s compatibility is still crucial.

4.1.2 Within-Song Negative Sampling

Negative data can also be created by editing a loop in a
positive loop pair. We come up with three methods for
making conflicting loop pairs: ‘reverse,’ ‘shift,’ and ‘rear-
range.’ Given a positive loop pair, we view one of them as
the source loop, and the other as the target loop. With the
reverse method, the target loop is played backward to cre-
ate the rhythmically and harmonically conflict. The shift
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Figure 3: Architectures of the CNN and SNN models stud-
ied in this paper. The CNN takes a pair of loops (in the
time domain) as the input, whereas the SNN takes the two
loops as separate inputs and concatenate the intermediate
abstractions only in the middle of its network.

method cycle-shifts a target loop by 1 to 3 beats at random
to make the source loop and manipulated target loop un-
balanced. The rearrange method cuts the target loop into
beats and reorders them randomly. The combination of the
source loop and the manipulated target loop is considered
as a negative loop pair. See Figure 2 for illustrations.

4.2 Model and Training

Figure 3 shows the two models (CNN and SNN) proposed
to learn the compatibility of two loops. To make a fair per-
formance comparison, we train them with the same skele-
ton in a different way. Therefore, we first introduce the
skeleton model and then explain how it is incorporated into
the specific model architectures for the training process.

4.2.1 Skeleton model

A two-layer 2-D convolutional neural network (CNN) and
3-layer fully connected neural network is the skeleton of
networks used in this paper. There are 16 filters (with ker-
nel size 3) and 4 filters (also with kernel size 3) in the
first and second convolutional layers. The 3-Layer fully-
connected neural network is constructed by 256, 128, 16
output features, respectively. Furthermore, batch normal-
ization [24], 10% dropout [25], and PReLU [26] are ap-
plied to all convolutional and fully-connected layers. All
the models are trained using stochastic gradient descent
with batch size 128. The input for the skeleton model
is a 2-second loop audio. We compute the spectrograms
by sampling the songs at 44k Hz and using a 2,048-point
Hamming window and 512-point hop size. We then trans-
form the spectrograms into 128-bin log mel-spectrograms.
The resulting input has shape 173 frames by 128 bins.

4.2.2 CNN Model

A convolutional neural network is well-known for its abil-
ity as feature extraction. In our system, in order to learn
the compatibility of two loops, we propose to use a CNN

as a classifier by combining two loops into a single in-
put, and then train the CNN model to learn to distinguish
whether loop combinations would sound harmonious (high
compatibility) or incompatible (low compatibility). For the
classification purpose, we stack the skeleton model with a
fully-connected output layer to get a single value as the
output. Then, we compute the binary cross entropy loss
(BCELoss) to update the parameters of the whole model.
We note that its output is a value between 0 and 1, with
values closer to 1 indicating a higher probability that the
pair of loops are compatible, and closer to 0 when they are
not. Therefore, we can later use its output to estimate the
compatibility of any two loops.

4.2.3 Siamese Model

A Siamese neural network (SNN) [6] consists of twin net-
works that share weights and configurations. SNN has
been shown effective in image retrieval [27] and various
MIR tasks alike [4, 28–32]. Aiming to test its applicabil-
ity to loop compatiblity estimation, we train an SNN us-
ing the labeled data we created through the data generation
pipeline as follows. The outcome of an SNN is a map-
ping function from the input features to the output vec-
tors in an embedding space. During the training process,
our SNN first transforms the input Mel-spectrograms into a
vector by a skeleton model and then optimize in contrastive
loss [33] directly. After training, we have a mapping func-
tion that can map any loop to the embedding space. To se-
lect the compatible loops, we compute the Euclidean dis-
tance between two loops in that embedding space. If the
distance for two loops is close, then we assume they may
be compatible, and vice versa.

5. EXPERIMENTS AND EVALUATION

5.1 Objective Evaluation

In the objective evaluation, we aim to evaluate the per-
formance of different combinations of model architectures
(i.e., CNN and SNN) and negative sampling methods. In
doing so, we consider two types of objective metrics.

The first type of evaluation entails a classification task.
It assesses a model’s ability to distinguish compatible
loops from incompatible ones. To create a test set for this
evaluation, we used the positive data from the validation
data and collected the negative data by using all the nega-
tive sampling methods equally, in order not to favor any of
them in this evaluation. To make the test set balanced, we
set the ratio of negative to positive data to 1:1.

The second type of evaluation, on the other hand, in-
volves a ranking task. Given a query loop and a certain
number of candidate loops, a model has to rank the can-
didate loops in descending order of compatibility with the
query. We created the set of candidate loops for a query
loop such that we knew one and only one of the candidate
loops formed a positive loop pair with the query loop. We
could then evaluate the performance of a model by check-
ing the position of this “target loop” in the ranked list. The
closer the rank is to 1, the better. This evaluation task
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Model Negative Classification-based metric Ranking-based metric
sampling Accuracy F1 score Avg. rank Top 10 Top 30 Top 50

Random 0.60 0.59 43.0 0.13 0.35 0.59
Selected 0.59 0.59 43.1 0.13 0.29 0.62

CNN Reverse 0.63 0.62 41.2 0.19 0.42 0.62
Shift 0.57 0.56 49.0 0.11 0.34 0.54
Rearrange 0.57 0.57 47.7 0.10 0.31 0.57

Random 0.51 0.47 34.2 0.27 0.52 0.74
Selected 0.52 0.47 42.8 0.18 0.39 0.59

Siamese NN Reverse 0.53 0.48 42.7 0.16 0.37 0.62
Shift 0.53 0.52 43.0 0.16 0.41 0.65
Rearrange 0.53 0.53 44.2 0.16 0.40 0.60

Table 2: Objective evaluation result of different combinations of models (CNN or SNN; see Section 4.2) and negative
sampling strategies (see Section 4.1). We highlight the best result for each metric in bold.

aligns well with the real-world use case of the proposed
model: to find loops compatible with a query loop from a
pool of loop libraries. However, we note that it may not
be always possible to rank the target loop high in this eval-
uation, because the other loops in the candidate pool may
also be compatible with the query.

In our experiment, we set the number of candidate
loops to 100. We computed four metrics for the rank-
ing task: top-10 accuracy, top-30 accuracy, and top-50
accuracy—which evaluate whether the target loop was
placed in the top-10, top-30, and top-50 of the ranked list,
respectively—as well as the average rank. We report the
average of these values for the 100 different query loops.

Classification Result—Table 2 shows that, regardless
of the negative sampling method, the CNN models outper-
form the SNN models for the classification-based metrics.
While the CNN learns to rate the compatibility of the loop
combinations directly, the SNN learns to place the loops
in a space, with nearby loops being more compatible. The
training data were the same, so the difference in perfor-
mance suggests that the space learned was not effective for
the classification task.

Ranking Result—Table 2 also shows CNN and SNN
models seem to perform comparably with respect to the
ranking-based metrics. Yet, the best scores in the four
ranking-based metrics are all obtained by SNN with ‘ran-
dom’ negative sampling. When an SNN is used, there ap-
pears to be a large performance gap between ‘random’ and
all the other negative sampling methods. This suggests that
focusing on harmonic compatibility alone (e.g., as done by
using the ‘selected’ negative sampling method) is not op-
timal; compatibility in other dimensions of music is also
important. On the other hand, when a CNN is used, ‘re-
verse’ appears to perform the best among the five negative
sampling methods.

5.2 Subjective Listening Test

We note that even if a model obtains the highest classi-
fication or ranking result, we still cannot guarantee that
the model also works well in real-world applications. Ac-
cordingly, we deployed a user study by releasing an online
questionnaire to get user feedback. As the users’ time is

precious, it is not possible to test the result of all com-
binations of the models and negative sampling methods.
Therefore, we considered the result of the objective evalu-
ation and picked five methods for subjective evaluation:

• ‘CNN + reverse’, ‘SNN + random,’ and ‘SNN + re-
verse,’ three instances of the proposed methods that
performed well in the objective evaluation;

• ‘AutoMashUpper’ [2], as it represents the state-of-
the-art for the task. Our implementation is based
on the open source code from https://github.
com/migperfer/AutoMashupper. As the
rhythmic compatibility part of [2] is missing in this
repo, we implement it ourselves following [2].

• ‘Original,’ which stands for the real loop combina-
tions observed in FMA and extracted by the pro-
cedures described in Section 3.2. Specifically, an
‘original’ loop combination is one of the 100 posi-
tive loop pairs from the ‘test set’ listed in Table 1.

The loop combinations, or test clips, presented to users
for evaluation are created as follows. As in Section 4.1.2,
for each positive loop pair, we view one as the source loop,
and the other as the target loop. Accordingly, we have 100
source loops and 100 target loops in the test set. A test clip
is a combination of two loops. For the ‘original’ method,
we pair the source loop with its true target. For the other
methods, the 99 target loops (excluding the true target) are
ranked, and the one predicted to match the source best is
combined with it to form a test clip. The 5 resulting test
clips for each source loop were considered as a group. This
way, we have 100 groups in total. Among them, we picked
6 groups for evaluation: they have 2 vocal loops, 2 drum
loops, and 2 loops of instrumental melody as the source
loop, respectively.

We designed a subjective listening test that could be ad-
ministered to users through an anonymous online question-
naire, and advertised it on social media websites related to
EDM and Hip-Hop. A participant was randomly directed
to a questionnaire containing one group of test clips, and
was then asked to listen to the 5 test clips and rate each
clip, on a 5-point Likert scale, in terms of: i) whether
they sounded matched, ii) whether they were an innova-
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Figure 4: The subjective evaluation results of comparing the preference, musical feature and musical element among 5
methods. A method is considered to show low abilities to manipulate loops if its MOS is under 3 in (A) ‘using preference’-
related and (C) ‘musical elements’-related metrics, and under 2 in (B) ‘musical feature’-related metrics.

tive combination, iii) and whether they were usable in fu-
ture compositions (see Figure 4A). They were also asked
to indicate whether the loops matched according to 3 mu-
sical features: rhythm, harmony, and timbre (see Figure
4B). Finally, to see how consistent the models are at rec-
ommending loops given different query types, Figure 4C
breaks down the results for Matchness (Figure 4A(i)) ac-
cording to source loop type: drum, vocal or melody loop.

5.2.1 Subjective Evaluation Result

Data from 116 Taiwanese participants were collected, and
all of them were included for analysis. The participants
self-reported the gender they identified with (36 female,
80 male) and age (19–33). 50% said they listened to loop-
based music more than 5 days a week, 54% had classi-
cal musical training, and 42% had experience composing
loop-based music. Overall, the responses indicated an ac-
ceptable level of reliability (Cronbach’s α = 0.778).

Figure 4 indicates the mean opinion score (MOS). A
Wilcoxon signed-rank test was conducted to statistically
evaluate the comparative ability of the 5 methods.

Overall, we observe that AutoMashUpper performs
least well in almost all the evaluation metrics. Outside of
the Innovation (Figure 4A) and Drum metrics (Figure 4C),
AutoMashUpper is significantly worse than almost all the
other methods. This suggests that, in loop selection, con-
sidering only loop similarity and spectral balance (as as-
sumed by AutoMashUpper) is not enough—perceptually
compatible loops are not necessarily similar in content.

On the other hand, we note that ‘CNN with reverse
negative sampling’ performs the best in almost all of the
evaluation metrics. To our surprise, the loop combina-
tions picked by the CNN are preferred even to the original
loop combinations extracted from FMA songs. The perfor-
mance difference between ‘CNN + reverse’ and ‘Original’
is significant (p-value< 0.001) in terms of several metrics,
including Matchness and Usability. In contrast, there is no
significant performance difference between ‘Original’ and
the two SNN models.

One finding was surprising: The MOS obtained by
‘CNN + reverse’ for Matchness is 4.0, higher even than the
MOS of 3.15 obtained by ‘Original.’ I.e., the loop combi-
nations proposed by the system were found to match better
than the original combinations. We are not sure how to ac-

count for this success. One might conjecture that the qual-
ity of the ‘Original’ pair suffers from the imperfect loop
extraction algorithm, but since all the loops were extracted
the same way, they should be on equal footing. Alterna-
tively, the novelty of the non-original mash-ups could be
more interesting to the listeners than the originals; how-
ever, there was no clear difference among the systems in
terms of ‘Innovation.’ We can only conjecture that ‘CNN +
reverse’ found better loop combinations than human-made
ones because the model-based method could examine all
the possible loop combinations, while humans cannot.

We found that SSN methods, despite their performing
better in ranking-based objective metrics than the CNN
method, did not create perceptually-better loop combina-
tions. This suggests a discrepancy between the objective
and subjective metrics. And lastly, while it seems fair to
say that CNNs outperform SNNs in the subjective evalua-
tion, it is hard to say whether ‘reverse’ is the most effective
negative sampling, because we were not able to evaluate all
the possible methods here. This is left as a future work.

6. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a data generation pipeline
and several negative sampling strategies to address the
need of ground-truth labels for building a machine learn-
ing model for estimating the compatibility of loops. We
have also implemented and evaluated two different net-
work architectures (CNN and SNN) to build such models.
Our objective evaluation shows that a CNN does well in
classifying incompatible loop pairs and an SNN is good at
imitating how producers combined loops, and our subjec-
tive evaluation suggests the loop combinations created by
a CNN are favored over those created by an SNN and even,
in some aspects, real data from FMA. Both CNNs and
SNNs outperform the rule-based system AutoMashUpper.

We have two plans in place for future work. First, as
we see some inconsistency between the results of objec-
tive and subjective evaluations, we plan to investigate other
objective metrics for performance evaluation. Second, we
plan to exploit the loop layouts estimated by the loop ex-
traction algorithm [5] to study further the relationship be-
tween loops and their arrangement, which may aid in the
automatic creation of loop-based music.
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ABSTRACT

In this paper, we describe a workflow of successive cor-
rections on Optical Music Recognition (OMR) generated
MusicXML files and their respective outputs under Mu-
sic Information Retrieval (MIR) tasks. The original OMR-
generated files of six Mendelssohn String Quartets were
initially corrected by individual members of this interdisci-
plinary group, then reviewed by others to further standard-
ize the quality and music analysis priorities of the team.
Four MIR tasks are applied to each round of corrections
on this collection: cadence detection, chord labeling, key
finding, and monophonic pattern discovery. We measure
changes in the outputs of these four MIR tasks from one
round of corrections to the next in order to evaluate the
impact of corrections. Results show that expert revision
is more beneficial to some MIR tasks than to others. The
resulting corpus of curated MusicXML files is available
as an open-source repository under a Creative Commons
Attribution 4.0 International License for further MIR re-
search.

1. INTRODUCTION

Music Information Retrieval (MIR) algorithms that ana-
lyze symbolic music require high-quality data to produce
accurate results. When building symbolic music corpora
for MIR research, manually transcribing data using music

c© Jacob deGroot-Maggetti, Timothy de Reuse, Laurent
Feisthauer, Samuel Howes, Yaolong Ju, Suzuka Kokubu, Sylvain Margot,
Néstor Nápoles López, Finn Upham. Licensed under a Creative Com-
mons Attribution 4.0 International License (CC BY 4.0). Attribution:
Jacob deGroot-Maggetti, Timothy de Reuse, Laurent Feisthauer, Samuel
Howes, Yaolong Ju, Suzuka Kokubu, Sylvain Margot, Néstor Nápoles
López, Finn Upham, “Data Quality Matters: Iterative Corrections on a
Corpus of Mendelssohn String Quartets and Implications for MIR Anal-
ysis”, in Proc. of the 21st Int. Society for Music Information Retrieval
Conf., Montréal, Canada, 2020.

notation software is expensive [1].

A faster option might be to use Optical Music Recogni-
tion (OMR) software on existing images of printed scores
as an initial step. For example, Condit-Schultz et al. [2]
worked on automated harmonic analysis of 571 chorales
by Johann Sebastian Bach and Michael Praetorius. OMR
was used in the process of creating symbolic encodings,
with the results reviewed and manually corrected by a hu-
man annotator. Cumming et al. [3] created symbolic cor-
pora of Renaissance music using OMR-generated scores as
the first step and followed strict guidelines of manual cor-
rections for the retention, addition, or removal of specific
notations such as ties and fermatas. Although the perfor-
mance of OMR applications has been improving over the
years [4], extensive manual revisions are still required to
ensure data quality and consistency for MIR analysis. This
expensive and time-consuming task is especially relevant
for OMR-induced errors since small ambiguities can lead
to substantial variation in analytical output [5]. What are
the impacts of expert curation on data for MIR analysis
tasks?

We answer this question using files produced in the pro-
cess of building a symbolic corpus of Mendelssohn string
quarters. The OMR-generated passed through three iter-
ations of increasingly-stringent manual corrections with-
out additional annotations. We measured the impact of
each round of corrections on four MIR analysis tasks (key
finding, chord labeling, melodic pattern discovery, and ca-
dence detection) through the changes between each iter-
ation. Expert analysis of the scores exposes the types of
errors to which these tasks are sensitive, demonstrating the
need to tune corpus content to the anticipated analyses.
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2. CORPUS CREATION

2.1 Mendelssohn String Quartets

Our corpus consists of the string quartets of Felix
Mendelssohn. The Classical string quartet is a particularly
relevant genre for computer-assisted analysis of music. In
contrast to piano repertoire, where voice leading is often
obscured by the limitations of the performer’s hands and
by what can be notated on the grand staff, a string quar-
tet score preserves the independent parts of four separate
instruments, allowing attribution of the role of each part
(such as melody, bass, accompaniment, leading and imita-
tive voices, etc.). The Classical aesthetic is characterized
by a very clear harmonic, melodic, and formal organiza-
tion, so it is not surprising that Beethoven’s and Mozart’s
string quartets have already been encoded and annotated
[6, 7] for music analytical purposes. Mendelssohn’s string
quartets are a natural next step; his works have Clas-
sical characteristics that place them in the tradition of
Beethoven’s late quartets [8].

Specifically, we encoded quartets Op. 12, Op. 13, and
Op. 44, Nos. i, ii, and iii, all composed between 1827 and
1847, and Four Pieces for String Quartet, Op. 81. 1 The
initial OMR encodings of these 24 movements were gener-
ated from scans of the 1875 edition published by Breitkopf
und Härtel, available as PDF files on IMSLP. 2 ) Although
not part of the set studied in this paper, an additional quar-
tet, Op. 80, is incorporated in our final published corpus.
It had been previously encoded in MusicXML 3 by user
Musemeister.

2.2 The CTS Team

An interdisciplinary team of nine people collaborated to
create this corpus, with members from music technology,
music theory, string performance, and music cognition.
Each member brought unique viewpoints, skillsets, and ob-
jectives to the project. Whether they were interested in a
specific MIR task or the applications of MIR to music the-
ory, cognition, or pedagogy, team members refined encod-
ing objectives together to satisfy their varied interests dur-
ing the iterative correction and cleaning of OMR-generated
symbolic music files.

2.3 From PDF to MusicXML

The first step in building the corpus was to transcribe the
PDF files into a symbolic, machine-readable format. We
used the commercial OMR software PhotoScore to ana-
lyze the original score images in PDF. It first detected the
position of each staff on the page and we ensured that these
detected positions were correct, adjusting as necessary. We
also manually corrected the key and time signatures. The
OMR results were then exported to MusicXML because
the format is widely supported by music notation soft-
ware. These files formed the Corrections 0 dataset “C0”,

1 These four independent pieces were gathered up in one opus and
published after Mendelssohn’s death.

2 Downloadable at https://bit.ly/2zzS0Bk.
3 Downloadable at https://bit.ly/3dRC9wZ.













       
 


       


 

 































 

 

 
















Figure 1. Measures 60-62 of Op. 44, No. iii, Mvt. 4.
The upper system is initial OMR output (C0) and the lower
system is after three rounds of manual corrections (C3).

with no additional manual corrections of score informa-
tion. All subsequent corrections were made using Mus-
eScore v2.3.2.

2.4 OMR Corrections

Starting from these initial OMR-generated music files (C0)
we applied three successive stages of manual corrections:
“C1”, “C2”, and “C3”. The goal of each stage was to
improve the accuracy of the previous stage(s) and to en-
sure that all information necessary for the MIR algorithms
was included. The original C0 files included score ele-
ments both unlikely to be used by existing symbolic MIR
algorithms and deemed by the team’s music theorists to be
less essential for the specific analytical approaches that we
chose. Many of these score elements—for example, hair-
pin dynamics—were ignored or removed during the rounds
of corrections (for a full list, refer to the supplementary
materials).

The focus of C1 was accuracy of pitch and rhythm,
while elements such as dynamic markings and articulations
were largely ignored in the interest of time. As work pro-
gressed, it became clear which errors were most common
in the OMR output. For example, there were many mis-
aligned or missing notes in passages with higher note den-
sity (see Figure 1). The OMR software frequently encoded
ties as slurs and vice versa. Despite their visual similar-
ity, these curved lines produce different rhythmic values of
notes, with consequences for our MIR analysis algorithms.
Mendelssohn’s scores also included many detailed perfor-
mance instructions, prompting lengthy discussions about
what information should be preserved in the final dataset
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Figure 2. Measures 14-19 of Op. 13, Mvt. 2.

and what should be left out. With a more rigorous pro-
tocol in place, we reviewed each other’s work to produce
C2. The main purpose of this phase of review was to en-
sure that no errors had been missed in the previous round
of revision. Again, during C2, details of the score came
to light that necessitated further discussion, and the varied
perspectives of the multidisciplinary team informed deci-
sions about how to proceed. For example, double-stops,
where more than one string is played at once, posed a re-
curring challenge. While chords on a staff line can be en-
coded in most analysis systems, Mendelssohn wrote many
passages with moving lines against held notes (see Fig-
ure 2). This texture is easily misinterpreted by algorithms
unfamiliar with the particularities of string music. Ulti-
mately, note accuracy and articulation of onsets (namely,
ties, slurs, and staccatos) were prioritized, while most in-
dications of dynamics and ornamentation were excluded:
a trade-off between comprehensiveness and machine inter-
pretability.

Finally, the last round of corrections (C3) was a review
to align all the encodings according to the conclusions of
discussions during C2 and to standardize formatting and
metadata. A full account of the score elements preserved
in the final dataset is included in the supplementary materi-
als. For consistency, a single person reviewed all the move-
ments in preparing C3. Further discussion is provided in
Section 4.1.

2.5 Differences between Correction Rounds

Besides a qualitative report on the amount of correc-
tions we made in each round, quantitative measurement
of the scale of changes is possible on these digital files.
As the ideal MusicXML tool [9] is not publicly avail-
able with open source code, we used the more generic
SequenceMatcher.quick_ratio() from Python’s
difflib library to produce percent differences. The me-
dian and range of similarity scores between C0 and C1, C1
and C2, and C2 and C3 are shown in Table 1.

Interpreting these numbers directly is difficult as Mu-
sicXML files include a plethora of elements beyond the
focus of our corrections. Still, it is reassuring to see the me-
dian difference between successive corrections decrease by
an order of magnitude each round. If all file modifications
had the same impact on the MIR analyses, their outputs
would show a similar pattern of decreasing impact.

Comparison Pair
Percent Difference
median [min, max]

C0 to C1 10.0% [2.8%, 21.8%]
C1 to C2 1.3% [0.0%, 7.3%]
C2 to C3 0.2% [0%, 1.3%]

Table 1. Percent difference for each comparison pair. The
results are medians across all 24 movements, with maxi-
mum and minimum values indicated in brackets.

3. MIR ALGORITHMS

Four symbolic MIR algorithms were applied to each ver-
sion of the Mendelssohn String Quartet Corpus. These al-
gorithms were chosen because they were either designed
or extensively used by members of the CTS team. Without
ground truth annotations to assess the accuracy achieved
by each MIR tasks, the corrections were evaluated through
their perceivability to the algorithms in output changes be-
tween successive versions. 4 For two of the tasks that pro-
duce sequences of annotations, results from different ver-
sions of the same movement had to be aligned to one an-
other before comparison; this procedure is detailed in the
supplementary materials. In total, 96 evaluations per task
were performed as each analysis algorithm was applied to
all four versions of the 24 movements in the corpus.

3.1 Key Analysis

A recent key-finding algorithm [10] provided two predic-
tions: global key per movement and local key per onset
slice. We ran the algorithm using the default parameters
provided in the implementation. Between C0 and C1, pre-
dictions of global key changed in 3 of the 24 files tested.
There was no change in prediction between C1, C2, and
C3. Predictions of local key changed substantially between
C0 and C1 across all files, and changed much less between
C1 and C2, and between C2 and C3, as shown in Table 2.

Comparison pair
Changes in local key annotations

median(%) [min(%), max(%)]
C0 to C1 46.8% [9.9%, 71.1%]
C1 to C2 0.4% [0.0%, 9.8%]
C2 to C3 0.0% [0.0%, 3.0%]

Table 2. Percent differences in local key annotations for
each comparison pair. The results are medians across all
the 24 movements with minimum and maximum values in-
dicated in brackets.

3.2 Chord Labeling

The automatic chord labeling model [11] was applied to
each stage of the dataset, predicting chords for every onset
slice of the piece.

4 E.g. comparing the outputs of a key-finding algorithm applied to C0
and C1.
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Comparison Pair
Changes in chord labels

median(%) [min(%), max(%)]
C0 to C1 69.1% [17.5%, 96.7%]
C1 to C2 0.7% [0.0%, 41.1%]
C2 to C3 0.0% [0.0%, 12.5%]

Table 3. Percent difference in chord annotations for each
comparison pair, shown as medians across all the 24 move-
ments with minimum and maximum values indicated in
brackets.

Each chord is labelled according to its root (C, F], B[,
etc.) and its quality (major, minor, fully diminished sev-
enth, dominant seventh, etc.), with no mention of its inver-
sion or its harmonic function (Roman numeral analysis).

The results are shown in (Table 3). We can see dif-
ferences between C0 and C1 were substantial (median
69.1%), while the percent change between C1 and C2 was
much smaller (median 0.7%). The majority of the move-
ments showed no change in chord labels between C2 and
C3 (median 0.0%). Such results indicate that chord la-
belling is not sensitive to local differences.

3.3 Monophonic Pattern Discovery

The SIARCT-C Algorithm [12] was used on each version
of each movement to discover sets of repeating patterns.
A “pattern” here refers to a set of excerpts of a piece that
are all nearly identical in pitch and rhythm under trans-
position. While the algorithm is capable of operating on
polyphonic music, here we focus on finding monophonic
patterns between voices. To this end, each MusicXML
file was transformed into point sets of (onset time in quar-
ter notes, morphetic pitch) pairs; for example, the first
measure of the first violin’s part in Figure 1 is notated
as the sequence (69, 0) (69, 1) (71, 2) (71,
2.75). Dynamics, articulatons, and durations are dis-
carded. Some algorithmic pattern discovery methods do
use this kind of information, such as the Automatic Time-
span Tree Analyzer [13], but the majority use only rhyth-
mic and pitch-related data, partially due to the computa-
tional complexity of the problem. The four voices in each
file were concatenated into one sequence for the purpose
of evaluation.

We searched only for patterns that were at least eight
notes long that occurred at least five times within each
movement, allowing for a small amount of variation. These
parameters were chosen as a compromise in light of the
number of movements we had to analyze and the running
time of the algorithm; searches for short patterns take sig-
nificantly longer than searches for long patterns. We illus-
trate the effect of iterative corrections by their impact on
descriptive statistics of these results: the number of unique
patterns detected, the coverage of these patterns over all
notes in the music, and the median cardinality (i.e., num-
ber of instances) of each pattern discovered. 5

5 Comparing sets of discovered patterns is difficult because of their
highly heterogeneous structure, with individual patterns spanning a wide

Table 4 shows how these statistics change between ver-
sions. Many more patterns were found in C1 than in C0
(median 85%, maximum 2100%), with a small amount of
gain and loss from C1 and C2, and no change in total from
C2 to C3. Coverage also grew substantially from C0 to
C1, including more than twice the number of notes after
this first round of corrections for more than half the move-
ments. In contrast, the median cardinality did not change
as drastically for those patterns detected in these different
versions, and no apparent changes occurred during the last
round of corrections.

Comp.
Pair

Magnitude Increase, median [min, max] (%)

Num. Patterns Coverage Cardinality

C0 to C1
85% 110% 8.3%

[16%, 2100%] [21%, 1100%] [-22%, 29%]

C1 to C2
0.0% 0.041% 0.0%

[-5.1%, 7.1%] [0.85%, 9.8%] [-3.4%, 3.5%]

C2 to C3
0.0% 0.0% 0.0%

[0.0%, 0.0%] [0.0%, 0.0%] [0.0%, 0.0%]

Table 4. Median magnitude increase in three statistics
taken on the sets of discovered patterns over the course of
the corrections. Minimal and maximal values for change
are shown in brackets.

Comparison
pair

Change in
PACs detected

New PACs
detected

PACs lost

C0 to C1
154.5%
22 to 56

177.3%
39

22.7%
5

C1 to C2
-3.6%

56 to 54
1.8%

1
5.4%

3

C2 to C3
1.9%

54 to 55
3.7%

2
1.9%

1

Table 5. Change in the number of PACs detected. ‘New
PACs detected’ report the number of PACs detected in the
latter that were not in the former. ‘Lost PACs’ is the num-
ber of PACs that were in the former but not the latter. As
the number of PACs detected is quite small, both relative
changes and exact numbers are given.

3.4 Cadence Detection

Finally, the cadence detection algorithm introduced by
Bigo et al. [14] was used to detect perfect authentic ca-
dences (PACs) 6 throughout the corpus. Each beat was
evaluated as a potential point of cadential arrival using a
Support Vector Machine. As there are only few cadences
within single movements, Table 5 reports the results of

range of cardinalities and number of notes per instance. While it is pos-
sible to devise a more direct evaluation based on similarities between in-
dividual patterns, we used an approach based on descriptive statistics for
the sake of brevity and interpretability.

6 Too few cadences of other types, such as half cadences, were suc-
cessfully detected to interpret sensibly in this context.
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this evaluation as a count of cadences detected rather than
percent change. As expected, the model benefited greatly
from the initial round of corrections: twice as many ca-
dences were identified in C1 files as in C0 files. Additional
rounds of reviews had little impact on the total number of
PACs detected. Close investigation of the differences be-
tween detected cadences in C1, C2 and C3 revealed that
some changes in the algorithm’s output were due to cor-
rections in notated pitch.

4. DISCUSSION

The different rounds of corrections prompted a wide range
of considerations for the group, which are discussed below.
Proofreaders with different kinds of expertise, whether in
MIR, music theory, string musicianship, or the use of the
chosen music notation software, communicated various
concerns and discoveries relating to their respective tasks.
Finally, special situations are discussed, in which music
theoretical and analytical considerations collide with MIR
objectives in notable ways.

4.1 MIR Significance of Correction Rounds

Using OMR to create datasets of symbolic music is an at-
tractive proposition. Our results suggest that there is sig-
nificant variation in the quality of the output between files
when using software like PhotoScore. No task evaluated
here was able to totally overcome the errors introduced
by OMR, with all of the results seeing some amount of
change after the first round of corrections, and the degree
of change in this initial round varied widely between tasks.
Global key estimations changed for only 3 of the 24 move-
ments, while the discovered patterns on the raw OMR out-
put bear little resemblance to those discovered after just
one round of corrections. However, these findings cannot
be extrapolated directly to other algorithms that perform
the same tasks; different machine-learning methods may
cause models to become more sensitive to some errors and
less sensitive to others. For the specific algorithms applied
here, we may consider this as evidence that the underlying
symbolic-musical structures they use to make judgments
are affected by errors in the OMR process to different mag-
nitudes. For most tasks, though, initial correction is neces-
sary when using OMR to create datasets, given the current
capabilities of commercially-available OMR software.

For subsequent rounds of corrections, the sizes of
changes shrink dramatically but still vary between tasks.
In particular, the discovered patterns barely change at all
after the first round of corrections; this is likely due to
the fact that the algorithm uses only onset times and mor-
phetic pitch, thus ignoring some pitch changes with har-
monic consequences.

4.2 Experience of Doing Corrections

For the members of our team with solid experience in
copying music, correcting OMR required an average time
of 30 to 45 minutes per printed page depending on the va-
riety and amount of errors. To review Mendelssohn’s com-

plete string quartets (C0 to C1) thus took approximately
75 to 110 hours. Even though the standardization step
(C1 to C2) in itself was much shorter (5 to 15 minutes per
printed page, or an approximate total of 25 hours), discus-
sions concerning what should be kept and what should be
ignored lasted over a month. Finally, checking the consis-
tency represented 30 additional hours (C2 to C3). While
the dataset at C3 was standardized to meet the require-
ments of our analysis tasks, one might wonder whether
investing this amount of time was necessary.

Different movements, and different passages within in-
dividual movements, required vastly different degrees of
effort to correct. In some sections, only corrections to
articulations and accidentals were needed, whereas other
sections needed to be completely rewritten. The first round
of corrections (C0 to C1) was the most difficult, involv-
ing many decisions about which elements of the score
to preserve. Some time-consuming corrections had to be
rolled back after standardization protocols had been de-
cided on. This round of corrections was particularly dif-
ficult for proofreaders who had never used MuseScore.
Certain features of the program, such as the addition of
key signatures, introduced multiple additional errors when
used incorrectly, while some features that might have saved
time, such as batch addition of articulation marks, went un-
used through much of the correction process. There were
a few musical situations that tended to produce predictable
errors in the OMR encoding. Errors frequently arose when
the OMR software missed or misplaced rests, and proof-
readers quickly learned that passages with higher note den-
sity required much more effort to correct.

4.3 Musical Considerations

Figure 1 gives a general sense of the differences between
the initial (C0) and final (C3) stages of the correction pro-
cess. These differences fall into two broad categories:
“pitch-rhythm” differences in the vertical (pitch) or hori-
zontal (rhythm) placement of notes and “notational” dif-
ferences in articulations, ornaments, and other non-pitch
elements of the score. Pitch-rhythm differences had a large
effect on the outcomes of analysis tasks. Pitches that were
incorrect (Vla., m. 61), misaligned (Vln. 1, m. 62), miss-
ing (Vla., m. 62), or extraneous (Vln. 2, m. 61; Vc., m.
60) affected all four analysis tasks. Notational differences
in tremolos (Vln. 2 & Vla., mm. 60-62), and slurs (Vln.
1, m. 60) had a smaller effect on the outcomes of analysis
tasks, but could be disruptive in MIR tasks that make use of
recurring notational cues, especially for pattern finding or
cadence detection. For example, Mendelssohn often uses
slurs, staccatos, and dynamic markings such as hairpins to
highlight recurring motives. When these motives are trans-
posed or altered non-uniformly, as in the tonal answer of a
fugue or the development section of a sonata-form move-
ment, they may become undetectable by pattern-finding al-
gorithms that rely exclusively on pitch and rhythm. An
analyst relying on these results may be led to misinterpret
larger tonal, hypermetric, and formal structures if, for ex-
ample, the algorithm fails to detect a main theme at the
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beginning of a returning section. Algorithms that also con-
sider articulations and dynamic markings might perform
better in situations like these. One other complication is
that PhotoScore sometimes generates hidden rests (Vla. m.
61), slowing the correction process by making the score
less readable to humans.

Extraneous or incorrect clefs were found in four of 24
movements during the final round of corrections (C3). In
the fourth movement of Op. 44 No. iii, an incorrect
(French violin) clef in the first violin transposed the part
up by a major third. This error persisted through several
rounds of correction because it was obscured by system
breaks. Incorrect clefs had a large effect on key-finding,
chord-labeling, and cadence-detection tasks, but not on the
transposition-invariant pattern discovery task.

Another recurring issue concerns multiple voices within
a single staff (i.e., “double-stops” on a string instrument).
While this is possible to encode in MusicXML format, it is
often unreadable to the software used for analysis tasks. In
these cases, the encoder must decide which voice to keep
and which to discard, which can result in the loss of infor-
mation. In Op. 13, Mvt. 2, mm. 16-17 (see Figure 2),
the cello plays both a held C (in red) along with a mov-
ing line D-E-F. Without the moving line, the C becomes a
pedal at the bottom of the texture, changing the harmonic
and cadential sense of the music. In Op. 13, Mvt. 3, mm.
143-53, the cello and violin II have melodic lines below
a harmonic pedal resulting in two-note chords for each of
them. Choosing one voice or the other is difficult: keep-
ing the pedal tones preserves the harmony, allowing for the
detection of cadences and chords; keeping the melodic mo-
tives allows for the discovery of more patterns throughout
the movement. Deciding what to keep depends on the type
of analysis to be carried out.

4.4 Implications for OMR

The initial errors in OMR files disproportionately impacted
these tasks: a 10% change in the MusicXML files pro-
duced a 47% change in local key judgments and a 69%
change in chord labels. This proportion of incorrect re-
sults underlines how this commercial software struggled
with these scores. One cause was missing notes: runs
of sixteenths and eighths typical of this genre of music
were often dropped, when the dense or complicated stem-
mings were incorrectly interpreted. The numerous ar-
ticulation and ornamentation markings were often misin-
terpreted as notes, suggesting poor recognition of shapes
within staves. There was also confusion between parts
in the four staff systems, with notes and text annotations
packed more tightly in vertical arrangements than in other
genres and publication styles. Software tuned to this era
and style of work would hopefully reduce the amount of in-
formation lost. However, given the variety in performance
quality across these scores, human supervision is highly
recommended.

5. CONCLUSION

This project is a case study in how human corrections on
OMR can influence MIR analysis results. The range of
outcomes across these analyses suggests that the value of
human correction time depends on the MIR task. If some
noise in the results is permissible and one is only inter-
ested in large-scale qualities like global key, the raw OMR
files may suffice, but anything closer to the notes would
benefit from some review and correction. Without human
intervention, half of the outputs for local key detection and
chord labeling were corrupted, while monophonic pattern
discovery and cadence detection missed substantial por-
tions of the relevant material in most pieces.

The second and third rounds of corrections had pro-
gressively smaller effects on the aggregate results of these
analyses, as expected, but there are instances when these
smaller changes were crucial for the type of analysis at
hand. Passing the symbolic music files between multiple
reviewers minimized the impact of human error. Some of
the changes in these later rounds were motivated by new
understanding of the music, music encoding limitations,
and what could be used by our MIR algorithms.

This project is not representative of all symbolic mu-
sic corpus-building with OMR. PhotoScore was not nec-
essarily the best OMR processor for string quartet music
printed in 1875. The sensitivity of these MIR analysis
tasks on changes in symbolic music information is also
specific to their implementations; a study of monophonic
patterns that included articulation or dynamics would tell a
different story from that above. However, the novel com-
parison process across iterations of corrections highlights
the importance of expert musical care in the developing of
symbolic music corpora, as well as the need for explicit
acknowledgement of the types of score information pre-
served therein.

Discussions between team members about the potential
relevance of ornamentation and articulation to each ana-
lytical objective resulted in a set of files that contained
more information than could be used by the algorithms ap-
plied here. At the same time, important layers like dynam-
ics were removed because of the difficulty of producing
machine-interpretable encodings. We hope to see that the
retained layers of performance information are used in fu-
ture work with this collection of symbolic scores, and that
symbolic music encoding and analysis tools continue to
progress towards capturing a richer range of musical in-
formation. The final version of this Mendelssohn String
Quartet Corpus, a pedagogical, scholarly, and artistic re-
source for musicians, composers, and music researchers
alike, can be downloaded from: https://github.
com/DDMAL/felix_quartets_got_annotated.

While OMR can be a helpful tool for corpus building,
such projects still require human expertise in both the mu-
sic represented and in its intended uses. For MIR-related
research, some tasks benefit from manual review more than
others.
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ABSTRACT

Deep representation learning offers a powerful paradigm
for mapping input data onto an organized embedding space
and is useful for many music information retrieval tasks.
Two central methods for representation learning include
deep metric learning and classification, both having the
same goal of learning a representation that can gener-
alize well across tasks. Along with generalization, the
emerging concept of disentangled representations is also
of great interest, where multiple semantic concepts (e.g.,
genre, mood, instrumentation) are learned jointly but re-
main separable in the learned representation space. In this
paper we present a single representation learning frame-
work that elucidates the relationship between metric learn-
ing, classification, and disentanglement in a holistic man-
ner. For this, we (1) outline past work on the relationship
between metric learning and classification, (2) extend this
relationship to multi-label data by exploring three different
learning approaches and their disentangled versions, and
(3) evaluate all models on four tasks (training time, sim-
ilarity retrieval, auto-tagging, and triplet prediction). We
find that classification-based models are generally advan-
tageous for training time, similarity retrieval, and auto-
tagging, while deep metric learning exhibits better per-
formance for triplet-prediction. Finally, we show that our
proposed approach yields state-of-the-art results for music
auto-tagging.

1. INTRODUCTION

Learning a good representation, or embedding space, is
a key goal in deep learning and is central to music clas-
sification and retrieval tasks. An important quality of a
good representation is its generalization capability, i.e.,
its applicability to a diverse set of downstream tasks, in-
cluding those relying on small datasets in a transfer learn-
ing setting [1–3]. While numerous representation learn-
ing methods have been explored to date, two learning

c© Jongpil Lee, Nicholas J. Bryan, Justin Salamon, Zeyu
Jin, and Juhan Nam. Licensed under a Creative Commons Attribution 4.0
International License (CC BY 4.0). Attribution: Jongpil Lee, Nicholas
J. Bryan, Justin Salamon, Zeyu Jin, and Juhan Nam, “Metric learning vs
classification for disentangled music representation learning”, in Proc. of
the 21st Int. Society for Music Information Retrieval Conf., Montréal,
Canada, 2020.

Figure 1. A disentangled music representation space. The
green dot depicts a query song, the black dots depict re-
trieval songs, the red and yellow dots depict centroids of
musical concepts, the gray arrows depict multidimensional
axis, and the blue arrows depict retrieval methods.

paradigms are particularly common: deep metric learning
and classification-based representation learning. The for-
mer is based on deriving similarity scores (or distances)
between examples, while the latter is achieved via a cross-
entropy loss over similarity scores between example and
class centroids.

While both paradigms share the goal of learning a gen-
eralizable representation, the results from each approach
are generally different. For example, a learned representa-
tion optimized via a classification task may perform poorly
on a similarity-search task, and vice versa. While recent
studies have elucidated the theoretical relationships be-
tween these paradigms and validated them through experi-
mental findings [4], these developments have not been ex-
plored in the music domain. Furthermore, the relationship
has not been explored for multi-label data, which is central
to many music information retrieval tasks.

Beyond seeking a representation that generalizes across
tasks, the emerging concept of disentangled representa-
tions [5, 6] is of great interest for music applications. Mu-
sic is often labeled with multiple semantic dimensions si-
multaneously (e.g., genre, mood, and instrumentation) and
learning a representation that can capture this structure is
advantageous. We often need to search for music that is
similar along a particular semantic dimension in one ap-
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plication (e.g., a music playlist with lighthearted mood),
while requiring music similar along a different seman-
tic dimension for another application (e.g., era for mu-
sicological analysis). Disentangled representations allow
us to address both problems with a single model, and
were recently proposed for audio-based music similarity
search [7]. However, this study only explored disentangle-
ment via a single deep metric learning approach, and the
applicability and performance of more recent metric- and
classification-based learning methods is yet to be explored.

In this paper, we present a unified representation learn-
ing framework that elucidates the relationship between
metric learning, classification, and disentanglement. First,
we outline past work on the relationship between metric
learning and classification. We then extend this relation-
ship to multi-label and multi-concept data (common to mu-
sic applications) by exploring three different learning ap-
proaches and their disentangled versions – two of which
are novel to this work. Finally, we evaluate all models
against four tasks (training time, similarity retrieval, auto-
tagging, and triplet prediction) and compare various as-
pects of the learned representations.

2. RELATED WORK

2.1 Metric Learning and Classification
The goal of distance metric learning is to obtain an em-
bedding space where similar items are close together and
dissimilar items are far apart. A common strategy is
to use pairwise [8, 9] or triplet-based samples to train a
model [10–13]. An important advantage of deep metric
learning is that it can efficiently model an extremely large
number of classes (e.g., for face recognition) [12]. How-
ever, training models using this strategy are relatively slow
as models operate on triplets of input samples [14]. Re-
cently, more efficient sampling techniques have been pro-
posed to speed up convergence, including hard negative
mining, semi-hard negative mining [12], distance weighted
sampling [15], and proxy-based training [14]. Proxy-based
training [14] assigns one or several proxies to each class
(given by per-class embedding centroids) and optimizes
the learned space by comparing embedded input samples
to proxies instead of directly comparing them to positive
and negative samples. This reduces training time signifi-
cantly while improving retrieval performance on images.

Classification models, on the other hand, are typically
trained such that classes are linearly separable in the em-
bedding space of the last hidden layer of the deep neural
network. Since classification models are not optimized
based on distances in the learned embedding space, they
may not perform well when directly used for similarity-
based retrieval. To overcome this, recent work proposed
the application of a normalization layer over the embed-
ding space during training, and showed that this sim-
ple technique increases model performance on similarity-
based image retrieval [4].

Recent and parallel advances in both paradigms
(metric- and classification-based learning) have shown that
there is an inherent link between them [4, 16, 17]. The

per-class embedding centroids used in proxy-based train-
ing are, in fact, equivalent to the per-class vectors obtained
from the linear transformation in the last hidden layer of
a classification model [16]. Further, a recent comparative
study demonstrated that the loss function of a triplet-based
model is equivalent to that of a classification model up to
a smoothing factor for single-label, multi-class data [16].
These findings suggest that deep metric- and classification-
based learning are not as different as initially thought and
we could, potentially, use either to learn a representation
that generalizes well to both similarity-based retrieval and
classification tasks.

2.2 Disentangled Representation Learning
Another important measure of representation learning is
disentanglement [18]. Recently, Lee et al. adapted Condi-
tional Similarity Networks (CSN) applied to triplet-based
deep metric learning to the music domain [7, 19]. The
main idea in CSN is to apply a masking function over
the embedding space, where each mask corresponds to a
different semantic dimension of similarity corresponding
to musical notions such as genre, mood, instrument and
tempo. They showed that the disentangled music repre-
sentation not only enables multidimensional music search
via its sub-dimensions, but also improves general music
retrieval performance when all embedding dimensions are
used. However, CSN for disentangled music representa-
tion learning was only explored using a deep metric learn-
ing strategy, and classification-based approaches were not
studied. Considering the close relationship between the
two, we propose to study disentanglement under classifi-
cation, particularly for multi-labeled music data, and com-
pare and contrast it to disentanglement via metric learning.

3. DISENTANGLED LEARNING MODELS

In this section, we introduce three disentangled learn-
ing methods, which are triplet-based, proxy-based, and
classification-based models. The first model was previ-
ously developed [7], and the latter two are novel contribu-
tions. The overall architectures are illustrated in Figure 2.
In the following descriptions, x denotes a data point, f(·)
a nonlinear embedding function, y a multi-hot class label,
and s a category (or a similarity notion such as mood, genre
or instrumentation) of y. For example, if yz is rock, then
syz

is genre.

3.1 Triplet-based Model
Disentangled triplet-based models were recently proposed
in [7, 19]. We first define a triplet as t = (xa, xp, xn; yz),
where xa is the anchor sample, xp is the positive sample,
and xn is the negative sample. xa and xp are sampled to
have the same positive label yz , while xn is negative for
yz . Then, the basic triplet loss is defined as

L(t) = max{0, D(f(xa), f(xn))−D(f(xa), f(xp)) + ∆},
(1)

where D(f(xi), f(xj)) = cos(f(xi), f(xj)) is a distance
metric, and ∆ is a margin value [11]. To disentangle the
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Figure 2. A unified framework for disentangled triplet- and proxy-based metric learning and multi-label classification.

embedding feature of size d, a masking function ms ∈ Rd

is applied. The number of masks corresponds to the num-
ber of similarity notions s and each mask occupies certain
dimensions of the Rd space evenly as illustrated in Figure
2 (a). Thus, when the t = (xa, xp, xn; yz) is used, a mask
for the similarity notion syz is applied to the embedding
feature space. The loss for training the model is given by:

L(t) = max{0, D(f(xa) ◦ms, f(xn) ◦ms)

−D(f(xa) ◦ms, f(xp) ◦ms) + ∆},
(2)

where ◦ denotes the Hadamard product.

3.2 Proxy-based Model
The core idea of proxy-based metric learning is that proxy
embeddings are learned and assigned to each class and
used to measure the distance to an anchor data point in-
stead of directly measuring distances to pairs or triplet data
samples [14]. This can be interpreted as a supervised clus-
tering algorithm, where proxies play a role of class cen-
troids. In this approach, the distance metric becomes

D(f(xi), pyz ) = cos(f(xi), pyz ) =
f(xi)

||f(xi)||
· pyz
||pyz ||

, (3)

where xi is a data point, pyz is a proxy for class yz , and
· is the dot product. If the data is single-labeled (multi-
class), one can apply triplet loss, Neighborhood Compo-
nent Analysis (NCA) loss [20], or Softmax loss over the
above distance metric [14, 16], but with our multi-labeled
data, it is not directly applicable. To address this, we re-
place these losses with a multi-label classification loss, i.e.,
binary cross entropy. The prediction score for each class
becomes

ŷz = sigmoid(D(f(xi), pyz )), (4)

and the loss is

L(xi) =
∑
z

[−yzlog(ŷz)− (1− yz)log(1− ŷz)]. (5)

However, from our preliminary experiments, we found that
the sigmoid function with cosine similarity score causes
numerical problem in optimization. We speculate that the
reason for this is that the cosine similarity score (bounded
between -1 to +1) only activates the linear regions of the

downstream sigmoid activation, reducing model capac-
ity. 1 Therefore, we modify the distance metric to be

D(f(xi), pyz ) =
f(xi)

||f(xi)||
· pyz , (6)

to ensure that both the learned embedding space is normal-
ized and the sigmoid activations can have nonlinear prop-
erties.

From this basic multi-label proxy-based model, we ex-
pand the model by applying the masking function as used
in the disentangled triplet-based model. Then, the predic-
tion score for each class is updated to

ŷz = sigmoid(D(f(xi) ◦ms, pyz ◦ms)), (7)

as illustrated in Figure 2 (b).

3.3 Classification-based Model
Classification-based metric learning has recently been ex-
plored [4, 16]. The core idea is to apply a normaliza-
tion layer on the embedding feature space. This simple
technique ensures that the learned representation has unit
length and makes similarity-based retrieval more effective
compared to the vanilla classification model. Therefore,
the prediction score of classification-based metric learning
model for each class is

ŷz = sigmoid(
f(xi)

||f(xi)||
· cyz ), (8)

where cyz
is a centroid for each class (parameters of the

last hidden layer). 2 At this stage, we observe that the dis-
tance metric inside the sigmoid function of Equation 8 is
equivalent to that of our modified distance metric in Equa-
tion 6 of the proxy-based model.

As for triplet-based metric learning, we extend
classification-based metric learning to learn a disentangled
embedding space. We begin from the disentangled dis-
tance metric, which is

1 In proxy-triplet loss, this type of numerical problem does not oc-
cur because they are relative comparison based losses. In proxy-NCA
or proxy-Softmax loss, some of the previous works encountered similar
problem, and solved the problem by applying a smoothing factor over the
similarity score [4, 16, 21]. We also tested applying a smoothing factor,
but for our multi-label classification problem, it turns out that the pro-
posed modified distance metric is more effective.

2 In our preliminary experiments, we found that removing the bias term
does not decrease the model performance, so we did not include it in the
Equation 8.
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D(f(xi) ◦ms, cyz ◦ms) =
f(xi) ◦ms

||f(xi) ◦ms||
· (cyz ◦ms)

=
1

||f(xi) ◦ms||
· (f(xi) ◦ms) · (ms ◦ cyz ).

(9)

From the above equation, if we split f(xi) into the nonlin-
ear function fn−1(xi) and the embedding feature layer h
(here, h layer includes nonlinear activation), then the equa-
tion becomes

=
1

||f(xi) ◦ms||
· (fn−1(xi) · h ◦ms) · (ms ◦ cyz )

=
1

||f(xi) ◦ms||
· fn−1(xi) · h ◦ms ·ms ◦ cyz .

(10)

In this equation, (h◦ms ·ms◦) is actually a sub-dense layer
that has the same dimensionality as the disjoint mask ms,
which is applied when yz ∈ s. Henceforth, we denote the
sub-dense layer hs. Now, ||f(xi) ◦ms|| can be replaced to
||fn−1(xi) · hs||. Finally, the disentangled distance metric
becomes

=
1

||fn−1(xi) · hs||
· (fn−1(xi) · hs) · cyz . (11)

This is the same formula for multi-task learning in the
multi-label classification problem formulation, surpris-
ingly, proving a previously unknown link between the two
concepts. We illustrate this disentangled classification-
based model in Figure 2 (c). Through experimental eval-
uation, we further verify that this multi-task learning-
based classification model is equivalent to the disentangled
proxy-based model while being much simpler to imple-
ment and benchmark.

4. EXPERIMENTS

4.1 Dataset and Input Features
For our experiments, we use the Million Song Dataset
(MSD) [22] and Last.FM tag annotations associated with
MSD tracks, which have been previously grouped into dif-
ferent categories [23], resulting in 28 genre tags, 12 mood
tags, 5 instrument tags, and 5 era tags. We treat each cat-
egory as a similarity notion s. We use these tags for eval-
uating similarity-based retrieval, auto-tagging, and triplet
prediction tasks. The data are split into 201680, 11774,
and 28435 samples for the train, validation, and test sets,
respectively, following a previous auto-tagging benchmark
[24]. For triplet prediction evaluation, we follow the same
procedure as in [7], albeit switch one similarity notion (era
replaces tempo) to match auto-tagging benchmarks. We
sample 40,000 triplets per each similarity notion (genre,
mood, instruments, era, track) and use a cleaned version
of the dim-sim dataset to evaluate the models on human-
annotated triplets.

The input to the embedding function f(·) is 3-second
excerpts represented as a log-scaled mel-spectrogram S,
extracted with librosa [25]. We use a window size of 23
ms with 50% overlap and 128 mel-bands, resulting in in-
put dimensions of 129 × 128 as in [7]. The input features

are z-scored standardized using fixed mean and standard
deviation values of 0.2 and 0.25, respectively.

4.2 Backbone Model and Training Parameters
For the embedding function or backbone model f(·), we
use the same architecture as described in [7], which is an
Inception-based model [26]. The model is comprised of a
convolution layer with 5×5 sized 64 filters followed by 2×
2 strided max-pooling, followed by six Inception blocks.
Each Inception block consist of two Inception modules, a
naïve module and dimension reduction module, which are
applied in sequence. Both of the modules include filters of
mixed size, but the naïve module has 2×2 strides in the last
convolution layers of the module, so that the spatial feature
map is reduced, and the dimension reduction module has
a fixed number of filters in the last convolution layers of
the module, so that the feature map is fixed to 256 in the
intermediate layers. At the end, one fully connected layer
with 256 units is added, except for the disentangled (multi-
task learning) classification-based model, which uses sub-
dense layers instead of a single fully connected layer. We
use ReLU nonlinearities for all layers.

Since our embedding dimensionality is 256 and we con-
sider four music similarity notions (genre, mood, instru-
ments, era), each has a disjoint subspace of size 64. For
the disentangled (multi-task learning) classification-based
model, the sub-dense layers are also 64 units each. We
use the Adam optimizer [27] for training. We initialize the
learning rate to 0.005 and reduce it by a factor of 5 when
the validation loss does not decrease for 10 epochs, up to
5 times, after which we apply early stopping. The margin
for the triplet-based models is set to 0.1.

4.3 Evaluation Tasks
Our learned representations can be utilized for many ap-
plications, so there are many aspects to consider when
evaluating representation learning models. Therefore, as
a unified evaluation framework, we evaluate the models on
four tasks: training time, similarity-based retrieval, auto-
tagging, and triplet prediction.

4.3.1 Training Time

We first measure the overall training time to see the effi-
ciency of the representation learning model. The training
time is calculated as the total number of epochs multiplied
by the time consumption of 1 epoch. Then, we report the
value as a ratio to the shortest training time.

4.3.2 Similarity-based Retrieval

For the similarity-based retrieval evaluation, we use the
recall@K (R@K) metric to measure retrieval quality fol-
lowing the standard evaluation setting in image retrieval
[4,14–16,30]. This metric is useful for evaluating a search
system because it measures the quality of the top K re-
trieved results, which are more important than long-tail re-
trieved results. The definition of the standard recall@K
that is used for single-label problems is as follows. A query
song is used to search a test set of recordings and retrieve
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Models Normalization Disentanglement
Training time Similarity-based retrieval Auto-tagging

ratio R@1 R@2 R@4 R@8 AUC

Triplet 3 7 1.87 31.8 45.2 59.9 73.0 0.815
Triplet 3 3 2.37 36.5 50.5 64.1 76.0 0.825

Triplet + track reg. 3 3 3.05 33.9 47.5 61.9 74.3 0.813
Proxy 3 7 1.11 45.0 58.5 71.0 80.9 0.890
Proxy 3 3 1.29 44.7 58.2 70.7 80.6 0.890

Classification 7 7 1.00 6.1 11.5 21.1 35.9 0.887
Classification 3 7 1.00 43.8 57.8 70.3 80.3 0.887
Classification 3 3 1.27 44.7 58.4 70.7 80.9 0.890

Table 1. Results for training time, similarity search, and auto-tagging.

Model AUC

CRNN [23] 0.850
Self-attention [28] 0.881

Sample-level ReSE-2 [29] 0.885
Multi-level & multi-scale [24] 0.888

Proposed Model 0.890

Table 2. Auto-tagging SOTA comparison.

similar sounding results. If one of the top K retrieved re-
sults has the same class label as the query song, the re-
call@K is set to 1, otherwise it is set to 0. This process is
repeated for all samples in the test set and then averaged.

Our data is multi-labeled, however, so we adapt the
standard single-label (multi-class) R@K metric to create
a multi-label variant. Our definition is

R@K =
1

N

N∑
q=1

n(yq ∩ (∪Ki=1y
i))

n(yq)
, (12)

where N is the number of test samples, yq is the ground
truth labels of a query, and yi is the ground truth labels of
the top K retrieved results. And, n(·) denotes the number
of the elements of a set. In this setup, if the set of labels of
the top K retrieved results contains all the multiple labels
of the query song, the recall@K is set to 1, otherwise it is
set to the correct answer ratio. We report R@K when K is
1, 2, 4, and 8.

4.3.3 Auto-tagging

Music auto-tagging has been extensively studied in the
literature with diverse model architectures [3]. As such,
we follow standard benchmarking and evaluation criteria,
and report area under the receiver-operator curve (AUC) to
measure tag-based retrieval performance.

Unlike the proxy-based and classification-based ap-
proaches, the triplet-based model doesn’t directly predict
a class (or several classes) for a given input. Thus, we
use the concept of prototypes to obtain classification re-
sult from the triplet-based models [31]. We first average
all the embedding features of the training samples that are
assigned to each class label to construct prototype (or cen-
troid) of each class label. Then, we measure a distance
between these prototypes and embedding feature of each
sample and regard it as a prediction score for classification,
which itself is directly used for AUC evaluation.

4.3.4 Triplet Prediction

Triplet prediction score is simply measured by counting the
number of correct predictions among all test triplets. Here,

it is regarded as correct if the distance between the embed-
ding features of the anchor and the positive is smaller than
that of the distance between the anchor and the negative.

5. RESULTS

In Table 1, we present the results for training time,
similarity-based retrieval, and auto-tagging. We com-
pare a total of eight models, which are categorized into
three learning methods: triplet-based, proxy-based, and
classification-based models. “Disentanglement” indicates
whether a CSN masking function is applied to each learn-
ing method, and “Normalization” indicates whether a nor-
malization layer is applied to the model’s embedding layer.
“Track regularization” (track reg.) indicates whether, in
addition to tag-based triplets, we also sample triplets by
taking the anchor and positive from the same track and the
negative from a different track, as proposed in [7].

First, we see that the training time, represented as the
ratio between each model’s training time and the training
time of the fastest approach, is significantly reduced for
the proxy-based and classification-based models compared
to the triplet-based models. This is because each training
sample for the triplet model is actually composed of 3 in-
puts (anchor, positive and negative) or even 5 when track
regularization is also applied, whereas the proxy-based and
classification-based approaches only require one input per
training sample.

Second, for similarity-based retrieval, we see that the
vanilla classification model without a normalization layer
exhibits poor performance. This confirms our conjecture
that using the representation learned by the classification
model without normalization layer directly is not optimal
for similarity-based retrieval, as the model is not optimized
based on distances in the learned embedding space. We
also see that the proxy- and classification-based models are
superior to the triplet-based models across the board. We
hypothesize that this is due to the latter strategy using only
a single label per training sample, whereas the former two
use all (multi-)labels for each training sample, thus exploit-
ing a richer signal during training.

Third, for auto-tagging, we see that the proxy-based
and classification-based models outperform the triplet-
based model by a large margin. As expected, the vanilla
classification-based model performs well on this task. In
Table 2, we compare our proposed classification-based dis-
entangled model to the state of the art (SOTA) for music
auto-tagging. Our model outperforms all baselines, setting
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Embedding space Models Normalization Disentanglement Genre Mood Instruments Era Overall

Complete space

Triplet 3 7 0.771 0.725 0.653 0.701 0.712
Triplet 3 3 0.762 0.744 0.696 0.733 0.733

Triplet + track reg. 3 3 0.757 0.733 0.673 0.715 0.720
Proxy 3 7 0.774 0.742 0.645 0.693 0.714
Proxy 3 3 0.762 0.742 0.660 0.716 0.720

Classification 7 7 0.783 0.745 0.659 0.723 0.728
Classification 3 7 0.776 0.747 0.647 0.704 0.719
Classification 3 3 0.758 0.742 0.659 0.715 0.719

Sub-space

Triplet 3 3 0.790 0.785 0.798 0.797 0.792
Triplet track reg. 3 3 0.775 0.748 0.743 0.742 0.752

Proxy 3 3 0.777 0.740 0.734 0.700 0.738
Classification 3 3 0.775 0.739 0.732 0.701 0.737

Table 3. Results on tag-based triplets.

Models Normalization Disentanglement Track Human-labeled

Triplet 3 7 0.957 0.820
Triplet 3 3 0.964 0.820

Triplet + track reg. 3 3 0.961 0.852
Proxy 3 7 0.978 0.784
Proxy 3 3 0.978 0.791

Classification 7 7 0.978 0.780
Classification 3 7 0.978 0.795
Classification 3 3 0.984 0.801

Table 4. Results on track-based & human-labeled triplets.

the new state-of-the-art for music auto-tagging.
Fourth, for triplet prediction, we report tag-based triplet

results in Table 3 using different similarity dimensions
(genre, mood, instruments, era), and in Table 4 the results
for track-based and human-labeled triplets. The “Embed-
ding space” column indicates whether we use the complete
embedding space to measure the similarity between pairs
of examples, or whether we only use the disjoint sub-space
(f(xi) ·ms or hs) corresponding to the similarity notion s
used to sample the test triplets (genre, mood, instruments
or era). In Table 4 we use the complete space.

Fifth, in Table 3 we see that while proxy- and
classification-based embeddings are superior for music re-
trieval and tagging, triplet-based embeddings perform bet-
ter (unsurprisingly) on the triplet-prediction task. It is note-
worthy that while the triplet task is often used as a proxy
for evaluating music similarity modelling, models that do
best on this task are not necessarily the best at down-
stream retrieval tasks as evidenced by Table 1. In Table
4, we also see that while classification-based embeddings
perform better at predicting track-based triplet similarity,
triplet-based embeddings perform better when it comes to
matching human judgements of triplet similarity. This is
particularly true when we apply triplet learning with track
regularization, in accordance with previous work [7].

6. VISUALIZATION OF DISENTANGLED SPACE

To qualitatively evaluate the disentangled representation
space learned by our model, we visualize the embeddings
of the test set as a t-SNE plot [32] in Figure 3. We take
embeddings from the disentangled triplet model and high-
light samples with the female vocalists and instrumental
tags as an example. While the highlighted samples are
relatively dispersed when considering all dimensions, we
see that they are nicely clustered together when only con-

Figure 3. t-SNE plot of test set embedding features. The
blue dots are labeled positive for the female vocalists tag,
the red dots are labeled positive for the instrumental tag,
and the green dots are negative.

sidering the instrument sub-space of the embedding. This
illustrates the benefits of a disentangled space, which sup-
ports both global similarity and specialized similarity over
specific music dimensions.

7. CONCLUSION

In this paper, we presented a detailed study of metric-
based and classification-based learning approaches for mu-
sic representation learning. We extended both strate-
gies to learn disentangled spaces from multi-label data,
and showed both analytically and empirically that un-
der certain conditions, proxy-based learning is equivalent
to classification-based learning. We benchmark multiple
variants of each strategy in terms of training efficiency and
performance on music retrieval, auto-tagging, and triplet
prediction tasks. Our results show that, when coupled with
disentanglement and normalization, classification-based
representation learning produces superior benchmark re-
sults on all tasks, except for triplet prediction where triplet
models are (predictably) strong performers, indicating that
triplet prediction is not necessarily a reliable proxy for
real-world retrieval performance. Our best performing dis-
entangled model obtains state-of-the-art results for music
auto-tagging, outperforming all previous baselines. Fi-
nally, we complement our quantitative analysis with qual-
itative results that further illustrate the benefits of learning
a disentangled music embedding space.
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ABSTRACT

While many researchers have proposed various ways
of quantifying recommendation list diversity, these ap-
proaches have had little input from users on their own per-
ceptions and preferences in seeking diversity. Through an
exploratory user study, we provide a better understanding
of how users view the concept of diversity in music recom-
mendations, and how they might optimise levels of intra-
list diversity themselves. In our study, 17 participants in-
teracted with and rated the suggestions from two different
recommendation systems. One provided static top-7 col-
laborative filtering recommendations, and the other pro-
vided an interactive slider to re-rank these recommenda-
tions based on a continuous diversity scale. We also asked
participants a series of free-form questions on music dis-
covery and diversity in semi-structured interviews. User-
preferred levels of diversity varied widely both within and
between subjects. Although most users agreed that diver-
sity is beneficial in music discovery, they also noted a risk
of dissatisfaction from too much diversity. A key finding is
that preference for diversification was often linked to user
mood. Participants also expressed a clear distinction be-
tween diversity within existing preferences, and outside of
existing preferences. These ideas of inner and outer di-
versity are not well defined within the bounds of current
diversity metrics, and we discuss their implications.

1. INTRODUCTION
As music consumption has moved from physical media to
digital collections to streaming, people have changed the
way they discover new music. As with other forms of
consumption which have made the shift to digital media
and marketplaces such as movies, television, and consumer
products, data on music listening habits is more prevalent
than ever. Accordingly, systems which use this data to mar-
ket or recommend new content to users have become ubiq-
uitous. These music recommender systems aim to provide
satisfying music recommendations to users across a wide
variety of contexts [23].

c© Kyle Robinson, Dan Brown, Markus Schedl. Licensed
under a Creative Commons Attribution 4.0 International License (CC BY
4.0). Attribution: Kyle Robinson, Dan Brown, Markus Schedl. “User
Insights on Diversity in Music Recommendation Lists”, 21st International
Society for Music Information Retrieval Conference, Montréal, Canada,
2020.

One common way of recommending music is to cre-
ate a ranked list where the items are formed by the top-n
recommendations, as produced by the used recommenda-
tion algorithm, sorted by recommendation relevance. To
judge the quality of recommendations, various forms of
accuracy metrics have been proposed. Typically borrowed
from the field of information retrieval, these accuracy mea-
surements aim to quantify how well a recommendation (or
set of recommendations) aligns with a user’s known pref-
erences, or in some cases how satisfied a user will be with
those recommendations [10].

In addition to accuracy, various other metrics have been
proposed [10, 12]. These aptly named beyond-accuracy
metrics include novelty, coverage, serendipity, and diver-
sity [10]. Novelty relates to items which are unknown to
the user, coverage relates to the proportion of items that can
be recommended (item coverage) or to the proportion of
users for which at least one recommendation can be made
(user coverage), serendipity relates to the unexpectedness
of a recommendation, and diversity relates to the dissimi-
larity of recommended items [10]. We focus our attention
to diversity as it is well researched, and easily understood
for music [10, 12, 25].

Diversity in music recommender systems is well re-
searched, but we are unaware of any research which specif-
ically explores user provided perceptions of diversity. Ad-
ditionally, most implementations of diversity treat the met-
ric as a static variable between or within users. We argue
that desire for diversity in recommendations may instead
be situationally dependent so we present users with an in-
teractive system which allows them to select diversity as
a continuous trade off against accuracy across numerous
personalized recommendation lists. Here, alongside a live
user study using this prototype system, we present the re-
sults of semi-structured interview questions in order to ad-
dress the following research questions:
• RQ1: How do users feel about diversity in personal-

ized music recommendation lists?

• RQ2: How might users optimise their own level of
diversity in personalized recommendation lists?

We found that users presented a range of definitions for
diversity, linked ideal diversity levels to their mood, and
distinguished between what we call inner and outer diver-
sity. When asked to optimise their own level of diversity
using our system selections differed greatly within and be-
tween subjects.
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2. BACKGROUND & RELATED WORK
2.1 Diversity in Recommender Systems
Alongside novelty, coverage, and serendipity, diversity has
long been identified as an important metric in provid-
ing satisfying automated recommendations to users across
varying domains [12]. Diversity in this context traces back
to information retrieval tasks, where it was used to resolve
ambiguity in search queries [3]. Within recommender
systems, diversity prevents over-personalization of recom-
mendations to users, thereby increasing user satisfaction
with recommendations [12, 13]. Research on diversity in
recommender systems is extensive, and numerous differ-
ent definitions have been proposed [13]. More generally,
recommender system diversity has been described as the
opposite of similarity [1, 10]. Among the most commonly
researched and implemented definitions of diversity in mu-
sic recommender systems is intra-list diversity (ILD) which
measures the average pairwise dissimilarity of items using
some chosen similarity metric; typically calculated using
content features [1, 32].

2.2 Optimising for Diversity
Research on selecting optimal levels of diversity for rec-
ommender systems is extensive. In their original paper
defining diversity as the opposite of similarity, Bradley
and Smyth show that traditional recommender system out-
puts are not diverse, and diversity, in one metric, can be
increased with minimal negative impact on accuracy [1].
Ziegler et al. further showed that user satisfaction with rec-
ommendation lists relies on more than accuracy by com-
puting precision, recall, and satisfaction curves in a large
user study [32]. Studies following this theme of incorpo-
rating existing diversity metrics with minimal negative im-
pact on accuracy and/or satisfaction are plentiful [21, 31].
Whereas these works applied a global level of diversity
to recommendations, recent work has focused on selecting
levels of diversity on a per-user basis through user model-
ing [5, 8, 17, 18]. Interactive systems which allow users to
explore recommendations through diversity have been ex-
plored outside of the music domain, but these systems aim
to abstract diversity into a user interface rather than allow
for user selection of existing diversity metrics [22, 27, 30].

Differences in user perceived diversity levels have been
identified across varying recommendation algorithms [6],
and varying levels of intra-list diversification [29]. Finally,
user listening habits on diversity have been extracted from
social networks [7] and playlists [20].

We are not aware of any research which explores user
provided perceptions of diversity in personalized music
recommendations, or allows them to directly modify ex-
isting diversity metrics on the fly. We begin to fill in this
gap by providing knowledge on how well formalizations
of diversity align with user perceptions of diversity.

3. METHODOLOGY
To control all aspects of recommendation and diversity in-
clusion, and to minimise restricting participants’ consump-
tion method, we implemented a collaborative filter recom-
mender. We used Last.fm as a source of raw listening data,

and presented song previews in the form of standardised
30 second track previews from Spotify.

3.1 Interactive Recommendation Lists

3.1.1 Data

We collected a total of 341,764,569 unique listening events
(LEs) from 51,669 unique users whose region was set
to North America using the Last.fm API. Users were
found by crawling the Last.fm social graph using the
user.getFriends endpoint. We had a limit of 10,000 LEs
accepted per user, and only accepted LEs between January
12, 2019 and when we collected them in February 2020.
The median number of LEs per user is 7744, 25th percentile
is 3502, and 75thth percentile is 9842.

We used a simple key consisting of artist and track
name tuples in order to identify individual tracks. The
final user-track-interaction matrix, used to generate rec-
ommendations (see Section 3.1.2), contains 141,205,668
non-zero entries (play counts) across 12,300,857 unique
artist-track tuples, resulting in a 51,669x12,300,857-sparse
matrix. This system does not account for potentially inac-
curate metadata obtained from Last.fm, but does account
for the same track across different releases. Entries in
this matrix are integers which correspond to the number of
unique times a user (row) played the track (column). An
anonymized version of this data is available upon request.

3.1.2 Collaborative Filtering & Diversity

For generating recommendations we used an Alternat-
ing Least Squares (ALS) matrix factorization algorithm
which is designed specifically for implicit feedback data
sets [8, 11]. This algorithm results in one vector for
each user consisting of a non-negative real number (rec-
ommendation relevance) for each track in the database;
higher numbers are considered more relevant recommen-
dations. The ALS collaborative filter recommender was
implemented using the Implicit python library [9], and was
trained using the dataset described in Section 3.1.1. Hyper-
parameters were optimised using 5-fold cross-validation
and Mean Average Precision for top-10 recommendations
(MAP@10) over 60 iterations of randomized search re-
sulting in 160 factors, 28 iterations, a scaling factor of
α = 774, and regularization term of λ = 1.

The trained collaborative filter recommender was used
to generate top-400 track recommendation lists for a single
Last.fm username (see Section 3.2). To facilitate multiple
recommendation lists per-user we split this list evenly into
four smaller lists of 100 tracks each. Each track within
each of the four lists was assigned a rank from 1-100 with
one being the most relevant. In order to measure diversity
we used the latent vectors generated for each track dur-
ing matrix factorization as descriptors. Similar to previous
work [8,29], we calculated a form of ILD (di) by summing
the Euclidean distance of one track’s descriptors (vi) from
all other descriptors (vj) in each top-100 list.

di =

n∑
j=1
j 6=i

||vi − vj || (1)
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This calculation differs from previous work in that
diversity is only calculated once and not as part of a
greedy diversification algorithm. Higher values of di cor-
respond to more diverse tracks in relation to others in
the list. Tracks are assigned additional ranks from 1-100
where rank one is the most diverse. We are left with
four unique top-100 recommendation lists for a given user
where each track is assigned a rank for relevance (Ri), and
diversity(Di).

The final ranking (Fi) is calculated as a trade off be-
tween relevance and diversity controlled by a convex com-
bination of both ranks, with a diversity parameter β.

Fi = (1− β) ∗Ri + β ∗Di (2)

The user interface, shown in Figure 1, displays the top-7
tracks of each top-100 recommendation list based on Fi in
the form of 30 second previews using Spotify Play Button
widgets. 1 We chose to use top-7 recommendation lists to
ensure user study session times under 70 minutes (see Sec-
tion 3.2). An interactive slider that controls the value of β
is situated above the song previews. The left of this slider
corresponds with β = 0 and the right side corresponds
with β = 1 with a step size of 0.001. A Well Known button
appears to the left of each song preview allowing users to
remove songs which are not new to them.

Due to differences in the music collection available on
Spotify and our own music database, as well as to avoid
false-positives in retrieving song previews, we omitted all
songs which did not match exact artist and song string
queries to Spotify. This typically resulted in final recom-
mendation lists of 95-100 tracks each.

3.2 User Study

Participants were recruited on the University of Waterloo
campus through internal email lists and posters. After
completing a digital information consent form participants
were asked to complete a brief survey. As part of this sur-
vey they were asked to provide their Last.fm usernames, or
alternatively were provided instructions on how to set up a
Last.fm account and record their listening events to it. We
required that participants had a minimum of 5 hours of LEs
recorded before continuing to the interactive portion.

The interactive portion of the study involved a pre-
interaction interview, two conditions of 4 trials using four
unique recommendation lists, and a post-interaction inter-
view. Interviews were semi-structured. Pre-interaction in-
terview questions focused on the importance of music dis-
covery to the participant, how the participant finds new
music, and what a diverse list of personalized recommen-
dations means to them. Post-interaction interview ques-
tions focused on the perceived effect of the slider on rec-
ommendations, the static or variable nature of their selec-
tions across trials, and positives and negatives of diversity
in music recommendations.

Trials 1-4 consisted of static top-7/100 recommendation
lists each corresponding with one evenly split quarter of

1 https://developer.spotify.com/documentation/widgets/generate/play-
button/

Figure 1. The mid-motion user interface state directly af-
ter moving the diversity slider seen at the top. The top
7/100 songs as ranked by Equation (2) are displayed as 30
second song previews. As the slider is moved the songs
shift from the old order to the new order over a period of
2 seconds. Songs which leave the top 7 move off the bot-
tom and new songs appear from the bottom highlighted in
green for 5 seconds. The circular Well Known buttons on
the left remove songs from the list entirely.

their top-400 recommendations as ranked only by recom-
mender output (relevance) (see Section 3.1.2). The user-
interface was similar to Figure 1 but without the slider. Par-
ticipants were asked to listen to each preview, remove well
known tracks, mark if they were familiar with the artist,
and rate the recommendation on a four-point Likert scale
of ’Strongly Dislike’, ’Dislike’, ’Like’, or ’Strongly Like’.
Only once every track was rated could the participant move
to the next trial.

Trials 5-8 consisted of the same ranked lists as trials 1-4
(minus tracks marked as well-known) with the addition of
the interactive slider to re-rank the larger hidden list based
on the participants’ selected level of diversity (see Sec-
tion 3.1.2). The user-interface can be seen in Figure 1.
Participants were not told what the slider did and were in-
structed to find the position on the slider that resulted in
the most satisfying recommendation list as a whole while
removing tracks that were well known to them. Once the
participant locked in this position they were again asked to
mark if they were familiar with each song’s artist, and rate
each individual recommendation on the same four-point
Likert scale before moving to the next trial.

Between each trial participants completed a survey with
questions on their satisfaction with the final recommenda-
tion list, the level of diversity in the recommendation list,
and how well the recommendation list portrayed the defi-
nition of diversity they provided in their pre-interview sur-
vey. Participants were paid $10 CAD upon completing the
interactive portion of the study.

Pre- and post-interaction interviews were transcribed,
and comments were then sorted into three categories: in-
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teraction, music discovery, and diversity. Similar to other
qualitative music consumption studies we extracted indi-
vidual ideas as statements from transcriptions and pro-
ceeded to build connections and groupings through affin-
ity diagramming [2, 19]. Main ideas were highlighted and
categorized into groupings of similar themes, and finally
counts of each theme were collected. We specifically fo-
cused on responses regarding diversity.

4. RESULTS

We recruited 18 participants, and removed one participant
for marking all recommendations as Well Known, leaving
17 total participants. The median participant age was 23;
the oldest was 29 and the youngest 19. Each user session
took 50-70 minutes inclusive of interviews. Some sessions
were completed face to face, and others involved the users
connecting remotely to the interactive system.

4.1 Music Discovery

When asked how they discovered new music, 9 said they
used Spotify, 9 used YouTube, 5 used movies and/or tele-
vision, 4 relied on friends, 3 used radio, and 4 used some
other online service such as Amazon or Soundcloud. The
importance and frequency of finding new music varied sig-
nificantly from user to user, and no clear patterns were ob-
served. Some users noted that the primary reason they use
music services such as Spotify is to enable easier music
discovery. When asked how important finding new music
is to them, one user reported previously spending 5 hours
per week looking for new music, but added:

“While it’s still very important to me, I basically
don’t do it very often on my own anymore; I rely
on Spotify to do almost all of it for me.”

4.2 Recommendations

None of the participants had an existing Last.fm account,
and the length of time during which users recorded their
listening histories to Last.fm varied from one to three
weeks. The median percentage of user LEs which existed
in our CF database was 95%, with a max of 100% and a
min of 65%. Median LE counts per-user used for recom-
mendation generation were 256, with a max of 1156 and
min of 86. All users marked and removed fewer than 100
tracks as well known across all trials, with the exception of
one user who marked and removed 208.

When asked to rate individual recommendations on
a 4-point Likert scale (Strongly Dislike, Dislike, Like,
Strongly Like) 72.69% of songs were rated as ’Like’ or
’Strongly Like’ after locking in the diversity slider, and
74.79% in static lists. In addition to rating individual
songs, participants were asked if they were satisfied with
the list of recommended music for every trial. On a 5-
point Likert scale (Strongly Disagree, Disagree, Unde-
cided, Agree, Strongly Agree) 75% of diversified recom-
mendation lists resulted in a positive response, with 50%
for static recommendation lists.

Static

Diversified
The list of recommended music was diverse.

Static

Diversified

The list of recommended music portrayed the breadth of my music
interests.

−    100%                50%                  0%                  50%             100%

−

Static

Diversified

−

The list of recommended music portrayed a wide range of ._

UndecidedDisagree
Strongly Disagree

Agree
Strongly Agree

Figure 2. Responses to Likert questions completed after
every recommendation list, split between static lists and
lists which were selected using the diversity slider. The
final question was customized for each individual using
their own definition of diversity obtained during the pre-
interaction interview (see Section 4.4).

4.3 Interactive Diversity

In addition to the task of selecting an optimal position
for the diversity slider, participants were asked a series of
questions on how diverse they felt each recommendation
list was. Responses to these questions can be seen in Fig-
ure 2. In order to visualise how participant responses on di-
versity align with their diversity selections, Figure 3 shows
all 17 user’s diversity selections coded with their Likert re-
sponse on diversity. User selections varied greatly between
their own recommendation lists and between other users’.
Likert responses for perceived diversity did not fall in line
with levels of β.

As a part of the post-interaction interview participants
were asked to identify what they thought the slider was
changing within their recommendation lists. Of the 17
participants, 5 identified it to increase diversity directly,
3 identified some change in genres, and 4 had no expla-
nation. The remaining participants identified the slider to
change the perceived gender of vocalists, increase ’new-
ness’, increase distaste, increase quality, and decrease
quality. In one case where a participant identified the slider
to effect genre they stated:

“I noticed initially that the first side of the slider was
giving me a bunch of songs from different genres.
The more I was sliding it the more it was giving me
the songs. . . from the genre which I like.”

In another case where a participant was unable to identify
the effect of the slider and was asked what they would like
the slider to do they answered:

“The way I imagined it was. . . less diverse on
the one side and more and the other side. That’s
something I could definitely use.”

When asked about their experience using the system
some users expressed difficulty in remembering which lo-
cations of the slider they preferred most, and frustration
over which songs remained on the list and which were
moved off. In total, 10 users preferred interacting with the
static list, and 7 preferred using the interactive slider.
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Diversity Selections
Accross Trials

Diversity Selection (β)
0 0.5 1

Strongly Disagree
Disagree
Undecided
Agree
Strongly Agree

Figure 3. All user selections for diversity using the slider
found in Figure 1. The legend corresponds to Likert re-
sponses to: "The list of recommended music was diverse."

4.4 User Perceptions of Diversity

During the pre-interaction interview participants were
asked what they would mean if they were looking for di-
verse recommendations. In addition to their open ended
responses, they were challenged to come up with a single
word or idea that could be used in place of diversity. Of
the responses to this question, 13 answered a difference
in genres, 2 answered cultural differences, and the re-
maining participants responded with originality, variety,
and differences in artists. 2 These definitions were used to
complete the third question in Figure 2.

Coding of participants’ comments on diversity in their
own personalized music recommendations resulted in two
primary themes which we labeled diversity meaning, and
listener mood. Comments which we classified under di-
versity meaning are deeply intertwined with personal def-
initions of diversity, and can be more specifically catego-
rized into what we identify as inner and outer diversity;
that is music within the bounds of existing preferences, and
music outside of these bounds. In answering the interview
question on the meaning of diverse recommendations, 8
participants made reference to a preference for this idea of
inner or outer diversity. Participant comments expressing
a preference for inner diversity include:

“Diverse in the–within the boundaries of the things
that I like.”

“I like a playlist which recommends me songs on
the genre I like. . . the important thing is to get
diversified music in my genre only. . . to stay in the
same genre but diversity in artists.”

2 One participant was unable to choose between genre and culture.

“A diverse music recommendation I think should
still be within the category of music that I usually
listen to, but it should be different artists or different
albums that I haven’t listened to so far.”
Comments expressing a preference for outer diversity

include:
“[Diverse recommendations are] something new,
something exciting. Something that I’m not used
to, like I’ve never heard before.”

“[Diverse recommendations] would be music from
other genres that maybe I haven’t listened to very
much, but still somewhat akin to the ones that I have
listened to.”
Secondary in frequency of occurrence to diversity

meaning, mood was explicitly mentioned by 7 partici-
pants. Only 2 participants mentioned context. Participants
referenced mood as a primary factor in how much diver-
sity they want in their music recommendations at any given
time. Notable comments on mood include:

“. . . depending on my mood–whether I’m look-
ing for more of the same things that I already like–I
could set that slider to show me less diverse music–
if I’m in the mood.”
“[I] like a piece of music right now because of the
mood that I am in, but I might not like it while I’m
listening to a very different kind of music. So diver-
sity is good but I think in a weird way the recom-
mender system should know when to recommend
it.”

“Sometimes you’re in the mood of listening to one
specific–like you don’t want [a] diverse playlist.
You just want to listen to sad songs. You just want
a playlist that has a sad song. You don’t want diver-
sity”

“If you’re in a melancholic mood and then you
don’t have a very diverse playlist of melancholic
music then you’d be happy about your music be-
cause that’s your mood.”
Participants also provided their thoughts on the posi-

tives and negatives of diversity in personalized recommen-
dations, and a summary of these thoughts can be found
in Table 1. Participants generally felt that while diversity
could enable music discovery, it also increased the risk of
disliking some recommendations.

5. DISCUSSION
In this study we provided a primary analysis of user per-
ceptions on diversity in personalized music recommenda-
tions. We also provided users an opportunity to directly
optimise a diversity metric which until now had been al-
gorithmically optimised for them. Although our results do
not hold statistical power due to the small sample size, our
semi-structured interviews facilitated valuable insights and
answers to our posed research questions. These insights
add to the growing number of other qualitative works in
Music Information Retrieval research [2, 14–16, 19].
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More Diversity Less Diversity

Pos.
Music Discovery (N=11)
Preference Discovery (N=4)
Interesting (N=4)

Likely to Like (N=2)

Neg.
Likely to Dislike (N=8)
Dissatisfaction/Annoyance (N=2)

Restrictive (N=4)
Repetitive (N=2)
High Risk/Reward (N=2)
Unremarkable (N=2)

Table 1. Positives and negatives of more and less diversity
in recommendation lists expressed by participants.

5.1 RQ1: How do users feel about diversity in
personalized music recommendation lists?

Despite a large variance in user’s feelings towards diver-
sity in music recommendations, their ideas on its positives
and negatives (Table 1) mostly align with the metric’s pur-
pose of reducing over-personalization. Beyond this, how-
ever, users attached more complex ideas such as personal
preference discovery and interestingness to more diversity.
Ideas such as this may in part explain the higher levels of
satisfaction reported by users given more diverse recom-
mendations.

The prevalence of mood in participants descriptions of
diversity is especially notable when compared to the lack
of references to their context. As more focus is directed
towards context-aware recommender systems [24], careful
attention should be paid to not assume that ideal diversity
levels can be determined by context alone. Diversity opti-
misation may also serve as an ideal jumping off point for
mood-based recommendation [4,26]. In designing systems
which incorporate diversity, it is also important to note that
preferred diversity levels may not remain static on an indi-
vidual user basis.

Although most participants described diversity as a dif-
ference in genres, genre was not the exclusive answer.
To some participants, a recommendation list which spans
genre may not be considered diverse unless those genres
span a range of cultures, and to other users a recommen-
dation list which spans artists in just one genre may be
considered diverse.

The occurrence of inner and outer diversity–that is di-
versity within the bounds of existing preference, and out-
side of those bounds–was an unexpectedly binary result,
and neither of these ideas are well defined by existing
beyond-accuracy metrics. Inner diversity is not well de-
scribed as novelty, nor is outer diversity well described by
serendipity. The idea of inner diversity does however align
with idea of user genre coverage [28]. More research on
the universality of inner and outer diversity preference is
clearly required.

In their foundational paper on diversity in information
retrieval, Clarke et al. use a query for ‘jaguar’ as an exam-
ple to show the usefulness of diversity; a diverse response
might include the cars, the cats, and the classic Fender gui-
tar [3]. In the case of music recommendations, all diverse
responses may be simultaneously correct to one user, and
incorrect to another.

5.2 RQ2: How might users optimise their own level of
diversity in personalized recommendation lists?

The interactive system we implemented (Figure 1) repre-
sents a first attempt in allowing users to optimise diver-
sity metrics in line with how they are optimised in existing
studies. As such, all variables other than the level of di-
versity (Equation (2)) were fixed. We note that in allowing
users to remove well-known songs the system represents a
specific use for diversity in discovering novel music.

Diversity selections accross the interactive trials var-
ied widely within and between users. Ideally in Figure 1,
users’ Likert ratings would be distributed with positive re-
sponses on the right (0.5 ≤ β ≤ 1), and negative responses
on the left (0 ≤ β ≤ 0.5). While results do not fol-
low this distribution, the responses in Figure 2 show that
users generally found the slider system to enable more di-
versity. We hypothesise a combination of three reasons for
these results. First, the Likert survey provided no frame of
reference for diversity and participants used their own id-
iosyncratic definitions. Second, the users’ responses were
heavily impacted by music previewed before locking in a
diversity value. Third, the diversity metric did not match
users’ models of diversity. All three of these hypotheses
should be considered for future implementations.

We also note that while our selection of CF recom-
mender and diversity metric have a basis in previous work,
there are countless combinations of them which may be
used to comprise of a system such as ours. Also, more
recent music recommendation algorithms based on deep
neural networks could be investigated [24].

6. CONCLUSION & FUTURE WORK

The work we present here provides a much needed con-
nection between quantitative diversity metrics and user
perceptions of diversity in music recommendation lists.
Through analysis of semi-structured interviews with 17
participants we identified two primary themes on user se-
lections for diversity: listener mood, and diversity mean-
ing. More specifically many users expressed a clear dis-
tinction between diversity within the bounds of their exist-
ing preferences, and diversity outside of these preferences.
This inner and outer diversity was often expressed as a bi-
nary preference. Additionally, we found that when given
the ability to select their own level of diversity in recom-
mendation lists, user selections varied widely within and
between subjects.

Much future work is required in order to generalize
our qualitative findings to a larger population, and fur-
ther inform music recommender systems from the user’s
perspective. Additionally, we plan to explore the connec-
tion between listener mood, and their preference for inner
and outer diversity. Diversity in music recommendations
should have at least as solid a foundation in user percep-
tion as in information retrieval.
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451



7. REFERENCES
[1] K. Bradley and B. Smyth. Improving recommendation

diversity. In Proceedings of the Twelfth Irish Confer-
ence on Artificial Intelligence and Cognitive Science,
Maynooth, Ireland, pages 85–94. Citeseer, 2001.

[2] L. Chen, W. Wu, and L. He. How Personality Influ-
ences Users’ Needs for Recommendation Diversity? In
Conference on Human Factors in Computing Systems -
Proceedings, volume 2013-April, pages 829–834. As-
sociation for Computing Machinery, apr 2013.

[3] C. L. Clarke, M. Kolla, G. V. Cormack, O. Vech-
tomova, A. Ashkan, S. Büttcher, and I. MacKinnon.
Novelty and diversity in information retrieval evalua-
tion. In ACM SIGIR 2008 - 31st Annual International
ACM SIGIR Conference on Research and Development
in Information Retrieval, Proceedings, pages 659–666,
2008.

[4] S. Deng, D. Wang, X. Li, and G. Xu. Exploring User
Emotion in Microblogs for Music Recommendation.
Expert Systems with Applications, 42(23):9284–9293,
2015.

[5] T. Di Noia, J. Rosati, P. Tomeo, and E. D. Sciascio.
Adaptive multi-attribute diversity for recommender
systems. Information Sciences, 382-383:234–253, mar
2017.

[6] M. D. Ekstrand, F. M. Harper, M. C. Willemsen, and
J. A. Konstan. User perception of differences in rec-
ommender algorithms. In RecSys 2014 - Proceedings
of the 8th ACM Conference on Recommender Systems,
pages 161–168, New York, New York, USA, oct 2014.
Association for Computing Machinery, Inc.

[7] K. Farrahi, M. Schedl, A. Vall, D. Hauger, and
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452



[23] M. Schedl, P. Knees, B. McFee, D. Bogdanov,
and M. Kaminskas. Music recommender systems.
In Recommender systems handbook, pages 453–492.
Springer, 2015.

[24] M. Schedl, H. Zamani, C. W. Chen, Y. Deldjoo, and
M. Elahi. Current challenges and visions in music rec-
ommender systems research. International Journal of
Multimedia Information Retrieval, 7(2):95–116, jun
2018.

[25] M. Slaney and W. White. Measuring playlist diversity
for recommendation systems. In Proceedings of the
ACM International Multimedia Conference and Exhi-
bition, pages 77–82, New York, New York, USA, 2006.
ACM Press.
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ABSTRACT

Recent advances in polyphonic piano transcription have
been made primarily by a deliberate design of neural net-
work architectures that detect different note states such as
onset or sustain and model the temporal evolution of the
states. The majority of them, however, use separate neural
networks for each note state, thereby optimizing multiple
loss functions, and also they handle the temporal evolution
of note states by abstract connections between the state-
wise neural networks or using a post-processing module.
In this paper, we propose a unified neural network archi-
tecture where multiple note states are predicted as a soft-
max output with a single loss function and the temporal
order is learned by an auto-regressive connection within
the single neural network. This compact model allows to
increase note states without architectural complexity. Us-
ing the MAESTRO dataset, we examine various combina-
tions of multiple note states including on, onset, sustain, re-
onset, offset, and off. We also show that the autoregressive
module effectively learns inter-state dependency of notes.
Finally, we show that our proposed model achieves perfor-
mance comparable to state-of-the-arts with fewer parame-
ters.

1. INTRODUCTION

Automatic music transcription (AMT) refers to an auto-
mated process that converts musical signals into a piano
roll or a musical score. Polyphonic piano transcription is
a specific AMT task for piano music. Due to the complex
nature of piano sound such as overlapping spectra and in-
terference among notes and inharmonic overtones, most of
recent approaches are based on learning algorithms such as
non-negative matrix factorization (NMF) and deep neural
networks (DNN) [1]. In particular, the transcription per-
formance has been significantly improved by virtue of the
representation power of DNN [2–5] and large-scale piano
music data such as the MAESTRO dataset [6].
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A key element in designing state-of-the-art DNN archi-
tectures is detecting multiple states of a note beyond the
conventional binary states (i.e., on/off) and modeling the
temporal evolution of the note states. For example, the On-
sets and Frames model incorporated a note onset detection
network into the frame-level pitch detection network [4].
This onset-aware model significantly reduced note-level
false positive errors, which is critical in perceptual evalua-
tion of the transcription. Similar multi-state note modeling
approaches are found in [4, 7–10] and some detect even
more phases of note envelope including onset, sustain and
offset [11, 12]. As such, various versions of note state rep-
resentations have been suggested so far and showed im-
proved performances. However, the majority of them use
separate neural networks for each note state. This requires
to optimize multiple loss functions, progressively increas-
ing the model complexity for more note states. Also, they
handle the temporal evolution of note states by an abstract
connection between the hidden layers of the state-wise
neural networks [4] or using a separate neural network to
model piano-roll data [2, 13, 14].

In this paper, we propose a unified neural network archi-
tecture where individual neural networks for each state and
the temporal order modeling are integrated within a single
neural network. We implement the all-in-one architecture
by predicting multiple states of a note as a softmax output
and modeling the temporal order in an auto-regressive con-
nection in the output layer. Specifically, the architecture is
composed of convolution neural network (CNN) and recur-
rent neural network (RNN). For each time step, the CNN
module summarizes local acoustic features into a frame-
level latent vector. The RNN modules predicts the note
states from the softmax outputs conditioned on the latent
vector and the previous outputs via an auto-regressive con-
nection. The multi-class classification approach for note
states allows the model to increase the number of note
states without architectural complexity. Taking the advan-
tage of this property, we examine various combinations of
multiple states including on, onset, sustain, re-onset, offset,
and off by comparing the performances and visualizing an
example of the note state activations. In addition, we show
that the autoregressive module effectively learns inter-state
dependency by comparing it to a non-auto-regressive ver-
sion. Finally, we show that the auto-regressive multi-state
note model can achieve transcription performance compa-
rable to the state-of-the-art Onsets and Frames model on
the MAESTRO dataset.
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2. RELATED WORKS

2.1 Multi-State Note Modeling

Most of recent approaches in polyphonic piano transcrip-
tion are based on deep learning. The model architectures
are diverse, including CNN [2, 3, 10, 12], RNN [9, 15],
CRNN [4,5,16], and U-Net [17]. The loss function is typi-
cally the cross-entropy between predicted and ground truth
labels but also includes the adversarial loss [5]. An impor-
tant direction in designing a neural network architecture is
detecting note onset explicitly apart from the binary on/off
states [4,9,10,12], considering that piano sound starts with
a percussive tone but, after the attack park, it slowly decays
with a harmonic tone [18]. This multi-state note modeling
even including note offset was already explored before the
DNN approaches become dominant [7, 8, 11]. While this
multi-state note modeling has significantly improved the
transcription performance, to the best of our knowledge,
there has been no study that systemically compares var-
ious combinations of multi-state note representations. In
this paper, we define five note states even considering the
sustain pedal that globally changes the note states, and ex-
amine the different representations of temporal evolution.

2.2 Temporal Modeling of Multi-State Notes

Modeling the temporal order of note states is an essen-
tial step to improve the transcription performance [1]. A
popular choice is hidden Markov model (HMM), which
learns the temporal dependency of note states typically for
each pitch. The note states can range from binary (on/off)
[19–21] to more complete note phases (attack, decay, sus-
tain, and release) [12]. Another approach is the autoregres-
sive modeling which has been implemented with an RNN
or its variants [2, 13, 14]. The autoregressive models can
learn much wider musical context than HMM, covering
inter-note and long-term dependency at the cost of sophis-
ticated decoding algorithm [13]. Since this is analogous to
the language model in speech recognition, it is also called
musical language model (MLM). The MLMs are trained
only with frame labels without paired audio data. This en-
ables them to leverage large-scale symbolic data such as
MIDI files. However, this decoupling from audio data may
not take advantage of the synergy when the MLM is con-
ditioned with the acoustic information, for example, us-
ing a transduction model [22, 23]. The Onsets and Frames
model learns the temporal order of note states without an
MLM by having a directed connection between different
columns of neural networks that account for onsets and
frames states, respectively [4]. However, this hidden-layer
connection implicitly learns the temporal orders and the
design choice is heuristic.

Our proposed architecture integrates the acoustic model
with the MLM by conditioning the autoregressive multi-
state note modeling on the acoustic latent features. Unlike
the transduction models that use the pre-trained features
or posterior as input [22, 23], we train the acoustic model
and MLM jointly within a single neural network in an
end-to-end manner. This unified approach was recently at-

Figure 1. A diagram of the proposed CRNN architecture
at time step t.

tempted by the image-to-image translation model between
mel-spectrogram and piano-roll [5]. However, our model
has multiple states for each note and the state transitions
are learned via the autoregressive connection.

3. PROPOSED METHOD

3.1 Term Definitions

In this paper, we will use frame as an unit of time. t in-
dicates the frame index. For a given audio recording, we
express its audio feature as X = {xt}, where xt is a vec-
tor that represents local audio feature at t, and N = {ni},
where ni denotes a musical note with index i over the
frames. Each note consists of onset, offset time and pitch.
We also represent notes with a piano-roll-like form Y =
{ypt }, where ypt denotes a frame-level state of a note with
pitch p at time step t. The pitch p corresponds to each key
of piano. The actual form of ypt are determined by the cho-
sen note state representation and network architecture. For
example, the Onsets and Frames model uses three paral-
lel binary rolls Yonset, Yframe, and Yoffset, as they have
three columns of networks for separate detection of onset,
offset and frame. In our proposed model that uses a single-
column network, ypt is a one-hot vector of multiple states.
Without the pitch superscript, yt denotes concatenated one-
hot vectors (ypt ) for all pitches (88 keys in piano) at time
step t. In Section 3.3, we explain various combinations of
multiple states of a note.

3.2 Model Overview

Our proposed network architecture consists of two mod-
ules as shown in Figure 1. The first module is a CNN-based
acoustic model to extract local feature ha

t from the input
xt. The second module is an RNN-based autoregressive
MLM to estimate the output yt from the previous output
yt−1 but it is conditioned on the extracted audio feature
ha
t . The output layer have 88 independent softmax func-

tions, each of which corresponds to pitch p. The following
equations summarize the input and output in each module.
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Figure 2. Visualization of five note state representations.
The idealized ADSR curve of two consecutive notes and
corresponding annotations are displayed.

ha
t = CNN(xt)

hl
t = RNN(yt−1, h

a
t )

ŷpt = softmax(W phl
t + bp)

(1)

For the acoustic model, we borrow the CNN architec-
ture (convnet) proposed in [3], which is also used in [4, 5].
The acoustic model consists of three convolutional layers
followed by a fully-connected layer. For the autoregressive
MLM, we employ two layers of uni-directional long short-
term memory (LSTM). When the one-hot vector ypt−1 at
the previous time step t−1 is used as the input of the
LSTM stack, it is embedded into a two-dimensional vector
with continuous values to be matched with the audio fea-
ture ha

t , another input of the LSTM stack. Since all of note
states are predicted from the single CRNN architecture,
our model has fewer parameters compare to the Onsets and
Frames model. In addition, the causal uni-directional RNN
in our model enables real-time applications.

3.3 Multiple Note States

We illustrate five different note state representations in
Figure 2. Our main idea is to extend the conventional bi-
nary state (onset and off ) to multiple states using the states
transition of note activations such as note onset and note
offset. Considering that sustain pedal affects the note tran-
sition, we also add re-onset, the moment that a new note is
played while the previously played note on the same key is
being sustained with the pedal. In addition to the transition
states, we distinguished sustain from on. Using the mul-
tiple note states, we examine five types of note state rep-
resentations: binary, three states (off, onset, sustain), four
states which have additional {re-onset or offset} state, and
five states which utilize all local states.

We define the note state representation over the softmax
output in the LSTM in contrast to other multi-note-state
models which have a separate binary classifier for each
state [4, 12].

L(y, ŷ) = −
T∑

t=0

pmax∑
p=pmin

#states∑
i=0

ypt (i)log(ŷ
p
t (i)) (2)

We expect two advantages from this multi-class approach.
When the states are explicitly defined by a single variable,

the relation among states becomes concise. This may help
the autoregressive model to learn note transition patterns
more easily. Also, it prevents unrealistic combination of
states which can be occur in inference. (i.e. P (onset)=1
but P (on)=0). Adding re-onset class independently, out
of onset or sustain class, is also expected to be helpful to
train the neural network due to the distinct percussive tim-
bre of piano at note attack.

3.4 Autoregressive Model

For given a audio recording, our goal is estimate the notes
N from the acoustic features X. In practice, it is common
to estimate the frame-level note states first Y by computing
the maximum-likelihood of P (Y|X) and then to decode the
estimated Y into N. In the majority of AMT algorithms,
the condition probability is factorized as follows (see [2]
for details):

P (Y|X) ∝ P (y0|x0)

T∏
t=1

P (yt|y0...yt−1)P (yt|xt) (3)

where P (yt|xt) corresponds to an acoustic model and
P (yt|y0...yt−1) accounts for a (musical) language model.
The factorization allows the MLM to be trained with large-
scale symbolic data such as MIDI without paired au-
dio recordings. However, this approach has two issues.
First, the factorization may not take advantage of the syn-
ergy when the MLM is conditioned with the acoustic
information as input, for example, using a transduction
model [22, 23]. Second, the frame-level MLM in Equa-
tion 3 is usually set up to learn the dependency of binary
on or off states over piano-rolls [2, 13]. The recurring na-
ture of the binary representation may lead the model to
play a role of smoothing, rather than learning any kind
of musical structure [2, 24]. While a note-level MLM (i.e,
P (ni|n≤i−1)) can solve this problem [14,24] (and also this
learns the distribution of notes more meaningfully as notes
in AMT are analogous to words in speech recognition), it
requires a separate beat and meter detection algorithm to
convert the time unit [25].

Our proposed method addresses the two issues by 1)
jointly training the acoustic model and MLM and 2) using
multiple note states. Unlike the transduction models that
use the pre-trained features or posterior as input [22, 23],
we train the acoustic model and MLM in an end-to-end
manner through the auto-regressive CRNN architecture.
More precisely, we express the condition probability by
conditioning the autogressive model on the acoustic input.

P (Y|X) ∝ P (y0|x0)

T∏
t=1

P (yt|y≤t−1, x≤t) (4)

Although our model maintains the frame-level MLM, the
note-aware multiple state representation may mitigate the
repeated patterns of the simple binary representation.
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3.5 Note Decoding

Once we estimates frame-level note states, we decode them
into musical notes in the inference phase. We examine
two ways of note decoding. One is a simple greedy ap-
proach and the other is a global optimization strategy us-
ing a modified beam search. The simple greedy decoding
samples from the most probable estimated state of ŷt ev-
ery frame. However, it does not guarantee global optimum
over multiple time steps. On the other hand, it is intractable
to examine all possible sequences especially in the high-
dimensional sequence. To overcome this problem, a beam
search is usually used to obtain a global optimum. For
MLM, a high-dimensional beam search [22] or a hashed
beam search [2] was proposed to reduce the complexity in
high dimensional situation. However, their methods mainly
aim to capture dependency across pitches on the binary
piano-roll representation. To focus on dependency over the
multiple states, we simplified the beam search to find the
optimum for every pitch independently. We achieve this by
examining the sub-sequences in the beam search tree only
when the second-best state of a pitch has a higher possibil-
ity than a certain threshold. When such pitches and frames
are detected, we perform beam-search for five more steps
only with that pitch while fixing other pitches with greedy
sampling. We also consider only two states with the high-
est probability at each frame because we expect the prob-
ability becomes negligible from the third in most cases.
After the best path for the pitch is found, we proceeded to
other pitches and next frame recursively. Most of the target
frames were close to onset and offset. Therefore, the pitch-
wise path search can be regarded as locating the onset or
offset to an optimal position. This method operates like the
greedy decoding if all of the estimated frames have a high
confidence.

After note states are inferred by one of the decoding al-
gorithms, we apply a simple rule to determine notes. Along
with frame axis, a note is initiated if a {onset or on} state
is detected after off. The offset of the note is determined if
{offset or off } is detected after the note initialization.

4. EXPERIMENTS

4.1 Dataset

We trained our model with the MAESTRO dataset v1.0.0
[6] with the published training and test split. The dataset
provides 1184 performances played in the International
Piano-e-Competition. Both audio recordings and the cor-
responding aligned MIDI files captured through Disklavier
are given. To compensate the effect of sustain pedal on note
offsets in labeling, we elongated the offset of notes accord-
ing to the sustain pedal followed by methodology in [4].

4.2 Metrics

We employed the standard frame-based and note-based
metric using mir_eval [26] package. We report precision,
recall and F1 score. We used a threshold of 50msec to de-

tect note onset. We counted note offset as hit when the dif-
ference is within 50msec or ±20% of note duration.

4.3 Hyperparameters

We used log-compressed mel-spectrograms as input of the
acoustic model. We computed the mel-spectrograms with
229 logarithmically-spaced frequency bins, a hop length
of 512, an FFT window of 2048, and a sample rate of
16kHz following [4, 5]. The CNN consists of 48/48/96
nodes from the bottom to the top layer, and the following
fully-connected (FC) layer has 768 nodes. The RNN con-
sists of two layers of LSTM with 768 nodes. The output FC
layer has (88×N) nodes where N is the number of note
states. The receptive field size of the top hidden layer in
the CNN is 7 frames of mel-spectrograms centered at time
step t. This yields 176 msec latency when the model runs
in real-time.

We used the categorical cross entropy loss and Adam
optimizer for training, applying a batch size of 32 and
a learning rate of 6e−4 with a decay of 0.02 in every
10000 steps. We trained our model with the teacher-forcing
method, which provides ground-truth data of the previous
time step for the AR layer. We tried scheduled sampling
[27] but our preliminary result showed a significant degra-
dation in performance. We randomly segmented audio into
10sec while training, but the whole sequence is transcribed
at once during inference. We evaluated the models after
200k steps in training. In addition to the aforementioned
hyperparameters, we report the experimental result of a
smaller model where the number of nodes in the LSTM
is set to 256 (three times smaller than the above) to reduce
the number of model parameters.

4.4 Comparative Experiments

We conducted a comparative experiment with the proposed
method with the five note state representations. Also, we
evaluated the same set of models without the autoregres-
sive connection to verify the effectiveness of the autore-
gressive model. For the autoregressive models, we evalu-
ated the note decoding results as well. We compared our
model mainly with the Onsets and Frames model and its
GAN-based extension [5], which is also trained on the
same dataset. In addition to the reported performance, we
evaluate Onsets and Frames model with the publicly avail-
able pre-trained model 1 and our own re-implementation.

5. RESULTS

5.1 Effect of Multi-State Note Representations

We report the averaged metrics over the test set in Table 1.
Overall, the use of onset makes a significant improvement
as seen in comparison between the ‘Binary’ model and
other multiple models. This result is in accordance with
previous studies [4]. The note-with-offset score also in-
creases along but this might be seen as affected by the
increased number of matched notes. The ‘Binary’ model

1 https://github.com/tensorflow/magenta, accessed on Sep 14, 2019
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Models AR
Used states

#Parameters
Frame Note Onset Note with Offset

onset re-onset offset precision recall F-score precision recall F-score precision recall F-score

Binary © 14.4M 0.7768 0.8881 0.8161 0.9874 0.6281 0.7560 0.6399 0.4278 0.5064
Binary 13.9M 0.9128 0.8815 0.8961 0.8184 0.6646 0.7279 0.5655 0.4696 0.5095

Three © © 14.5M 0.7643 0.8828 0.8047 0.9878 0.9042 0.9433 0.7949 0.7249 0.7593
Three © 13.9M 0.9502 0.8104 0.8740 0.9907 0.8247 0.8985 0.8259 0.6904 0.7508

Four(offset) © © © 14.5M 0.7957 0.8774 0.8258 0.9874 0.9015 0.9416 0.8105 0.7409 0.7735
Four (offset) © © 14.0M 0.9549 0.8080 0.8745 0.9890 0.8392 0.9065 0.8264 0.7039 0.7590

Four (re-onset) © © © 14.5M 0.7834 0.8864 0.8207 0.9871 0.9103 0.9465 0.8074 0.7450 0.7744
Four (re-onset) © © 14.0M 0.9529 0.8049 0.8717 0.9928 0.8258 0.8997 0.8313 0.6946 0.7553

Five © © © © 14.6M 0.8191 0.8732 0.8382 0.9856 0.9121 0.9467 0.8259 0.7648 0.7936
Five © © © 14.1M 0.9391 0.8170 0.8730 0.9923 0.8278 0.9009 0.8213 0.6878 0.7472

Five (small) © © © © 6.1M 0.7264 0.8933 0.7889 0.9889 0.9043 0.9438 0.7755 0.7093 0.7403

Onsets and Frames (paper) [6] 18.3M* 0.9211 0.8841 0.9015 0.9827 0.9261 0.9532 0.8295 0.7824 0.8050
Onsets and Frames (pretrained)1 23.5M 0.8737 0.8768 0.8733 0.9792 0.9182 0.9473 0.8114 0.7615 0.7853
Onsets and Frames (reimplemented) 18.3M 0.9350 0.8771 0.9045 0.9939 0.8993 0.9436 0.8135 0.7371 0.7730
Onsets and Frames Uni-LSTM (reimplemented) 15.6M 0.9356 0.8599 0.8954 0.9929 0.8917 0.9388 0.8028 0.7218 0.7595
Non-Saturating GAN (paper) [5] 26.9M*† 0.931 0.898 0.914 0.981 0.932 0.956 0.835 0.793 0.813

Table 1. Frame and note metrics for the five note state representations. All measures are based on decoded sequence with
greedy decoding. Precision, Recall and F1 score are averaged over piece-wise results. AR stands for ‘autoregressive’. Refer
4.3 for detail. * This number was estimated based on hyperparameters in the paper. †This includes a neural network to
estimate note velocity.

achieves a high frame-level F1-score but at the same time
it has the lowest note onset F1-score. We suspect that over-
lapped notes without offsets (notes with re-onset) were
not distinguishable in the binary note state representation,
thereby leading low recall in the note onset score.

The influence of re-onset and offset is observed from the
note-with-offset score. The ‘Four’ models that have either
one of the states achieve higher scores than the ‘Three’
model. The ‘Five’ model that has both states achieves a
higher score than the ‘Four’ models, particularly with the
AR connection. However, re-onset and offset do not help
improving the note onset score much.

Among the five note state representations, the ‘Five’
model achieves slightly higher frame-level and note-level
F-scores than others. We investigated the model further by
downsizing the LSTM units (small). The small model has
a lower F-score in the note-with-offset score but it achieves
comparable F-scores to the original ‘Five’ model in the
note onset score.

We also observed that re-onset in the ‘Five’ model es-
timates sharper activations compared to the common onset
when it estimates repeated notes with extremely short in-
tervals such as trills, as shown in Figure 3. The number
of such note patterns is too small to affect overall perfor-
mance but it would be helpful when detailed analysis on
articulation is necessary.

5.2 Effect of Autoregressive Connection

All AR models with onset show similar high performances
in the note onset score. While the AR connection improves
the F-score in both onset and offset of notes, it significantly
decreases the frame-level scores. This might be because
some extremely elongated note offsets are predicted by the
AR model. This issue is discussed in the following sec-
tion. The improvement in the note-with-offset score with
re-onset and offset should be carefully understood because

Figure 3. Comparison between onset and re-onset activa-
tion on trill notes. (a) ground truth (b) onset activation of
Onsets and Frames (c) onset activation of ‘Five’ AR model
(d) re-onset activation of ‘Five’ AR model (e) onset acti-
vation of ‘Four (offset)’ AR model

our model cannot learn state dependency backward (for ex-
ample, considering that there will be an offset few frames
later, the current frame is more likely to be on). Therefore,
it is not clear why it is effective only on the AR model.
Since our model was trained with a teacher-forcing sce-
nario, we suspect that part of the benefits might be related
to resilience on the noisy output, which can occur in the
inference phase.

5.3 Learned State Transition

Figure 4 shows an example of frame activations and de-
coded piano rolls of the selected models. In the proposed
‘Five’ model with the AR connection, a note always starts
with its onset prediction and the activation is clearly main-
tained with the following sustain predictions. This con-
trasts with the blurry activation in the Onsets and Frames
model and the non-AR model, where some notes were
estimated too short. This is identified by the short blue
frames followed by the orange frames in the decoded roll
in Figure 4. Estimating continuous sustain frames also has
an negative effect. The AR model often fails to detect note
offsets as the sustain frames are estimated too long. This is
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Figure 4. Frame probabilities (or activations) and decoded piano rolls with the ground truth. The excerpt was selected
from the test set. Sustain frames and onset frames are displayed in blue and black, respectively, in the ground truth. In the
decoded piano rolls below, the estimated frames with {true positive, false negative, false positives} are annotated in blue,
orange, and green, respectively. Best viewed in color.

Decoding F1 score
Models

Five Four Four Three Binary
(offset) (re-onset)

Greedy
Note Onset 0.9467 0.9416 0.9465 0.9433 0.7560

Note w. Offset 0.7936 0.7735 0.7744 0.7593 0.5064

Beam Search
Note Onset 0.9380 0.9305 0.9361 0.9310 0.7480

Note w. Offset 0.7886 0.7648 0.7657 0.7484 0.5035

Table 2. Summary of note decoding results. All models
have autoregressive model.

identified by the green frames followed by the blue frames
in the decoded roll in Figure 4.

5.4 Beam Search and Error Calibration

We summarized the comparison between the two decod-
ing algorithms in Table 2. Counter-intuitively, the pro-
posed beam search performed slightly worse than the sim-
ple greedy decoding method. To analyze the reason, we in-
vestigated the confidence errors of class prediction. With
the greedy decoding, we regarded their softmax predic-
tions as a confidence measure and classified each estima-
tion according to the value. We equally divided the confi-
dence range [0 1] into 20 bins and recorded the averaged
accuracy of each bin. The empirical discrepancy between
accuracy and confidence indicates the model calibration er-
ror [28]. The confidence diagram Figure 5 shows that the
model is overconfident on sustain prediction but it is under-
confident on off frames. We suspect this large gap between
estimated probabilities leads to sub-optimal paths in the
beam search. Label smoothing [29] or temperature scal-
ing [28] may be helpful for relaxation but we leave this for
future work.

Figure 5. Confidence diagrams of the Onsets and frames
model and the ‘Three’ model. The dashed diagonal line in
black indicates perfect calibration.

6. CONCLUSIONS

We proposed a neural network architecture for polyphonic
piano transcription where the acoustic and language mod-
els are integrated in a unified manner. The architecture is
designed to predict multiple note states as a softmax output
and learn the dependency among note states through the
auto-regressive MLM. Our comparative study shows that
the onset state is critical to improving note onset scores
and the offset and re-onset states help improving the note-
with-offset score. The auto-regressive MLM provides sig-
nificantly higher accuracy on both note onset and offset es-
timation compared to its non-auto-regressive version. The
visualization of decoded piano roll shows that our models
with the auto-regressive connection generates a realistic se-
quence of note states. We also examined a pitch-wise beam
search to decode the frame-level activation but the result
showed that it was not as effective as a simple greedy de-
coding. Finally, the evaluation on the MAESTRO dataset
shows that our proposed model achieves transcription per-
formance comparable to the state-of-the-art models even
with the unidirectional RNN and fewer parameters.
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ABSTRACT

Audio alignment is a fundamental preprocessing step in
many MIR pipelines. For two audio clips with M and N
frames, respectively, the most popular approach, dynamic
time warping (DTW), has O(MN) requirements in both
memory and computation, which is prohibitive for frame-
level alignments at reasonable rates. To address this, a va-
riety of memory efficient algorithms exist to approximate
the optimal alignment under the DTW cost. To our knowl-
edge, however, no exact algorithms exist that are guaran-
teed to break the quadratic memory barrier. In this work,
we present a divide and conquer algorithm that computes
the exact globally optimal DTW alignment using O(M+N)
memory. Its runtime is still O(MN), trading off memory for
a 2x increase in computation. However, the algorithm can
be parallelized up to a factor of min(M, N) with the same
memory constraints, so it can still run more efficiently than
the textbook version with an adequate GPU. We use our
algorithm to compute exact alignments on a collection of
orchestral music, which we use as ground truth to bench-
mark the alignment accuracy of several popular approxi-
mate alignment schemes at scales that were not previously
possible.

1. INTRODUCTION
The go-to algorithm for computing alignments between
two audio clips is Dynamic Time Warping (DTW) [1, 2],
and DTW and its variants have seen wide application in
music processing applications [3]. However, the textbook
version of exact DTW has quadratic memory constraints.
While some MIR applications, such as cover song identi-
fication, can get away with coarse, beat-synchronous fea-
tures [4] to remain in a low memory regime, other applica-
tions may require finer scale features and can quickly ex-
plode in memory requirements. For instance, in orchestral
music, onsets are weak, so one must often revert to frame-
level features for satisfactory alignments. Singing voices
also present unique challenges in this regard [5], and both
stringed instruments and singing voices have precise, ex-
pressive attacks at sub-beat scales.

© Christopher J. Tralie, Elizabeth Dempsey. Licensed un-
der a Creative Commons Attribution 4.0 International License (CC BY
4.0). Attribution: Christopher J. Tralie, Elizabeth Dempsey. “Exact,
Parallelizable Dynamic Time Warping Alignment with Linear Memory”,
21st International Society for Music Information Retrieval Conference,
Montréal, Canada, 2020.

In this work, we present a simple divide and conquer
variant of DTW to compute a globally optimal align-
ment between two audio sequences with linear memory.
Our contributions are as theoretical as they are practical;
though there are many approximate algorithms that work
well in practice (Section 2), we are not aware of any other
linear algorithms for DTW with this guarantee. A related
advantage is that there are no approximation parameters to
tune; there is only one exact cost (with some caveats on
numerical precision in Section 4.2).

Once we establish the algorithm, we present an experi-
ment on a hand-curated collection of classical music (Sec-
tion 4). Since our memory only scales linearly with a small
factor (Section 4.3), we are able to run it on longer pieces,
enabling us to evaluate the precision of approximation al-
gorithms at scales not previously possible.

2. BACKGROUND

2.1 The Textbook DTW Algorithm

We now briefly review the standard DTW algorithm for
context. Given a (possibly multivariate) time seriesX with
M points and a time series Y with N points, there is a
notion of allowable matchings that preserve the time or-
der, known as a time-ordered correspondence, or “warping
path.” A warping path W , is a correspondence between
X and Y 1 with K ordered tuples of indices of X and
Y so that (assuming 0-indexing) W1 = (0, 0), WK =
(M − 1, N − 1), andWi−Wi−1 ∈ {(0, 1), (1, 0), (1, 1)}.
In other words, matched points between time series must
always stay still or advance by at most one along each, and
at least one must move forward.

Given a cost measure between the ith element Xi in the
first time series and the jth element Yj in the second time
series, CX,Y (i, j), then an “optimal” or “exact” solution to
the Dynamic Time Warping problem is a warping pathW∗
that minimizes the sum∑

k

CX,Y (W∗k (1),W∗k (2)) (1)

We’ll refer to an optimal path as W∗ and the optimal
cost asDX,Y (M,N). It is possible to compute theW∗ and
DX,Y (M,N) using a well-established dynamic program-
ming approach, which is also shared among edit distance

1 A correspondence C between two indexing sets I and J is a subset
of the cartesian product IxJ so that every element of I is contained in at
least one element of C and every element of J is contained in at least one
element of C
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algorithms such as Smith Waterman [6]. In particular, if
DX,Y (i, j) refers to the optimal cost of aligning the first i
points of X to the first j points of Y , then the following
recurrence holds for i, j ≥ 2

DX,Y (i, j) = min


DX,Y (i, j − 1) LEFT
DX,Y (i− 1, j) UP

DX,Y (i− 1, j − 1) DIAG

+CX,Y (i, j)

(2)
the boundary conditions are set as

DX,Y (0, j) =

j∑
k=0

CX,Y (0, k), DX,Y (i, 0) =

i∑
k=0

CX,Y (k, 0)

(3)
After filling in the first row and column by Equation 3, it

is possible to compute all values ofDX,Y (i, j) by applying
Equation 2 from left to right, row by row. After process-
ing all MN pairs of subsets in this fashion, DX,Y (M,N)
contains the optimal cost.

At this point in the algorithm, we merely have a cost,
not an optimal warping path that realizes this cost. But if
we store a second matrix P (i, j) which remembers one of
the three “backpointers” LEFT, RIGHT, and UP that real-
ized the minimum cost at that cell, then we can “backtrace”
by following these arrows back from (M,N) to (1, 1) to
figure out the elements of an optimalW in between.

2.2 Variants And DTW Algorithms in MIR

There are countless works that incorporate and expand on
DTW, so we constrain our focus to approaches and conven-
tions that apply to music processing [3], with a particular
focus on techniques that accelerate the algorithm.

There is theory to suggest that in general, O(N2)
computation will always be the worst-case for optimal
DTW [7], so many settle for approximate solutions. The
so-called “Itakura Parallelogram” [8] and “Sakoe-Chiba
Band” [2] were early fixed global alignment restrictions
proposed to reduce memory and computation. More adap-
tive algorithms have also been used to approximate the
DTW alignment on audio streams. One popular such ex-
ample is a recursive multiresolution algorithm known as
“FastDTW” [9], which has been used to synchronize or-
chestral music at large scales [10,11]. The algorithm com-
putes the warping path of lower resolutions versions of the
time series, and then it recursively constrains alignments
at finer scales to lie within some band of the lower resolu-
tion path. It is guaranteed to have worst case O(M + N)
run-time and memory consumption. A similar algorithm,
known as “Memory-Restricted MultiScale DTW” (MrMs-
DTW) [11] was devised to have constant memory usage,
where performance degrades gracefully with a decreasing
constant memory, and this technique has proved useful in
MIR synchronization applications to pedagogy [12]. We
compare to both of these algorithms in Section 4.

Beyond this, researchers have cut down on memory
with approximate algorithms that use overlapping blocks
[13] and which greedily expand cells to evaluate [14],
though, like all of the approximations we’ve mentioned
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Time Along Piece 2

Figure 1. A “linear systolic” array for computing the DTW
cost. Arrows show dependencies. All elements along a
diagonal can be computed in parallel if the diagonals are
processed in order from the lower left (dark) to the upper
right (light).

so far, they have no worst-case approximation guarantees.
The authors of [15] and [16], on the other hand, present
some of the only algorithms with worst case guarantees
for DTW cost in Euclidean spaces. They achieve linearith-
mic runtime complexity, with a runtime proportional to the
geometric complexity of the time series and inversely pro-
portional to the approximation ratio. There are also several
exact algorithms in the literature that use parallel archi-
tectures both for DTW [17] and for the related problem
Smith-Waterman scoring between gene sequences [18] to
speed up computation. We draw on these algorithms in our
design in Section 3.1. However, they were designed simply
to compute costs/scores, not to extract alignments, so we
must build on this work to extract alignments (Section 3.2).

The closest work in spirit to ours is an algorithm for
finding the longest common subsequence between strings
[19], which also uses a divide and conquer scheme for sub-
problems that overlap on O(M) cells, yielding an algo-
rithm of O(MN) time complexity and O(M + N) space
complexity like ours. However, it does not guarantee a
globally optimal solution in the context of DTW [20].

3. OUR ALGORITHM

3.1 Computing the Cost (DiagDTW)

The backbone of our algorithm relies on a different order of
filling in sub-problems of the alignment, the hardware im-
plementation of which is an instance of a "linear systolic
array" in computer architecture [17, 18]. This part is not
yet novel, but it is crucial to our approach, so we review
it here. Rather than processing the cells of DX,Y matrix
row by row, as in the textbook version, it is also possible to
satisfy dependencies needed to complete the recurrences in
Equation 2 while filling inDX,Y along diagonals. Figure 1
shows the idea. If the diagonals are processed in order from
lower left to upper right, then it follows that all elements
on a single diagonal dk can be computed in parallel from
two previous adjacent diagonals dk−1 and dk−2. Then, to
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Figure 2. Choosing a pivot for the divide and conquer al-
gorithm. At least one element (i, j) on the optimal warping
pathW∗ resides on one of three central diagonals that over-
lap from forward and backward computation done halfway,
and this element is used to recursively split computation of
other warping path points into two halves.

move to the next diagonal, the three diagonal buffers cir-
cularly shift; dk becomes dk−1, dk−1 becomes dk−2, and
the previous dk−2 can be reused as the new as dk. Since
each diagonal has a max length of min(M,N), this means
that one only needs a memory of 3min(M,N) to maintain
such a system of circularly shifting buffers 2 ; one never
needs to store all of D in memory to compute the optimal
cost. Once the algorithm has completed, the optimal cost
can be read off as the only element in the last buffer.

Algorithm 1 Diagonal DTW
1: procedure DIAGDTW(X,Y,CX,Y , kstop) . Time

series X and Y with M and N points, a cost CX,Y

between them, and the diagonal on which to stop
2: d0 ← CX,Y (0, 0)
3: d1[← [CX,Y (1, 0) + d0[0], CX,Y (0, 1) + d0[0]]
4: d2 ← []
5: for k = 2 :kstop do
6: Update all elements in d2 based on d0 and d1
7: d0, d1, d2 ← d1, d2, d0 . Circularly shift
8: end for
9: return d0, d1, d2

10: end procedure

Algorithm 1 shows a sketch of the process. We refer
to this algorithm as DiagDTW, and we have implemented
it on the GPU using CUDA. For reasons that will become
clear in Section 3.2, we take as a parameter 2 ≤ kstop
≤ M + N − 1 on which to stop the computation, and we
return the states of all three diagonals at that point.

3.2 Extracting Alignment

The linear systolic array provides a way to compute cost,
but if we insist on only remembering the most three recent
diagonals of backpointers, then there is no obvious way to

2 Ignoring the cost of storing features for the moment

Algorithm 2 Divide And Conquer Linear Memory Dy-
namic Time Warping (linmdtw)

1: procedure LINMDTW(X,Y,CX,Y ,m) . Time series
X and Y with M and N points, cost CX,Y between
them, and a minimum dimension m

2: if M < m or N < m then
return DTW(X,Y,CX,Y ) . Bruteforce path

3: end if
4: K ←M +N − 1 . Number of diagonals
5: kstop← dK/2e . Halfway point
6: df0, df1, df2 ← DiagDTW(X,Y,CX,Y , kstop)
7: if K is even then
8: kstop← kstop +1
9: end if

10: XR ← reverse(X), YR ← reverse(Y )
11: db0, db1, db2 ← DiagDTW(XR, YR, CX,Y , kstop)

. CX,Y (dfk) is all costs along the kth forward diag
12: d0 ← df0 + reverse(db2)− CX,Y (df0)
13: d1 ← df1 + reverse(db1)− CX,Y (df1)
14: d2 ← df2 + reverse(db0)− CX,Y (df2)
15: (i, j)← argmin index in d0, d1, d2
16: Now recursively compute other points onW∗
17: LPath← linmdtw(X(1, 2, ..i), Y (1, 2, ..j), C,m)
18: RPath ← linmdtw(X(i, i + 1, ..M), Y (j, j +

1, ..N), C,m)
19: return LPath + RPath(2, 3, ...) . Don’t double count

common point on overlapping sub-paths
20: end procedure

recover all of the backpointers to reconstruct an optimal
warping path under O(M + N) memory constraints. In-
stead, we make the following two observations, which we
use to build a different algorithm from standard backtrac-
ing which works in a memory-restricted setting:

Lemma 1. For any warping pathW and any adjacent set
of 3 diagonals, at least one element of W is incident on
one of the three diagonals.

This follows directly from the definition of a warping
path in Section 2.1. We also have the following observation

Lemma 2. Let W∗ be an optimal warping path and
(i, j) ∈ W∗, and let XR and YR be the time series X
and Y in reverse order, respectively. Then the cost of the
warping pathW∗ can be broken into three parts as follows

CX,Y (i, j)+CXR,YR
(M − i+1, N − j+1)−DX,Y (i, j)

(4)

This is depicted by the overlapping boxes in Figure 2.
In other words, the total cost is the optimal cost of aligning
the first half of the path from (0, 0) up to and including
(i, j), plus the optimal cost of aligning second half of the
path from (i, j) up to and including (M−1, N−1), minus
the distance from Xi to Yj (so we don’t double count that
distance where they overlap). This follows from the fact
that warping paths must start and end at the beginning and
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end of each time series (so each sub-path is forced to touch
(i, j)), and the fact that reversing both time series has no
effect on the optimal cost. This is similar to the observation
used in MrMsDTW to break up computation into smaller
parts [11].

Now we are ready to present the divide and con-
quer algorithm to compute an optimal warping path W∗.
Lemma 1 and Lemma 2 together imply that if we trace the
first half of the diagonals in a forward direction and the
second half of the diagonals in the reverse direction and
add them up pointwise where they meet at the center, sub-
tracting off the distance at those points, then at least one
element (i, j) on the three diagonals will contain the opti-
mal cost C(M,N). Furthermore, since this cost occurs on
the optimal path, it will by definition be the minimum cost
over all pointwise sums. Therefore, to find a point towards
the center ofW∗, we simply do the following

1. Run Algorithm 1 halfway in the forward direction,
starting at the beginning

2. Run Algorithm 1 halfway in the reverse direction,
starting at the end

3. Perform the sums in Equation 4 where they overlap

4. Take the indices (i, j) of the value that achieves
the minimum over all three diagonals (breaking ties
arbitrarily, the result of which we explore in Sec-
tion 4.2)

.
We refer to (i, j) as the “pivot” at this step, and we are

guaranteed that (i, j) resides on W∗. At this point, we
divide the problem in half at the pivot and find two more
points on the warping path to the left and right, which is
the recursive step. Algorithm 2 summarizes this process.

Because Algorithm 2 calls DiagDTW as a subroutine
and DiagDTW uses 3min(M,N) memory, Algorithm 2
also uses at most 3min(M,N) memory. What is slightly
less obvious, but still fairly straightforward to show, is that
a serial version of the algorithm takes O(MN) time. To
see this, parameterize the diagonal by a variable x, where
x = 0 at the center of the central diagonal, then the total
area of the sub-block to the left of the chosen pivot and to
the right of the chosen pivot is bounded from above by the
following sum of two products

A(x) =

(
M

2
+ x+ 1

)(
N

2
− x+ 1

)
(5)

+

(
N

2
+ x+ 1

)(
M

2
− x+ 1

)
(6)

Then, A′(x) = −4x, and A′′(x) = −4, so a global
maximum occurs at x = 0, for an area of A(0) =
M2N2/2 + M + N . In other words, ignoring the edge
effects M +N due to the overlap, at most half of the total
cells are processed across the two halves of each recursive
split. This leads to the recurrenceMN(1+ 1

2+
1
4+

1
8+...),

which is bounded from above by 2MN . To understand the

Figure 3. The distribution of lengths of our orchestral
pieces in the short collection and long collection.

edge effects, we note the following: since the number of
diagonals, M + N − 1, can be subdivided log2(M + N)
times, this leads to a bound of (M +N) log2(M +N), for
a total worst-case cost of

2MN + (M +N) log2(M +N) (7)

However, the 2MN term will usually swamp the (M +
N) log2(M +N), unless one of M or N is very small (e.g
M = 1, in which case it’s simply subdividing an interval
of length N repeatedly log2(N) times). In practice, we
parallelize the DiagDTW step on a GPU, so the algorithm
runs faster than this. We also keep track of the number of
cells processed, and we assume 2MN to indicate progress
of the the algorithm to the user.

Finally, to save the overhead of initiating too many
small GPU alignments, we break off the recursion when
the sub-blocks get small enough (Line 2, Algorithm 2).
In practice, if either length of of the subdivided time se-
ries goes below 500, we use the textbook DTW algorithm
to complete the alignment, which uses an insignificant
amount of computation and memory at that scale.

4. EXPERIMENTS

Now that the theory for our algorithm has been established,
we apply it to align real audio data. We created a dataset
with 100 pairs of mostly orchestral pieces, where each pair
is performed under different conductors. All of the per-
formances can be found on Youtube, and we provide code
to automatically download them for reproducibility 3 . We
do not have access to human annotated alignments, but
since we can compute exact costs with linear memory,
we can use our exact paths to assess the precision of ap-
proximate algorithms at very large scales to get an idea of
how they perform in that regime. To that end, we split
our dataset into two parts. The first 50 pairs are “shorter”
pieces that can be handled (albeit sometimes slowly) by the
textbook CPU DTW algorithm. The second set are pieces
that would quickly use up all memory with the textbook
algorithm on a personal computer, including many pieces
around an hour or longer. Figure 3 shows the distribution
of the lengths of pieces in both sets.

4.1 Features

So far, our discussion has assumed that we had access to
some distance function DX,Y between time series X and

3 If any links go down, the code is robust to that and will simply skip
those examples
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Table 1. Memory requirements of the dynamic programming accumulated cost cells for different algorithms on some of the
pieces in our dataset. DTW refers to the naive algorithm, while FastDTW refers to the algorithm in [9] using a band width
of δ = 30. The memory requirements for MrMsDTW for 105 and 107 constant cells is 391KB and 38Mb, respectively

Piece Version 1 Version 2 DTW FastDTW Ours
Vivaldi Spring Abbado (188 sec) Gunzenhauser (209 sec) 277 MB 3.86 MB 194 KB
Candide Overture Bernstein (268 sec) Dudamel (279 sec) 527 MB 5.5 MB 270 KB
Beethoven. Symph. No.5 Thielemann (445 sec) Bernstein (514 sec) 1.58 GB 9.12 MB 448 KB
Schumann - Symph. No. 3 Bernstein (2124 sec) Muti (2199 sec) 23.2 GB 36.9 MB 1.77 MB
Stravinsky The Rite of Spring Rattle (2053 sec) Bernstein (2082 sec) 29.4 GB 42.1 MB 2.02 MB
Tchaikovsky Symph. No. 4 Bernstein (2645 sec) Rozhdestve.. (2530 sec) 46.1 GB 51.9 MB 2.48 MB
Shostakovich: Symph. No. 11 Søndergård (3647 sec) Nelsons (3765 sec) 94.6 GB 74.8 MB 3.6 MB
Verdi Requiem Bychkov (4983 sec) Solti (5042 sec) 173 GB 102 MB 4.9 MB
Wagner - Das Rheingold Kuhn (8799 sec) Solti (8759 sec) 542 GB 180 MB 8.6 MB

Y . We now finally describe two different features sets that
allow us to compute distances for synchronization, which
we use in our experiments. The first set of features are
the so-called “decaying locally adaptive normalized C0”
(DLNC0) features [21], which are popular for fine scale
alignments 4 . The second set of features are referred to as
“mfcc-mod” features, which consist of a large number of
MFCC coefficients, throwing away the lower order ones to
control for loudness. These features were shown to work
well at precisely capturing human annotations [22].

For both feature sets, we sampled audio at 22050hz,
and we used a hop size of 512 between feature frames.
This corresponds to about 43 frames per second of reso-
lution. For the DLNC0 features, we used librosa’s imple-
mentation of the CQT with default parameters as a starting
point [23]. The DLNC0 features were concatenated to a
0.1 factor of CENS features to improve stability in steady-
state regions, as suggested in [21]. For the mfcc-mod co-
efficients, we used an fft-length of 2048 and computed 120
“HTK” coefficients, leaving the first 20 out. Although [21]
recommends using cosine distance for the DNLC0 com-
ponent, we found lower discrepancies using the Euclidean
distances as our measure across the board on all of our fea-
tures.

4.2 Numerical Precision / Tie Breaking

Since our algorithm is on the GPU, we revert to 32-bit
computations, and there is a worry that numerical preci-
sion could cause discrepancies, especially since the num-
bers along warping paths are summed together in a differ-
ent order in our algorithm, and ties are broken at a different
stage. To rule this out as a source of error when comparing
approximation precisions, we compare our GPU answer to
the brute force 32-bit CPU answer on the textbook algo-
rithm. We also compare two different tie breaking rules
on 64-bit CPU brute force implementations; one where di-
agonal takes precedence over left, and one the other way
around. Ultimately, though there are discrepancies, they
are negligible compared to errors in approximation, as
shown in Figure 4. And the 32-bit versus 64-bit appears
to make little difference at these scales.

4 Unlike [10], we do not use a multiscale version of DLNC0, since we
are assessing approximations of exact alignments at a single scale

4.3 Memory Requirements
We compare our alignments to both FastDTW [9] with a
band δ = 30 and to MrMsDTW using a constant amount
of 105 and 107 cells. To make Equation 4 more conve-
nient to compute in our implementation, we store the dis-
tances between corresponding points on the three diago-
nals in addition to the cumulative sums, so we end up us-
ing 6min(M,N) storage instead of 3min(M,N) storage.
Still, we note that 107 cells is an order of magnitude be-
yond this requirement, while 105 cells is on the shorter
end of what our algorithm needs on the short dataset,
so these are two good reference points for MrMsDTW.
To compare memory with FastDTW, we use the equation
from [9] which states that the total worst-case space com-
plexity for storing the cells is N(4δ + 5) values. Hence,
though FastDTW also has linear memory requirements,
it has a larger constant factor, particularly for reasonable
band sizes (δ = 30 is less than a second of wiggle room).
Table 1 shows the memory requirements for storing the
cells for different algorithms with variable memory, as-
suming 32-bit precision (4 bytes per cell). This neglects
the memory for storing the warping path, which is negli-
gible compared to the cost of storing the accumulated cost
cells, and it also neglects the memory requirements of stor-
ing features, which is a separate issue mostly independent
of the algorithms, since these are all run offline. Still, the
memory differences are striking.

4.4 Results
We now examine the results closely. We computed the
alignment discrepancies between two warping paths W1

andW2 as follows. For every element (i, j) ∈ W1, we re-
port the error as min |j − k| for (i, k) ∈ W2. To maintain
symmetry, we also add an analogously defined column er-
ror to our distributions for every element. Figure 4 shows
the approximation error distributions for different algo-
rithms on all of the shorter pieces, including tie breaking
discrepancies on the exact algorithm (Section 4.2), while
Figure 5 shows approximation errors on all of the longer
pieces. In each figure for each pairwise comparison, there
are four different color dots per piece that indicate the pro-
portion of correspondences (i, j) that fall below the align-
ment discrepancies (23 ms, 47 ms, 510ms, and 1 second).
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Figure 4. Shorter pieces alignment errors.

Figure 5. Longer pieces alignment errors.

Overall, we find that the approximation algorithms often
fail to agree at very fine scales, but they usually agree to
within a second of audio, which is particularly impressive
on the long pieces. And unsurprisingly, MrMsDTW per-
forms better with more memory.

In addition to approximation errors, we also show the
discrepancy between the mfcc-mod and DLNC0 feature
sets for reference. Interestingly, their discrepancy is sim-
ilar to that of approximation with MrMsDTW, suggesting
that feature design is at least as important as a good ap-
proximation. However, under a good feature choice at a
fine scale, it is likely that our exact algorithm will give the
most desirable alignment.

Finally, to empirically validate the correctness of our
computational complexity bound in Section 3.2, we report
the ratio of cells processed to total cells in the full accumu-
lated cost matrix in Figure 6 across all pieces, and we find
that the ratio is very close to 2 in all cases, as predicted.
Only under very extreme warps away from the center of
the matrix would one expect this to be much smaller.

Figure 6. In most cases, our algorithm uses close to the
factor of 2 bound we established for computation in Sec-
tion 3.2

5. SOFTWARE
Since some of the details of linmdtw (Algorithm 2) are
tricky to implement correctly, and in the spirit of repro-
ducibility [24], we have provided our CPU and GPU (py-
cuda) implementations of linmdtw, FastDTW, and MrMs-
Dtw in an open source package at https://github.
com/ctralie/linmdtw, which can be installed sim-
ply with “pip install linmdtw”. We have documentation
and Jupyter notebooks on the repo for example usage. The
software will try run CUDA by default, but if it fails, it will
fall back to the CPU implementation. There is also code
to replicate the experiments in Section 4 by downloading
URLs from Youtube, robustly skipping those no longer
available. Finally, we used the Rubberband Library [25]
and implemented the refinement technique of Ewert (Sec-
tion 4 of [26]) to stretch audio to conform to warping paths.

6. DISCUSSION
In this paper, we presented a novel exact memory efficient
algorithm for DTW. In addition establishing this new algo-
rithm and proving its correctness, we empirically bench-
marked a couple of popular approximation algorithms for
DTW alignment in MIR at larger scales than had ever been
shown. We found that these algorithms still have fairly
good performance with reference to an exact alignment
even on longer pieces. MrMsDTW is particularly fast com-
putationally, so this suggests that it’s good as a first stop in
many cases, though there are outliers, and there are always
quality gains to be had for an exact algorithm.

Furthermore, though the focus of this paper was on
memory constraints, our vanilla GPU implementation also
led to speed increases over the textbook CPU version and
had similar but slightly slower runtimes than FastDTW.
However, a better GPU implementation would treat global
and local memory with more care, along with addressing
myriad other issues [27], so we do not believe this algo-
rithm has yet reached its full computational potential.

There are also other computational problems with very
similar dynamic programming design DTW, such as edit
distance and Smith Waterman [6], which could benefit
from the ability to align large sequences under memory re-
strictions. Even approximate DTW algorithms may benefit
from tricks in this paper.
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ABSTRACT

From the 19th century on, several composers of Western
opera made use of leitmotifs (short musical ideas referring
to semantic entities such as characters, places, items, or
feelings) for guiding the audience through the plot and il-
lustrating the events on stage. A prime example of this
compositional technique is Richard Wagner’s four-opera
cycle Der Ring des Nibelungen. Across its different occur-
rences in the score, a leitmotif may undergo considerable
musical variations. Additionally, the concrete leitmotif in-
stances in an audio recording are subject to acoustic vari-
ability. Our paper approaches the task of classifying such
leitmotif instances in audio recordings. As our main con-
tribution, we conduct a case study on a dataset covering 16
recorded performances of the Ring with annotations of ten
central leitmotifs, leading to 2403 occurrences and 38448
instances in total. We build a neural network classification
model and evaluate its ability to generalize across differ-
ent performances and leitmotif occurrences. Our findings
demonstrate the possibilities and limitations of leitmotif
classification in audio recordings and pave the way towards
the fully automated detection of leitmotifs in music record-
ings.

1. INTRODUCTION

Music has long been used to accompany storytelling, from
Renaissance madrigals to contemporary movie sound-
tracks. A central compositional method is the association
of a certain character, place, item, or feeling with its own
musical idea. This technique culminated in 19th century
opera where these ideas are denoted as leitmotifs [1, 2]. A
major example for the use of leitmotifs is Richard Wag-
ner’s tetralogy Der Ring des Nibelungen, a cycle of four
operas 1 with exceptional duration (a performance lasts up
to 15 hours) and a continuous plot spanning all four op-
eras. As many characters or concepts recur throughout the

1 While Wagner referred to his works as music dramas instead of op-
eras, we choose the more commonly used latter term.

c© Michael Krause, Frank Zalkow, Julia Zalkow, Christof
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Frank Zalkow, Julia Zalkow, Christof Weiß, Meinard Müller, “Classifying
Leitmotifs in Recordings of Operas by Richard Wagner”, in Proc. of
the 21st Int. Society for Music Information Retrieval Conf., Montréal,
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Figure 1. Illustration of example leitmotifs (red for the
Horn motif, blue for the Ring motif) occurring several
times in the Ring cycle and across different performances.

cycle, so do their corresponding leitmotifs. This allows the
audience to identify these concepts not only through text or
visuals, but also in a musical way. While all these different
occurrences of a leitmotif in the score share a characteris-
tic musical idea, they can appear in different musical con-
texts and may vary substantially in compositional aspects
such as melody, harmony, key, tempo, rhythm, or instru-
mentation. When considering recorded performances of
the Ring, another level of variability is introduced due to
acoustic conditions and aspects of interpretation such as
tempo, timbre, or intonation. In the following, we denote
the concrete realization of a leitmotif in an audio record-
ing as an instance of the motif. This paper approaches
the problem of classifying such leitmotif instances in au-
dio recordings, as illustrated in Figure 1. In particular, we
study generalization across occurrences and performances.

Cross-version studies on multiple performances have
been conducted regarding the harmonic analysis of
Beethoven sonatas [3] or Schubert songs [4], but also for
the Ring [5, 6]. Beyond harmonic aspects, the Ring sce-
nario was considered for capturing audience experience us-
ing body sensors and a live annotation procedure [7] or for
studying the reliability of measure annotations [8, 9]. Re-
garding leitmotifs, several works have focused on the hu-
man ability to identify motifs [10–12]. In particular, [13]
found that distance of chroma features correlates with dif-
ficulty for listeners in identifying leitmotifs. In [6], Zalkow
et al. presented a framework for exploring relationships be-
tween leitmotif usage and tonal characteristics of the Ring.
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Name (English translation) ID Score # Occurrences Length
Measures Seconds

Nibelungen (Nibelungs) L-Ni
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b
b

b
b

b
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œ œ œ ™ œ œ
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Ring (Ring) L-Ri ?

3
œ
œb ˙

˙b œ
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œb

œ
œ
b œ

œb

J

˙
˙
b

286 1.49 ± 0.65 3.64 ± 2.30

Mime (Mime) L-Mi
™
™&

b
b

. .
. .

œ œ
œ œ

242 0.83 ± 0.25 0.87 ± 0.24

Nibelungenhass (Nibelungs’ hate) L-NH  
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237 0.96 ± 0.17 3.10 ± 1.11

Ritt (Ride) L-RT ?#

œ ™

œ
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œ

œ

228 0.66 ± 0.17 1.24 ± 0.37

Waldweben (Forest murmurs) L-Wa
?#

#

#
# œ

œ œ œ œ œ

œ
œ
œ
œ
œ
œ
œ œ œ œ œ œ

œ
œ
œ
œ
œ
œ

œ œ œ œ œ œ
œ
œ
œ
œ
œ
œ
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œ
œ
œ
œ
œ
œ 223 1.10 ± 0.30 2.70 ± 0.76

Waberlohe (Swirling blaze) L-WL  &

#
# œ

œ œ
œ ™
œ œ

190 1.21 ± 0.39 4.39 ± 1.60

Horn (Horn) L-Ho &

#
#

œ

œ ™
œ
œ œ

œ œ œ œ
œ ™ ˙ ™ 172 1.38 ± 1.05 2.44 ± 1.57

Geschwisterliebe (Siblings’ love) L-Ge &
b ˙ œ œ ™

œb

j
˙ ™ œ œ 155 1.31 ± 0.83 3.03 ± 2.55

Schwert (Sword) L-Sc  & œ

j
˙

œ ™™ œ

r
œ ™

œ

J

˙

134 1.89 ± 0.55 3.68 ± 1.88

Table 1. Overview of the leitmotifs used in this study. Lengths are given as mean and standard deviations over all annotated
occurrences (in measures) or instances (in seconds) from all performances given in Table 2.

From a technical perspective, our scenario entails the
task of automatically detecting leitmotifs within an au-
dio recording. This paper represents a first step towards
this goal by considering a simplified classification scenario
with pre-segmented instances (see Figure 1).

Due to the multiple sources of variability described
above, we opt for a data-driven approach. Neural networks
have emerged as the dominant classification models. In
particular, recurrent neural networks (RNNs) are able to
handle input sequences of varying length. Our study shows
that despite the difficulties of the scenario, an RNN classi-
fier is surprisingly effective in dealing with the variability
across occurrences and performances.

The main contributions of our work are as follows: We
conduct a case study on classifying leitmotif instances in
audio recordings of the Ring. For this, we describe the task
of leitmotif classification and provide a dataset of more
than 38000 annotated instances within 16 performances
of the Ring (Section 2). We further build an RNN model
for classifying leitmotifs in audio recordings (Section 3).
We carefully evaluate our model with respect to variabili-
ties across performances and leitmotif occurrences over the
course of the Ring. Moreover, we investigate the effect of
adding temporal context and critically discuss the potential
limitations and generalization capabilities of our classifier
(Section 4). Finally, we suggest new research directions
that may continue our work (Section 5).

2. SCENARIO

We now discuss the dataset and leitmotif classification sce-
nario underlying our experiments.

2.1 Leitmotifs in Wagner’s Ring

While Wagner mentioned the importance of motifs for his
compositional process [14], he did not explicitly specify
the concrete leitmotifs appearing in the Ring. Whether a
recurring musical idea constitutes a leitmotif—and how to
name it—is a topic of debate even among musicologists,
see, e. g., [15] where differences in leitmotif reception are
discussed. In line with [6], we follow Julius Burghold’s
specification of more than 130 leitmotifs in the Ring [16].

For our experiments, we selected ten central motifs fre-
quently occurring throughout the Ring (see Table 1 for an
overview including the number of occurrences per motif).
These motifs constitute the classes of our classification
task. The selection comprises motifs associated with an
item such as the sword (L-Sc), with characters such as
the dwarf Mime (L-Mi), or with emotions such as love
(L-Ge). All occurrences of these motifs were annotated
by a musicologist using a vocal score of the Ring as a ref-
erence, resulting in 2403 occurrences.

As discussed in Section 1, a leitmotif may occur in dif-
ferent shapes over the course of a drama. These musical
variations may be necessary to fit the musical context in
which the occurrences appear and, thus, be adjusted to the
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ID Conductor Year hh:mm:ss

P-Ba Barenboim 1991–92 14:54:55
P-Ha Haitink 1988–91 14:27:10
P-Ka Karajan 1967–70 14:58:08

P-Sa Sawallisch 1989 14:06:50
P-So Solti 1958–65 14:36:58
P-We Weigle 2010–12 14:48:46

P-Bo Boulez 1980–81 13:44:38
P-Bö Böhm 1967–71 13:39:28
P-Fu Furtwängler 1953 15:04:22
P-Ja Janowski 1980–83 14:08:34
P-Ke Keilberth/Furtwängler 1952–54 14:19:56
P-Kr Krauss 1953 14:12:27
P-Le Levine 1987–89 15:21:52
P-Ne Neuhold 1993–95 14:04:35
P-Sw Swarowsky 1968 14:56:34
P-Th Thielemann 2011 14:31:13

Table 2. Recorded performances of the Ring used in this
study (see also [6]). Measure positions have been anno-
tated manually for the topmost three performances (P-Ba,
P-Ha and P-Ka), which also constitute the test set in our
performance split. The three middle performances (P-Sa,
P-So and P-We) constitute the validation set.

current key, meter, or tempo. Moreover, occurrences of
leitmotifs may appear in different registers, musical voices,
or instruments. In addition to this, motifs can also occur in
abridged or extended shape, with parts of the motif being
repeated, altered, or left out. Despite these diverse musical
variations across occurrences, listeners can often identify
motifs easily when listening to a performance. This is in
line with Wagner’s intention of using the motifs as a guide-
line, thus forming the musical surface of the Ring [17].

2.2 Recorded Performances

As mentioned in the introduction, we do not attempt to
classify leitmotifs within a score representation but on the
basis of a performance given as an audio recording. To
be more concrete, our work relies on 16 recorded per-
formances of the Ring that have been used before in [6].
For three of these performances, the positions of measures
from the score were manually annotated in the audio [8].
For the remaining 13 performances, the measure posi-
tions were transferred from the manually annotated per-
formances using automatic audio-to-audio synchronization
[9]. Table 2 specifies the performances. We automati-
cally located the 2403 leitmotif occurrence regions from
the score in each of the 16 recorded performances using
linear interpolation between measure positions. This way,
we obtained the 38448 instances used for our experiments.
The occurrence and instance positions are made publicly
available as a dataset for further research. 2

2.3 Leitmotif Classification Task

In this paper, we consider the task of leitmotif classifica-
tion. We define this as the problem of assigning a given
audio excerpt to a class according to the occurring leitmo-
tif. Here, we consider ten classes corresponding to the mo-

2 https://www.audiolabs-erlangen.de/resources/MIR/
2020-ISMIR-LeitmotifClassification
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Figure 2. Variability of L-Ho across occurrences and per-
formances. Six instances (two occurrences for three per-
formances) are shown in a CQT representation, which is
also used as input to our classification model.

tifs in Table 1. We further make the simplifying assump-
tion that only a single leitmotif is played at a time. Thus,
we omit excerpts where multiple motifs occur simultane-
ously. Our classification task therefore becomes a multi-
class, single-label problem.

Our dataset allows us to approach the leitmotif classi-
fication task from two perspectives, each of which incor-
porates its own types of variabilities. First, the perfor-
mance perspective concerns variabilities across different
performances, resulting from different instrumental tim-
bres, tempi, or other decisions made by the artists. Fur-
thermore, this perspective encompasses technical proper-
ties such as acoustic, recording, and mastering conditions,
which can lead to the so-called “album effect” [18]. Sec-
ond, the compositional or occurrence perspective concerns
diverse musical variabilities of leitmotif occurrences in the
score (as discussed in Section 2.1). Figure 2 shows the
Horn motif L-Ho for different performances and occur-
rences. The variability is evident in different durations of
the instances as well as different energy distributions due to
other musical events sounding simultaneously. These vari-
abilties make our classification task a challenging prob-
lem. In our experiments, we investigate the generalization
across these two perspectives, similar to the study in [4].

3. RECURRENT NEURAL NETWORK FOR
LEITMOTIF CLASSIFICATION

Neural networks have previously proven to be useful for
classification tasks in the music domain, see, e. g., [19–21].
As we are dealing with variable length inputs (leitmotif
instances may last from less than one to over ten seconds
in a performance), recurrent neural networks (RNNs) are a
natural choice for our scenario.

As input to our system, we take audio excerpts contain-
ing leitmotif instances from our 16 performances of the
Ring, sampled at 22050 Hz. These excerpts are processed
by a constant-Q-transform (CQT) [22, 23] with semitone
resolution over six octaves and a hop length of 512 sam-
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Layer Output Shape Parameters

Input (V, 84)

LSTM (V, 84) 109056
LSTM (V, 128) 131584
LSTM (V, 128) 131584
Take last (128)
Batch normalization (128) 512
Dense (10) 1290

Output: Softmax (10)

Table 3. Architecture of our RNN for leitmotif classifica-
tion. V indicates variable length.

ples, where we adjust for tuning deviations (estimated au-
tomatically per performance and opera act). These steps
are implemented using librosa [24]. Finally, all CQT
frames are normalized using the max-norm and the result-
ing representations serve as inputs to our network.

Table 3 gives an overview of the network structure. We
use an RNN-variant, the long short-term memory (LSTM)
proposed in [25]. We stack multiple LSTM layers and,
after the final LSTM output, append batch normalization
[26] as well as a single fully connected classification layer
to obtain leitmotif predictions. We set the number of
LSTM layers and the size of their internal representation
to 3 and 128, respectively. We train this network for 50
epochs by minimizing the cross-entropy loss between pre-
dictions and correct classes using the Adam optimizer [27]
with a learning rate of 0.001 on mini-batches of 32 ex-
cerpts. Since the excerpts in a batch may have different
lengths, we need to zero-pad them to the maximum num-
ber of frames among excerpts in that batch. During com-
putation, we then use masking to ignore zeros added to
shorter inputs. We further avoid overfitting by selecting
the weights of the epoch that yields the highest mean F-
measure on the validation set (as described in Section 4.2).
The network is implemented in Python using Tensorflow.

4. EXPERIMENTS

4.1 Setup and Splits

We follow the common machine learning approach of par-
titioning our dataset into training, validation, and test sub-
sets to train, tune hyperparameters, and estimate the results
on unseen samples, respectively. In contrast to standard
procedures, we partition the data according to musical as-
pects as motivated in Section 2.3. We will consider two
splits: the performance and occurrence splits.

For the performance split, we select the three recordings
with manually annotated measure positions (P-Ba, P-Ha
and P-Ka, see Table 2) for the test set and three perfor-
mances with automatically transferred measure positions
for the validation set (P-Sa, P-So and P-We). The re-
maining ten performances are used for training. In this
split, all subsets comprise all occurrences of all motifs. Re-
sults on the performance split are given in Section 4.3.

In contrast, for the occurrence split, we randomly
choose 80% of the occurrences for training and 10% each

Context Strict Variable Fixed (10 sec.)
P R F P R F P R F

L-Ni 0.94 0.95 0.94 0.90 0.95 0.92 0.93 0.93 0.93
L-Ri 0.93 0.92 0.93 0.84 0.93 0.88 0.86 0.89 0.87
L-Mi 0.96 0.95 0.96 0.95 0.93 0.94 0.92 0.98 0.95
L-NH 0.94 0.92 0.93 0.96 0.88 0.92 0.97 0.87 0.92
L-RT 0.95 0.94 0.95 0.94 0.90 0.92 0.96 0.95 0.96
L-Wa 0.94 0.98 0.96 0.98 0.96 0.97 0.96 0.99 0.98
L-WL 0.98 0.93 0.96 0.93 0.93 0.93 0.95 0.94 0.94
L-Ho 0.90 0.89 0.89 0.93 0.85 0.89 0.92 0.91 0.91
L-Ge 0.94 0.94 0.94 0.93 0.91 0.92 0.97 0.94 0.96
L-Sc 0.91 0.96 0.93 0.94 0.89 0.92 0.84 0.86 0.85

Mean 0.94 0.94 0.94 0.93 0.91 0.92 0.93 0.92 0.93

Table 4. Main results of our method on the test set of the
performance split for different strategies of using temporal
context.

for the validation and test set. 3 We further ensure that the
proportions of occurrences for each motif is the same in all
subsets. In this split, each subset contains all instances of
the occurrences in that subset. Results on the occurrence
split are given in Section 4.4.

4.2 Evaluation Measures

We adopt standard measures from information retrieval for
evaluating our models. For a given class (i. e., motif),
we treat the classification problem as a retrieval problem,
yielding class-dependent precision (P), recall (R), and F-
measure (F) as usual, see, e. g., [28].

We also report the mean precision, recall, and F-
measure over all classes. This gives a general impression
of the classification quality. Note that these averages are
not affected by class imbalance. Therefore, low results on
an infrequent class will influence the mean results as much
as low results on a frequent class.

4.3 Results on the Performance Split

Basic Experiment. The left block in Table 4 (Strict) sum-
marizes results for our model on the test subset of the per-
formance split. We obtain high classification results with a
mean F-measure of 0.94. Results are similar across motifs.
Highest precision (P = 0.98) is obtained for L-WL, while
highest recall (R = 0.98) is reached for L-Wa. Recall and
precision per motif are often similar. We conclude that it
is indeed possible to classify leitmotif instances in previ-
ously unseen performances, provided that all occurrences
were seen before in other performances. In the following,
we expand on this result by considering other classification
and split scenarios.
Temporal Context. In our basic experiment, we consid-
ered isolated leitmotif instances as input to our classifica-
tion model, i. e., the audio excerpts to be classified start and
end strictly at instance boundaries. We therefore call this
the Strict scenario. Identifying leitmotifs when instance
boundaries are not known in advance could pose an addi-
tional challenge. However, the temporal context before and

3 The same occurrences are chosen in all experiments for comparabil-
ity.
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Figure 3. Mean F-measures for our model when using
different input lengths in the Fixed scenario.

after the instance boundaries might also be helpful in iden-
tifying the class of an excerpt. Next, we analyze the effect
of temporal context on the leitmotif classification results.

To this end, we compare the Strict scenario with an al-
ternative, called Variable, where we add a randomly cho-
sen amount of temporal context to the input excerpts. Con-
text may be added before and after the motif instance.
More specifically, the excerpt length is at most doubled
and the instance in question is not constrained to be in the
excerpt center. Such use of context also prevents our model
from relying on length and boundary properties of the leit-
motif instances. The center block in Table 4 gives results
for this scenario. Compared to the Strict case, the mean
F-measure decreases slightly to 0.92.

We also perform experiments on fixed input lengths,
which we call the Fixed scenario. Here, we randomly take
subsections of an instance if it is longer than the fixed input
length or add context before and after in case it is shorter.
Mean F-measure values for different fixed input lengths
are shown in Figure 3 (solid red line). The plot indicates
that results decrease for lengths that are shorter than most
instances, 4 e. g., one second. When a fixed length of ten
seconds is chosen, which encompasses almost all instances
in the dataset, results are comparable to the Strict case
(see also the right block in Table 4). Longer inputs again
yield lower results, which may be attributed to the diffi-
culty posed by additional context. However, one should
note that for such large durations, input excerpts are no
longer guaranteed to contain instances of a single motif
only and thus, our initial assumption on a single label per
input may be violated.

In Section 5, we discuss how the results for different
amounts of temporal context may be interpreted in the con-
text of a leitmotif detection scenario.
Potential for Overfitting. Deep learning models often
rely on features of the input that would be deemed task-
irrelevant by human experts, see, e. g., [29, 30]. In our
case, the correct class for each input may be inferred not
only from musically relevant aspects of leitmotifs such as
melody or rhythm (as given in Table 1), but also from con-
founding features of the excerpts such as instrument activ-

4 Statistics on instance lengths are given in Table 1 (rightmost column).

Context Strict Variable Fixed (10 sec.)
P R F P R F P R F

L-Ni 0.67 0.80 0.73 0.67 0.86 0.75 0.80 0.91 0.85
L-Ri 0.36 0.41 0.38 0.44 0.43 0.43 0.49 0.67 0.56
L-Mi 0.79 0.87 0.83 0.82 0.80 0.81 0.97 0.96 0.97
L-NH 0.72 0.20 0.31 0.62 0.25 0.36 0.92 0.32 0.47
L-RT 0.57 0.65 0.61 0.60 0.77 0.68 0.71 0.91 0.80
L-Wa 0.87 0.80 0.84 0.81 0.88 0.84 0.95 0.95 0.95
L-WL 0.25 0.21 0.23 0.23 0.17 0.20 0.52 0.20 0.28
L-Ho 0.46 0.57 0.51 0.52 0.57 0.54 0.61 0.91 0.73
L-Ge 0.28 0.30 0.29 0.38 0.43 0.40 0.58 0.68 0.63
L-Sc 0.52 0.50 0.51 0.64 0.53 0.58 0.76 0.58 0.66

Mean 0.55 0.53 0.52 0.57 0.57 0.56 0.73 0.71 0.69

Table 5. Main results of our method on the test set of the
occurrence split for different strategies of using temporal
context.

ity or volume. This is especially true for the performance
split, where a classification model may predict correct out-
puts on the test set by merely memorizing all occurrences
during training instead of distinguishing musically relevant
features of the leitmotifs (we will revisit this possibility
in Section 4.6). In contrast, for the occurrence split, the
model needs to generalize to previously unseen realiza-
tions of the leitmotif classes and therefore needs to rely
on their common musical characteristics.

4.4 Results on the Occurrence Split

Table 5 presents results for the occurrence split with dif-
ferent strategies for adding temporal context. Overall re-
sults are lower than for the performance split. In the Strict
scenario, the obtained mean F-measure of 0.52 is substan-
tially lower than for the performance split, but still well
above chance (which corresponds to 0.1 mean F-measure).
Results vary considerably among motifs, with F-measures
ranging from 0.23 for L-WL to 0.84 for L-Wa. In addition,
the differences between precision and recall per motif can
be large as in the case of L-NH (P = 0.72 and R = 0.20).
We conclude that classifying leitmotif instances for un-
known occurrences is challenging but possible.

We further observe that—in contrast to the performance
split—context is beneficial in the occurrence split. Mean
F-measures of the Variable and Fixed scenarios increase to
0.56 and 0.69, respectively. Figure 3 shows F-measures for
different amounts of context in the occurrence split (dot-
ted blue line). Results increase for excerpt lengths up to
ten seconds and then stabilize. We see two potential rea-
sons for this. Firstly, by training with temporal context,
the classifier may learn to identify features that indicate
instance starts and ends, which could be helpful for iden-
tifying instances in the test set. Secondly, however, longer
temporal context also means that instances from the train-
ing set may occur in the context added to validation and test
instances. Indeed, we observed that for a context length of
10 seconds, 67% of test excerpts overlap with a training in-
stance of the same class, while 8% overlap with a training
instance of another class. Predicting the class of known
training occurrences would therefore yield good results on
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Split Performance Occurrence
P R F P R F

Noise 0.90 0.87 0.89 0.32 0.36 0.34

L-Ni 0.90 0.95 0.93 0.63 0.74 0.68
L-Ri 0.89 0.89 0.89 0.28 0.32 0.30
L-Mi 0.94 0.93 0.94 0.78 0.75 0.76
L-NH 0.95 0.88 0.91 0.52 0.28 0.37
L-RT 0.93 0.93 0.93 0.54 0.73 0.63
L-Wa 0.93 0.96 0.94 0.79 0.79 0.79
L-WL 0.94 0.93 0.94 0.17 0.12 0.14
L-Ho 0.89 0.87 0.88 0.40 0.45 0.42
L-Ge 0.91 0.91 0.91 0.20 0.18 0.19
L-Sc 0.90 0.95 0.93 0.68 0.38 0.49

Mean 0.92 0.92 0.92 0.48 0.46 0.46

Table 6. Results of our method when incorporating a noise
class in the performance and the occurrence split. No tem-
poral context is added (Strict scenario).

the test set. The results for adding temporal context may
thus partly be explained by overfitting to the training set.

4.5 Noise Class

So far, we only considered excerpts that contain one of
ten leitmotifs. However, the Ring also contains regions
with other or with no leitmotifs at all. Because of this, we
also perform experiments with an additional Noise class,
denoting excerpts where none of the leitmotifs in our se-
lection are being played. We evaluate whether our model
is able to correctly classify our selection of leitmotifs in
the presence of this noise class, both for the performance
and the occurrence split. To do so, we randomly select
400 Noise occurrences from the Ring, leading to 6400
Noise instances. The model described in Section 3 re-
mains unchanged except for the final classification layer,
which now has eleven outputs.

Results are given in Table 6. For the performance
split, the additional noise class does not change results
by much. Leitmotif classes obtain somewhat lower results
(e. g., P = 0.90 for L-Ni compared to P = 0.94 in Table 4)
while the noise class yields an F-measure lower than most
leitmotif classes (F = 0.89). For the occurrence split, re-
sults for the leitmotif classes again decrease slightly (e. g.
P = 0.63 for L-Ni compared to P = 0.67 in Table 5),
while the noise class itself is especially hard to distinguish
(F = 0.34). In both splits, the noise class does not lead to
a complete deterioration of results. Section 5 discusses the
implications of this for the task of leitmotif detection.

4.6 Random Labels

In all experiments, our model has consistently obtained
higher results on the performance than on the occurrence
split. As discussed at the end of Section 4.3, the latter split
requires generalizing to new musical realizations of a mo-
tif. In contrast, the performance split could be tackled by
memorizing all leitmotif occurrences, which is not possi-
ble on the occurrence split.

To further investigate the gap in results between perfor-
mance and occurrence split, we now evaluate our model’s
capability to memorize input features on the performance

split. To do so, we create a variant of the performance
split where we assign a random class label from one to ten
to each occurrence. Thus, while occurrences are labeled
consistently across performances, their classes no longer
correspond to leitmotifs. In this variant of the performance
split, the class of a test excerpt can only be obtained by
memorizing classes for occurrences during training and not
by learning common properties of all occurrences for a mo-
tif. This random-labeling experiment is inspired by [31].

When training our model on this variant, we obtain a
mean F-measure of 0.54 on the test set after 50 epochs,
which is much lower than the 0.94 obtained for the origi-
nal labels (see Table 4). We observed that training for this
experiment had not converged after 50 epochs and trained
for an additional 75 epochs, leading to an F-measure of
0.57. The faster convergence and higher results on the
original labels suggest that our model does learn some rel-
evant characteristics of leitmotifs. Our experiment shows,
however, that memorizing excerpts may also contribute to
the results.

5. SUMMARY AND FUTURE WORK

In this work, we evaluated the capability of a neural net-
work classification model for identifying leitmotifs in au-
dio excerpts. Despite the complex musical variabilities in
this scenario, our RNN-based classification model is able
to differentiate between a fixed set of motifs and to dis-
tinguish them from non-motif excerpts. Generalization
is strong across performances and—to a lesser extent—
across occurrences. Using temporal context is helpful in
the latter case, although the improvement may partly be
the result of overfitting.

Our results encourage the development of a system
for automated detection of motif instances in full perfor-
mances. Unlike the classification task, no pre-segmented
instance boundaries would be available for detection. We
therefore expect this to be a more challenging scenario.

In our experiments, we have already explored the use of
fixed input lengths. Using these, our model may be applied
to all positions in an audio recording in a sliding window
fashion [32]. This way, we can obtain leitmotif predictions
for an entire performance of the Ring and not just indi-
vidual excerpts. Additionally, a model used for automated
leitmotif detection from audio would also need to deal with
input excerpts that do not contain any leitmotifs at all. Our
experiments with a noise class suggest that this may lead
to somewhat lower but still useful results.

Furthermore, a detection system would need to handle
a much larger number of motifs (around 130 for the com-
plete Ring) as well as excerpts containing multiple mo-
tifs played simultaneously. Multi-label extensions of our
model on fixed input lengths may be suitable for this.

As an even more advanced scenario, one may imagine
an informed detection setting in which instances of a pre-
viously unseen motif must be identified given only a few
exemplary instances of that motif.
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ABSTRACT

This paper presents a method for large-scale retrieval of
piano sheet music images. Our work differs from previ-
ous studies on sheet music retrieval in two ways. First,
we investigate the problem at a much larger scale than pre-
vious studies, using all solo piano sheet music images in
the entire IMSLP dataset as a searchable database. Sec-
ond, we use cell phone images of sheet music as our input
queries, which lends itself to a practical, user-facing appli-
cation. We show that a previously proposed fingerprinting
method for sheet music retrieval is far too slow for a real-
time application, and we diagnose its shortcomings. We
propose a novel hashing scheme called dynamic n-gram
fingerprinting that significantly reduces runtime while si-
multaneously boosting retrieval accuracy. In experiments
on IMSLP data, our proposed method achieves a mean re-
ciprocal rank of 0.85 and an average runtime of 0.98 sec-
onds per query.

1. INTRODUCTION

Imagine the following scenario. A musician is sitting down
in front of a piano learning a new piece of music. She pulls
out her cell phone, takes a picture of the physical page of
sheet music sitting in front of her, and is immediately able
to access Youtube videos of performances of that piece
and alternate editions of the sheet music. In this paper,
we present a method to solve the main technical challenge
of identifying the page of music. This is the camera-based
piano sheet music identification task.

Most previous works on sheet music retrieval come
from the literature on finding correspondences between au-
dio and sheet music. There are three general approaches
to the cross-modal retrieval problem. The first approach
is to convert the sheet music into MIDI using optical mu-
sic recognition (OMR), to compute chroma-like features
on the MIDI, and then to compare the result to chroma fea-
tures extracted from audio. This approach has been applied
to audio–sheet music synchronization [1] [2] [3] [4], and it
translates very naturally to retrieval applications like using
a segment of sheet music to identify its corresponding au-
dio recording [5] or to retrieve the corresponding temporal

c© D. Yang and T. Tsai. Licensed under a Creative Com-
mons Attribution 4.0 International License (CC BY 4.0). Attribution:
D. Yang and T. Tsai, “Camera-Based Piano Sheet Music Identification”,
in Proc. of the 21st Int. Society for Music Information Retrieval Conf.,
Montréal, Canada, 2020.

passage from a specific audio recording [6]. The second
approach is similar to the first, except that it replaces the
full OMR with a mid-level feature representation based on
the location of noteheads relative to the staff lines [7] [8].
The third approach is to train a multimodal convolutional
neural network to learn a latent feature space that directly
encodes similarity between chunks of audio and sheet mu-
sic snippets. This approach has been applied to audio–
sheet music alignment [9] [10] and retrieval applications
like using a snippet of audio to retrieve its correspond-
ing sheet music snippet and vice versa [10] [11] [12] [13].
See [14] for an overview of work on cross-modal retrieval
of music data. Also, we note that a recent work [15] has
proposed a neural network-based approach for finding cor-
responding measures between two different sheet music
versions of a piece.

This current study differs from previous work in two
ways. First, we study the sheet music retrieval problem
at a much larger scale. Previous works have studied sheet
music retrieval using searchable databases containing hun-
dreds of sheet music scores or a few thousand short snip-
pets of sheet music. In contrast, we perform experiments
using all solo piano sheet music scores in the entire In-
ternational Library Music Score Project (IMSLP) 1 as a
searchable database. We believe that this is several orders
of magnitude larger than any previous study on sheet music
retrieval. Second, we focus on queries that are cell phone
images of sheet music. Previous works have primarily fo-
cused on synthetic sheet music, scanned sheet music, and
audio recordings as input queries. While there have been
a handful of works that study OMR on cell phone pictures
of sheet music [16] [17] [18] [19] [20], this area of study is
still in its infancy. Even though using cell phone pictures
arguably makes the task much more challenging due to the
additional sources of noise and distortion, we believe that
this change leads to a much more practical, user-facing ap-
plication.

Our approach to the piano sheet music identification
task is to combine a recently proposed bootleg score fea-
ture representation with a novel hashing scheme. The boot-
leg score feature was originally proposed for a MIDI–sheet
music alignment task [8]. A recent work has explored us-
ing the bootleg score features in a hashing framework for
de-anonymizing files in the Lakh MIDI dataset by find-
ing matches in sheet music data [21]. We will show that
this previously proposed fingerprinting approach is far too
slow for our current scenario. Because our task is a real-

1 https://imslp.org
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time application, latency is an extremely important factor
(unlike [21], which is an offline task). In this work, we
impose a hard constraint that our system must have an av-
erage runtime of 1 second or less. We diagnose the rea-
son why this previously proposed fingerprinting scheme is
slow, and we develop a novel fingerprinting scheme that is
able to achieve our stringent runtime constraint.

This paper has three main contributions. First, we
propose a novel hashing scheme called dynamic n-gram
fingerprinting. This approach dynamically constructs n-
gram fingerprints of variable length in order to ensure that
each fingerprint is discriminative enough to warrant a ta-
ble lookup. Second, we present empirical validation of our
proposed method on a very large-scale retrieval task. We
perform experiments using all solo piano scores in IMSLP
as a searchable database. We show that dynamic n-gram
fingerprinting achieves both higher retrieval accuracy and
significantly lower runtimes than a previously proposed
approach. Our best system achieves a mean reciprocal
rank of 0.85 and has an average runtime of 0.98 seconds
per query. Third, as a byproduct of this project, we re-
lease the precomputed bootleg score features on all piano
scores in IMSLP. 2 Because this task required a tremen-
dous amount of time and computation involving the use of
a supercomputing infrastructure, we release the features as
a standalone repository in the hopes that it will be useful in
a variety of other MIR-related tasks.

2. SYSTEM DESCRIPTION

Figure 1 shows the architecture of our proposed system.
We will describe the system in two parts: constructing the
database and performing a search at runtime.

2.1 Database Construction

Our first goal is to construct a database which will enable
us to perform searches very efficiently. The process of con-
structing this database consists of three steps, as shown in
the upper half of Figure 1. These three steps will be de-
scribed in the next three paragraphs.

The first step is to convert each sheet music PDF into a
sequence of PNG images. We decode the PDF into PNG
images at 300 dpi, and then resize each image to have a
width of 2550 pixels while preserving the aspect ratio. Be-
cause there is an extremely large range of image sizes in the
IMSLP dataset, we resize the images to ensure that they are
within a range that the bootleg score feature computation
was designed for.

The second step is to compute a bootleg score for each
page. The bootleg score is a recently proposed feature
representation of piano sheet music that encodes the po-
sition of filled noteheads relative to staff lines [8]. The
bootleg score representation itself is a 62 ×N binary ma-
trix, where 62 indicates the total number of possible staff
line positions in both the left and right hands, and where

2 Code for the paper can be found at https://github.com/
HMC-MIR/SheetMusicID, and the precomputed bootleg score fea-
tures can be found at https://github.com/HMC-MIR/piano_
bootleg_scores.

Figure 1. Overview of proposed system.

N indicates the total estimated number of simultaneous
note events. Figure 2 shows a short section of sheet music
and its corresponding bootleg score representation. Note
that this representation discards a significant amount of in-
formation like duration, key signature, accidentals, octave
markings, and clef changes, and it simply ignores non-
filled noteheads (e.g. half or whole notes). Nonetheless, it
has been shown to be effective in aligning sheet music and
MIDI, and we hypothesize that it may also be used effec-
tively for large-scale retrieval. The main benefit of using
the bootleg score representation over a full OMR pipeline
is processing time. Because OMR is typically cast as an of-
fline task, the best-performing systems require a significant
amount of computation. 3 In contrast, the bootleg score
can be computed on a high-resolution image in less than
1 second using a CPU. By focusing exclusively on simple
geometrical shapes like circles (filled noteheads) and lines
(staff lines and bar lines), it can detect objects robustly and
efficiently using classical computer vision techniques.

The third step is to construct the n-gram databases.
The concept of an n-gram is adopted from the language
modeling literature, where the likelihood of a sequence
of N consecutive words is estimated based on the fre-
quency of its occurrence in a large set of data. Here, we
treat each bootleg score column as a word and consider
N consecutive words as a single fingerprint. We gen-
erate four separate n-gram databases for N = 1, 2, 3, 4.
Each n-gram database is constructed in the following man-
ner. First, we concatenate the bootleg score features from
all pages into a single, global bootleg score for each
PDF. Second, we represent each bootleg score column
as a single 64-bit integer. This allows us to represent
the bootleg score very compactly as a sequence of inte-
gers. Third, we consider every n-gram in the sequence
as a fingerprint. For example, if a bootleg score is given
by a sequence of 64-bit integers x1, x2, x3, · · · , then the
set of 3-gram fingerprints for this bootleg score is given
by (x1, x2, x3), (x2, x3, x4), (x3, x4, x5), · · · . Fourth, we
store the location information for each fingerprint in a re-
verse index. For each n-gram database, the hash key is a
(64 · N)-bit fingerprint, and the reverse index stores a list
of (id , offset) tuples for all occurrences of that fingerprint
in the database, where id is a unique identifier for the PDF

3 For example, in a recent survey on state-of-the-art music object de-
tectors [22], the best performing system required 40-80 seconds to pro-
cess each image using a GPU.
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Figure 2. A short section of sheet music and its corre-
sponding bootleg score.

and offset specifies the offset in the bootleg score.

2.2 Search

At runtime, our goal is to identify the piece of music show-
ing in a cell phone image query. This process consists of
three steps, as shown in the bottom half of Figure 1.

The first step is to compute a bootleg score on the cell
phone image. This is done using the same feature ex-
traction as in the database construction phase. Note that
the inputs in the offline and online phases are very differ-
ent: whereas the IMSLP data is primarily digital scans of
physical sheet music, the queries are cell phone images of
physical sheet music. This introduces a lot of noise due
to variable lighting conditions, zoom, camera angle, crop-
ping, blur, unwanted objects outside the boundaries of the
page, etc. The only reason we can get away with using
the same feature extractor in these two very different sce-
narios is that the bootleg score feature extraction has no
trainable weights and only a small set of hyperparameters.
This makes it less likely to highly overfit to a set of data. It
is also worth pointing out that the bootleg score feature ex-
traction was originally designed to handle the challenging
case of cell phone images of sheet music, so we surmise
that it will handle the easier case of scanned sheet music
reasonably well.

The second step is to construct a sequence of dynamic
n-gram fingerprints. We will explain and motivate the use
of dynamic n-grams by describing our initial attempts to
solve the problem, the issues with these earlier approaches,
and how the dynamic n-gram addresses these issues.

Our initial attempt was to consider each column of the
bootleg score as a fingerprint. This is equivalent to a
1-gram in the terminology used in this paper. This ap-
proach was proposed in a recent work that attempts to
de-anonymize files in the Lakh MIDI dataset by finding
matches in a set of known sheet music data [21]. When we
implemented this approach, we found that the retrieval ac-
curacy was good, but that the system was far too slow. This
is an acceptable solution in [21] because the task is offline,
but it is an unacceptable solution in our current applica-
tion because we have a very stringent runtime constraint.
Upon further analysis, we found that the frequency distri-
bution of fingerprints was highly peaked and thus ill-suited
for hashing. In other words, there was a small set of finger-

prints that occurred very frequently in the database. These
fingerprints tended to be bootleg score columns containing
a single note event. Because this occurs so frequently in
piano sheet music, it forces the system to process an ex-
tremely large number of spurious fingerprints at runtime,
which significantly slows down the system.

Our second attempt was to use an n-gram fingerprint
to address this issue. This introduces a tradeoff. On
the one hand, as we increase N the fingerprint becomes
more discriminative, which leads to fewer matches in the
database and faster runtime. On the other hand, increas-
ing N increases the likelihood that the fingerprint is er-
roneous, since the entire fingerprint is wrong if even one
of its elements has an error. If we roughly model each n-
gram as N , independent Bernoulli random variables, then
the probability that the entire n-gram is correct decreases
exponentially in N . Given this tradeoff, one very reason-
able approach is to try different values of N and to select
the value that yields the best performance.

The dynamic n-gram gets the best of both worlds. If
a single bootleg word xi (i.e. a bootleg score column
converted to a 64-bit integer) is very distinctive, then we
simply do a table lookup in the 1-gram database. In this
case, it would not benefit us to do a 5-gram lookup if
the first element only occurs a few times in the whole
database. If, however, the bootleg word is very com-
mon, then we prefer not to do a table lookup on the 1-
gram database because this would require us to process
a large number of spurious fingerprints. In this case, we
bump the 1-gram up to a 2-gram and repeat the process.
If the 2-gram fingerprint (xi, xi+1) is distinctive, then we
do a table lookup on the 2-gram database. If (xi, xi+1) is
not distinctive, then we bump the 2-gram up to a 3-gram
(xi, xi+1, xi+2). We repeat this process until the finger-
print is distinctive enough to warrant doing a table lookup
(up to N = 4). As an example, given a sequence of boot-
leg words x1, x2, x3, · · · , one possible dynamic n-gram
sequence would be (x1), (x2, x3), (x3), (x4, x5, x6), · · · .
Note that there is only one hyperparameter γ that speci-
fies the maximum number of fingerprint matches we are
willing to process for every table lookup.

The third step is to search the database using the his-
togram of offsets method. The histogram of offsets was
proposed in [23] as a way to efficiently search a very large
database. It is based on the observation that the true match
in the database will yield a sequence of matching finger-
prints at an approximately constant relative offset. For
example, if a query bootleg word sequence x1, x2, x3, · · ·
matches a reference sequence x̃i, x̃i+1, x̃i+2, · · · , then the
matching fingerprints would all have a relative offset of
i − 1. If we compute a histogram of relative offsets for
all matching fingerprints with that item in the database, we
would see a large spike in the histogram at the bin corre-
sponding to an offset of i− 1. We can therefore compute a
similarity score by constructing a histogram of offsets for
matching fingerprints, and then calculate the maximum bin
count in the histogram. Once we have calculated a match
score for every PDF in the database in this way, we group
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the PDFs by piece. The piece match score is calculated as
the maximum score of any of its constituent PDFs. Finally,
we sort the pieces in the database by their match scores.
This yields our final predicted ranked list of pieces.

3. EXPERIMENTAL SETUP

In this section, we describe the data and metrics used to
evaluate our proposed system.

The cell phone image queries were taken from the Sheet
MIDI Retrieval dataset [24]. We include a description of
the dataset here for completeness. This data was originally
created to study the task of aligning a cell phone picture of
piano sheet music and its corresponding MIDI file. It con-
tains 2000 cell phone images of 200 different piano pieces
across 25 well-known composers. For each of the 200
pieces, a PDF from IMSLP was downloaded and printed
onto physical paper. Ten cell phone pictures were taken
across the length of each piece in a variety of locations,
lighting conditions, perspectives, and levels of zoom. The
pictures contain between 1 and 5 lines of music and were
all taken in landscape orientation. We use the same train-
test split as the original paper: 400 cell phone images (cor-
responding to 40 pieces) were used for training, and 1600
cell phone images (corresponding to 160 pieces) were used
for testing. By using the same train-test split as the original
paper, we ensure that the bootleg score feature extraction
has not been tuned to the test data.

The database comes from IMSLP. We first scraped the
website and downloaded all PDF scores and associated
metadata. 4 We then filtered the data by instrumentation
tag label in order to identify a list of solo piano pieces. The
resulting dataset contains 29,310 pieces and 31,384 PDFs
and 374,758 individual images. This is the dataset that we
used to construct the database described in Section 2.1.

We release the precomputed bootleg score features for
all piano scores in the IMSLP dataset in a separate stan-
dalone repository. 5 We believe this is in itself a signif-
icant contribution to the MIR research community, given
the amount of time, memory, and computation required to
generate it. For example, it took us over a month to scrape
the IMSLP website and download all the scores in PDF
format. This set of PDFs was approximately 1.2 terabytes
in size. If the PDFs had been decoded into high-resolution
images, the dataset would be in the tens of terabytes. Be-
cause this was too large to store on disk, we decompressed
each PDF to a set of high-resolution images, computed the
bootleg score features, and then deleted the high-resolution
images to conserve disk space. We performed all feature
computation on the NSF XSEDE supercomputing infras-
tructure [25].

We evaluate our system along two dimensions: retrieval
accuracy and runtime. Because our goal is to identify the
matching piece rather than just the exact same PDF, 6 there

4 We downloaded the data over the span of several weeks in May 2018.
5 https://github.com/HMC-MIR/piano_bootleg_

scores
6 In Section 5.2, we will test how well our system can identify a piece

when only an alternate edition of the sheet music exists in the database.

is always exactly one correct item in the database. Accord-
ingly, we use mean reciprocal rank (MRR) as our measure
of retrieval accuracy. The MRR is calculated as

MRR =
1

N

N∑
i=1

1

Ri
(1)

where N = 1600 indicates the number of test queries and
Ri indicates the rank of the true matching item for the ith

query. In our task, Ri can range between 1 and 29310,
the total number of pieces in the database. MRR ranges
between 0 and 1, where 1 indicates perfect performance.
We also measure the runtime required to process each test
query. The runtime includes all data pre-processing such
as converting the JPG image to PNG format. Note, how-
ever, that the runtimes do not include the network latency
that would be present in a real cell phone application. All
experiments are done on a single core of a 2.1 GHz Intel
Xeon CPU.

4. RESULTS

In this section, we present our experimental results on the
piano sheet music identification task.

We are not aware of previous work that directly studies
sheet music identification based on cell phone images. As
mentioned in Section 1, there are works in the audio–sheet
music alignment literature that have studied cross-modal
sheet music retrieval. These works could in principle serve
as baseline comparisons. However, all of the works we are
aware of would not have been practical to evaluate on our
task for one of two reasons. First, some approaches do not
scale to a large database. For example, approaches that use
subsequence DTW [5] [6] [2] [8] would have exorbitantly
high runtimes on the IMSLP database. Second, some ap-
proaches might have acceptable runtimes at test time, but
would have required too much computation to construct
the database. For example, the sheet–audio alignment sys-
tem in [11] is 20 times slower than our proposed system
and would have exceeded our computational budget on the
XSEDE supercomputing infrastructure. Any approaches
that use OMR to convert the sheet music into MIDI format
would likewise be too computationally expensive.

Nonetheless, we compare our proposed approach to
nine other baseline systems. The first four baselines are
representative of the state-of-the-art in image retrieval in
the computer vision community. These systems were de-
veloped for the Oxford 5k [26] and Paris 6k [27] bench-
marks, where the goal is to identify a famous landmark
in a query image given a database of known images. All
four systems are built on top of pretrained ImageNet clas-
sifiers like VGG [28] and ResNet [29], but they differ in
the method by which they convert model activations into
a final feature representation. The first baseline (MAC
[30]) takes the K × W × H tensor of activations at the
last convolutional layer and computes the maximum ac-
tivation within each feature map. This yields a fixed-size
K-dimensional feature representation regardless of the im-
age size. The second baseline (SPoC [31]) adopts a sim-
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System
MRR Runtime

cond 1 cond 2 avg std
MAC [30] .037 .043 1.17s .12s
SPoC [31] .003 .004 1.14s .10s
GeM [32] .025 .029 1.18s .11s
R-MAC [33] .036 .039 .96s .11s
1-gram [21] .709 .659 21.5s 12.5s
2-gram .845 .784 2.76s 1.11s
3-gram .808 .767 1.99s .36s
4-gram .755 .722 1.12s .25s
5-gram .688 .668 1.07s .13s
dynamic n-gram .853 .812 .98s .12s

Table 1. System performance on the piano sheet music
identification task. Condition 1 is when the exact same
PDF exists in the database. Condition 2 is when only an
alternate version of the sheet music is in the database.

ilar approach, but uses average pooling rather than max
pooling. The third baseline (GeM [32]) uses generalized
mean pooling, which is a generalization of both average
and max pooling where the type of pooling is specified by
a single, trainable parameter. The fourth baseline (R-MAC
[33]) applies max pooling over different regions of the im-
age at various scales and combines the results through an-
other pooling stage. All four baselines also apply various
forms of post-processing, such as dimensionality reduction
through principal component analysis, whitening, and L2
normalization. Given a query feature representation, simi-
larity with database images is computed with a simple in-
ner product. In our experiments, we compute piece simi-
larity as the maximum similarity with any page in any of
the piece’s constituent PDFs. We evaluate the baseline sys-
tems with their provided pretrained models. 7 The last five
baselines are equivalent to our proposed system but using a
fixed n-gram fingerprint for N = 1, 2, 3, 4, 5. The 1-gram
system corresponds to the approach proposed in [21].

Table 1 compares the performance of all models. The
systems are presented in three groups: the image retrieval
baselines (top), the fixed n-gram systems (middle), and the
proposed dynamic n-gram system (bottom). The second
column (labeled “cond 1") indicates the MRR on the test
set, and the last two columns indicate the average runtime
per query and corresponding standard deviation. The col-
umn labeled “cond 2" will be discussed in Section 5.2.

There are three things to notice about these results.
First, the image retrieval baselines all perform very poorly.
The best-performing image retrieval system is MAC,
which achieves an MRR of .037. This is not a surprise,
since these systems were not designed for working with
sheet music images, but it does confirm that existing image
retrieval systems do not work out-of-the-box on the sheet
music identification task. We do observe, however, that the

7 Training the baseline systems from scratch would require a large
amount of labeled data (to retrain the ImageNet classifier) and would
constitute a significant research project on its own. In this work, we
simply evaluate the baseline systems out-of-the-box using the provided
pretrained models.

systems achieve results significantly better than random
guessing (approximately .001 MRR). Second, the fixed n-
gram systems show a tradeoff between retrieval accuracy
and runtime. As N increases from 1 to 5, we see the aver-
age runtime decrease from 21.5 seconds to 1.07 seconds.
This reflects the fact that the fingerprint is becoming more
and more discriminative, which leads to fewer and fewer
matches in the database. At the same time, we observe
that the retrieval accuracy decreases from .845 to .688 as
N increases from 2 to 5. This reflects the fact that more
and more fingerprints are erroneous as fingerprint size in-
creases. The increase in MRR from N = 1 to N = 2
indicates that the 1-gram fingerprints are not sufficiently
distinctive. Third, the dynamic n-gram system achieves
both the highest retrieval accuracy (.853) and the lowest
average runtime (0.98 seconds). This indicates that the de-
sign has achieved its intended goal: to avoid the tradeoff
between retrieval accuracy and runtime, and to instead get
the best of both worlds.

5. ANALYSIS

In this section, we conduct four different analyses to an-
swer key questions of interest.

5.1 Failure Modes

The first question of interest is, “What are the failure
modes of the system?" To answer this question, we iden-
tified the queries with poor reciprocal rank values and in-
vestigated the reasons for failure. By far the biggest rea-
son for poor performance was failure in the bootleg score
feature computation. Common mistakes included missed
detection of non-filled noteheads or noteheads occurring
in block chords, notehead detection false alarms arising
from text and other musical symbols on the page, and
staff line estimation errors. Fixing these issues would re-
quire re-designing the bootleg feature computation. An-
other (minor) reason for poor performance came from non-
distinctive sections of music. For example, when there are
repetitive octaves or long sequences of alternating between
two notes in only one hand, this can have a strong match
with unrelated pieces of music.

5.2 Effect of Sheet Music Version

The second question of interest is, “How well does the sys-
tem handle different sheet music versions?" To answer this
question, we ran a separate set of experiments in which we
remove the exact same PDF from the database. This means
that the system can only match against alternate versions
of the sheet music. Because some queries only had 1 sheet
music version in IMSLP, this additional benchmark was
run on a reduced subset of 930 test queries.

The results of this alternate benchmark are indicated in
Table 1 as “Condition 2." We see that the MRR of the fixed
n-gram systems has been reduced somewhere between .02
and .06, and the MRR of the dynamic n-gram system is
reduced by .04. This performance gap between condition

Proceedings of the 21st ISMIR Conference, Montréal, Canada, October 11-16, 2020
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System
MRR Runtime

cond 1 cond 2 avg std
dyn n-gram (20k) .864 .802 1.67s .18s
dyn n-gram (10k) .865 .802 1.53s .16s
dyn n-gram (5k) .860 .803 1.21s .15s
dyn n-gram (1k) .853 .812 .98s .12s

Table 2. Comparison of dynamic n-gram systems with var-
ious values of γ, which specifies the maximum number
of fingerprint matches the system will process on a table
lookup before bumping an N -gram to an (N + 1)-gram.

1 and condition 2 can be interpreted as the additional per-
formance loss that is caused by variations in different sheet
music editions. While this is a nontrivial decrease in per-
formance, the proposed system still has a robust overall re-
trieval accuracy (.812 MRR) when the exact same version
is not in the database.

5.3 Effect of γ

The third question of interest is, “How does system per-
formance vary with γ?" Recall that the dynamic n-gram
approach has one hyperparameter γ that specifies the max-
imum number of fingerprints we are willing to process for
each table lookup. We ran experiments with several values
of γ to determine its effect on system performance.

Table 2 shows system performance for γ ranging from
1000 to 20, 000. As γ decreases, we see a very slight de-
crease in retrieval accuracy (.864 to .853) and significant
improvement in average runtime (1.67s to .98s). In this
case, we have a very nice tradeoff: for only a small sac-
rifice in retrieval accuracy, we can significantly speed up
the system. The dynamic n-gram results in Table 1 corre-
spond to γ = 1000, which is the best system that meets
our constraint of 1 second average runtime per query.

5.4 Fingerprint Distribution

The fourth question of interest is, “How well suited for
hashing is the dynamic n-gram fingerprint distribution?"
As described in Section 2.2, we found that the 1-gram fin-
gerprint proposed in [21] had a frequency distribution that
was very peaked and thus ill-suited for hashing. 8 To see
how well the dynamic n-gram approach addresses this is-
sue, we compared its frequency distribution to the fixed
n-gram approaches.

Figure 3 shows this comparison. Each curve shows the
frequency of different fingerprint values, where the finger-
prints have been sorted from most frequent (left) to least
frequent (right). Both axes are shown on a log scale in or-
der to better visualize the wide dynamic range. Note that
all of the fixed n-gram distributions have approximately
the same total number of fingerprints in the database, so
their only difference is how many unique fingerprint val-
ues there are and how the fingerprints are distributed across

8 Note that the ideal distribution for hashing is a uniform distribution.

Figure 3. Comparing the fingerprint frequency distribu-
tions of the fixed n-gram systems and dynamic n-gram with
γ = 10, 000. For each curve, the fingerprints have been or-
dered from most frequent (left) to least frequent (right).

these different values. The curve for the dynamic n-gram
system corresponds to γ = 10, 000.

Figure 3 shows the same trends that we see in Table
1. The difference, however, is that Figure 3 explains why
the results in Table 1 are the way they are. For example,
we observed earlier that the fixed n-gram systems exhibit
a tradeoff between retrieval accuracy and runtime. Figure
3 explains this tradeoff from a hashing perspective. As N
increases, the fixed n-gram distributions become less and
less peaked, which translates to fewer fingerprint matches
in the database and smaller runtimes. At the same time,
this manner of reducing the peak comes with an exponen-
tial explosion in the number of unique fingerprint values.
This means that the fingerprints will be less generalizable
and more error-prone. We also notice that the only fixed
n-gram curves that intersect early on are the 1-gram and 2-
gram curves. This explains why the 2-gram system is uni-
laterally better than the 1-gram system: it has a less peaked
distribution (smaller runtime) and it has a higher frequency
of fingerprints than the 1-gram system for a large fraction
of fingerprint values (better retrieval accuracy). Finally, we
observe that the dynamic n-gram system has a flatter distri-
bution than any of the fixed n-gram systems across a wide
range of its distribution. This confirms that the dynamic
n-gram approach is able to transform the distribution into
one that is more well-suited for hashing. 9
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ABSTRACT 

While prior studies investigating the social aspects of mu-
sic provide a landscape of users’ various social behaviors 
around commercial music services (CMS), there remains a 
lack in understanding of users’ perceptions and value judg-
ments underlying these behaviors. Specifically, there is 
more to learn about what influences and behaviors individ-
ual music users perceive as meaningful in social contexts. 
We used the Q methodology to explore which behaviors 
and influences are important to CMS users and why. We 
extracted two factors that explain the two different view-
points shared by groups of music users, focusing on how 
they perceive the meaning and value of different social 
music behavior and interactions. From these findings, we 
then revised an existing social music coding dictionary and 
interaction model and offer new CMS design insights. 

1. INTRODUCTION 

Music is both personal [1], [2] and part of our social expe-
rience [1], [2], [3], [4]. Technologies in use affect what ac-
tivities occur around music [5, 6] as does the physical and 
social context of how and where people interact with tech-
nology [7]. Furthermore, information technologies have 
become entangled with individuals’ sense of self and so-
cial experiences [8]. Commercial music services (CMS), a 
type of information technology, are part of this ecosystem 
where individual and social experiences come together 
with current technologies. 

Since music and technology are both so personal, im-
proving our understanding of why CMS users find certain 
interactions with music and technology to be personally 
meaningful can help derive design decisions for new CMS 
technology to better meet these specific needs. Further-
more, in recognizing the influence of technology on mu-
sic-related activities and the pace of CMS technology 
change [6], understanding what is meaningful to individu-
als within socially complex ecosystems can support for-
ward-looking and contextually relevant design decisions. 

Although there has been periodic research on music-re-
lated social behaviors and technology [4], [6], [9], [10], 
[11], [12], [13], [14], [15], [16], these studies focused on 
describing the different behaviors surrounding CMS and 
less on understanding how and why some behaviors and 
behavioral influences may be more significant to certain 
users than to others in social contexts. Previous research 
methods used include surveys [11], [12], [13], [15], [16], 

interviews [4], [12], [14], [15], contextual inquiry [10], 
ethnographic inquiry [9], ethnographic observation of pro-
totypes [15], field trial of prototype technologies [15], and 
focus groups [6]. While these methods were appropriate 
for their studies’ goals, we still have a limited understand-
ing of the personal significance of social behaviors sur-
rounding music and the significance of influences on those 
social behaviors. In other words, we have a better under-
standing of how users behave in certain ways when it 
comes to using various music services, but less on what 
they perceive as meaningful or valuable from their own in-
dividual perspectives. 

To address this gap, we conducted a study using the Q 
methodology, a method that better captures the personal 
significance of social behaviors. First developed in psy-
chology in 1935 [17], [18], the Q methodology has since 
entered the Human-Computer Interaction (HCI) commu-
nity [19], [20]. The Q methodology “asks its participants 
to decide what is ‘meaningful’ and hence what does (and 
what does not) have value and significance from their per-
spective” [18]. Furthermore, it is “used to explore (and to 
make sense of) highly complex and socially contested con-
cepts and subject matters from the point of view of the 
group of participants involved” [18]. 

Using the Q methodology, we identified two distinct 
segments of CMS users within our participant group. 
Within each segment, users share similar perspectives 
about social behaviors surrounding CMS and associated 
influences on those behaviors. Additional contributions of 
this research include revisions for an existing coding dic-
tionary and interaction model, and new design insights. 
Furthermore, the user segmentation could potentially con-
tribute to existing personas identified in previous Music 
Information Retrieval (MIR) user studies [14], [21]. 

2. RELATED WORK  

2.1 Social Practices Related to Music 

Prior research laid the foundation for understanding social 
practices—and the influences on those social practices—
where music intersects with technology. O’Hara and 
Brown’s work captured social practices surrounding music 
and technology such as sharing, exploring, and peeping at 
a time when MP3 sharing platforms like Gnutella, Kazzaa, 
and Soulseek were still in use [15]. The social contexts for 
these practices included cars, public locations, work-
spaces, and dance clubs [15]. 

In 2013, as more users started to stream music and use 
the Bluetooth features on their mobile phones, Leong and 
Wright [4] observed the following social practices in 
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shared settings: exploration, discovery, selection, listen-
ing, and sharing. In the same year, Belcher and Haridakis 
[22] identified social motivators as influences to music lis-
tening and selection behaviors. In 2015, Yang et al. [23] 
identified peers as an influence on the practices of unau-
thorized music downloading and sharing. Later in 2017, 
Hagen and Lüders [1] studied how users listen, discover, 
share, and follow given social features on music streaming 
services. More recently, Spinelli et al. [6] identified nine 
social practices and twenty-four influences on these prac-
tices at the intersection of music and technology. Park et 
al. [16] also derived a collaborative playlist framework 
identifying sharing, recommending, and bonding as social 
purposes for how collaborative playlists served study par-
ticipants. Lee et al. [24] explored music recommendations 
and also identified possible “disparities in how people 
wish to receive music recommendations and what will in-
fluence them to listen to recommendations, versus how 
they would like to offer recommendations to others.” 

This body of work builds a compelling story around the 
social practices surrounding CMS. Our work specifically 
aims to build upon the comprehensive model of practices 
and influences identified in prior research [6] and provide 
insight into how individual CMS users or segments of us-
ers perceive the different practices and influences around 
CMS. The Q methodology was selected to provide a holis-
tic understanding [18] of how these practices and influ-
ences were perceived by a group of CMS users. 

2.2 Methodology 

Meloche introduced an established form of the Q method-
ology to the field of HCI in 1999 [19]. He believed the field 
would benefit from the method’s ability to reveal the sub-
jective views of individuals [19]. While the Q methodol-
ogy has not previously been used to study CMS, forms of 
the method have been used to study other information tech-
nologies such as: studying a communication system for 
children [20], exploring user segmentation of technology 
services by information seeking preferences [25], and 
studying the health and technology attitudes of patients to 
inform the design of self-management interventions [26]. 

The Q methodology has also been used to study subjec-
tive views around music. Wacholtz [27] applied the 
method to investigate musical preferences and identify dif-
ferent listener types for country music. McKenzie and 
Brown [28] also studied the musical preferences of stu-
dents and teachers related to popular music, identifying 
and describing three factors. While not directly focused on 
music and CMS, Davis and Michelle conducted research 
using the Q methodology focused on relevant media audi-
ences and included a comprehensive bibliography of Q 
methodology research that studied media audiences and 
media users [29]. 

Both critiques and criticisms of the Q methodology and 
its implementation have been made and addressed over the 
years [30], [31]. A commonly noted challenge of the Q 
methodology is the potentially ambiguous nature and pro-
cess of building the Q set [18], [32], [33]. To address this, 
our application of the Q methodology incorporated results 
from focus groups where constant comparative analysis 
was used to develop a Q set after the initial phase of a 

multi-method study design. Although interviews are often 
included as a possible method to support the development 
of a Q set [33], focus groups can enable richer open-ended 
discussion and interaction between participants which then 
can help form a meaningful Q set [25], [34]. Researchers 
also take mixed method approaches incorporating Q meth-
odology—for instance, combining the Q methodology 
with R-method surveys, a quantitative method [35], [36]. 

3. STUDY DESIGN AND METHOD 

We employed a multi-method approach that harnesses the 
strengths of both focus groups and the Q methodology. In 
Phase I, we selected exploratory focus groups to capture a 
wide breadth of statements from participants that de-
scribed their social practices and associated influences 
they have experienced surrounding CMS. In total, the fo-
cus group study identified twenty-four possible influences 
on nine different social practices (both social practices and 
their influences are subsequently referred to as “themes”). 
The findings are reported in the Codebook of Social Prac-
tices and Influences [6]. In Phase II, the Q methodology 
was used to study the personal significance of the themes 
that were uncovered in the focus groups. Focus group 
statements from Phase I formed the basis for a set of items 
(the Q set) used in the Q methodology. This paper reports 
our findings from Phase II. 

Twenty-four participants took part in the Q methodol-
ogy component of this study, of which seventeen partici-
pated in Phase I. Each participant completed an in-person 
sorting activity, followed by brief interviews at the Uni-
versity of Washington, Seattle. These sorting activities and 
interviews, followed by a factor analysis method and fac-
tor interpretation to uncover participant viewpoints, com-
prise the Q methodology. Each of the 24 individual sorting 
activities and their follow-up interviews took between 30 
minutes and an hour. A facilitator and a note-taker were 
present at each session. Sessions were also recorded and 
transcribed to ensure accurate analysis. 

3.1 Selection of Participants 

Recruitment activities for study participation consisted of 
displaying flyers, posting to listservs, and posting on social 
media as well as physical flyers placed on boards around 
the university campus and in nearby businesses. Partici-
pants were compensated with $15 Amazon gift cards for 
being part of this study. All recruiting avenues directed po-
tential participants to a screener survey. 

A screener survey was used to ensure all participants 
were between the ages of 18 and 34, currently lived with 
at least one other person, and used at least one CMS. The 
same screening criteria was used for identifying focus 
group participants. In total, 24 participants from the 
screener took part in an individual, in-person card sorting 
activity and subsequent interview. Of the 23 participants 
who chose to report a gender identity, 15 were female and 
8 were male. Twenty-one participants were between the 
ages 18 to 24, and 3 were ages 25 to 34. Participants used 
a diverse array of CMS currently on the market including 
Spotify, Pandora, Google Play Music, YouTube, 
Soundcloud, etc. 
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3.2 Q Set Generation from Focus Group Data 

A Q set is a diverse collection of items curated to broadly 
represent the subject matter at hand, with each item 
“making a different (but nonetheless recognizable) 
assertion” [18]. For this study, the themes and items were 
elicited from focus groups where social practices and their 
related influences were discussed [6]. Researchers chose 
the themes to investigate using two criteria. First, the 
personal significance of each theme had to appear to vary 
within the participant group. Second, the themes had to 
appear interrelated. Both the themes and relationships 
between themes were identified on an affinity diagram 
created using a process of constant comparative analysis. 
Three influences on social music behaviors met these 
criteria and were selected as themes of focus for this study: 
1) level of group intimacy, 2) level of effort and 
engagement, and 3) privacy and security considerations. 

Researchers reviewed the focus group transcripts that 
had previously been coded with at least one of the three 
themes to gather items for the Q set. Statements were 
selected as items for the Q set based on three criteria: 
focus, coverage, and balance [33]. Focus refers to 
including items that can be sorted by a “single, face-valid 
assumption” [33]. Coverage refers to the set being 
“broadly representative” of the domain at hand [33]. 
Balance refers to including all the opinions and 
perspectives in the Q set [33]. After items were selected, 
the Q set was piloted to ensure participants understood 
both the items and sorting activities for the study. 

3.3 Q Sorting Activity and Interviews 

During a Q sort, individual participants organize items 
(Table 1) into a forced distribution known as a Q pyramid 
(Figure 1) and place items they agree with most to the right 
(+3) and most disagree with to the left (-3). During the Q 

sort and subsequent interviews, participants express their 
interpretations of items along with their reasoning for 
placement into the Q pyramid. 

We laid out three pieces of paper for Agree, Disagree, 
and Neutral along with the Q set items printed out on cards. 
We asked participants to sort the Q set cards into the three 
groups and afterwards, arrange the cards in accordance 
with a provided image of a Q pyramid. After participants 
had finished sorting the cards, we asked them to tell us 
about the items they felt most and least strongly about as 
well as the items in the center of their distribution (See 
supplemental material for the complete protocol). Individ-
ual Q sorting activities with post-sort interviews were held 
privately for confidentiality. 

 

 

Figure 1. Factor exemplifying sorts for Factor 1 and 2 dis-
played in the Q pyramid used in this study. Consensus 
items that do not distinguish one factor from another are 
flagged (*). 

A Level of Group Intimacy Researchers believed, a 
priori, that items of this theme pertained to the level 
of familiarity between group members in a social sit-
uation.  

A.1 I am comfortable recommending or picking 
songs to listen to when hanging out with close 
friends.  
A.2 I am comfortable picking music that my close 
friends will like in social gatherings.  
A.3 I am comfortable with my roommates hearing 
everything I play.  
A.4 I would not hesitate to tell my friends to change 
the music that is playing.  
A.5 I would put my headphones on if I did not want 
to listen to the music that is playing in a shared 
space.  
A.6 I do not feel comfortable making music recom-
mendations in a large group setting.  
A.7 I feel comfortable asking to connect my 
phone/laptop to a speaker at someone’s house that 
I do not know well.  
A.8 I do not mind sharing my music taste with peo-
ple I do not know well at social gatherings.  
A.9 I change the music in a large group setting if I 
do not like it.  
A.10 I trust people to use my phone or laptop to 
play music at a large gathering (e.g., party).  

 

B Effort/Engagement Researchers believed, a 
priori, that items of this theme pertained to the 
level of effort or engagement an individual is will-
ing to put forth or the responsibility an individual 
is willing to take on when engaging with music in 
a social situation.  

B.1 I like being the DJ if others give recom-
mendations.  
B.2 I like being the DJ and playing only my 
music at social gatherings.  
B.3 I match the music playing to the mood of 
the group.  
B.4 I would like for everyone to take turns add-
ing music to a playlist.  
B.5 I am comfortable forcing my friends to lis-
ten to my music recommendations in a social 
gathering.  
B.6 I do not mind being the DJ if I can easily 
pick a playlist for the mood or activity.  
B.7 I like not having to think about what music 
to play in social gatherings.  
B.8 I do not mind changing the song if others 
do not like the music that is playing.  
B.9 I like letting other people choose the music 
in social gatherings.  
B.10 I like being able to add music to a queue 
in social gatherings.  

 

C Privacy and Security Considerations Re-
searchers believed, a priori, that items of this theme   
pertained to considerations relating to privacy 
and/or security that influence an individual’s ac-
tions in a social music practice.  

C.1 I would not let other people use my 
phone/laptop to listen to music.  
C.2 I trust people to not snoop around on my 
phone/laptop if they are using it to pick music 
to play.  
C.3 There are certain types of music I only lis-
ten to when I am alone.  
C.4 I chaperone my phone/laptop if it is being 
used by others to play music in social gather-
ings.  
C.5 I do not mind others playing music from 
my music accounts if I am already logged in 
and we are listening to music.  
C.6 I am not concerned about other people 
knowing what I listen to.  
C.7 I do not mind sharing my login for a service 
with my roommates.  
C.8 I keep an eye on my phone/laptop if it is 
being used to play music at a party at my house.  

 

Table 1.  The Q set consists of items that represent themes of intimacy, effort, and privacy and security. Analysis and 
interpretation of study results are based on the participant’s interpretations of items as expressed in post-sort interviews, 
not necessarily the themes they were intended to represent (shown here). 
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3.4 Analysis 

Analysis of the Q sorts is completed using “a by-person 
factor analysis in order to identify groups of participants 
who make sense of (and who hence Q ‘sort’) a pool of 
items in comparable ways” [18]. We took an inductive ap-
proach using a process in line with exploratory factor anal-
ysis [33] as we observed that individuals in the population 
valued the three themes in the Q set differently, but we did 
not have a hypothesis about the differences. Factor ar-
rays—representative viewpoints of the perspectives ex-
pressed by participants in their Q sorts—were extracted 
from a correlation matrix, built from the intercorrelation of 
all the Q sorts [33]. Factor extraction was done at the same 
time as the coding of post-sort interview transcripts. 

Factor extraction was conducted using PQMethod; a 
free software dedicated to the Q methodology [33]. To de-
termine the appropriate number of factors to extract, we 
first used the Kaiser-Gutman Criterion followed by a Scree 
Test. We then performed a varimax rotation on the factors 
and extracted our final factors. We determined 
PQMethod’s pre-flagging was both appropriate and more 
than sufficient for our exploratory purposes. Including 
every sort in the creation of factor estimates increased the 
reliability of our factor estimates and arrays while reducing 
error [33]. Thirteen Q sorts were flagged for Factor 1 and 
eleven Q sorts for Factor 2. To enable cross-comparison 
between factors, total factor estimate scores are converted 
to Z scores [33]. Exemplary factor arrays for Factor 1 and 
Factor 2 were then created from Z scores (Figure 1). 

In preparation of Factor interpretation, post-sort inter-
view transcripts were coded. The transcripts were coded 
with the relevant Q sort item being discussed, the exem-
plary Factor number that represents the participant making 
the statement, and the applicable themes from the Code-
book of Social Practices and Influences [6]. By coding 
transcripts with the Q sort item and Factor number repre-
sentative of the participant, we were able to quickly filter 
relevant statements to interpret each factor array. Themes 
from the Codebook of Social Practices and Influences cap-
tured the meaning of the Q set item as expressed by each 
participant in post-sort interviews rather than by the re-
searchers’ a priori beliefs. The two exemplary factor arrays 
identified during factor extraction are representative view-
points of the perspectives expressed by participants in their 
Q sorts [33]. 

Factor extraction and coding of transcripts provided the 
foundation for factor interpretation, which was conducted 
applying Stenner and Watts’ Crib Sheet method to each 
factor array [33]. Items were separated into four catego-
ries: items ranked at +3, items that ranked higher than other 
arrays, items that ranked lower than other arrays, and items 
that ranked -3 (Figure 1). Following an abductive process, 
each item was interpreted individually and then in the con-
text of the entire viewpoint. Item by item, the viewpoint 
grew into the holistic viewpoint for the factor array. Dur-
ing this process, participant statements and themes from 
the prior work provided insight into how participants in-
terpreted each item in context of the larger Q set. Our in-
terpretation at this stage reflected this understanding of 
items, not our a priori understanding of each item. Using 
this lens, we found all items supported a holistic viewpoint 

for each factor, including consensus items that did not rank 
differently across factors. 

4. RESULTS 

For this study, we reached a two factor outcome that ex- 
plains 45% of the total study variance in the correlation 
matrix. Common factor solutions that capture 35-40% or 
more of the total study variance are considered sound [33], 
[37]. Eigenvalues (EV) provide another way to compare 
factors within a study, and a higher EV is viewed as posi-
tive [33]. 

A cross-factor analysis identifies 23 items as being 
ranked significantly differently at the p < 0.01 level. Five 
consensus items were identified as non-significant at p > 
0.01. This means the two identified factors (participant 
groups) had statistically significantly different views about 
23 items but generally agreed on 5 items. Factor 1 is factor-
exemplifying for 13 Q sorts, or put another way, Factor 1 
is representative of the Q sorts of 13 participants. Factor 2 
is factor-exemplifying for 11 Q sorts. 

In the following subsections, we provide the viewpoints 
developed from interpreting the factors in the context of 
post-sort interviews. The supporting Q sort item identifier 
and item rank used for factor interpretation are included 
for each statement in the viewpoints (i.e. identifier: rank). 

4.1 Factor 1 Interpretation: Viewpoint 1 

Users with Impression Management and Security Con-
cerns, but also Confident Music Selectors 
  

Factor 1 explains 23% of the total study variance and 
has an EV of 7.26. Thirteen participants are significantly 
associated with this factor.  

These users did not want others to know the type of 
music they were listening to due to impression manage-
ment concerns or appropriateness for the social situa-
tion. They had impression management concerns; they did 
not want their roommates to know what they listen to (C.3: 
+3; A.3: -1) and considered some of the music they listen 
to as guilty pleasures (C.3: +3; A.3: -1; C.6: -1). Another 
reason they listen to music alone is they believed some mu-
sic types are not appropriate for social situations (C.3: +3). 

In social situations, these CMS users are confident in 
their ability to pick music that their social group will en-
joy (A.1: +3; A.2: +2). They believe they can match music 
selections with the mood of a gathering, and this becomes 
easier when the gathering is intimate (B.3: +2). They are 
so confident in their understanding of their close friends’ 
music tastes that they may force them to listen to a song 
they know their friend will like; this would not be the case 
for friends they know less intimately (B.5: 0). Similarly, in 
large group settings they recommend generic, safe choices 
—they choose popular songs due to impression manage-
ment concerns that an untested song will not be appreci-
ated by the group (A.6: 0; A.8: -1). 

Although they would not hesitate to tell a close friend 
to change the music currently playing, they feel it is often 
unnecessary or inappropriate (A.4: 0). They believe they 
can tolerate any music in a social situation (A.5: -1) and 
think it is especially rude to change other people’s music 
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in large groups (A.9: -2). In fact, they do not expect to be 
able to provide input in many situations—like at someone 
else’s wedding (B.10: 1). When they are playing music, 
they do not mind changing the song if there is group con-
sensus that it should be changed (B.8: 1). They also do not 
mind situations where everyone takes turns adding songs 
to a playlist as long as the flow is consistent (B.4: 0).  

When they are with their friends, these CMS users pre-
fer to focus on interacting with them, and not on choosing 
the music (B.7: 0; B.6: +1). It is a lot of effort to pick all 
the music for an event, and it is not considerate to ask 
guests to pick songs (B.2: -2). Anything that reduces the 
amount of effort needed is seen as beneficial, like select-
ing a playlist (B.6: +1). They want to reduce their impres-
sion management concerns and their effort in selecting 
music for social situations (A.9:0). When others give rec-
ommendations, it ensures these users do not have to take 
responsibility for what they play—something they really 
like (B.1; +2; B.9: +1). An added benefit is that letting oth-
ers choose the music reduces the effort they need to put 
into the activity (B.1: +2).  

These CMS users generally do not trust that others 
will not snoop on their phone or laptop (C.2: -2). This is 
especially true in large groups where they would never 
share their phone (A.10: -3). In more intimate settings, 
they will likely let friends use their account to play music 
if they are already logged into an account (C.5: 0). Regard-
less of how intimate the situation is, they will monitor their 
device to make sure snooping does not occur and device 
use is limited to the music app (C.8: +2; C.4: +1). 

4.2 Factor 2 Interpretation: Viewpoint 2 

Very Considerate CMS Users with Almost No Impres-
sion Management or Security Concerns  
 

Factor 2 explains 22% of the total study variance and 
has an EV of 3.44. Eleven participants are significantly 
associated with this factor.  

These CMS users are not concerned about other peo-
ple knowing what they listen to at all (C.6: +2). They do 
not have any privacy concerns about their music tastes 
and do not mind if that information becomes known to 
the group (A.3: +2). They would share their tastes if peo-
ple at a gathering were interested but are also okay if peo-
ple are not interested (A.8: 0). They listen to certain types 
of music alone if it is not popular with their friends or if 
the music does not fit with the social event (C.3: +1).  

They are comfortable making individual song recom-
mendations to friends because they are familiar with 
their tastes (A.1: +2; A.2: +1). It would be very unlikely 
for them to force a friend to listen to a music recommen-
dation (B.5: -1).  

When confronted with music they do not like, they 
want to be considerate, likely tolerating a song they do 
not like or leaving the physical space (A.9: -3; A.5: -1). 
Some in this group worry that putting on headphones to 
block out music is antisocial (A.5: -1). They really want to 
be considerate of others and not critical (A.9: -3). Rather 
than putting on headphones they might instead comment 
that they liked music that was played earlier, and in that 
way, gently nudge music selection back in that direction 

(A.9: -3). Unless they are in an intimate situation, like a 
small group in a car, they probably would not tell a friend 
to change the music (A.4: -1). 

These CMS users are very considerate of others’ ex-
perience with music and will participate in music activi-
ties that support everyone’s enjoyment (B.8: +3). How-
ever, they do not want to make the decisions and do not 
want to be super engaged (B.9: +3). They prefer not to 
think about what to play at a social gathering (B.7: +1). 
They would hate being the DJ and sole decision maker at 
a social gathering because of how much effort it would in-
volve (B.2: -3). To reduce the effort of selecting music, 
they might select a playlist, but they would still rather not 
have to select anything at all (B.6: 0). When selecting mu-
sic they would try to match the mood of the group, but they 
are not confident they would be able to (B.3: 0) and are 
unsure that they could select the best music for the group 
and situation (B.2: -3). They also do not believe it would 
be considerate to others if they were the only ones select-
ing music (B.2: -3). Thus, if needed, they would take rec-
ommendations to ensure everyone is happy (B.1: -1). They 
like the idea of everyone being able to give input even in a 
large group setting, but they do not think it is always nec-
essary or that people should feel compelled to do so (A.6: 
-1; B.4: 0; B.10: +1). They definitely want to make sure 
everybody is happy (B.3: 0). 

Although they would prefer to use someone else’s de- 
vice, they would let others use their phone/laptop to listen 
to music (C.1: -2; C.4: -2). While they would not want peo-
ple to snoop, they trust that people will not do so (C.2: +1). 
They also do not think they have anything embarrassing on 
their phones and laptops (C.2: +1). They envision that they 
might be concerned about leaving their phone or laptop out 
to play music in situations with a lot of strangers, such as 
a large party, but they have done so in the past without is-
sues (C.8: 0; A.10: 0). However, when they are at someone 
else’s house they do not know well, they would not feel 
comfortable asking to connect their phone/laptop to a 
speaker (A.7: -2). They would prefer others to share their 
logins, but situations have come up where they would 
share their own logins (C.7: -1); e.g., they do not mind 
sharing an account if they are already logged in (C.5: +2). 

5. DISCUSSION 

This study provided two clear viewpoints in the form of 
exemplifying Q sorts for two different segments of partic-
ipants. The viewpoints captured the inter-relatedness of 
themes pertaining to social music behaviors and associated 
influences surrounding CMS. We confirmed that the view-
points are an excellent way to evaluate design insights es-
pecially with a deeper understanding of influences that 
could drive or inhibit the adoption of a new design [25]. 
While a focus group study inspired many ideas, the Q 
methodology left us with a clearer vision of what some 
segments of participants would love, hate, or not care 
about. Based on the results of this study, researchers will 
also be able to investigate how viewpoints identified here 
can contribute to personas already existing in the field 
[21]. 
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5.1 Updating an Existing Model 

The Q methodology uncovered shortcomings in our inter-
pretation and understanding of participants’ statements 
made in focus groups. For example, Q set item A.5 I would 
put my headphones on if I did not want to listen to the mu-
sic that’s playing in a shared space was interpreted by re-
searchers as it relates to intimacy. This was our a priori 
belief when building the Q set. After interpreting the post-
sort interviews however, it became clear many participants 
interpreted item A.5 as it relates to considerateness and so-
cial norms rather than intimacy. Thus, analyzing partici-
pants’ post-sort interview statements not only gave insight 
into why they sorted items the way they did, but also into 
how they interpreted those items. 

Insight gleaned from post-sort interviews led to a better 
understanding of participants’ viewpoints and to the iden-
tification of issues with the coding dictionary and the 
model from the focus group study [6]. For example, Pri-
vacy and Security Considerations is a theme that emerged 
from focus groups describing an internal influence on so-
cial practices surrounding music. Items capturing the 
breadth of Privacy and Security Considerations discussed 
by participants in focus groups were selected for the Q set. 
This Q methodology study uncovers that privacy was an 
inclination, almost a behavior, driven by impression man-
agement, security, or both. An updated codebook and 
model reflects this finding by keeping Impression Man-
agement as a theme and separating Privacy from Security 
considerations. 

5.2 Applied Design Insights for CMS 

5.2.1 Social Playlist for Gatherings 

As participants in both viewpoints appreciate any features 
that reduce the effort needed to select songs or playlists for 
a group due to impression management concerns, we sug-
gest CMS to include auto-suggested playlists that are 
based on the listening history of group members who have 
opted into this function. At a group gathering, hosts can 
invite their guests to add their listening history and music 
preferences into the mix so that the CMS can add or sug-
gest songs for the queue. The host’s invitation to guests 
validates and follows a previous recommendation to main-
tain social norms [6], such as the host having ultimate say 
in who chooses music for a co-located gathering. After 
group members have opted in, the CMS would (1) auto-
matically queue up “safe” songs that have been previously 
played by a majority of individuals in the group and (2) 
suggest additional songs for each user to add to the queue. 
Suggested songs would either have been played/liked by 
someone else in the group or have a strong match for other 
criteria that the group could also select, such as a mood or 
social situation. Suggested songs would not be as “safe” as 
songs that are automatically queued, but would still reflect 
the interests and character of the group. This feature could 
alleviate viewpoint 2’s lack of confidence in suggesting 
songs for the group since the CMS would only suggest 
songs where evidence of it being liked by others exists. For 
viewpoint 1, this feature would decrease the effort needed 
to think of songs that the group would like, providing them 
with more time to connect with others, which they value.  

5.2.2 Jukebox Mode: Public-friendly Mode of CMS 

For situations where a device, such as a phone or laptop, is 
passed around in social gatherings for guests to add songs 
to the queue, we recommend designers include a “Jukebox 
mode” on the CMS. This would lock away all of the de-
vice’s other applications and private communications so 
that they are hidden, and only the owner can unlock the 
phone again to its full capabilities. Additionally, Jukebox 
mode would switch the CMS interface to a public-friendly 
version of the app, hiding the owner’s private playlists so 
that other guests cannot view the owner’s music listening 
history. Essentially the device becomes a jukebox, where 
guests can only use the device to access the CMS and its 
library of music. Also, a guest’s music selection would not 
affect future music recommendations for the owner, which 
was another concern that CMS users expressed with shar-
ing their phones in group settings. While akin to the 
Guided Access feature currently available on iPhones and 
Androids [38], [39], where users can lock the device to a 
single app on the phone through a phone setting, this fea-
ture would be part of the CMS. This mode would accom-
modate viewpoint 1’s hesitation to have their device be 
used for music selection purposes, assuaging their fear of 
others snooping and mitigating their need to chaperone 
their phone. While viewpoint 2 was slightly more comfort-
able with others using their devices than viewpoint 1, they 
were less comfortable sharing in larger, less intimate 
groups. The “Jukebox mode” could thus address both of 
these viewpoints’ concerns. 

6. CONCLUSIONS AND FUTURE WORK 

In this work, we identified two viewpoints shared by dif-
ferent segments of our participant group, updated a code-
book and interaction model, and generated design insights. 
We learned how our participant group perceives social 
practices and associated influences surrounding CMS. 

While this research is a step forward in addressing the 
gap in understanding social practices and associated influ-
ences surrounding CMS, the identified segments are not 
generalizable to the general population. A survey, in-
formed by the segments identified in this study, would pro-
vide insight into the generalizability of these findings. Fu-
ture research could also explore CMS users’ perspectives 
in relation to culture and geography. 

We believe that focus groups and other qualitative 
methods could support systematic Q set development, but 
this process has yet to be fully explored. Specifically, from 
this case study on social music practices, we found that ex-
ploratory focus groups and the Q methodology are excel-
lent complementary methods. Analyzing data through con-
stant comparative analysis, affinity diagramming, and cod-
ing of transcripts were effective in identifying the scope of 
the Q methodology research and generating a Q set. In fu-
ture research, we plan to investigate other elicitation meth-
ods and analysis techniques to form Q sets, and explore the 
use of the Q methodology as a complement to methods 
such as narrative analysis and ethnographies. Additional 
research into this multi-method approach is notably im-
portant for researchers studying topics that are especially 
personal and private, where focus groups would not be an 
appropriate complementary method. 
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ABSTRACT

We present the development and evaluation of a gami-
fied rhythmic dictation application for music theory learn-
ing. The application’s focus is on mobile accessibility and
user experience, so it includes intuitive controls for in-
put of rhythmic exercises, a responsive user interface, sev-
eral gamification elements and a flexible exercise genera-
tor. We evaluated the rhythmic dictation application with
conservatory-level music theory students through A/B test-
ing, to assess their engagement and performance. The re-
sults show a significant impact of the application on the
students’ exam scores.

1. INTRODUCTION

Music theory learning and ear training is not very popu-
lar among students in music education and informal music
learning, although knowing about music theory stimulates
knowledge about music and enhances music appreciation.
Considering the expansion of e-learning, an overwhelming
part of the music theory learning still takes place in the tra-
ditional paper-and-pen form. Opportunities therefore exist
for increasing student engagement with appropriate infor-
mation and communications technology (ICT) tools that
would support the learning process while motivating the
students to use them through the use of gamification ele-
ments.

Games and gamified applications have gained traction
in recent years and have become important tools in the ICT
and e-learning communities. The evaluation of gamifica-
tion [1, 2] and student engagement [3] has received sig-
nificant attention, and the development of specialised plat-
forms and apps for e-learning has flourished [4, 5]. Gami-
fication has often been a medium for information retrieval
and collaborative data gathering [6]. In music informa-
tion retrieval, several approaches for gamification of music
annotation and meta-data gathering have been proposed.

c⃝ Matevž Pesek, Lovro Suhadolnik, Peter Šavli, Matija
Marolt. Licensed under a Creative Commons Attribution 4.0 Interna-
tional License (CC BY 4.0). Attribution: Matevž Pesek, Lovro
Suhadolnik, Peter Šavli, Matija Marolt, “The Rhythmic Dictator: Does
Gamification of Rhythm Dictation Exercises Help?”, in Proc. of the 21st
Int. Society for Music Information Retrieval Conf., Montréal, Canada,
2020.

Kim et al. [7] proposed the Moodswings game for mood
labelling, where the users were asked to plot the mood
on the valence-arousal graph. They collected over 50.000
valence-arousal point-labels on more than 1000 songs. The
authors identified gamification as the key component of
user engagement. In a similar manner, Mandel and Ellis [8]
proposed a web-based game for collecting song meta-data,
such as genre and instrumentation. Law et al. [9] created
the TagATune game for music and sound annotation. The
game collects comparative information about sounds and
music, where users play the game in pairs. The authors
collected responses from 54 test users. They also focused
on the user engagement through three aspects: sense of
competence for the user, pleasantness and sensory user ex-
perience, and the opportunity to connect with a partner.
Burgoyne et al. [8] presented a game named Hooked to ex-
plore the ”catchiness” of songs on the responses provided
by 26 users. The dataset consisted of 32 songs. Aljanaki et
al. [10] developed a ’game with a purpose’ to gather emo-
tion responses to music. They collected more than 15,000
responses from 1,595 participants. Overall, in the MIR
community, the developed applications mainly served as
a medium to gather data.

On the other side, many web and mobile platforms for
music learning exist, that also incorporate gamification el-
ements, from instrument-related applications (e.g. My Pi-
ano Assistant 1 , Yousician 2 ) and music accompaniment
software (e.g. iReal Pro 3 ) to music-theory platforms (e.g.
theoria.com, musictheory.net, Musition 4 ). These plat-
forms, however are commercial and closed-source, they
are not extensible to new topics (by teachers) or adjustable
to individual learning groups and curricula. While there is
no doubt that they can help the user to improve their knowl-
edge and performance, the lack of adjustment to in-class
use within existing curricula is difficult without code-level
access. Access to such commercial platforms may also not
be affordable for all parties (e.g. public music schools).

In the paper, we present the Rhythmic dictator: a rhyth-
mic dictation application, which is part of our larger effort
to gamify various aspects of music theory learning into
a common open-source platform. It is implemented as a

1 Available on Google Play and Apple App store
2 https://yousician.com
3 https://irealpro.com/
4 https://www.risingsoftware.com/musition
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web-based application with a responsive user interface that
is specifically designed for mobile devices, since these are
the most commonly used by students. The application au-
tomatically generates exercises according to the student’s
level of knowledge and in-app progress. To increase stu-
dent engagement, gamification elements, including badges
and leaderboards are implemented.

We analyse two aspects of the application’s in-class use
with first and second year conservatory-level students: the
students’ engagement, and the application’s impact on the
students’ performance.

2. THE RHYTHMIC DICTATOR

Three exercise types are commonly performed by mu-
sic theory students: melodic (interval) dictation exercises,
rhythmic dictation exercises, and harmony exercises. Con-
ventional practice usually consists of listening to a pre-
recorded or teacher-performed dictation and solving it on
paper. Evaluation and grading is done by the teacher.

Our rhythmic dictation application (the Rhythmic dic-
tator) offers an easy to use and automated way for students
to solve rhythmic dictation exercises in-class and out-of-
class with immediate feedback on their performance and a
customizable exercise generator which adapts the difficulty
of generated exercises to the student’s level of knowledge.
The application was developed as a responsive web appli-
cation, which adapts well to mobile devices. In this way,
the development and maintenance of the platform is sim-
plified, as the platform is browser-accessible on all major
platforms—Windows, Linux, OS X for desktop environ-
ments, as well as Android and iOS for mobile devices.

The application is incorporated into the Troubadour
platform 5 , which is a framework for music theory learning
with support for gamification elements including badges,
points and leaderboards. The application and the platform
are easily deployable with the use of package management
tools, and the code is available as open source software and
publicly accessible on GitHub 6 .

2.1 The user interface

In rhythmic dictation, the students listen to a rhythmic se-
quence, which they have to write down in music nota-
tion. The main part of the Rhythmic dictator’s user in-
terface (Figure 1) therefore includes two staves displaying
the input rhythmic sequence and a rhythm input interface.
The upper (smaller) stave shows the entire sequence with a
red rectangle indicating the area shown in the lower larger
stave, where the user inputs their response to the dictation.
The dictation can be played-back repeatedly and paused
while playing.

The rhythm input keyboard supports a variety of rhyth-
mic inputs: note and pause lengths, subdivisions and syn-
copation. To accommodate for the small screens of mobile

5 https://trubadur.si
6 https://bitbucket.org/ul-fri-lgm/troubadour_

production

devices, the inputs are split into two layouts: on the pri-
mary layout, the most common note and pause lengths are
displayed. With keys for subdivision and syncopation, the
layout changes to show a set of additional input options, as
shown in Figure 2.

Figure 1: The main screen of the rhythm dictation appli-
cation on a mobile device. The primary rhythm input in-
terface is shown below the staves.

Each exercise begins with a metronome indicating the
meter and is followed by the rhythmic dictation playback.
The student can pause and replay the dictation, and adjust
the playback speed and volume. The dictation is played
using an organ sound. The sound was chosen in discus-
sion with music theory teachers due to its fast onset, steady
sustain and a clear offset. While the sound of piano is
commonly used for melodic dictation, its unclear offset
can cause ambiguities in determining the event length (vs.
pause). Our choice of the sound was also evaluated with
the users during the evaluation period.

2.2 Automatic generation of exercises

The Rhythmic dictator includes an exercise generator that
can generate exercises of different difficulty levels. The
difficulty of a rhythmic exercise is governed by several pa-
rameters: subdivision complexity (from quarter notes, to
32nd notes), subdivision types (dual vs. ternary), subdivi-
sion distributions, and the number of events (length of the
sequence). Randomly generating the exercises with uni-
form distributions of these parameters yields meaningless
and unrealistic sequences that are non-intuitive and diffi-
cult to solve and which lower the student’s motivation. We
therefore analyzed the existing materials that teachers used
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Figure 2: The secondary keyboard layout with options for
adding and modifying subdivisions.

in their classes and created parameter distributions for var-
ious difficulty levels. The distributions take into account
the frequency of event occurrences, as well as their in-bar
position, to reflect the rhythmic patterns, which are com-
mon in music. In this way, the randomly generated se-
quences become more musically meaningful and engage
the student individually with sufficient difficulty, while not
overwhelming them with either too difficult or meaning-
less examples.

We arranged the distributions into 16 difficulty levels,
ranging from elementary music school to academia. The
levels are split into four major levels, and each major level
is split into additional four minor levels. We marked the
levels with numbers {11-14, 21-24, 31-34 and 41-44},
with the first digit corresponding to the major and the sec-
ond to the minor difficulty level. The parameter distribu-
tions for each level were set as the default values for exer-
cise generation in the rhythmic dictation application, how-
ever teachers are able to modify the distributions according
to their didactic expertise and needs.

2.3 Gamification elements

To increase the motivation for using the application among
the students, we enriched it with elements of gamification.
We use three gamified elements related to students’ perfor-
mance: progression between multiple levels of proficiency,
a leaderboard and achievement badges. The gamification
elements are visible on the home screen, where students
can browse through their achievements, as seen in Figures
3a and 3b.

While using the application, students earn points by
solving the exercises, which directly affects their achieve-
ments. Each exercise consists of two sequences that can be
answered multiple times. After each completed exercise,
the student’s points are calculated, measured as a func-
tion of several factors: exercise difficulty (across the 16
difficulty levels), time taken (in minutes), number of cor-
rections (additions and deletions of notes), the use of the

metronome (yes/no), the number of submission attempts
(checks for correctness), and whether the final sequence
was correct. The sum of points can be either positive or
negative.

(a) Gamification levels

(b) Achieved badges

Figure 3: Gamification elements. The left screen shows
progression between multiple badge levels of proficiency,
while the right screen shows the badges obtained during
the practice.
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By solving more excercises and progressing through
levels of difficulty, students increase their level of profi-
ciency (Figure 3a). The levels were defined by the teach-
ers, and vary from local orchestra, to different competitions
and international institutions.

The badges, shown in Figure 3b, reflect three different
aspects of student progress. The first aspect is accuracy:
completing an exercise with(out) a certain amount of mis-
takes (from 50% up to 100% correct answers). The sec-
ond aspect is the continuity of the student’s engagement
with the platform: playing an exercise for a certain amount
of days in a row—3 days, 5 days, a week, two weeks, a
month. The third aspect is the student’s speed: the amount
of time needed to complete an exercise in 5 minute inter-
vals, ranging from 25 minutes to 5 minutes.

As an additional element of gamification, we imple-
mented a leaderboard. The leaderboard shows the cumula-
tive points collected by an individual. More points can be
achieved by both the number of solved exercises and the
exercise difficulty. The students can observe their perfor-
mance and compare it to the other players. By clicking on
one of the platform’s users the selected user’s profile page
is displayed, with their achieved levels and badges.

3. EXPERIMENT

The primary goal of the developed application was to pro-
vide an open platform, which would engage students and
increase their performance in rhythmic dictation tasks. The
application was tailored to increase student engagement
through gamification elements and an intuitive interface on
mobile devices. In our experiment, we wanted to assess
whether these goals were achieved.

We evaluated several hypotheses. First, we assumed the
mobile-friendly interface will enable the students to en-
gage with the application. While the students might spend
more time with an individual exercise at the beginning to
get used to the interface, the time spent for solving an ex-
ercise should in time decrease due to familiarity with the
interface and the student’s increased proficiency. Second
we hypothesized that student engagement will have an im-
pact on their exam performance.

During the experiment, we collaborated with first and
second year students at the Conservatory of Music and Bal-
let Ljubljana, Slovenia. First, we developed the application
through continuous evaluation with four conservatory stu-
dents (two first and two second year), who represented a
sample of our target audience. We continually evaluated
the students’ interaction with the application: whether they
understood the user interface, whether the exercises were
appropriately demanding and whether the exercises were
sufficiently interesting and engaging.

We then evaluated the application with the first and sec-
ond year students at the conservatory. The students were
randomly divided into one test and one control group in
each year. The evaluation lasted for five weeks, during
which we held four in-class meetings with the students of
the test groups. Students were asked to use the application
during the meetings through a group student challenge,

during which the students competed to achieve points in
the application.

After the five week period, students of both test and con-
trol groups participated in a standard curriculum exam. We
compared the exam results and observed the application’s
impact on exam performance. The test groups consisted
of 11 first and 12 second year students, while the control
groups consisted of 11 first and 13 second year students.

In this section, we first describe the evaluation, followed
by an analysis of the collected data.

3.1 Application evaluation - student challenge

During the five-week application evaluation period, four
meetings with the test group students were organised. The
meetings were held during the music theory classes. Our
goal was to observe the student engagement with the ap-
plication. To gain the interest of students, we proposed
a student challenge, where the students competed to gain
points and rank high on the leaderboard.

3.1.1 Initial questionnaire

At the first meeting, the students of both control and test
groups were given a questionnaire that contained general
questions about the use of tools for practicing music theory
on mobile devices. The first part of the questionnaire in-
volved questions about which applications (including mu-
sic theory apps) the students use on their mobile devices.
The second part of the questionnaire consisted of questions
about the students’ rhythm practicing at home.The ques-
tionnaire was answered by 47 students.

All students were using mobile applications, such as
social, messaging and music apps (SnapChat, Instagram,
FB Messenger, YouTube). 79% of the students reported
on using mobile apps for learning new skills, such as for-
eign languages and instruments. However, applications
for practicing music theory, such as Teoria.com, TonedEar
and MyEarTrainer, were rarely mentioned. Only a few
students (17%) used various rhythmic dictation exercises.
In the second part of the questionnaire, most students re-
ported practicing rhythmic exercises at home (67%), how-
ever they showed mixed opinions on whether they wanted
additional ways to exercise rhythmic dictation, as 55% of
students did not want additional rhythmic dictation exer-
cises. The shift in their opinion therefore posed a key chal-
lenge for the success of the proposed application.

3.1.2 Weeks 2 and 3

During weeks 2 and 3, we enabled access to the application
to the test groups. We conducted a live challenge during a
music theory class. The goal of the challenge was to in-
crease student engagement with the application, by entic-
ing them to gather points and rank high on the leaderboard.
During the challenge, we motivated the students further by
presenting intermediate results live on a classroom display.
Symbolic rewards were given to the first three students.

During the week 3 meeting, we also distributed ques-
tionnaires to the test group students. We asked the students
about their experience with the application. The results of
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the questionnaire were mostly positive. When asked if the
application was difficult to use, all students answered no
(100%). Most of them answered that the exercises were
not difficult (16 students, 69%) and that they got used to
the application’s use over time (16 students, 69%). The
answers were consistent with the goal that the application
should be easy to use. Most students responded that the
rhythm input keyboard worked as intended (13 students,
72%). The majority did not use additional paper and pen-
cil (17 students, 94%) exercises. However, the sound of the
organ used by the application was perceived as disturbing
(16 students, 89%). Many answered that they would rather
listen to the piano because they are more accustomed to it.
Two thirds of the students had enough time to complete the
exercises (12 students, 67%), and did not adjust the speed
of the dictation playback (67%).

3.1.3 Week 5

Five weeks after the beginning of the application’s evalua-
tion period, we organised the fourth meeting. We presented
the final results of the participating students and handed
out plaques to the winners of the challenge. All students
received symbolic rewards in gratitude.

We also asked the test group students to respond again
to the questionnaire which was handed out during the third
meeting. We investigated the changes in their opinions af-
ter one month of application use. Again, we received posi-
tive responses. The students replied that the exercises were
not difficult (91%). All students got used to the application
during this time. To most students, the rhythm input key-
board functionality seemed logical and worked as intended
(82%). All students began using the application to practice
and stopped using the conventional paper and pencil prac-
tice. The students also grew accustomed to to the sound of
the organ used for playback (73 percent).

Most students had enough time to complete the exer-
cises (91%), and did not adjust the playback speed (91%).
When asked whether they showed the application to their
friends, the majority responded positively (73%). In their
final remarks, the students highlighted the following fea-
tures:

• the students liked the ability of using the application
on a personal computer in addition to the mobile de-
vice,

• the scoring and achievements (badges) were moti-
vating,

• the ability to pause/stop the playback was helpful.

3.2 Analyzing the application data

Twenty-three students, 11 from the first and 12 from the
second year, completed 496 exercises in total. Each ex-
ercise consisted of two rhythmic sequences that could be
answered multiple times. In total, the students answered
837 sequences correctly. The first-year students averaged
24.5 sequences and the second-year 26 sequences.

The rhythm dictation application is organised into 16
difficulty levels. In order to advance to a higher level, the

student had to complete at least 12 exercises at the cur-
rent level. When starting the application, the student could
choose which level to start at from the subset of levels they
already achieved. 39% of the students remained at the first
level (level 11), because they did not complete enough ex-
ercises to pass on to the next level, while others moved
to higher levels. During the evaluation, only one student
reached all the rhythmic levels available.We also observed
the time needed to complete the individual exercises. In
their first exercises, the students needed more time than
in later repetitions - the average time gradually decreased
with the number of exercises played. With increasing diffi-
culty levels, we noticed that the number of event deletions
increased. The number of dictation plays remained steady
across all levels of difficulty. The number of attempts to
solve also remained steady with the exception of level 11
(1/16 difficulty level), where sequences were trivial for the
conservatory-level students to solve.

The gathered data confirmed our assumption that some
of the observed values, such as time spent, decreased over
time, while others remained steady due to the increasing
difficulty of exercises. Student engagement in out-of-class
use gradually increased, which we consider a success in
terms of user experience - student liked the interface and
found it easy to use - as well as gamification elements,
which, through the student challenge, brought competitive-
ness into interaction between students.

3.3 Exam performance

At the end of the evaluation period, the students completed
an exam as part of their standard curriculum. The exam
was taken in the traditional form, with the teacher dic-
tating the rhythmic sequences and students writing their
responses on paper. We analyzed the exam results and
compared the grades within and between the groups. The
exam was evaluated with grades 1 (worst grade) to 5 (best
grade). The first-year control group students achieved an
average grade of 4.3, while the test group students achieved
an average of 4.5 (4% increase). The results were statisti-
cally tested using the MannWhitney U-test and the differ-
ence was not statistically significant (U=16, p >0.05). A
larger difference was observed for second-year students,
where the control group achieved an average score of 3.58
and the test group 4.44 (19% better, significant difference,
U=24, p<0.001). As better results were achieved by stu-
dents using the rhythmic dictation application, we can con-
clude that the use of the application had a positive effect on
their performance in the exam. As both groups were rel-
atively small, we also used a resampling method to com-
pare the group averages. At 1000 replicates, the method
estimated a 69.2% probability that the average test group
score was greater than the average control group score for
the first-year student groups. For second-year results, the
algorithm estimated this probability at 99.6% at 1,000 it-
erations. These estimates confirmed the Mann-Whitney U
test, therefore showing that students who used the applica-
tion performed better in the exam.

The difference between the first (no significant impact)
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Figure 4: Graph of the application’s usage frequency per day. The second and third meetings are marked individually for
each test group. The engagement (# of exercises) was initially higher for the first year students, however, it decreased over
time, while the engagement for the second year student group remained steady.

and second year (significant impact) students could be at-
tributed to the fact that the second year students were on
average more steadily engaged during the application’s
evaluation period (Figure 4). The students who ranked
highest in the competition rankings were from the second
year test group. However, both groups were small and a
larger longitudinal study is needed to further confirm the
results of this evaluation, and to fully evaluate the applica-
tion’s impact on the learning process and performance.

4. CONCLUSION AND FUTURE WORK

In this paper, we presented the Rhythmic dictator—a
rhythmic dictation application. The application features a
mobile-friendly user interface supported by gamification
elements for attaining student engagement, while offering
a flexible environment for the teachers. We investigated
two aspects of the application—student engagement and
exam performance. To engage students, we created a five
week challenge during which the students were asked to
use the application through a gamified experience of col-
lecting points and badges, which were visible to other stu-
dents. Their performance was later tested in a conventional
exam, where we compared the results of the students who
used and who did not use the application.

The evaluation showed that students support the use of a
gamified application. Overall, the students reported a very
positive user experience, which was further substantiated
by the claim that they would recommend the application to
their friends.

The comparison of exam results between the control
and the test groups showed a positive impact of the ap-
plication’s use on exam results, which was statistically sig-

nificant for second year students. Although the test and
control groups were small and the results should not be too
quickly generalised, the study was carried out at the Con-
servatory of music and ballet, Ljubljana, Slovenia, which
represents roughly 50% of the state-wide student popula-
tion enrolled in a music programme at this level. Based
on the evaluation presented in this paper, we can corrob-
orate the gamified Rhythmic dictator application aids the
students’ performance, which we attribute to gamification
and automatization of rhythmic dictation exercises.

To further confirm the application’s impact on music
theory learning, our current work includes a longitudinal
study with new exercise types and an evaluation of the use
of the multi-player mode for real-time remote interaction.
The application is currently also used in class, where we
are collecting new student engagement data.
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ABSTRACT

We propose an audio-to-audio neural network model that
learns to denoise old music recordings. Our model inter-
nally converts its input into a time-frequency representa-
tion by means of a short-time Fourier transform (STFT),
and processes the resulting complex spectrogram using a
convolutional neural network. The network is trained with
both reconstruction and adversarial objectives on a syn-
thetic noisy music dataset, which is created by mixing
clean music with real noise samples extracted from quiet
segments of old recordings. We evaluate our method quan-
titatively on held-out test examples of the synthetic dataset,
and qualitatively by human rating on samples of actual
historical recordings. Our results show that the proposed
method is effective in removing noise, while preserving
the quality and details of the original music.

1. INTRODUCTION

Archives of historical music recordings are an impor-
tant means for preserving cultural heritage. Most such
records, however, were created with outdated equipment,
and stored on analog media such as phonograph records
and wax cylinders. The technological limitation of the
recording process and the subsequent deterioration of the
storage media inevitably left their marks, manifested by
the characteristic crackling, clicking, and hissing noises
that are typical in old records. While “remastering” em-
ployed by the recording industry can substantially improve
the sound quality, it is a time-consuming process of man-
ual labor. The focus of this paper is an automated method
that learns from data to remove noise and restore music.

Audio denoising has a long history in signal process-
ing [1]. Traditional methods typically use a simplified
statistical model of the noise, whose parameters are es-
timated from the noisy audio. Examples of these tech-
niques are spectral noise subtraction [2, 3], spectral mask-
ing [4, 5], statistical methods based on Wiener filtering [6]
and Bayesian estimators [7, 8]. Many of these approaches,
however, focus on speech. Moreover, they often make
simplifying assumptions about the structure of the noise,

c© Y. Li, B. Gfeller, M. Tagliasacchi, and D. Roblek. Li-
censed under a Creative Commons Attribution 4.0 International License
(CC BY 4.0). Attribution: Y. Li, B. Gfeller, M. Tagliasacchi, and D.
Roblek, “Learning to Denoise Historical Music”, in Proc. of the 21st Int.
Society for Music Information Retrieval Conf., Montréal, Canada, 2020.

which makes them less effective on non-stationary real-
world noise.

Recent advances in deep learning saw the emergence
of data-driven methods that do not make such a priori as-
sumptions about noise. Instead they learn an implicit noise
model from training examples, which typically consist of
pairs of clean and noisy versions of the same audio in a su-
pervised setup. Crucial challenges facing the adoption of
the deep learning paradigm for our task are: i) can we de-
sign a model powerful enough for the complexity of music,
yet simple and fast enough to be practical, and ii) how can
we train such a model, given that we have no clean ground
truth for historical recordings? In this paper, we address
these issues and show that it is indeed feasible to build an
effective and efficient model for music denoising.

1.1 Related Work

Sparse linear regression with structured priors is used in [9]
to denoise music from synthetically added white Gaussian
noise, obtaining large SNR improvements on a “glock-
enspiel” excerpt, and on an Indian polyphonic song. [10]
considers the problem of removing artifacts of perceptual
coding audio compression with low bit-rates. That work,
which uses LSTMs, is the first successful application of
deep learning for this type of music audio restoration. Note
that in contrast to our work, aligned pairs of original and
compressed audio samples are readily available. Statistical
methods are applied in [11] to denoise Greek Folk music
recorded in outdoor festivities. In [12], the author applies
structured sparsity models to two specific audio recordings
that were digitized from wax cylinders, and describes the
results qualitatively. In [13], the authors describe how to
fill in gaps (at known positions) of several seconds in mu-
sic audio, using self-similar parts from the recording itself.

Our method is also related to audio super-resolution,
also known as bandwidth extension. This is the process of
extending audio from low to higher sample rates, which re-
quires restoring the high frequency content. In [14,15] two
approaches which work for music are described. On piano
music, for example, [15] obtains an SNR of 19.3 when up-
sampling a low-pass filtered audio from 4kHz to 16kHz.

Many existing denoising approaches focus on speech
instead of music [16–19]. Given that these two domains
have very different properties, it is not clear a priori how
well such methods transfer to the music domain. Never-
theless, our work is inspired by recent approaches that use
generative adversarial networks (GANs) to improve the
quality of audio [18, 20, 21]. For example, [21] obtains
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significant improvements denoising speech and applause
sounds that have been decoded at a low bit-rate, using a
wave-to-wave convolutional architecture.

In this paper, we present a method to remove noise from
historical music recordings, using two sources of audio: i)
a collection of historical music recordings to be restored,
for which no clean reference is available, and ii) a separate
collection of music of the same genre that contains high-
quality recordings. We focus on classical music, for which
both public domain historical recordings as well as mod-
ern digital recordings are available. This paper makes the
following contributions:

• We provide a fully automated approach that suc-
ceeds in removing noise from historical recordings,
while preserving the musical content in high quality.
Quality is measured in terms of SNR and subjective
scores inspired by MUSHRA [22], and examples on
real historical recordings are provided 1 .

• Our approach employs a new architecture that trans-
forms audio in the time domain, using a multi-scale
approach, combined with STFT and inverse STFT.
As this architecture is able to output high-quality
music, it may be a useful architecture for other tasks
that involve the transformation of music audio.

• We provide an efficient and fully automated method
to extract noise segments (without music) from a
collection of historical music recordings. This is a
key ingredient of our approach, as it allows us to cre-
ate synthetic pairs of <clean, noisy> audio samples.

The rest of this paper is organized as follows. Our ap-
proach is described in detail in Section 2, and experimental
results are given in Section 3. We conclude in Section 4.

2. METHOD

Our model is an audio-to-audio generator learned from
paired examples with both reconstruction and adversarial
objectives.

2.1 Creating paired training examples

For training, we use time-aligned pairs of <clean, noisy>
examples, where clean music is used as targets, and noisy
music as inputs to the generator. We take a data-driven ap-
proach to generate noisy audio from clean references. We
synthesize noisy samples by simulating the degradation
process affecting the historical recordings, namely apply-
ing band-pass filtering, followed by additive mixing with
noise samples extracted from “quasi-silence” segments of
historical recordings.

Specifically, we scan the noisy historical recordings
looking for low-energy segments in the time domain,
which corresponds to pauses in the musical scores. To
this end, we compute the rolling standard deviation from
the raw audio samples with a window size equal to 100ms.

1 https://www.youtube.com/playlist?list=
PLa5CkN3odpnxi3WqMH4MgVk7XUjCP99d3

Then, we estimate an adaptive threshold τ based on the
q-th quantile of the standard deviations and keep the seg-
ments that satisfy the following two conditions: i) the
local standard deviation is below τ , and ii) the segment
has a minimum duration of T . Intuitively, the value of
q is selected based on a trade-off between the number of
extracted segments and the need of extracting noise-only
segments. In our experiments, we set q = 0.5% and
T = 100ms. In this way, from 801 different recordings,
we are able to extract around 8900 noise samples.

From each of these short noise segments, we need to
generate noise samples having the same length as the clean
audio references. We do this by replicating the noise seg-
ment in time, using overlap-and-add (OLA) with an over-
lap equal to 20% of the segment length. Given the short du-
ration of most noise segments, this operation alone would
lead to periodic noise patterns which differ from the noise
characteristics found in historical recordings. Therefore,
we alter each noise segment replica before the OLA syn-
thesis step in two ways: i) applying a random perturbation
to the phase of the noise segment (adding Gaussian noise
∼ N (0, 0.1) to the phase of the STFT); ii) applying a ran-
dom shift in time (with wraparound). We found that these
simple operations produce longer noise samples with audi-
tory characteristics similar to the ones encountered in the
historical recordings, avoiding artificial periodic patterns.

Finally, we create time-aligned pairs of <clean, noise>
examples by: i) applying band-pass filtering with cut-
off frequencies randomly sampled in [50Hz, 150Hz] and
[5kHz, 10kHz], respectively; ii) mixing a randomly se-
lected noise sample with a gain in the range [10dB, 30dB].

2.2 Model architecture

The generator processes the audio in the time-frequency
domain. It first computes the STFT of the input, the real
and imaginary components of which are then fed as a 2-
channel image to a 2D convolutional U-Net [23] followed
by an inverse STFT back to the time domain. Finally the
output is added back to the input, making the model a
residual generator.

The U-Net in our generator is a symmetric encoder-
decoder network with skip-connections, where the archi-
tecture of the decoder layers mirrors that of the encoder
and the skip-connections run between each encoder block
and its mirrored decoder block. Each encoder block is
a 3×3 convolution followed by either a 3×4 convolution
with stride of 1×2 (if down-sampling in the frequency di-
mension), or a 4×4 convolution with stride of 2×2 (if
down-sampling in both time and frequency dimensions).
We choose kernel sizes to be multiples of strides to ensure
even contribution from all locations of the input feature
map, which prevents the formation of checkerboard-like
patterns in resampling layers [24]. The decoder blocks
mirror the encoder blocks, and each consists of a trans-
posed convolution for up-sampling followed by a 3×3 con-
volution. Each decoder block additionally includes a short-
cut connection between its input and output. The shortcut
consists of a nearest-neighbor up-sampling layer, which
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D-block (N, S=(S0, S1))

Conv2D (k=(3, 3), n=N/2)

TransposedConv2D
(k=(S0+2, S1+2),
n=N/2, stride=S)
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n=N, stride=S)

Figure 1. Generator architecture. Dashed-line com-
ponents are included on a need-to-have basis: Up/down-
sampling of the input/output audio is needed for process-
ing at coarser resolutions in a multi-scale setup; The lin-
ear projection (by 1x1 convolution) in the decoder block is
present only when the output of the block has a different
number of channels from its input.

is followed by a linear projection using 1x1 convolution
when the output has a different number of channels from
the input. We do not include a shortcut in the encoder
block, since it already shares the same input with a U-Net
skip connection and therefore only needs to produce the
residual complementary to the skip path. The architecture
of the generator is shown in Figure 1.

We use two discriminators for the adversarial objective,
one in the waveform domain and one in the STFT domain.
The STFT discriminator has the same architecture as the
encoder module of the generator. For the waveform dis-
criminator, we use the same architecture as MelGAN [25]
except that we only double (instead of quadruple) the num-
ber of channels in the down-sampling layers. We found
this light-weight version to be sufficient in our setup, and
that using the full version had no additional benefit. Both
discriminators are fully convolutional. Hence the wave-
form discriminator produces a 1D output spanning the time
domain, and the STFT discriminator has a 2D output span-
ning the time-frequency domain.

We use weight normalization [26] and ELU activa-
tion [27] in the generator, while layer normalization [28]
and Leaky ReLU activation [29] with α = 0.3 are used in
the discriminator.

2.2.1 STFT Representation

In the generator, the STFT is represented by a 2-channel
image, where the channels are the real and imaginary com-
ponents. We also explored a polar representation, where
the channels are the modulus and the phase; additionally
we experimented with processing only the modulus chan-
nel and reusing the original phase, as is done in [30]. Nev-
ertheless, we found the real/imaginary representation to
perform better in our experiments.

Furthermore, we tried aligning the phase so that the
phase in each frame is coherent with a global reference
(e.g., the first frame) rather than its local STFT window.
Again, we observed no advantage in doing so, which sug-
gests that the neural network is capable of internally han-
dling the phase offsets. Unlike [30], we do not convert
STFT to logarithmic scale as we found it be detrimental to
performance (even with various smoothing and normaliza-
tion schemes).

2.2.2 Multi-scale Generator

We can further stack multiple copies of the generator de-
scribed above, each with its own separate parameters, in a
coarse-to-fine fashion: The generators at earlier stages pro-
cess the audio at reduced temporal resolutions, whereas the
later-stage generators focus on restoring finer details. This
is equivalent to halving the sampling rate in each scale.
This type of multi-scale generation scheme is routinely
used in computer vision and graphics to produce high-
resolution images (e.g., [31]).

Let K be the total number of scales, then generator Gk

at scale k (k ∈ {0, . . . ,K−1}) down-samples its input by
a factor of 2k before computing the STFT and up-samples
the output residual (after computing the inverse STFT) by
the same factor to match the resolution of the input. The
overall generator G is the composite of G0 ◦ · · · ◦GK−1.

Compared with simply stacking U-Nets all at the orig-
inal input resolution, as done in [32], the benefit of the
multi-scale approach is two-fold: i) the asymptotic compu-
tational complexity is constant with respect to the number
of scales, as opposed to linear in [32], due to exponentially
decreasing input sizes at coarser levels; ii) the intermediate
outputs of the generator correspond to the input audio pro-
cessed at lower resolutions, which allows us to meaning-
fully impose multi-scale losses on the intermediate outputs
in addition to the final output. We will describe how this
can be accomplished in the next section.

2.3 Training

The generator can be trained using the reconstruction loss
between the denoised output and the clean target. This can
be further complemented with an adversarial loss, given by
discriminators trained simultaneously with the generator, a
practice often used in audio enhancement (e.g., [18,20,30],
among others). In the case of our multi-scale generator, we
use the same number of waveform and STFT discrimina-
tors as generator scales. This way, there is one discrimina-
tor of both types for each of the (down-sampled) interme-
diate outputs and final output in each domain. For the ad-
versarial loss, we use the hinge loss averaged over multiple
scales. Since the discriminators are convolutional, this loss
is further averaged over time for the waveform discrimina-
tor and over time-frequency bins for the STFT discrimina-
tor. Similarly, the reconstruction loss is also imposed on
the outputs at each scale.

More formally, let (x, y) denote a training example,
where x is the noisy input and y is the clean target, and
k ∈ {0, . . . ,K−1} denote the scale index. Hence yk is the
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clean audio down-sampled to scale k, and ŷk represents the
intermediate output of the generator Gk ◦ · · · ◦ GK−1(x)
down-sampled to the same scale. Note that for the finest
scale k = 0 at full resolution, y0 = y is simply the origi-
nal clean audio and ŷ , ŷ0 = G(x) is the final output of
the generator. Thus the L1 reconstruction loss in the STFT
domain can be written as

Lrec
G = E(x,y)

[∑
k

‖ωk − ω̂k‖1
SSTFT
k

]
, (1)

where 2D complex tensors ωk and ω̂k denote the STFT of
down-sampled clean audio yk and generator output ŷk for
scale k, respectively, and SSTFT

k is the total number of time-
frequency bins in ωk and ω̂k. We find this STFT-based
reconstruction loss to perform better than either imposing
per-sample losses directly in the waveform domain or us-
ing losses computed from the internal “feature” layers of
discriminators (e.g. [25]).

For the adversarial loss, let t denote the temporal index
over all Tk logits of the waveform discriminator at scale
k (recalling that the discriminators are fully convolutional)
and let s denote the index over all Sk logits of the STFT
discriminator. Then discriminator losses in the wave and
STFT domains can be written as, respectively,

Lwave
D = Ey

∑
k,t

1

Tk
max(0, 1−Dwave

k,t (yk))

+

Ex

∑
k,t

1

Tk
max(0, 1 +Dwave

k,t (ŷk))

 (2)

LSTFT
D = Ey

∑
k,s

1

Sk
max(0, 1−DSTFT

k,s (yk))

+

Ex

∑
k,s

1

Sk
max(0, 1 +DSTFT

k,s (ŷk))

 , (3)

and the corresponding adversarial loss for the generator is
given by

Ladv
G = Ladv, wave

G + Ladv, STFT
G

= Ex

∑
k,t

1

Tk
max(0, 1−Dwave

k,t (ŷk)) +

∑
k,s

1

Sk
max(0, 1−DSTFT

k,s (ŷk))

 . (4)

The overall generator loss is a weighted sum of the ad-
versarial loss and the reconstruction loss, i.e.,

LG = Lrec
G + λ · Ladv

G . (5)

We set the weight of the adversarial loss λ to 0.01 in
all our experiments, except those where we do not use dis-
criminators (which corresponds λ=0). We train the model
with TensorFlow for 400,000 steps using the ADAM [33]

optimizer, with a batch size of 16 and a constant learning
rate of 0.0001 with β1 = 0.5 and β2 = 0.9. For the STFT,
we use a window size of 2048 and a hop size of 512 when
there is only a single scale. For each added scale we halve
the STFT window size and hop size everywhere. This way
the STFT window at the coarsest scale has a receptive field
of 2048 samples at the original resolution, whereas finer
levels have smaller receptive fields and hence focus more
on higher frequencies.

Our model has around 9 million parameters per scale in
the generator. At inference-time, it takes less than half a
second for every second of input audio on a modern CPU
and more than an order of magnitude faster on GPUs.

3. EXPERIMENTS

We evaluate our model on a dataset of synthetically gener-
ated noisy-clean pairs, using both objective and subjective
metrics. In addition, we also provide a subjective evalua-
tion on samples from real historical recordings, for which
the clean references are not available.

3.1 Datasets

Our data is derived from two sources: i) digitized histori-
cal music recordings from the Public Domain Project [34],
and ii) a collection of classical music recordings of CD-
quality. The historical recordings are used in two ways: i)
to extract realistic noise from relatively silent portions of
the audio, as described in Section 2.1; and ii) to evaluate
different methods based on the human-perceived subjec-
tive quality of their outputs. The modern recordings are
used for mixing with the extracted noise samples to cre-
ate synthetic noisy music, as well as serving as the clean
ground truth. We additionally filter our data to retain only
classical music, as it is by far the most represented genre
in historical recordings. The resulting dataset consists of
pairs of clean and noisy audio clips, both monophonic and
5 seconds long, sampled at 44.1kHz. The total duration of
the clean clips is 460h.

3.2 Quantitative Evaluation

We quantitatively evaluate the performance of different
methods on a held-out test set of 1296 examples from the
synthetic noisy music dataset. For the neural network mod-
els, whose training is stochastic, we repeat the training pro-
cess 10 times for each model and report the mean for each
metric and its standard error.

Evaluation metrics: Objective metrics such as the
signal-to-noise ratio (SNR) faithfully measure the differ-
ence between two waveforms on a per-sample basis, but
they often do not correlate well with human-perceived re-
construction quality. Therefore, we additionally measure
the VGG distance between the ground truth and the de-
noised output, which is defined as the L2 distance be-
tween their respective embeddings computed by a VGGish
network [35]. The embedding network is pre-trained
for multi-label classification tasks on the YouTube-100M
dataset, in which labels are assigned automatically based
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∆SNR (dB) -∆VGG
1 scale 3.4±0.0 0.68±0.01

2 scales 3.4±0.0 0.78±0.01
3 scales 3.2±0.0 0.73±0.01

Table 1. Performance of our model with different num-
bers of scales K in terms of SNR gain (∆SNR) and VGG
distance reduction (-∆VGG). Higher is better.

on a combination of metadata (title, description, com-
ments, etc.), context, and image content for each video.
Hence we expect the VGG distance to focus more on
higher-level features of the audio and less on per-sample
alignment. Note that the same embedding used by Frechét
audio distance (FAD) [36], which measures the distance
between two distributions. However, FAD does not com-
pare the content of individual audio samples, and is hence
not applicable to denoising.

We report the SNR gain (∆SNR) and VGG distance
reduction (-∆VGG) of the denoised output relative to the
noisy input, averaged over the test set. For reference, the
noisy input has an average SNR of 14.4dB and VGG dis-
tance of 2.09. Table 1 shows the performance of our model
with different numbers of scales. We use K = 2 scales for
the rest of our experiments. We evaluate variants of our
proposed model in an ablation study and compare with al-
ternative approaches and well-established signal process-
ing baselines:

• Ours, λ=0: Our model trained with only reconstruc-
tion loss.

• Ours, λ=0.01: Our model trained with both adver-
sarial and reconstruction losses.

• Ours, bypass phase: Same as above, except that
the phase of the noisy input is reused and only the
modulus of the STFT is processed by the U-Net (as
a single-channel image). This is similar to the ap-
proach of [30], but trained and evaluated for music
denoising instead of speech.

• MelGAN-UNet: A 1D-convolutional waveform-
domain generator inspired by MelGAN [25], where
the decoder is the same as the generator of MelGAN
and the encoder mirrors the decoder.

• DeepFeature generator: The 1D-convolutional
waveform-domain generator of [17], which does not
use U-Net but rather a series of 1D convolutions with
exponentially increasing dilation sizes. Unlike U-
Net, the temporal resolution and number of channels
remain unchanged in all layers of this network.

• log-MMSE: A short-time spectral amplitude esti-
mator for speech signals which minimizes the mean-
square error of the log-spectra [37]. In our imple-
mentation, the estimation of the noise spectrum is
based on low-energy frames across the whole clip,
rather than considering the frames at the start of the

audio clip. We use this deviation from the standard
implementation as it gives better SNR results.

• Wiener: A linear time-invariant filter that minimizes
the mean-square error. We adopted the SciPy [38]
implementation and used default parameters, as dif-
ferent parameter settings did not improve the results.

For waveform-domain generators, we tried waveform-
domain losses – including reconstruction losses in the “fea-
ture space” of discriminator internal layers [17, 25] – as
well as STFT-domain losses, and found the former to work
better with the DeepFeature generator while the latter gave
better results for the MelGAN-UNet generator. The results
shown for these generators are those obtained with the bet-
ter loss variant. We also divide the test set into three sub-
sets, each containing the same number of examples, with
low noise (avg. 19.8dB SNR), medium noise (avg. 14.2dB
SNR), and high noise (avg. 9.4dB SNR), and compute the
same metrics on each subset as well as on the full test set.

The results in Table 2 show that, for all noise levels,
our model consistently outperforms the signal processing
baselines and the waveform-domain neural network mod-
els, which have proven highly successful in speech en-
hancement but are not adequate for the complexity of mu-
sic signals. The signal-processing baselines (log-MMSE
and Wiener filtering) are hardly able to improve upon the
noisy input at all. This is not too surprising given the non-
Gaussian, non-white nature of the real-world noise in the
evaluation data. Comparing the results among the variants
of our model, we further make the following observations:

• Using adversarial losses does not help in terms of
SNR, as is evident from the top two rows of Table 2.
The SNR decrease is small but significant. The ad-
versarially trained variant, however, scores better on
the high-level feature oriented VGG distance metric,
which is in line with past observations [18, 25]

• It is advantageous to take both the modulus and the
phase into account when processing the STFT spec-
trogram, as the “bypass-phase” variant which reuses
the input phase produces consistently worse results
across all noise levels. This shows that the proposed
model is able to reconstruct the fine-grained phase
component of the original clean music.

3.3 Subjective Evaluation

In the previous section we compared results by means of
objective quality metrics, which can be quantitatively com-
puted from pairs of noisy-clean examples. These metrics
can be conveniently used to systematically run an evalua-
tion over a large number of samples. However, it is dif-
ficult to come up with an objective metric that correlates
with quality as perceived by human listeners. Indeed, the
SNR and VGG distance metrics do not agree in our quan-
titative evaluation – the proposed model is better in terms
of VGG distance, but worse in terms of SNR compared to
its counterpart without discriminator. We now describe our
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∆SNR (dB) -∆VGG
noise level noise level

low medium high all low medium high all
Ours, λ=0 2.5±0.0 4.1±0.0 4.3±0.0 3.7±0.0 0.30±0.01 0.47±0.01 0.58±0.01 0.45±0.01

Ours, λ=0.01 2.2±0.0 3.9±0.0 4.1±0.0 3.4±0.0 0.66±0.01 0.81±0.01 0.87±0.01 0.78±0.01
Ours, bypass phase 2.1±0.0 3.5±0.0 3.7±0.0 3.1±0.0 0.62±0.01 0.77±0.01 0.83±0.01 0.74±0.01

MelGAN-UNet 1.7±0.0 2.9±0.0 3.1±0.0 2.6±0.0 0.16±0.02 0.15±0.03 0.18±0.02 0.16±0.02

DeepFeature generator -0.7±0.4 1.3±0.1 1.7±0.1 0.8±0.2 0.00±0.02 0.03±0.02 0.00±0.01 0.01±0.02

log-MMSE -1.4 -0.2 0.1 -0.5 -0.15 -0.04 0.01 -0.07
Wiener 0.1 0.1 0.1 0.1 0.01 0.02 0.01 0.01

Table 2. Performance of different variants of our model and alternative approaches, evaluated on subsets of examples with
different noise levels as well as on the full test set.
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Figure 2. Average score differences for the historical
recordings dataset, relative to the original noisy sample.

subjective evaluation which we ran in order to identify the
method that performs best when judged by humans.

Following recent work on low-bitrate audio improve-
ment [21], we use a score inspired by MUSHRA [22] for
our subjective evaluation. Each rater assigned a score be-
tween 0 and 100 to each sample. The main difference to
actual MUSHRA scores is that since no clean reference ex-
ists for historical recordings, we do not include an explicit
reference in the rated samples (although we do include the
clean sample in the synthetic dataset evaluation).

We perform our evaluation on 10 samples of historical
recordings, and separately on 10 samples from the syn-
thetic dataset, using 11 human raters. As in the objec-
tive evaluation, each sample is 5 seconds long. We eval-
uate the following four versions for each sample: (i) Orig-
inal historic audio example, (ii) denoised example using
our model with λ=0.01, (iii) denoised example using our
model with λ=0, (iv) denoised example using log-MMSE.

For the synthetic dataset, we use the four versions
above, but instead of the historic audio we use the syn-
thetically noisified one. We do not include Wiener filter-
ing as a competing baseline here since we noticed that it
produces outputs that are consistently near-identical to the
noisy input, and hence including it in the subjective eval-
uation would provide little value. We use the original
noisy audio as the reference from which to compute score
differences for the historical recordings, and the synthet-
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Figure 3. Average score differences for the synthetic
dataset, relative to the noisy sample.

ically noisified sample as the reference for the synthetic
data. The results are shown in Figure 2 for the historical
recordings, and in Figure 3 for the synthetic dataset. Error
bars are 95% confidence intervals, assuming a Gaussian
distribution of the mean. Both of our methods significantly
improve the historical recordings, by around 50 points on
average. In comparison, the logMMSE baseline only im-
proves by an average of 16 points. We also performed a
Wilcoxon signed-rank test between our λ=0.01 and λ=0
models, to find that the difference is statistically significant
(p-value < 1.19× 10−11). On the synthetic data, again the
λ=0 model outperforms the λ=0.01 variant, with a p-value
< 2.13 × 10−8. On the other hand, there is no significant
difference between the mean score differences of the λ=0
model and the clean sample (p-value = 0.097).

4. CONCLUSION

We presented a learning-based method for automated de-
noising and applied it to restoration of noisy historical mu-
sic recordings, matching a high quality bar: Judged by hu-
man listeners on actual historical records, our method im-
proves audio quality by a large margin and strongly out-
performs existing approaches on a MUSHRA-like quality
metric. On artificially noisified music, it even attains a
quality level that listeners found to be statistically indis-
tinguishable from the ground truth.
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510



[24] A. Odena, V. Dumoulin, and C. Olah, “De-
convolution and checkerboard artifacts,” Distill,
2016. [Online]. Available: http://distill.pub/2016/
deconv-checkerboard

[25] K. Kumar, R. Kumar, T. de Boissiere, L. Gestin, W. Z.
Teoh, J. Sotelo, A. de Brebisson, Y. Bengio, and
A. Courville, “MelGAN: Generative adversarial net-
works for conditional waveform synthesis,” 2019.

[26] T. Salimans and D. P. Kingma, “Weight normalization:
A simple reparameterization to accelerate training of
deep neural networks,” in Advances in Neural Informa-
tion Processing Systems 29, D. D. Lee, M. Sugiyama,
U. V. Luxburg, I. Guyon, and R. Garnett, Eds. Curran
Associates, Inc., 2016, pp. 901–909.

[27] S. H. Djork-Arné Clevert, Thomas Unterthiner, “Fast
and accurate deep network learning by exponential lin-
ear units (elus),” in ICLR, 2016.

[28] J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer normal-
ization,” arXiv preprint arXiv:1607.06450, 2016.

[29] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier
nonlinearities improve neural network acoustic mod-
els,” in ICML Workshop on Deep Learning for Audio,
Speech and Language Processing, 2013.

[30] S. Abdulatif, K. Armanious, K. Guirguis, J. T. Sajeev,
and B. Yang, “Aegan: Time-frequency speech denois-
ing via generative adversarial networks,” 2019.

[31] T. Karras, T. Aila, S. Laine, and J. Lehtinen, “Progres-
sive growing of gans for improved quality, stability,
and variation,” in 6th International Conference on
Learning Representations, ICLR 2018, Vancouver, BC,
Canada, April 30 - May 3, 2018, Conference Track
Proceedings. OpenReview.net, 2018. [Online]. Avail-
able: https://openreview.net/forum?id=Hk99zCeAb

[32] K. Armanious, C. Yang, M. Fischer, T. Küstner,
K. Nikolaou, S. Gatidis, and B. Yang, “Medgan:
Medical image translation using GANs,” CoRR, vol.
abs/1806.06397, 2018. [Online]. Available: http:
//arxiv.org/abs/1806.06397

[33] D. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” International Conference on Learning
Representations, 12 2014.

[34] “Public domain project,” http://pool.
publicdomainproject.org, [Online; accessed February-
2020]. [Online]. Available: http://pool.
publicdomainproject.org

[35] S. Hershey, S. Chaudhuri, D. P. W. Ellis, J. F.
Gemmeke, A. Jansen, C. Moore, M. Plakal, D. Platt,
R. A. Saurous, B. Seybold, M. Slaney, R. Weiss,
and K. Wilson, “CNN architectures for large-scale
audio classification,” in International Conference on
Acoustics, Speech and Signal Processing (ICASSP),
2017. [Online]. Available: https://arxiv.org/abs/1609.
09430

[36] K. Kilgour, M. Zuluaga, D. Roblek, and M. Sharifi,
“Fréchet audio distance: A reference-free metric
for evaluating music enhancement algorithms,” in
Interspeech 2019, 20th Annual Conference of the
International Speech Communication Association,
Graz, Austria, 15-19 September 2019, G. Kubin
and Z. Kacic, Eds. ISCA, 2019, pp. 2350–
2354. [Online]. Available: https://doi.org/10.21437/
Interspeech.2019-2219

[37] Y. Ephraim and D. Malah, “Speech enhancement using
a minimum mean-square error log-spectral amplitude
estimator,” IEEE Transactions on Acoustics, Speech,
and Signal Processing, vol. 33, no. 2, pp. 443–445,
1985.

[38] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haber-
land, T. Reddy, D. Cournapeau, E. Burovski, P. Pe-
terson, W. Weckesser, J. Bright, S. J. van der Walt,
M. Brett, J. Wilson, K. Jarrod Millman, N. Mayorov,
A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. Carey,
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ABSTRACT

Lyrics-to-audio alignment methods have recently reported
impressive results, opening the door to practical applica-
tions such as karaoke and within song navigation. How-
ever, most studies focus on a single language - usually En-
glish - for which annotated data are abundant. The ques-
tion of their ability to generalize to other languages, es-
pecially in low (or even zero) training resource scenarios
has been so far left unexplored. In this paper, we address
the lyrics-to-audio alignment task in a generalized multi-
lingual setup. More precisely, this investigation presents
the first (to the best of our knowledge) attempt to cre-
ate a language-independent lyrics-to-audio alignment sys-
tem. Building on a Recurrent Neural Network (RNN)
model trained with a Connectionist Temporal Classifica-
tion (CTC) algorithm, we study the relevance of different
intermediate representations, either character or phoneme,
along with several strategies to design a training set. The
evaluation is conducted on multiple languages with a vary-
ing amount of data available, from plenty to zero. Results
show that learning from diverse data and using a univer-
sal phoneme set as an intermediate representation yield the
best generalization performances.

1. INTRODUCTION

Lyrics-to-audio alignment aims at synchronizing lyrics text
units such as paragraphs, lines or words to the timed posi-
tion of their appearance in the audio signal. Tools dedi-
cated to this task have many practical applications: they
can be applied to generate new annotated data to train
more robust singing voice recognizers [1]; or be used as
building blocks in specific applications such as karaoke
[2], navigation within songs [3] or explicit lyrics removal
[4]. Lyrics alignment methods are typically inspired from
text-to-speech methods. Although text-to-speech align-
ment is a mature [5] and widely studied task [6], lyrics-to-
audio alignment remains a challenging problem with spe-
cific limitations. First, the musical accompaniment acts as

c© A. Vaglio, R. Hennequin, M. Moussallam, G. Richard,
and F. d’Alché-Buc. Licensed under a Creative Commons Attribution 4.0
International License (CC BY 4.0). Attribution: A. Vaglio, R. Hen-
nequin, M. Moussallam, G. Richard, and F. d’Alché-Buc, “Multilingual
lyrics-to-audio alignment”, in Proc. of the 21st Int. Society for Music
Information Retrieval Conf., Montréal, Canada, 2020.

a loud background "noise", potentially highly correlated
with the signal of interest since vocalists usually sing in
harmony and rhythm with instruments. A singing voice
separation algorithm pre-processing step is often used to
partially overcome this problem [7]. Second, singing voice
exhibits more variety than speech with potentially large
phonemes pronunciation variations between songs and ex-
tended tessitura. Recent studies have proposed efficient
alignment methods for singing voice [8,9], but only for the
English language, for which annotated data is abundant.
The question of their ability to generalize to other lan-
guages, especially in low (or even zero) training resource
scenarios, has not been properly addressed.

Arguably a monolingual evaluation is unrepresenta-
tive of the variety of music recordings available in large
scale collections. Commercial streaming services com-
monly serve content in hundreds of languages and a non-
negligible number of popular songs even have multilingual
lyrics [10]. However, annotated data on this type of con-
tent are scarce. A source of inspiration comes from the re-
lated field of multilingual speech recognition [11]. Trans-
fer learning methods [12] have been shown to improve
performance on language with few to zero training data.
However, this improvement on low-resource languages can
sometimes be detrimental to performances on languages
with more resources [11].

The goal of this paper is to evaluate and extend state
of the art lyrics-to-audio alignment methods to a language-
independent setup. First, we review the fitness of these
systems to the multilingual framework. Then, we focus on
one architecture and study two key features likely to al-
low generalization to several languages: 1) the intermedi-
ate representation space (character versus phoneme) and 2)
the design of the training dataset. Evaluation is performed
on multiple languages with various amounts of data avail-
able, from plenty to zero. The paper is organised as fol-
lows: related works are presented in Section 2. We then
describe the proposed method in Section 3. The experi-
mental setup and results are described respectively in Sec-
tion 4 and Section 5. Finally, conclusions are drawn in
Section 6 and future works are discussed.

2. RELATED WORKS

Singing voice alignment methods are typically inspired
from text-to-speech alignment systems. Classically, an
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acoustic model is trained and used to force text to audio
alignment using a Viterbi algorithm [5]. These models are
usually trained using alignment annotations, at the frame
level, between audio and text. However, the availability
of such annotations is very limited for polyphonic mu-
sic where they are traditionally generated by employing
an intermediate model [1], leading to suboptimal perfor-
mances [8]. More generally, the development of such ap-
proaches for singing voice was slowed down by the lack
of publicly available annotated dataset at word or even line
level. Some models were trained on speech and adapted
to singing using speaker adaptation technique and a small
singing dataset. For instance, in [13], a monophone Hidden
Markov Model (HMM) is trained on speech and adapted
on a small corpus of manually annotated a cappella songs
with Maximum Likelihood Linear Regression (MLLR).
The alignment is then performed on polyphonic songs af-
ter extracting the singing voice with a melody transcription
and a sinusoidal modeling technique. Other models were
trained with "low quality" automatic annotations generated
with forced alignment using an Automatic Speech Recog-
nition (ASR) system. In [1], a speech recognizer is used to
generate a large amount of singing annotations by aligning
a large corpus of a cappella singing to their corresponding
lyrics. Annotations are then used to train a new acoustic
model. This new model is used to align 19 vocal tracks
from English language pop songs: the phoneme sequence
is estimated for each track and its Levenshtein distance to
the ground truth sequence from the lyrics is computed to
find the alignment path. To help alignment, multiple ap-
proaches tried extending speech recognizers with external
information such as chords [14], score [15] or note on-
sets [16].

The recent release of the DALI dataset [17] has led
to significant progress in lyrics-to-audio alignment. This
dataset is the first publicly annotated singing voice dataset
available. It contains 5358 audio tracks with time-aligned
lyrics at paragraph, line and word levels. These annota-
tions are created from manual annotations and are consid-
ered to be very good. It is composed of varied western
genres (e.g. rock, rap and electronic) in several languages.
Novel singing voice separation algorithms displayed im-
pressive results [18] and were also shown to improve sig-
nificantly lyrics-to-audio alignment systems performances
[7]. State-of-the-art approaches for lyrics alignment were
compared in the MIREX 2019 challenge 1 . Two submit-
ted systems showed particularly strong performances. The
first one was SDE2, described in [8]. It is based on an
end-to-end audio-to-character architecture, more precisely
a wave-U-net. A preprocessing step of singing voice sep-
aration is performed, during training and inference, us-
ing a U-net convolutional network. The acoustic model is
trained on a private English dataset of 40000 songs using
a CTC algorithm. The second one was GYL1, described
in [9], which obtained the best results on the challenge. It
is based on a Time Delay Neural Network (TDNN) which

1 https://www.music-ir.org/mirex/wiki/2019:
Automatic_Lyrics-to-Audio_Alignment

is trained on the English subpart of the DALI dataset. It
uses an extended lexicon to cope with long vowels dura-
tion in singing and genre labelling information (phoneme
units are annotated with genres) but does not rely on a pre-
processing step of singing voice separation.

Although it achieved the best performances in the
MIREX challenge, GYL1 can not be straightforwardly
used in a multilingual setup: it is composed of multiple
parts, some of them, such as the pronunciation dictionary
and the language model, being specific to English. To be
able to use it on a new language, it would require to mod-
ify, or retrain, these parts. In comparison, SDE2 is based
on an end-to-end acoustic model, trained with CTC algo-
rithm, that directly outputs characters. It is more suitable
to perform multilingual lyrics-to-audio alignment as it can
be theoretically applied to any languages being based on
the same script (writing system) as the training language.

Employing characters may not be optimal for multi-
lingual lyrics-to-audio alignment: [8] suggest that using
phoneme as an intermediate representation could be more
relevant for aligning song in other languages. They argue
that, for phoneme based systems, only the pronunciation
dictionary has to be replaced for a new language, while
a character based system is limited by the set of charac-
ters that the acoustic model outputs. For instance, SDE2
can only be used to align songs in Latin script languages.
The output of the acoustic model could be extended with
characters from scripts of new languages, as in [19], but
it would require retraining the acoustic model each time a
new script is added in the language pool. Using phoneme
as an intermediate representation, any language can be the-
oretically aligned for any trained model if a pronunciation
dictionary is available. In this work, we study a system
inspired from [8] using either a character or a phoneme in-
termediate representation.

3. PROPOSED METHOD

A general overview of the proposed system is described in
Figure 1. It is composed of three parts: a singing voice
separation model, an acoustic model and a lyrics-to-audio
alignment procedure. It takes as input a song x, its corre-
sponding lyrics y and output the synchronized lyrics ŷ. Vo-
cals are extracted from the song using a singing voice sep-
aration module. The acoustic model processes features ex-
tracted from the isolated vocal signal. The acoustic model
consists in an RNN trained with a CTC algorithm. The set
of outputs of the acoustic model is either characters of the
Latin alphabet or phonemes of an universal phoneme set.
Lyrics-to-audio alignment is performed on outputs of the
acoustic model by a CTC-based alignment decoding func-
tion.

3.1 Acoustic model

The acoustic model of our system is a RNN trained with
a CTC algorithm. CTC-based acoustic models were suc-
cessfully used for multilingual speech recognition [19,20].
The RNN part is composed of bi-directional Long Short-
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Figure 1. Overview of the lyrics-to-audio alignment sys-
tem. Our study focuses on the training of the acoustic
model (section 3.1) and the design of intermediate posteri-
ogram representation spaces (section 3.2). The alignment
block is described in section 3.3

Term Memory (LSTM) layers. Authors in [21] argue that
such models can give reliable alignments given that out-
puts at each frame depend on the entire input sequence. In
contrast, uni-directional CTC acoustic model suffers from
alignment delay [22].

CTC makes it possible to directly train RNN models
using weakly aligned annotations, e.g. at word or line
level. To do that, the CTC algorithm introduces a new
symbol called "blank" (noted ε) which represent a non-
emission token. The total probability of the output label
sequence is then marginalized over all possible alignment
for a given input. In our case, the output label sequence is
a sequence of character or phoneme. Since the objective
function is differentiable, the network can be trained with
standard back-propagation through time. The CTC algo-
rithm is more extensively described in [23].

3.2 Character vs Phoneme

We consider two different intermediate representations for
our architecture. The first one is a character set, here the
Latin alphabet. This representation does not need any kind
of expert linguistic knowledge as the acoustic model di-
rectly outputs characters probability. However, such a rep-
resentation is not suitable to perform alignments of songs
in a language with a different script. To process those, the
acoustic model would need to be retrained with new data
on the given script. Moreover, even for languages sharing
the same script, a character-based representation is sub-
optimal for transferring knowledge between languages, as
characters pronunciation can significantly differ from one
language to another. Our approach relies on the following
remarks: all languages share some common phonemes and
phonemes are considered to be language independent [24],
i.e. to be pronounced the same way across languages.
Therefore, using a universal phoneme set as an intermedi-
ate representation makes it possible to leverage similarity
between sounds across languages. The idea is to use con-
sistent phonemes across languages used for training and
that most phonemes from an unseen language appear in
the languages used for training.

It can be achieved using international phonetic alpha-
bet (IPA) symbols. The IPA is a set of phonetic nota-
tions which is a standardized representation of sounds of
all spoken language. IPA Pronunciations of words from all
languages can be obtained using Grapheme-To-Phoneme
(GTP) tools. Such tools are available for most common

languages. The universal phoneme set is created by con-
catenating and merging the union of phoneme sets of all
languages based on their IPA symbols.

3.3 Lyrics to audio alignment

In order to align a song to its corresponding lyrics y, the
audio is sliced into segments of 5 seconds with a step size
of 2.5 seconds. A posteriogram is generated by the trained
acoustic model for each segment. To obtain the final pos-
teriogram, all segments posteriograms are concatenated,
cropped to half of their duration centered in their middle.
We obtain a posteriogram P ∈ [0, 1]|C|×T , C being the set
of symbols supported by our acoustic model, either char-
acters of phonemes, and T the number of temporal frames
of the song. This matrix provides an estimation of the pos-
terior probabilities of each symbol through time. Align-
ment annotations are then predicted, using the generated
posteriogram P and lyrics y, with a CTC-based alignment
function inspired from the CTC-based decoding function
presented in [25] and is akin to a Viterbi forced align-
ment [26]. Viterbi forced alignment is a simpler version
of Viterbi decoding where the possible paths are limited to
the lyrics symbol sequence. To allow the use of ε during
decoding, y is extended to z by adding a ε at the beginning,
end, and between every unit. A decoding network of size
|z| × T is then constructed from z. The goal of the decod-
ing function is to find the path in the network that give the
most probable alignment ŷ of y given the posteriogram P .
More precisely:

ŷ = argmax
B(ŷ)=y

T∏
j=1

P (ŷj , j) (1)

whereB is an operator that removes blanks and repetitions
from a sequence ŷ. To do that, network’s node αs,j is de-
fined as the probability of the best alignment of the sub-
sequence z1:s after j frames. αs,j scores can be calculated
efficiently using a forward-backward algorithm, by merg-
ing together paths that reach the same node. αs,j is then
computed recursively from the values of α in the previous
frame. Only transitions between blank and non-blank char-
acters, and between pairs of distinct non-blank characters
are allowed. ε at the beginning and end of the sequence
being optional, there are two valid starting nodes and two
final nodes. The coefficients α are initialized such as:

αs,1 = P (zs, 1) for s ∈ {1, 2} and αs,1 = 0,∀s > 2 (2)

Recursion is given by:

αs,j = max
τ∈{0,1}

(αs−τ,j−1)P (zs, j), if zs ∈ {ε, zs−2}

ζs,j = argmax
τ∈{0,1}

(αs−τ,j−1)

αs,j = max
τ∈{0,1,2}

(αs−τ,j−1)P (zs, j), otherwise

ζs,j = argmax
τ∈{0,1,2}

(αs−τ,j−1)

(3)
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Then, the probability of the best alignment is given by:

P (ŷ) = max
τ∈{0,1}

(α|z|−τ,T ) (4)

Alignment ŷ can finally be computed with an inverse re-
cursion. The initial unit is initialized such as:

ŷT = |z| − argmax
τ∈{0,1}

(α|z|−τ,T ) (5)

Inverse recursion is given by:

ŷj−1 = ŷj − ζŷj ,j (6)

Calculations are performed in log-space using the log-sum-
exp trick [27] to avoid numerical instabilities. As some
phonemes from target languages can be unseen in the train-
ing languages, the acoustic model will be unable to pre-
dict them, resulting in all alignment having a probability
of zero. To get rid of this problem, a small amount of
uniformly distributed noise is added to all entries of the
posteriogram, as suggested in [8].

4. EXPERIMENTAL SETUP

4.1 Dataset

For this study, we consider several language subsets of
the DALI dataset. They are described in Table 1. Experi-
ments are conducted using 5 source languages for the ini-
tial multilingual system development. These source lan-
guages are: English, German, French, Spanish and Ital-
ian. English is considered as a high-resource language.
The 4 others languages are considered as low-resource
languages in this study. The split between train, vali-
dation and test datasets for the first five languages is an
artist aware split [28]. We also consider 4 additional tar-
get zero-resource languages: Portuguese, Polish, Finnish
and Dutch. Data from these languages are only used
for evaluation. The split of the different language data,
i.e. dali ids belonging to each dataset, are made pub-
licly available at https://github.com/deezer/
MultilingualLyricsToAudioAlignment. One
dataset, that we named 5lang, is created for multilingual
training. The training and validation sets of this dataset are
generated by simply concatenating respectively the train-
ing and validation sets of the 5 source languages. This
dataset is largely unbalanced, English data dominating
the corpus. Balancing the dataset with oversampling was
tested without modification on performances of the mul-
tilingual model on low-resource and zero-resource lan-
guages. Similar results were also found for speech [29].
Worse, it significantly degrades results for the English lan-
guage. These results were expected as the quantity of En-
glish data being far superior in comparison to other lan-
guages in the multilingual dataset, diminishing their im-
portance could only degrade results for the multilingual
model when tested on English dataset. Results of multi-
lingual models trained with balanced dataset are displayed
in supplementary materials.

Language # Phonemes Train (h) Test (h)

English (en) 44 (5) 192.7 31.5
German (de) 44 (1) 17.4 2.3
French (fr) 42 (0) 8.9 0.9

Spanish (es) 35 (3) 8.4 1.1
Italian (it) 33 (0) 8.5 1.2

Portuguese (pt) 37 (0) X 1.8
Polish (pl) 31 (2) X 4.2
Finnish (fi) 25 (0) X 3.1
Dutch (nl) 41 (2) X 3.1

Table 1. Description of DALI language subset datasets and
corresponding phoneme dictionary sizes. In parenthesis
are displayed the number of phonemes only occurring in
the given language and its equivalent ISO 639.1 code

The procedure to generate training samples and corre-
sponding labels for the acoustic model is similar to the
one described in [25]. To recall, Spleeter [18] is used
to isolate vocals from each song. Training samples are
then computed by segmenting extracted vocals. The char-
acter sequence associated with a segment is created from
word level annotations of DALI by concatenating all words
whose start position is within the segment. An instrumen-
tal token is generated if no words are present in the seg-
ment. For phoneme models, the phoneme sequence asso-
ciated with a segment is generated from his corresponding
character sequence using Phonemizer 2 . Phonemizer in-
cludes GPT tools for most common languages. It decom-
poses each word into a sequence of IPA symbol. To create
the phoneme dictionary of one given language, we collect
all IPA phonemes present in the corresponding dataset. For
simplicity, we did not consider IPA symbols others than
vowels and consonants. Sizes of dictionaries of phoneme
of each language are given in Table 1. After concatenat-
ing and merging all dictionaries, we obtain a universal
phoneme set of 62 phonemes. The language sharing fac-
tor [24] for the nine languages we used in this study is
5.35. It means that, on average, one unit of the universal
phoneme set is shared by 5 to 6 languages of the language
pool which supports the fact that IPA phonemes are rather
consistent across languages that we consider in this study.

4.2 Parameters of acoustic models

We use the same architecture for all acoustic models. Sev-
eral sets of regularisation and architecture’s size param-
eters were tested without a clear impact on performances.
Parameters of architecture are similar to those used in [25].
The model has 3 layers of bidirectional LSTM and a dense
layer. It takes as input mel-scale log filterbanks coefficients
and energy plus deltas and double-deltas. The acous-
tic model output is the probabilities of characters or IPA
phonemes. In the first case, the set of outputs is the con-
catenation of the Latin alphabet, the apostrophe, the instru-
mental token, the space token and the CTC blank symbol

2 https://github.com/bootphon/phonemizer
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ε. A set of size 30 is obtained. In the second case, it is con-
stituted of the universal phoneme set, plus the instrumental
token, the space token and the CTC blank symbol ε. A set
of size 65 is obtained. Parameters of training are the same
as those used in [25].

4.3 Evaluation

To evaluate our system, we use the Average Absolute Er-
ror (AAE) [13]. For its calculation, the absolute differ-
ence between the actual start of the word timestamp and
its estimation for each word is calculated. The final error
score for a song is obtained by averaging over all word-
level errors. A known issue of this metric is its perceptive
dependence on tempo. In fact, one absolute error will not
be perceived the same if the tempo is fast or slow. The
Percentage of correct onsets (PCO) [14] was proposed to
mitigate this effect. It is computed as the percentage of
start of the word timestamps whose estimation are below
a certain distance from the ground truth. This metric con-
siders that errors bellow a certain threshold fall within hu-
man listeners perceptive tolerance. We use 0.3 seconds
as the tolerance window. Both metrics are classic metrics
of MIREX lyrics-to-audio alignment challenge. They are
computed using the same evaluation script as the one used
for the challenge [30] 3 .

5. RESULTS AND DISCUSSION

5.1 State of the art comparison

To validate our implementation, We first compare our sys-
tem with two state-of-the-art ones. Results are collected
from the 2019 MIREX lyrics-to-audio alignment chal-
lenge. For this comparison, we use characters as inter-
mediate representation space and only English for train-
ing. We use three standard evaluation datasets for lyrics-
to-audio task. Hansen [31] and Mauch [14] are constituted
of respectively 9 and 20 English pop music songs. Ja-
mendo [8] is made of 20 English music songs of several
western genres. All three datasets are annotated with start-
of-word timestamps. Results are summarized in Table 2.

Our system performances are close to those of GYL1,
with no significant differences for PCO metric on the
three evaluation datasets. Although we use an architecture
somewhat similar to SDE2 (i.e. a CTC based approach
with a pre-step of singing voice separation), we report
significantly better performances. It is worth noting that
GYL1 and our system both use the English part of DALI
as training dataset, while SDE2 uses a private dataset of
unknown quality. We can postulate that the DALI dataset
annotation quality is higher, which would explain the bet-
ter performances reached by our implementation despite
using a much smaller train set than SDE2.

3 https://github.com/georgid/
AlignmentEvaluation

Dataset System Mean AAE (s) Mean PCO (%)

Hansen SDE2 [8] 0.39 (0.12) 88 (3)
GYL1 [9] 0.10 (0.03) 97 (1)

Ours 0.18 (0.05) 95 (2)

Mauch SDE2 [8] 0.26 (0.04) 87 (2)
GYL1 [9] 0.19 (0.03) 91 (2)

Ours 0.22 (0.03) 91 (1)

Jamendo SDE2 [8] 0.38 (0.11) 87 (3)
GYL1 [9] 0.22 (0.06) 94 (2)

Ours 0.37 (0.05) 92 (2)

Table 2. Comparison between our character based archi-
tecture trained with the English part of DALI and state-of-
the-art systems on standard lyrics-to-audio alignment eval-
uation datasets. Mean AAE is better if smaller, mean PCO
is better if larger. Standard errors over tested songs are
given in parenthesis

5.2 Multilingual generalization

Results of multilingual generalization experiments are dis-
played in Figure 2. Precise numerical values are reported
in supplementary materials. Several conclusions can be
drawn:

- Using a multilingual training set helps For both
character and phoneme based architectures, the model ex-
hibiting the best multilingual generalization is trained with
multilingual dataset. In fact, this model significantly out-
performs the ones trained on English on low-resource and
zero-resource languages without degrading performances
on English. With phoneme as intermediate representa-
tion, it even improves results on English. On low-resource
languages, multilingual trained model obtains results on
par with models trained only on the target language (e.g.
French trained model on French dataset). It is worth notic-
ing that the multilingual training dataset is only marginally
larger than the English one. Performances differences are
to be attributed to the additional information the model was
able to extract from the diversity of languages seen during
training.

- Use phonemes over characters as an intermediate
representation has better performances Performances
of phoneme based architectures are almost always better
than those of their character based counterparts in all our
experimental setups. The gap is bigger for models trained
on the multilingual dataset than for those trained on mono-
lingual ones. The only models that are not improved are
the ones trained and tested on the same languages. Such re-
sults show that the use of phoneme as an intermediate rep-
resentation enables transfer knowledge between language
better than character representation.

- Training on multilingual data and a phoneme inter-
nal representation yields the best results in all consid-
ered cases Training the acoustic model on multilingual
data and use a universal phoneme set is a relevant way
for improving the generalization capacity of the consid-
ered lyrics-to-audio alignment architecture even to zero-
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PCO is better if larger. Mean values are displayed using squares

resource scenarios.

6. CONCLUSION

In this paper, we investigated extending state-of-the-art
methods in the multilingual context. Focusing on one ar-
chitecture that seemed fit for generalization, we demon-
strated that design choices regarding the training dataset
and the acoustic representation space are salient factors.
We have shown that using many languages to train the
acoustic model and a universal phoneme set improves the
multilingual generalization of such architecture. In this
work, we have built a dataset using the language distribu-
tion found in DALI, which resulted in a largely unbalanced
dataset. For comparison, we also conducted experiments
with a balanced dataset, in which all 5 languages were
equally present. The performance was similar, except for
English, when it was significantly degraded. This raises the
issue of how to design training sets in a setting where sev-
eral high-resource languages are available. Although there
are no publicly available datasets exhibiting such charac-
teristics, future work should investigate this case. Exist-
ing works on multilingual speech processing [11] point
towards increasing model complexity to circumvent this.
Also, only a small set of languages were considered in this
study. Additional experiments on a wider, more diverse
set of songs remain to be conducted. Finally, future works
should consider the specific case of songs with multilin-
gual lyrics. This problem, known as code-switching, has
been studied for speech [21] but never for music. Such
a phenomenon is however not uncommon in popular mu-
sic [10], thus it should be addressed too.
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ABSTRACT

Musical schemata constitute important structural building
blocks used across historical styles and periods. They con-
sist of two or more melodic lines that are combined to
form specific successions of intervals. This paper tack-
les the problem of recognizing voice-leading schemata in
polyphonic music. Since schema types and subtypes can
be realized in a wide variety of ways on the musical sur-
face, finding schemata in an automated fashion is a chal-
lenging task. To perform schema inference we employ a
skipgram model that computes schema candidates, which
are then classified using a binary classifier on musical fea-
tures related to pitch and rhythm. This model is evaluated
on a novel dataset of schema annotations in Mozart’s pi-
ano sonatas produced by expert annotators, which is pub-
lished alongside this paper. The features are chosen to
encode music-theoretically predicted properties of schema
instances. We assess the relevance of each feature for the
classification task, thus contributing to the theoretical un-
derstanding of complex musical objects.

1. INTRODUCTION

Voice-leading schemata are frequently used patterns that
can be found across historical periods, ranging from Re-
naissance, Baroque, and Classical to modern tonal mu-
sic; examples include such well-known schemata as the
Lamento, the Pachelbel, the descending-fifths sequence,
and cadences [8, 10, 4, 11]. A schema serves as a tem-
plate for contrapuntal structure that can be elaborated in
multiple ways.

At present, there is only scant quantitative evi-
dence about the frequency and diachronic distribution
of schemata across history (e.g., [10, 2]); large-scale,
machine-readable datasets on schemata are not yet avail-
able. For assessing the prevalence of schemata in a cor-
pus of music, automated recognition of schema instances

c© Christoph Finkensiep, Ken Déguernel, Markus
Neuwirth, and Martin Rohrmeier. Licensed under a Creative Commons
Attribution 4.0 International License (CC BY 4.0). Attribution:
Christoph Finkensiep, Ken Déguernel, Markus Neuwirth, and Martin
Rohrmeier, “Voice-Leading Schema Recognition Using Rhythm and
Pitch Features”, in Proc. of the 21st Int. Society for Music Information
Retrieval Conf., Montréal, Canada, 2020.
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(b) A possible candidate for a Fonte in K283-iii.

Figure 1: An example of a Fonte (a) with structural notes
highlighted. The task is to decide whether proposed in-
stances such as (b) are true instances or not.

can be a time- and cost-efficient alternative to manually
labelled data. However, there are two key challenges for
computational approaches when seeking to uncover note
patterns in music: (1) the multidimensional (polyphonic)
structure of music as opposed to, for example, the sequen-
tial structure of written text [17]; (2) the highly flexible
nature of these patterns, given that the structural notes in
the individual voices can be elaborated in a wide variety of
ways.

Voice-leading schemata can be defined as configura-
tions of two or more voices that move together through a
sequence of stages, forming particular patterns of succes-
sive vertical intervals that occur within a specific tonal con-
text. Consider the example of the Fonte (e.g., [10]): The
Fonte is a four-stage pattern involving at least two voices.
The bass moves through the scale degrees ]1̂→ 2̂→ 7̂→
1̂ of a major scale, while the soprano follows the pattern
5̂ → 4̂ → 4̂ → 3̂, thus producing the following sequence
of vertical intervals: tritone → minor third → tritone →
major third. The schema prototype can be elaborated in
actual compositions in many different ways. For instance,
the notes belonging to one stage can be displaced in time;
any number of elaboration notes can be inserted between
the structural notes of one stage and between stages... An
example illustrating the surface realization of a Fonte is
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shown in Figure 1a. While containing the correct inter-
val pattern is a central property of any schema instance, it
is not sufficient: the selected notes must also provide the
contrapuntal template for its context, so that the notes con-
tained in the time-span covered by the schema candidate
can be meaningfully interpreted as ornamentations of the
selected notes. Figure 1b shows a candidate for a Fonte
instance. The task at hand is to decide whether or not such
a candidate is a true schema instance.

To tackle the problem of schema detection, this pa-
per provides two contributions. First, we propose a novel
dataset with hand-annotated schemata found in Mozart’s
piano sonatas (Section 3). Second, we present a binary
classifier that recognizes true schema instances among a
set of proposed schema candidates based on rhythm and
pitch features related to regularity, complexity, salience,
and harmonic context (Section 4). We evaluate the impact
of these features on the classification task using a logistic
regression (Section 5).

2. RELATED WORK

Automated discovery and recognition of musical patterns
is a topic of ongoing interest in the MIR community [15,
5, 17, 3, 9, 12, 16]. Voice-leading schemata as a spe-
cific class of patterns have so far received only little at-
tention; they have been approached with computational
methods only very recently. For instance, Symons [23]
has developed an algorithm that recognizes schemata in
a small corpus, pointing out the importance of rhythmic
regularity. Finkensiep et al. [7] tackle the problem of tem-
poral displacement and free polyphonic textures using a
two-dimensional extension of skipgrams, which have pre-
viously been proposed by Sears et al. [21, 22]. Recently,
Katsiavalos et al. [13] have presented a system that uses
heuristics-based time-span reduction to discover and rec-
ognize schemata.

Several studies aimed at finding cadences, which can be
viewed as a subcategory of voice-leading schemata, and
evaluated the features relevant for the classification task.
Bigo et al. [1] evaluated a set of 44 features linked with the
moment of cadential arrival, which are integrated using a
support-vector machine for classifying beats as belonging
to a cadence or not. Sears et al. [21] use skipgrams on ver-
tical slices to find cadences using a figured bass-like repre-
sentation of the notes in each slice. Duane [6] approaches
cadences directly as voice-leading patterns by trying to rec-
ognize and learn them from melodic motion.

3. DATASET

Our dataset is based on the full set of Mozart’s piano
sonatas encoded in MusicXML format. These 18 sonatas
with 3 movements each (thus 54 movements in total) have
been composed between 1774 and 1789 and constitute
a prominent sample of the classical style. The pieces
in the dataset contain 103,829 notes in total distributed
over 7,500 measures, with 244 hand-annotated true in-
stances (0.13%) and 190,994 automatically generated false

Schema Variant Occurrences

Do-Re-Mi .2 5

Fenaroli

.2(.min) 10 (3)

.2.flipped(.min) 43 (8)

.2.melcanon(.min) 6 (2)

.2.basscanon.min 1

Fonte
.2 49
.2.flipped 2
.2.majmaj 8

Indugio
.2 9
.2.voiceex 5

Lamento .2 2

Lully .2 2

Morte .2 1

Prinner .2 32

Quiescenza
.2 46
.2.diatonic 6

Sol-Fa-Mi .2 4

Table 1: List of schemata with their variants and number
of occurrences in the Mozart’s Piano Sonata dataset.

instances (99.87%) for the selected schema types and sub-
types (see Table 1).

3.1 Schema Formalization and Lexicon

For the present study, we selected 10 schema types and 20
subtypes (listed in Table 1) which have been suggested in
the literature [10, 4, 20, 19]. The approach presented here
assumes that a schema type consists of (1) a fixed number
of voices; (2) a fixed number of stages, whereby each stage
contains one note per voice; and (3) a characteristic inter-
val pattern between these notes. The prototype for each
schema variant (or subtype) is specified using a formal no-
tation. For instance, the prototype of the two-voice Fonte
is encoded as:

"fonte.2": [["a1", "P5"],
["M2", "P4"],
["M7", "P4"],
["P1", "M3"]]

where ".2" indicates the two-voice variant of the Fonte.
Each note is given as an interval to some arbitrary refer-
ence point. Since all possible transpositions of the schema
are considered by the matcher, it is not necessary to know
the reference key.

Schema instances are encoded as nested arrays of notes
in the same form as the corresponding prototypes. In-
stances may deviate from the shape of the prototype if (a)
a note that would repeat its predecessor (e.g. the second 4̂
in the Fonte) is held over or missing, or (b) two adjacent
voices merge and are represented by a single note on the
surface.
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3.2 Data Production

The dataset consists of two parts: manual annotations by
experts and automatically retrieved candidates for schema
instances, i.e. sets of notes with an interval pattern con-
forming to a schema variant. Both the annotations and
the computed candidates share the same encoding format,
namely a nested lists of note IDs (one sublist per stage,
one note per voice) that corresponds to note elements in a
MusicXML representation of the scores. While the man-
ual annotations provide the true instances of the dataset,
the false instances consist of all skipgram candidates that
do not appear in the annotations. 1 The complete dataset is
available on github. 2

3.2.1 Expert Annotations

Two annotators (the third author and Adrian Nagel) pro-
vided their analyses by using a web-based annotation app
that was specifically developed for the annotation process.
The app displays a score using the Verovio toolkit [18], and
allows the user to select individual notes from the musical
score to mark schema instances. Instances are automati-
cally checked for conformance with the schema prototype
in the lexicon, while permitting the deviations described in
Section 3.1. The annotators also considered additional cri-
teria such as harmonic signature, phrase structure, pattern
repetition, and form-functional context. 3

3.2.2 Computing Candidates with Skipgrams

In order to compute all candidates of schemata for the clas-
sifier, we base our work on the generalized skipgram model
proposed in [7], which enumerates two-dimensional note
configurations that occur within certain temporal bounds.
We use this algorithm to find configurations with a max-
imal note displacement of 1 bar per stage and a maximal
distance of 1 bar between the onsets of two adjacent stages.
The configurations are filtered for a specific interval pat-
tern during enumeration regardless of the local keys. This
method provides us with all candidates for a schema in-
stance within a reasonable window. However, due to the
exhaustive search and a high number of possible note com-
binations, our resulting dataset is extremely unbalanced.
Because of the high combinatoric complexity, we restrict
this study to two-voiced schema variants. Furthermore, we
reduced the number of candidates to at most 25 per group
of temporally overlapping candidates using a previous ver-
sion of the model presented here.

4. FEATURES AND SCHEMA CLASSIFICATION

4.1 Musical Features

By using precomputed schema candidates that are known
to have the correct interval structure (which is all infor-

1 This includes alternative versions of true instances with several pos-
sible note selections.

2 https://github.com/DCMLab/schema_annotation_
data

3 As detailed in the schema-annotation guidelines (https:
//github.com/DCMLab/schema_annotation_data/blob/
master/manual/manual.pdf).

mation that we consider for a specific schema type), the
problem is narrowed down to deciding whether or not the
candidate consists of the structurally important notes. To
this end, we have defined a set of features with regard to
rhythmic, pitch, and metric information, inspired in part
by previous work [10] and that we wish to evaluate with
the classifier. These features attempt to measure the rec-
ognizability of the candidate as a structural pattern, assess-
ing, for example, its complexity, salience, or regularity in
various musical dimensions. For a schema candidate C
that consists of a number of stages ns and a number of
voices nv , let Cs,v denote the note from stage s and voice
v. Each note is represented by an onset, an offset, and a
pitch. Whenever pairs of notes are compared, K denotes
the numbers of compared note pairs (excluding pairs with
missing notes).

The first feature can be considered a rough estimate of
the harmonic or modal signature of the schema candidate.
We define the harmonic profile of a candidate as the dis-
tribution of pitch-classes (relative to the transposition of
the match) of notes that overlap with the time span of the
candidate (excluding the matched notes themselves). The
profiledist is defined as the euclidean distance be-
tween a match’s pitch profile and the average pitch profile
of all true instances of the same schema. Thus, this feature
uses training data to derive the prototype profiles instead
of defining a harmonic signature a priori.

Three features address the regularity of pitch and
rhythm between pairs of stages. rreg measures the av-
erage rhythmic dissimilarity between each pair of stages.
For a pair of stages, the rhythmic dissimilarity is defined as
the sum of the temporal distance of the notes of the same
voice, given the best alignment possible when projecting
one stage unto the other. mreg is defined very similarly,
but here the alignment offset is fixed to whole beats to pre-
serve metric position. Finally, preg measures the average
pitch dissimilarity between each pair of stages. Similar to
rhythmic dissimilarity of a pair of stages, pitch dissimilar-
ity is defined as the sum of the pitch distances of the notes
of the same voice, given the best pitch alignment possible
when projecting one stage unto the other. These features
are defined as

*reg =
1

K

∑
(s,s′)∈stage

s 6=s′

min
δ

(
nv∑
v=1

|µ(Cs,v)− µ(Cs′,v)− δ|

)
,

(1)
where µ corresponds to onset for rreg and mreg, and
to pitch for preg. For mreg, δ is restricted to integer
multiples of a beat.

We then define features corresponding to the complexity
of the candidates in terms of displacement between pairs
of notes. rdsums and pdsums respectively correspond
to the average temporal and pitch distance between each
note of the same stage. They are defined as

*dsums =
1

K

ns∑
s=1

∑
(v,v′)∈voice

v 6=v′

|µ(Cs,v)− µ(Cs,v′)|, (2)

Proceedings of the 21st ISMIR Conference, Montréal, Canada, October 11-16, 2020
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where µ corresponds to onset for rdsums and to pitch for
pdsums. Similarly, rdsumv and pdsumv respectively
correspond to the average rhythmic and pitch distance be-
tween each note of the same voice. They are defined as

*dsumv =
1

K

nv∑
v=1

∑
(s,s′)∈stage

s 6=s′

|µ(Cs,v)− µ(Cs′,v)|, (3)

where µ correspond respectively to onset and pitch for
rdsumv and pdsumv.

Another perspective at pitch displacement is provided
by vdist, which measures the average amount of octave
jumps within a voice from one stage to the next, and is
defined as

vdist =
1

K

nv∑
v=1

ns−1∑
s=1

⌊
pitch(Cs+1,v)− pitch(Cs,v)

octave

⌋
.

(4)
While a certain complexity may be necessary to make a

regular pattern recognizable in the first place, a more com-
plex pattern can be more difficult to detect in the presence
of other notes. For this reason, onsets counts the aver-
age number of distinct note onsets in the context of each
stage. A low number of onsets allows the stages to be
rhythmically displaced while still being recognizable as a
unit. Given the number of distinct note onsets Ds for each
state s, we have

onsets =
1

ns

ns∑
s=1

Ds. (5)

Finally, we define two features representing the salience
of the candidate. First, we consider dur, which corre-
sponds to the sum of all note durations in the candidate,

dur =
∑
s,v

offset(Cs,v)− onset(Cs,v). (6)

Then we consider mweight, a feature based on metric
weight. We define our metric weight function as follows:

mw(Cs,v) =


2 if onset(Cs,v) is on a strong beat.
1 if onset(Cs,v) is on a weak beat.
1
2p if onset(Cs,v) is on a subbeat,

where p is the number of prime factors needed to express
the subbeat. Given that function, mweight corresponds
to the average metric weight of each note of the candidate:

mweight =
1

K

ns∑
s=1

nv∑
v=1

mw(Cs,v). (7)

4.2 Classification and Evaluation Method

The features described above are used as an input to a lo-
gistic regression model, a simple binary classifier model
that uses a linear combination of the input features and
applies a sigmoid to that score, yielding a value between

0 and 1 that indicates the probability of the input to be a
true instance. Since a logistic regression is a special case
of a neural network without hidden layers, this approach
can be naturally extended to include more layers, allowing
for more complex, non-linear feature combinations. How-
ever, preliminary experiments have shown that non-linear
models (such as simple neural networks and support-vector
machines) do not increase model performance and instead
lead to overfitting, so we exclude them here.

The input data consists of expert annotations and skip-
gram candidates, produced as described in Section 3.2. To
get consistent temporal information about the notes, we
unfold all repetitions and jumps notated in the scores. Re-
peated occurrences of notes are disambiguated by select-
ing for every schema candidate those note occurrences that
have a consistent temporal order and cover a minimal time
span. Finally, matches that have incomplete stages (due to
implicit notes, as described above) are converted into com-
plete instances with missing notes marked explicitly.

To evaluate the model’s performance, we use 5-
fold cross validation. 4 The pitch histograms used for
profiledist are computed on the respective training
set of each run. In order to get an unbiased model, we
follow the advice given in [14] and balance our dataset by
upsampling the true instances to match the number of false
instances. The model is trained on the balanced training
data using the Julia package GLM.jl 5 and applied to both
balanced and unbalanced test data. In addition, a prior-
corrected version of the model (see [14]) is applied to the
unbalanced data.

The code for the whole evaluation pipeline is provided
online 6 , including a notebook 7 that was used to generate
all results and figures in this paper.

5. RESULTS AND DISCUSSION

5.1 Classification Performance

The overall performance of the model is shown in Table 2,
aggregating over the predictions on all test sets. When ap-
plied to data balanced by upsampling, the model achieves
a high classification performance with an F-score of 0.894
and a Matthews correlation coefficient (MCC) of 0.787.
Since the model is trained on balanced data, applying it to
unbalanced data simply scales the number of true positives
and false negatives, resulting in a drastically reduced preci-
sion. Using the prior correction of the unbalanced dataset
results in a very high accuracy; however, it introduces a
bias to label matches as non-instances, which results in the
false negatives dominating the false positives.

Figure 2 shows how the predicted probability of be-
ing a true instance is distributed for instances and non-
instances (upper-left corner). Non-instances overwhelm-

4 A 5-fold split was chosen to balance the number of folds and size of
the resulting test set.

5 https://github.com/JuliaStats/GLM.jl
6 https://github.com/DCMLab/schemata_code/tree/

ismir2020
7 https://github.com/DCMLab/schemata_code/blob/

ismir2020/notebooks/ismir2020_classification.
ipynb
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Condition TP TN FP FN accuracy precision recall F-score MCC

Balanced 171,400 169,867 21,107 19,574 0.893 0.890 0.898 0.894 0.787
Unbalanced 219 169,867 21,107 25 0.889 0.010 0.898 0.020 0.089
Unbalanced (corrected) 15 190,923 51 229 0.999 0.227 0.061 0.097 0.118
Grouped 220 6,009 2,663 12 0.700 0.076 0.948 0.141 0.218
Grouped (corrected) 43 8,596 76 189 0.970 0.361 0.185 0.245 0.245

Table 2: Performance of the model in different conditions. TP = true positives, TN = true negatives, FP = false positives,
FN = false negatives, MCC = Matthews correlation coefficient.
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Figure 2: Distribution of model prediction (a) and feature
values (b) over instances and non-instances as a kernel den-
sity estimate. The more the curves tend in opposite direc-
tions, the better the two classes are separated.

ingly receive low probabilities and instances are typically
rated very high. This is in line with the model’s good
performance on raw data, but it also reveals why imbal-
ance poses a serious problem: while the majority of non-
instances are correctly discarded by the model, a minor-
ity remains indistinguishable from true instances under the
model. When the skipgrams propose many more non-
instances than instances, the small part of indistinguish-
able non-instances becomes huge in relation to the true in-
stances. Note that simply reducing the number of matches
does not necessarily improve the situation: taking away the
matches with a rating < 0.5 still leaves us with the prob-
lematic cases.

A lot of non-instances are proposed as combinatoric
variations around true instances. To test whether the prob-
lematic cases are variations of true instances or genuine
non-instances, we group all matches according to tempo-
ral overlap (prior correction is based on the imbalance of
the groups here). The results (Table 2) show that group-
ing drastically increases the performance compared to the
ungrouped condition but does not get close to the perfor-
mance on balanced data, indicating that there is still a sig-
nificant number of indistinguishable true non-instances.

This effect of indistinguishability may be seen as an in-
dicator that our list of features lacks those features that
would help resolve the remaining cases and clearly sep-
arate the classes. However, it is not clear that finding such
features is easily attainable. First, consider that while the
existing features are already very informative, the infor-
mation needed to distinguish the problematic cases would
have to be much more precise. Even when the probability
of getting a positive result for a non-instance is only 10−3,
a true instance proportion of 10−3 still leaves a 50% chance
that a positive result is a false positive. Second, our anno-
tators conformed to very strict standards in order to discard
non-instances, restricting true instances to cases where the
schema is a highly plausible template for the musical sur-
face. Such judgments rely on implicit music-theoretical
knowledge and intuition, which are difficult to model.

Finally, a look at some highly confident false positives
suggests that if schema classification is defined as a binary
task (a surface pattern is a schema instance or not), then
the performance of this task can hardly been improved.

For example, the excerpt in Figure 1b may not look like
a very plausible Fonte at first sight (and was not classi-
fied as such by the annotators). However, the last two
bars clearly contain the correct contrapuntal pattern for
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Figure 3: An ambiguous Fonte match (K333-iii). While
intrinsically this is a highly plausible instance (interval pat-
tern, tonal context, melodic parallelism), the context dis-
cards it, as the pattern is in fact part of a larger descending-
fifths sequence.
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Figure 4: The parameters ~β of the model trained on the full
upsampled dataset (bars) and normalized by multiplication
with the average value of the respective feature. Error bars
indicate the 95% confidence interval of the fit. Black points
indicate the normalized parameters for each model trained
during cross validation.

the stages 3 and 4. The beginning can be interpreted as
a melodic unfolding of an Em chord that is ornamented by
the notes of a B7 chord, most clearly in the neighbor note
d] to e (i.e., the bass for the stages 1 and 2 of a Fonte).
Therefore, it can be argued that this section shares its con-
trapuntal structure with the Fonte, even though the typical
parallelism is missing. Another, converse, example can be
seen in Figure 3: in isolation, the pattern is a clear instance
of a Fonte, but it is continued in the manner of a larger
descending-fifths sequence, which, depending on the def-
inition used, may discard it as a Fonte. A negative defi-
nition like this is very difficult to check under the current
paradigm.

5.2 Feature Evaluation

Figure 4 shows the influence of each feature in a model
trained on the full balanced dataset. Overall, schemata
seem to expose a high regularity and low complexity com-
pared to non-instance candidates. The strong negative
factors rdsumv and onsets disregard candidates with
a large temporal extension and a high degree of non-
simultaneity. Metric regularity (i.e. rhythmic regularity
aligned to the metrical grid) has a strong positive influence,

indicating a preference for a regular temporal organization.
The preference for simultaneity of the notes in the same

stage is somewhat contradicted by the moderately positive
influence of the rdsums, the average note displacement
within stages. This is particularly surprising when looking
at the distribution of this feature over instances and non-
instances (Figure 2b), which shows that instances gener-
ally show less displacement than non-instances. One possi-
ble explanation of this phenomenon is that the combination
of both features (onsets and rdsums) expresses a gen-
eral preferences for little displacement, but when the notes
are non-simultaneous, then a higher distance is preferred,
which may make the structural notes more recognizable.

Less important are features based on pitch
(profiledist, pdsum*, preg, and vdist) as
well as features that indicate basic salience (dur and
mweight). Pitch features are likely of moderate to little
importance because most of the relevant pitch-related
information is already implied by the schema’s interval
structure. Interestingly, duration and metric weight (both
properties that are taken from each note in isolation)
play little to no role, which is confirmed in Figure 2b.
This indicates that local properties do not mark notes as
structural, this role seems to depend only on how the note
is used in relation to other notes.

6. CONCLUSION

As the results presented above show, distinguishing be-
tween incidental and structural note configurations based
on a small number of musically and cognitively motivated
heuristics works well in the vast majority of cases. Even
if a number of misclassifications remain, a closer look at
these cases provides valuable insights into the problem at
hand. First, the main limitation of our approach is that
the model assesses suggested schema instances individu-
ally, without considering, or comparing it to, alternative
interpretations. In many cases, the main reason for human
experts to reject a candidate does not seem to be a lack of
plausibility of the match itself, but rather the availability
of a “better explanation”, i.e. an alternative analysis of the
match’s context that identifies a more plausible contrapun-
tal scaffold. This result is in line with the reduction-based
approach of Katsiavalos et al. [13]. Since the features
used in this study already proved useful for independent
classification, they likely benefit from a general structural-
analysis approach, in which schema instances are recog-
nized in reductions of the musical surface.

A second insight concerns the idea of schema itself and
its relation to a classification task. From a cognitive per-
spective, a schema does not need to be instantiated un-
ambiguously or even completely. It is sufficient if listen-
ers recognize the schema as the template for the surface
events, or if they understand the composer’s intention to
evoke the schema. In this regard, discrete binary classifi-
cation into instances and non-instances may be as unattain-
able as it is undesirable, falling short of the complexity the
relationship between schema and realization can exhibit.
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525



7. ACKNOWLEDGEMENTS

The research presented in this paper is generously sup-
ported by the Volkswagen Foundation and Claude Latour.
We also thank the anonymous reviewers for their helpful
feedback.

8. REFERENCES

[1] L. Bigo, L. Feisthauer, M. Giraud, and F. Levé.
“Relevance of Musical Features for Cadence Detec-
tion”. In: Proceedings of the International Society
for Music Information Retrieval Conference. 2018.

[2] V. Byros. “Towards an “Archaeology” of hearing:
schemata and eighteenth-century consciousness”.
In: Musica Humana 1.2 (2009), pp. 235–306.

[3] E. Cambouropoulos, T. Crawford, and C. Iliopoulos.
“Pattern Processing in Melodic Sequences: Chal-
lenges, Caveats and Prospects”. In: Computers and
the Humanities 35 (2001), pp. 9–21.

[4] W. E. Caplin. “Topics and Formal Functions: The
Case of the Lament”. In: The Oxford Handbook of
Topic Theory (2014). Ed. by D. Mirka, pp. 415–452.

[5] D. Conklin and M. Bergeron. “Discovery of Con-
trapuntal Patterns”. In: Proceedings of the Inter-
national Society on Music Information Retrieval.
2010, pp. 201–206. ISBN: 978-90-393-5381-3.

[6] B. Duane. “Melodic Patterns and Tonal Cadences:
Bayesian Learning of Cadential Categories from
Contrapuntal Information”. In: Journal of New Mu-
sic Research 48.3 (2019), pp. 197–216.

[7] C. Finkensiep, M. Neuwirth, and M. Rohrmeier.
“Generalized Skipgrams for Pattern Discovery in
Polyphonic Streams”. In: Proceedings of the In-
ternational Symposium on Music Information Re-
trieval. 2018.

[8] A. Forte. Tonal Harmony in Concept and Prac-
tice. 3rd ed. New York: Holt, Rinehart and Winston,
1979. ISBN: 978-0-03-020756-3.

[9] M. Giraud, K. Déguernel, and E. Cambouropou-
los. “Fragmentations with pitch, rhythm and paral-
lelism constraints for variation matching”. In: In-
ternational Symposium on Computer Music Multi-
disciplinary Research (CMMR). 2013, pp. 298–312.

[10] R. Gjerdingen. Music in the Galant Style. New
York: Oxford University Press, 2007.

[11] S. Jan. “Using galant schemata as evidence for
universal Darwinism”. In: Interdisciplinary Science
Reviews 38.2 (2013), pp. 149–168.

[12] B. Janssen, W. B. de Haas, A. Volk, and P. van Kra-
nenburg. “Finding repeated patterns in music: state
of knowledge, challenges, perspectives.” In: Inter-
national Symposium on Computer Music Multi-
disciplinary Research (CMMR). 2013, pp. 277–297.

[13] A. Katsiavalos, T. Collins, and B. Battey. “An Initial
Computational Model for Musical Schemata The-
ory”. In: Proceedings of the International Society on
Music Information Retrieval. 2019, pp. 166–172.

[14] G. King and L. Zeng. “Logistic Regression in Rare
Events Data”. In: Political Analysis 9.2 (2001).

[15] O. Lartillot. “Automated Motivic Analysis: An Ex-
haustive Approach Based on Closed and Cyclic
Pattern Mining in Multidimensional Parametric
Spaces”. In: Computational Music Analysis. Ed. by
D. Meredith. Springer, 2016, pp. 273–302.

[16] O. Lartillot. “Motivic pattern extraction in sym-
bolic domain”. In: Intelligent music information sys-
tems: Tools and methodologies. IGI Global, 2008,
pp. 236–260.

[17] D. Meredith, K. Lemström, and G. A. Wiggins.
“Algorithms for Discovering Repeated Patterns in
Multidimensional Representations of Polyphonic
Music”. In: Journal of New Music Research 31.4
(Dec. 1, 2002), pp. 321–345. ISSN: 0929-8215. DOI:
10.1076/jnmr.31.4.321.14162.

[18] L. Pugin, R. Zitellini, and P. Roland. “Verovio: a li-
brary for engraving MEI music notation into SVG”.
In: Proceedings of the International Symposium on
Music Information Retrieval. 2014, pp. 107–112.

[19] J. Rice. “Adding to the Galant Schematicon: The
Lully”. In: Forthcoming in Mozart-Jahrbuch (2014).

[20] J. A. Rice. “The Morte: a Galant Voice-Leading
Schema as Emblem of Lament and Composi-
tional Building-Block”. In: Eighteenth-Century Mu-
sic 12.2 (2015), pp. 157–181.

[21] D. R. W. Sears, A. Arzt, H. Frostel, R. Sonnleitner,
and G. Widmer. “Modeling Harmony with Skip-
Grams”. In: Proceedings of the International Soci-
ety on Music Information Retrieval. 2017, pp. 332–
338. ISBN: 978-981-11-5179-8.

[22] D. R. W. Sears and G. Widmer. “Beneath (or be-
yond) the Surface: Discovering Voice-Leading Pat-
terns with Skip-Grams”. In: Journal of Mathemat-
ics and Music 0.0 (July 14, 2020), pp. 1–26. ISSN:
1745-9737. DOI: 10.1080/17459737.2020.
1785568. URL: https : / / doi . org / 10 .
1080/17459737.2020.1785568 (visited on
07/29/2020).

[23] J. Symons. “A Cognitively Inspired Method for the
Statistical Analysis of Eighteenth-Century Music,
as Applied in Two Corpus Studies”. PhD thesis.
Northwestern University, 2017.

Proceedings of the 21st ISMIR Conference, Montréal, Canada, October 11-16, 2020
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ABSTRACT

Audio embeddings of musical similarity are often used
for music recommendations and autoplay discovery. These
embeddings are typically learned using co-listen data to
train a deep neural network, to provide consistent triplet-
loss distances. Instead of directly using these co-listen–
based embeddings, we explore making recommendations
based on a second, smaller embedding space of human-
intelligible musical attributes. To do this, we use the co-
listen–based audio embeddings as inputs to small attribute
classifiers, trained on a small hand-labeled dataset. These
classifiers map from the original embedding space to a
new interpretable attribute coordinate system that provides
a more useful distance measure for downstream applica-
tions. The attributes and attribute embeddings allow us to
provide a search interface and more intelligible recommen-
dations for music curators. We examine the relative perfor-
mance of these two embedding spaces (the co-listen–audio
embedding and the attribute embedding) for the mathe-
matical separation of thematic playlists. We also report
on the usefulness of recommendations from the attribute-
embedding space to human curators for automatically ex-
tending thematic playlists.

1. INTRODUCTION

Automatically annotating music with semantically mean-
ingful and musically relevant attributes is an important ef-
fort with a long history [1–5]. It has become especially im-
portant as music-streaming services have made large cata-
logs of recorded music available to people worldwide and
as the user interface to these services continues to shift to-
wards voice activation rather than text search or graphical
browsing. Describing music using such musical attributes
has many applications such as:

• allowing consumers to search for music that satis-
fies musical, emotional or psychological constraints,
using text or voice queries;

© Ayush Patwari, Nicholas Kong, Jun Wang, Ullas Gargi,
Michele Covell, Aren Jansen. Licensed under a Creative Commons At-
tribution 4.0 International License (CC BY 4.0). Attribution: Ayush
Patwari, Nicholas Kong, Jun Wang, Ullas Gargi, Michele Covell, Aren
Jansen, “Semantically Meaningful Attributes from Co-Listen Embed-
dings for Playlist Exploration and Expansion”, in Proc. of the 21st Int.
Society for Music Information Retrieval Conf., Montréal, Canada, 2020.

• browsing for such music using common usage pat-
terns reflecting activities (e.g., “running”) or moods
(e.g., “chill”);

• sequencing playlists for users that allows them to
choose which aspect of musical similarity to main-
tain, rather than simply following general co-listen
patterns;

• providing power users and curators the ability to pro-
gram specific experiences using higher-order opera-
tors.

In this paper, we describe a system for understanding
and describing music content. The paper is divided into
two main parts. The first part (Section 2) describes how
we extract semantically meaningful attributes from fea-
tures primarily based on audio-spectrogram embeddings
trained on co-listen user behavior. The second part (Sec-
tion 3) explores using these semantic-attribute embeddings
both to characterize and to extend professionally curated
playlists.

2. EXTRACTING SEMANTICALLY
MEANINGFUL ATTRIBUTES FROM CO-LISTEN

EMBEDDINGS

We collaborated with the YouTube Music curation team to
establish a prioritized list of semantically meaningful au-
dio attributes. Several attributes are subjective, making it
difficult to get enough ground truth data to support train-
ing. Typical deep networks require many labeled exam-
ples, due to the millions of trainable parameters in mod-
ern deep networks: for example, ResNet-18 (used by [6])
has around 11 million trainable parameters. We could use
existing meta-data for some attributes, such as genre, but
other important attributes, such as vocalness (presence of
vocals) and energy, are not as prevalent. Even with gen-
res, there is not a consistent set of labels available across
different music distributors.

We first review the work of [6]: building on this work al-
lows us to have shallow yet powerful attribute embeddings.
In Subsection 2.2, we describe our approach to extracting
full-track–level attributes from those co-listen–based au-
dio embeddings. We then discuss our work in measuring
attribute consistency across the duration of the track (Sub-
section 2.3). Finally, in Subsection 2.4, we report our ac-
curacy.
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2.1 Co-listen–based Audio Embeddings

To allow us to train only comparatively shallow networks,
we build on the audio-embedding work done by [6]. In this
subsection, we review the approach taken in that previous
work.

In [6], an initial audio embedding was obtained using
triplet loss from aggregated listening sessions. With the
triplet loss, tracks that were (in aggregate) listened to to-
gether were trained to be closer in the embedding space
than those that were not. The unaveraged embedding is
generated using a modified version of Resnet-18, operat-
ing on overlapping 3-second audio-spectrogram windows
(with a 1-second overlap). For training, [6] used random
3-second samples from the anchor, positive-example, and
negative-example tracks. They evaluated by holding back
10% of the 10.5-million audio tracks in their co-listen
dataset. When testing on this hold-out set, they achieve
over 50% improvement in performance as [2] under the
same training regime (0.079 average precision vs. 0.055
for [2]).

In this paper, we use averages of the [6] embeddings
as our audio embeddings, with averaging either over the
full song duration (Subsection 2.2) or over 10-second tiles
(Subsection 2.3).

2.2 Co-Listen Embeddings to Full-Track Attributes

In this paper, we consider the following attributes:

• Genre: A subset of the full international set of
genres, including only those deemed important
for the US market 1 , specifically: Hip-Hop/Rap,
R&B/Soul, Blues, Country, Jazz, Rock, Metal, Pop,
Dance/Electronic, Alternative/Indie, Latin Urbano,
Regional Mexican, Reggae, K-Pop, Korean Ballads,
and Classical;

• Valence (or hedonic tone): a measure of the emo-
tional positivity or negativity of the music;

• Vocalness: a measure of the prominence of speak-
ing and singing (or even wordless screaming or hum-
ming);

• Energy: a qualitative measure of the intensity (or au-
tonomic arousal) of the music;

• Temporal consistency of energy across a track (Sub-
section 2.3).

The primary source of ground-truth labels for our
attribute-classification models is the team of music ex-
perts at YouTube Music. This source means that were are
limited to between and 10,000 and 20,000 training exam-
ples for the energy, valence, and vocalness classifiers and
around 1,000 manual labels per genre for the multi-label
genre classifiers. 2

1 We restricted our genre set since our evaluation was focused on
playlists generated primarily for the US market and since the defini-
tion/assignment of genre is not uniform across the globe.

2 For genres, we also have other sources of label data, as described in
Subsection 2.2.1 but that secondary source is significantly less reliable.

To allow robust training, even from this small amount
of data, we train comparatively small, separate, fully-
connected neural nets on top of the (frozen) audio embed-
dings given by [6]. This is a version of transfer learning but
we do not attempt to fine-tune the underlying audio embed-
dings for our semantic-attribute task, due to the compara-
tively small amount of training data we have available in
our attribute space.

We then create an attribute embedding space using the
continuous-valued outputs of the final logits of each of
these classifiers, followed by pooled-variance normaliza-
tion, as will be described in Subsection 3.2.

Details about the classifier network architectures and
the training data are given next.

2.2.1 Genre

The genre model is a multi-label classifier (outputting 0
or more labels per video) from a vocabulary of 54 genres.
It is trained on a mix of 50,000 manually labeled videos
and 6,500,000 labels inferred from the DDEX feed deliv-
ered by music labels. 3 The genre-classification network is
fully connected with 8 512-wide hidden layers. The input
features are:

• Average audio embeddings [6] (across the full track)

• Average video embeddings [7] (across the full track)

• Image embedding of the video thumbnail [8]

• Word embeddings derived from a CBOW model [9]
trained on 10B search queries. They are applied to
the tokenized title, free-text DDEX genre, and free-
text music label name of the video.

• Inferred language of the title [10, 11]

• Video type (Art Track [12], official music video,
user-generated content)

While we might have been able to achieve higher
music-genre accuracy by learning cross-modal co-
embeddings [13–15], we instead use video, image, and
word embeddings trained for general video retrieval, with-
out restriction to music-related content. This allows us to
re-purpose more general embeddings, again avoiding the
overhead of large-network training, just as we have with
re-purposing the audio–co-listen embeddings [6].

We trained a genre-classifier network for 2 million steps
using Adagrad with a learning rate of 0.05 and a mini-batch
size of 64. We did not use regularization. We selected per-
class thresholds by choosing the point that maximizes F1
on a separate test set.

3 The DDEX feed labels must be mapped from the often idiosyncratic
genre tags provided by each music label to the 54 genre label set that
forms our vocabulary. That mapping is difficult to correctly determine,
resulting in noisy training data. We do not use this secondary source of
label data at all in evaluation.
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Figure 1. Temporal Computed Energy for Stairway to
Heaven.

2.2.2 Energy

Energy is computed using the output of a regression model
using full-track-average audio embeddings [6] as its only
input. It was trained on around 20,000 human-labeled ex-
amples with ratings in one of 3 buckets (i.e., low, medium,
high). These ratings are then converted to scores of 0, 1

2 ,
and 1. The network is fully connected with 2 hidden lay-
ers: the first layer is 128 units wide and the second, 64
units wide. It used Adam optimizer with a decay rate of
0.98 and was trained for 10,000 steps.

2.2.3 Valence

Valence is computed using the output of a regression
model, again using full-track-average audio embeddings
as its only input. The network is fully connected with 3
hidden layers: the first and third layers are 256 units wide
and the second, 512 units wide. It was trained on 10,500
human-labeled examples. As with energy, the training data
was human bucketed ratings with 3 distinct levels, from
negative (sad or angry), neutral, to positive (happy or con-
tent) and the buckets were assigned to 0, 1

2 , and 1. It used
Adam optimizer with a decay rate of 0.96 and was trained
for 10,000 steps.

2.2.4 Vocalness

Vocalness is computed using the output of a binary classi-
fication model, using full-track-average audio embeddings
as its only input. It was trained on 18,000 human-labeled
examples. The raters were asked to indicate if there were
significant lyrics or other vocal elements in the track. Like
valence, the network is fully connected with 3 hidden lay-
ers: the first and third layers are 256 units wide and the
second, 512 units wide. It used Adam optimizer with a
decay rate of 0.96 and was trained for 10,000 steps.

2.3 Temporal Inference

While the attributes listed above are often used to describe
the entirety of a music track, there can be significant varia-
tions in some attributes over the temporal extent of a song.
As an example, Figure 1 shows computed energy for the
song Stairway to Heaven. Generating a single audio em-
bedding representing the whole track via the mean of win-
dow samples results in a loss of information on this aspect.

For attributes like this, we shift to performing inference
on 10-second segments of audio, using the time-localized
audio embeddings. We do this in two steps. As a first step,
we train a full-track model of the desired attribute, with
the track-level average of the local audio embeddings as its

input. With that trained model in hand, we reuse it, running
a separate inference on each 10-second audio embedding,
to generate time-localized attribute estimates. From this
sequence of localized estimates, we compute a track-level
estimate using an aggregate heuristic. For example, for the
track-level energy, we take the maximum over the moving
average of this temporal estimate as follows:

E = max
0≤i<N−W

1

W

i+W−1∑
j=i

ej (1)

where N is the the number of 10-second segments in a
track, ej is the raw energy estimate for the jth segment,
and W is the window size which also a function of N ac-
cording to W = max{3, N

6 }.
In the future, we could train a time-localized regression

using explicit labels on the 10-second segments or using
the temporal estimates provided by the full-track model as
weak labels. However, for the purpose of this paper we
restrict ourselves to the method described above.

Separately, using the sequence of local estimates, we
measure the attribute’s consistency. The local estimate is
first smoothed, to give more reliable local estimates of the
attribute. For example, for energy, we use a moving aver-
age with windows as described above. From that sequence,
we can create a consistency measure using:

Consistency = 1−
∑N−2

i=0 |Ai+1 −Ai|∑N−2
i=0 Ai

, (2)

where Ai is the attribute value, determined by the
smoothed data and centered on the ith 10-second segment
of the track.

We improved precision from 85% to 90% using this
approach instead of inference on the mean audio embed-
ding, demonstrating the performance improvement pos-
sible from aggregating local inferences compared to per-
forming inference on pre-aggregated embeddings. The at-
tribute’s consistency measure is also separately useful: for
example, it can give playlist curators a deeper description
of the acoustic-energy profile, which is needed for task-
targeted playlists like “workout” or “focus”.

While this approach can be used for other (non-genre)
attributes as well, for the results in this paper, we only used
it with energy.

2.4 Accuracy of Individual Attribute Detectors

Table 1 describes the accuracy of each of our attribute
models.

Energy and valence are regression models. The test set
was created from human annotations on a four-point scale.
The regression results were evaluated using error thresh-
olds, set according to what was judged acceptable by the
curators. Even though the training data for valence used
a four-point scale, we used an evaluation threshold that is
equivalent to a three-point scale. This coarser scale for va-
lence evaluation was based on the needs of the curators.

Vocalness was trained as a binary classification and was
evaluated accordingly.
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Attribute Metric Quality
Genres: Multi-label
classifier.†

Human-expert
labels†

78% precision,
84% recall

Valence (regression,
output ∈ [0, 1])

Prediction < 0.33
from label‡

78% accuracy

Vocalness (binary
classifier)

Human-labeled
ground truth

97% precision,
78% recall

Energy (regression,
output ∈ [0, 1])

Prediction < 0.25
from label‡

90% accuracy

† The genre classifier was evaluated on the 16 genres used in this pa-
per. The evaluation set was formed from the entries from expert-curated
single-genre playlists and their labels were inferred accordingly.
‡ The thresholds for accuracy were set after consulting with expert hu-
man curators who provided musical examples of differences in valence
and energy that should be distinguishable.

Table 1. Accuracy of Each Full-Track Attribute Model.

For genre, we created an evaluation set using entries
from single-genre playlists authored by curators, with la-
bels inferred accordingly. None of these curated tracks
were used in training the genre classifier.

We are able to extract semantic attribute labels from the
frozen audio embeddings, both for genre (similar to [6])
and for more qualitative measures (energy, valency, vocal-
ness). For the qualitative measures, this labeling is based
solely on the audio embedding. 4 Huang et al. [6] re-
port similar findings. It is somewhat surprising that the
semantic information needed to compute these labels are
captured by embeddings trained for a completely differ-
ent task (that is, predicting which songs are listened to to-
gether). Based on this observation, we hypothesize that
an embedding space formed from these semantic attributes
can be used for recommending additions to human-curated
playlists. The results that we report in Section 3.2 sup-
port this conjecture and strengthen it by suggesting that
our attribute-embedding space is better suited for playlist
recommendations than the full audio-embedding space.

3. EXPLORING CURATED PLAYLISTS

In this section, we examine the use of our learned musical
attributes as a tool for discriminating between and adding
to music playlists. In Subsection 3.2, we compare the dis-
criminative power of the attribute-embedding space to that
of the audio-embedding space, using the playlists that we
describe in Subsection 3.1. Subsection 3.3 then describes a
human evaluation of the attribute-based recommendations
for playlist extension.

3.1 Corpus of curated playlists

YouTube Music [16] offers playlists with specific themes.
Playlist themes are relevant to targeted users or mar-
kets and mostly fit into one of the following categories:
ephemeral (e.g., event based), seasonal, and canonical.
The canonical category includes contextual (e.g., bedtime
music), mood (e.g., feel-good favorites), and activity (e.g.,
workout essentials) playlists. The canonical category is the

4 For genre, we provide our networks with information derived from
the video content and text in the title and description (see Subsec-
tion 2.2.1), as well as the co-listen–based audio embeddings.

most amenable to attribute analysis and automatic augmen-
tation. For this paper, we focused on playlists in the canon-
ical category.

We used several of curated canonical playlists to eval-
uate how well our attributes characterize and discriminate
between the groupings that were created by human experts.
Curated playlists are widely served across YouTube Music.
All of these curated playlists were publicly available as of
April 2020.

For our embedding-space studies, described in Subsec-
tion 3.2, we use 17 different human-curated, genre-based
playlists. That combined set of playlists had 4,563 en-
tries. To avoid evaluation-set contamination, none of the
playlists or their entries were used in the attribute training
(Section 2). The names of these 17 playlists are given in
Figure 2 and a more complete description is given in [17].

For our playlist-extension studies, described in Subsec-
tion 3.3, we use another disjoint set of 5 different human-
curated, vibe-based playlists. The combined set had 545
entries. General characterizations of these 5 playlists,
along with their URL links, are given in [17].

3.2 Analyzing playlists in attribute space

In this section, we investigate how well two different em-
bedding spaces capture the structure of human-curated
playlists. The first embedding space is the 128-dimension
space generated from [6], renormalized according to the
methodology described below. The second is a (re-
normalized) embedding space formed using the continu-
ous logits that are trained to provide our attribute labels:
that is, energy, valence, vocalness, and 16 top-level genres
that are typical of music listened to in the US.

We renormalize each space using the Tikhonov-
regularized [18] square-root inverse of the pooled variance
matrix [19]. The pooled variance matrix is estimated using
a sampling of playlists and treating each playlist as a sep-
arate cluster (with an independent cluster mean) but with
a single shared (pooled) variance matrix. The embedding
space is then rotated and scaled, according to the square-
root inverse of this pooled variance. We use Tikhonov
regularization in this inversion to avoid possible problems
with nearly singular variance matrices. 5

After re-normalization, each playlist is (on average) a
Gaussian distribution with an identity-variance matrix, al-
lowing us to directly compare between-playlist distances
across the two embedding spaces. We use this distance
equivalence throughout this section, to determine how well
human-curated playlists are separated in these two embed-
ding spaces. Our hypothesis is that, whichever embedding
space gives better separation between authored playlists
will also give better suggestions for creating or extending
playlists. We will more directly examine how well our sug-
gestions do for playlist generation in the next section. Be-
fore moving to that analysis, we compare the mathematical
performance of the two spaces in this section.

5 We did not observe any near singularities in either the attribute- or
the audio-embedding spaces but continued to use it, to avoid issues in the
future, when we plan to use a larger group of attributes.
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(a) using normalized attribute-embedding space (b) using normalized audio-embedding space

Figure 2. Average over each playlist k of di,k,j (defined in Eqn (3)). See right column for
the mapping from the playlist numbers to their titles and [17] for their descriptions and URL
links.

0 Onda Regional
1 Windows-Down EDM
2 Indie Anthems
3 Beast Mode Hip Hop
4 Acoustic Pop
5 K-Pop Hotlist
6 Modern Rock Hits
7 Endless R&B Throwbacks
8 Hotlist Tropical
9 Intro to Beethoven
10 Country Icons
11 Metal with a Message
12 Reggae for Lovers
13 Jazz Feels the Blues
14 South Side Nights
15 Reggae-Pop Crossovers
16 Intro to Haydn

We compared the separation of the 17 different human-
curated, genre-based playlists from Subsection 3.1 by ex-
amining the distances between each playlist entry and all
of the playlist centroids:

di,k,j = ||ei,k −mj ||2 (3)

where ei,k is the embedding-space coordinates for the ith

entry in the kth playlist and mj is the mean of embedding-
space coordinates across all Nj entries in the jth playlist:
mj = 1

Nj

∑Nj−1
i=0 ei,j . Figure 2 shows the average of

these distances for each playlist: that is, 1
Nk

∑Nj−1
i=0 di,k,j .

The larger the distance the less “alike” the two playlists
appear in that embedding space. Based on Figure 2, the
(normalized) attribute embedding space does a better than
the (normalized) audio embedding space at separating the
playlists, while keeping each individual playlist compact.

We can look at this separation/compactness of playlists
in each embedding space, with one summary statistic per
playlist entry. We use ∆i,k = minj 6=k di,k,j − di,k,k: the
smallest difference between each entry’s distance to the
closest, “other” mean and its distance to its own mean. Fig-
ure 3 shows the histograms of this relative distance mea-
sure for the (normalized) attribute-embedding space and
the (normalized) audio-embedding space, as well as the
histogram of the paired difference between them. For Fig-
ure 3-a and Figure 3-b, highly positive values are best and
negative values indicate an entry that is closer to a differ-
ent playlist’s mean than to its own. For Figure 3-c, positive
values correspond to the attribute-embedding space giving
better separation than the audio-embedding space. Using a
single-tail, paired Student t-test [20] on this data indicates
that the attribute embedding space is significantly better
than the audio embedding space with a probability well
over 99% (t = 27.24, p = 3e-151). In order to be certain
that this high level of significance does not derive from un-
equal variances across the two embedding spaces, we also
ran a single-tail Welch’s unequal-variance t-test [21]: this
still showed well above 99% certainty (t = 16.24, p = 5e-
58).

(a) ∆att
i,k using

normalized attribute-
embedding space

(b) ∆aud
i,k using

normalized audio-
embedding space

(c) paired difference:
∆att

i,k −∆aud
i,k

(matched indices)

Figure 3. Histograms of ∆i,k using the two different em-
bedding spaces and of their difference.

3.3 Extending playlists using attributes

In this section, we explore the application of the learned-
attribute space to generating algorithmic candidates that
could be used to refresh or extend human curated playlists
in the corpus described in Subsection 3.1. One advan-
tage of using the learned-attribute space is the ability for
humans to understand, debug, and tweak the automatic
method. We run an experiment where we show profes-
sional music curators a set of candidates for a playlist and
ask them to assign a rating of whether those candidates
sufficiently align with its vibe.

3.3.1 Playlist selection

We selected 5 playlists from the corpus for this experiment
with the premise that they had consistent vibe with focus on
context/mood/activity rather than, for example, most pop-
ular or new releases. We hypothesize that a semantically
meaningful attribute space would be better at generating
recommendations closer to the vibe of such playlists com-
pared to traditional co-listen–based approaches.

3.3.2 Candidate generation

For each playlist, we aggregated attribute scores across its
tracks to create a recipe consisting of the following:

• Top-N genres contributing to 80% of the cumulative
frequency distribution where a genre is assigned to
a playlist if its score was above the threshold deter-
mined from evaluation in Subsection 2.4.
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Playlist
Rating

Total
Good Borderline Bad

Classical for Sleeping 36% 38% 26% 214
Classic Sunshine Soul 39% 35% 26% 101

Tranquil Spa Day 37% 63% 0% 27
Feeling Good in the 80’s 22% 20% 58% 143

90’s Rock Relaxation 11% 24% 65% 85

Table 2. Music-curator ratings on recommendations for
playlist extension. See [17] for the description and URL
link of each playlist.

• Mean and standard-deviation of the real-valued at-
tributes energy, valence, vocalness. We also in-
cluded tempo in beats-per-minute computed using
APM [22] as an additional attribute.

• Other metadata attributes including top-10 artists,
earliest and latest release year of tracks on the
playlist. These were added as constraints to weed
out recommendations too far away from the playlist
premise.

This recipe is then used to generate a list of tracks clas-
sified into the top genres, with real-valued attribute scores
at most one standard-deviation away from mean, release
year within the earliest and latest release year and perform-
ing artist(s) among the top artists. We sort this list by pop-
ularity in the last 365 days and prune to generate a final list
of recommendations.

3.3.3 Curator assignment

Music curators were shown these recommendations and
asked to assign a rating from below options

• Good - “track is not only appropriate for the playlist
premise, but also a high-quality recommendation”

• Borderline - “while track’s attributes align with the
premise, I would not be excited to program it”

• Bad - “I would never program this track to this
playlist, because it does not fit the premise”. Raters
were also asked to note a reason in this case.

3.3.4 Results

The results of the experiment are tabulated in Table 2. We
find that, for playlists defined almost solely by mood and
emotional affect, the curators found a majority of the tracks
good enough to program onto the playlists and some “bad”
tracks. For Tranquil Spa Day especially, there were no
“bad” tracks in the 27 that were rated. This shows that
the recipe based on semantic attributes and metadata con-
straints was a decent heuristic for playlist extension.

For the decade playlists (last 2 rows) the performance
was very poor. To have a better understanding, we ana-
lyzed the rater notes and found that 77 out of 83 and 45 out
of 56 “bad” tracks for Feeling Good in the 80s and 90’s
Rock Relaxation, respectively, were due to the curators not
feeling that the tracks belonged to the correct decade. On

examination, we found that the metadata was indeed in-
correct on those tracks. Discounting these tracks with in-
correct metadata, our approach again seems to perform de-
cently on these playlists.

For a qualitative study like this, the strongest support is
the overall evaluation by the music curators on whether or
not the suggestions are useful to have. Even with around
one-in-four playlist suggestions being discarded as incor-
rect, the music curators found that having these automat-
ically generated suggestions available sped up their work
on refreshing and extending the vibe-oriented playlists.

4. CONCLUSIONS

We described a system and method to automatically label
musical tracks with semantically meaningful attributes, in-
cluding musical genre, autonomic arousal, valence, and
vocalness. These attributes are inferred using models
operating on audio embeddings generated by deep neu-
ral networks trained on co-listen data, using triplet loss.
The attribute models themselves are trained using smaller
amounts of labeled data. We show that precision improve-
ments can be obtained by running attribute inference on
temporal segments and fusing those scores into a whole-
track score compared to running inference on an averaged
embedding. This approach also yields temporal consis-
tency attributes that are useful in and of themselves.

We then define a lower-dimensional embedding space
established by these semantic musical attributes. We com-
pare these embeddings with the original audio co-listen–
trained embeddings in the context of professionally curated
playlists. We find that this space better separates a sample
of thematic playlists: it matches the semantic similarity
implicit in these professionally curated playlists better than
the raw audio embedding space.

Unlike previous studies of playlist extension [23, 24],
we used these semantic attributes to generate human-
readable and -editable recipes for professionally curated
playlists. We used those recipes to automatically extend
the playlists and measured the quality of those automatic
content refreshes via human evaluation.
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ABSTRACT
In this paper we present Aligned Scores and Performances
(ASAP): a new dataset of 222 digital musical scores
aligned with 1068 performances (more than 92 hours) of
Western classical piano music. The scores are provided
as paired MusicXML files and quantized MIDI files, and
the performances as paired MIDI files and partially as au-
dio recordings. Scores and performances are aligned with
downbeat, beat, time signature, and key signature annota-
tions. ASAP has been obtained thanks to a new annota-
tion workflow that combines score analysis and alignment
algorithms, with the goal of reducing the time for man-
ual annotation. The dataset itself is, to our knowledge, the
largest that includes an alignment of music scores to MIDI
and audio performance data. As such, it is a useful re-
source for a wide variety of MIR applications, from those
that target the complete audio-to-score Automatic Music
Transcription task, to others that target more specific as-
pects (e.g., key signature estimation and beat or downbeat
tracking from both MIDI and audio representations).

1. INTRODUCTION
As data-hungry deep learning models have become more
ubiquitous in the field of MIR in recent years (e.g., [19,
22, 37]), large, well-annotated datasets have become in-
creasingly important. Similar trends towards deep learn-
ing methods have been seen in related fields such as nat-
ural language processing [42] and computer vision [39].
For many tasks in these fields, large datasets can be auto-
matically scraped from the web, and annotated quickly by
non-experts (e.g., [34]). Unfortunately, the same can often
not be said for tasks in MIR, for many reasons.

First, producing high-quality audio or MIDI data is a
non-trivial task, requiring expert performers and expensive
equipment that is not always available. Second, the avail-
ability of a high-quality digital ground truth is not guaran-
teed in many cases, particularly for tasks which require a

c© Francesco Foscarin, Andrew McLeod, Philippe Rigaux,
Florent Jacquemard, Masahiko Sakai. Licensed under a Creative Com-
mons Attribution 4.0 International License (CC BY 4.0). Attribution:
Francesco Foscarin, Andrew McLeod, Philippe Rigaux, Florent Jacque-
mard, Masahiko Sakai. “ASAP: a dataset of aligned scores and perfor-
mances for piano transcription”, 21st International Society for Music In-
formation Retrieval Conference, Montréal, Canada, 2020.

musical score 1 , e.g., for the complete audio-to-score Au-
tomatic Music Transcription (AMT) task (see [1] for a re-
cent overview of AMT). Finally, even in the case when
both audio/MIDI data and high-quality digital ground truth
scores are available, acquiring an alignment between the
two is non-trivial. Automatic alignment methods (e.g.,
[30]) are often not robust enough to deliver highly reli-
able results and require time-consuming post-processing
and cleaning by expert musicians for advanced data usage.

We introduce the Aligned Scores and Performances
(ASAP) dataset 2 , containing digital musical scores of
Western classical piano pieces as both MusicXML and
MIDI, aligned at the beat level with audio (from MAE-
STRO [17]) and MIDI recordings of over 1000 human
performances. Regarding the three difficulties outlined
above (data creation, digital ground truth availability,
and recording-ground truth alignment), we use (1) pub-
licly available MIDI and audio from expert human per-
formances; (2) publicly-available musical scores scraped
from the web; and (3) a new workflow to efficiently pro-
duce aligned beat, downbeat, key, and time signature an-
notations with minimal human correction required.

Although ASAP can be used for many tasks, it was de-
signed with two categories specifically in mind: (1) com-
plete audio-to-score AMT and (2) metrical structure-based
tasks (e.g., beat and downbeat tracking, tempo estimation,
metrical structure alignment, and rhythm quantization) of
classical piano performance, from both audio and MIDI.

While a major goal of AMT is to convert an input au-
dio recording into a form of human-readable music nota-
tion, the vast majority of AMT systems fall short of such
an output. Rather, they convert the input audio recording
into some sort of time-frequency representation: either a
frame-based multi-pitch detection, where the presence of
each pitch is estimated at each point in the input recording
(e.g., [21]); or a note-based output such as a piano-roll or
MIDI file, where notes are detected each with a pitch, an
onset time, and an offset time (e.g., [16]). 3 For these pur-
poses, the ground truth only needs to contain some aligned

1 Although PDF scores are sometimes available, and the field of Opti-
cal Music Recognition (see [3] for a recent overview) involves converting
these into digital format, this conversion can add errors, and starting from
a clean, digital score is generally better if available.

2 https://github.com/fosfrancesco/asap-dataset
3 This can be post-processed into a musical score, as in the pipeline

approach of [29], but such pipelines tend to add noise at each step.
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pitch or note presence data—not a full musical score. Ex-
isting datasets such as MAPS [8] and the larger MAE-
STRO [17] contain appropriate ground truths for this level
of transcription (see Section 2).

In recent years, a few systems have been designed
to output a more complete musical score directly (e.g.,
[5, 35]). While each of these works shows promise on this
difficult task, neither includes time signatures or key signa-
tures in their output. One [5] uses synthetically generated
scores (and synthesized audio), and the other [35] uses au-
dio synthesized from real scores. Since the eventual goal
of AMT is a full transcription from human performance
to musical score, a large dataset of non-synthetic human
performances (containing the tempo deviations and timing
intricacies of human performance, as well as real audio) is
needed: synthetic data can be useful in the initial phase of
model design, but human performance data is required for
a truly reliable evaluation. ASAP provides such a dataset.

To our knowledge, no audio-to-score transcription sys-
tem exists that requires fine-grained alignments between
recordings and ground truths, perhaps due to a lack of
available data. However, the use of data with even a coarse
alignment has been shown to improve performance on the
related task of monophonic note-based transcription [31],
suggesting that the same should be true for audio-to-score
AMT, if a large enough dataset of aligned recordings and
scores was available. ASAP provides this time-alignment
between the included recordings and ground truth scores.

Regarding metrical tasks, large audio datasets exist, es-
pecially for beat and downbeat tracking, enabling sophis-
ticated systems to be trained (e.g., [2]). However, there is
an absence of similarly-sized annotated datasets consisting
of MIDI data, resulting in a noted lack of training data for
metrical tasks from MIDI input (e.g., [25]). Even in the
case of audio, much of the existing data is dance music or
from other genres with relatively steady tempi compared
to the classical piano music contained in ASAP (see Sec-
tion 4.3 for an analysis of ASAP’s tempo changes).

We produce beat and downbeat annotations for every
performance in ASAP with a novel workflow that exploits
the precise metrical structure information available in a
musical score. Projecting this onto each corresponding
performance guarantees a robust means to identify the beat
and downbeat positions. Working with MIDI allows us to
overcome many difficulties found in similar approaches us-
ing only audio data (e.g., [32]). The workflow allows us to
drastically reduce the time required for manual annotation.

2. RELATED WORK

Some public datasets similar to ASAP—containing combi-
nations of musical scores, MIDI performances, and audio
recordings, for AMT and/or beat tracking—already exist.
In this Section, we describe those existing datasets in com-
parison to ASAP, highlighting specifically where ASAP
addresses their deficiencies. Table 1 contains a summary
of the largest of these datasets in comparison to ASAP. We
first describe those containing musical performances (use-
ful for AMT), and follow that with a brief discussion of
available datasets for metrical structure-based tasks.

2.1 Performance datasets

There are two datasets which contain multiple perfor-
mances of many different pieces. The Vienna 4x22 Pi-
ano Corpus [11] consists of 22 different performances of
each of 4 different pieces, in both audio and MIDI format,
aligned to a metrical grid. The CHARM Chopin Mazurka
Project 4 dataset contains many recordings of each of
49 different Mazurkas composed by Frédéric Chopin, al-
though the original audio recordings are only referenced,
and not available online (instead, many pre-calculated fea-
tures are provided). While these datasets are valuable for
investigating live performance deviations and comparisons
between different performances of the same piece, they are
not as useful for AMT, since they each consist of a small
number of different pieces, leading to likely model over-
fitting (only 4 different pieces for Vienna 4x22, and only
pieces by a single composer in the Mazurka dataset).

The Saarland Music Data (SMD) dataset [28] contains
50 synchronized audio and MIDI recordings of human
performers playing a Disklavier piano. The files are not
aligned with any musical scores or beat annotations, and
the dataset’s size is somewhat small compared to other
similar datasets. Likely because of its size, SMD has has
not been used for AMT in recent work to our knowledge.

CrestMuse PEDB [15] is a dataset based on audio
recordings of multiple piano performances of around 100
unique pieces. However, the original audio recordings
are not included. Rather, references to commercial CDs
which can be purchased, and on which the recordings can
be found are given. After a PDF application and pledge
are filled out and submitted, access is granted to down-
load the database in about a week. Provided in the dataset
are MIDI files, whose notes have been hand-aligned to
the referenced recordings; and digital musical scores in an
XML-based format, to which the notes and beats of the
MIDI files are aligned (using “deviation” XML tags in the
score files). Since its initial release, some audio files have
been added. However, these are different from the original
score-aligned audio recordings, and in some cases are syn-
thesized from MIDI performance. The difficulty of acquir-
ing the audio recordings makes this database rarely used
for audio-based tasks such as AMT.

The piano-midi dataset 5 contains 324 quantized MIDI
files whose tempo curves have been manually altered with
the goal of becoming more human-like. The MAPS dataset
[8] contains 210 of these MIDI files (of 119 different
pieces), without key and time signatures, each paired with
an audio file—some synthesized and some actual record-
ings. A-MAPS [41] later augmented MAPS with MIDI
files containing key signature and time signature annota-
tions. Since the MIDI data is generated from tempo-varied
quantized MIDI, rather than actual performance, the MIDI
files and recordings do not contain all of the timing vari-
ance that would be present in real performance: note onsets
and offsets which lie on the same beat in the original mu-
sical score also occur simultaneously in the corresponding

4 http://www.mazurka.org.uk/
5 www.piano-midi.de
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Size Performance Quantized Annotations
Dataset Total Unique Audio MIDI MIDI Score Alignment Metrical Key
MAPS [8] 269 52 Pseudo† Pseudo Full [41] [41]
CrestMuse-PEDB [15] 411 ≈100 Partial† Full
SUPRA [36] 478 ≈430 Pseudo†

MAESTRO [17] 1282 ≈430
GTZAN [38] 1000 1000 [24] Global
Ballroom [12] 685 685 Beat [23]
Hainsworth [14] 222 222 Beat
SMC [18] 217 217 Beat
ASAP 1068 222 520 Beat Beat

Table 1. An overview of the most relevant datasets for AMT (top section) and metrical tasks (middle section), compared to
ASAP (bottom). Alignment refers to the level of alignment between the quantized and performance data. MAPS consists of
pseudo-live performance (quantized MIDI with manually altered tempo curves). †MAPS, SUPRA (fully) and CrestMuse-
PEDB (partially) include synthesized audio (not real recordings).

MIDI and audio files. In real performance, such events
only rarely occur simultaneously. Rather, small timing de-
viations introduce gaps, overlaps, and other timing varia-
tion (see e.g. [26], Figure 4), which are therefore missing
(along with ornamentation such as trills, as well as perfor-
mance errors). Although these datasets contain perfectly-
aligned ground truth annotations (which has made MAPS a
standard for AMT evaluation since its release), their mod-
est size and the fact that they are not real live performance
are drawbacks that we hope to address with ASAP.

The SUPRA dataset [36] contains 478 MIDI files of
around 430 different pieces generated from an archive of
piano performances in the form of physical piano rolls.
SUPRA also contains synthesized audio recordings of each
MIDI file, and labels each with a composer and title, but
provides no metrical alignment of the pieces.

The MAESTRO dataset [17] contains 1282 real perfor-
mances of around 430 different pieces from the Yamaha
piano e-competition 6 . Each performance is available as
a MIDI file and an audio recording with a fine alignment
of around 3 ms. Metadata are available for each perfor-
mance, including the composer and title of each. MAE-
STRO’s size, fine alignment with ground truth, and the fact
that it is real performance have made it an excellent source
of training and evaluation data for AMT from recording
to piano-roll. However, MAESTRO does not contain any
note-, beat-, or even piece-level alignment with digital mu-
sical scores, required for the complete audio-to-score AMT
task (and which ASAP does contain).

2.2 Metrical structure datasets

For metrical structure-based tasks, from live performance
MIDI data, annotated datasets from the previous section
(particularly piano-midi and CrestMuse-PEDB) are typi-
cally used. However, they are relatively small (especially
in terms of unique pieces), and piano-midi files in particu-
lar do not contain real live performance, as mentioned. For
the same tasks from audio data, large annotated datasets
exist, enabling sophisticated models to be designed and
trained (e.g., [2]). The largest and most widely used (where

6 http://piano-e-competition.com/

audio files are publicly available, including at least beat
annotations) are: GTZAN [38] (1000 audio recordings
of various genres with beat, downbeat, and 8th-note an-
notations), Ballroom [12] (685 audio recordings of ball-
room dancing music with beat and downbeat annotations),
Hainsworth [14] (222 audio recordings of Western music),
and SMC [18] (217 audio recordings of Western music,
specifically selected to be difficult for beat tracking). How-
ever, the music contained in these datasets tend to have a
much steadier tempo than those contained in ASAP (even
SMC; see Section 4.3 for a comparison).

3. PRODUCING MUSIC ANNOTATIONS

Annotating a dataset the size of ASAP with ground truth
for AMT and related problems such as beat tracking is a
time consuming task that can, in principle, only be per-
formed by expert musicians. This severely limits the ease
with which one can produce a reliable and finely crafted
dataset at the required scale.

For piano music, MIDI and audio performances can be
automatically aligned if they are recorded at the same time
using an acoustic piano fitted with the proper sensors such
as a Disklavier. The main problem then becomes annotat-
ing the performances with metrical markings (such as beats
and downbeats) and aligning those with a musical score.
Holzapfel et al. [18] describe the process used to anno-
tate the SMC dataset in detail, showing how much manual
work was required for its beat annotations. ASAP con-
tains more than 92 hours of performance data, and even
a skilled musician would need to listen to each multiple
times with the proper annotation software in order to an-
notate it fully (and this time can increase dramatically for
complicated pieces with multiple time and key signature
changes). Moreover, as highlighted in [40], the manual
annotations would still be affected by human subjectivity,
requiring a system with multiple annotators and a reconcil-
iation mechanism between them (e.g., [10,18]). We believe
that without a large budget and/or the ability to involve
a community of expert users willing to spend significant
time on the task, producing a large ground truth dataset
cannot be achieved through a purely manual approach.
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536



Figure 1. Beat and downbeat annotations produced by our
workflow in different cases. The 1st (db) is the median of
the onsets of the corresponding notes, the 2nd and the 4th
(b) are the onset of the corresponding note, and the 3rd (b)
is the mean between the two neighbor annotations.

We therefore propose a workflow (Section 3.1) that al-
lows for the automatic production of annotations from dig-
ital musical scores and MIDI performances. The preci-
sion of the results is much higher than what would be ex-
pected from human-based annotation with a single anno-
tator. Moreover, when the quality of the available scores
is high, the workflow does not require any human inter-
vention. Manual intervention is sometimes required to fix
problems related to either the digital encoding of the scores
or performance errors (Section 3.2).

3.1 Annotation Workflow
The annotation workflow (Figure 3) takes a MIDI perfor-
mance and a MusicXML score as input, and produces beat,
downbeat, key signature change and time signature change
annotations for each. Each annotation is aligned to a po-
sition (in seconds) in both the MIDI performance and a
MIDI score (generated automatically from the MusicXML
score), and each downbeat is further aligned with a mea-
sure number from the MusicXML score. The workflow is:

1. Expand any repetitions present in the MusicXML
score and extract time and key signature changes us-
ing music21 [7].

2. Generate the MIDI score using the MuseScore3
MIDI export function.

3. Extract the times of beats, downbeats, and key and
time signature changes from the generated MIDI us-
ing pretty_midi [33].

4. Align every downbeat from the MIDI score with a
measure number in the XML score.

5. Produce a Score2Performance mapping from each
note in the MIDI score to each note in the MIDI per-
formance using the algorithm presented in [30].

6. The performance annotations can then be obtained.
For each annotation in the MIDI score (from step 3):

(a) Take the notes with an onset within 20ms of
the annotation (there can be multiple notes, e.g.
for the downbeat annotation in Figure 1).

(b) Use the Score2Performance mapping, to ob-
tain the onset times of the corresponding notes
in the performance file.

(c) Compute the median of the onset times of those
notes, and use it as the time of the annotation
in the performance.

(d) If no notes are within 20ms of the MIDI score
annotation (e.g., in case of a rest), the posi-
tion is interpolated from neighboring annota-
tions (e.g., the 3rd annotation in Figure 1)

As shown in [13], annotations on rests or multiple non-
simultaneous notes (grace-notes, arpeggios) are inherently
problematic, even for human annotators. An inspection of
our annotations reveals that our workflow generally pro-
duces good results. In particular, our use of the median in-
creases robustness while handling non-simultaneous notes.

3.2 Practical issues with erroneous input

While the mapping between the scores and performances
in ASAP is such that they have a very good correspondence
in general, local problems can still occur in specific cases.
These can be caused either by encoding issues in the XML
score, or by performance errors in the MIDI.

For our automatic workflow to produce good results, the
content level of the XML score must be correctly encoded,
although we can ignore problems at the graphical level (we
refer to the model of the multiple levels of information in a
musical score proposed in [9]). Many of the problems that
we encountered during the automatic creation of ASAP’s
annotations are tricks used by editors to fix problems at the
graphical level at the expense of correctness at the content
level: for example, grace notes entered as regular notes
with a smaller font, invisible barlines inserted mid-bar, in-
visible notes or rests, or note heads changed for visual rea-
sons inconsistent with their actual duration.

In some cases, editors are forced to use such tricks be-
cause the original score itself does not follow standard no-
tation rules. Figure 2 shows two examples of incorrect
measure duration: one from Ravel’s Ondine (top) and an-
other from Mozart’s Fantasie in C minor (in 4/4; bottom
left). There are many ways to handle such cases. Possi-
bilities include having invisible tuplet markings, having a
different time signature than the one displayed, and having
an overflowing measure. The latter two techniques create
problems for automatic beat extraction. Figure 2 (bottom
right) is an example of a key change in the middle of a
bar in Beethoven’s Sonata No.29, Op.106, 2nd movement.
One way to encode this situation is to split the bar into 2
separate bars, but this also creates problems for automatic
beat extraction in the form of an extra downbeat.

Fortunately, such problems are generally easy to detect
since they often result in a measure where the sum of the
events does not match the duration defined by the time sig-
nature. To be able to produce correct annotations even in
the case of these “faulty” measures (around 3% of mea-
sures in ASAP’s musical scores), we introduce a manual
correction step for the MIDI score annotations (Figure 3).
This prevents the propagation of such problems down to
the performance annotations.

The alignment that we use to generate the Score2Per-
formance mapping [30] is robust against small errors and
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Figure 2. Examples of problems in musical scores, includ-
ing incorrect bar length (Ravel’s Ondine (top) and Mozart’s
Fantasie in C minor (in 4/4; bottom left)) and a mid-
bar key change (Beethoven’s Sonata No.29, Op.106, 2nd
movement (bottom right)).

note inversions. Nonetheless, small errors in its alignment
exist. As the difference between a performance and MIDI
score increases, the chance of having an incorrect align-
ment also increases. This can occur in the case of embel-
lishments (e.g. long trills, or mordents that can be played
from the printed note or from the note above) or major per-
formance mistakes. We try to detect these problems au-
tomatically by measuring the inter-beat-intervals of each
performance and marking the outliers as possible prob-
lems. On these outliers (which occurred in around 400 of
ASAP’s performances), we introduce a final manual cor-
rection step. 43 performances contained significant align-
ment errors that were corrected, and around 2% of annota-
tions had to be moved by less than 1 second.

4. DATASET OVERVIEW

4.1 Dataset content

ASAP contains 222 distinct musical scores and 1068
unique performances of Western classical piano music
from 15 different composers (see Table 2 for a breakdown).
548 of the recordings are available as MIDI only, and all
the others (520) are provided as MIDI and audio recordings
aligned with approximately 3 ms precision. Each score
corresponds with at least one performance (and usually
more). Every score and performance in ASAP is labeled
with metadata including the composer and the title of the
piece. We took care to ensure that any two performances
of the same piece are labeled with the same title and com-
poser, and no two distinct pieces in ASAP share both.

Each musical score is provided in both MusicXML 7

and MIDI formats. In the MIDI score, the position of all
MIDI events are quantized to a metrical grid according to
their position in the MusicXML score. Grace notes are
represented in MIDI as notes of very short duration. Rep-
etitions in the score are “unfolded” in the MIDI file such

7 https://www.musicxml.com/

Figure 3. Our annotation workflow; “*” indicates manual
correction (see Section 3.2)

that some sections of the MusicXML score may be dupli-
cated in the MIDI score. Except for performance mistakes,
there is a one-to-one correspondence between the notes in
a MIDI performance and its associated MIDI score.

For each performance and MIDI score, ASAP provides
the positions (in seconds) of all beats, downbeats, time sig-
nature changes and key signature changes. Time signature
changes are annotated only on downbeats. In the case of
pickup measures (and pickup measures in the middle of the
score) we delay the position of the time signature change
annotation to the following downbeat. Similarly, key sig-
nature changes are annotated only on beats. Each down-
beat is also mapped to a specific measure number in the
MusicXML score, which allows for a clear score align-
ment, even in the case of repetitions.

The dataset and the code used to generate annotations,
along with a detailed description of the specific formatting
of the dataset and usage examples are available online 8 .

4.2 Origin of the files

The files in ASAP are drawn from multiple sources. The
MusicXML scores are from the MuseScore online li-
brary 9 , created and uploaded by the users of the Mus-
eScore music notation software. They were first collected
and associated to MIDI performances from the Yamaha e-
piano competition by the authors of [20]. We manually
edited the MusicXML scores using MuseScore3 to correct
significant notation errors, and generated quantized MIDI
files using MuseScore3’s MIDI export utility. The paired
audio and MIDI performances come from the MAESTRO
dataset [17]. We automatically matched as many of the
MAESTRO performances as we could to ones collected by
[20], thus associating them with musical scores. The un-
matched performances from MAESTRO are not included
in ASAP. Finally, we modified 5 of the MIDI performances

8 https://github.com/fosfrancesco/asap-dataset
9 https://musescore.com/sheetmusic
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Composer
XML/MIDI MIDI Audio

Score Perf. Perf.
Bach 59 169 152
Balakirev 1 10 3
Beethoven 57 271 120
Brahms 1 1 0
Chopin 34 290 109
Debussy 2 3 3
Glinka 1 2 2
Haydn 11 44 16
Liszt 16 121 48
Mozart 6 16 5
Prokofiev 1 8 0
Rachmaninoff 4 8 4
Ravel 4 22 0
Schubert 13 62 44
Schumann 10 28 7
Scriabin 2 13 7
Total 222 1068 520

Table 2. The composition of ASAP.

by inserting a missing note at the beginning, and 277 more
have been cut to obtain more homogeneous pieces (e.g., the
Bach Preludes are separated from the Fugues, even though
they sometimes come from the same performance).

4.3 Dataset Statistics
ASAP contains performances of classical piano music, a
style that can be challenging for beat tracking systems due
to the large tempo variations that are often present. Here,
we compare the tempo variation of the pieces in ASAP to
that of the pieces of datasets commonly used for beat track-
ing from audio [12,14,18,38]. To quantify the tempo varia-
tion for each piece, we first compute the BPM at each beat
based on the amount of time between consecutive beats.
Then, we compute ∆BPM at each beat as the difference
between consecutive BPMs. Finally, we compute the stan-
dard deviation of the set of all ∆BPM values in a particular
piece, which we call σ(∆BPM ). Figure 4 presents the dis-
tribution of these standard deviations for each dataset as a
Cumulative Distribution Function, which shows the proba-
bility that a randomly chosen piece from each dataset has a
σ(∆BPM ) less than the given value. From the plot, it can
be seen that Ballroom and SMC have generally steadier
tempos than the other datasets, and that ASAP’s steadiest
40% and 50% of pieces roughly match those of Hainsworth
and SMC respectively. However, a large portion of the
pieces in ASAP have significantly larger tempo variation
than any of the compared datasets.

In ASAP, differences can be observed between com-
posers. Even though the pieces in the dataset fall under
the broad term “classical music”, ASAP is very diverse,
containing pieces of various styles written across different
periods. This can be observed from differences in average
σ(∆BPM ) for each composer, as is shown in Figure 5. The
values in this plot generally match musicological intuitions
about tempo variation for the different composers.

Figure 4. Cumulative Distribution Function of tempo vari-
ation σ(∆BPM ) of each piece in the compared datasets.

Figure 5. Average tempo variation σ(∆BPM ) of the
pieces by each composer in ASAP.

5. CONCLUSION

This paper presented ASAP: a new dataset of aligned mu-
sical scores and performances of classical piano music.
Downbeat, beat, time signature, and key signature anno-
tations are produced using a novel workflow that exploits
information present in the musical score to drastically re-
duce manual annotation time compared to fully manual an-
notation. ASAP contains over 1000 annotated MIDI per-
formances of classical piano music, over 500 of which are
paired with audio from the MAESTRO dataset. To our
knowledge, it is the largest dataset of that contains such a
fine-grained alignment between scores and performances.

This work has only scratched the surface of what can be
done with ASAP. Future work will present further statisti-
cal analyses on the data and baseline model performance
on tasks for which it can be used: complete AMT and
beat tracking as presented, as well as others such as expres-
sive performance analysis and rendering [4]. For complete
AMT in particular, the evaluation method is still an open
problem, although proposals have been made (e.g., [6,27]).
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ABSTRACT

The mood of a song is a highly relevant feature for ex-
ploration and recommendation in large collections of mu-
sic. These collections tend to require automatic methods
for predicting such moods. In this work, we show that
listening-based features outperform content-based ones
when classifying moods: embeddings obtained through
matrix factorization of listening data appear to be more in-
formative of a track mood than embeddings based on its
audio content. To demonstrate this, we compile a sub-
set of the Million Song Dataset, totaling 67k tracks, with
expert annotations of 188 different moods collected from
AllMusic. Our results on this novel dataset not only expose
the limitations of current audio-based models, but also aim
to foster further reproducible research on this timely topic.

1. INTRODUCTION

The estimation of moods that a given music track might
evoke or empathize with is a relevant task that has been
active in the Music Informatics Research (MIR) commu-
nity for years [20]. This task, which is also known as mu-
sic emotion recognition, has become even more prominent
thanks to the advent of streaming music services with mas-
sive collections, where understanding the set of moods of
each of their tracks could strongly impact the navigation,
discovery, and recommendations of such collections [32].
This task has been typically approached in two different
ways: i) regressing a continuous mood space such as the
Arousal-Valence one [30], and then clustering such space
to obtain a specific mood vocabulary [37]; or ii) classify-
ing a given track into one or more moods, thus becoming
a multi-label classification problem with a fixed vocabu-
lary [6], which can be seen as a sub-task of the broader
audio tagging problem [27]. In this work, we focus ex-
clusively on the second approach, since it can directly
impact search-by-mood applications, while methods like
metric learning can potentially overcome the limitation of
the fixed vocabulary [5].

© Filip Korzeniowski, Oriol Nieto, Matthew C. McCallum,
Minz Won, Sergio Oramas, Erik M. Schmidt. Licensed under a Creative
Commons Attribution 4.0 International License (CC BY 4.0). Attribu-
tion: Filip Korzeniowski, Oriol Nieto, Matthew C. McCallum, Minz
Won, Sergio Oramas, Erik M. Schmidt. “Mood Classification Using Lis-
tening Data”, 21st International Society for Music Information Retrieval
Conference, Montréal, Canada, 2020.

Framed under the context of music recommendation,
mood recognition is particularly interesting. It has been
shown that listener personality correlates not only with mu-
sical taste [29, 41], but also with genre [11], which makes
the development of psychologically inspired approaches
one of the most compelling challenges for recommender
systems [32]. Thus, several related techniques have been
presented: FocusMusicRecommender [40] makes use of
the listener’s behavior history to play tracks that are ap-
propriate given the current listener’s level of concentra-
tion. By incorporating the Five Factor Model [7], collab-
orative filtering [21] is enhanced with personality embed-
dings [10]. Moreover, emotions from a microblogging ser-
vice have been exploited to implement an emotion-aware
recommendation system [9]. Such techniques employ data
beyond the actual audio signal to enhance mood-based rec-
ommenders, inspiring us to make use of listening data to
classify moods to potentially improve the navigation and
recommendation of large music catalogs.

The contribution of this work to the task of mood pre-
diction is two-fold: i) we assemble a set of 67k tracks
from the Taste Profile subset from the Million Song
Dataset (MSD) [2] and match them with human-annotated
moods available from AllMusic. 1 This is, to the best of
our knowledge, the largest expert-annotated mood dataset
available. And ii) by running several experiments on this
proposed dataset we show how listener data are much more
accurate at classifying moods than current audio-based ap-
proaches. Similarly to [17], where its authors discuss how
lyrics can be useful to predict moods better than actual au-
dio, and following the music recommendation approaches
described above, we further argue that listening embed-
dings yield superior results due to their ability to capture
information that is not straightforward to be extracted from
pure audio content only.

The rest of the article is structured as follows: in Sec-
tion 2 we give a formal definition of the mood classification
problem. In Section 3 the data employed in this work are
described. We then detail the mood classification experi-
ments in Section 4. The results of these experiments are
discussed in Section 5. Finally, we draw conclusions and
consider potential future directions in Section 6.

1 https://www.allmusic.com/
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2. MOOD CLASSIFICATION
Predicting moods evoked by music is often treated as
an audio classification problem in the MIR community, 2

where audio data are almost exclusively used as input. In
this section we give an overview of this task and its current
approaches.

2.1 Problem definition
Mood tagging is a multi-label classification problem, and
can be considered a subset of the broader audio tagging
task where only those tags that represent moods are con-
sidered. Formally, let x ∈ RE be an embedding represent-
ing a given track, where E is the number of dimensions
in the embedding. Each track is associated with a set of
mood tags from a mood vocabulary T (e.g., “energetic,”
“gloomy,” “happy”), represented by a binary indicator vec-
tor y ∈ {0, 1}|T |. We aim at predicting the set of mood
tags associated with the track, using a learnable function f
that computes the predicted label vector ŷ = f(x).

Note that x can be extracted from any source of data
representing the track. In our case, we will use audio- and
listening-based embeddings.

Other approaches have also framed emotion prediction
as a regression problem of an n-dimensional continuous
space [37], where the 2D Arousal-Valence model [30] is
the most widely used. While this approach has the benefit
of considering moods that are not constrained by a specific
vocabulary, in this work we focus on the multi-label classi-
fication approach due to the direct application to potential
user-based scenarios such as search by typing or by voice.

2.2 Current Approaches
The current state of the art largely approaches music mood
prediction via audio analysis. Early approaches identified
spectral contrast as an informative representation [19], and
a number of other authors confirmed this finding as well as
a variety of other standard audio features [20, 31, 33, 39].
While the relationship between mood and spectral repre-
sentations remains non-obvious, previous work has shown
that human subjects annotate reconstructions from these
representations with reasonable consistency to their origi-
nal form [35]. Still, the problem remained far from solved.

In moving towards increasing model complexity, most
approaches have incorporated deep learning methods that
seek to learn their own representations [34]. In addition
to prediction, audio-based approaches have also been ex-
tended to the problem of segmentation [1]. More recent
approaches have expanded to multi-modal representations
by combining lyrics [8] and others have focused on inter-
pretability of these complex models [6]. At the time of
writing, the authors are not aware of any models which
leverage features derived from user interactions to estimate
the moods of a music track.

3. DATA
The data we collected for this work are derived from var-
ious sources: AllMusic provides mood annotations; The

2 https://www.music-ir.org/mirex/wiki/2019:Audio_Classification_
(Train/Test)_Tasks

Ro
us

in
g

Dr
am

at
ic

Lit
er

at
e

So
ph

ist
ica

te
d

Fi
er

y
Te

ns
e/

An
xi

ou
s

Sw
ag

ge
rin

g
Ro

llic
ki

ng
Dr

ea
m

y
Ch

ee
rfu

l
Re

la
xe

d
Ho

st
ile

Br
av

ad
o

Ni
hi

lis
tic

Se
lf-

Co
ns

cio
us

Ee
rie

Ac
er

bi
c

Up
lif

tin
g

Sn
id

e
Un

se
ttl

in
g

Sp
ar

se
Ci

rc
ul

ar
Na

iv
e

Dr
iv

in
g

0k
2k
4k
6k
8k

10k
12k
14k

No
. o

f T
ra

ck
s

Figure 1: Number of tracks per annotated mood in the
AMS. Due to space limitations, only the names of a subset
of mood tags are shown.
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Figure 2: Number of moods annotated per tracks in AMS.

Echo Nest Taste Profile [25], mapped to tracks in the Mil-
lion Song Dataset, adds listening data; finally, 7-digital
contributes 30s previews as audio data.

We link AllMusic data to the MSD by fuzzy string
matching of artist and track names, and requiring track
lengths to be within ±10s. This results in a dataset of
66 993 matched tracks in total, which we call the AllMusic
Mood Subset (AMS). As opposed to other music tagging
datasets, such as the LastFM Set [4,15,17], AMS provides
a large vocabulary of mood tags annotated by music ex-
perts. While the AllMusic annotations are proprietary, they
can be freely consulted on their website and, moreover, are
available to be licensed.

Finally, we randomly split the AMS into 80% training,
10% validation, and 10% test, resulting in 53 585, 6695,
6713 tracks respectively. The splits are available online 3

to ensure comparability of future results.

3.1 Mood Data

The mood information that we employ in this work has
been human-annotated by experts from AllMusic. These
data were previously employed for mood classification [3,
16] and lyrics sentiment detection [24]. The mood tags are
annotated at an album level, and we unfold them such that
each track is assigned its album-level moods.

The total number of mood tags available is 188. As
previous work noted [16], many tags may describe similar

3 https://github.com/fdlm/listening-moods
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Top Count Bottom Count

Rousing 14 018 Melodic 95
Reflective 13 330 Animated 140
Energetic 13 153 Powerful 148
Earnest 12 873 Driving 163
Passionate 11 438 Introspective 176
Confident 11 092 Flowing 218
Amiable 10 424 Positive 307
Intimate 10 188 Stately 310
Dramatic 10 014 Giddy. 315
Playful 9952 Thoughtful 340

Table 1: 10 top and bottom mood tags based on the number
of tracks they have been annotated in the AMS.

moods (such as “Romantic” and “Sensual”), which tend to
co-occur, and can be clustered into a smaller number of
groups. While we can confirm this by performing man-
ual and/or data-driven explorations on the co-occurrence
matrix, we intentionally kept the original annotations. For
one, we expect modern machine learning methods to cope
with large and possibly overlapping vocabularies. For
another, these tags were curated by expert annotators to
specifically describe how music feels; while they might
characterize similar concepts, they could also provide a
more nuanced view of a song’s mood.

To give a better notion of the moods in this dataset, in
Figure 1 we depict the histogram of number of tracks per
mood tag, which follows a typical long-tail distribution.
The 10 top and bottom annotated mood tags can be seen
in Table 1. As we can see, “Rousing” is the most fre-
quent mood, which appears in 14 018 tracks. On the other
hand, “Melodic” is the least frequent one, associated with
only 95 tracks. On average across the dataset, there are
3258.6±2961.3 tracks for each tag, with a median of 2385.
Furthermore, Figure 2 shows the distribution of number of
mood tags per track. It can be seen that most tracks have
13 moods or less, with an average of 9.1±5.7 tags per track
and the median centered at 9.

3.2 Audio Data

Since the AMS is a subset of the MSD, we gather the audio
data by obtaining the 7-digital 30 second previews associ-
ated with all MSD tracks. These are 128kbps mp3 stereo
files sampled at 44.1kHz.

3.3 Listening Data

We make use of the Taste Profile from the MSD to ob-
tain listening data. These data contain over 28 million
play counts from undisclosed partners associated with L =
1 019 318 listeners and S = 384 546 tracks.

We motivate the usage of such data in the context of
mood classification by showing the relationship between
listening habits and the moods of the tracks played, thus
arguing that such embeddings are likely to contain relevant
data when predicting moods. By mapping the tracks in this
set with the moods from the AMS (and thus reducing the
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Figure 3: Consistency ratios for the top 25 most popular
moods for each user in the AMS.

set of listeners down to 1 012 825, the track set down to
66 993, and the play counts down to ∼9 million) we ob-
serve that listeners play music that tends to be consistent
in terms of its mood. We define the consistency ratio of
a mood as the fraction of times it appears in the listening
history of a given user. Figure 3 shows the consistency ra-
tio of the nth most popular moods aggregated across users.
More specifically, 65.4% of all plays by a given user con-
tain the most popular mood tag for that user; similarly,
around 50.1% of a user’s plays are annotated with their 4th

most popular mood; etc. This exhibits the potential bene-
fits of using listening data, as we confirm in the results of
our experiments described next.

4. EXPERIMENTS

As described in Section 2.1, we treat mood prediction as
a multi-label classification problem, with a function f pre-
dicting mood tags ŷ from an input embedding x. The in-
put embedding can stem from different sources, such as
listening- or audio-based features; we will refer to this
as the embedding type. We will use mostly open models
trained on publicly available datasets in this work. As we
will see, our conclusions follow from these results alone.
Furthermore, we will show results for proprietary mod-
els trained on in-house listener feedback data. While we
acknowledge that these additional results are hardly re-
producible without access to our data and methods, they
demonstrate how our findings translate to an industrial
scale, and are thus a meaningful addition to this work.

4.1 Evaluation Metrics

Our goal is to compare the predictive performance of each
embedding type, i.e., given an input embedding of a certain
type, how well the predicted moods ŷ resemble the true
moods y associated with a track. To quantify this, we will
use macro-averaged average precision as the main evalu-
ation metric, as is commonly used in multi-label classifi-
cation. Average precision summarizes the precision-recall
curve in a single number, and is defined as

AP =
∑
n

(Rn −Rn−1) · Pn, (1)

Proceedings of the 21st ISMIR Conference, Montréal, Canada, October 11-16, 2020
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where Rn and Pn are the recall and precision at the nth

threshold at which the recall changes. Note that we use
macro averaging—we first compute AP for each mood tag,
and then average them to calculate the final result.

In our mood prediction setup, there are two main ques-
tions we need to consider: how do we arrive at the input
embedding x, and how we model and train f . Let us first
explore the various embedding types, before we take a de-
tailed look at f .

4.2 Audio-Based Models

Current mood prediction systems typically use audio-
based features as input. In this work, we use several au-
dio models, pre-trained on different datasets with varying
sizes. This ensures that our results are not specific to a type
of model.

4.2.1 Musicnn

We employ Musicnn [28]—a spectrogram-based convo-
lutional neural network (CNN) for audio tagging—as the
main pre-trained audio-based baseline. It is openly avail-
able 4 and achieves state-of-the-art results. We compare
two variants of this model: a smaller one, trained on ∼19k
tracks from the MagnaTagATune dataset [22], which we
will refer to as MCN-MTT-A; and a larger one, trained on
∼200k tracks from the Million Song dataset, which we
will name MCN-MSD-A. Both variants come pre-trained
to predict 50 tags, a subset of which can be associated with
moods. We refer to Musicnn’s documentation for further
details on its training scheme.

Musicnn is trained to predict tags for 3-second snippets
of audio; however, our setup requires a single embedding
per track. Thus, instead of the final output, we extract the
activation of the penultimate layer of the model as embed-
ding. We first compute embeddings of consecutive non-
overlapping audio snippets of 3 seconds, and then average
all snippet embeddings to form the track-level embedding.
This results in a 200-dimensional vector for MCN-MTT-A,
and a 500-dimensional vector for MCN-MSD-A. Such
global averaging operations are common for music tag-
ging [27].

4.2.2 Short-Chunk CNN

We train a short-chunk CNN [26] from scratch on the
54k training tracks in the AMS. This simple but power-
ful model feeds a Mel-spectrogram through a 7-layer CNN
with 3×3 filters, 2×2 max-pooling layers, and a fully con-
nected layer before the output. For a detailed look into the
training regime and architecture, we refer to the original
paper.

Since this model was trained directly for mood predic-
tion on the AMS, there is no need for transfer learning as
described in Section 4.4. This is a double-edged sword:
although the model is focused on the task at hand, it has to
learn a large vocabulary of tags from the limited data pro-
vided by our dataset. We will refer to this model as SCC-A

4 https://github.com/jordipons/musicnn

4.3 Listening-Based Models

In contrast to audio-based models, listening-based ones
consider user-song interaction as source data. This listen-
ing data comes in the form of a sparse feedback matrix
Y ∈ NL×S , where yl,s is a cell in Y representing the num-
ber of times the listener l has either played or rated the song
s. The former is called implicit feedback, while the latter
is referred to as explicit feedback. Factorizing Y using fac-
torization rank E (corresponding to the desired embedding
dimensionality) yields dense track embeddings x ∈ RE :
the input to our mood prediction model.

4.3.1 Taste-Profile Factorization

We use listening data from the complete Taste Profile of
28M play counts to obtain song embeddings by apply-
ing weighted matrix factorization using alternating least
squares [18] with a rank of E = 200 (chosen empirically).
These data contain relevant information about the track de-
fined exclusively with implicit feedback: how many times
which listeners have listened to which songs. We will call
these embeddings TP-L.

4.3.2 Proprietary Factorization

Large music streaming services possess much larger and
more detailed listening data than openly available re-
sources. To see how the results on open datasets translate
to industrial settings, we derive 200-dimensional embed-
dings from more than 100B in-house explicit user ratings
over the whole music catalog, by applying a weighted ma-
trix factorization algorithm. These embeddings will be re-
ferred to as P-L.

4.4 Transfer Learning

Having computed track-level embeddings x from various
sources, we need to map them to mood tags using a learn-
able function f . This is a transfer-learning scenario: the in-
put embeddings are obtained from a model trained to solve
a different (but related) task, such as collaborative filter-
ing or general audio tagging, and then applied for mood
prediction by learning f .

We model f as a multi-layer perceptron (MLP) with a
binary indicator vector as output, such that ŷ = f (x),
where ŷ ∈ [0, 1]

|T |. Thresholding ŷ gives us the set of
predicted moods. We train f for each embedding type
by minimizing the binary cross-entropy between predicted
vectors ŷ and target vectors y obtained from the true mood
tags.

The performance of MLPs heavily depends on the
choice of hyper-parameters. To enable a fair comparison,
we optimized hyper-parameters for each embedding type
individually using Bayesian optimization [36], monitoring
average precision on the validation set. To limit the com-
putational cost, we only used TP-L and MCN-MSD-A as
input embeddings, since they are the main points of com-
parison. Each setup enjoyed the same, fixed computational
budget of 2 days on a single Tesla M40 GPU, which trans-
lates to around 200 trials per setup. Table 2 shows details
on the search space and the best found configurations. We
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Domain TP-L MCN-MSD-A

No layers [2..4] 4 4
No units [1500..4000] 3909 3933
learning rate [0.0001, 0.005] 4 × 10−4 5 × 10−4

dropout [38] [0, 0.5] 0.25 0.25
weight decay [0, 0.0001] 0 1 × 10−6

Table 2: Hyper-parameters optimized with Bayesian op-
timization, and best found configurations for each embed-
ding type. Search ranges were defined based on limited ini-
tial experiments. For dropout and weight decay, we quan-
tized the interval by 0.125 and 1× 10−6, respectively.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Average Precision

P-L

TP-L

MCN-MSD-A

MCN-MTT-A

SCC-A

0.75
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0.16

Figure 4: Overall results for each model.

see that for both embedding types, the best models reach
the upper limit of our search space, which indicates that
even larger models might lead to better results. However,
we saw diminishing improvements for large models, so we
do not expect much further improvement.

We initialize the MLP weights using Kaiming’s
method [14], and use a rectifier activation function [13]
after each layer (the output layer uses a sigmoid). The
input is standardized using mean and standard deviation
estimated on the training set. We then train f for 100
epochs using a cosine-annealed learning rate [23] (with-
out restarts) and a 1-epoch warm-up phase. During train-
ing, we monitor average precision on the validation set to
select the best performing model parameters.

The code to reproduce these experiments is available
online. 5

5. RESULTS
Figure 4 shows the overall results of each embedding type.
As mentioned before, our main analysis will be based on
the results of open models on publicly available data. We
will discuss the results of P-L later.

We see that listening-based embeddings easily out-
perform audio-based ones (TP-L vs. MCN-MSD-A). We
also see a variation within audio-based models. Our exper-
iments were not designed to explain this variation, and the
usual suspects offer insufficient clues: for example, dataset
size might be an issue (200k for MCN-MSD-A vs. 19k for
MCN-MTT-A), but SCC-A was trained on the 54k training
tracks from AMS with worse results—here, dataset size
relative to vocabulary size might have been the issue. Fur-
ther experiments, out of scope of this paper, are necessary
to understand this in depth.

5 https://github.com/fdlm/listening-moods
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Figure 5: Difference of average precision between the best
audio-based model (MCN-MSD-A), and the best listening-
based model on open data (TP-L). Negative ∆AP means
the audio-based embedding performed better. The high-
lighted tags in (a) belong to the same mood cluster.

5.1 Tag-Wise Results

Even though the overall results are clear, some tags might
be easier to predict from audio than from listening data.
To explore this, we subtract the tag-wise average precision
of TP-L and MCN-MSD-A, and show the results in Fig-
ure 5. Indeed, we find 20 tags for which MCN-MSD-A
out-performs TP-L. Moreover, these tags seem to describe
related moods. To verify this, we clustered the 188 moods
using affinity propagation [12], resulting in 13 clusters. We
see that 11 out of the 20 mood tags belong to the same
cluster, as highlighted in Figure 5a. In contrast, the tags in
Figure 5b come from a wider variety of clusters (not high-
lighted). This indicates that it is a single, coherent “mood
subspace” on which audio data is better suited.

5.2 Results by Tag Frequency

As shown earlier, mood tags in the AMS are unevenly dis-
tributed: the least popular tag counts only 95 annotations,
while the most popular track 14k. It is reasonable to as-
sume that uncommon tags are more difficult to predict than
common ones. To evaluate this, we plot the average preci-
sion per tag depending on the tag frequency in Figure 6.

Although we see a direct relation between tag frequency
and average precision, the extent is less than we expected.
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Figure 6: Results per tag frequency. Dots represent the
average precision obtained by a tag, that occurs at a fre-
quency shown on the x axis. Lines represent linear regres-
sion models, with shades indicating 95% confidence inter-
vals.

Furthermore, all embedding types seem to be equally af-
fected: with the exception of SCC-A, the regression slopes
of both audio- and listening-based models are notably sim-
ilar. The exception of SCC-A indicates that tag sparsity
may be an issue when training audio models from scratch,
but not so when transfer-learning a model that has been
trained on more balanced data.

5.3 Results of Proprietary Algorithms

So far, we have discussed the results of open methods on
publicly available datasets. However, the attentive reader
has noticed that Figure 4 and 6 demonstrate how P-L per-
forms even better than TP-L. To explain the gap between
TP-L and P-L, we can point to the different nature and
amount of data they were trained on—28M implicit plays
for the former, but more than 100B explicit ratings for the
latter. The sheer amount of data (a factor of ∼3500) and
the stronger signal provided by explicit feedback seem to
be remarkably beneficial.

5.4 Consistency of Audio-Based Models

We have shown that listening-based models clearly out-
perform audio-based models in mood prediction. To
demonstrate this, we selected a wide variety of audio mod-
els that differed in multiple aspects: network architec-
ture, training datasets, and training regime (pre-trained and
trained from scratch). Given these differences, we can ask
if there are aspects of mood that current audio models are
not capable to capture, but listening-based models can. We
try to answer this question by exploring which embeddings
capture similar mood information. If an embedding cap-
tures similar aspects of mood as another embedding, their
tag-wise performance should be correlated—but not neces-
sarily similar in magnitude, as one embedding might just
perform better than the other.

We show the correlation in tag-wise performance in
Figure 7. The remarkable result is that regardless of their
differences, the tag-wise results of all audio-based mod-
els are much more correlated than between audio- and
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Figure 7: Correlation between tag-wise results of differ-
ent embeddings. We see that audio-based ones correlate
strongly with each other, compared to weaker correlations
between listening-based ones.

listening-based embeddings. This indicates that audio-
based models do capture similar aspects, even if they
might not capture it equally well (as the difference between
MCN-MSD-A and SCC-A shows). This does not mean
that the aspects current audio-based models are missing are
not present in the audio at all—just that current models are
not able to extract them.

We do not observe a similar pattern for listening-based
embeddings: TP-L and P-L show weaker correlation. At
this time, we cannot provide a better explanation than re-
ferring to the different nature of explicit and implicit feed-
back data and the sizes of the two datasets.

6. CONCLUSIONS

In this work we have associated 66 993 tracks from the
Million Song Dataset with the AllMusic set to yield the
AMS, the largest dataset available with the following data
modalities: high quality human mood annotations, audio
content, and listening data. Furthermore, we have shown
how listening data surpass audio-based embeddings when
classifying moods in the proposed dataset. The notable
differences in performance between listening- and audio-
based models suggest that either i) current state-of-the-art
audio models are not capable of successfully extracting
certain mood information about a given track; and/or ii)
such mood information is not necessarily present in the
audio content, and thus the usage of other signals such as
listening information may be required to obtain more accu-
rate results. With these findings, we encourage researchers
to employ data beyond audio content when estimating the
mood of a track. In the future, we look to further scrutinize
the tags to better understand which moods might be more
suitable to be extracted by which type of input represen-
tation. Moreover, and along these lines, we would like to
address this task in a multi-modal manner, combining dif-
ferent sources to potentially improve performance of this
compelling and timely problem.
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ABSTRACT

Current state-of-the-art results in Music Information
Retrieval are largely dominated by deep learning ap-
proaches. These provide unprecedented accuracy across
all tasks. However, the consistently overlooked downside
of these models is their stunningly massive complexity,
which seems concomitantly crucial to their success.

In this paper, we address this issue by proposing a
model pruning method based on the lottery ticket hypothe-
sis. We modify the original approach to allow for explicitly
removing parameters, through structured trimming of en-
tire units, instead of simply masking individual weights.
This leads to models which are effectively lighter in terms
of size, memory and number of operations.

We show that our proposal can remove up to 90% of
the model parameters without loss of accuracy, leading to
ultra-light deep MIR models. We confirm the surprising
result that, at smaller compression ratios (removing up to
85% of a network), lighter models consistently outperform
their heavier counterparts. We exhibit these results on a
large array of MIR tasks including audio classification,
pitch recognition, chord extraction, drum transcription and
onset estimation. The resulting ultra-light deep learning
models for MIR can run on CPU, and can even fit on em-
bedded devices with minimal degradation of accuracy. 1

1. INTRODUCTION

Over the past decades, Music Information Retrieval (MIR)
has witnessed a growing interest, with a wide variety of
tasks such as genre classification, chord extraction and mu-
sic recommendation [1] being increasingly implemented
in end-user products. Recently, MIR has predominantly
improved with machine learning, and almost all state-of-
art accuracies are obtained by deep learning models [2].
Although these approaches provide unprecedented results,
the major issue in modern deep learning lies in the tremen-
dous complexity and immense size of the models em-
ployed. Indeed, deep networks for images can reach up

1 Supplementary results and code to reproduce experiments are avail-
able at https://github.com/acids-ircam/lottery_mir
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Figure 1. Comparing (a) traditional pruning with (b) the
lottery ticket hypothesis, and (c) our structured lottery ap-
proach to obtain ultra-light deep networks.

to billions of parameters and new leaps in accuracy seem
to only come by worsening this situation. As a shower-
ing example of this complexity [3], the inference on a sin-
gle image in the pervasive ResNet model [4] requires 7.7
GFLOPS 2 . This exploding size leads to profound issues in
both the use and understanding of these models. As they
are extremely demanding in computation and memory, it
precludes their implementation in end-user embedded sys-
tems which prevails in audio applications, and also raises
some serious environmental issues. Finally, such complex-
ity decreases the potential interpretability of these models.

The idea of eliminating unnecessary weights (pruning)
was proposed early for neural networks [5]. Most meth-
ods are based on masking the smallest-amplitude weights
from a large network, as depicted in Figure 1. Other ap-
proaches such as quantization [6] or knowledge distilla-
tion [7] have been proposed to decrease the size and energy
consumption of trained models with equivalent accuracy.
However, keeping the original accuracy of complex large
models seems only possible at low compression rates [8].
Furthermore, recent benchmark studies [9] pointed out that
most of the proposed methods seems to achieve a similar
efficiency in both accuracy and model size.

Recently, the lottery ticket hypothesis [10] suggested
that randomly-initialized neural networks already contain
powerful subnetworks (called winning tickets) that could
reach the same or higher accuracy than the original net-
works if they were trained in isolation. Hence, by finding
these subnetworks, we could drastically prune most of the

2 FLOPS: floating point operations
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weights in large networks and still obtain the same level of
accuracy. This implies that the same task could be solved
in a very lightweight, memory and energy-efficient way.
Furthermore, these subnetworks could be easier to analyze,
which could simplify further works towards explainabil-
ity [11]. Several studies have analyzed different properties
of this hypothesis [12–14], as it raises the exciting prospect
to obtain much smaller networks that provide a similar ac-
curacy compared to the typically larger state-of-art models.
However, this method has two major flaws. First, it has
a large training cost, as finding winning tickets seems to
only be stable when the training is repeated multiple times
over iteratively smaller networks [15]. Second, pruning is
done by masking the weights, which means that the result-
ing networks retain the size and computation cost of the
original ones, even if most of the weights are unused.

In this paper, we extend the lottery approach to effec-
tively remove weights, obtaining models with a lower size
and inference time, while still maintaining a commensurate
accuracy. To do so, we introduce a method based on the
lottery ticket hypothesis, and we replace the masking oper-
ation with a structured pruning operation (termed trimming
here). The original network capacity is reduced by remov-
ing entire computation units (or convolutional channels).
This alleviates issues of the original lottery ticket method
as, although we still need to repeat the training, it becomes
faster at each iteration. We discuss different criteria for se-
lecting the units and their differences to the original lottery
ticket hypothesis. Notably, unstructured masking allows
to work on local connectivity patterns, whereas trimming
can only impact this aspect if we perform global selection
(ranking units across the network). We show that this ap-
proach can be successfully applied across MIR tasks, lead-
ing to ultra-light deep MIR models. We evaluate the ef-
ficiency of replacing the masking operation by our trim-
ming criterion and show that we still obtain commensurate
accuracy when removing up to 90% of the model parame-
ters. We also maintain the surprising result [10] that lighter
models (removing up to 85% of the network) obtain higher
accuracy, while we effectively reduce the model size. We
evaluate these results on a large array of MIR tasks includ-
ing instrument [16] and singing voice classification [17],
pitch recognition [18], automatic chord extraction [19],
drum transcription [20] and onset estimation [21].

2. STATE-OF-ART

2.1 Model compression and pruning

Various approaches have been proposed for reducing the
size of neural network models, while trying to maintain ac-
curacy [5]. These approaches can be globally divided be-
tween pruning or compressing networks. We group in the
compression category the distillation [7] (training a smaller
model to fit the internal representations of a larger one) and
quantization [6] (reducing the size of networks by using
lower-resolution weights or binary numbers) approaches.
Here, we focus on pruning, but note that compression and
quantization can be further applied on pruned models.

The goal of pruning [5] is to identify and remove
weights of a network that are not critical to its accuracy.
The original approach to pruning starts by fitting a large
and overparametrized network to completion. Then, we
aim to mask the less relevant weights in this trained model
based on a given selection method. This criterion tries
to analyze the usefulness of different parameters, com-
monly based on their magnitude [22]. Finally, the result-
ing masked network is fine-tuned, trying to restore the ac-
curacy of the original network [9]. Hence, the critical as-
pect in this approach lies in the method of weight selection.
This criterion can perform either a structured or unstruc-
tured and local or global selection. Unstructured prun-
ing acts on individual parameters separately, structured
pruning aims to effectively remove parts of the networks.
Hence, unstructured methods are mostly based on masking
the weights based on their magnitude [5, 22]. Oppositely,
structured pruning aims to remove entire hidden units or
convolutional channels from a network [8, 23].

However, recent studies showed that most pruning
methods are mostly equivalent [8]. These approaches usu-
ally lead to smaller accuracy than the large network and
at low pruning rates, with performance degrading with the
amount of weights removed [9], although some are able to
maintain (but not outperform) the original accuracy [8].

2.2 Lottery ticket hypothesis

The recently proposed lottery ticket hypothesis [10] states
that inside a randomly-initialized network, there already
exist some considerably smaller subnetworks which would
be extremely efficient if trained in isolation. Hence, parts
of the weights drawn by random initialization before train-
ing already provide a specific topology and parameter con-
figuration that make training particularly effective. The
major difference between this approach and the previous
magnitude-based selection from which it is inspired [22]
is that the selected weights are reset to their initialization
value before retraining the smaller architecture. Doing
so, very small subnetworks (less than 1% of the original
network size) could be found across several architectures,
even outperforming the larger networks at smaller pruning
ratios. For deeper architectures, they further showed [12]
that winning tickets should be rewound to a given iteration,
rather than to initialization values. Interestingly, this seems
to confirm that overparameterization is needed to find an
optimal solution, but that a lighter solution exists, which is
optimized in the compression phase of the training [13,24].

2.2.1 Formalization

We consider a network as a parametric function f(x;W ),
with a set of weights W ∈ RD that are first initialized
through sampling W0 ∼ p(W ). The weights are updated
by using a training algorithmA(i,W0) which maps initial
weights W0 to weights Wi at iteration i ∈ {1, .., T}, by
performing successive updates similar to

Wi+1 = Wi − η∇WL (1)

with a given loss function L and learning rate η.
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551



A subnetwork of the original network f(x;W ) can
be defined as a tuple (W ,M) of the original weights
W ∈ RD and a mask M : {0, 1}D. Hence, the subnet-
work computes the function f(x;M �W ), where � de-
notes the element-wise product.

Lottery Ticket Hypothesis. Given a randomly initial-
ized network f(x;W0) with W0 ∼ p(W ), that is trained
to reach accuracy a∗ in T ∗ iterations, with final weights
WT∗ , there exists a subnetwork (Wk,M) with a given
mask M ∈ {0, 1}|W | and iteration k � T ∗, such that if
we retrain this subnetwork, it will reach a commensurate
accuracy a ≥ a∗ in commensurate iterations T ≤ T ∗ − k
and fewer parameters ‖M‖0 � |W |.

These highly efficient subnetworks (called winning tick-
ets) depend on the original initialization, and can only
be identified after full training [12]. Thus, the selected
weights and remaining topology form the architecture of
the winning ticket. These weights are reset to their initial-
ization values before the network was trained or rewound
at an early iteration. The resulting architecture is then re-
trained until completion, and the whole process is repeated,
as described in Algorithm 1.

Algorithm 1 Lottery ticket training with rewinding
1: W0 ∼ p(W ) . Random initialization
2: M = 1|W | . Initial mask
3: Wk = A(k,W0 �M) . Training for k iterations
4: while C(M , a,W ) do . Stopping criterion C
5: WT = A(T,Wk �M) . Train until completion
6: r = R({WT∗}) . Ranking criterionR
7: M =M(r, {WT∗}) . Masking updateM

In their original paper [10], the authors underline the
difference between one-shot pruning (masking is applied
all at once) and iterative pruning (repeatedly pruning small
parts of the network). They demonstrated that iterative
pruning finds smaller architectures that reach higher ac-
curacy than the original network and converge at earlier
iterations. They showed on the MNIST dataset, that it was
possible to keep the accuracy of large networks, even when
masking up to 96.5% of the weights. Their most intriguing
result is that smaller networks consistently reach higher
accuracy than the original ones, even while removing up
to 80% of the weights. In a follow-up study [12], they
showed that these results could be obtained for deeper ar-
chitectures, but only through the rewinding operation. An-
other exciting prospect of this hypothesis, is that the result-
ing subnetworks might encode implicit inductive biases for
a given task or type of data. In that case, winning tickets
could be transferred and trained on new tasks, even di-
rectly from their extremely lightweight versions [14].

2.3 Music Information Retrieval

Music Information Retrieval (MIR) encompasses all tasks
aimed at extracting high-level knowledge from music data.
This field has witnessed a flourishing interest, with mul-
tiple tasks being increasingly tackled such as chord ex-
traction, drum transcription and musical audio classifica-

tion [1]. Originally, most MIR researches revolved around
the idea of extracting a set of hand-crafted features from
the signal (such as the Mel-Frequency Cepstral Coeffi-
cients), in order to use these as input to machine learn-
ing algorithms [25]. Feature-based techniques have been
challenged by the advent of deep learning approaches [26],
which have shown impressive capacities to learn high-level
features on complex data. They simultaneously set new
state-of-art results across a wide range of MIR tasks, while
opening the path towards unprecedented applications [27].

In this work, we consider a rather broad spectrum of
MIR tasks where deep learning approaches are applied.
Specifically, we address (i) audio classification [17] (find-
ing the class label of audio signals inside a predefined set),
(ii) pitch recognition [18] (extracting the fundamental fre-
quency of a monophonic audio recording), (iii) chord ex-
traction [19] (annotating audio with a given vocabulary of
chords), (iv) onset estimation [21] (finding events in an au-
dio stream) and (v) drum transcription [20] (transforming
drums audio signal into a score). We redirect interested
readers to [28] for a comprehensive review.

One of the common denominator in deep learning meth-
ods applied across all MIR tasks is that their unprecedented
accuracy comes at the expense of an increasing size and
complexity. Indeed, deep networks for images now reach
billions of parameters and leaps in accuracy seem to only
come by worsening this situation. An example of this
trend in MIR can be seen in the recently proposed CREPE
model [18] for pitch extraction. This task was largely han-
dled through the YIN algorithm [29], an extremely sim-
ple algorithm, with few parameters and running with very
low latency on CPU. For a modest gain in accuracy on the
same task, CREPE requires 22 million parameters, 2.82
GFLOPS and 2.36 seconds on CPU to compute the pitch
of a single 4-seconds sample. This exploding size leads
to profound issues in both the use and understanding of
these models. First, they are extremely demanding in en-
ergy consumption and memory, which precludes their im-
plementation in end-user interfaces and also raises serious
environmental issues. Furthermore, this complexity stands
in the way of any potential interpretability of such models.

3. METHODOLOGY

Here, we first discuss different selection criteria for struc-
tured network trimming. Then, we discuss different nor-
malization strategies that can allow to perform global se-
lection of units across layers.

3.1 Trimming criteria

In order to perform structured pruning, we need to evalu-
ate the efficiency of entire units of computation, rather than
individual weights. In the case of convolutional networks,
this would amount to analyze the channels of each layer.
Indeed, channel pruning appears more hardware friendly,
and also allows to truly reduce the size of the final model.
In the following definitions, we consider that any computa-
tion layer can be seen as a weighted transform f(x,W (l)),
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with a matrix W (l) ∈ Rnout×nin . Note that we intention-
ally simplify the notation for more complex layers (con-
volutional or recurrent), which embed more complicated
matrices. However, we consider in the following that the
selection criteria C(W (l)) is computed across the nin di-
mensions, and that it should produce a vector of nout di-
mensions. This vector is used to rank the usefulness of dif-
ferent computation units. Hence, after each training itera-
tion, we replace the masking criterion by directly removing
parts of the weight matrix for each layer

W (l) = W
(l)

[C(W (l)),C(W (l−1))]
. (2)

Note that we need to carry the pruning criterion from
the preceding layer C(W (l−1)) in order to reflect potential
changes in the structure of the network. All layers in the
network that must maintain a given output dimensionality
(such as the last layer) are defined as unprunable. Follow-
ing a similar approach than the lottery ticket hypothesis,
the remaining weights in the resulting matrix W l are re-
wound to their values from an earlier iteration [13].

Magnitude. We define a magnitude-based criterion,
similar to the original lottery [10]. However, we evaluate
the overall magnitude of the weights for a complete unit as

Cmag(W
(l)
i ) =

Nin∑
j=1

∣∣∣W (l)
i,j

∣∣∣ . (3)

Activation. We can rely on the activation statistics of
each unit to analyze their importance. Hence, akin to the
previous criterion, we perform a cumulative forward pass
through the network after training the model and compute

Cact(W (l)
i ) =

Dv∑
k=1

∣∣∣f(xk,W
(l))i

∣∣∣ (4)

where we sum across examples of the validation set Dv .
Normalization. An interesting direction proposed in

[15] is to consider the scaling factor γ in batch normaliza-
tion layers to evaluate the significance of each layer output.
In this criteria, we rely on this scaling coefficient as a proxy
to the importance of each unit

Cnorm(W
(l)
i ) =

∣∣∣γ(l)i

∣∣∣ . (5)

Note that this criterion forces each layer to be followed by
a normalization layer, from which it can be computed.

4. EXPERIMENTS

We briefly detail the tasks on which we evaluate our
method for ultra-light deep MIR. As we address a wide
variety of models and datasets, we only provide essential
explanations for each. However, unless stated, we follow
all implementation details presented in the original papers.

4.1 Tasks

4.1.1 Audio (instrument and voice) classification

Audio classification is one of the seminal and most studied
task in MIR [30]. We separate the evaluation into two in-

dependent sub-tasks of singing voice and instrument clas-
sification. For both tasks, the model is adapted from the
baseline proposed in [17]. The raw input waveform is pro-
cessed with a stack of 4 dilated 1-dimensional convolutions
with batch normalization, ReLU and dropout, followed by
4 fully-connected layers that map to a softmax, which out-
puts a vector of class probabilities. The ground-truth label
prediction is optimized with a cross-entropy loss. Singing
voice classification is performed on mono audio inputs of
3 seconds at 44,100Hz for 10 vocal techniques and a given
train/test split ratio [17]. For instrument classification, we
rely on the 13 orchestral instruments from URMP [31] and
the corresponding recordings from MedleyDB [32]. After
silence removal, the combined datasets amount to a total
of about 8h30 of isolated instrument recordings. Classifi-
cation is done on audio inputs of 1.5 seconds at 22,050Hz
extracted from the isolated tracks with a single label corre-
sponding to the instrument played.

4.1.2 Pitch estimation

The goal of pitch estimation is to extract the fundamental
frequency of an input audio. For this task, the recently pro-
posed CREPE model [18] requires several large datasets,
some of which are not publicly available. However, we
only rely here on the open source NSynth dataset, which
contains single note samples from a range of acoustic and
electronic instruments [33]. This leads to 1006 instru-
ments, with different pitches at various velocities avail-
able as raw waveforms. All samples last 4 seconds with
a sampling-rate of 16kHz. As this incurs an extremely
large training time, we use a subsampled dataset, randomly
picking 10060 samples (ten notes per instrument). Finally,
we trim all samples to their first two seconds to remove
silent note tails, ensuring that most inputs to the model
are voiced. CREPE is a 6-layer CNN operating directly
on waveforms, followed by a single fully connected layer.
The model is trained via binary cross-entropy to perform
classification over a 360 bin logarithmic frequency scale
spanning six octaves from pitch C1 to B7. The model op-
erates on frames of 1024 samples, which we individually
label with the note pitch. We use the medium architecture
from the CREPE repository [18].

4.1.3 Chord extraction

Automatic chord extraction is defined as labeling segments
of an audio signal using an alphabet of musical chords. We
perform our experiments based on the model and datasets
detailed in [19]. We use the Beatles dataset, which con-
tains 180 songs annotated by hand. We rely on a CQT
input with hop size 2048, mapped to a scale of 2 bins per
semi-tone over 5 octaves starting from C1 and containing
a total of 105 bins. As input we take 15 successive frames,
corresponding to a temporal horizon of approximately 0.7
seconds. We augment the available data by performing
all transpositions from -6 to +6 semi-tones. As baseline
model, we rely on the CNN architecture described in [19],
and evaluate the global accuracy measure.
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Figure 2. Comparing traditional fine-tuning, the lottery ticket masking, and our structured lottery trimming on each MIR
task separately for all criteria (left), and across tasks (right, up) and across criteria in trimming (right, down).

4.1.4 Drum transcription

The drum transcription task aims at labelling an input au-
dio with onsets of different drum sounds. We rely on an
architecture inspired from [21]. The network takes mel-
spectrogram inputs processed by 4 layers of 256 padded
2D convolutions of kernel size 5, with unit stride, followed
by batch normalization and ReLU. We apply max-pooling
at each layer along the frequency dimension. The resulting
vector is processed by two linear layers with batch normal-
ization and dropout. Finally, a specific output network of
3 linear layers for each drum sound produces onset proba-
bilities, trained on binary vectors for each drum activation.

To train the network, we use the approach proposed by
[34], using a subset of 5000 MIDI drum tracks that we map
to random drum sounds to generate waveform recordings.
We further rely on the SMT-Drums dataset [35], which
provides 104 supplementary polyphonic drum set record-
ings. For both datasets, we compute a mel-spectrogram of
64 bins, ranging from 20 to 11025 Hz, based on a FFT of
window size 2048 and hop size 512.

4.1.5 Onset estimation

Onset estimation [21] aims to detect events in a given au-
dio input. In order to evaluate this task, we rely on the
same network presented in the previous section for drum
transcription. However, for this task, the last part of the
network maps to a single detection subnetwork. We rely
on the same drums dataset, but merge all labels to detect
event onsets, rather than specific elements of the drumkit.

4.2 Training

All models are trained following their respective procedure
and hyperparameters. However, we use a common mini-
batch size of 64, the ADAM optimizer with a weight decay

penalty of 2e−4, and an initial learning rate of 1e−3, which
is halved every 10 non-decreasing epochs. We train the
models for a number of epochs that is fixed for each task
(following the original papers) and keep the model with the
best validation score. For the lottery training, we perform
masking or trimming of 30% of the weights at each prun-
ing iteration. We rewind the weights to their values at half
of the training epochs. We repeat this process 15 times,
leading to models with up to 99.5% of weights removed.
This whole lottery training is repeated 5 times, providing
the variance and impact of the initialization on the results.

5. RESULTS

5.1 Global evaluation

First, we provide a global evaluation across different tasks,
by plotting the respective evolution of the test error as we
iteratively remove weights either by classical fine-tuning,
using the original lottery with masking, or our proposed
trimming. We report for each task the best model (lowest
test error), smallest model (test error at most 1.5 times the
original one), and optimal model (error at most 1.1 times
the original). Results are displayed in Figure 2.

As we can see, classical fine-tuning is mostly unable
to find more efficient lighter networks and only works at
very low pruning rates. Oppositely, our trimming approach
is able to consistently find networks that are both much
smaller and more accurate than reference models. In this
regard, the best performances are obtained for onset de-
tection, where we find a network with only 14.9% of the
original weights (removing 85.1% of the weights), while
having an error rate of 0.129 (compared to 0.131 for the
original). These results hold for almost all tasks: most
networks where we trim up to 75% of the weights pro-
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duce lower errors, and we can remove up to 85% of the
weights with minor damage to the test error. Interest-
ingly, the results of chord extraction seems to produce the
smallest enhancement. This could be explained by the fact
that the model has the lowest original number of param-
eters. Hence, this underlines the crucial need to rely on
largely overparametrized models to find efficient subnet-
works. Regarding the smallest models, we are able to re-
move on average up to 95%, while having a reasonable test
error. When comparing our approach to the original lottery
masking, it seems that masking consistently produces bet-
ter performances at higher pruning rates, confirming the
original results [10] for MIR tasks. However, note that the
weights in the masking approach are not removed (how-
ever, a fraction of these weights could be removed in a
post-processing step). We hypothesize that this resilience
to larger pruning ratios stems from the fact that masking
is able to work on local connectivity patterns, whereas our
approach cannot.

5.2 Across-task comparison

5.2.1 Pruning approaches

The lottery ticket hypothesis crucially depends on initial-
ization values for training efficient subnetworks. To eval-
uate this property across different tasks, we perform the
normalized comparison shown in Figure 2 (right, up).

Here, we normalize the error of each task by dividing
it by the error of the reference large model, so that its test
error is 1. As we can see, using fine-tuning, the approach
is unable to obtain subnetworks with higher accuracy, and
the error quickly degrades as we remove more weights.
Furthermore, it appears that the results are rather unstable,
producing large variations in the final test error. Instead, by
rewinding the weights and trimming we consistently obtain
smaller subnetworks (up to 75% of the weights removed)
that outperform the original models. We are able to ap-
ply extensive trimming before the error starts to degrade,
globally around 90% across tasks. Hence, it appears that
efficient subnetworks can be found solely through the cor-
rect combination of connection topology and weights.

5.2.2 Selection criteria

The success of pruning methods depends on the criterion
selecting which weights should be kept or pruned. Hence,
we perform a normalized comparison of different criteria
for trimming, and display results in Figure 2 (right, down).

Although the global trend seems to be equivalent for
most criteria at low pruning ratios, their differences am-
plify as we remove an increasing amount of weights. Over-
all, it seems that the activation criterion provides the most
stable results. Furthermore, it allows to maintain lower er-
ror rates, even at higher pruning ratios. However, at lower
pruning ratios, it seems that the magnitude criterion pro-
duces slightly better and more stable results. Finally, the
batchnorm criterion seems to provide an interesting alter-
native at low pruning ratios. However, its performance de-
grades faster than other criteria at very high pruning rates.

task mod. error param size FLOPS mem

inst. ref 0.092 797 K 10 M 572 M 190 M
trim 0.117 93.4 K 2.3 M 38.3 M 41.9 M

sing. ref 0.031 1.4 M 19 M 663 M 194 M
trim 0.038 144 K 2.7 M 94.4 M 53.2 M

pitch ref 0.242 5.9 M 49 M 2.8 G 256 M
trim 0.262 224 K 1.0 M 2.8 M 9.6 M

chord ref 0.232 416 K 1.4 M 27.2 M 22.1 M
trim 0.251 91.9 K 0.2 M 1.72 M 589 K

drum ref 0.136 8.1 M 22 M 3.54 G 667 M
trim 0.144 1.0 M 3.7 M 87.5 M 10.2 M

onset ref 0.131 4.7 M 21 M 2.66 G 532 M
trim 0.132 522 K 3.7 M 87.1 M 8.2 M

Table 1. Comparison between reference models and our
trimmed models on test error, number of parameters, disk
size, inference FLOPS and memory used across tasks.

5.3 Resulting model properties

We provide a detailed analysis of the gains provided by our
trimming lottery for each task. We compare the reference
model to the optimal one (smallest model within 1.1 times
the original test error) found by trimming. We evaluate
their test error, number of parameters, disk size, FLOPS
(required to infer from a single input example) and mem-
ory used for different MIR tasks, as detailed in Table 1. As
discussed previously, we are able to obtain models main-
taining the error rates, while having only a small portion
of the capacity of the very large models. This can be wit-
nessed in the final properties of the trimmed models. A
very interesting observation is that this decrease in param-
eters amounts to an even larger decrease in the memory and
computation power required. Indeed, while most trimmed
models are 10 times smaller than original large models,
they use 20 to 50 times less computation power and mem-
ory requirements. This can be explained by the fact that
most operations are processed across the dimensions of the
previous layer. Hence, even small gains in number of pa-
rameters can lead to dramatic gains in computation.

6. CONCLUSION

In this paper, we presented a method to obtain ultra-light
deep models for MIR, by extending the lottery ticket hy-
pothesis to effectively trim the networks. We have shown
that these efficient trimmed subnetworks, removing up to
85% of the weights in deep models, could be found across
several MIR tasks. We have also shown that extremely
small networks could be found by relying on masking, but
these do not provide actual enhancement in terms of com-
putation or memory requirements. Oppositely, we have
shown that given the non-linear relationship between the
number of parameters and computation required, we could
find extremely light networks through trimming. These re-
sults encourage the crucial implementation of MIR models
in embedded audio platforms, which would allow broader
end-user applications. The major downside of this ap-
proach is its training time, which we partly address by
decreasing the cost of each pruning iteration. However,
the intriguing prospect of ticket transfer [14] could provide
such initializations right at the onset of training.
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ABSTRACT

The digitization of the content within musical manuscripts
allows the possibility of preserving, disseminating, and ex-
ploiting that cultural heritage. The automation of this pro-
cess has been object of study for a long time in the field
of Optical Music Recognition (OMR), with a wide vari-
ety of proposed solutions. Currently, there is a tendency to
use machine learning strategies based on neural networks
because of their high performance and flexibility to adapt
to different scenarios by changing only the training data.
However, most of the recent literature addresses only spe-
cific parts of the traditional OMR workflow such as mu-
sic object detection or symbol classification. In this pa-
per, we progress one step further by proposing a full-page
OMR system for Mensural notation scores that consists
of simply two processes, which are enough to extract the
symbolic music information from a full page. More pre-
cisely, our pipeline uses Selectional Auto-Encoders to ex-
tract single staff regions, combined with end-to-end staff-
level recognition based on Convolutional Recurrent Neu-
ral Networks for retrieving the music notation. The results
confirm the adequacy of our method, reporting a success-
ful behavior on two Mensural collections (CAPITAN and
SEILS datasets) with a straightforward implementation.

1. INTRODUCTION

The digitization of the content within documents [1] is a
process that helps to preserve cultural heritage and enables
easier dissemination and knowledge creation. Tradition-
ally, this content digitization is done manually, with an
undeniably high cost that is very prone to introduce mis-
takes as well. In the music context, the development of
Optical Music Recognition (OMR) systems promises to
perform this task automatically with minimum human in-
volvement. Research efforts have promoted the progress
in this field achieving excellent, yet partial results [2–4];
therefore, full digitization of music documents is still to be
studied in practical contexts.

c© F.J. Castellanos, J. Calvo-Zaragoza and J.M. Iñesta. Li-
censed under a Creative Commons Attribution 4.0 International License
(CC BY 4.0). Attribution: F.J. Castellanos, J. Calvo-Zaragoza and J.M.
Iñesta, “A Neural Approach for Full-Page Optical Music Recognition of
Mensural Documents”, in Proc. of the 21st Int. Society for Music Infor-
mation Retrieval Conf., Montréal, Canada, 2020.

Recent advances in machine learning enable new ap-
proaches in the OMR field [5]. The use of deep neural net-
works provides novel ways of avoiding complex multi-step
workflows that are considered in legacy OMR research [6].
A successful example of this new trend is the so-called
end-to-end approach, that operates at the staff level; in
other words, a single step that completely processes the
image of a single staff and retrieves the series of symbols
that appear therein [7].

While end-to-end strategies can be used to read a se-
quence of symbols at the staff level, it is still necessary to
previously detect all the staves contained in the documents
as region blocks, for then transcribing the music content.
This staff detection task has been addressed in recent lit-
erature [8, 9]. However, these works only assess staff de-
tection as a computer vision problem—i.e., how accurate
is, in geometric terms, the region extracted, without con-
sidering how useful it is for the subsequent steps. These
partial results are not sufficient to determine with certainty
the goodness of the approaches within a complete OMR
pipeline.

In this work, we carry out a study to determine how the
recent advances in OMR interact with each other. Also, we
eventually offer, for the first time, results that validate that
only two steps—the staff-region detection combined with
an end-to-end method—are sufficient to develop a com-
plete page-level OMR system with excellent recognition
rates through neural networks.

As we will explain later, this approach is successful
if the graphical complexity of the scores follows certain
criteria: single-staff systems with a single voice in each.
That is why our experiments are restricted to Mensural
manuscripts, of great historical interest, where these re-
quirements are common.

2. BACKGROUND

Although the term OMR covers a wide range of
scenarios—different research might be carried out accord-
ing to the notational type or the engraving mechanism of
the manuscripts—there has been a general pipeline that
addresses the challenge through a series of independent
stages that work on different parts of the problem [5].

Traditionally, individual challenges were very com-
plex, so procedures were developed to work on specific
manuscripts [10–13]. However, the systems ended up be-
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Figure 1: Scheme of the considered methodology.

ing very specific, so previous efforts were hardly reused. In
other words, there was little scientific progress in the field.

Recently, the early stages of the process have been re-
formulated as object detection tasks [14], thus bypassing
some of the stages of the traditional workflow. Pacha et al.
[15] provided a baseline for direct music-object detection
in music score images, experimenting with several models
and corpora of different typology.

At the same time, there have been approaches for end-
to-end OMR. Such models perform the complete recog-
nition of musical notation from an image, directly pro-
viding the sequence of music symbols present therein as
output. In addition to high performance, this prevents the
need for the training set to be annotated at the symbol-
level position and post-process strategies that convert the
individually detected elements to the actual music nota-
tion. Concerning this formulation, Pugin [16] pioneered
the end-to-end approach for printed Mensural notation us-
ing Hidden Markov Models (HMM) with the Aruspix sys-
tem. However, although HMMs represent models that fit
perfectly well with the task at issue, other tasks of a sim-
ilar nature, like handwritten text recognition, experienced
a leap in performance using deep neural networks [17]. It
has been demonstrated that neural approaches outperform
those based on HMM for end-to-end OMR as well [7].

To date, however, there is no existing end-to-end ap-
proach that works at the full-page level, but only at the
single-staff level. It is not only a challenge to be solved
in the field of OMR but also in text recognition—a task
that we could consider even simpler. In text recognition,
the end-to-end approaches face the recognition process at
the line level [18]. For this, there exist line extraction algo-
rithms [19], which enable working at the page level in com-
bination with the line-level end-to-end neural networks. In
the case of music, a similar idea is to use staff extraction
algorithms combined with the end-to-end staff-level recog-
nition.

Recently, several methods have been proposed to solve
the staff detection task [8, 9, 20]. The problem with these
works is that they only studied the extraction of staves as a
computer vision challenge. Similarly, the end-to-end staff-
level neural networks for OMR only experimented with
staves detected manually. Therefore, it is not known how
well the combination of staff retrieval with staff-level end-
to-end neural networks performs in real scenarios.

For all the above, this paper fills a gap in the existing
literature and presents, for the first time, a neural full-page

OMR system that takes advantage of recent advances in
deep learning to solve the task in just two steps: staff re-
trieval and end-to-end staff-level recognition. As we will
see later, this allows us to provide a general approach that
works successfully in different manuscripts by simply pro-
viding training data.

3. METHODOLOGY

The proposed methodology outlines an approach by which
to evaluate a full page-level OMR system using only two
procedures: staff retrieval and end-to-end staff-level recog-
nition. Both of them are solved in a single step each by
using deep neural networks. A graphical overview of the
complete methodology is shown in Figure 1.

One of the main advantages of our methodology is that
it is completely based on machine learning: it is enough
to provide annotated examples (of each task) to build new
and accurate models—which is usually easier and cheaper
than developing a pipeline anew.

Although this approach might not work for arbitrary
types of music scores—e.g., recognizing each staff sep-
arately does not make that sense for scores that include
multi-staff systems—we believe it is worth studying and
providing simple, generalizable, and effective solutions in
those cases where the structural complexity of the scores
makes it possible. Furthermore, our approach is not nec-
essarily restricted to the case of monophony but can be
applied in the case where only one voice appears on
each staff. In our case study, whose details are avail-
able in Section 5, we will apply our methodology to vocal
polyphony scores in Mensural notation—where different
voices appear independently.

3.1 Staff retrieval

The first step in the considered methodology needs to de-
tect and extract the individual staves. With the premise that
all individual staves are compact blocks within the image,
we can apply a layout analysis to estimate the probabil-
ity of each pixel to belong to one of the staves. Previous
work [21] presented a Selectional Auto-Encoder (SAE)-
based framework focused on performing layout analysis by
patches to split the image into different information layers:
staff lines, symbols, lyrics and background. Here, we adapt
that method to directly detect staff regions. Since the staff
blocks are extensive and compact, a patch-wise model may
introduce additional errors in their detection. For avoiding
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that, we propose to adjust the original image to the input
size requirements of the model, being this new resolution
enough to discern the different staves.

Let I = [0, 255]H×W be a grayscale image 1 with
height H and width W in terms of pixels. The SAE model
processes I to return another image S = [0, 1]H×W such
that Si,j ≡ P (Ii,j = ‘staff’)—i.e., S stands for an im-
age with the same size of I, and whose values represent
the probability of each pixel of belonging to any staff re-
gion. Note that the SAE model is trained through super-
vised learning mechanisms, hence a set of documents an-
notated with the location of each staff is required.

After obtaining S, a threshold τ ∈ [0, 1] is applied
to obtain a binary map B = {0, 1}H×W . Then, the
staff regions can be retrieved by performing a connected-
component analysis over the map B. Afterwards, we com-
pute the rectangular coordinates of each component for re-
trieving the bounding boxes. An example of this process
can be found in Figure 2.

(a) Probabilistic map. (b) After the thresholding.

(c) Obtaining bounding boxes.

Figure 2: Example of staff-region prediction, with the
probabilistic map obtained by the SAE model, the result of
applying a threshold to determinate the areas most likely
being staves, and finally the bounding box retrieval.

A drawback to this approach is that it requires that the
different staves do not overlap with each other, as shown in
Figure 3, as that would prevent distinguishing them once
B has been computed. To reduce this possibility, we pro-
pose to apply a vertical reduction factor δ, with which the
bounding boxes in the ground truth will be trimmed ver-
tically, largely avoiding the overlapping in the annotated
documents. Note that, since clipping is necessary to make
the subsequent prediction easier, the bounding boxes ob-
tained by the SAE model should be expanded by the same
factor after being retrieved. In this way, ideally, the de-
tected bounding boxes will cover the staves completely.

3.2 End-to-end staff-level recognition

Once individual staves are extracted, the symbol recog-
nition at this level can be performed by an end-to-end
methodology based on deep neural networks. Within the
many options for this, we consider the approach initially

1 This is with no loss of generality, as the approach can be easily ex-
tended to deal with color images as well.

(a) Original page. (b) With δ = 20%.

Figure 3: Example of ground truth with overlapping that
can be solved by means of applying a reduction factor (δ =
20%, i.e. 20% top and bottom trims).

proposed by Shi et al. [17], given that it outperformed com-
peting methods for OMR [7].

Given an image x, corresponding to a single-staff re-
gion, we want to retrieve the most probable sequence from
a fixed alphabet Σ of music symbols. x can be interpreted
as a sequence of frames (single image columns), so the
aforementioned problem can be solved by using a recurrent
neural network [22]. These networks can provide a prob-
ability per frame P (σ | xi), 1 ≤ i ≤ |x|, σ ∈ Σ ∪ {ε},
where ε is a special token required to separate consecutive
predictions of the same symbol [23].

This stochastic representation of x can be decoded into
an actual sequence of music symbols by first retrieving the
most probable sequence of symbols per frame

σi = arg max
σ∈Σ∪{ε}

P (σ | xi)

and then following a greedy approach which merges con-
secutive frames with the same symbol and removes the
frames whose predicted symbol is ε [7].

In our case, we add a convolutional neural network
on top of the recurrent neural network to automatically
learn features that are appropriate for the specific music
manuscript at issue [24].

The joint Convolutional Recurrent Neural Network
(CRNN) can be trained in an end-to-end fashion by using
the so-called Connectionist Temporal Classification (CTC)
loss function [23]. Given a ground-truth sample consisting
of a single-staff region x and its corresponding sequence
of music symbols σ, CTC is used to modify the network’s
weights to maximize the probability of retrieving σ from x
without the need of providing a framewise localization of
the symbols.

4. EXPERIMENTAL SETUP

4.1 Parameterization of the Neural Networks

In this section, we present the setup of the neural models
for both staff retrieval and staff-level symbol recognition.
For the first one, we considered the use of SAE due to its
high performance and efficiency in the document analysis

Proceedings of the 21st ISMIR Conference, Montréal, Canada, October 11-16, 2020
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Input Encoding Decoding Output
Conv2D(128, 5× 5, ‘ReLU’) Conv2D(128, 5× 5, ‘ReLU’)
MaxPool(2× 2) UpSamp(2× 2)

[0, 255]512×512 Conv2D(128, 5× 5, ‘ReLU’) Conv2D(128, 5× 5, ‘ReLU’) [0, 1]512×512

MaxPool(2× 2) UpSamp(2× 2)
Conv2D(128, 5× 5, ‘ReLU’) Conv2D(128, 5× 5, ‘ReLU’)
MaxPool(2× 2) UpSamp(2× 2)

Conv2D(1, 5× 5, ‘sigmoid’)

Table 1: Detailed description of the selected SAE architecture, implemented as a Fully-Convolutional Network (FCN).
‘ReLU’ and ‘sigmoid’ denote the Rectifier Linear Unit and Sigmoid activations, respectively.

task [21]. As of the second process, the symbolic music
sequence is obtained by means of a CRNN.

The following notation will be used for the specifi-
cations given below: Conv2D(n, h × w, ‘act’) indicates
a two-dimensional convolution operator of n filters and
kernel size of h × w with ‘act’ denoting the actual ac-
tivation function; MaxPool(h × w) represents a down-
sampling max-pooling operation with a h × w window;
UpSamp(h × w) denotes an up-sampling operator of h
rows andw columns; BLSTM(n) stands for a bidirectional
Long Short-Term Memory unit of n neurons; Dropout(p)
represents a dropout operation with a ratio of p neurons;
Dense(n, ‘act’) indicates a dense layer of n neurons with
‘act’ denoting the actual activation function.

4.1.1 Selectional Auto-Encoder

The SAE configuration used in this work is set according
to previous works for layout analysis, whose details are
given in Table 1. In the staff analysis, the model does not
need to predict small details since staves are extensive and
compact within the document. For this, we can rescale
the original image to the size of the input model, being of
enough resolution to differentiate the staves of the ground
truth. After some informal testing, we configured the input
as an image of 512 × 512 px. The image rescaling was
performed through the OpenCV library.

In addition, as discussed in Section 3.1, a vertical re-
duction factor δ and a threshold τ to determine the pixels
belonging to a staff are necessary. We set δ = 20%, so
the ground-truth staves are top and bottom trimmed by that
factor, and τ = 0.5 to indicate that a probability higher
or equal to 50% is assumed to represent a pixel from a
staff. In our preliminary experiment experiments, δ played
an important role for avoiding overlapping, whereas the
model was quite robust against different values of τ .

4.1.2 Convolutional Recurrent Neural Network

The CRNN follows the best architecture from the work
by Calvo-Zaragoza et al. [7]. It consists of four convolu-
tional layers and max-pooling down-sampling, connected
with a recurrent block of two Bidirectional Long Short-
Term Memory (LSTM) layers. The specifications of the
model are given in Table 2.

Input: [0, 255]64×W

Conv2D(64, 5×5,‘ReLU’), MaxPool(2× 2)
Conv2D(64, 5×5,‘ReLU’), MaxPool(2× 2)

Conv2D(128, 3×3,‘ReLU’), MaxPool(2× 1)
Conv2D(128, 3×3,‘ReLU’), MaxPool(2× 1)

BLSTM(256), Dropout(0.5)
BLSTM(256), Dropout(0.5)
Dense(|Σ ∪ {ε}|, ‘softmax’)

Table 2: Architecture of the CRNN considered for staff-
level recognition. ‘softmax’ indicates the Softmax activa-
tion, that normalized the output to a probability over the set
of symbols (plus the ‘blank’ symbol denoted by ε). Given
that the images are of variable width, this dimension of the
input is not specified (indicated asW).

4.2 Corpora

To evaluate our method, we consider the following corpora
of Mensural manuscripts:

• The CAPITAN dataset, which encodes a complete
Missa composed during the second half of the 17th
century. Annotations are specifically provided for
OMR [25].

• The Symbolically Encoded Il Laurro Secco (SEILS)
dataset, which consists of scores from the 16th-
century anthology of Italian madrigals Il Lauro
Secco. Among many formats, the dataset includes
the required format to perform OMR [26].

CAPITAN SEILS

Engraving Handwritten Printed
Pages 97 150
Staves 737 1 278
Running symbols 17 112 31 589
Symbol categories 53 33

Table 3: Corpora statistics.

Page samples from these corpora can be seen in
Figure 4. As observed, CAPITAN is handwritten and SEILS

is printed. This heterogeneity benefits the verification that
the proposed methodology is generalizable to a variety of
manuscript types. In addition, some descriptive statistics
about the corpora are provided in Table 3.
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(a) CAPITAN

(b) SEILS

Figure 4: An example page image from of each dataset
considered in the experimentation.

4.3 Evaluation protocol

As of the experimentation, the results have been computed
using a 5-fold cross-validation technique (5-CV), each of
which takes three data partitions—training, validation and
testing—with 60%, 20% and 20% of the whole set of doc-
uments, respectively. The training process was performed
during 100 epochs, monitoring with the validation partition
and reporting the results on the test partition. The exper-
iments have been performed using the Keras v.2.3.1 [27]
library with TensorFlow v.1.14 as backend.

In the literature, the experiments are commonly evalu-
ated partially, focusing only on individual processes, re-
gardless of the impact they may have on the transcription
into a digital format, which is precisely the ultimate pur-
pose of the OMR field. The main goal of this paper is
to evaluate a full-page OMR system combining a staff-
retrieval method based on SAE and an end-to-end staff-
level recognition. Therefore, we will be able to analyze
the effect of staff retrieval in the symbol recognition step.

Nevertheless, experiments have been divided into two
parts: an assessment of the staff bounding-box recognition,
in which we will present the computation of the average of
Intersection over Union (IoU), which provides a measure
of the overlapping between the set of retrieved staves and
the ground-truth ones (the higher, the better). With regard
to the second step of the proposal, the objective is to check
the recognition of the sequence of symbols within each
staff obtained in the first step. In practical OMR systems, a
critical factor to be considered is the number of corrections
the user has to perform. Hence, we decided to report the
final results in terms of Symbol Error Rate (SER), which is
computed as the ratio of editing operations needed to cor-
rect the transcription of the symbol sequence (the lower,
the better).

5. RESULTS

Concerning the staff retrieval itself, this step detected all of
the 737 staves that CAPITAN contains (considering all the
test partitions within the 5-CV) but also retrieved an addi-
tional box that did not correspond to a staff. Similarly, the
model for SEILS retrieved correctly all the 1 278 staves,
while 152 regions were detected where there were none.
Therefore, whereas all real staves are retrieved, the process
also yields some false positives, that are supposed to be
easily removed in an interactive environment. As a refer-
ence in geometric terms, the model for CAPITAN obtained
86.3% of IoU, while SEILS achieved 79.7%. This indicates
that the retrieved boxes generally fit well the ground-truth
location of the staves. We will see below that this is ac-
curate enough for the task of retrieving the inner symbol
sequences.

To complement these numerical results, Figure 5 con-
tains an example of a comparison between a ground-truth
staff with the predicted one. Note that, although the
IoU obtained in that example is 80.5%, the retrieved staff
properly covers the music information. As evidenced in
Figure 6, most of the predicted bounding boxes have an
IoU between 70% and 95%.

Figure 5: Example of a retrieved staff from SEILS, colored
in yellow, compared with the ground-truth box, colored in
blue. For this example, the IoU reaches 80.5%.
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Figure 6: Average histogram of staves predicted by the
SAE model and ordered by IoU (with a granularity of 5%).

We now proceed to present the results of the sym-
bol recognition step. To fully evaluate the two-step pro-
posed method, we should first take into account two main
points: first, the staff retrieval SAE can only be trained
with ground-truth data, since it constitutes the earlier step
in the approach; and second, the end-to-end model would
be ideally trained with the bounding boxes predicted in the
last step—closer to the real scenario—but it is also pos-
sible to directly use the ground-truth staves. While in all
cases the sequence of music symbols to be predicted is the
same, we can compare the results with different configura-
tions of the input images provided for training the CRNN:
ground-truth staff regions (GT); staff regions predicted by
the SAE, once trained (Pred.); both ground-truth staff re-
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gions and staff regions predicted by the SAE, once trained
(GT+Pred.).

Likewise, for the test partition, a real case only con-
templates evaluating with the automatically detected staves
(real scenario); however, we have also evaluated on
ground-truth staves to provide a reference of the loss
caused by the automatic staff retrieval.

We report in Table 4 the results of the end-to-end staff-
level recognition of symbols, which has been tested with
both CAPITAN and SEILS datasets, and each one in turn
evaluated with the cases mentioned above.

Data CAPITAN SEILSTraining staves Test staves
Real scenario

GT Pred. 16.8± 3.7 5.2± 1.4
Pred. Pred. 14.8± 3.6 4.4± 0.5
GT+Pred. Pred. 11.5 ± 2.2 3.7 ± 0.8

Reference
GT GT 13.2± 1.1 4.4± 1.2
GT+Pred. GT 10.8 ± 1.1 3.6 ± 0.9

Table 4: Average ± std. deviation results in terms of SER
(%) of a 5-CV experiment for the staff-level end-to-end
recognition with different combinations of training and test
data during the staff retrieval stage. GT stands for ground-
truth staves, while Pred. represents the predicted ones.

First, we focus on the results obtained in the real sce-
nario, i.e. those in which the test staves have been pro-
vided by the staff-retrieval step. It can be observed that
training with GT achieves successful outcomes, being the
SER metric 16.8% and 5.2% for CAPITAN and SEILS, re-
spectively. Results are improved if the training data con-
tains predicted staves instead of GT, with figures that reach
14.8% for CAPITAN and 4.4% for SEILS. The reason be-
hind this phenomenon may come from what is seen in
Figure 5: the staff is correctly detected but the box is ac-
tually different from the ground-truth one. Therefore, if
this difference is also introduced during training, the model
is better prepared for what occurs in the real case. De-
spite this, the experiments reveal that the robustness of the
end-to-end model is optimized if a combination of GT and
Pred. is performed in the training process, allowing to re-
duce the symbol error rate until 11.5% and 3.7% for CAP-
ITAN and SEILS datasets, respectively. This combination
in the training data seems similar to the typical machine
learning strategy called data augmentation [28, 29], given
that the Pred. boxes depict variations with respect to the
GT ones.

If we analyze the reference results, i.e., those obtained
by the end-to-end step tested with GT boxes, we observe
that the end-to-end model outperforms the real case, as
both training and test data are part of the annotated bound-
ing boxes by the user. Similarly, the data augmentation
strategy allows to even improve the results. When compar-
ing to the real scenario, the reference case reports slightly
better results, with negligible differences (from 11.5% to
10.8% for CAPITAN and from 3.7% to 3.6% for SEILS, at
best).

What is important about the figures above is that they
demonstrate that introducing an automatic staff detection
step barely affects the overall performance of the system—
according to the best values obtained with predictions
compared to the best values obtained with ground-truth
boxes. Therefore, we can validate our methodology as
suitable to deal with the complete recognition of Mensu-
ral manuscripts or even any type of musical document that
depicts a comparable structure.

Finally, although this is not of special relevance within
the scope of this paper, we see that the machine learning
models find it easier to deal with printed manuscripts, as
the error figures from SEILS are clearly below those from
the CAPITAN one. Probably, the regularity of the printed
symbols makes the task easier than in the handwritten case.

6. CONCLUSIONS

OMR is an interesting field of study, but most of its re-
search focus on individual steps that avoid evaluating the
impact within the full system. In this paper, a full-page
OMR system with neural networks has been presented. It
is based on the combination of staff-retrieval and symbol
sequence recognition steps.

The first step—staff retrieval—has been implemented
as a SAE model based on a successful architecture used
in previous work for layout analysis. This neural network
predicts staff regions as compact blocks, processing the
whole image in only one step, and then bounding boxes of
predicted staves are extracted. The second step—end-to-
end staff-level recognition—transcribes the content of the
predicted staves into a digital format, which is the main
goal of OMR.

The paper includes a study of the impact of the first step
in the final performance in the digitization for two Men-
sural manuscripts. The methodology has been assessed
in terms of SER, which determines the number of correc-
tions that a user should make to have the correct sequence
transcribed. The results reveal that ground-truth staves are
not the best option for training the end-to-end model in
a real case, in which the transcription will be performed
from predicted staves. The assessment of the model trained
with predicted staves shows performances as good as in the
ideal case, in which the training and the test datasets con-
sist of ground truth regions. This means that the precision
in staff retrieval is not the most important issue in the sym-
bol recognition task. Furthermore, we observed that train-
ing the end-to-end symbol recognizer with a combination
of predicted and ground-truth staves provides the best re-
sults for both, real and ideal situations, with non-significant
differences between them. Therefore, between a fully au-
tomatic OMR system and other where the bounding boxes
are annotated by the user, the performance hardly varies.
We can then conclude that our approach allows transcrib-
ing reliably the music content with minimum human effort.

In future works, we plan to keep on researching
simple and generalizable strategies for more complex
manuscripts, such as those corresponding to polyphonic
scores in Western modern notation.
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ABSTRACT

The human response to music combines low-level expecta-
tions that are driven by the perceptual characteristics of au-
dio with high-level expectations from the context and the
listener’s expertise. This paper discusses surprisal based
music representation learning with a hierarchical predic-
tive neural network. In order to inspect the cognitive va-
lidity of the network’s predictions along their time-scales,
we use the network’s prediction error to segment electroen-
cephalograms (EEG) based on the audio signal. For this,
we investigate the unsupervised segmentation of audio and
EEG into events using the NMED-T dataset on passive nat-
ural music listening. The conducted exploratory analysis
of EEG at locations connected to peaks in prediction error
in the network allowed to visualize auditory evoked poten-
tials connected to local and global musical structures. This
indicates the potential of unsupervised predictive learning
with deep neural networks as means to retrieve musical
structure from audio and as a basis to uncover the corre-
sponding cognitive processes in the human brain.

1. INTRODUCTION

Studying the human perception of music has received in-
creased interest in Music Information Retrieval (MIR). As
humans solve tasks such as beat tracking, genre identifica-
tion or musical prediction with ease, many MIR methods
rely on computational models inspired by human percep-
tion. At the same time, studying the brain’s response to
auditory stimuli is still limited by the lack of resources that
map complex musical stimuli to neural processes. Studies
in cognitive neuroscience and brain computer interfacing
(BCI) on auditory evoked brain states require labor inten-
sive manual preparation and often focus on isolating partic-
ular brain responses using sparse stimuli presented individ-
ually [1,2]. While datasets on brain states evoked by natu-
ral music exist, they often lack fine-grained annotations of
the event structure and corresponding neural activity [3–5].

c© A. Ofner and S. Stober. Licensed under a Creative Com-
mons Attribution 4.0 International License (CC BY 4.0). Attribution:
A. Ofner and S. Stober, “Modeling perception with hierarchical predic-
tion: Auditory segmentation with deep predictive coding locates candi-
date evoked potentials in EEG”, in Proc. of the 21st Int. Society for
Music Information Retrieval Conf., Montréal, Canada, 2020.

This entails a demand for efficient and unsupervised map-
ping techniques between natural music and evoked brain
states. Furthermore, there is a need for biologically plausi-
ble and multi-modal models for such mapping, as induced
brain states are a mixture of stimulus-derived and subjec-
tive, cognitive or contextual factors.

We address these challenges with predictive coding, one
of the most dominant theoretical frameworks of human
perception [6, 7]. Predictive coding offers a comprehen-
sive description of how humans parse and predict sounds
and map auditory stimuli to musically meaningful and hi-
erarchically organized units [8]. In predictive coding, the
neural response to music is shaped by hierarchically orga-
nized expectations [7]. This hierarchy of expectations con-
nects predictions about low-level auditory features to more
global context, such as the listener’s musical expertise or
levels of entrainment during listening [8]. The underlying
dependencies between expectancy and uncertainty in pre-
dictive coding are particularly interesting in the context of
music perception, as music perception can be described as
continuously resolving uncertainty and forming new ex-
pectations [9–11]. This is in line with evidence on the
predictive nature of human music perception, especially
within studies on unexpected stimulus deviations and the
influence of the listener’s expectancy on attention and per-
ceptual precision [9, 11].

Predictive coding offers an efficient algorithmic motif
that allows unsupervised learning. Learning in predic-
tive coding systems can be seen as a hierarchy of pre-
dictive modules that form predictions over various tem-
poral scales. These predictions can either be about future
states in the stimulus domain or about the future of inter-
nal states of the systems and are often cast in the context
of Bayesian (i.e. probabilistic) inference [12]. In this hier-
archical generative model of perception, long-term expec-
tations from temporally stable aspects of music, such as
genre or tempo form top-down predictions about the activ-
ity of layers closer to the actual auditory information [8].
By propagating the deviations between predictions and ob-
servations, the generative model and with that the model of
the processed stimulus is updated [7].

Here, we connect predictive coding as a algorithmic
motif for unsupervised stimulus representation with deep
neural networks and recurrent variational inference in or-
der to segment natural music into units that are musically
meaningful. Following the assumption that hierarchical
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predictive coding of music explains a substantial amount of
evoked brain states, we analyse the retrieved musical struc-
ture in terms of the induced neural activity in electroen-
cephalographic signal (EEG). Using the Naturalistic Mu-
sic EEG Dataset—Tempo (NMED-T) of passive listening
to natural music we the demonstrate that the approach al-
lows to locate and visualize event related potentials (ERPs)
on local and global scale [3].

2. RELATED WORK

Within the field of MIR, the capacity of predictive cod-
ing algorithms to compress and represent auditory infor-
mation on the sensory level has been exploited for vari-
ous tasks such as speech re-synthesis or audio compression
since many years [13,14]. The human brain, however, aug-
ments such low-level sensory representations with a hierar-
chy of more abstract, semantic predictions from other brain
areas [7]. This aspect of hierarchical predictive learning
has found traction in the domain of deep neural networks
(DNNs), but so far has been applied mostly to images and
video processing [15, 16]. Furthermore, most popular im-
plementations of deep predictive coding often only rely on
non-linear transformation of the sensory error and not yet
abstract away from pure sensory prediction. Autoregres-
sive modeling of audio has seen tremendous progress in
recent years, with a plethora of models performing tasks
such as sample level audio prediction or speech synthe-
sis, often with impressive results [17–19]. However, such
autoregressive models are computationally expensive and
sample-level models still tend to struggle with incorporat-
ing more abstract and long-term musical features.

2.1 Auditory evoked potentials and musical structure

Recent years have shown a variety of approaches to study-
ing the human brain’s response to auditory stimuli, espe-
cially with functional magnetic resonance imaging (fMRI)
and electroencephalography (EEG). EEG is especially ad-
equate in the context of music due to its higher tempo-
ral resolution. A multitude of auditory features, such as
loudness, frequency, tempo and rhythm have been traced
in EEG recordings of brain activity during music per-
ception [20–23]. Next to these stimulus-derived aspects,
recorded brain activity has further been analysed with re-
spect to more contextual aspects of music perception, such
as the listener’s attention, which is modulated by aspects
such as expertise or engagement [24]. Two extensively
researched aspects of the neural response underlying per-
ception potentials are event-related potentials (ERPs) and
steady-state evoked potentials (SSEPs) [25, 26]. ERPs and
SSEPs differ mainly in their temporal scope: While ERPs
are aligned to a single loation (typically the onset of a par-
ticular event), SSEPs show frequency alignment to stimu-
lus periodicity over longer time frames [27]. For ERPs, the
brain response aligned to the event type of interest is anal-
ysed after averaging large amounts of trials [28]. Auditory
event-related potentials (AEPs) are modulated by aspects
such as rhythm, pitch, timbre or the duration of musical

events, all of which play an important role in human audio
segmentation [25,29–33]. Many of these evoked potentials
have been explained in the context of predictive coding as
a mixture of bottom-up and top-down mechanisms that are
modulated both contextual expectations and the auditory
stimulus itself [34, 35]. Similar to ERPs, SSEPs are in-
spected after averaging over many trials, but don’t require
zero valued phase offset between stimulus and response.
Instead, SSEPs characterize periodic mappings between
auditory features and brain response, such as phase lock-
ing to perceived frequencies or loudness envelopes. Both
ERPs and SSEPs can be related to predictive cognitive pro-
cesses aiming at structuring the incoming sensory signal
into meaningful events in a hierarchical fashion [35, 36].

3. A HIERARCHICAL PREDICTIVE CODING
MODEL FOR MUSIC

Predictive coding describes hierarchical predictions of sen-
sory states and hidden states of the network across vari-
ous time-scales. Sample based predictions about audio re-
quires a model with high temporal resolution that captures
the causal dependencies between adjacent samples. Thus,
a desired predictive coding model for audio connects low-
dimensional predictions over many time-steps with fine-
grained predictions at the sensory level. Transforming au-
dio features to high-level representations is a complex task,
which is often solved with the non-linear processing found
in DNNs. We approach these requirements with a recurrent
DNN that generates autoregressive predictions based on
long short-term memory (LSTM) [37]. Instead of predict-
ing individual frames, we process mel spectrogram rep-
resentations of audio. The reduced temporal resolution of
spectrograms helps reducing the computational complexity
while still capturing fine-grained auditory information. As
spectrograms extend into time and frequency, we employ
convolutional neural networks (CNNs) to extract features
from the spectrograms.

3.1 Autoregressive predictive coding

In order to enable hierarchical predictions across multi-
ple time-scales, we stack multiple LSTM layers and al-
low each layer to predict the future states of the next lower
layer. In line with Bayesian views on brain function and re-
search on the effectiveness of probabilistic recurrent mod-
elling, we express the current state in each layer as Gaus-
sian prior distributions, parameterized by mean and vari-
ance parameters [12, 38]. While the lowest layer predicts
future audio signal, the network’s hidden layers predict
future states of the lower layer’s representations. More
specifically, we first sample the prior distribution of each
layer and transform the resulting activation with a convo-
lutional decoder network. The decoder of the lowest layer
parameterizes the prediction of expected next spectrogram
input window. The decoders in hidden layers output pre-
dictions about the mean and variance parameters of the
next lower layer. In contrast to the related class of recur-
rent variational autoencoders (VAE), we do not employ an
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encoder network that directly transfers observations to a
posterior distribution [39]. Instead, the network processes
only the deviation et between predicted pt and observed
values ot with a error encoder network:

et = pt − ot (1)

3.2 Variational inference with deep neural networks

With the previously introduced decoder, error encoder and
recurrence networks, the model can be trained to perform
variational inference by constructing a variational bound
on the data log-likelihood. More specifically, the model
is trained to maximize the evidence for its current inferred
state, the network’s "belief" about what causes an observa-
tion. Mathematically speaking, maximizing the model ev-
idence can be expressed as minimizing the complexity of
the model’s generative model while providing maximally
accurate predictions for future audio inputs. The model
thus reduces the complexity of states with respect to obser-
vations ot and states st at a discrete time step t:

Complexity = Eq(st−1|o≤t−1)[KL[q(st|o≤t)‖p(st|st−1)]]
(2)

Simultaneously, the accuracy of predicted observations
maximized:

Accuracy = Eq(st|o≤t)[ln p(ot|st)] (3)

The observations in the lowest (sensory) layer refer to
the observed audio, while observations in the hidden layers
refer to the observed state posteriors in terms of mean and
variance. The model optimizes both terms simultaneously
for all layers. For this the approximate state posteriors
q(s1:T |e1:T ) =

∏T
t=1 q(st|et−1) are inferred by filtering

past prediction errors {et}Tt=1. By selecting a pair of ad-
jacent layers and minimizing the accuracy and complexity
term between them, this structure allows to form predic-
tions that are consistent between layers, i.e. show small or
no top-down prediction error. Such a design prevents er-
ror propagation across many layers in a single step. This
is a potential drawback and could be improved in future it-
erations. Throughout all experiments, we used a network
with three predictive coding layers. We model q(st|et−1)
as diagonal Gaussian for all layers with mean and variance
parameterized by a convolutional neural network (CNN)
with two layers of 64 and 128 units each. The convolu-
tional layers were followed by a dense network of 1024,
512 and 256 units respectively.

3.3 Deterministic transitions with a probabilistic step

The LSTM states of the network are conditioned on its
previous states {ht}Tt=1, top-down predictions {e_tdt}Tt=1

from the next higher layer as well as the prediction error
of the last outgoing prediction, the bottom-up prediction
error {e_but}Tt=1. At each time-step, the bottom-up pre-
diction error is forced to pass a sampling step when up-
dating the prior to the posterior distribution. This means
that any incoming sensory information {e_but} must pass

Figure 1. Transitions in a single layer of the predictive
coding network. The black pathways show transitions in
the lowest layer of the network. Predictions about fu-
ture audio are conditioned on past states and prediction
errors. The blue pathways indicate top-down posterior pre-
dictions, which allow to predict the states of lower layers
in the network in terms of mean and variance parameters.
Multi-step predictions can be generated by updating the re-
current states without sampling new observations.

a stochastic step before being integrated into the determin-
istic memory states {ht}. Figure 1 shows an overview of
the transitions in a single layer and the connection to the
top-down predictive pathway.

3.4 Model training

The model is trained using a timestep-wise variational ev-
idence lower bound (ELBO) that combines the previously
introduced complexity (2) and accuracy (1) terms. Simi-
larly to the objective function in recurrent VAEs [40], the
model maximes the ELBO for the approximate posteriors
in each layer by accumulating evidence over past time-
steps:

ELBO(q) =

T∑
t=1

(
oq(st|o≤t)[ln p(ot|st)]

−oq(st−1|o≤t−1)[KL[q(st|o≤t)‖p(st|st−1)]]
) (4)

This structure can be viewed as a hierarchical Kalman
filter, making the connection to predictive coding as a
Bayesian update scheme or generalized Kalman filtering
apparent. We used ReLU activations for all CNNs and hy-
perbolic tangent activations for the decoder’s output layer
[41]. In each layer, the prediction error was computed with
respect to positive and negative prediction error. Each layer
was then ReLU activated before propagation to the en-
coder networks. For all presented experiments, we trained
the model to convergence of the input layer reconstruction
loss. For this, we used the Adam optimizer with a learning
rate of 10−3 [42]. The KL divergence terms for each layer
were scaled proportionally to the prediction errors. Fur-
thermore, we weighted the reconstruction losses by 2:1:1
for the employed three layer model.
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4. THE NMED-T AND FMA DATASETS

We used the Naturalistic Music EEG Dataset—Tempo
(NMED-T) for the evaluations in all presented experiments
[3]. NMED-T features EEG recordings from 10 commer-
cially available music pieces, with durations between 270
and 300 seconds, spanning 55 to 150 BPM in various gen-
res. 20 participants were allowed to freely and passively
listen to the music, without any additional cognitive load.
We used the provided preprocessed version of the EEG
data at a sampling rate of 125 Hz. For all presented ERP
experiments, we re-referenced the EEG data to the aver-
age of all 125 EEG channels and filtered out background
noise using a Savitzky-Golay filter before averaging the
evoked responses. For network training, we resorted to the
"small" partition of the Free Music Archive (FMA) dataset,
featuring 8000 songs with 30 seconds duration [43]. We
computed magnitude spectrograms for all ten provided au-
dio files of the NMED-T dataset and the FMA audio files
before mapping to the mel scale, resulting in mel spectro-
grams at 125 Hz, equal to the EEG sampling rate. All audio
processing steps were done with the librosa library [44].
We tested different mel spectrogram lengths as inputs to
the lowest network layer and found lengths between 50 and
150 ms to be the sweet spot with low computation time and
without quick overfitting.

5. EXPERIMENTS

For all following experiments, network training was done
first on the FMA dataset followed by a evaluation phase us-
ing the NMED-T stimuli. After training on the FMA audio,
we froze the network weights and processed the NMED-
T audio to generate predictions and corresponding predic-
tion errors. For each processed NMED-T audio stimulus
we extracted both positive (PPE) and negative (NPE) val-
ued prediction errors. In this context, PPEs refer to areas
where the model predictions are lower than the observed
threshold, while NPEs refer to predictions that are higher
than the actual values. Predictions were computed in a sin-
gle pass over each song, i.e. without repeated inference of
the current musical context. However, such "active learn-
ing" or "active inference" schemes could be explored in the
future.

5.1 Deriving segmentation boundaries from
prediction errors

In order to inspect the effect of predictive coding at the
audio level, we first deactivated the recurrent parts of the
lowest layer, forcing the model to express next states as
a function of previous observation and the top-down pre-
diction. For model evaluation, we extracted positive and
negative prediction errors from each layer of the network.
In all layers, we a applied a magnitude threshold to pick
peaks from the continuous error response, followed by a
peak-picking step that ignores repeated error peaks in a
sliding window of fixed size. Both magnitude and win-
dow size could be learned by the network itself, leaving

the room for more complex and self-supervised segmenta-
tion techniques. All presented experiments use the mean of
positive and negative prediction errors, if not further speci-
fied. Figure 2 shows two examples for input and predicted
audio as well as the corresponding prediction errors and
selected peaks. The examples illustrate that autoregressive
predictive coding decorrelates large parts of the processed
audio in the first layer, by reducing the redundancies in the
signal using non-linear weighted predictions based on the
past values. This is in line with the spatial and temporal
whitening effects described by Rao et al. in the context of
center–surround receptive fields in the retina [7]. For the
following experiments, we use these sensory predictions
to derive segmentation boundaries and explore temporally
aligned ERPs in the brain.

a)

b)

Figure 2. Predicted audio and positive and negative pre-
diction errors in the first predictive coding layer for songs
with a) 55 and b) 108 BPM. The model generates local
predictions about inputs in a sliding window of 50 ms size.
This autoregressive and non-linear process removes tem-
poral redundancy in the residual error response. The bot-
tom rows show the thresholded prediction error and picked
peaks.

Increasing the weight of the prediction errors in the hid-
den layer decreased the error magnitudes. This is expected,
as the network now learns to include more global temporal
context over multiple steps of the lower layer. Ideally, the
network learns to predict the rhythmic and timbral struc-
ture perfectly and successfully suppresses the prediction
error in the first and second layer. If the recurrent parts are
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active in the lowest layer, the long-term temporal depen-
dencies can be memorized in the first layer additionally.
In our experiments we found that (with a fixed weighting
of the prediction errors between layers) deactivating the
recurrence in the lowest layer is essential to learning pre-
dictive representations in the hidden layers. As visible in
Figure 2, the tempo of the song as well as the rhythmic
density have influence on the effectiveness of input decor-
relation in the lowest layer.

5.2 Grand average ERP

To inspect the possibility to detect ERP events based on the
sensory surprise, we extracted the prediction errors from
the lowest predictive coding layer and averaged the EEG
signal over all trials in all songs and subjects. We were able
to derive a total of 242960 trials within 10 songs and 20
subjects using the proposed method. This equates 22140 to
28740 trials per song and between 1108 and 1437 unique
event locations per song.

Figure 3 a) shows the grand average ERP for all ten
songs in the NMED-T dataset at locations of prediction
errors peaks. In comparison to the tempi reported in the
orginal NMED-T paper, we sorted the songs between 83
and 151 BPM using beat tracking in the librosa library.
The difference between our tempo measures and the ones
in the original paper can be explained as being multiples of
each other, e.g. 110 BPM being a multiple of 55 BPM. The
averaged ERP shows an activity peak for positively corre-
lated channels at the predicted event location, followed by
a negative peak around 60 ms after onset. The grand av-
erage ERP further shows two smaller peaks around 120
and 170 ms after onset, indicating the presence of sur-
rounding onsets with variable latency. The reduced magni-
tude of these delayed peaks can be explained by the differ-
ences in tempo between songs.Specifically, the difference
in peak size between activity close to the predicted onsets
and those with greater temporal distance indicates a sep-
aration between tempo-independent components (close to
the prediction error peak) and attenuated tempo-dependent
components. Figure 3 b) shows the grand average ERP in
five positively activated channels, sorted by the prediction
error magnitude. The magnitude of the first evoked peak
after stimulus onset grows proportional with the error mag-
nitude for large error values. For smaller prediction error
values, the response shows larger latency. Peaks with sim-
ilar latency of the evoked activity have magnitudes propor-
tional to the prediction error magnitude. This fits with the
assumption that the grand average ERP shows temporally
variable peaks induced by differences in tempo.

5.3 Evaluating song-level segmentation with low
frequency EEG

Next to inspecting the predicted ERP responses with the
local predictions of the input layer, we want to inspect the
possibility to segment stimuli on the song level with the
model. For this, we repeat the unsupervised training of
the previous experiments, but weight the prediction errors
in all layers equally after pretraining for 100000 updates.

a)
0.05 0.00 0.05 0.10 0.15 0.20

Time (s)
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Grand Average (83 - 151 BPM )

b)

Figure 3. a) Grand average ERP for all songs in the
NMED-T dataset at locations of prediction errors peaks
generated by the predictive coding network. b) Grand av-
erage ERP in five positively correlated channels for trials
sorted after the prediction error magnitude of the predictive
coding network.

This approach puts more focus on the temporal consistency
of the predictions in the hidden layers. Furthermore, we
train with multi-step predictions of length 8, i.e. predic-
tion errors are generated with respect to 8 future states at
a time. This follows the assumption that both multi-step
predictions and increased weighting of the hidden layer
prediction errors increase the network’s tendency towards
more global predictions. In order to evaluate the ability to
retrieve meaningful musical structure with the network’s
predictions, we extracted the timings of prediction errors
from the lowest predictive coding layer and used them as
starting points of EEG epochs, subsequently averaging the
EEG signal over all epochs within each segmented class.
Following previous work that illustrates differences in beat
processing with SSEPs, we inspect averages of low fre-
quency EEG to detect changes in beat processing or en-
trainment between the segmented classes derived from pre-
diction errors in the predictive coding network [3]. For
this, we use the same epoched data derived from locations
computed in the previous experiments but average over all
epochs within the bounds of each segmented class.

Here, we want to inspect whether changes in network
prediction triggered by peaks in prediction errors show
changes that are detectable with SSEPs. To generate bi-
nary segmentation, we threshold the prediction error like
in the previous steps with a fixed value for each song
and switch between segmentation masks when the posi-
tive error surpasses the negative error and vice versa. Both
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a) SSEPs in low frequency EEG within the segments de-
rived from gated prediction errors of the predictive coding
network. Indicated with dashed lines are multiples of the
song tempo, ranging from 1 to 16 Hz. Differences between
the peaks in the power spectrum of both segments indicate
different rhythmic processing between the two segmented
classes.
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b) Corresponding audio and temporal binary segmentation
of two songs derived from gated prediction errors after
training the proposed network for unsupervised multi-step
prediction. Only the lowest 6 octaves are included for il-
lustration purposes.

Figure 4. Segmented audio and evoked SSEPs in low fre-
quency EEG of the NMED-T dataset.

down-sampling the inputs or increasing to length of multi-
step predictions leads to more coarse grained segmenta-
tion. We found that using hop lengths up to as much as
16000 successive frames during spectrogram computation
were suited to generate song-level segments while simulta-
neously reducing computation time. Intuitively speaking,
the changes in hidden prediction error magnitude reflect
the "mid-level" surprise of the network, as the pure sen-
sory surprise is largely minimized in the input layer and
the residual errors are further propagated. Future iterations
of the model could use learnable error thresholds for im-
proved and self-supervised segmentation. To help visual-
ize the effect of segmentation we reduced spatial EEG di-
mensionality using Principal Components Analysis (PCA)
before averaging the data and analyzed only the first com-
ponent. Figure 4 a) shows the induced SSEPs in the mag-
nitude of low-frequency EEG for selected songs. Audio
and segmentation boundaries for two of these songs are
displayed in Figure 4 b). Visible are peaks in the low fre-
quency EEG components within all segmented parts that
are aligned with multiples of the song tempo. In most pro-
cessed songs the noticeable magnitude shifts go along with
a stable distribution of the frequencies of evoked peaks, in-
dicating rhythmic differences between the annotated seg-
ments which are embedded into the same global tempo.

6. DISCUSSION

This paper explored deep predictive coding for unsuper-
vised audio representation learning inspired by human cog-
nition. We compared the network’s prediction errors with
evoked potentials in EEG. For this, we related the hierar-
chical predictions of the model on ten naturalistic musical
pieces to onset-aligned evoked potentials captured in EEG.
We derived locations for individual musical events from
the sensory surprise and inspected steady-state evoked
potentials that capture rhythmic differences in the seg-
mented songs. The employed model combines determin-
istic sequential predictions with probabilistic representa-
tions. While the deterministic parts allow to learn regu-
larities over time-scales, the probabilistic elements lessens
overfitting and helped shortening training duration. While
sensory-level predictions can be employed for local event
annotations, the predictions and prediction errors in hidden
layers target higher levels of temporal abstraction.

Our results indicate the usefulness of predictive coding
for the retrieval of events across the local and global struc-
ture of musical works. The model allows to approach audio
segmentation jointly with structuring recorded brain activ-
ity, forming a basis for retrieval of information about cog-
nitive processes in music perception. This offers an appeal-
ing method for researching auditory evoked potentials, as
it eases the mapping between stimulus characteristics and
connected evoked potentials across time-scales. Future im-
provements could enhance the capacity of the model, e.g.
by allowing the model to segment inputs based on learned
error gating.
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ABSTRACT

In this paper, we undertake a critical assessment of a state-
of-the-art deep neural network approach for computational
rhythm analysis. Our methodology is to deconstruct this
approach, analyse its constituent parts, and then recon-
struct it. To this end, we devise a novel multi-task approach
for the simultaneous estimation of tempo, beat, and down-
beat. In particular, we seek to embed more explicit musical
knowledge into the design decisions in building the net-
work. We additionally reflect this outlook when training
the network, and include a simple data augmentation strat-
egy to increase the network’s exposure to a wider range of
tempi, and hence beat and downbeat information. Via an
in-depth comparative evaluation, we present state-of-the-
art results over all three tasks, with performance increases
of up to 6% points over existing systems.

1. INTRODUCTION

A central concept in much of the work on audio beat track-
ing is the “tactus” – described as the most comfortable
foot-tapping rate when unconsciously tapping to a piece of
music. As stipulated by London [1, Ch.1] (and references
therein), the tactus is essential for our perception of metre.
The tactus by itself carries no information concerning the
metrical organisation within a piece of music, but it is in-
formative about both local and global tempo. To perceive
metre, we require the hierarchical organisation between at
least two levels, and ideally three: a level above the tactus
which indicates the longer-term grouping of beats into bars
(or measures), and a lower level to describe how the beats
are sub-divided – whether in simple time (divided by two),
or compound time (divided by three).

In this sense, we can expand the notion of (unmarked)
foot-tapping towards “counting” in time to music. While
numerous counting systems exist for the teaching of mu-
sical rhythm [2], the “traditional” American system is per-
haps the most well-known. For two-level counting, we can
mark the three beats of the bar of a waltz as follows: 1 2
3 1 2 3 1. . . , where the 1 indicates the first beat of each

© Sebastian Böck, Matthew E. P. Davies. Licensed un-
der a Creative Commons Attribution 4.0 International License (CC BY
4.0). Attribution: Sebastian Böck, Matthew E. P. Davies, “Deconstruct,
Analyse, Reconstruct: How to improve Tempo, Beat, and Downbeat
Estimation”, in Proc. of the 21st Int. Society for Music Information Re-
trieval Conf., Montréal, Canada, 2020.

bar, the downbeat. Moving to three-level counting, we can
count the sub-divisions of a four beat bar into two as: 1 + 2
+ 3 + 4 + 1. . . , (one - and - two - and - three - and - four -
and), and the sub-divisions of the same four beat bar into
four as: 1 e + a 2 e + a 3 e + a 4 e + a 1. . . (one - “ee” -
and - “ah” - two - “ee” - and -“ah” and so on).

From the perspective of computational rhythm analy-
sis, we can thus make a distinction between approaches
which target one metrical level in isolation, as opposed to
those which estimate more than one. Among the single-
level approaches, the vast most majority fall within the do-
main of beat-tracking (e.g [3–6]). When the focus of the
analysis moves towards downbeats, this almost exclusively
relies on the implicit or explicit modelling of another met-
rical level, either the beat [7], tatum [8], or a contrast be-
tween both [9]. One notable outlier is the downbeat predic-
tion approach of Jehan [10] which relies instead on onset-
synchronous analysis.

Concerning the modelling of three simultaneous met-
rical levels, few published approaches exist. Goto [11]
presents a real-time system for estimating the quarter-note,
half-note, and measure levels, but doesn’t address the sub-
beat level. Klapuri et al. [12] on the other hand, address
the estimation of tatum, beat, and downbeat, with explicit
dependencies between the phase of the beat and the tatum,
and the period of the beat and downbeat. For a recent re-
view of beat and downbeat estimation, see [13].

Considering the topic of tempo estimation, which, in
most instances, seeks to retrieve a single value to describe
a global tempo, existing approaches can be split into two
categories: those which make their estimate of the tempo
based the post-processing of a sequence of beat times (e.g.
for a discussion of techniques, see [14]) and those which
treat the task as a classification or regression problem and
do not require any prior estimate of the beats [15–18].

In this paper, we seek to work from the perspective
of leveraging shared connections in musical structure, and
address the simultaneous estimation of three highly inter-
connected properties of musical rhythm: tempo, beat, and
downbeat within a single model. In line with much of the
recent literature concerning the extraction of musical in-
formation from audio signals [19], we adopt a deep learn-
ing approach. We depart from our recent multi-task ap-
proach [20] for tempo and beat estimation using a tem-
poral convolutional network (TCN), which was shown to
provide state-of-the-art results. We undertake a critical as-
sessment of its constituent parts, and on the basis of our
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analysis, adapt it in several ways. At the broadest level, we
wish to leverage the benefit of modelling a metrical hierar-
chy (as opposed to just the beat level) by the inclusion of
an additional learning task, downbeat estimation. In terms
of the structure of the network itself, we adapt the shal-
lowest layers of the network (i.e. those closest to the musi-
cal surface) to provide a better model of harmonic musical
sounds. In addition, we propose a novel formulation of the
TCN architecture which incorporates an additional dilation
rate to each layer as a means to embed understanding of in-
teger ratios modelling the metrical structure.

A peculiar aspect of the evaluation in [20] was the abil-
ity of the multi-task model to perfectly estimate the tempo
of the HJDB dataset [21] when it was included in the train-
ing splits, with good, but noticeably lower performance
when it was left as a hold-out test set. Given the char-
acteristic fast tempo of HJDB, we speculate that the gap
in performance arose due to the lack of any similarly fast-
tempo music in the training sets. Following this argument,
a secondary motivation of this work is to consider how data
augmentation can be used in an efficient way to extrapo-
late information from regions of the training data which
are well-covered in terms of tempo annotations to those
which are more sparse.

Via a thorough evaluation across the three tasks of
tempo, beat, and downbeat estimation, we demonstrate
state-of-the-art performance, and draw attention to the
ability of TCN-based approaches to leverage shared repre-
sentations for multi-task analysis of musical audio signals.

The remainder of this paper is structured as follows. In
Section 2 we describe our multi-task formulation and data
augmentation strategy in detail. In Section 3 we present
an ablation study and comparative evaluation against ex-
isting reference systems. Finally, in Section 4 we discuss
the impact of the contribution and promising areas for fu-
ture work.

2. APPROACH

Our earlier multi-task approach for tempo and beat esti-
mation [20] was itself an extension of an earlier TCN-
based approach for beat tracking [22]. The core compo-
nent, which is common to both, is a deep neural network
(DNN) architecture based on dilated convolutions, most
well-known from WaveNet [23]. It is quite striking to con-
sider that an architecture designed for the causal generation
of raw audio (primarily for speech synthesis), and with its
roots in an auto-regressive process, can find application in
a problem cast as binary classification through time, i.e.
the classification per frame of the presence or absence of
a beat. From an alternative perspective, we may view the
strength of the TCN in this problem domain as resulting
from multiple connections (both forwards and backwards
in time) at different time scales, and thus bearing similar-
ity to much earlier work on the cognitively-inspired use of
multi-resolution signal processing for beat tracking [24].

For a detailed description of the existing architecture,
we refer to the reader to [20, 22]. In brief, the multi-task
approach uses a log-magnitude spectrogram with 81 loga-

rithmically spaced frequency bins and a frame rate of 100
frames per second as input. Overlapping spectrogram snip-
pets are passed through 3 convolution and max pooling
layers, followed by 11 dilated convolutional layers whose
dilation rate increases by a factor of 2 per layer. The so-
called “skip connections” between these layers are pro-
vided as an auxiliary output of the TCN and are used to
generate a prediction of the tempo across a linear range
from 0− 300 beats per minute (bpm). The main output of
the TCN, a beat activation function, is then processed by
a dynamic Bayesian network (DBN) [25] to obtain a final
sequence of beat estimates.

In spite of the reported high performance of the multi-
task approach on a wide range of musical material for both
beat and tempo estimation, we believe it is valuable to
question the design decisions of this network and consider
the ways in which it could be modified to improve per-
formance. Our focus in this paper is on the core of the
network, namely the convolutional and max pooling layers
together with the TCN. In a coarse sense, we can consider
the convolutional and max pooling layers to relate to more
surface-level properties of the music and hence local in-
formation, i.e. what are the spectro-temporal properties of
the beats? with the deeper TCN layers oriented more to-
wards their temporal dependency over longer time scales,
i.e. how is the beat and metrical structure organised over
the duration of musical pieces?

Concerning the first question, a common limitation of
beat tracking systems is their ability to reliably detect the
beat in music without the presence of drums, as typified,
at least in part, by lower reported performance in classi-
cal music. Given the high prevalence of rock, pop, jazz,
and electronic dance music among existing beat track-
ing datasets [26], we consider the modelling of harmonic
sounds to be important when addressing under-represented
musical styles and of crucial importance to reliably detect
downbeats in Western music, where harmonic changes of-
ten occur at bar boundaries [27]. Regarding the second
question, we directly enable the network to learn feature
representations which are integer multiplies of each other
by deploying multiple concurrent dilated convolutions at
each TCN layer, and in so doing embed some implicit hi-
erarchical structure into the model.

In what follows, we describe the specific modifications
made to the network. Since the work in this paper explic-
itly targets the improvement of an existing approach, we
allude to performance increases wherever relevant, with
detailed results in Section 3.

2.1 Multi-task formulation

Based on the model described above, we add the additional
task of downbeat tracking. This can be accomplished in
various ways. One option is to model the downbeats and
beats jointly as a multi-class problem, i.e. by classifying
each input frame to be a beat, a downbeat, or neither. This
approach was successfully deployed in [28], but has the
downside that it cannot fully leverage the information if a
dataset contains only beat or downbeat annotations. Thus
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we treat the problem as a multi-label classification problem
instead, with the downbeat task treated as a separate binary
classification problem with its own output. We model the
downbeat output similarly to the beat output as a single
sigmoid unit which is fed directly from the main TCN out-
put. Whereas the approach in [20] used 16 filters per layer
for the multi-task estimation of tempo and beat, with the
addition of the downbeat task, we expand the network to
include more filters and increase this to 20.

This additional output is then also post-processed with
a DBN. Since the beat and downbeat outputs do not define
a joint probability density function (i.e. their sum is not
guaranteed to be 1 as for multi-class problems), the DBN
post-processing used in [28] cannot be applied directly to
the combined beat and downbeat activations. Thus the dif-
ference of the beat and downbeat activations (limited to
positive values) and the downbeat activations are used as
state-conditional observations for beats and downbeats, re-
spectively. In Section 3 we refer to this approach as joint
downbeat tracking.

An alternative approach is to first detect the beats and
then in a second inference step to find the downbeats given
the set of beat predictions. This approach was chosen
in [29] and has the most notable advantage that the large
joint state space which is required to model multiple bar
lengths and tempi at a frame level resolution can be split
into two smaller ones. The first one (tracking the beats)
only requires multiple tempi to be modelled at the frame
level resolution, whereas the second one operates at beat
resolution and is completely tempo invariant, thus requir-
ing only very few states. The downside of this approach
is that errors made in beat tracking directly propagate to
downbeat tracking. In Section 3 we refer to this approach
as sequential downbeat tracking.

2.2 Conv layers

Both the original beat tracking paper [22] and the multi-
task extension tackling global tempo estimation presented
in [20] use the same convolutional block to reduce multi-
ple consecutive STFT frames to a one-dimensional feature
vector which is then processed by the TCN. Two groups of
alternating 3×3 convolution and 1×3 max-pooling layers
were used to reduce overlapping spectrogram windows of
size 5 × 81 (time × frequency) down to 3 × 26 and 1 × 8
before these eight bands (roughly representing one octave
each) were combined into a singular value with a 1 × 8
convolution. This feature representation is closely related
to the one used in [12] and was shown to work well.

However, a musically motivated reordering of these lay-
ers can have a positive effect on the performance of the
model. Convolutional filters covering multiple frequency
bins but only a single time step have been shown to concen-
trate on harmonic and timbral features [30] and proven to
work well for multiple tasks, including key estimation [31]
and automatic music transcription [32]. Moving the “fre-
quency only” convolution in between the two 3× 3 convo-
lutions as shown in Figure 1, enables the network to better
capture harmonic content across a wider frequency range

instead of detecting local changes in smaller regions of the
spectrogram only and then later aggregating them.

3x3 
conv

3x3 
conv

1x12 
conv

1x8 
conv

1x3 
mp

1x3 
mp 1x3 

mp

input

to TCN

to TCN

5,81,1 3,79,20 3,26,20 3,15,20

3x3 
conv

3x3 
conv

1x3 
mp

1x3 
mp

input

5,81,1 3,79,16 3,26,16 1,24,16 1,8,16

3,5,20 1,3,20 1,1,20

1,1,16

Figure 1: Comparison of the convolution (conv.) and max
pooling (mp) layers. The architecture from [20, 22] (top).
Our proposed architecture (bottom). The dimensions of the
tensors are shown below each layer.

2.3 TCN layers

From a musical perspective, it is undeniable that discov-
ering downbeats requires more knowledge about the sig-
nal than locating beat positions only. Independently of
whether this additional knowledge is harmonic or rhyth-
mic in nature, it always requires a longer temporal con-
text. Increasing the temporal context of the TCN by either
using larger kernel sizes or adding more layers (with ex-
ponentially increasing dilation rates), did not improve any
of the tasks under investigation. This observation is not
necessarily surprising since the temporal context modelled
by the TCN is already about 40 seconds – which should
be sufficient to tackle the task of tracking the locations of
the downbeats and estimating the length of the bars. In-
stead, adding a second dilated convolution (with a doubled
dilation rate) to each of the TCN layers enables the net-
work to simultaneously model musical properties at vari-
ous levels which are integer multiples of each other. We
discovered that adding a third dilation rate did not further
improve performance, but we believe this is very likely an
artefact of the data utilised for training, since none of the
datasets used have a noticeable number of musical pieces
with compound time signatures. The feature maps of the
two dilated convolutions are concatenated before spatial
dropout [33] and an exponential linear unit (ELU) activa-
tion function [34] is applied. In order to keep the output
dimensionality of the TCN layer constant, these feature
maps are then combined by a 1× 1 convolution, which in-
creases the total number of parameters linearly with each
TCN layer instead of exponentially.
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2.4 Data augmentation

Our approach to data augmentation is both simple and
straightforward and similar to the scaling approach applied
in [17]. Contrary to other data augmentation strategies,
which pre-process the audio signal and manipulate it in
various ways (e.g. time stretching, pitch shifting, sample
rate conversion to simulate speeding up or slowing down
the signal [35, 36]), we do not change the audio signal it-
self, but instead only change the parameters of the STFT
when obtaining a time-frequency representation. To be
more precise, we only change the rate at which the overlap-
ping frames of the STFT are obtained from the audio signal
by sampling from a normal distribution with 5% standard
deviation from the annotated tempo. By changing only the
hop size, we obtain spectrograms with varying overlap fac-
tors and only the targets have to be adjusted accordingly.
Using this data augmentation strategy leads to many more
training examples for tempi which are otherwise underrep-
resented in the data, as can be seen in Figure 2.

0 50 100 150 200 250
tempo [BPM]

0

50

100

150

200

250

300

Figure 2: Tempo distribution of original tempo annota-
tions (orange, foreground), after data augmentation (blue)
and target widening (red, background).

2.5 Network training

Using data augmentation increases the amount of data the
network can learn from. However, this also leads to in-
creased training times when using conventional training
procedures. Furthermore, the additional downbeat classifi-
cation layer, the inclusion of a second dilated convolution
and the usage of more filters in each of the TCN layers has
a notable impact on the size of the model, which now has
116, 302 trainable parameters compared to 29, 901 of [20].

To this end, we make use of the latest training optimi-
sation strategies, namely RAdam [37] and Lookahead Op-
timization [38]. The combination of these two drastically
reduces the training time (even accounting for the larger
number of weights) simultaneously leading to models be-
ing less sensitive to different random initialisations. All re-
maining hyper-parameters were left unchanged. We found
the used learning rate of 2e−3 and clipping the gradients
at a norm of 0.5 a sensible choice, as is training on full
sequences with a batch size of 1.

We derive the tempo targets in the same way by com-
puting a smoothed and interpolated histogram on the inter

beat intervals. We apply the same target widening strategy
to present the network not only the annotated frame and
tempo, but also their direct neighbouring frames and ±2
BPM values as positive targets, albeit with lower weights
of 0.5 and 0.25, respectively.

3. EXPERIMENTS AND RESULTS

We use the same datasets as in [20] with the most re-
cent annotations available. Beatles [39], Cuidado [40],
Hainsworth [20, 41], Simac [42], SMC [26], and HJDB
[21, 28] are used for training and evaluated in an 8-fold
cross validation manner. ACM Mirum [43, 44], GiantSteps
[45,46], and GTZAN [47,48] are used as test datasets. Pre-
dictions for the test datasets are obtained by averaging the
predictions of the networks trained for cross validation. To
enable future comparisons, we make all annotations as well
as the beat, downbeat, and tempo estimates available at the
accompanying website. 1

For evaluation, we use the standard metrics used in the
literature. For tempo estimation, we report Accuracy 1
and Accuracy 2 scores with a tolerance of ±4% as used
in [49]. For beat and downbeat tracking, we use F-measure
and the continuity based metrics CMLt (requires beats be-
ing tracked at the annotated metrical level) and AMLt (al-
lowing alternative metrical levels, such as double/half and
triple/third tempo as well as off-beat) with the tolerances
as defined as in [39].

3.1 Ablation study

Before reporting comparative evaluation to other methods,
we aim to understand how each of the proposed measures
outlined in Section 2 contribute to the final performance of
the system.

Beats CMLt Beats AMLt Downbeats F1 Tempo Acc1 Tempo Acc2
0.70

0.75

0.80

0.85

0.90

0.95

1.00

original
downbeat task
conv layers
TCN dilations
data aug.
more filters

Figure 3: Impact of the improvements proposed for se-
lected evaluation metrics. Mean values over the complete
validation set are given.

From Figure 3 it can be seen that the measures under-
taken to improve the original system do not contribute the
same to the different tasks and the given evaluation met-
rics. For example, beat tracking AMLt and tempo Accu-
racy 2 scores increase only marginally, which is best ex-
plained by the fact that the baseline system is already per-
forming at a high level on these tasks. However, since
these metrics allow metrical ambiguities, it is impossible

1 https://github.com/superbock/ISMIR2020
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to determine if the system is considering the correct met-
rical level in the case of beat tracking or the correct tempo
octave. Both CMLt and Accuracy 1 require the reported
beat locations and tempo to exactly match the annotations
(within the allowed tolerance). These metrics therefore
better catch the ability of an algorithm to correctly predict
the annotated information.

Concentrating on these metrics, it can be seen that addi-
tionally modelling and predicting downbeats has a positive
effect on beat tracking and tempo estimation. This effect
is then strengthened by the modifications made to the con-
volutional and TCN layers. Using data augmentation and
more filters gives a small additional boost. It should be
noted that the positive effect of data augmentation on the
generalisation capabilities of the network are mostly visi-
ble for the task of tempo estimation if “out of tempo distri-
bution” datasets are used for evaluation. Since the valida-
tion set is a randomly chosen subset of the training set (and
hence has a very similar tempo distribution), the impact is
not fully reflected in Figure 3.

3.2 Tempo estimation

Tempo estimation is the task with the most noticeable over-
all impact of the proposed refinements. While Accuracy 2
values have been quite high for many systems among all
datasets under consideration, the new system is the only
one consistently achieving high Accuracy 1 values as well
(Table 1). The system’s ability to model several tasks si-
multaneously and exploit mutual information relevant to
all tasks leads to an increased performance of more than
6% points in Accuracy 1 over the best results reported so
far on certain datasets.

Accuracy 1 Accuracy 2

ACM Mirum
Gkiokas et al. [50] 0.725 0.979
Percival and Tzanetakis [44] 0.733 0.972
Schreiber and Müller [17] 0.781 0.976
Böck et al. [20] 0.749 0.974
Foroughmand & Peeters [18] 0.733 0.965
Ours 0.841 0.990

GiantSteps
Gkiokas et al. [50] 0.721 0.922
Percival and Tzanetakis [44] 0.506 0.956
Schreiber and Müller [17] * 0.821 0.971
Böck et al. [20] 0.764 0.958
Foroughmand & Peeters [18] * 0.836 0.979
Ours 0.870 0.965

GTZAN
Gkiokas et al. [50] 0.651 0.931
Percival and Tzanetakis [44] 0.658 0.924
Schreiber and Müller [17] 0.769 0.926
Böck et al. [20] 0.673 0.938
Foroughmand & Peeters [18] 0.697 0.891
Ours 0.830 0.950

Table 1: Tempo estimation results on unseen test data. As-
terisks denote systems which have been trained on a dis-
joint set of the same source.

3.3 Beat tracking

Although beat tracking performance of existing systems is
already very high, the new system sets new high scores in
CMLt and even exceeds the very high performance values
above 0.9 (on Ballroom) by more than 4% points. Other
systems achieve such high scores only under the less strict
AMLt metric, which also permits metrical errors, including
double/half, triple/third tempo, and off-beat. This high-
lights the capability of the system to track beats exactly at
the annotated metrical level.

F-measure CMLt AMLt

Ballroom
Böck et al. [28] 0.938 0.892 0.953
Elowsson [51] ‡ 0.925 0.903 0.932
Davies and Böck [22] 0.933 0.881 0.929
Ours (beat tracking) 0.956 0.935 0.958
Ours (joint tracking) 0.962 0.947 0.961

Hainsworth
Böck et al. [5] 0.884 0.808 0.916
Elowsson [51] ‡ 0.742 0.676 0.792
Davies and Böck [22] 0.874 0.795 0.930
Ours (beat tracking) 0.904 0.851 0.937
Ours (joint tracking) 0.902 0.848 0.930

SMC
Böck et al. [5] 0.529 0.428 0.567
Elowsson [51] ‡ 0.375 0.225 0.332
Davies and Böck [22] 0.543 0.432 0.632
Ours (beat tracking) 0.552 0.465 0.643
Ours (joint tracking) 0.544 0.443 0.635

GTZAN
Böck et al. [5] 0.864 0.768 0.927
Davies and Böck [22] 0.843 0.715 0.914
Ours (beat tracking) 0.883 0.808 0.930
Ours (joint tracking) 0.885 0.813 0.931

Table 2: Beat tracking results on datasets used for training
with 8-fold cross validation (top), and on unseen test data
(bottom). ‡ was trained on Ballroom data only.

In Table 2 it can also be seen that joint modelling of
beats and downbeats (in the DBN) can be beneficial for
music with constant meter and steady tempo (e.g. Ball-
room), whereas it negatively impacts performance for ex-
pressive music as contained in Hainsworth and SMC.

3.4 Downbeat tracking

For the task of downbeat tracking the systems, perfor-
mance can be clearly separated into two main categories:
i) the systems of Durand et al. [8] and Fuentes et al. [9],
which explicitly model harmonic features (using chroma
features as input for the neural network) and ii) the ones of
Böck et al. [28] and ours which learn harmonic features im-
plicitly. Whereas the former show better performance on
pop music (e.g. the Beatles dataset) where downbeats often
coincide with harmonic changes, they perform less well on
data where bars are mostly defined based on rhythm.
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F-measure CMLt AMLt

Ballroom
Böck et al. [28] 0.863 0.834 0.931
Durand et al. [8] 0.797 0.616 0.916
Fuentes et al. [9] 0.83 - -
Ours (sequential tracking) 0.900 0.894 0.953
Ours (joint tracking) 0.916 0.913 0.960

Hainsworth
Böck et al. [28] 0.684 0.628 0.832
Durand et al. [8] 0.664 0.500 0.804
Fuentes et al. [9] 0.67 - -
Ours (sequential tracking) 0.713 0.686 0.855
Ours (joint tracking) 0.722 0.696 0.872

Beatles
Böck et al. [28] 0.831 0.730 0.858
Durand et al. [8] 0.847 0.722 0.875
Fuentes et al. [9] 0.86 - -
Ours (sequential tracking) 0.829 0.748 0.860
Ours (joint tracking) 0.837 0.742 0.862

GTZAN
Böck et al. [28] 0.640 0.577 0.824
Durand et al. [8] 0.607 0.480 0.774
Ours (sequential tracking) 0.654 0.619 0.817
Ours (joint tracking) 0.672 0.640 0.832

Table 3: Downbeat tracking results on datasets used for
training with 8-fold cross validation (top), and on unseen
test data (bottom).

Regarding the question of whether joint downbeat
tracking or sequential downbeat tracking is superior, Ta-
ble 3 shows a consistent advantage for processing beats
and downbeats simultaneously. The only exception is the
Beatles dataset, which contains some music with changing
metre. Due to memory constraints, joint downbeat track-
ing cannot model these metre changes. Modelling them
is computationally only feasible with sequential downbeat
tracking, which may further benefit from sub-beat mod-
elling, as used in [9].

4. DISCUSSION AND CONCLUSIONS

In this paper we address the multi-task estimation of three
inter-related properties of musical metre: tempo, beat, and
downbeat. Our approach is somewhat unconventional as
we do not propose a new method from scratch, but instead
we deconstruct, analyse, and then reconstruct an existing
approach as a means to further the state of the art. By
pairing our methodology with an ablation study, we are
able to directly observe the impact of the implemented
changes, and in turn, to observe the cumulative gains in
performance. Via our evaluation, it is clear that there is
no “magic bullet” among our proposed modifications, yet
their combination is clearly effective. Furthermore, we
must accept that when the baseline performance is already
high, the margin for improvement is somewhat limited.

By close inspection of the performance of our approach

in comparison both to the baseline and other existing sys-
tems, we consider the main impact of our approach as
constituting a “closing of the gap” between stricter and
more lenient evaluation metrics across each of the tasks.
For tempo estimation, our approach is the first to exceed
0.83 for Accuracy 1 across three large reference datasets,
which are completely unseen to our training scheme. Like-
wise, when considering the positive impact for beat track-
ing, we find the clearest improvements in the evaluation
metric which enforces tracking at the annotated metrical
level. Since the relative improvements under the more le-
nient metrics are much smaller, we do not believe that our
approach has unlocked the means to accurately infer the
tempo, beat, or downbeat in extremely challenging musical
examples. Reference to the incremental improvements for
the SMC dataset for beat tracking can immediately attest to
this. Indeed, the lack of improvement for this kind of musi-
cal material may require the reformulation of the inference
techniques used to recover the final outputs, rather than
intervention at the point of training the networks. Alterna-
tively, they may require a fundamentally different way in
which to present targets to the network which is better able
to model temporal uncertainty in the annotations. We con-
sider both of these to be promising areas for future work in
order to address more challenging data in a robust way.

Ultimately, we believe the main contribution of our
work rests in the increased reliability of the good predic-
tions made by the model across these three tasks. It is
well-established within music cognition that the percep-
tion of tempo, beat, and metre is ambiguous and varies
among listeners; therefore within the MIR community, it
is easy to justify the use of “multiple-choice” evaluation
methodologies. However, this evaluation practice explic-
itly masks the fact that for almost any piece of music, at
least some of these allowed options will be much less rea-
sonable than others. Thus, in the absence of a multi-level
annotation methodology in which the set of allowed an-
notations are specific to individual pieces of music, the
only way to guarantee a high-quality prediction (in an un-
supervised way) is to aim to maximise performance under
stricter evaluation metrics. The alternative is to perform a
subjective assessment of beat and downbeat performance
via listening to clicks mixed with the audio signals. Given
the large amount of musical material in existing datasets,
this remains a daunting prospect. However, by restricting
this kind of supervised analysis to the subset of excerpts
which are accurate only when allowing for alternative in-
terpretations of the annotations, we may move towards a
closer estimate of the true performance of these systems.
In addition, this kind of partial subjective evaluation could
act as a means to “bootstrap” the specification of alterna-
tive hypotheses on a per-excerpt basis.
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ABSTRACT

Most commercial music services rely on collaborative fil-
tering to recommend artists and songs. While this method
is effective for popular artists with large fanbases, it can
present difficulties for recommending novel, lesser known
artists due to a relative lack of user preference data. In
this paper, we therefore seek to understand how content-
based approaches can be used to more effectively recom-
mend songs from these lesser known artists. Specifically,
we conduct a user study to answer three questions. Firstly,
do most users agree which songs are most acoustically sim-
ilar? Secondly, is acoustic similarity a good proxy for how
an individual might construct a playlist or recommend mu-
sic to a friend? Thirdly, if so, can we find acoustic features
that are related to human judgments of acoustic similarity?
To answer these questions, our study asked 117 test sub-
jects to compare two unknown candidate songs relative to
a third known reference song. Our findings show that 1)
judgments about acoustic similarity are fairly consistent,
2) acoustic similarity is highly correlated with playlist se-
lection and recommendation, but not necessarily personal
preference, and 3) we identify a subset of acoustic features
from the Spotify Web API that is particularly predictive of
human similarity judgments.

1. INTRODUCTION

Suppose you want to recommend a novel artist B to a friend
who you know likes some artist A. Which of B’s songs
should you recommend that they listen to first? As we will
argue in the following, the answer to this question involves
concepts of acoustic similarity, playlist context, and per-
sonal preference as they all relate to the task of music rec-
ommendation [18].

The motivation for asking this question comes from an
application we are developing called Localify 1 that rec-
ommends artists from a listener’s hometown based on the
listener’s favorite artists [7]. While most of these favorite
artists will tend to be popular, well-known artists, the vast

1 https://www.localify.org

c© Derek Cheng, Thorsten Joachims, Douglas Turnbull. Li-
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(CC BY 4.0). Attribution: Derek Cheng, Thorsten Joachims, Douglas
Turnbull. “Exploring Acoustic Similarity for Novel Music Recommen-
dation”, 21st International Society for Music Information Retrieval Con-
ference, Montréal, Canada, 2020.

majority of local artists are likely to be relatively obscure
long-tail artists [1, 3, 11]. There is often limited user pref-
erence data (listening histories, like/dislike ratings) asso-
ciated with these long-tail artists and even less associated
with their individual songs.

Automatic playlist generation is one of the core com-
ponents of our locally-focused music recommender sys-
tem. As we know from recommender systems research,
providing the user with a contextual explanation of the rec-
ommendation is important because it provides information
that is both useful for decision making and for develop-
ing trust in the system [13, 21]. We also know from music
psychology research that listeners tend to prefer familiar
music [6, 15]. To this end, our playlist algorithm creates
a list of songs by alternating between a song by a favorite
artist and a song by a local artist. This allows the algo-
rithm to balance exploiting familiarity from known artists
with exploring novel artists from the local music scene.

Most commercial recommender systems make use of
listening histories from a large number of listeners to make
accurate recommendations [2]. This technique is referred
to as collaborative filtering (CF). CF systems suffer the
cold-start problem [19]: little or no historical user pref-
erence data exists for new or obscure artists. As a result,
a CF-based recommender system cannot recommend these
artists with sufficient confidence. An alternative to CF sys-
tems are content-based (CB) recommender systems that
make use of the audio signal for recommendation.

Although many of the local artists we want to recom-
mend are relatively obscure, we have informally found that
our CF system is able to accurately recommend local artists
in most cases. However, it tends to do a poor job of rec-
ommending relevant songs for many of our obscure local
artists. To this end, we have been exploring the suitability
of CB recommendation based on acoustic similarity be-
tween a given reference song and a set of candidate songs
in order to improve our playlist algorithm.

1.1 Research Questions

To better understand the role of acoustic similarity in
recommending long-tail artists, we address the following
three research questions in this paper:

RQ1 Are human judgments about acoustic similarity con-
sistent across users?

RQ2 Is acoustic similarity a good proxy for how an indi-
vidual might construct a playlist, recommend music
to a friend, or prefer one song over another?
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RQ3 If so, what are some of the measurable acoustic
properties that correlate with how humans judge
acoustic similarity?

The first question acknowledges that music is subjec-
tive and people will naturally have differing opinions [5].
However, if there is little or no consistency in how listen-
ers perceive songs and compare them to one another, then
modeling music on the basis of acoustic similarity will be
unreliable.

While the answer to the second question may seem ob-
vious, many listeners have eclectic tastes and expect some
amount of variety, so it is possible that having music that
is too acoustically similar could result in homogeneous
playlists and boring recommendations. Additionally, lis-
teners bring non-musical context to bear when listening to
music. This includes the meaning of the lyrics, the artist’s
social persona, visual media (album covers, music videos),
trust in the source of the recommendation, the listener’s
emotional state, etc. In addition, an individual’s perception
of music is influenced by a variety of socio-demographic
factors including age, race, ethnicity, gender, social class,
family, political beliefs, and values [12]. To this end, it is
entirely possible that the acoustic content is only a small
part of the equation when it comes to making a successful
recommendation [17].

We address the first two questions by asking individ-
uals to choose among two unknown candidate songs (B1
and B2) from an unknown artist B in the context of a
third familiar reference song (A1) by a known artist A.
Specifically, we ask which one (B1 or B2) is more acous-
tically similar to A1, which one they would recommend
to a friend who likes A1, which one they would include
in a playlist after A1, and which one they personally pre-
fer. Throughout this paper, we will refer to a specific set of
three songs {A1, B1, B2} as a song tuple, and we asked
a large number of test subjects to each evaluate a subset
of 12 total song tuples (see Table 1) based on their genre
preferences.

For the third question, there has been a good deal of re-
search within the music information retrieval community
that focuses on using digital signal processing and machine
learning to estimate acoustic similarity (e.g., MIREX Au-
dio Similarity Task 2 , [10,14,22]). We will not advance the
state-of-the-art in this paper but rather simply explore how
acoustic properties such as estimated tempo, danceability,
and valence correlate with a human listener’s judgments
related to acoustic similarity. For this, we both analyze
open-ended responses from listeners and examine correla-
tions between 11 song-level audio features that we obtain
from the public Spotify API for each of the songs in our
study.

1.2 Related work
Our work is related to other studies that explore how peo-
ple interact with music recommender systems. One recent
study by Lee et al. [13] found that there are many factors,
including aesthetic qualities, familiarity, trust in the recom-
mender, and contextualization, that affect whether a per-
son will adopt a music recommendation. This is consistent

2 https://www.music-ir.org/mirex

with our findings that while acoustic similarity is impor-
tant for music recommendation, other non-content-based
information also plays a big role (see Table 2.)

Zhang et al. [23] stress the importance of serendipity
and warn about the dangers of self-reinforcing "filter bub-
bles" when music recommender systems focus too much
on optimizing accuracy. Our recommender system em-
braces these ideas by attempting to introduce novel artists
through locally-focused music recommendation. In addi-
tion, the design of our survey was influenced by their sug-
gestion that a recommender system should be akin to hav-
ing a trusted friend recommend music.

Our application also reflects the findings of Jun et al. [8]
who suggest that blending songs in a specific order can
improve the quality of the playlist. Specifically, we would
like to play a familiar song followed by an acoustically
similar song by a local artist so that they flow together.
The idea is that a user will be more likely accept the local
music recommendation if it sounds similar to something
they already enjoy.

Finally, we refer the reader to both Lee et al. [13] and
Laplante [12] for recent and comprehensive literature re-
views on studies related to human-centered music recom-
mendation.

2. METHODOLOGY OF STUDY

In this section, we describe both how we selected the song
tuples and how we designed the user study.

2.1 Song Tuple Selection

We began by collecting 12 song tuples of 3 songs each,
for a total of 36 songs. We first selected 4 genres (pop,
rock, hip hop, and R&B) with 3 tuples assigned to each
genre. Each tuple consisted of a song by a popular artist
from its genre, as well as two songs by a relatively lesser-
known artist from the same genre. We refer to the popular
artist and song respectively as the A artist and A1 song,
and the lesser-known artist and songs respectively as the B
artist and B1 & B2 songs. For example, in one of the song
tuples from the pop genre, the A artist is Billie Eilish and
the A1 song is bad guy, while the B artist is Gabbie Hanna
and the B1 & B2 songs are Honestly and Butterflies.

The A artists were determined by finding popular artists
associated with each of our four genres using the Spotify
API 3 . The A1 songs were chosen from the most popular
tracks for each artist to maximize the likelihood of them
being recognized by our study’s participants. The B artists
were chosen from a large corpus of artists from our own
application such that each B artist was listed as being re-
lated to artist A according to the Spotify Web API 4 . We
also ensured that the B artists and their B1/B2 songs had
limited popularity so that they would likely not be famil-
iar to our study’s participants to better simulate long-tail
music recommendation.

3 https://developer.spotify.com/documentation/web-
api/reference/artists/get-artist/

4 https://developer.spotify.com/documentation/web-
api/reference/artists/get-related-artists/
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While we generally selected the most popular songs for
both the A and the B artists, we skipped over songs in the
popularity ranking under the following conditions. For A1
song selection, we skipped over a song if:

1. The song is a cover of a song by another artist
2. The song is actually by another artist where the cur-

rent artist is only featured
3. The song was very recently released and thus high

in popularity but still relatively low in number of
streams

For B1/B2 song selection, criteria 1 and 2 were applied as
well. In addition, we also skipped over a potential B1/B2
song if it had an excessively high number of streams due
to being a "one hit wonder" so as to reduce the likelihood
that test subjects would recognize it.

2.2 Survey Design

Our three section study was conducted through an on-
line Qualtrics survey. In the first section, each participant
was asked to provide demographic and psychographic data
(e.g., age, gender, time spent listening to music daily, pre-
ferred streaming services). Additionally, we asked partici-
pants for the two genres they were most familiar with from
our four genres of pop, rock, hip hop, and R&B.

The second section collected quantitative data regard-
ing the participants’ preferences for playlist selection, rec-
ommendation to a friend, acoustic similarity, and personal
preference. In this section, participants were presented
with six song tuples — three song tuples associated with
each of their two selected genres — and asked to answer
questions regarding each song tuple. The song tuples were
shown by genre, with the ordering of the song tuples within
each genre as well as the ordering of the genres themselves
being randomized. Additionally, within each song tuple,
the ordering of the B1 and B2 songs was also randomized
for every participant.

For each song tuple, the participants were first asked to
listen to clips of the first 30 seconds of the A1 song and the
two B1/B2 songs. The length of 30 seconds was chosen
firstly to minimize fatigue and restrict the survey to a rea-
sonable length, and secondly to give the user a sufficiently
long sample to form a solid impression of the music [20].
Once they had listened to the clips, they were prompted to
answer the following questions regarding the two B1/B2
songs:

1. If you were creating a playlist with Song A1 and ei-
ther B1 or B2, which one would you pick?

2. If you had a friend who likes Song A1 by Artist A
and you wanted to introduce them to Artist B, which
song would you recommend to them first?

3. Which song is most acoustically similar to Song A1?
4. Which song do you prefer?

In addition to choosing either B1 or B2, participants were
also allowed to answer "About the same" if they could not
decide. Finally, we also asked participants if they recog-
nized any of the songs or artists presented in the song tuple,
for which they could answer "Yes", "No", or "Maybe".

In the third section, participants were asked the follow-
ing open-ended questions:

1. When deciding to pick specific songs for a playlist,
what do you consider to be most important?

2. When deciding songs to recommend to a friend,
what do you consider to be most important?

3. When comparing songs in terms of acoustic similar-
ity, what do you consider to be most important?

These three questions were intended to collect qualitative
data regarding how participants made their decisions in the
second section of the survey.

3. SURVEY DATA

Participants were recruited on a voluntary basis with no
compensation via email lists and social media from the au-
thors’ academic and social circles, based primarily within
the United States. We received responses from 113 par-
ticipants, with 103 of these considered valid. From these
participants, the youngest represented age group was 17 or
younger, while the oldest was 61 - 70, with the median age
group being 21 - 25. 58.25% of participants identified as
male, while 41.75% identified as female. Participants in-
dicated usage of seven different streaming services, with
Spotify being by far the most popular. Some participants
also indicated usage of older music playback technologies,
such as iTunes libraries, CDs, and vinyl records.

3.1 Song Tuple Responses

From the 103 valid responses, we counted a total of 612
song tuple evaluations, with 317 of these considered valid.
We considered a song tuple evaluation valid based on the
following two criteria. Firstly, the participant must rec-
ognize the A1 song and must not recognize the B1 and
B2 songs. This is because our set of questions regard-
ing a song tuple were intended to be asked under the as-
sumption that the A1 song was known, and the B1 and
B2 songs were both unknown. Secondly, the participant
must spend at least 60 seconds evaluating the tuple. We
defined 60 seconds per tuple as the threshold at which a
participant is considered to have faithfully answered our
questions. Based on these criteria, we discarded responses
which did not contain any valid tuple evaluations, and we
discarded any invalid tuple evaluations from the remaining
responses. Each song tuple was evaluated by at least 14
participants, with a mean of 26.4 participants.

3.2 Qualitative Feedback

One author coded the responses to the three open-ended
questions from the third section of the survey. Initial cat-
egories (e.g., texture content, rhythmic content, context,
preference, playlist mix) and subcategories (e.g., energy,
tempo, variety) were formed after making a first pass over
95 non-empty responses out of a total of 103 survey re-
sponses. Each response was then coded according to these
categories and subcategories. The results are found in Ta-
ble 2.

The main takeaway from our coding exercise is to note
that, as expected, acoustic similarity (Q1) is almost entirely
related to audio content, while playlist song selection (Q2)
and song recommendation (Q3) involve both audio content
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Table 1. The 12 song tuples across four genres, consisting of 3 songs per tuple, used in our survey. For each song tuple,
the first song listed is the well-known reference song (A1), followed by the more acoustically similar B1/B2 song, and
then the less acoustically similar B1/B2 song. The first line for each of our four concepts (acoustic similarity, playlist
selection, recommendation, and personal preference) represents the number of participants respectively that selected the
first place song / indicated that they were the same / selected second place song based on acoustic similarity. The second
line represents the p-value for a binomial hypothesis test in which the null hypothesis assumes that B1/B2 songs are equally
likely to be selected by a participant. Song tuples are sorted by these p-values for acoustic similarity. Bold font indicates
statistically significant differences at the α < 0.05 level. Italics indicate that participants generally preferred the less
acoustically similar song.

Genre Artist Song
Acoustic Playlist

Recommend Preference
Similarity Selection

Rock
The Beatles Here Comes The Sun 45 / 12 / 5 42 / 15 / 5 42 / 15 / 5 31 / 18 / 13
Aviator Stash Hype 0.000 0.000 0.000 0.006
Aviator Stash Tyler the Beat

Hip Hop
Nicki Minaj Anaconda 19 / 0 /1 14 / 3 / 3 14 / 5 / 1 5 / 6 / 9
Mulatto B*tch From Da Souf 0.000 0.010 0.001 0.244
Mulatto Longway

Rock
Paramore Still into You 14 / 2 / 1 13 / 3 / 1 12 / 1 / 4 8 / 7 / 2
Tonight Alive Lonely Girl 0.001 0.002 0.056 0.088
Tonight Alive The Other Side

Pop
Post Malone rockstar 22 / 8 / 5 17 / 8 / 10 15 / 11 / 9 10 / 10 / 15
Lil Xan Lies 0.001 0.126 0.156 0.195
Lil Xan Color Blind

Pop
Billie Eilish bad guy 29 / 5 / 10 29 / 6 / 9 28 / 5 / 11 20 / 13 / 11
Gabbie Hanna Honestly 0.002 0.001 0.006 0.079
Gabbie Hanna Butterflies

Hip Hop
Cardi B I Like It 13 / 2 / 3 12 / 2 / 4 8 / 4 / 6 6 / 5 / 7
Kash Doll Doin Too Much 0.017 0.056 0.367 0.419
Kash Doll No Lames

Rock
Imagine Dragons Believer 13 / 5 / 3 8 / 10 / 3 10 / 8 / 3 3 / 9 / 9
The Score Unstoppable 0.017 0.161 0.070 0.107
The Score Legend

Hip Hop
Drake One Dance 14 / 2 / 4 13 / 3 / 4 11 / 6 / 3 7 / 9 / 4
Kahiem Rivera Smokin’ Weed with the Devil 0.023 0.036 0.044 0.322
Kahiem Rivera Good Winter

Pop
The Weeknd Starboy 21 / 5 / 10 13 / 8 / 15 18 / 6 / 12 13 / 6 / 17
Myer Clarity Love Me When I’m High 0.041 0.279 0.161 0.223
Myer Clarity All the Way Down

R&B
Beyoncé Halo 9 / 2 / 3 12 / 0 / 2 11 / 0 / 3 7 / 4 / 3
Keri Hilson Energy - Main Final 0.107 0.011 0.044 0.234
Keri Hilson Got Your Back

R&B
Camila Cabello Havana 9 / 2 / 4 9 / 2 / 4 10 / 0 / 5 10 / 1 / 4
Ally Brooke Lips Don’t Lie 0.175 0.175 0.183 0.122
Ally Brooke No Good

R&B
Frank Ocean Thinkin Bout You 9 / 1 / 5 10 / 2 / 3 9 / 3 / 3 10 / 2 / 3
Syd Getting Late 0.244 0.070 0.107 0.070
Syd Over
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Table 2. Coded responses from 95 participants to questions about acoustic similarity, playlist selection, and music recom-
mendation. The numbers in parenthesis reflect the number responses for each label.

Q1: When comparing songs in terms of acoustic similarity, what do you consider to be most important?
Textural content (71) Instrumentation (37), Vibe/tone (15), Vocal tone (13), Production/mix (6)
Rhythmic content (65) Tempo (37), Beat/rhythm (24), Bass line (3), Repetitiveness (1)
Dynamic content (13) Energy (8), Dynamic range(2), Volume (2), Brightness/intensity (1)
Musicological concepts (8) Genre/style (4), Mood/expression (4)
Harmonic content (7) Key (5), Chords (2)
Context (3) Lyrics (3)

Q2: When deciding to pick specific songs for a playlist, what do you consider to be most important?
Textural content (49) Vibe/tone (25), Acoustic similarity (18), Instrumentation (5), Vocal tone (3)
Musicological concepts (32) Mood/expression (19) , Genre/style (12), Time period (1)
Preference (17) Personal preference (9), Personal mood (6), Catchy (1)
Playlist mix (17) Flow between songs (10), Variety (7)
Context (13) Lyrics (7), Theme (6)
Rhythmic content (13) Tempo (9), Beat (4)
Dynamic content (7) Energy (7)

Q3: When deciding songs to recommend to a friend, what do you consider to be most important?
Preference (59) Friend will like (32), Personal preference (16), Interesting to me (5), Catchy (5), Originality (1)
Textural content (30) Acoustic similarity (20), Vibe/tone (5), Instrumentation (3), Vocal tone (2)
Musicological concepts (11) Genre/style (11)
Context (6) Lyrics (3), Meaning (2), Artist background (1)
Rhythmic content (3) Beat (3)

as well as information that is not directly related to audio
content such as personal preference, artist background, and
lyrical meaning. That is, while audio similarity is impor-
tant when creating playlists and recommending music, it is
not the only factor that listeners use to make decisions.

4. DISCUSSION OF RESULTS
In this section, we address the three questions that we ini-
tially posed using the data that we collected from our user
study.

4.1 RQ1: Consistency of Acoustic Similarity
Judgments

The first question we explore is the extent to which judg-
ments about acoustic similarity are consistent across many
listeners. To do this, we examine how often one of the
B1/B2 songs is designated as being more acoustically sim-
ilar to the A1 song for each of the 12 song tuples. The third
column of Table 1 reports the raw counts of how often the
winning B1/B2 song is designated as being more, equally,
or less acoustically similar by our study’s participants. We
also conducted a binomial hypothesis test where the null
hypothesis assumes that both B1/B2 songs are equally sim-
ilar to the A1 song.

In 9 of the 12 tuples, the similarity judgment was signif-
icantly (α < 0.05) pointing in one direction 5 , suggesting
that there was a winner between the B1/B2 songs. The
other three tuples showed majorities at or above 64% of
the vote. These three tuples were the three R&B tuples
that received the fewest number of evaluations, reducing
the statistical power of the tests. Overall, the results sug-
gest that listeners are somewhat consistent in their judg-

5 When applying a Bonferroni correction for multiple hypothesis tests,
we observe that 5 of the 12 tuples have p-values less than α < 0.004.

Table 3. Correlation coefficients for 317 song tuple trials
when comparing pairs of acoustic similarity, playlist selec-
tion, song recommendation, and personal preference.

Playlist Recommend Pref.
Aco. Similarity 0.716 0.595 0.387
Playlist 0.596 0.386
Recommend 0.116

ment of acoustic similarity even when comparing songs by
similar artists.

4.2 RQ2: Relationship between Playlist Selection and
Recommendation

To answer our second research question, we look at the
correlation between how participants voted for B1 or B2
relative to A with respect to assessing acoustic similarity,
song selection for playlist creation, music recommenda-
tion, and personal preference. In Table 3, we report the cor-
relation coefficients between pairs of these four concepts.
We also conducted a two-tailed hypothesis test for each of
these correlation coefficients and found all six to be highly
statistically significant, with five p-values less than 0.001
and the p-value for recommendation and preference equal
to 0.038.

We see that acoustic similarity is most highly corre-
lated with playlist selection, suggesting that listeners con-
sider acoustic similarity to be important when constructing
playlists. This high correlation is also supported by the
qualitative feedback (see Table 2) in which acoustic sim-
ilarity is explicitly mentioned as being an important con-
sideration by 18 participants. The participants also men-
tion a large number of acoustic concepts related to texture,
rhythm, and dynamics.
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We also observe a high level of correlation between
acoustic similarity and recommendation. This is consistent
with the coded qualitative feedback (see Table 2) in which
20 participants explicitly mention the role of acoustic sim-
ilarity in music recommendation. However, the slightly
lower level of correlation might be attributed to the fact
that preference seems to play a greater role in recommen-
dation than acoustic similarity.

Finally, we note a lower level of correlation with per-
sonal preference. This is unsurprising since in the previ-
ous two cases, we asked participants to make judgments
between B1 and B2 relative to the A1 song. It is reason-
able that one of the B1/B2 songs would fit more naturally,
but that the participant would personally prefer the other
B1/B2 song. This, in fact, occurred in 5 of our 12 tuples
(see the right most column of Table 1) suggesting that mak-
ing a recommendation relative to a reference song is differ-
ent from simply picking preferred songs in isolation.

4.3 RQ3: Acoustic Similarity with Acoustic Features
Here, we explore how a set of song-level content-based
features are related to human judgments about acoustic
similarity. The specific set of features that we use are ob-
tained using the Audio Features for a Track endpoint from
the Spotify Web API 6 . These eleven mid-level song fea-
tures include danceability, energy, key, loudness, mode,
speechiness, acousticness, instrumentalness, liveness, va-
lence, and tempo.

Our approach involved conducting a one-tailed paired
t-test over the 12 song tuples for each of the 11 audio fea-
tures. For each tuple, we calculate the magnitude (absolute
value) of the difference of an audio feature between the
the winning B1/B2 song and the reference track A1, and
the magnitude of the difference between the losing B1/B2
song and A1. Here, our alternative hypothesis is that the
deviation between the winning B1/B2 song and A1 will
be smaller than losing B1/B2 and A1 for a given feature.
This would imply that the audio feature encodes informa-
tion that is used by listeners to assess acoustic similarity.

None of the t-tests for any of the 11 audio features re-
vealed any statistically significant differences at the 0.05
confidence level, suggesting that there is no obvious single
audio feature that can be used directly to predict acoustic
similarity. However, five features shown in Table 4 have a
p-value less than α < 0.15, suggesting that these features
may be related to acoustic similarity. We should note that
our sample size with n = 12 tuples is small and, as a re-
sult, the power of our hypothesis test was limited. A future
study with a larger number of song tuples (i.e., more sta-
tistical power) may result in more statistically significant
results.

It is interesting to note that two of these features, va-
lence and energy, roughly correspond to the first two di-
mensions of Russell’s classic circumspect model of affect
[16] that is frequently used to model mood in emotion [9].
Tempo is a rhythmic audio feature and was explicitly men-
tioned by a large number of our study’s participants as be-
ing important for assessing acoustic similarity (see Table 2)

6 https://developer.spotify.com/documentation/web-
api/reference/tracks/get-audio-features/

Table 4. Spotify audio features for p-values less than α <
0.15.

Acoustic Feature p-value
valence 0.07
speechiness 0.11
tempo 0.12
liveness 0.13
energy 0.13

as well as for song selection when creating playlists. The
other two features, speechiness and liveness, are less typi-
cal features that were engineered by researchers first at The
Echo Nest 7 and now at Spotify 8 to describe the texture of
a song. Taken together, this set of five features reflects song
texture, rhythmic properties, and perceived mood, suggest-
ing that acoustic similarity is likely to be multi-faceted.

5. CONCLUSION

In this paper, we have explored the relationships be-
tween the concepts of acoustic similarity, song selection
for playlist creation, music recommendation, and personal
preference. Through our user study, we have found that:

1. There is a degree of consistency among human judg-
ments of acoustic similarity.

2. Acoustic similarity is highly correlated with playlist
selection and recommendation, but not personal
preference.

3. While certain acoustic features obtained seem to be
related to acoustic similarity, additional evidence
(i.e., more tuples) is necessary to support this with
statistical certainty.

These findings are especially significant for the task of rec-
ommending songs by obscure, long-tail artists. They pro-
vide empirical support for the usage of content-based rec-
ommender systems when lack of user preference data pre-
cludes the effective functioning of collaborative filtering-
based recommender systems. This can apply to both more
general recommendation tasks, as well as specific ones like
next-song selection for playlist generation.

Building upon the findings described in this paper, a po-
tential avenue for further investigation would be another
user study, in a similar vein to our study, but covering a
much wider range of music than the 36 songs included in
our study, and perhaps with fewer human evaluations per
song tuple. This would allow us to determine with sta-
tistical certainty whether specific acoustic features encode
information about acoustic similarity, therefore providing
insight into what acoustic features should be taken into
account when building a content-based recommender sys-
tem [4]. Ultimately, the findings from this paper combined
with additional research will aid in the development of a
more effective novel-artist recommender system for Local-
ify and other similar music recommendation services.

7 https://github.com/echonest/pyechonest
8 https://developer.spotify.com/documentation/web-

api/reference/tracks/get-audio-features/
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ABSTRACT

Synthetic creation of drum sounds (e.g., in drum machines)
is commonly performed using analog or digital synthesis,
allowing a musician to sculpt the desired timbre modify-
ing various parameters. Typically, such parameters control
low-level features of the sound and often have no musical
meaning or perceptual correspondence. With the rise of
Deep Learning, data-driven processing of audio emerges
as an alternative to traditional signal processing. This new
paradigm allows controlling the synthesis process through
learned high-level features or by conditioning a model
on musically relevant information. In this paper, we ap-
ply a Generative Adversarial Network to the task of au-
dio synthesis of drum sounds. By conditioning the model
on perceptual features computed with a publicly available
feature-extractor, intuitive control is gained over the gen-
eration process. The experiments are carried out on a large
collection of kick, snare, and cymbal sounds. We show
that, compared to a specific prior work based on a U-Net
architecture, our approach considerably improves the qual-
ity of the generated drum samples, and that the conditional
input indeed shapes the perceptual characteristics of the
sounds. Also, we provide audio examples and release the
code used in our experiments. 1

1. INTRODUCTION

Drum machines are electronic musical instruments that
create percussion sounds and allow to arrange them in pat-
terns over time. The sounds produced by some of these
machines are created synthetically using analog or digital
signal processing. For example, a simple snare drum can
be synthesized by generating noise and shaping its am-
plitude envelope [1] or, a bass drum, by combining low-
frequency harmonic sine waves with dense mid-frequency
components [2]. The characteristic sound of this synthe-
sis process contributed to the cult status of electronic drum
machines in the ’80s.

1 https://github.com/SonyCSLParis/DrumGAN

c© Javier Nistal, Stefan Lattner, Gaël Richard. Licensed un-
der a Creative Commons Attribution 4.0 International License (CC BY
4.0). Attribution: Javier Nistal, Stefan Lattner, Gaël Richard, “Drum-
GAN: Synthesis of Drum Sounds with Timbral Feature Conditioning Us-
ing Generative Adversarial Networks”, in Proc. of the 21st Int. Society
for Music Information Retrieval Conf., Montréal, Canada, 2020.

Data-driven processing of audio using Deep Learning
(DL) emerged as an alternative to traditional signal pro-
cessing. This new paradigm allows us to steer the syn-
thesis process by manipulating learned higher-level latent
variables, which provide a more intuitive control compared
to conventional drum machines and synthesizers. In addi-
tion, as DL models can be trained on arbitrary data, com-
prehensive control over the generation process can be en-
abled without limiting the sound characteristic to that of
a particular synthesis process. For example, Generative
Adversarial Networks (GANs) allow to control drum syn-
thesis through their latent input noise [3] and Variational
Autoencoders (VAE) can be used to create variations of
existing sounds by manipulating their position in a learned
timbral space [4]. However, an essential issue when learn-
ing latent spaces in an unsupervised manner is the miss-
ing interpretability of the learned latent dimensions. This
can be a disadvantage in music applications, where com-
prehensible interaction lies at the core of the creative pro-
cess. Therefore, it is desirable to develop a system which
offers expressive and musically meaningful control over
its generated output. A way to achieve this, provided that
suitable annotations are available, is to feed higher-level
conditioning information to the model. The user can then
manipulate this conditioning information in the generation
process. Along this line, some works on sound synthesis
have incorporated pitch-conditioning [5, 6], or categorical
semantic tags [7], capturing rather abstract sound charac-
teristics. In the case of drum pattern generation, there are
neural-network approaches that can create full drum tracks
conditioned on existing musical material [8].

In a recent study [9], a U-Net is applied to neural
drum sound synthesis, conditioned on continuous percep-
tual features describing timbre (e.g., boominess, bright-
ness, depth). These features are computed using the Au-
dio Commons timbre models. 2 Compared to prior work,
this continuous feature conditioning (instead of using cat-
egorical labels) for audio synthesis provides more fine-
grained control to a musician. However, this U-Net ap-
proach learns a deterministic mapping of the conditioning
input information to the synthesized audio. This limits the
model’s capacity to capture the variance in the data, result-
ing in a sound quality that does not seem acceptable in a
professional music production scenario.

In this paper, we build upon the same idea of con-
ditional generation using continuous perceptual features,

2 https://github.com/AudioCommons/ac-audio-extractor
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but instead of a U-Net, we employ a Progressive Grow-
ing Wasserstein GAN (PGAN) [10]. Our contribution is
two-fold. First, we employ a PGAN on the task of con-
ditional drum sound synthesis. Second, we use an auxil-
iary regression loss term in the discriminator as a means to
control audio generation based on the conditional features.
We are not aware of previous work attempting continuous
sparse conditioning of GANs for musical audio generation.
We conduct our experiments on a dataset of a large vari-
ety of kick, snare, and cymbal sounds comprising approx-
imately 300k samples. Also, we investigate whether the
feature conditioning improves the quality and coherence
of the generated audio. For that, we perform an exten-
sive experimental evaluation of our model, both in condi-
tional and unconditional settings. We evaluate our models
by comparing the Inception Score (IS), the Fréchet Audio
Distance (FAD), and the Kernel Inception Distance (KID).
Furthermore, we evaluate the perceptual feature condition-
ing by testing if changing the value of a specific input fea-
ture yields the expected change of the corresponding fea-
ture in the generated output. Audio samples of DrumGAN
can be found on the accompaniment website (see Section
4).

The paper is organized as follows: In Section 2 we re-
view previous work on audio synthesis, and in Section 3
we describe the experiment setup. Results are presented in
Section 4, and we conclude in Section 5.

2. PREVIOUS WORK

Deep Generative modeling is a topic that has gained a lot
of interest during the last years. This has been possible
partly due to the growing amount of large-scale datasets
of different modalities [5, 11] coupled with groundbreak-
ing research on generative neural networks [10, 12–15]. In
addition to the methods listed in the introduction focus-
ing on drums sound generation, a number of other studies
have applied deep learning methods to address general au-
dio synthesis. Autoregressive models for raw audio have
been very influential in the beginning of this line of re-
search, and still achieve state of the art in different audio
synthesis tasks [5, 12, 16, 17]. Approaches using Varia-
tional Auto-Encoders [13] allow manipulating the audio in
latent spaces learnt i) directly from the audio data [4], ii)
by imposing musically meaningful priors over the struc-
ture of these spaces [7, 18, 19], or iii) by restricting such
latent codes to discrete representations [20]. GANs have
been extensively applied to synthesis of speech [21] and
domain adaptation [22, 23] tasks. The first of its kind ap-
plying adversarial learning to the synthesis of musical au-
dio is WaveGAN [3]. This architecture was shown to syn-
thesize audio from a variety of sound sources, including
drums, in an unconditional way. Recent improvements in
the quality and training stability of GANs [10, 24, 25] re-
sulted in methods that outperform WaveNet baselines on
the task of audio synthesis of musical notes using sparse
conditioning labels representing the pitch content [6]. A
few other works have used GANs with rather strong con-
ditioning on prior information for tasks like Mel-spectrum

inversion [26] or audio domain adaptation [27, 28]. Re-
cently, other promising related research incorporates prior
domain-knowledge into the neural network, by embedding
differentiable signal processing blocks directly into the ar-
chitecture [29].

3. EXPERIMENT SETUP

In this Section details are given about the conducted ex-
periment, including the data used, the model architecture
and training details, as well as the metrics employed for
evaluation.

3.1 Data

In the following, we briefly describe the drum dataset used
throughout our experiments, as well as the Audio Com-
mons feature models, with which we extract perceptive
features from the dataset.

3.1.1 Dataset

For this work, we make use of an internal, non-publicly
available dataset of approximately 300k one-shot audio
samples aligned and distributed across a balanced set of
kick, snare, and cymbal sounds. The samples originally
have a sample rate of 44.1kHz and variable lengths. In
order to make the task simpler, each sample is shortened
to a duration of one second and down-sampled to a sam-
ple rate of 16kHz. For each audio sample, we extract per-
ceptual features with the Audio Commons timbre models
(see Section 3.1.2). We perform an 90% / 10% split of
the dataset for validation purposes. The model is trained
on the real and imaginary components of the Short-Time
Fourier Transform (STFT), which has been shown to work
well in [30]. We compute the STFT using a window size of
2048 samples and 75% overlapping. The generated spec-
trograms are then simply inverted back to the signal do-
main using the inverse STFT.

3.1.2 Audio-Commons Timbre Models

The Audio Commons project 3 implements a collection of
perceptual models of features that describe high-level tim-
bral properties of the sound. These features are designed
from the study of popular timbre ratings given to a collec-
tion of sounds obtained from Freesound 4 . The models are
built by combining existing low-level features found in the
literature (e.g., spectral centroid, dynamic-range, spectral
energy ratios, etc), which correlate with the target prop-
erties enumerated below. All features are defined in the
range [0-100]. We employ these features as conditioning
to the generative model. For more information, we direct
the reader to the project deliverable.3

• brightness: refers to the clarity and amount of high-
pitched content in the analyzed sound. It is com-
puted from the spectral centroid and the spectral en-
ergy ratio.

3 https://www.audiocommons.org/2018/07/15/
audio-commons-audio-extractor.html

4 https://freesound.org/
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• hardness: refers to the stiffness or solid nature of the
acoustic source that could have produced a sound. It
is estimated using a linear regression model on spec-
tral and temporal features extracted from the attack
segment of a sound event.

• depth: refers to the sensation of perceiving a sound
coming from an acoustic source beneath the sur-
face. A linear regression model estimates depth from
the spectral centroid of the lower frequencies, the
proportion of low frequency energy and the low-
frequency limit of the audio excerpt.

• roughness: refers to the irregular and uneven sonic
texture of a sound. It is estimated from the interac-
tion of peaks and nearby bins within frequency spec-
tral frames. When neighboring frequency compo-
nents have peaks with similar amplitude, the sound
is said to produce a ‘rough’ sensation.

• boominess: refers to a sound with deep and loud
resonant components. 5

• warmth: refers to sounds that induce a sen-
sation analogous to that caused by the physical
temperature. 5

• sharpness: refers to a sound that might cut if it were
to take on physical form. 5

3.2 Architecture Design and Training Procedure

In the following, we will introduce the architecture and
training of DrumGAN, and will briefly describe the base-
line model against which DrumGAN is evaluated.

3.2.1 Generative Adversarial Networks

Generative Adversarial Networks (GAN) are a family of
training procedures inspired by game theory, in which a
generative model competes against a discriminative adver-
sary, that learns to distinguish whether a sample is real or
fake [14]. The generative network, or Generator (G), esti-
mates a distribution pg over the data x by learning a map-
ping of an input noise pz to data space as Gθ(z), where
Gθ is a neural network implementing a differentiable func-
tion with parameters θ. Inversely, the discriminatorDβ(x),
with parameters β is trained to output a single scalar indi-
cating whether the input comes from the real data pr or
from the generated distribution pg . Simultaneously, G is
trained to produce samples that are identified as real by the
discriminator. Competition drives both networks until an
equilibrium point is reached and the generated examples
are indistinguishable from the original data. For a Wasser-
stein GAN, as used in our experiments, the training crite-
rion is formally defined as

min
G

max
D

Γ(D,G) =
1

N

∑
i

D(xi)−D(G(zi)). (1)

5 Description of the calculation method for this feature is not available
to the authors at current time.

Figure 1. Proposed architecture for DrumGAN (see Sec-
tion 3.2 for details).

3.2.2 Proposed Architecture

In the proposed architecture, the input to G is a concate-
nation of the 7 conditioning features c, described in Sec-
tion 3.1.2, and a random vector z with 128 components
sampled from an independent Gaussian distribution. The
resulting vector is fed through a stack of convolutional
and box up-sampling blocks to generate the output signal
x = Gθ(z; c). In order to turn the 1D input vector into a
4D convolutional input, it is zero-padded in the time- and
frequency-dimension (i.e., placed in the middle of the con-
volutional input with 128 + 7 convolutional maps). As de-
picted in Figure 1, the generator’s input block performs this
zero-padding followed by two convolutional layers with
ReLU non-linearity. Each scale block is composed of one
box up-sampling step at the input and two convolutional
layers with filters of size (3, 3). The number of feature
maps decreases from low to high resolution as {256, 128,
128, 128, 64, 32}. Up-sampling of the temporal dimen-
sion is just performed after the 3rd scale block. We use a
Leaky ReLU as activation functions and apply pixel nor-
malization after every convolutional step (i.e., normaliz-
ing the norm over the output maps at each position). The
discriminator D is composed of convolutional and down-
sampling blocks, mirroring G’s configuration. Given a
batch of either real or generated STFT audio, D estimates
the Wasserstein distance between the real and generated
distributions [24], and predicts the perceptual features ac-

Proceedings of the 21st ISMIR Conference, Montréal, Canada, October 11-16, 2020
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companying the input audio in the case of a real batch, or
those used for conditioning in the case of generated audio.
In order to promote the usage of the conditioning informa-
tion byG, we add an auxiliary Mean Squared Error (MSE)
loss term to the objective function, following a similar ap-
proach as in [31]. We use a gradient penalty of 10.0 to
satisfy the Lipschitz continuity condition of Wasserstein
GANs. The weights are initialized to zero and we ap-
ply layer-wise normalization at run-time using He’s con-
stant [32] to promote an equalized learning. A mini-batch
standard deviation layer before the output block of D en-
couragesG to generate more variety and, therefore, reduce
mode collapse [25].

3.2.3 Training Procedure

Training follows the procedure of Progressive Growing
of GANs (PGANs), first used for image generation [10],
which has been successfully applied to audio synthesis of
pitched sounds [6]. In a PGAN, the architecture is built
dynamically during training. The process is divided into
training iterations that progressively introduce new blocks
to both the Generator and the Discriminator, as depicted in
Figure 1. While training, a blending parameter α progres-
sively fades in the gradient derived from the new blocks,
minimizing possible perturbation effects. The models are
trained for 1.1M iterations on batches of 30, 30, 20, 20 12
and 12 samples, respectively for each scale. Each scale is
trained during 200k iterations except the last one, which
is trained up to 300k iterations. We employ Adam as the
optimization method and a learning rate of 0.001 for both
networks.

3.2.4 The U-Net Baseline

As mentioned in the introduction, we compare DrumGAN
against a previous work tackling the exact same task (i.e.,
neural synthesis of drums sounds, conditioned on the same
perceptual features described in Section 3.1.2), but using a
U-Net architecture operating in the time domain [9]. The
U-Net model is trained to deterministically map the con-
ditioning features (and an envelope of the same size as the
output) to the output. The dataset used thereby consists of
11k drum samples obtained from Freesound 6 , which in-
cludes kicks, snares, cymbals, and other percussion sounds
(referred to as Freesound drum subset in the following).

3.3 Evaluation

Assessing the quality of synthesized audio is hard to for-
malize making the evaluation of generative models for au-
dio a challenging task. In the particular case of GANs,
where no explicit likelihood maximization exists, a com-
mon evaluation approach is to measure the model’s perfor-
mance in a variety of surrogate tasks [33]. As described
in the following, we evaluate our models against a diverse
set of metrics that capture distinct aspects of the model’s
performance.

6 www.freesound.org

3.3.1 Inception Score

The Inception Score (IS) [25] penalizes models that gener-
ate examples that are not classified into a single class with
high confidence, as well as models whose examples belong
to only a few of all the possible classes. It is defined as the
mean KL divergence between the conditional class proba-
bilities p(y|x), and the marginal distribution p(y) using the
class predictions of an Inception classifier (see Eq. 2). We
train our Inception Net 7 variant to classify kicks, snares
and cymbals, from Mel-scaled magnitude STFT spectro-
grams using the same train/validation split of 90% / 10%,
used throughout our experiments. As additional targets, we
also train the model to predict the extracted perceptual fea-
tures described in Section 3.1.2 (using mean-squared error
cost).

IS = exp
(
Ex[KL(p(y|x)||p(y))]

)
(2)

3.3.2 Fréchet Audio Distance (FAD)

The Fréchet Audio Distance compares the statistics of real
and generated data computed from an embedding layer of a
pre-trained VGG-like model 8 [34]. FAD fits a continuous
multivariate Gaussian to the output of the embedding layer
for real and generated data and the distance between these
is calculated as:

FAD = ||µr − µg||2 + tr(Σr + Σg − 2
√

ΣrΣg) (3)

where (µr,Σr) and (µg,Σg) are the mean and co-
variances of the embedding of real and generated data re-
spectively. The lower the FAD, the smaller the distance
between distributions of real and generated data. FAD is
robust against noise, consistent with human judgments and
more sensible to intra-class mode dropping than IS.

3.3.3 Kernel Inception Distance (KID)

The KID measures the dissimilarity between samples
drawn independently from real and generated distributions
[35]. It is defined as the squared Maximum Mean Discrep-
ancy (MMD) between representations of the last layer of
the Inception model (described in Section 3.3.1). A lower
MMD means that the generated pg and real pr distributions
are close to each other. We employ the unbiased estimator
of the squared MMD [36] between m samples x ∼ pr and
n samples y ∼ pg , for some fixed characteristic kernel
function k, defined as

MMD2(X,Y ) =
1

m(m− 1)

m∑
i 6=j

k(xi, xj)

+
1

n(n− 1)

n∑
i6=j

k(yi, yj)

−
2

mn

m∑
i=1

n∑
j=1

k(xi, yj).

(4)

Here, we use an inverse multi-quadratic kernel (IMQ)
k(x, y) = 1/(1 + ||x− y||2/2γ2) with γ2 = 8 [37], which

7 https://github.com/pytorch/vision/blob/master/
torchvision/models/inception.py

8 https://github.com/google-research/google-research/
tree/master/frechet_audio_distance
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has a heavy tail and, hence, it is sensitive to outliers. We
borrow this metric from the Computer Vision literature and
apply it to the audio domain. We train a separate incep-
tion model on the FreeSound drum subset used for the U-
Net baseline experiments (see Section 3.2.4). This is done
to allow comparison of the inception-based metrics with
DrumGAN. Since the FreeSound drum subset doesn’t con-
tain annotations of the instrument type, we train our variant
on just the feature regression task, and restrict our compari-
son to KID and FAD, as these metrics do not compare class
probabilities but embedding distributions.

3.3.4 Feature Coherence

We follow the methodology proposed by [9] for evaluat-
ing the feature control coherence. The goal is to assess
whether increasing or decreasing a specific feature value
of the conditioning input yields the corresponding change
of that feature in the synthesized audio. To this end, a spe-
cific feature i is set to 0.2 (low), 0.5 (mid), and 0.8 (high),
keeping the other features and the input noise fixed. The re-
sulting outputs xilow, ximid, xihigh are then evaluated with the
Audio Commons Timbre Models (yielding features fxi).
Then, it is assessed if the feature of interest changed as ex-
pected (i.e., fxilow < fximid < fxihigh). More precisely,
three conditions are evaluated: E1: fxilow < fxihigh, E2:
fximid < fxihigh, and E3: fxilow < fximid. We perform these
three tests 1000 times for each feature, always with differ-
ent random input noise and different configurations of the
other features (sampled from the evaluation set). The re-
sulting accuracies are reported.

4. RESULTS AND DISCUSSION

In this section, we briefly describe our subjective impres-
sion when listening to the model output, and we will give
an extended discussion on the quantitative analysis, includ-
ing the comparison with the baseline U-Net architecture.

4.1 Subjective Evaluation and Generation Tests
The results of the qualitative experiments discussed in this
section can be found on the accompaniment website. 9 In
general, conditional DrumGAN seems to have better qual-
ity than its unconditional counterpart and substantially bet-
ter than the U-Net baseline (see Section 3.2.4). In the ab-
sence of more reliable baselines, we argue that the per-
ceived quality of DrumGAN is comparable to that of pre-
vious state-of-the-art work on adversarial audio synthesis
of drums [3].

We also perform radial and spherical interpolation ex-
periments (with respect to the Gaussian prior) between ran-
dom points selected in the latent space of DrumGAN. Both
interpolations yield smooth and perceptually linear transi-
tions in the audio domain. We notice that radial interpo-
lation tend to change the percussion type (i.e., kick, snare,
cymbal) of the output, while spherical interpolation affects
other properties (like within-class timbral characteristics
and envelope) of the synthesized audio. This gives a hint
on how the latent manifold is structured.

9 https://sites.google.com/view/drumgan

IS KID FAD

real data 2.26 0.05 0.00
train feats 2.19 0.39 0.77
val feats 2.18 0.35 0.76
rand feats 2.09 1.36 0.70
unconditional 2.19 1.07 1.00

Table 1. Results of Inception Score (IS, higher is bet-
ter), Kernel Inception Distance (KID, lower is better) and
Fréchet Audio Distance (FAD, lower is better), scored by
DrumGAN under different conditioning settings, against
real data and the unconditional baseline. The metrics are
computed over 50k samples, except for val feats, where
30k samples are used (i.e., the validation set size).

KID FAD

real data 0.04 0.00
real feats 1.45 3.09
rand feats 13.94 3.17

Table 2. Results of Kernel Inception Distance (KID) and
Fréchet Audio Distance (FAD), scored by the U-Net base-
line [9] when conditioning the model on feature configu-
rations from the real data and on randomly sampled fea-
tures. The metrics are computed over 11k samples (i.e.,
the Freesound drum subset size).

4.2 Quantitative Results

4.2.1 Scores and Distances

Table 1 shows the DrumGAN results for the Inception
Score (IS), the Kernel Inception Distance (KID), and the
Fréchet Audio Distance (FAD), as described in Section
3.3. These metrics are calculated on the synthesized drum
sounds of the model, based on different conditioning set-
tings. Besides the unconditional setting of DrumGAN
(unconditional), we use feature configurations from the
train set (train feats), the valid set (valid feats), and fea-
tures randomly sampled from a uniform distribution (rand
feats). The IS of DrumGAN samples is close to that of
the real data in most settings. This means that the model
outputs are clearly assignable to either of the respective
percussion-type classes (i.e., low entropy for kick, snare,
and cymbal posteriors), and that it doesn’t omit any of
them (i.e., high entropy for the marginal over all classes).
The IS is slightly reduced for random conditioning fea-
tures, indicating that using uncommon conditioning con-
figurations makes the outputs more ambiguous with re-
spect to specific percussion types. While FAD is a measure
for the perceived quality of the individual sounds (measur-
ing co-variances within data instances), the KID reflects if
the generated data overall follows the distribution of the
real data. Therefore, it is interesting to see that rand feats
cause outputs which overall do not follow the distribution
of the real data (i.e., high KID), but the individual outputs
are still plausible percussion samples (i.e., low FAD). This
quantitative result is in-line with the perceived quality of
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U-Net DrumGAN

Feature E1 E2 E3 E1 E2 E3

brightness 0.99 0.99 1.00 0.74 0.71 0.70
hardness 0.64 0.65 0.59 0.64 0.64 0.62
depth 0.94 0.65 0.94 0.79 0.72 0.74
roughness 0.63 0.59 0.57 0.72 0.68 0.67
boominess 0.98 0.82 0.98 0.80 0.74 0.77
warmth 0.92 0.79 0.91 0.76 0.71 0.71
sharpness 0.63 0.77 0.45 0.84 0.82 0.82

average 0.83 0.76 0.78 0.76 0.72 0.72

Table 3. Mean accuracies for the feature coherence tests
on samples generated with the baseline U-Net [9] and
DrumGAN.

the generated samples (see Section 4.1). In the uncondi-
tional setting, both KID and FAD are worse, indicating that
feature conditioning helps the model to both generate data
following the true distribution, overall, as well as in indi-
vidual samples.

Table 2 shows the evaluation results for the U-Net archi-
tecture (see Section 3.2.4). As the train / valid split for the
Freesound drum subset (on which the U-Net was trained)
is not available to the authors, the U-Net model is tested
using the features of the full Freesound drum subset (real
feats), as well as random features. Also, we do not re-
port the IS for the U-Net architecture, as it was trained on
data without percussion-type labels, making it impossible
to train the inception model on such targets. As a baseline,
all metrics are also evaluated on the real data on which
the respective models were trained. While evaluation on
the real data is straight-forward for the IS (i.e., just using
the original data instead of the generated data to obtain the
statistics), both KID and FAD are measures usually com-
paring the statistics between features of real and generated
data. Therefore, for the real data baseline, we split the
real data into two equal parts and compare those with each
other in order to obtain KID and FAD. The performance
of the U-Net approach on both, KID and FAD is consid-
erably worse than that of DrumGAN. While the KID for
real feats is still comparable to that of DrumGAN (indi-
cating a distribution similar to that of the real data), the
high FAD indicates that the generated samples are not per-
ceptually similar to the real samples. When using random
feature combinations this trend is accentuated moderately
in the case of FAD, and particularly in the case of the KID,
reaching a maximum of almost 14. This is, however, in-
telligible, as the output of the U-Net depends only on the
input features in a deterministic way. Therefore, it is to ex-
pect that the distribution over output samples changes fully
when fully changing the distribution of the inputs.

4.2.2 Feature Coherence

Table 3 shows the accuracy of the three feature coherence
tests explained in Section 3.3.4. Note that, as both mod-
els were trained on different data, the figures of the two
models are not directly comparable. However, also report-
ing the figures of the U-Net approach should provide some
context on the performance of our proposed model. In ad-

dition, as both works use the same feature extractors and
claim that the conditional features are used to shape the
same characteristics of the output, we consider the figures
from the U-Net approach a useful reference. We can see
that for about half the features, the U-Net approach reaches
close to 100% accuracy. Referring to the descriptions on
how the features are computed it seems that the U-Net
approach reaches particularly high accuracies for features
which are computed by looking at the global frequency dis-
tribution of the audio sample, taking into account spectral
centroid and relations between high and low frequencies
(e.g., brightness and depth). U-Net performs considerably
worse for features which take into account the temporal
evolution of the sound (e.g., hardness) or more complex
relationships between frequencies (e.g., roughness). While
DrumGAN performs worse on average on these tests, the
results seem to be more consistent, with less very high, but
also less rather low accuracy values (note that the random-
guessing baseline is 0.5 for all the tests). The reason for
not performing better on average may lie in the fact that
DrumGAN is trained in an adversarial fashion, where the
dataset distribution is enforced, in addition to obeying the
conditioned characteristics. In contrast, in the U-Net ap-
proach the model is trained deterministically to map the
conditioning features to the output, which makes it eas-
ier to satisfy the simpler characteristics, like generating a
lot of low- or high-frequency content. However, this de-
terministic mapping results in a lower audio quality and a
worse approximation to the true data distribution, as it can
be seen in the KID and FAD figures, described above.

5. CONCLUSIONS AND FUTURE WORK

In this work, we performed percussive sound synthesis us-
ing a GAN architecture that enables steering the synthesis
process using musically meaningful controls. To this end,
we collected a dataset of approximately 300k audio sam-
ples containing kicks, snares, and cymbals. We extracted
a set of timbral features, describing high-level semantics
of the sound, and used these as conditional input to our
model. We encouraged the generator to use the condition-
ing information by performing an auxiliary feature regres-
sion task in the discriminator and adding the correspond-
ing MSE loss term to the objective function. In order to
assess whether the feature conditioning improves the gen-
erative process, we trained a model in a completely unsu-
pervised manner for comparison. We evaluated the mod-
els by comparing various metrics, each reflecting differ-
ent characteristics of the generation process. Additionally,
we compared the coherence of the feature control against
previous work. Results showed that DrumGAN generates
high-quality drum samples and provides meaningful con-
trol over the audio generation. The conditioning informa-
tion was proven useful and enabled the network to better
approximate the real distribution of the data. As future
work, we will focus on scaling the model to work with au-
dio production standards (e.g., 44.1kHz sample rate, stereo
audio), and implement a plugin that can be used in a con-
ventional Digital Audio Workstation (DAW).
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ABSTRACT

Unison singing is the name given to an ensemble of singers
simultaneously singing the same melody and lyrics. While
each individual singer in a unison sings the same princi-
ple melody, there are slight timing and pitch deviations
between the singers, which, along with the ensemble of
timbres, give the listener a perceived sense of "unison".
In this paper, we present a study of unison singing in the
context of choirs; utilising some recently proposed deep-
learning based methodologies, we analyse the fundamen-
tal frequency (F0) distribution of the individual singers in
recordings of unison mixtures. Based on the analysis, we
propose a system for synthesising a unison signal from an
a cappella input and a single voice prototype representa-
tive of a unison mixture. We use subjective listening tests
to evaluate perceptual factors of our proposed system for
synthesis, including quality, adherence to the melody as
well the degree of perceived unison.

1. INTRODUCTION

Throughout history, singing has been an important cul-
tural activity for humans, serving for propagation of be-
liefs and ideas amongst the masses as well as for social
entertainment. The social aspect led to gatherings of peo-
ple singing in a group, which evolved into polyphonic
ensemble singing with multiple voices singing counter-
point melodies in complex harmonies. A group of peo-
ple singing in such an ensemble is commonly termed as
a choir and the focus of our study is on one setting of
such choirs consisting of four voices known as Soprano,
Alto, Tenor and Bass (SATB). Each voice within an SATB
ensemble has its own function and melodic range in the
whole. SATB is one of the most widely studied, docu-
mented, and practiced forms of choirs with numerous ded-
icated conservatories across Europe, highlighting the cul-
tural importance of the art form. Within each of the SATB
voices, it is common to have multiple singers of similar

c© P. Chandna, H. Cuesta and E. Gómez. Licensed under
a Creative Commons Attribution 4.0 International License (CC BY 4.0).
Attribution: P. Chandna, H. Cuesta and E. Gómez, “A Deep Learning
Based Analysis-Synthesis Framework For Unison Singing”, in Proc. of
the 21st Int. Society for Music Information Retrieval Conf., Montréal,
Canada, 2020.

vocal range singing the same melody simultaneously, in a
form known as unison singing. While all the singers in a
unison sing the same melody, it is impossible for a group
of two or more people to perfectly synchronize and sing
the exact same pitch line. Each singer has their own nat-
ural micro-deviations, both in terms of timing and pitch,
from the prescribed score and their own distinct timbre.
The combination of micro-deviations and the ensemble of
timbres leads to the perception of unison, wherein sev-
eral singers are perceived to be singing a single pitch con-
tour [1], and is the main focus of our study.

Pitch and fundamental frequency (F0) are related but
not equivalent terms. While the F0 generally refers to the
physical frequency of vibrations of the vocal folds for a
singing voice signal, pitch refers to an abstract perceptual
concept which has been found to be closely correlated to
the F0. Frequency is usually measured in Hertz, represent-
ing the number of cycles of a periodic signal per second,
whereas pitch is described in terms of perceptual units like
cents. The cent is a unit defined on a logarithmic scale, as a
measure of the ratio between the frequency in Hertz and a
base frequency, commonly chosen to be 440 Hz, as shown
in Equation 1.

fcents = 1200 · log2
fhertz
440

(1)

Thus defined, the cent is correlated to the perceptually rele-
vant musical unit of an equally tempered semitone. Specif-
ically, one semitone spans 100 cents. Examined individ-
ually, the pitch of the singers in a unison can be repre-
sented by the F0 of each individual singer’s vocal signal,
this can be tested by synthesising a time-varying sinusoid
with the frequency of the signal. However, when the in-
dividual signals are added the resultant pitch is not merely
the sum of F0 value, and the methodology of synthesising a
sum of sinusoids as with single singers fails to produce the
same perceptual result due to physical phenomena such as
beating, among others. Past studies have utilized artificial
unison mixes created by the use of a vowel only singing
voice synthesizer to study the perception of a single pitch
contour in a unison [1]. Other areas of past research re-
lated to unison singing include single voice to unison syn-
thesis models, based on creating voice clones with varia-
tions in the input [2, 3]. Fuelled by the deep learning rev-
olution, singing voice synthesizers have evolved over the
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last few years, allowing us to take a step further both into
exploring the perception of unison and into effective solo
voice to unison synthesis. We build on the work done by
Ternström [1] by leveraging recently proposed synthesis
methodologies to synthesize a single voice prototype rep-
resenting the melodic and linguistic content of a unison
mixture. This allows use to further test the hypothesis of
a single F0 contour representative of the perceived pitch
of a unison via subjective listening tests. We also verify
the author’s findings by analysing a set of real recordings
of unison singing. In addition, we propose a methodology
combining previous research and recently developed tech-
niques to synthesize a unison mixture from a single voice
input. We follow the basic methodology used by Schnell
et al. [2] to create voice clones with variations in three as-
pects; pitch, timing and timbre, and use perceptual evalua-
tion tests to evaluate the effect of each of these parameters
on the perception of the sense of a unison.

The rest of the paper is structured as follows. Section 2
discusses previous works pertinent to our study. We then
present the analysis of the choir recordings in Section 3,
including a description of the dataset of choir recordings,
the methodology used for the analysis and the results of the
analysis. The synthesis methodology we use for synthesiz-
ing voice clones and the single voice prototype of the uni-
son mixture is described in Section 4. Section 4.3 presents
the perceptual evaluation methodology used and the results
of the perceptual tests. Finally, we present a discussion on
our findings in the analysis of the choir and the perceptual
evaluation of the synthesis in Section 6.

2. RELATED WORK

We divide the description of related works into three sec-
tions: past studies into the analysis of the perception of uni-
son, previous works on synthesising unison mixtures from
choirs and recently proposed deep-learning based method-
ologies what we will use for analysis and synthesis.

2.1 Analysis Of Unison Perception

The perception of pitch dispersion has previously been
studied in [1], wherein the author used synthesized singing
voice stimuli to investigate the preferences of expert listen-
ers in unisons. In the study, pitch dispersion is defined as
the bandwidth of the fundamental frequency and its har-
monic partials across individual singers in a unison. It
is suggested that this dispersion is related to the flutter—
small variations in F0 that are too fast to be perceived as
pitch variations. The concept of pitch scatter is presented
in the study as the standard deviation over voices in the
mean F0: the average F0 computed over the duration of
each tone of a song. The study concludes that a scatter of
0 cents–5 cents was preferred by the participants while a
scatter of 5 cents–14 cents was seen as the limit of toler-
ance before dissonance was reported. In addition, the au-
thor also highlights several differences between solo and
ensemble singing. For instance, a single performer pro-
duces tones with well-defined properties: pitch, timing,

loudness, timbre, while an ensemble of performers pro-
duces sounds with statistical distributions of each of these
properties.

A similar method for modelling scatter in choir sec-
tions was presented by Cuesta et al. [4] using small win-
dows to compute the standard deviation between individ-
ual F0s in the unison. This study used real recordings
of choral singing instead of synthesised stimuli, present-
ing a mathematical model for dispersion rather than a per-
ceptual evaluation. For the dataset used in the research,
F0 (or pitch) dispersion was found to be in the range
of 20 cents–30 cents for all SATB voice sections, being
slightly larger in the Bass.

Another recent study focused on the analysis of F0 in
vocal music is work by Weiss et al. [5], where the au-
thors proposed an approach to measure intonation quality
of choir recordings. They create an ideal 12-tone equal
temperament grid, and then calculate the deviation of each
F0 and its partials to their theoretical position in the grid.
The overall deviation is computed as a weighted sum of
each partial’s deviation. This method enables the analysis
of the overall intonation of a full choir recording, but does
not account for the deviations within sections of the choir.

2.2 Unison Synthesis

Signal processing techniques have previously been utilised
to synthesize choir unison by adding several clones of
a monophonic a cappella signal with uncorrelated pitch,
timing, and timbre deviations. Most particularly, Pitch
Synchronous Overlap Add (PSOLA) methods [2] have
been exploited as an analysis-synthesis framework to de-
compose the vocal signal into a set of constituent wave-
forms representing successive pitch periods of the signal.
Pitch and timing deviations are added to the vocal signal
using time stretching and pitch shifting techniques to cre-
ate voice clones, which are combined to form the output
unison signal.

Other proposed methodologies for creating a unison
output from an a cappella signal include morphing the
spectral and pitch components of the vowels of the input
signal as in [3]. The methodology’s effectiveness is con-
strained to low tempo inputs . Random modulation of beat-
ing partials to create a choral effect [6] has also been used.

2.3 Deep Learning For Analysis and Synthesis

For our work, we build on the work done in [1] and [4],
modelling the perceptual pitch contour of a unison mix-
ture as a single F0 contour. To this end, we use a recently
proposed Convolutional Representation for Pitch Estima-
tion (CREPE) methodology [7] for extracting F0 contours
from real world recordings of individual singers in a choir
setting as well the F0 contour of unison mixture created by
combining the individual voices. This methodology uses a
series of convolutional operations on the waveform of the
input signal and outputs a probability distribution over a
discrete representation of the underlying F0 contour of the
signal across a series of time-frames.
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To synthesize the single voice prototype representing a
unison mixture output and the voice clones for creating
a unison mixture from a single voice input, we adapt the
methodology proposed by Chandna et al. [8], which allows
for the re-synthesis of a solo single voice from a musical
mixture input via the underlying linguistic features. This
methodology builds on the idea of re-synthesizing a vocal
signal from a musical mixture by estimating the parameters
of a vocoder synthesizer [9] and uses an encoder built of a
bank of bi-directional long short-term memory (LSTM) re-
current neural networks (RNNs) to estimate a continuous
representation of the underlying linguistic features present
in the input mixture signal. The continuous representa-
tion is singer-independent and language agnostic, and was
initially proposed for zero-shot voice conversion via an au-
toencoder network [10]. The linguistic features can then be
used to generate the spectral envelope of the vocal signal
in the mixture, providing the singer identity. The authors
of [8] proposed two decoders for this process, a Singer De-
pendent Network (SDN) which takes the singer identity as
a one-hot vector, and a Singer Independent Network (SIN)
which intrinsically learns the singer identity from the given
input. The spectral envelope is then combined with the F0,
extracted via an external algorithm, to synthesize the vocal
signal. While the original framework was proposed for ex-
tracting a singing voice from a pop/rock musical mixture,
we adapt the SDN network for synthesising a unison mix-
ture from an a cappella input and the SIN network for syn-
thesizing an a cappella singing voice from a unison mix-
ture. The adaptations we apply are described in Section 4.
The SIN and SDN models [8] were trained on a proprietary
dataset with 12 hours of data comprising 205 songs by 45
male and female singers, and we have obtained a copy of
the trained model with permission from the relevant au-
thorities for our study.

3. ANALYSIS OF CHOIR RECORDINGS

We analyse the variations between individual singers in a
unison in terms of variance in pitch and timing. Below, we
present the dataset that we use in our analysis, followed by
the methodology used for analysis, and finally the results
of our analysis.

3.1 Datasets

We analyse the Choral Singing Dataset (CSD) [4], which
includes monophonic recordings of 3 choral pieces: Niño
Dios d’Amor Herido, written by Francisco Guerrero, Lo-
cus Iste, written by Anton Bruckner, and El Rossinyol, a
Catalan popular song. There are 16 different singers for
each song with 4 singers for each of the four parts; So-
prano, Alto, Tenor and Bass. The dataset also includes
manually corrected F0 annotations for each track.

3.2 Analysis Methodology

To analyse inter-singer variance in pitch, the first step is
the extraction of an F0 contour from a unison mixture of
singers. We aim to study the behavior of a monophonic

F0 extractor in such cases, assuming that we have a suf-
ficiently balanced unison performance, where the contri-
bution of each singer is similar in terms of volume and
energy. To this end, we use CREPE [7] to extract the fun-
damental frequency of the unison mixture created by sum-
ming and normalizing all corresponding individual singers
in each vocal part of the recordings. This is termed as
EstF0U .

We then measure the resemblance of the estimated
EstF0U to each of the manually annotated F0 tracks and
to the mean F0m

1 . We use standard evaluation metrics for
melody extraction including Raw Pitch Accuracy (RPA),
Overall Accuracy (OA), Voicing Recall (VR) and Voicing
False Alarm (VFA) between the EstF0U , the average the
mean F0m, and each individual singer curve, GTF0i

2

Once we have verified the accuracy of the extraction
system, we build a statistical model for the individual con-
tours in the unison, as suggested by [1]. In our model, the
framewise F0 of an individual singer, F0i, can be repre-
sented as a distribution of values around the mean F0m
with a deviation of Fdevi, as shown in Equation 2

F0i = F0M + Fdevi (2)

This equation also allows us to define the F0i+1 of a
singer in terms of the F0i of another singer in the unison
as

F0i+1 = F0m + Fdevi+1

F0i+1 − F0i = Fdevi+1 − Fdevi

F0i+1 = F0i + Fdevi+1 − Fdevi

F0i+1 = F0i + ∆F0s

(3)

Where we define ∆F0s as the inter-singer deviation, rep-
resented by Equation 4. For each pair of singers in the uni-
son, we compute the frame-wise difference between the
corresponding F0 contours in cents. For this calculation,
only frames with positive F0 values, also known as voiced
frames, were considered. We average these inter-singer de-
viations across time and songs, and obtain a single value
for each group, i.e., SATB.

∆F0s =

n∑
i=1

n∑
j=i+1

∣∣F0i − F0j
∣∣

(
n
2

) (4)

where the sub-index s indicates the choir section, s ∈
[S,A, T,B], and n is the number of singers. In our use
case, n = 4.

To study timing deviations, we focus in the transitions
from voiced to unvoiced, and vice-versa—where singers
are not entirely in sync. We call these regions transition re-
gions, where some of the singers in the mixture are voiced

1 Note that the average F0 value has to be adjusted for timing differ-
ences between the individual singers. To this end, we define the average
to be zero (unvoiced frame) if and only if all individual values for that
frame are zero. for all other cases, the average is calculated only account-
ing for the non-zero values.

2 We use the mir_eval library [11] for this evaluation, and we use a
pitch tolerance of 30 cents
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Figure 1. Resemblance of the estimated unison EstF0U
estimation to each individual GTF0i contour (green) and
the average (blue) using pitch evaluation metrics averaged
across each choir section.
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Figure 2. Inter-singer deviations in cents averaged across
the whole dataset for each choir section. Deviations are
calculated using Equation 4.

and others are unvoiced, with a positive or zero F0. We
measure the length of all the transition regions in every
unison from the CSD, and then average across choir sec-
tions.

3.3 Analysis Results

A summary of the results of the comparison be-
tween the fundamental frequency extracted by CREPE,
EstF0U , and the manually corrected fundamental fre-
quency, GTF0i is illustrated in Figure 1, along with a
comparison with the mean, F0m. We observe that all sec-
tions follow the same pattern with similar metric values,
and the unison F0 estimated by CREPE,EstF0U , is closer
to the average F0m ,than to the individual contours. In
addition, all metrics improve when we compare the aver-
age F0 curve to the extracted F0 contour from the unison:
RPA, VR and OA are higher in the blue plots, while VFA
is lower. We can thus use the pitch estimated by CREPE,
EstF0U , as a representative of the mean single pitch con-
tour perceived in a unison mixture [1].

The calculated ∆F0s is shown in Figure 2. We observe
an inter-singer deviation in the range of 0 cents–50 cents,
with a mean of around 20 cents. This value, representing
the inter-singer deviation in the unison mixtures, is com-
parable to the pitch dispersion studied by Cuesta et al. [4].
While the methodology for modelling is different, these re-

Section Average Timing Deviation ±
Standard Deviation

Soprano 0.134± 0.039 sec

Alto 0.093± 0.0024 sec

Tenor 0.100± 0.021 sec

Bass 0.124± 0.021 sec

Table 1. Timing deviations averaged across the CSD.
These values measure the time span in which all singers
in the unison transition from voiced to unvoiced, and vice-
versa, averaged across all transitions in each song.

sults are in accordance with their reported per-section pitch
dispersion: larger in the bass section, smaller in the sopra-
nos, and very similar for altos and tenors.

Table 1 shows the results of the timing analysis. We
observe an average timing deviation of 0.1 s between the
voices in the unison for all parts of the choir.

4. SYNTHESIS METHODOLOGY

We present two synthesis models, Solo To Unison (STU) to
synthesize voice clones for creating a unison mixture from
a single voice input, and Unison to Solo (UTS) for syn-
thesizing single voice prototype representing the melodic
and linguistic content of a unison mixture input 3 . Simi-
lar to the work presented by Schnell et al [2], we decom-
pose the input signal into the F0, harmonic spectral enve-
lope, and aperiodicity envelope. However, instead of using
Pitch Synchronous Overlap Add (PSOLA) methods, we
utilize the WORLD vocoder [12], which has been shown
to be an effective vocoding system for singing voice syn-
thesis [13, 14, 14]. Similar to [14], we use truncated fre-
quency warping in the cepstral domain [15] to reduce the
dimensions of the harmonic components from 1024 to 60
log Mel-Frequency Spectral Coefficients (MFSCs) with an
all-pole filter with warping coefficient α = 0.45. In addi-
tion, we use bandwise aperiodic analysis to reduce the di-
mensionality of aperiodic features to 4. For the rest of this
paper, we refer to these 64 features together as the spectral
envelope.

4.1 Unison to Solo (UTS)

As shown in Figure 3, we first perform a short-time Fourier
transform (STFT) to extract a spectrogram from the in-
put waveform. The magnitude part of the spectrogram is
passed through the encoder proposed in [8] to extract a
continuous representation of the linguistic features present
in the unison mixture input. The linguistic features are
decoded via the SIN network [8] to generate the spectral
envelope for vocal synthesis. This envelope is combined

3 Audio examples are provided as complementary material at https:
//pc2752.github.io/unison_analysis_synthesis_
examples/and the source code with the trained models are available at
https://github.com/MTG/content_choral_separation

Proceedings of the 21st ISMIR Conference, Montréal, Canada, October 11-16, 2020
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with the pitch contour output from CREPE [7], F0U to
synthesise the single voice prototype representing the uni-
son mixture input.

4.2 Solo to Unison (STU)

The analysis part of the STU case follows a similar
methodology, as we extract the linguistic features and the
EstF0i contour from the input a cappella voice signal.
To create voice clones with pitch and timing deviations,
we add randomly sampled noise from a normal distribu-
tion with a mean of 0 and a variable standard deviation,
termed as std. This represents the inter-singer deviation,
∆F0s, and allows us to model the F0i+1 of the clone as
per Equation 3. Timing deviations are added by shifting
the voiced portions of the input signal or the portions be-
tween tow blocks of silence of more than 80 ms by a vari-
able amount, randomly sampled from a normal distribution
of mean 0 and standard deviation ts. The values of std and
ts are based on our analysis of the Choral Singing Dataset
presented in Section 3.3

Finally, for variations in timbre, we generate the spec-
tral envelope of a variable number singers, ns, of the same
gender as the input using the SDN network proposed in [8].
This is based on our analysis presented in Section 3.3.
There was no overlap between singers in the set used for
training the synthesis model and the singers in the Choral
Singing Dataset used for evaluation. The various voice
clones are added together and normalized in amplitude to
produce the final unison output. We evaluate various com-
binations of std, ts, and ns on their impact of the percep-
tion of unison.

4.3 Perceptual Evaluation Methodology

We used subjective listening tests with low and
high anchors, as modified versions of the MUSHRA-
methodology [16] to evaluate subjective criteria of the syn-
thesis produced by our analysis synthesis framework.

While there are several aspects that could be evaluated,
we focused on three keys aspects: adherence to melody,
perception of unison, and audio quality. For each aspect,
the participants were presented with 4 questions, one for
each part of the SATB choir, and were asked to rate the test
cases in the question on a continuous scale of 1–5 with re-
spect to a presented reference. The test case and references
provided pertained to the the same section of the song and
were between 7 s–10 s each. The parameters used for these
tests are described below for each aspect.

4.3.1 Adherence to melody and lyrics

For this aspect, we wanted to see the similarity of the per-
ceived pitch contour of the output for both the UTS and
STU cases to that of a ground truth unison mixture. To
this end, the reference provided to the participant was a
ground truth unison sample made by summing the corre-
sponding four individual singers of a part to form a unison
mixture. This reference is referred to as REFU. The partic-
ipants were asked to rate test samples which included the
single voice prototype of the unison as output by the UTS

system, referred to as UTS. In addition, we evaluated the
output of STU with a pitch deviation with parameter std
set to 50 cents, the acceptable limit of pitch deviations, as
shown by our analysis in Section 3.3 and suggested by [1].
Four singers were used for generating this test case, with
parameter ns set to 4, and it is referred to as STU_PS.
We also evaluated the output of the UTS system with both
pitch and timing deviations with parameter ts set to 40 ms.
While our analysis in Section 3.3 suggests that higher val-
ues of ts could have been used, we found that increasing
the value beyond 40 ms leads to a unacceptable level of
degradation in output quality. We refer to this test case as
STU_PTS. We also provided a lower anchor of a sample of
the same length from another vocal part.

4.3.2 Perception of unison

Unison is a loosely defined perceptual aspect, the cogni-
tion of which we aim to study here. For this, we pro-
vide a reference of a ground truth unison sample created
in the same manner as described above, REFU. Given this,
participants were asked to rate outputs from the STU sys-
tem based on their similarity to the reference in terms of
the perception of unison. In addition to the STU_PTS and
STU_PS cases with pitch, timing and timbre variance, we
also tested the case for just timing and singer variation, re-
ferred to as STU_TS and a case with just pitch and timing
deviations, referred to as STU_PT, timbral changes were
not done for the voice clones used for creating this test
case. The a cappella sample of a single singer singing the
same example as the reference was provided as a lower an-
chor.

4.3.3 Audio Quality

Audio quality is another subjective measure that is well de-
fined in literature but not easily understood by non-expert
participants. For the evaluation, we set an upper limit of
audio quality to the resynthesis of a single voice recording
with the WORLD vocoder REFS and a lower limit to the
resynthesis of a unison mixture with the same RESSYN-
THU. The test cases provided to the participants were the
same as those provided for the adherence to melody case,
except that the lower anchor was changed.

4.4 Perceptual Evaluation Results

There were 17 participants in our evaluation, of which 10
had prior musical training. To account for inter-participant
variance in subjective evaluation, the opinion score for
each question was normalized over ratings for the refer-
ence and the lower anchor before calculating the mean
opinion scores (MOS) and the standard deviations in opin-
ion scores, presented in Table 2.

The subjective nature of the perceptual aspects evalu-
ated must be taken into account for the evaluation and the
mean opinion scores are indicative of preferences rather
than absolute measures of quantity. It can be observed that
the perceived adherence to melody for the prototypical a
cappella voice synthesized by the UTS model has higher
preference than the STU models, although a high variance
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Figure 3. The synthesis framework. The magnitude part of the spectrogram of the input is passed through the encoder
from [8] to extract linguistic content. For the UTS case, this is passed to the decoder along with a learned embedding to the
SIN decoder [8] to generate the spectral envelope. For STU, the linguistic features are passed to the SDN decoder along
with a one-hot vector of the same gender as the input. F0 is extracted from the input waveform via CREPE [7]. Both the
envelope and the F0 are used to synthesize the output voice. For the STU case, timing deviations are further added before
summing with the input and normalizing.

Test Adherence To Unison Audio
Case Melody Perception Quality

UTS 3.6± 0.93 2.1± 0.65
STU_PS 3.3± 0.83 2.6± 0.85 2.8± 0.45
STU_PTS 2.9± 1.14 3.2± 0.96 3.1± 0.63
STU_TS 2.3± 1.11
STU_PT 3.0± 1.23

Table 2. Mean Opinion Score (MOS) ± Standard Devia-
tion for the perceptual listening tests across the test cases
provided. The models shown corresdond to the Unison to
Solo (UTS) model, the Solo to Unison with pitch, timing
and singer variations, indicated by the addition of the let-
ters P,T and S as suffixes to the abbreviation, respectively.
The scores for each question were normalized by the re-
sponses to the upper and lower limits for the responses de-
fined in section 4.3.

is observed in the ratings for the same. The unison percep-
tion evaluation shows that the variations in either timing
or pitch alone are not as preferred as variations in both as-
pects together. Timbre variations do not have as significant
an effect on perception of unison as variances in timing and
pitch. The evaluation of audio quality shows room for im-
provement in the synthesis of the voice signals. This can
partly be attributed to the use of the WORLD vocoder [12]
and we believe that this can be improved on in the future
using recently proposed neural synthesis techniques.

5. CONCLUSIONS

We have presented an analysis of the Choral Singing
Dataset, building on the work presented in [1]. In accor-
dance with the analysis done by [4], we observe devia-
tion in the range of 0 cents–50 cents between the F0 con-
tours of the individual singers in the unison mixtures in
the dataset. We further note an timing deviation of 0.1 s
between singers in unison in the dataset.

We then used this analysis along with recently proposed
deep-learning based methodologies to present a synthesis

system for a unison mixture from a single voice input and
a single voice prototype synthesis representing the melodic
and linguistic content of a unison mixture input. Based on
these systems, we were able to conduct a perceptual eval-
uation of the unison, further supporting the claim of [1]
that the a mixture of different voices singing in unison is
perceived to have a single pitch. In addition, we found
that pitch and timing deviations together are important for
the perception of the unison, and that variations in either
aspect alone is insufficient for such. However, timbre vari-
ations were not found to be as relevant.

We present this work as the first step into the analysis of
an under-explored research area, hoping to fuel further dis-
cussion on the topic. While interesting from an academic
standpoint, the systems we present also have several com-
mercial applications such as creating a unison choral effect
to be used in music production as well as for transposition
and transcription, in conjunction with the work presented
in [17]. We also plan to incorporate the presented work
with [18], for complete source separation for choral record-
ings.
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ABSTRACT

Open-source software libraries for audio/music analysis
and feature extraction have a significant impact on the de-
velopment of Audio Signal Processing and Music Infor-
mation Retrieval (MIR) systems. Despite the abundance
of such tools on the native computing platforms, there is
a lack of an extensive and easy-to-use reference library
for audio feature extraction on the Web. In this paper,
we present Essentia.js, an open-source JavaScript (JS) li-
brary for audio and music analysis on both web clients
and JS-based servers. Along with the Web Audio API, it
can be used for efficient and robust real-time audio fea-
ture extraction on the web browsers. Essentia.js is modu-
lar, lightweight, and easy-to-use, deploy, maintain and in-
tegrate into the existing plethora of JS libraries and Web
technologies. It is powered by a WebAssembly back-end
of the Essentia C++ library, which facilitates a JS interface
to a wide range of low-level and high-level audio features.
It also provides a higher-level JS API and add-on MIR util-
ity modules along with extensive documentation, usage ex-
amples, and tutorials. We benchmark the proposed library
on two popular web browsers, Node.js engine, and An-
droid devices, comparing it to the native performance of
Essentia and Meyda JS library.

1. INTRODUCTION

The Web has become one of the most used computing
platforms with billions of web pages served daily, and JS
being an essential part of building modern web applica-
tions. Using HTML, CSS, and JS, developers can make
dynamic, interactive, and responsive web pages by imple-
menting custom client-side scripts. At the same time, the
developers can also use cross-platform run-time engines
like Node.js 1 to write server-side code in JS. The flexi-
bility of using JS on both server and client ends of web

1 https://nodejs.org

c© Albin Correya, Dmitry Bogdanov, Luis Joglar-Ongay,
Xavier Serra. Licensed under a Creative Commons Attribution 4.0 In-
ternational License (CC BY 4.0). Attribution: Albin Correya, Dmitry
Bogdanov, Luis Joglar-Ongay, Xavier Serra. “Essentia.js: A JavaScript
Library for Music and Audio Analysis on the Web”, 21st International
Society for Music Information Retrieval Conference, Montréal, Canada,
2020.

applications arguably makes it one of the most used com-
puter programming languages in the recent years [2]. JS is
also widely used as an entry-level programming language
by the thinkers from design, art, computer graphics, archi-
tecture, and spaces in between where audio processing and
analysis can be relevant.

With the adoption of both HTML5 and the W3C Web
Audio API specifications [14], modern web browsers are
capable of audio processing, synthesis, and analysis with-
out any third-party dependencies on proprietary software.
This allows developers to move most of the audio process-
ing code from the server to the client and can provide better
scalability and deployment, considering that the web-client
has computational resources for the required processing.
Web Audio API provides a JS interface to various prede-
fined nodes for audio processing, synthesis, and analysis.
Even though the provided capabilities are limited, the API
includes the ScriptProcessorNode for developers to add
custom JS code for audio processing. 2 The design of this
node has been criticized by the audio developer commu-
nity since it runs the JS audio processing code on the main
UI thread, which can result in unreliable performance and
audio glitching [15]. As an alternative, AudioWorklet [10]
has been introduced to mitigate this design issue to a great
extent by allowing running custom audio processing code
on a dedicated audio thread. It also allows bi-directional
communication between the audio thread and the control
thread of Web Audio API asynchronously using the web
message ports.

Despite all of these recent developments of Web Audio
technologies, the Audio Signal Processing and MIR com-
munities still lack reliable and modular software tools and
libraries that could be easily used for building audio and
music analysis applications for web browsers and JS run-
time engines. To the best of our knowledge, Meyda [11]
and JS-Xtract [18] are the few available JS libraries that
are ready-to-use and have implementations of a limited set
of MIR audio features. 3 The lack of more extensive al-
ternatives is not surprising, given that writing a new JS
audio analysis library from scratch would require a lot of
effort. Also, JS code for audio processing are prone to per-
formance issues due to the just-in-time (JIT) compilation
and garbage collection overhead, which can be critical for

2 https://www.w3.org/TR/webaudio/
#scriptprocessornode

3 As of May 2020, Meyda only has 20 MIR algorithms.
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real-time audio and music analysis tasks. Due to these rea-
sons, researchers and developers often rely on server-side
audio processing solutions using the existing native MIR
tools for writing the required web applications.

Over the last two decades, the existing software tools
for audio analysis have been mostly written in C/C++, Java
and Python and delivered as standalone applications, host
application plug-ins, or as software library packages. Soft-
ware libraries with a Python API, such as Essentia [7], Li-
brosa [23], Madmom [6], Yaafe [22] and Aubio [8], have
been especially popular within the MIR community due to
rapid prototyping and rich environment for scientific com-
putations. Meanwhile, the libraries with a native C/C++
back-end offered faster analysis [24] and were often re-
quired for writing industrial audio applications. Various
web applications for audio processing and analysis have
been developed using these tools. Spotify API 4 (formerly
Echonest), Freesound API [13] and AcousticBrainz [25]
are examples of web services providing precomputed au-
dio features to the end users via a REST API. Besides, nu-
merous web applications were built for aiding tasks such
as crowd sourcing audio annotations [9, 12], audio listen-
ing tests [19, 26] and music education platforms [1, 21] to
mention a few. All these services manage their audio anal-
ysis on the server, which may require a significant effort
and resources to scale to many users.

With the recent arrival of WebAssembly (WASM) sup-
port on most of the modern web browsers [16], one can
safely port the existing C/C++ audio processing and anal-
ysis code into the Web Audio ecosystem using com-
piler toolchains such as Emscripten. 5 WASM is a low-
level assembly-like language with a compact binary format
that runs with near-native performances on modern web
browsers or any WebAssembly-based stacks without com-
promising security, portability and load time. WASM code
was found to be comparatively faster than JS code [17] and
generates no garbage from the code and can run within Au-
dioWorkletProcessor. 6 This makes it an ideal solution to
the problems that were previously hindering us from build-
ing efficient and reliable JS MIR libraries for the web plat-
form [20]. However, taking full advantage of all these fea-
tures can be challenging because it requires understand-
ing concurrent programming wrapped with several JS APIs
and dealing with cross-compilation and linking of the na-
tive code. Even for experienced developers, compiling na-
tive code to WASM targets, generating JS bindings, and in-
tegrating them in a regular JS processing code pipeline can
be cumbersome. Hence, it is essential that an ideal JS MIR
software library should encapsulate and abstract all these
steps and be packaged as a compact build which is easy-to-
use and extendable using a high-level JS API. Besides the
JS API, the potential users might also need utility tools that
are often required while building MIR-based projects, such
as plotting audio features on an HTML page, ready-to-use
feature extractors, and possible integration with web-based

4 https://developer.spotify.com/documentation
5 https://emscripten.org
6 https://www.w3.org/TR/webaudio/

#audioworkletprocessor

Figure 1: Overview of the Essentia.js library in terms of
its abstraction levels.

machine learning frameworks.
In [24], the authors evaluated a wide range of MIR soft-

ware libraries in terms of coverage, effort, presentation,
time-lag and found Essentia 7 [7] to be an overall best per-
former with respect to these criteria. Essentia is an open-
source library for audio and music analysis released under
the AGPLv3 license providing a wide range of optimized
algorithms (over 250 algorithms) that are successfully used
in various academic and industrial large-scale applications.
Essentia includes both low-level and high-level audio fea-
tures, along with some ready-to-use features extractors.
And, it provides an object-oriented interface to fine tune
each algorithm in detail. Given all these advantages and
that the code repository is consistently maintained by its
developers, it is a good potential choice for porting into
WASM target for the web platform.

In this paper, we present Essentia.js, an open-source JS
library for audio and music analysis on the web, released
under the AGPLv3 license. It allows building audio analy-
sis and MIR applications for web browsers and JS engines
such as Node.js. It provides straightforward integration
with the latest W3C Web Audio API specification allow-
ing efficient real-time audio feature extraction on the web
browsers. Web applications written using the proposed li-
brary can also be cross-compiled to native targets such as
for PCs, smartphones, and IoT devices using the JS frame-
works like Electron 8 and React Native. 9

The rest of the paper is organized as follows. Section 2
outlines the design choices, software architecture and var-
ious components of Essentia.js. An overview of potential
use-cases and usage examples are detailed in Section 3.
A detailed benchmarking of Essentia.js across and against
various platforms and alternative JS libraries can found in
Section 4. Finally, we conclude in Section 5.

2. ESSENTIA.JS

Essentia.js is much more than just JS bindings to the Es-
sentia C++ library. It was developed with coherent design
and functional objectives that are necessary for building an
efficient and easy-to-use MIR library for the Web. In this

7 https://essentia.upf.edu
8 https://www.electronjs.org
9 https://reactnative.dev
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section, we discuss our design choices, the architecture,
and various components of Essentia.js. Figure 1 shows an
overview of these components.

2.1 Design and Functionality

We chose the following goals and design decisions for de-
veloping the library:

• User-friendly API and utility tools. The Web is a ubiq-
uitous computing platform, and an ideal JS MIR library
should provide a simple, user-friendly API while being
highly configurable for advanced use cases. Essentia.js
ships with a simple JS API and add-on utility modules
with a fast learning curve for new users. The main JS
API is composed of a singleton class with methods im-
plementing most of the functionality (each method is an
algorithm in Essentia). These methods are automatically
generated from the upstream C++ code and documenta-
tion using code templates and scripting as described in
Sections 2.2 and 2.3. We also provide add-on modules
with helper classes for feature extraction and visualisa-
tion that can be used for rapid prototyping of web appli-
cations. A quick preview of the JS API can be seen in
Listing 2.

• Modularity and extensibility. Just like Essentia itself,
the Essentia.js codebase is modular by design. It con-
tains a large amount of configurable algorithms that can
be arranged into the desired audio processing chains.
The add-on utility modules shipped with the library
leverage this functionality to build custom feature ex-
tractors.

• Web standards compliance.Web browsers provide a
standard set of tools for loading and processing au-
dio files using the HTML5 Audio element 10 and the
Web Audio API. Essentia.js rely on these standard fea-
tures for loading audio files or for streaming real-time
audio from various device sources. It also provides
seamless integration with the latest tools in the Web
Audio ecosystem such as AudioWorklets, Web Work-
ers, 11 WASM and SharedArrayBuffer. In addition, JS
conforms to the ECMAScript specification 12 and it is
evolving fast with new features added to the language
every year. For backward and forward compatibility of
our JS code, we wrote our JS API using Typescript (Sec-
tion 2.3).

• Lightweight and few dependencies. It is important for
a JS library to be lightweight since the load times of JS
code can directly impact the UI/UX and performance of
web applications. This includes having fewer dependen-
cies, which also makes the library much more maintain-
able. Taking this into account, Essentia WASM backend
is built without any third-party software dependencies of
the Essentia library except for Kiss FFT. 13 It includes

10 https://www.w3.org/html/wiki/Elements/audio
11 https://w3c.github.io/workers/
12 http://ecma-international.org/ecma-262
13 https://github.com/mborgerding/kissfft

the majority of the algorithms in Essentia, 14 while the
few excluded algorithms can be still integrated into the
WASM backend by compiling and linking with the re-
quired third-party dependencies using our build tools
(Section 2.5). Besides, all the JS code in the library is
passed through a code compression process to achieve
lightweight builds for the web browsers. With all these
efforts we were able to achieve builds of Essentia.js, in-
cluding the WASM backend and the JS API, as small as
2.5MB approximately. We also provide tools for custom
lightweight builds of the library that only include a sub-
set of the selected algorithms to further reduce the build
size (Section 2.5).

• Reproducibility. Using the WASM backend of Essen-
tia ensures identical analysis results across various de-
vices and native platforms on which Essentia has been
previously extensively used and tested. Remarkably, Es-
sentia.js allows reproducing a large amount of existing
code and research based on Essentia as well as, to a cer-
tain extent, other libraries. In particular, it is possible to
use Essentia.js to reproduce common input audio rep-
resentations for the existing machine learning models,
enabling their usage in web applications.

• Easy installation. Essentia.js is easy to install and inte-
grate with new or existing web projects. It is available
both as a package on NPM 15 and as static builds on
our public GitHub repository. In addition, we also pro-
vide continuous delivery network (CDN) through open
source web services.

• Extensive documentation. We provide a complete API
reference together with the instructions to get started,
tutorials, and interactive web application examples. 16

The documentation is built automatically using JS-
doc 17 and the algorithm reference is generated from
the upstream Essentia C++ documentation using Python
scripts.

2.2 Essentia WASM backend

As already mentioned, the core of the library is powered
by the Essentia WASM backend. It contains a lightweight
WASM build of Essentia C++ library along with custom
JS bindings for using it in JS. This backend is generated in
multiple steps.

Firstly, the Essentia C++ library is compiled to LLVM
assembly 18 using Emscripten. Emscripten [28] is a LLVM
to JS compiler which provides a wide range of tools for
compiling the C/C++ code-base or the intermediate LLVM
builds into various targets such as asm.js 19 and WASM.
Secondly, we need a custom C++ interface in order to gen-
erate the corresponding JS bindings which would allow us
access the algorithms in Essentia on the JS side. We used

14 As of May 2020, over 200 algorithms are supported.
15 https://www.npmjs.com
16 https://mtg.github.io/essentia.js
17 https://jsdoc.app
18 https://llvm.org
19 http://asmjs.org
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Embind [4] for generating this C++ interface that binds Es-
sentia native code to JS.

Writing custom JS bindings for all Essentia algorithms
can be tedious considering their large amount. Hence, we
created Python scripts to automate the generation of the re-
quired C++ code for the C++ wrapper from the upstream
library Python bindings. Using this scripts, it is possible to
configure which algorithms to include in the bindings by
their name and category. Therefore, it is possible to cre-
ate extremely lightweight builds of the library with only a
few specific algorithms required for a particular applica-
tion. The Essentia WASM backend is built by compiling
the generated wrapper C++ code and linking with the pre-
compiled Essentia LLVM using Emscripten.

Essentia WASM backend provides compact WASM bi-
nary files along with the JS bindings to over 200 Essentia
algorithms. We provide these binaries and a JS glue code
for both asynchronous and synchronous import of Essen-
tia WASM backend, covering a wide range of use cases.
The build for asynchronous import can be instantly loaded
into a HTML page. The synchronous-import build sup-
ports the new ES6 style class imports characteristic of the
modern JS libraries. This build can be also seamlessly in-
tegrated with AudioWorklet and Web Workers for better
performance demanding web applications.

2.3 High-level JS API
Even though it is possible to use the Essentia WASM back-
end with its bindings directly, they have limitations due to
the specifics of using Embind with Essentia: a user needs
to manually specify all parameter values for the algorithms
because the default values are not supported. This is cum-
bersome and to solve this issue we developed a high-level
JS API written using Typescript [5]. Typescript is a typed
superset of JS that can be compiled to various ECMA tar-
gets of JS. In addition, this gives us the benefit of having a
typed JS API which can provide better exception handling.
Again we used custom Python scripts and code templates
to automatically generate the Typescript wrapper in a sim-
ilar way to the C++ wrapper for the WASM backend. The
high-level JS API of Essentia.js provides a singleton class
Essentia with all the algorithms and helper functions en-
capsulated as its methods All the algorithm methods are
configurable similarly to the Essentia’s C++/Python API
itself. Listing 1, shows an example of using the high-level
API of Essentia.js.

2.4 Add-on utility modules
Essentia.js is shipped with a few add-on modules to facil-
itate common MIR tasks. These add-on modules are writ-
ten entirely in Typescript using the Essentia.js high-level
JS API. Currently, we provide two add-on modules:

• essentia.js-extractor contains predefined feature ex-
tractors for common MIR tasks, computing BPM, beat
positions, pitch, predominant melody, key, chords,
chroma features, MFCC, etc. Each extractor implements
the entire processing chain starting from audio input and
outputs the resulting track-level or frame-level features.
These extractors are configurable as well.

Figure 2: Screenshot of a example web application that
use Essentia.js and its add-on modules.

• essentia.js-plot provides helper functions for visualiza-
tion of MIR features, allowing both real-time and offline
plotting in a given HTML element. It uses the Plotly.js
data visualization library, which has a design layout and
functionalities much alike of Matplotlib, 20 and is eas-
ily configurable. Currently, we provide object-oriented
classes for plotting basic MIR features like melody/pitch
contours, spectrograms, chroma, MFCC, etc. The mod-
ule is functionally similar to the display module in Li-
brosa [23].

A full reference of the modules can be found in the doc-
umentation of the library. Both modules can be easily ex-
tended with more functionalities as per the demands of the
user community.

2.5 Build and packaging tools

We provide tools for custom builds and packaging of Es-
sentia.js for the developers and the end-level users:

• Command-line interface (CLI). We provide CLI for
building Essentia.js using some customised shell scripts.

• Docker. We provide a Docker image with static builds
of Essentia with Emscripten and other development de-
pendencies required for building Essentia.js.

• Web application. We also host a website for building
custom Essentia.js online. 21 It allows users to select
specific set algorithms and build settings.

The official Essentia.js builds are bundled using
Rollup 22 and then packaged and hosted using NPM.

3. GETTING STARTED

In this section, we outline several usage examples and ap-
plication scenarios for getting started with Essentia.js.

The library can be imported into a web application us-
ing the following methods:

• HTML <script> tag. The most simple way to use Es-
sentia.js is by using it with the HTML <script> tag.

20 https://matplotlib.org
21 https://mtg.github.io/essentia.js-builder
22 https://rollupjs.org
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• NPM. Essentia.js can be also installed from NPM using
the command npm install essentia.js.

• ES6 class imports. Essentia.js can be imported using
the ES6 class style imports in JS. This allows to inte-
grate the library into any modern JS framework. Listing
1 shows an example of using ES6 style imports for an
offline feature extraction task.

• CDN. We also provide CDN links for instantly serv-
ing Essentia.js online using free third-party web services
such as Jsdelivr 23 and Unpkg. 24

There are a lot of potential web applications that can
be built with Essentia.js. The library provides algorithms
for typical sound and music analysis tasks, including spec-
tral, tonal, and rhythmic characterization. In particular,
it is suitable for onset detection, beat tracking and tempo
estimation, melody extraction, key and chord estimation,
sound and music classification, cover song similarity, loud-
ness metering, and audio problems detection among oth-
ers. Figure 2 shows the screenshot of an example web ap-
plication that we include with the library. Below we outline
some of the common application use cases of the library.
We provide an extensive collection of analysis examples
on our website. 25

3.1 Offline feature extraction

Many MIR use cases rely on an offline audio analysis and
feature extraction. Listing 1 shows a simple JS example
of using the library for offline analysis of pitch and on-
sets. For features computed on overlapping frames, Es-
sentia.js provides the FrameGenerator method similarly to
Essentia’s Python API. Frames generated by this method
can be used as an input to other algorithms in the process-
ing chain. The offline feature extraction can be run inside
a Web Worker to improve the efficiency in performance-
demanding web applications.

3.2 Real-time feature extraction

Essentia.js can be used for efficient real-time audio/music
analysis in web browsers along with the Web Audio API.
This can be done by using the ScriptProcessorNode or the
newly introduced AudioWorklet in the Web Audio API:

• ScriptProcessorNode allows users to provide custom
JS code for audio feature extraction in its onprocess

callback. Even though the ScriptProcessorNode is dep-
recated according to the current W3C Web Audio API
specifications, it is still widely used by the developers
because of its cross-browser support.

• AudioWorklet design pattern [10] allows users to write
high-performance real-time audio analysis on a dedi-
cated audio thread. Users can write custom analysis
code by extending the AudioWorkletProcessor and fur-
ther abstract it as a node in the Web Audio API graph

23 https://www.jsdelivr.com
24 https://unpkg.com
25 https://mtg.github.io/essentia.js/examples

// Imports Essentia WASM backend
import {EssentiaWASM} from ’essentia-wasm.module.js’;
// Imports Essentia.js core API
import Essentia from ’essentia.js-core.es.js’;

// Creates Essentia.js instance
const essentia = new Essentia(EssentiaWASM);

// Instance of Web Audio API AudioContext
const audioContext = new AudioContext();
// URL of an audio file
let audioURL = "https://freesound.org/data/previews

/328/328857_230356-lq.mp3";

// Decode audio file as Float32 typed array
const audioData = await essentia.

getAudioChannelDataFromURL(audioURL, audioContext,
0); // audioContext, channel number

// Convert audioData array into vector
const audioVector = essentia.arrayToVector(audioData);

// Onset detection with SuperFluxExtractor algorithm
let bt = essentia.SuperFluxExtractor(audioVector);
console.log(bt.onsets);

// Pitch estimation with PitchYinProbabilistic
algorithm

let pyYin = essentia.PitchYinProbabilistic(audioVector,
4096, 256); // frameSize, hopSize

console.log(pyYin.pitch);

// Shutdown Essentia.js instance and free memory
essentia.shutdown();
essentia.delete();

Listing 1: A simple example of offline audio feature
extraction using Essentia.js via ES6 style imports.

using AudioWorkletNode. 26 Currently, the only limita-
tion is that it is only supports in the latest Firefox and
Chromium-based web browsers.

3.3 Machine learning applications
In the recent years, machine learning (ML) techniques, es-
pecially deep learning have been widely used in a wide
range of MIR tasks. With the support of WebGL and
WASM, modern web browsers are also capable of running
ML applications. Essentia.js can be easily integrated with
popular JS ML frameworks such as TensorFlow.js [27] and
Onnx.js 27 for training and inference. Pre-trained audio
ML models using features computed with Essentia as an
input (e.g., mel-spectrograms, Constant-Q transform, or
chroma) can be easily ported and used for inference in
web browsers. In particular, Essentia now ships with a
collection of pre-trained TensorFlow models for music au-
dio tagging and classification [3]. These models can be
run for inference using Essentia.js and TensorFlow.js li-
braries. Our essentia.js-extractor add-on module provides
a mel-spectrogram extractor for computing the inputs to
these models.

4. BENCHMARK
We tested the performance of Essentia.js in terms of the
analysis time for common MIR audio features on various

26 https://www.w3.org/TR/webaudio/
#audioworkletnode

27 https://github.com/Microsoft/onnxjs
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(a) Essentia.js (b) Meyda

Figure 3: Average analysis times (in seconds) for common audio features on a 5-second music clip. "Python (Linux)"
corresponds to the analysis baseline using native Essentia with Python bindings.

platforms, and compared it to the native Essentia library.
In addition, we measured the analysis times for features
available in Meyda and compared them to their Essentia.js
counterparts. To this end, we built a set of test suites using
the JS library benchmark.js and implemented the equiva-
lent features using both libraries. In our benchmark we
measure the time it takes for the entire processing chain
to compute a feature given a 5-second audio segment as an
input. The code used by Essentia.js is equivalent to the one
for Essentia used in Python. The benchmarking of Python
implementation was done using the library pytest with the
benchmark extension. We provide the code and website to
reproduce these experiments online. 28

The results are reported in Figure 3. They include tests
on five different environments:

• Linux with Chrome 84.0.4147.89 run with disabled ex-
tensions.

• Linux with Firefox 78.0.2 in private browsing mode.

• Android 9 (LineageOS 16) with Chrome 84.0.4147.89
in incognito mode.

• Android 9 (LineageOS 16) with Firefox Nightly 200727
06:00

• Linux with Node.js v.13.13.0.

The Linux computer used for all runs is a 2017 DELL
XPS-15 with a 2.80GHz x 8 Intel Core i7-7700HQ proces-
sor, 16GB of RAM and Ubuntu 19.04 as OS. The mobile
phone is a Xiaomi Redmi Note 7 Pro with a Snapdragon
Octa-core 1.7 GHz processor and 6GB RAM. All the tests
were done with the same 5 seconds audio file.

As we can see from Figure 3, the results shows that the
performance of Essentia.js algorithms were considerably
slower when running on Node.js and Firefox and Chrome
on Android compared to Firefox and Chrome on Linux.
Interestingly, Node.js performed worse than Firefox and

28 https://mtg.github.io/essentia.js-benchmarks

Chrome on Android, which was not expected. This is
probably because different vendors have slightly different
implementations of WASM support in their platforms or
due to some other reasons yet to be found. In addition,
WASM is a relatively new technology in active develop-
ment. 29 Many proposals for improving its performance
such as SIMD optimizations and multi-thread support are
under way. We also aim to do detailed benchmarking of
real-time use cases and using the Web Audio API Audio
Worklets in our future work.

5. CONCLUSIONS

We have presented Essentia.js, an open-source JavaScript
library for music/audio analysis on the Web. It is based on
the Essentia C++ library which is commonly used in MIR,
ported to JS via WASM, and compatible with the latest
technologies in the Web Audio ecosystem. To the best of
our knowledge, this is the most comprehensive library for
audio analysis and MIR, which can be run on web browsers
as well as JS server applications. We hope that the library
will contribute to the creation of new online music technol-
ogy tools in educational, industrial, and creative contexts.
The source code of the library is publicly available in our
Github repository. 30 Everyone is encouraged to contribute
to the library.

In our future work, we will focus on improving the per-
formance of the library along with expanding the add-on
modules, particularly on providing pre-trained audio ML
models for audio analysis, classification, and synthesis on
the web client. We also aim to develop interesting web ap-
plications that go beyond typical MIR tasks to attract and
build a diverse user community. The detailed information
about the library is available at the official web page. 31 It
contains the complete documentation, usage examples and
tutorials needed for one to get started.

29 https://webassembly.org/roadmap/
30 https://github.com/MTG/essentia.js
31 https://essentia.upf.edu/essentiajs
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ABSTRACT

A piece of music can be expressively performed, or inter-
preted, in a variety of ways. With the help of an online
questionnaire, the Con Espressione Game, we collected
some 1,500 descriptions of expressive character relating to
45 performances of 9 excerpts from classical piano pieces,
played by different famous pianists. More specifically, lis-
teners were asked to describe, using freely chosen words
(preferably: adjectives), how they perceive the expressive
character of the different performances. In this paper, we
offer a first account of this new data resource for expressive
performance research, and provide an exploratory analysis,
addressing three main questions: (1) how similarly do dif-
ferent listeners describe a performance of a piece? (2) what
are the main dimensions (or axes) for expressive character
emerging from this?; and (3) how do measurable param-
eters of a performance (e.g., tempo, dynamics) and mid-
and high-level features that can be predicted by machine
learning models (e.g., articulation, arousal) relate to these
expressive dimensions? The dataset that we publish along
with this paper was enriched by adding hand-corrected
score-to-performance alignments, as well as descriptive
audio features such as tempo and dynamics curves.

1. INTRODUCTION

In the Western classical music tradition, music exists at
an interplay of creative intentions of composer, performers
and listeners. Composers encode their ideas using written
notation (i.e., musical scores), and performers bring these
ideas to life, guided by the expression markings, perfor-
mance traditions, and their own creative imagination. Each
performance can sound very different from the next.

c© C. Cancino-Chacón, S. Peter, S. Chowdhury, A. Al-
janaki and G. Widmer. Licensed under a Creative Commons Attribu-
tion 4.0 International License (CC BY 4.0). Attribution: C. Cancino-
Chacón, S. Peter, S. Chowdhury, A. Aljanaki and G. Widmer, “On the
Characterization of Expressive Performance in Classical Music: First
Results of the Con Espressione Game”, in Proc. of the 21st Int. Society
for Music Information Retrieval Conf., Montréal, Canada, 2020.

Much of the research on musical expression has focused
on what pieces express through attributes of their musi-
cal structure [1–3]. There has been much focus on the ex-
pression of emotion in particular (e.g., [4–8]); however, a
comprehensive description of the expressive character of a
performance includes additional, not specifically emotion-
related aspects. The aim of this research is to find the di-
mensions of musical expression that can be attributed to
a performance, as perceived and described in natural lan-
guage by listeners.

Within the classical music tradition, there is already a
practice of assigning verbal descriptors to aspects of musi-
cal expression. For example, instructions related to expres-
sive character are sometimes marked on the score by the
composer with a fixed set of (mostly) Italian terms (e.g.,
Allegro, dolce). Many of those terms describe emotions,
but they describe a wide range of other aspects as well,
including movement analogies and metaphors (e.g., free,
flowing) [9].

Using an online questionnaire, the Con Espressione
Game (CEG), which is part of the research project of the
same name [10], we collected verbal descriptors of expres-
sive performances. In this paper we present first results on
three main questions: (1) can we observe any consistency
in the way listeners perceive and describe expressive char-
acter?; (2) can we identify main descriptive dimensions
along which these characterizations can be organized?; and
(3) how are these dimensions related to measurable qual-
ities (or parameters) from audio recordings, or to perfor-
mance information extracted from these?

The rest of this paper is structured as follows: Section 2
points to some related work. Section 3 describes the CEG
and the collected data. We continue the paper with individ-
ual sections addressing the three main questions we want to
study: Section 4 presents results on how similar/consistent
the characterizations of the participants are, Section 5 fo-
cuses on analyzing the main descriptive dimensions. Sec-
tion 6 presents results relating performance and audio fea-
tures to the expressive dimensions. Section 7 discusses the
results of these experiments. Finally, Section 8 concludes
the paper.
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2. RELATED WORK

In this section we provide a few pointers to related work
on research on music emotion and expressive performance,
and on characterizing musical expression. A full overview
is beyond the scope of this paper.

From a musicological and philosophical viewpoint, the
study of musical expression has focused on music as in
composition [1,2], although there is a trend in recent times
to include and recognize both the role of the performer and
the role of the listener. Some recent papers have focused
on developing mid-level features that capture qualities of
musical recordings that relate to perceptual aspects of the
music [11, 12] . For an overview of literature on emotion
in music, we refer the reader to [3] and [13].

Computational models of expressive performance are
a means to study principles of performance in quantita-
tive terms. In Western classical music, much of this work
has focused on establishing relationships between struc-
tural aspects of a musical score and quantifiable aspects of
a performance such as expressive timing and dynamics. At
the intersection of research on music emotion and compu-
tational models of performance is the study of the relation
between performance parameters (timing, dynamics) and
emotion [4–8]. For an overview of computational model-
ing of music performance, we refer the reader to [14].

Particularly relevant to the current study are adjective
lists for describing musical expressiveness, including the
seminal work by Hevner [15] and its more recent up-
dates [16, 17]. Hevner identified several clusters of ad-
jectives that describe musical expression. Many of these
clusters relate to emotions, and include aspects such as
‘happy’ and ‘sad’. Schaerlaeken et al. [18] conducted a
large study to investigate the use of metaphors for describ-
ing Western classical music. They propose the Geneva
Musical Metaphors Scale (GEMMES), which comprises 5
metaphorical scales including aspects like flow, movement,
force, interior and wandering. The focus of their study was
on characterization of different pieces of music, rather than
on description of the character of different expressive per-
formances. A related study [9] presents a perception-based
clustering of expressive musical terms (i.e., performance
directives such as catabile and leggiero), relating these
terms to locations in Russell’s arousal–valence space [19].
Murari et al. [20] study of listeners’ characterization of
music using non-verbal sensory scales.

3. THE CON ESPRESSIONE GAME

We collected our data through a Web-based questionnaire
(“CEG”), where participants listened to several perfor-
mances of each of 9 classical piano pieces. They were
then asked to describe the performance in free text (prefer-
ably adjectives, as many as they liked), concentrating on
the performative aspects and not on the piece itself. The
target phenomenon thus is what we would call the expres-
sive character of performances. Users could also select
their favorite performance of each piece. Upfront, a few
general questions were asked regarding their level of mu-

Figure 1. A word cloud of the terms in the dataset.

sical education, how often they listen to classical music,
and whether they play the piano. The order of pieces and
performances was randomized. Users could stop at any
time.

3.1 Pieces and Responses

The CEG contains 45 performances of 9 excerpts (see Ta-
ble 2). 1 The length of the excerpts was between 27 sec-
onds and 188 seconds. The CEG was launched on the 3rd
of April 2018. The questionnaire was filled out by 194 par-
ticipants, out of which 88% had some kind of music edu-
cation – on average 11.7 years; 179 participants answered
in English, 12 in German and three in each of Russian,
Spanish and Italian. On average, participants listened to
the performances of 4.5 out of 9 pieces, 27 participants lis-
tened to all the 45 excerpts.

3.2 Meta-data and Annotations

We enriched the dataset by adding score-to-performance
alignments for all performances in the dataset, as well as
descriptive performance features. The alignments were
produced by manually annotating the position of the beats
in the audio files using Sonic Visualiser [21]. The scores
were encoded manually and exported in MusicXML for-
mat following publicly available editions. 2 From these
alignments we compute performance features such as
tempo and loudness curves (see Section 6.1). The dataset
is available online. 3

4. HOW SIMILARLY DO LISTENERS DESCRIBE
A PERFORMANCE OF A PIECE?

Probably the first question that arises concerns the similar-
ity of the descriptions in the dataset, i.e., whether there are

1 con-espressione.cp.jku.at
2 from https://imslp.org.
3 The dataset and code necessary to reproduce the experiments re-

ported in this paper can be found in https://cpjku.github.io/
con_espressione_game_ismir2020/.
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Composer Piece # Pianists
Bach Prelude No.1 in C, BWV 846 (WTC I) 7 Gieseking, Gould, Grimaud, Kempff, Richter, Stadtfeld, MIDI
Mozart Piano Sonata K.545 C major, 2nd mvt. 5 Gould, Gulda, Pires, Uchida, MIDI
Beethoven Piano Sonata Op.27 No.2 C# minor, 1st mvt. 6 Casadesus, Lazić, Lim, Gulda, Schiff, Schirmer
Schumann Arabeske Op.18 C major (excerpt 1) 4 Rubinstein, Schiff, Vorraber, Horowitz
Schumann Arabeske Op.18 C major (excerpt 2) 4 Rubinstein, Schiff, Vorraber, Horowitz
Schumann Kreisleriana Op.16; 3. Sehr aufgeregt (ex. 1) 5 Argerich, Brendel, Horowitz, Vogt, Vorraber
Schumann Kreisleriana Op.16; 3. Sehr aufgeregt (ex. 2) 5 Argerich, Brendel, Horowitz, Vogt, Vorraber
Liszt Bagatelle sans tonalité, S.216a 4 Bavouzet, Brendel, Katsaris, Gardon
Brahms 4 Klavierstücke Op.119, 2. Intermezzo E minor 5 Angelich, Ax, Serkin, Kempff, Vogt

Table 1. Performances used in the Con Espressione Game.

commonalities in the way listeners describe and like per-
formances. In this section we present a series of analyses
that provide different perspectives on the data.

4.1 Frequency and Distribution of Terms

Users provided 1,515 individual descriptions for a total of
3,166 terms, of which 1,415 (approx. 45%) are unique.
Figure 1 shows a word cloud of the terms appearing in the
dataset. Taken all answers together, each performance was
described using at least 47 and at most 114 terms. The av-
erage number of terms per piece varies between 60.3 for
Liszt’s Bagatelle sans tonalité and 98.4 for Bach’s Prelude
in C. Each performance is characterized by at least 44 and
at most 91 unique terms. The average number of unique
terms per piece varies between 51.0 for Liszt’s Bagatelle
and 78.4 for Bach’s Prelude.

The terms ‘dynamic’, ‘expressive’, ‘fast’, ‘like’, ‘loud’,
‘mechanical’, ‘slow’, and ‘soft’ appear in at least one per-
formance of every piece. 420 terms appear more than once
and, coincidentally, also for different performances. Only
40 terms appear in more than ten performances. The most
frequently used terms across performances are ‘dynamic’,
‘expressive’, and ‘soft’, which appear in at least 22 per-
formances. In increasing order of occurrence, the terms
‘playful’, ‘boring’, ‘dynamic’, ‘mechanical’, ‘slow’, ‘soft’,
‘expressive’, and ‘fast’ are used at least 40 times, with this
last term being the most used with 64 occurrences.

4.2 Complexity of the Descriptions

An interesting question is whether there is a relation be-
tween listeners’ musical backgrounds and the complexity
of their answers. In particular, we are interested in de-
termining whether listeners with more musical experience
with Western classical music describe performances of this
kind of music in a more complex language. As a mea-
sure of the complexity of the descriptions we use the Dale-
Chall readability score [22], a measure that takes into ac-
count the number and commonality of words (defined as
words that would be familiar to American students) in a
weighted sum. Intuitively, we can understand this measure
as a way of combining the length (i.e., number of terms)
of the answer and the use of specialized vocabulary (such
as musical terms). A larger score means a more complex
answer. To test whether listeners with more musical train-
ing describe performances in a more complex language,
we conduct a linear regression (years of musical training

vs. answer complexity). This analysis reveals a positive
correlation that we assessed for statistical significance us-
ing a one-tailed Wald test (Pearson’s r = 0.27, W = 2.32,
p = 0.01, R2 = 0.07), which suggests a small effect.
We also test whether listeners that often listen to classi-
cal music describe performances in more complex terms,
and find a small, non-significant correlation. These re-
sults present weak evidence supporting the idea that listen-
ers with more musical experience describe the expressive
character in more complex ways.

4.3 Listeners’ Preferences

To determine how similar the preferences of the listen-
ers are, i.e., if they like (or dislike) similar performances
we compute a χ2-test for each piece to determine if there
are clear preferred performances, or if all performances
of the same piece are equally liked. There are only three
pieces that reject the null hypothesis (the frequency of pre-
ferred performances is flat) at a level α = 0.01, namely
the performance of Bach’s piece by Richter; and the per-
formances of the two excerpts of Schumann’s Arabeske
(in this case, the preferred performances were both by
Vorraber). Two additional pieces reject the null hypothesis
at level α = 0.05: Schumann’s Kreisleriana performed by
Brendel and Mozart’s piece by Pires. Both Gould’s per-
formances and the deadpan MIDI performances (for both
Bach and Mozart) were the least preferred for this piece. It
is important to emphasize that this analysis only indicates
the presence of preferred performances; it does not identify
what the preferred performance is.

4.4 Semantic Similarity of the Descriptions

We use Li et al.’s [23] method for estimating the seman-
tic similarity of short sentences, to compute the pairwise
similarity between descriptions of performances. Similar-
ity between individual terms is estimated as the semantic
distance between words in WordNet [24], and the overall
sentence similarity is weighted with corpus statistics. In-
tuitively, this method quantifies the overlap in terms (and
very directly related synonyms of these terms) between the
answers of the participants. The average similarity of the
descriptions of a performance of a piece by the same pi-
anist (i.e., intra-performance) is 16%, the average similar-
ity of descriptions of a performance and the descriptions of
other performances of the same piece by different pianists
(i.e., inter-performance) is 15%; and the average similarity
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of descriptions of a performance and performances of other
pieces (i.e., inter-piece, excluding performances of the
same piece by other pianists) is 15%. To test whether the
differences between these groups are significant, we per-
formed a one-way ANOVA (F (132, 2) = 9.8, p < 0.001,
η2 = 0.13), which suggests a medium-small effect. We
use t-tests with Bonferroni correction to test the pairwise
differences (3 tests, α = .02). These tests suggest that
the average intra-performance similarity is larger than both
the average inter-performance (one-tailed t(88) = 3.4,
p < 0.001, Cohen’s d = .76) and inter-piece similarity
(one-tailed t(88) = 3.6, p < 0.001, Cohen’s d = .71).
The difference between the inter-performance and inter-
piece similarities is not statistically significant (two-tailed
t(88) = 0.0, p = 0.99, Cohen’s d = 0.0). These results
suggest that listeners describe a performance of a piece in
more similar terms than they describe other performances
of the same piece by different pianists. A possible explana-
tion for the fact that there is little variation in how listeners
describe performances of different pieces could be that lis-
teners have a limited vocabulary with which to distinguish
the difference in expressive character.

5. WHAT ARE THE MAIN DIMENSIONS FOR
EXPRESSIVE CHARACTER?

Most of the terms in Hevner’s adjective checklist [15],
as well as the main five dimensions of expressive perfor-
mance markings identified by Sulem et al. [9] and main
factors of the GEMMES [18] are present in listeners’ re-
sponses. However, the characterizations go beyond the
aforementioned clusters in at least three aspects: many
terms are non-emotional, technical, or disapproving. Non-
emotional terms are e.g., those that are hard to unambigu-
ously place in the arousal–valence space (unlike Hevner’s
or Sulem et al.’s clusters) such as ‘clean’, ‘metallic’ or
‘[t]his is Glenn Gould, obviously’. Technical terms include
terms that describe playing techniques such as ‘legato’,
‘staccato’, or more generally ‘fast’, ‘loud’, and ‘mechan-
ical’. Disapproving terms include descriptions with nega-
tive connotations such as ‘boring’, ‘sterile’, or ‘robotic’.

Regarding automated analysis, characterization of ex-
pressive performance is not a common case in natural
language processing (NLP). Also, the meanings of many
terms in the context of expressive performance are slightly
different from their common usage. Preliminary tests in-
dicate that learned occurrence-based semantics on related
or general topic corpora largely fail to represent more than
superficial similarity for this dataset.

In order to identify the main dimensions of terms, we
compute a principal component analysis (PCA) on the oc-
currence matrix of the dataset. The data is preprocessed in
several steps: answers in other languages are translated to
English and terms are stemmed. A term is omitted if (1) it
shows up less than three times in the dataset (its contribu-
tion to the global variance is minimal) or (2) it is used for
all interpretations of the same piece (its piecewise entropy
is zero; for instance, a participant wrote ‘i love mozart’
(sic) for all performances of the Mozart piece).

Table 2 shows the terms that have the strongest load-
ing on the dimensions in the above PCA. Dimension 1 car-
ries intuitive meaning: its extremes reach from ‘hectic’ and
‘agitated’ to ‘gentle’ and ‘calm’. The other three dimen-
sions are harder to connect to a clear semantic dimension.
Note for instance the terms ‘cold’ and ‘warm’; both influ-
ence dimension 4 strongly in the same direction. Figure
2 displays the terms used to describe Mozart’s Sonata in
the space spanned by the dimensions 1 and 2. The perfor-
mances themselves are embedded in the space as the cen-
troid of their respective terms. Three clusters emerge, with
the deadpan MIDI and Glenn Gould clearly sticking out,
and Mitsuko Uchida slightly more towards the ‘calm’ and
‘sad’ end of Dim.1 (an impression confirmed by listening).

6. HOW DO MEASURABLE/COMPUTABLE
PERFORMANCE FEATURES RELATE TO THE

EXPRESSIVE CHARACTER DIMENSIONS?

In this section we study whether there is a systematic rela-
tionship between the expressive character dimensions de-
scribed in Section 5 and measurable or computed perfor-
mance qualities that can be extracted directly from the au-
dio files or from the score-to-performance alignments. In
the rest of this article, we refer to these measurable or com-
puted performance qualities as performance features.

6.1 Description of Performance Features

6.1.1 Performance Parameters

We consider two performance parameters, tempo and dy-
namics curves, to relate to the expressive dimensions de-
scribed above. The tempo curves are extracted directly
from the hand-corrected score-to-performance alignments
by computing the inter-beat intervals. For computing loud-
ness we use the loudness curve computed from the MIR
Toolbox [25] using a perceptually weighted smoothing of
the signal energy. For inter- and intra-piece comparisons,
we calculate the average value, standard deviation, kurtosis
and skewness of these curves. Average tempo/dynamics
provides an indicator of how fast/loud a performance is,
the standard deviation quantifies the tempo/loudness devi-
ations, kurtosis provides a measure of how extreme these
deviations are, and skewness indicates how asymmetric the
tempo/loudness values are (e.g., whether the piece is regu-
larly faster or slower than the average tempo).

6.1.2 Mid-level Features

Mid-level features are perceptual qualities of music such
as articulation, rhythmic clarity and modality that describe
overall properties of musical excerpts and are intuitively
clear to listeners [11]. We extract the seven mid-level fea-
tures described in [12], using the deep convolutional net-
work architecture from [26] (the A2Mid variant, specif-
ically). The 7 mid-level features are melodiousness, ar-
ticulation, rhythmic complexity, rhythmic stability, disso-
nance, tonal stability, and minorness (see [12] for a de-
tailed description of the features). We train our model on
the mid-level features dataset [12], which contains 5000
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Dimension 1 Dimension 2
positive loading negative loading positive loading negative loading

hectic 0.17 sad -0.20 rushed 0.22 hard -0.19
staccato 0.15 gentle -0.18 nervous 0.20 stumbling -0.18
hasty 0.15 tender -0.18 too fast 0.17 staccato -0.17
agitated 0.14 calm -0.16 bit 0.16 ponderous -0.14
irregular 0.14 graceful -0.16 hasty 0.15 monotonous -0.13

Dimension 3 Dimension 4
positive loading negative loading positive loading negative loading

monotonous 0.22 heavy -0.14 ok 0.24 cold -0.15
bad 0.17 graceful -0.13 happy 0.21 warm -0.14
warm 0.16 smooth -0.12 joyful 0.19 floating -0.14
peaceful 0.16 ponderous -0.12 free 0.15 blurred -0.14
beautiful 0.15 soaring -0.10 breathy 0.14 mysterious -0.13

Table 2. Terms with strongest loadings for each expressive character dimension.

Figure 2. A visualization of the first two dimensions recovered by the PCA. Dots represent terms used in the CEG. Colored
terms from characterizations of Mozart’s Sonata K 545, grey terms from other pieces. The terms are colored according to
the performance they characterize.

audio snippets of 15 seconds each, and use the trained
model to predict the mid-level features of the piano perfor-
mances without any fine-tuning, as there is too little data
for a supervised fine-tuning step. To improve the validity
of the transfer, we incorporate unsupervised domain adap-
tation [27] during the training phase. Since the pieces in
the CEG are piano performances, we use a separate private
collection of non-annotated piano music as the data source
for domain adaptation. We observe more variation in the
mid-level predictions between the performances while us-
ing a domain-adapted model than a non-domain-adapted
one, which indicates that it is a useful step in the pipeline.

6.1.3 High-level Features

As high-level emotion-related descriptors, we choose the
common arousal and valence dimensions [19, 28] and aim
to predict these from the audio recordings, to then relate
them to the expressive character dimensions. We train
a dynamic arousal-valence prediction network using the
DEAM dataset [29]. We tested a VGG-like model, similar
to the one described in Section 6.1.2, and we observed that
when the network is pre-trained on the mid-level dataset

and extended with a multi-layer GRU-RNN (Gated Recur-
rent Unit Recurrent Neural Network) that is trained on the
DEAM dataset, we get the best results. To improve the
results further, we use the recently released receptive-field
regularized ResNet [30] for the pre-training phase, since it
appears to give better results for short audio snippets than
the VGG-like variant. The inputs to our network are Mel-
spectrograms and we process 2-second segments of the
spectrogram with 0.5-second hops. As in the case of the
expressive performances, in order to compare the predicted
arousal and valence curves for inter- and intra-piece com-
parisons, we compute average, standard deviation, kurtosis
and skewness of these curves for each performance of each
piece.

6.2 Analysis with Multiple Linear Regression

To study the relation between the performance parameters
and mid- and high- level features to the expressive char-
acter dimensions described in Section 5 we use multiple
linear regression (MLR) analysis. In this analysis, the de-
pendent variables are each of the expressive character di-
mensions (Dimensions 1 to 4) and the independent vari-
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Dimension 1 Dimension 2 Dimension 3 Dimension 4

PP (R2 = 0.24) PP (R2 = 0.18) PP (R2 = 0.26) PP (R2 = 0.24)
loudness avg 0.51∗∗∗ loudness sk 0.45∗∗ loudness std −0.53∗∗ beat period k −0.34∗

loudness std −0.44∗

MF (R2 = 0.39) MF (R2 = 0.00) MF (R2 = 0.00) MF (R2 = 0.29)
rhythmic complexity −0.74∗ minorness 0.15 articulation −0.15 rhythmic complexity 0.52∗

tonal stability −0.94∗∗ tonal stability 0.84∗∗∗

articulation 0.46∗

HF (R2 = 0.22) HF (R2 = 0.00) HF (R2 = 0.36) HF (R2 = 0.09)
valence sk 0.48∗∗ valence avg 0.14 valence k 0.42∗∗ valence k −0.33∗

arousal avg −1.24∗∗∗

valence std 0.27∗

valence avg −0.82∗

Table 3. Multiple Linear Regression Analysis. PP, MF and HF refer to performance parameters, mid- and high- level
features, respectively. avg, std, k and sk denote average, standard deviation, kurtosis and skewness. The values are the
regression coefficients (indicating the contribution of that feature to the model). R2 is the adjusted coefficient of determi-
nation for the whole model. ∗, ∗∗, and ∗∗∗ indicate statistical significance at levels α = .05, .01 and α < .001, respectively.

ables are the performance features described above. We
carry out 4 × 3 = 12 MLRs for each expressive charac-
ter dimension (4 in total) and subset of performance fea-
tures (expressive parameters, mid- and high-level features).
Each of these regressions investigates whether each sub-
set of performance features (expressive parameters, mid-
/high-level) can significantly predict the position of the
pieces in the expressive character dimensions. The posi-
tion of each piece in the 4D expressive character space is
computed as the centroid of all of its terms in this space.
For each of these MLRs we perform a variable selection
using the Zheng-Loh method [31]. The results are sum-
marized in Table 3. The MLR results indicate that the ex-
pressive parameters are significant predictors of all 4 ex-
pressive character dimensions, with medium effect sizes
(R2). Mid-level features are only significant predictors of
Dimensions 1 and 4. High-level features are only signif-
icant for Dimensions 1 and 3. Thus, Dimension 1 (the
‘gentle’/‘calm’ vs. ‘hectic’/‘agitated’ axis, see Section 5)
seems systematically related to our performance features at
all three levels, which further corroborates its significance.

7. DISCUSSION

In Section 4.2 we observed a small positive relationship
between the complexity of verbal descriptions and listen-
ers’ musical training. We expect that stronger evidence of
a relationship would emerge if musical training were bet-
ter controlled for (our sample had few listeners with < 5
years of training) and the complexity measure were further
developed to account for specialized musical terms. Our
analysis of listeners’ preferred performances in Section 4.3
revealed that the deadpan performances and performances
by Glenn Gould were least well-liked. Prior research has
suggested that listeners prefer quantitatively average ex-
pressive performances [32], which might explain partially
the lack of enthusiasm for Gould’s idiosyncratic playing.

The results in Sections 4.4 and 5 suggest that listeners
tend to describe performances of the same piece similarly,
although there is some variability (e.g., a performance can

be described both as ‘beautiful’ or ‘bad’ by different listen-
ers; cf. both ‘cold’ and ‘warm’ being negatively correlated
with Dimension 4). An important issue is that NLP meth-
ods for assessing similarity between the descriptions are
not really suitable for analyzing performance descriptions,
where each term is loaded with complex meaning 4 as well
as many cross-domain mappings (e.g., metaphors).

The results in Section 6.2 reveal relationships between
performance features and expressive dimensions that con-
form to musical intuition, with the effects being most pro-
nounced for expressive character Dimension 1 (which is
also the one that we find easiest to interpret, see table
2). For instance, the analysis suggests that louder perfor-
mances or performances with large outliers in the valence
curve would be perceived as more irregular and agitated,
while softer performances or performances without large
outliers in valence would be perceived as calm or graceful.

8. CONCLUSIONS AND FUTURE WORK

This paper has introduced the CEG dataset and presented
some exploratory analysis addressing three main questions
related to inter-listener agreement, main emerging descrip-
tion dimensions, and relations between user characteriza-
tions and measurable performance parameters.

Future work will focus on a more in-depth analysis of
the question of semantic similarity. As discussed in Sec-
tion 5, the description of expressive character includes
many nuances that are not well suited to be analyzed with
generic NLP methods, given how loaded with meaning cer-
tain terms are. We plan to investigate methods like pile
sorting [33] with expert musicians to devise a meaningful
semantic clustering of the terms. Furthermore, we plan to
collect more human annotations (e.g., mid- and high-level
features) as a basis for a more systematic comparison.

4 For example, the performance of the Mozart piece by Austrian-
trained Japanese pianist Mitsuko Uchida was described by a participant as
‘Russian pianist’. To understand this description, it is necessary to have
the concept of the Russian School of performance.
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ABSTRACT

Temporality lies at the very heart of music, and the play
with rhythmic and metrical structures constitutes a major
device across musical styles and genres. Rhythmic and
metrical structure are closely intertwined, particularly in
the tonal idiom. While there have been many approaches
for modeling musical tempo, beat and meter and their
inference, musical rhythm and its complexity have been
comparably less explored and formally modeled. The
model formulates a generative grammar of symbolic rhyth-
mic musical structure and its internal recursive substruc-
ture. The approach characterizes rhythmic groups in align-
ment with meter in terms of the recursive subdivision of
temporal units, as well as dependencies established by re-
cursive operations such as preparation and different kinds
of shifting (such as anticipation and delay). The model
is formulated in terms of an abstract context-free gram-
mar and applies for monophonic rhythms and harmonic
rhythm.

1. INTRODUCTION

Temporality lies at the very heart of music, and the play
with rhythmic and metrical structures constitutes a major
device across musical styles and genres. However, there
is comparably less research on rhythm itself than on other
temporal structures of music. For instance, there is a lot
of work on modeling beat and beat inference [1–3], tempo
estimation [4] as well metrical structure [5] and its infer-
ence [6–10]. There has been major theoretical work differ-
entiating between grouping and meter [11], and between
rhythm and meter [5, 12]. In comparison, there is less for-
malization work on musical rhythm [13–15], and some ma-
jor studies such as the GTTM [11] or [5] avoid a formal
characterization of musical rhythm. The purpose of this
theoretical paper is to address this gap and to provide a
generative model of musical rhythm in terms of an abstract
context-free grammar that generates rhythmic structure in
alignment with metrical structure.

c© M. Rohrmeier. Licensed under a Creative Commons
Attribution 4.0 International License (CC BY 4.0). Attribution: M.
Rohrmeier, “Towards a Formalization of Musical Rhythm”, in Proc. of
the 21st Int. Society for Music Information Retrieval Conf., Montréal,
Canada, 2020.

 


 
     

    
  


 


    


 




 
 53







Figure 1: Two different series of onsets and durations.

2. MOTIVATION

Rhythm is commonly thought of as a series of onsets and
durations of musical events. While duration patterns are
essential for musical rhythm, the core idea of the model
is to capture that rhythmic structures, especially those in
tonal music, are more than (fully) freely placed onsets
over time and that the concept of rhythm involves different
kinds of dependencies that are constituted between its mu-
sical events. To illustrate this point, Figure 1 displays two
different series of onsets and durations. Only the lower one
looks like a plausible candidate for a rhythm from a tonal
piece of music. There are several points underpinning this
distinction. In essence, it is argued that rhythm is under-
stood involving an interpretation in terms of hierarchical
dependencies of temporal events and their assignment to
the metrical grid, which result in a surface projection of
patterns of onsets and durations.

One central point is that the rhythmic Gestalt is fun-
damentally defined by its relation to metrical structure;
rhythm cannot be separated from a metrical interpretation.
This point is illustrated by Figure 2. Both rhythms have
the identical sequence of onsets and durations, but differ-
ent metrical structures associated with them, and this re-
sults in both rhythms sounding very different. In particu-
lar, the ways in which events are linked to weak and strong
metrical beats and also their underlying meter have a major
impact on the interpretation of a given pattern of durations.

A second major point lies in the fact that we charac-
terize rhythmic structures in terms of an interpretation by
event dependencies and transformations. For instance, cer-
tain events lead to other events; we understand a certain
event or group of events as an upbeat to (or preparation of)
another event; and we understand certain events as sub-
divisions of longer units (such as triplets). Furthermore,
when we speak about syncopation, anticipation, or delay,
it means that certain events occur earlier or later, implying
that there is an (underlying) position where these events
would have been expected normally before the transforma-
tion (shift) [13, 16]. Rhythmic events are also recognized
as grouped.
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Notenbeispiel 1a. 

Notenbeispiel 1b.

Notenbeispiel 2a & b. A melody (composed by the author) which can be heard in 3/4 or 4/4 
metre.

Figure 2: The alignment with metrical structure may yield
two very different rhythmic interpretations for the same
pattern of onsets and durations.

Generally, it is useful to distinguish different levels of
musical time [17–20]. Rhythmic structure, in the aspect
that is modeled here, lives in idealized time. The metrical
grid presumes an underlying isochronic beat, and rhyth-
mic patterns are related by simple integer ratios in relation
to the grid and the beat. The rhythmic structure at this
symbolic level in relation to the symbolic beat is differ-
ent from the level of tempo variation, expressive timing,
swing, groove, performance errors and other subsymbolic
variations of timing.

In sum, we generally conceive of rhythms as structured
both in terms of an associated metrical structure as well
as in terms of event dependencies such as the ones men-
tioned. In contrast, events occurring with purely random
onsets and durations (like the first example in Figure 1)
sound erratic—which in turn means that they have no in-
terpretation in terms of the dependencies outlined. It is
the purpose of the proposed model to express the various
rhythmic dependencies at the deep structure that give rise
to the patterns of event onsets and durations observed at
the surface.

One common observation in rhythmic structure is that
events may reach into the timespan of other events. This is
particularly common with preparations before an event, an-
ticipations or syncopations that may enter during the times-
pan of the directly preceding event. This may cause the
preceding event to be shortened, which we refer to as time
stealing when it is discussed below.

2.1 Related literature

Numerous approaches have addressed rhythmic and met-
rical structure in music [5, 21]. While there are several
research directions in terms of rhythmic corpus studies
[22–27] and mathematical analyses [28–30], there is less
research proposing formal theoretical frameworks gener-
ating rhythmic structure. Differentiating metrical structure
from grouping, the GTTM [11] laid a foundation for the
understanding of meter that is still in place today. Several
endeavors have been devoted to implementing the GTTM
in a computational way [31, 32].

Several computational approaches to rhythm have pro-
posed sequential models such as Markov models, HMMs
or other graphical models [33, 34]. More recently various
hierarchical approaches and probabilistic grammars have

been used for rhythmic inference and transcription prob-
lems [15,35–37]. These approaches are essentially built on
recursive subdivision (split). [14] proposed an algorithmic
model of rhythm using transformations of syncopation, fig-
ural, and density (split) based on the transformation vector
proposed by [13]. From the perspective of mathematical
music theory, rhythmic structure has also been modeled in
terms of subdivision of a graph [38].

The present model extends previous approaches [14,15,
39] by characterizing an overarching abstract context-free
grammar of recursive rhythmic dependencies. It is based
on five abstract operations of splits, preparations, and shifts
using a tripartite representation of rhythmic categories, and
models rhythmic conflicts using the concept of time steal-
ing. As a grammar-based generalized model of rhythm, it
can be naturally integrated with syntactic models of har-
mony [39–48] for modeling harmonic rhythm.

3. THE FORMALISM

3.1 Metrical structure

Metrical structure has been famously modeled by [11] with
a recursive grid of metrical weights and a notation adopted
from metrical phonology in linguistics [49–53]. Examples
of the metrical grid are shown in Figures 2 and 3. In the
grid, each level m is characterized by a multiple (2 or 3)
of the period of the subordinate level m− 1 and an offset.
Generally, the subdivision for regular meters is binary or
ternary [5]; for irregular meters the formalization would
need to be extended to combinations of twos and threes
(e.g. 7

8 = 3
8 + 2

8 + 2
8 ).

The metrical grid can be characterized as follows for
regular meters: the beat level is marked with m0 and the
beginning of the segment or piece is indicated by the in-
dex 0, and locations are indicated in reference to m0.
Each higher metrical level i is characterized by the tuple
(πi, oi), the regularity πi ∈ {2, 3} · πi−1, and the offset
oi := oi−1 + aπi−1, witha ∈ N0, o0 = 0 and π0 = 1.
This ensures that higher levels can only subselect beats es-
tablished in all lower metrical levels. Metrical levels below
the beat (i < 0) are characterized in the same way with
πi ∈ { 12 ,

1
3} · πi+1, and the offset oi = 0. Accordingly,

a metrical grid M is fully defined by the list (or series) of
all tuples M := (πi, oi). The metrical grid is potentially
infinite in duration and has an arbitrary number of metri-
cal levels i. Most commonly, almost all values of π are 2,
except for the levels 1 and 2 in ternary meters.

The metrical weight at position t is characterized as:

WM :=(πi,oi)(t) =
∑
i

(
1−sign(| t−oi | mod πi)

)
(1)

where the 1 − sign(·) function is used to compute 1 for a
position falling on the metrical grid and 0 otherwise. Fur-
thermore, a subsegment of a metrical grid M is character-
ized byM[a,b], where a and b denote the beginning and end
locactions of the open or closed subsegment interval.
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3.2 Generative rhythm

The formalism is modeled employing abstract context-
free grammars [47]. The grammar consists of four parts:
G = (C,Σ, P, C0), non-terminal rhythmic categories C,
terminal symbols Σ, production rules P , and, in this case,
a set of start symbols C0 ⊆ C. All sets C, Σ, C0 are infi-
nite.

A rhythmic category consists of a tuple (t,m): a times-
pan t and the metrical grid m associated with the times-
pan. The timespan represents a formalization of the rhyth-
mic time interval (which is going to be generatively sub-
divided). It is itself a triple [a : b : c] that combines
three parts: a downbeat part of a duration b, also called
the body of t, and an initial offset (upbeat) of duration a,
and final offset (coda) of duration c. Durations are de-
fined in beats (∈ Q) including fractions of beats, such as
1
8 . The offset parts can be positive or negative. If pos-
itive, a time segment is added to the core length of b; if
negative, b is shortened by that amount. The total dura-
tion of t is a + b + c. While in practice, a and c are each
mostly no longer than b

2 , it is avoided to postulate such a
restriction theoretically rather than empirically. However,
−b < a < b, −b < c < b, and a+ c <= b are required.

The set of surface symbols Σ consists of musical events
that are characterized by pairs (l,m) of event durations l ∈
Q, l ≤ b in beats with associated metrical weigths m ∈
Q. The separate modeling of the event length in addition
to the timespan is important because a realized event may
in turn occupy a shorter duration than its timespan (e.g.
a quarternote in a half-note timespan, or a staccato note).
This makes it possible to model the type of rests that can
occur in this case. Since the focus in this paper is about
the rhythmic grammar, other features of the musical event
(like pitch) will be left out of account.

The set of start symbols C0 ⊆ C consists of rhythmic
categories that do not have a coda offset:

C0 = {k | k = (t = [a : b : c],m) ∈ C ∧ c = 0} (2)

Because the symbol space is infinite, rules do not con-
stitute rewrite operations over symbols (as in classical
context-free grammars), but as rewrite functions. The set
of generative production rules P is characterized as

P ⊆ {r | r : C → (C ] Σ)∗}, (3)

where the rules are functions that map sets of categories
onto sets of categories or surface symbols, establishing an
abstraction over different paramaterized instantiations of
analogous rules.

The set of core rules constitutes the heart of the gener-
ative formalism. For the generation of rhythmic structure,
five main rules are assumed: split, prepare, (c-split), antic-
ipate, and delay.

Split rule. The main rule of the formalism is split,
which subdivides the body of the rhythmic category, while
the outer upbeat and coda parts remain identical. The split
can induce timestealing such that a timespan protrudes into

an adjacent one by an upbeat or coda of length e. Note that
it does not result in an update of the length of the timespan
body b, but of its upbeat or coda part. This maintains the
core durations at the deep structure. Split can subdivide a
timespan into two or three parts; other subdivisions, such
as four or five, etc., require multiple split operations.

([a : b : c],m0) −→ ([a : d : −e],m1) ([e : b− d : c],m2)

| 0 < d < b,m1 = m0[0,a+d−e[,m2 = m0[a+d−e,a+b+c]
(4)

([a : b : c],m0) −→
([a : d : −e1],m1) ([e1 : f : −e2],m2) ([e2 : h : c],m3)

| d+ f + h = b, m1 = m0[0,a+d−e1[,

m2 = m0[a+d−e1,a+d+f−e2[,m3 = m0[a+d+f−e2,a+b+c]

(5)

The working of these rules may be visualized by the
subtrees they produce (ignoring the metrical assignment):

[a : b : c]

[e : b− d : c][a : d : −e]

[a : b : c]

[e2 : h : c][e1 : f : −e2][a : d : −e1]

It is further assumed that the majority of these split op-
erations divide the body of the timespan equally (d = f =
b
2 , for even b) or into simple integer ratios. The actual
instantiation of these splits in practice is, however, not a
matter that should be decided a-priori at the level of the
formalism. Note, for instance, that an unequal subdivi-
sion like 3:1 in the context of a long note and an upbeat
to the next bar, is not required since such cases are rather
expressed with the upbeat (u-split) rule that is explained
next.

Also note that for categories where the metrical ac-
cent lies at the beginning of the body, it is sufficient to
metrically characterize the split segments by the metrical
weight at the downbeat (onset) of the body. The notation
m = u ⊕ v is used to denote the weight of the downbeat
in terms of the metrical level u generated by the split oper-
ation plus the metrical weight v inherited from the parent
node in the tree. Figure 3 and 4 illustrate this notation.

As an example, a halfnote split into two quarter-notes
or dotted quarter-note split into three eighth-notes would
be expressed like this:

[ 18 : 1
2 : 0]

[0 : 1
4 : 0][ 18 : 1

4 : 0]

[0 : 3
8 : 0]

[0 : 1
8 : 0][0 : 1

8 : 0][0 : 1
8 : 0]

and

Prepare (U-Split) rule. The second core rule models
upbeat structures. It takes the upbeat part of the timespan
of a rhythmic category and generates an own rhythmic cat-
egory from it:

([a : b : c],m0) −→ ([a− d : d : 0],m1)([0 : b : c],m2)

| 0 < d ≤ a,m1 = m0[0,a[,m2 = m0[a,b+c]

(6)

The corresponding tree fragment looks like this:
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[a : b : c]

[0 : b : c][a− d : d : 0]

For example, a half-note that is prepared by a combined
upbeat of an eighth and a quarternote would be expressed
as follows:

[ 38 : 4
8 : 0]

[0 : 4
8 : 0][0 : 3

8 : 0]

[0 : 2
8 : 0][0 : 1

8 : 0]

One may postulate a corresponding counterpart to the
upbeat split in the prepare rule; this rule (c-split) would in-
stantiate a rhythmic category from the coda-part of a given
rhythmic category. While it is unclear if such a rule would
indeed be required for tonal rhythm (i.e. a phenomenon of
“post-paration” as opposite to “pre-paration”), still the rule
is listed even though it may be dropped from the formalism
(or be found to not occur empirically):

([a : b : c],m0) −→ ([a : b : 0],m1) ([c− d : d : 0],m2)

| 0 < d ≤ c,m1 = m0[0,a+b[,m2 = m0[a+b,a+b+c]

(7)

Shift rules. Two further rhythmic phenomena do not
relate to subdivision but to the shift of events, such as in
the context of syncopations. In these cases, a rhythmic
category c may be shifted to occur early or late. The cor-
responding rules are anticipate (e-shift) and delay (l-shift).
These rules are unary rules that transform a rhythmic cate-
gory rather than creating a new one.

e-shift: ([a : b : c],m0) −→ ([0 : b : a+ c],m0) (8)

l-shift:([a : b : c],m0) −→ ([a+ c : b : 0],m0) (9)

Surface rules. Finally, from the set of recursive gen-
erated rhythmic subdivisions and transformations a rhyth-
mic surface will be generated. If events are shortened by
timestealing, the lengths of the core are updated (by the
first two rules). In order to ensure that all upbeat parts and
codas have been instantiated either with events or shifts,
surface symbols can only be generated for categories that
have an empty upbeat and coda part. Once generated, sur-
face symbols cannot reenter the generative process.

([a : b : c],m) −→ ([0 : b+ a : c],m) for a < 0 (10)
([a : b : c],m) −→ ([a : b+ c : 0],m) for c < 0 (11)
surface:

([0 : b : 0],m) −→ (b,Wm(0)) (12)
([0 : b : 0],m) −→ (l,Wm[0,l[

(0))(ε, b− l,Wm[l,b]
(0))

| 0 < l ≤ b (13)

In other words, the surface rule yields the rhythmic sur-
face duration l = b or l ≤ b as well as its metrical weight

m. If the event is shorter than its timespan b, the surface
rule also creates a rest event ε that fills up the remaining
space, so that the subsequent events are not affected by the
shortening.

The surface rule is designed in such a way that all
lengths of all surface events add up to the full length of
the entire musical segment from the start symbol:∑

li = a+ b for c0 = [a : b : 0] ∈ C0 (14)

An illustrative example of this sum can be reconstructed
from the surface-note durations in Figure 3 and 4.

4. EXAMPLES

4.1 Melodic rhythm

A first detailed analysis is carried out on the first two bars
of the jazz standard “Blue Bossa”. The tree analysis based
on the generative model is displayed in Figure 3 together
with a corresponding analysis that visualizes the recursive
rhythmic subdivisions and shifts of the same generation
using musical score lines. All durations are encoded fol-
lowing common music notation, i.e. 1

2 refers to a half-
note, 1 to a whole note, or 3

8 to a dotted quarter-note; 1
4

refers to the quarter-note beat level. The figure character-
izes the metrical (sub)grids of each category employing the
m = u⊕ v notation.

Several observations can be made based on the fig-
ure. All of the applications of split illustrate that times-
pans may be subdivided with equal subdivision of the core,
yet resulting in unequal timespan durations based on time-
stealing effects encoded in the upbeat and coda parts of the
timespan category. The derivation of the sixth note pro-
vides an example where an event at the metrical whole-
note level is syncopated by an eighth note and at the sur-
face instantiated shorter than its timespan resulting in the
surface generation of an additional rest.

Further, the first, third, and seventh note may be un-
derstood as upbeats to the subsequent events. The second
halves of measures 1 and 3 have syncopations in which
the shifted events reach into the timespan of the previous
events, causing the notes on beats 3 and 1, respectively, to
be shortened by one eighth note.

4.2 Harmonic rhythm

The formalism proposed has a different application in the
modeling of harmonic rhythm. For instance, this con-
cerns modeling the harmonic-rhythmic structure as it is
contained in leadsheets. A major difference between the
previous case of melodic rhythm is that harmonic rhythm
in leadsheets may well employ (harmonic) upbeats, yet no
rhythmic shifts in the sense of syncopation, anticipation or
delay; also time overlaps that involve the timespan coda
have not been observed. A computational version of this
(sub)model has been proposed in [39].

Figure 4 shows an example analysis of the first 8 bars
of the harmonic phrase of “Blue Bossa”. The tree analy-
sis displays the harmonic syntactic dependencies follow-
ing [47, 54, 55] in conjunction with the harmonic rhythm
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[ 14 : 4 : 0]
m = 4

[ 14 : 2 : 0]
m = 3

[ 18 : 1 : 0]
m = 2

[0 : 9
8 : 0]

m = −1

( 9
8 )

m = −1

[ 14 : 1 : − 1
8 ]

m = 2⊕ 1

[ 18 : 1
2 : − 1

8 ]
m = 1

[0 : 1
2 : 0]

m = −1

( 1
2 )

m = −1

[ 14 : 1
2 : − 1

8 ]
m = 1⊕ 2

[0 : 1
2 : − 1

8 ]
m = 1⊕ 2

( 3
8 )

m = 3

[0 : 1
4 : 0]

m = 0

( 1
4 )

m = 0

[ 14 : 2 : − 1
4 ]

m = 3⊕ 1

[ 18 : 1 : − 1
4 ]

m = 2

[0 : 7
8 : 0]

m = −1

(ε, 14 )
m = 2

( 5
8 )

m = −1

[ 14 : 1 : − 1
8 ]

m = 2⊕ 2

[ 18 : 1
2 : − 1

8 ]
m = 1

[0 : 1
2 : − 1

8 ]
m = 1

[ 18 : 1
4 : − 1

8 ]
m = 0

[0 : 1
4 : 0]

m = −1

( 1
4 )

m = −1

[0 : 1
4 : − 1

8 ]
m = 0⊕ 1

( 1
8 )

m = 1

[0 : 1
8 : 0]

m = −1

( 1
8 )

m = −1

[ 14 : 1
2 : − 1

8 ]
m = 1⊕ 3

[0 : 1
2 : − 1

8 ]
m = 1⊕ 3

( 3
8 )

m = 4

[0 : 1
4 : 0]

m = 0

( 1
4 )

m = 0

m =-1:
m =	0:
m =	1:
m =	2:
m =	3:
m =	4:

Figure 3: A rhythmic analysis of the first four bars of the melody of the Jazz standard “Blue Bossa”.

and the metrical levels. This requires a product grammar
as defined by [39] for the formulation of the coordination
between harmonic and rhythmic structures—which is an
application of the formalism as proposed here. The tonic i
at the highest level is equally split into two tonic timespans
at level 3. When the preparing dominant V 7 is inserted,
it causes to take up half of the space of the timespan of i
and causes i to appear later. When iv is introduced prepar-
ing V 7 it is introduced at the same metrical level (level
2) and reaches into the time domain of the initial i (time-
stealing). By analogy, the introduction of ii∅ takes up the
half of the V 7 time domain. Accordingly, the analysis re-
veals that the metrical domains of the chords in the hierar-
chical analysis are not identical with the position where the
chords occur on the surface. Figure 4 (a) displays the step-
wise joint derivation of harmonic syntactic dependencies
and harmonic rhythm.

5. DISCUSSION

The contribution of this paper is to characterize the recur-
sive internal structure of musical rhythms using a formal
grammar. This goes beyond the GTTM, which does not
propose a model of rhythm, and further argues that the in-
ference of the hierarchical rhythmic deep structure is cen-
tral to music cognition. Because of the joint representation
of rhythmic and metrical structure in the model, a parser of
the proposed abstract grammar of musical rhythm instan-
tiates rhythmic interpretation and metrical inference at the
same time.

In this formalism, the concept of timestealing is pro-
posed. It is modeled at the highest metrical level it affects,
and the split operation already sets up the timespans for
subsequent preparation or shift operations in the upbeat or
coda parts of the timespan category. This modeling ensures
that all operations remain context-free and could be im-
plemented and parsed efficiently with a parser of abstract
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4: | i | | | | | | | |

3: | i | | | | i | | | |

2a: | i | | | | V 7 | | i | |

2b: | i | | iv | | V 7 | | i | |

1: | i | | iv | | ii∅ | V 7 | i | |

s: |Cm7 | |Fm7 | |Dm∅|G7 |Cm7 | |
(a) Schematic stepwise top-down generation of the chord se-
quence including harmonic rhythm. The generation occurs top-
down from the single tonic i at metrical level 4. If a bar is empty,
it is in the domain of the preceding chord. The row numbers in-
dicate the metrical level. There are two operations at the same
metrical level. The last row contains the chord sequence as it
appears in the leadsheet.

i [0 : 8 : 0]
m = 5

i [2 : 4 : 0]
m = 4

i [0 : 2 : 0]
m = 3

Cm7 (2)
m = 3

V 7 [2 : 2 : 0]
m = 3⊕ 1

V 7 [0 : 2 : 0]
m = 3⊕ 1

V 7 [0 : 1 : 0]
m = 2

G7 (1)
m = 2

ii7[5 [0 : 1 : 0]
m = 2⊕ 2

Dm7[5 (1)
m = 4

iv [0 : 2 : 0]
m = 3

Fm7 (2)
m = 3

i [0 : 4 : −2]
m = 4⊕ 1

Cm7 (2)
m = 5

(b) Harmonic syntax tree co-generated with rhythmic-metrical
structure. At the surface, the numbers in parenthesis encode du-
ration and m its metrical weight (see also part (a) of the figure).

Figure 4: Syntactic analysis of the harmony and its rhythm in the first phrase of the Jazz standard “Blue Bossa” in C minor.

context-free grammars. This would not be guaranteed if
the upbeat feature would only be instantiated at the upbeat
or shift operation, for instance. If such an upbeat would
reach across a border at a different metrical level the infor-
mation to adapt the coda part of the adjacent subtree would
have to perculate through the tree in a context-sensitive
fashion, thus resulting in a model of much higher compu-
tational complexity. Such an instance could, for example,
be observed in the syncopation of the sixth note in Figure
3. The eighth note syncopation of a note at the whole-note
level results in a shift of the corresponding right neighbor
at the quarternote level, accordingly the information would
have to traverse one node up and four nodes down the tree
to reach the right node. Further, a generation of upbeats
and shifts without timespan reservation may result in the
generation of impossible structures if both sides expand in
a unrestricted context-free fashion.

Because of the hierarchical modeling of shifts of times-
pans, it is not necessary to include “hacks” such as binding-
over of events as in musical notation (as in the long notes
C and F in Figure 3) since the logic of syncopation can be
modeled directly. With the formalism and the upbeat fea-
ture it is further possible to model the rhythmic displace-
ment of an entire group of events, such as the syncopation
of four quarternotes by an eighth note.

The tripartite representation of a timespan with upbeat,
core, and coda parts makes it possible to maintain the sim-
ple split ratios at the deep structure. It also models the nor-
malized locations where syncopations originated, as well
as the overarching timespan that a deeper event dominates
even though it may only occur at a different surface posi-
tion (such as the tonic or dominant symbols in Figure 4).
Maintaining simpler deep structure relations aggregates of
similar rules, which establishes theoretical parsimony and
facilitates probabilistic modeling and inference.

In the presented model rhythmic structure is generated
in alignment with meter. It is possible to devise a variant

of the model such that metrical structure is co-generated
jointly with rhythm rather than having it defined with the
start category. The additive m = u ⊕ v characterization
as used in Figure 3 and 4 defines metrical weight with a
current metrical level and a part inherited from the parent.
Split, prepare and shift rules can be redefined in such a
way that they recursively generate each successive metri-
cal level. While such an approach has advantages for com-
plex and irregular rhythms, it would require additional con-
straints to ensure metrical consistency across independent
context-free subtrees.

The proposed formalism models the generation of a sin-
gle rhythmic sequence. For musical structures with multi-
ple streams or voices, additional parallel trees can be in-
stantiated which need to fulfill the constraint that their de-
rived metrical structures are aligned. Moreover, complex
(non-Western) rhythms and meters can be modeled with an
extended model of meter that allows for non-isochronous
or additive subdivisions [5]. Application of a computa-
tional implementation of the model would be measures of
rhythmic complexity based on the derivation tree as well as
rhythmic similarity based on largest embeddable common
subtrees as for instance employed in [43].

The fact that rhythmic relations instantiate upbeats and
splits is closely related to the core syntactic principles of
preparation and prolongation [54]. This is corroborated by
the fact that harmonic syntax and rhythm are found to be
highly correlated in computational modeling [39].

Finally, there is also a close relation between such recur-
sive rhythm and grouping; in fact, the higher order rhyth-
mic categories reflect or constitute the grouping structure,
refining the concept from the GTTM [11]. Crucially, it has
not been argued that this model holds for all rhythms found
in musical practice. Rather, the formalism models rhyth-
mic interpretability based on the deep structural rhythmic
dependencies outlined; while music is highly flexible, cer-
tain complex rhythms (Figure 1) may not be interpretable.
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ABSTRACT 

Studies have shown that repeated exposures to novel songs 

cause an increase in a person’s memory and liking. These 
studies are commonly verified through self-reporting 

emotion-based surveys. This paper proposes the “retention 

rate” as an additional parameter for evaluation, which 

examines the rate at which the listener revisits the novel 

items. The authors hypothesize that when a person listens 

to novel (i.e., both unfamiliar and interesting) pieces of 

music, the retention rate will be proportional to the number 

of times the discovery engine suggests the pieces to her, as 

long as they remain novel. The authors have tested the 

hypothesis through a six-week human-subject experiment 

which simulates a real-world listening environment and a 

follow-up survey. During the experiment period, each 
subject received, through Discover Weekly in Spotify, 

suggestions for novel songs up to three times and provided 

evaluation. One month after the evaluation experiment, the 

human-subjects answered whether they had revisited the 

novel songs. Through the analysis of the response and 

survey data, the researchers conclude that the more times 

a listener is exposed to a song during the discovery 

process, the more likely she is to return to the song. 

1. INTRODUCTION 

The arrival of online music streaming services, such as 

Spotify1 and Apple Music2, has greatly changed the way 
people listen to music. They allow their users to make 

dynamic selections of music from vast libraries and thus 

provide an improved exposure outlet for musicians. By 

adopting a music streaming service, listeners are far more 

likely to broaden their tastes and explore songs and artists 

appearing in the long tail of the popularity distribution [3]. 

The instant accessibility to a myriad of songs through 

streaming platforms addresses the long-tail problem [13], 

where most listening data corresponds to few songs and 

the vast majority of songs have very little listening data, 

especially through use of collaborative filtering (CF). CF 

is a technique that finds a group of users whose tastes and 
activities show substantial similarity to each other and 

makes recommendations based upon what the other 
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members of the group liked. The more people in the group 

who enjoy a piece, the more likely that the system 

recommends it, which gives rise to a recommendation bias 
towards popular songs, though other techniques can help 

correct this issue. 

Personalized music discovery tools, such as Spotify’s 

Discover Weekly playlist, aim at recommending music 

independent of user groups. They utilize the personal 

listening history of a user and try to suggest new and 

interesting songs specific to her interests. These 

“serendipitous recommendations” [9] are useful for 

extracting music from the long tail, which would otherwise 

be difficult for the user to find. They make use of content-

based filtering techniques, which determine song 

similarity through the audio features and are a potential 
solution to the popularity contest that tends to be created 

by collaborative filtering methods.  

However, even when presented with novel songs, the 

onus is on the user to remember to revisit them, usually by 

saving them or adding them to a playlist. The goal of the 

user during the experience of a new piece may not be to 

record what she liked for future relistening, but instead, she 

may want to listen to something in the background [4]. As 

a result, some songs may disappear not only from the 

memory of the user but also from her song collection, 

despite that the listener enjoyed them on first listen. These 
songs in oblivion create missed opportunities to expand 

both the listening repertoire of the user and the audience of 

the artist. The goal of this study is to show that when 

repeating recommendations during the music discovery 

process, the listeners are significantly more likely to revisit 

the discovered songs. This addresses the long-tail problem 

by focusing on data saturation, rather than item selection, 

in order to help items break out of the long tail. 

Missed opportunities also arise when a user has a 

neutral or uncertain initial response to a song and discards 

it, since subsequent listens may have yielded a more 

favorable response. The music domain has the somewhat 
unique characteristic that users are expected to revisit 

songs many times. Studies have shown that repeated 

listens to a piece of music cause an initial increase in 

liking, which subsides with satiation. Simultaneously, 

 
1 www.spotify.com 
2 www.apple.com/apple-music 
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memory steadily increases throughout [7,11,14,15]. This 

is not an issue in the typical radio format for music 

discovery, where songs are presented many times upon 

their release, ensuring listeners will become familiar. 

Though streaming services have adopted the radio format 

to an extent [5], this study should provide justification for 

expanding its use in the music discovery tools. 

In the present paper, the authors studied whether 
repeated recommendations of novel songs cause users to 

return to the songs later. A six-week human-subject 

experiment with a follow-up survey was conducted, which 

simulated a real-world listening environment. During the 

experiment period, the subjects were provided, through 

Discover Weekly in Spotify, suggestions for novel songs. 

Each novel song appeared no more than three times during 

the experiment. Each subject provided her response to each 

song on the list. One month after the conclusion of the six-

week experiment, the human-subjects answered whether 

they had revisited the novel songs. Although it is typical to 

evaluate the effects of repeated recommendations with 
respect to a person’s familiarity and preference to the 

songs, this study will introduce two additional factors, 

retention rate and forgetting rate, which allow the standard 

listening behaviors of the subjects to dictate the results. 

This paper will describe the details of the experiment and 

present the analysis of the data that was collected. 

2. RELATED WORKS 

When examining research on novelty and the effects of 

repeated recommendations, it is essential to trace 

everything back to [1], where Berlyne coined the inverted-

U theory for collative variables. This theory postulates that 
as a collative variable (i.e., familiarity, complexity) 

increases, a person’s liking increases to a point, then 

decreases, creating an inverted-U shape. Chmiel and 

Schubert [2] examined the validity of this theory 

throughout the past several decades of research. They 

found that, in general, the theory holds in the results of the 

studies they surveyed. It is, therefore, safe to assume that 

the first time a person listens to a song will not be their 

most enjoyed listening experience. Vargas and Castells 

[16] point out that flaws exist in evaluating novel 

recommendations solely based on the accuracy of the 
selected songs.  They offer an alternative strategy that 

accounts for the ranking of the chosen items and their 

relevance to the user.  

The problem of recommending long-tail items is a 

popular topic in the current recommendation systems 

research. Park [12] proposed an adaptive clustering 

method that clusters items based on their popularity but 

chose only the data objects in the long tail for clustering. 

This method performed better than prior approaches, both 

in terms of performance and the system’s ability to 

recommend long-tail items. Wang et. al [17] utilized the 

users’ experience level to control the extent to which long-
tail items are recommended, finding that more experienced 

users were more open to the items in the long tail. [6] 

adapts the diversification of recommendation lists based 

on the perceived preferences of the user towards diversity 

and penalizes the inclusion of popular items while 

increasing accuracy. Using a multi-objective simulated 

annealing process, the resulting recommendation lists 

performed very well, compared to existing methods. 

Finally, [10] extended an existing tripartite graph approach 

for long-tail recommendations by expanding full genres, 

allowing more connections between items and genres. The 

results showed an increase in diversity and recall scores 

over existing methods. 

Several studies exist to test the effects of repeated 
listens on liking and familiarity [7,11,14,15]. All have a 

result stating that both factors typically increase after the 

first listen. Hargreaves [7] found that when novel songs 

were repeated in weekly intervals, rather than in one 

continuous setting, familiarity ratings plateaued as in the 

inverted-U shape, but the "like" ratings remained constant 

in both cases. In [14], Szpunar et al. tested the effects of 

repeated listens during focused versus unfocused listening 

on memory and liking. They found that inattentive (or 

passive) listeners exhibited a slow and steady increase in 

liking and memory with repeated listens, whereas attentive 

listeners showed an inverted-U shape for both. 
Similarly, in [11], Madison and Schiolde utilized a 

series of user listening experiments to conclude that 

familiarity increases liking regardless of the complexity of 

the music, and that familiarity is the most critical indicator 

of enjoyment. Van den Bosch et. al [15] conducted 

experiments involving psychophysiological scans that 

measured electrodermal activity. They connected self-

reports on liking of music with these emotional responses. 

They found that as the unfamiliar songs were repeated, the 

emotional measurements became more closely related to 

the self-reported liking ratings. 
Ward et al. [18] tested the effects of familiarity on 

music choice by asking subjects to rate songs in terms of 

familiarity and preference. After the initial rating, the 

songs were paired the songs up, one familiar and one 

unfamiliar, and asked the subjects which they would rather 

hear. They found that the subjects tended to select the 

songs with which they were more familiar, regardless of 

their liking ratings, leading them to conclude that people 

prefer to hear familiar music despite claiming they would 

like to hear more novel songs. Alternatively, their results 

indicate a greater need to boost familiarity during the 
discovery process, so that novel songs are more likely to 

be revisited. 

3. PROBLEM OVERVIEW 

Automatic personalized music discovery systems can 

make serendipitous recommendations to their users based 

on their listening histories. One example of these systems 

is Spotify’s Discover Weekly, which provides users with a 

30-song playlist of new and interesting songs based on 

their listening histories. Since the playlist is refreshed 

every Monday, the users will need to remember to revisit 

the songs they enjoy, usually by saving them or adding 

them to a playlist. If the users forget to do this, or if they 
prefer to listen to new music in the background [4], there 

will be missed opportunities to broaden the listener’s 

repertoire, since songs the users enjoyed or may have 
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grown to enjoy never entered their listening rotation. We 

are proposing an improvement to the personalized music 

discovery approach, where the novel recommendations are 

repeated at least once to boost familiarity and increase the 

likelihood of the users revisiting the songs in the future. 
The first and main question of this research is as follows: 

 

RQ1. Is the likelihood for a user to revisit a liked 

song proportional to the number of times that the song 

is presented to the user? 

 

To answer this question, we introduce retention rate, R, 

as an evaluation metric. Let N be the set of songs a person 

listens to for the first time, and let r be the number of songs 

in N that person listens to more than once, R = r / |N|.  
As shown in previous research [7,11,14,15], repeated 

listens of a novel song will typically lead to an initial 
increase in preference, followed by a decrease once the 

listener is satiated. The phenomenon is in line with the 

inverted-U theory for familiarity and preference [1,2]. 

Although the number of listens will need to be sufficiently 

large to see this pattern, we should still expect an increase 

in preference over the initial listening experiences. 

Therefore, the second research question is as follows: 

 

RQ2. Does the preference toward the unfamiliar 

songs increase with repeated presentations? 

 
Properly answering these questions will require a real-

world listening simulation, where subjects are as free as 

possible to listen to the music and report on their 

behaviors. Since this approach utilizes actual listening 

activities for evaluation, it will yield more practical results 

than the usual feelings-based self-reports. 

4. EXPERIMENT SETUP 

To answer the two research questions, 19 Spotify users (15 

female) were recruited to participate in a 6-week music 

listening study. This study was designed to simulate real-

world listening behavior, allowing the subjects to listen 

freely and report on their activity. To begin, the subjects 

were each asked to provide their most recent 30-song 

Discover Weekly playlist (570 total songs) without first 

listening to it. Let Ik represent this playlist for user k, such 

that In
k represents the nth song from the initial discovery 

playlist for user k. Every week, on Monday, subject k is 

provided with a link to a 10-song playlist, Pw
k, where w is 

the current week number. They were asked to listen to the 

playlist once, then fill out a survey before any further 

listens. No restrictions or requirements were placed on the 

setting or device of the listening. The only suggestion 

given to the subjects was to treat the listening as they 

would their normal music discovery. The survey asked the 

subjects to evaluate the entire playlist in terms of both their 

enjoyment and its effectiveness for discovery, both on a 5-

point Likert scale. Additionally, they were asked to place 

each of the individual songs into one of three categories: 

“Like it,” “Not sure yet/Neutral,” or “Don’t like it.” 

4.1 Playlist Construction  

Let us describe in detail the playlist construction process 

(see Figure 1). Since the duration of the experiment is six 

weeks and we make weekly playlists, there are six playlists 

for subject k: P1
k, …, P6

k. The six playlists contain ten 

songs each. Recall that the subject k disclosed the 30 songs 

in her Discover Weekly list, Ik, without listening to any of 

the songs in it. appearing in the Discovery Weekly. Since 

the selection in the Discover Weekly playlists ensures that 

the user has never listened to the song before using Spotify, 

we generated the playlists under the assumption that each 

subject had not heard any of the 30 songs in her list before. 
We constructed the six ten-song lists dynamically as 

follows: 

• P1
k and P2

k contained songs [I1
k : I10

k] and [I11
k : 

I20
k], respectively, in the same order they appeared in I. 

• P3
k and P4

k contained songs [I21
k : I25

k] and [I26
k : 

I30
k], respectively, as well as five songs repeated from 

P1
k and P2

k, respectively. It is necessary to control for 

the subjects’ song ratings when deciding which songs 

to repeat. Practical implementations would simply 

repeat the songs the users seemed to enjoy most (saved, 

liked, did not skip, etc.), but the retention rate must be 

independent of preference in this experiment; otherwise 

it would be impossible to claim that it is correlated with 

repetition. We chose the five repeats in P3
k and those in 

P4
k to preserve the proportion of the initial ratings (Like 

= Not sure/Neutral = Dislike). These ratings are 

unknown ahead of time due to the nature of the 

experiment, and so we used the subject’s ratings from 

weeks 1 and 2 for balancing the ratings. We first sorted 

the ten songs in P1
k and the ten in P2

k in the decreasing 

order of rating (in the case of ties, the order from Ik was 

preserved). We then assigned the songs at odd 

numbered positions in the ranking (i.e., 1, 3, 5, 7, and 

9) from the first list to P3
k. Similarly, we assigned the 

five songs from the second list at odd numbered 

positions to P4
k. After determining the ten-song sets 

from which to build P3
k and P4

k, we fixed the order in 

 

 
 

Figure 1. The playlist construction process. The boxes 

in red are the first ten songs of Discover Weekly, those 

in yellow are the next ten, those in blue are the next 

five, and those in green are the last five. 
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which the ten songs appeared. We increased the 

perception of diversity by placing the repeated songs 

and new songs alternatingly in these playlists, following 

the idea from [8]. 

• In P5
k and P6

k, we kept the repeats from P1
k and 

P2
k, that we used in P3

k and P4
k, respectively. We 

selected the remaining songs as follows: 

o For P5
k, the five remaining songs are those from 

P1
k and P2

k that we did not use in P3
k and P4

k (i.e., 

those with even numbered ranks after sorting in the 

decreasing order of rating). We merged the two 

ranked lists of five remaining songs and selected five 

at those at odd numbered positions in the merged list. 

o P6
k is constructed in the same manner, but the 

source of the five repeats are the five non-repeats 

each from P3
k and P4

k. Again, we sorted the ten songs 

in the decreasing order of rating and then selected 

those at odd numbered positions. 

• In the end, 10 songs were presented 3 times, 10 

were presented twice, and the remaining 10 were only 

presented once and were used as a baseline. 

4.2 Surveys and Evaluation Process 

After the 6-week music listening portion of the 

experiment, the subjects were asked to complete a survey 

containing general questions about their music listening 

habits, as well as a final evaluation of the songs in I, which 

was simply a 5-point Likert scale rating of their likelihood 
to revisit the songs in the future. They were asked to fill 

out this portion without listening to the songs again, 

relying solely on their memory of the song based on name 

and artist. If the subject could not remember the song, they 

were asked to respond with an asterisk instead of a rating. 

Since the weekly surveys asked the subjects to place the 

song name and artist into one of the three fields, they were 

required to think critically about the song, and therefore, 

should be expected to remember this information. The 

analysis will refer to the forgetting rate, which refers to the 

percentage of forgotten songs with respect to some 
characteristic, such as initial rating or the number of 

presentations of the song. Finally, if the subjects had heard 

the song prior to the experiment, they were asked to leave 

the field blank, and that song would be omitted from the 

results. 

One month after the end of the experiment, the subjects 

received a follow-up survey asking them to indicate 

whether they had chosen to listen to each song in I during 

the month since the experiment. We evaluate the retention 

rate, R, with respect to the number of times the songs were 

presented, Rx as well as with respect to the subjects’ ratings 

of the songs. 

5. RESULTS AND DISCUSSION 

The study utilized Spotify’s Discovery Weekly playlist to 

provide serendipitous recommendations to the subjects 

based on their listening histories on the system, which 

meant some of the songs were not entirely new to the 

subjects. This is because Spotify is not the only music 

listening platform the subjects use, and we rectify it by 

omitting previously heard songs from the results analysis 

(26 out of 570 – less than 0.5%). It is also worth noting that 

the limited number of subjects restricts the generalizability 

of these results, but this being a multi-week study made 

finding subjects difficult. 

The weekly preference and discovery ratings were 

grouped by their composition as mentioned in Section 4, 
and their results are shown in Figure 2. The preference 

ratings were basically constant across each group, with 

means as follows: weeks 1-2 = 3.57, weeks 3-4 = 3.75, and 

weeks 5-6 = 3.67. The discovery ratings unsurprisingly 

declined in weeks where fewer new songs were presented, 

with means as follows: weeks 1-2 = 3.88, weeks 3-4 = 

3.12, and weeks 5-6 = 2.41. It is worth noting, however, 

that an even split between new and repeated songs is likely 

not ideal in a real-world setting, but determining the 

optimal split was outside of the scope of this research.  

 

 
Figure 2. Boxplots of the weekly preference (top) and 
discovery (bottom) ratings for all subjects, grouped based 

on the composition of the playlists (unfamiliar vs. 

familiar). 

 

Figure 3 shows the number of songs whose rating 

changed, either positively or negatively, after the first 

listen, as well as the counts of the final ratings for “neutral” 

songs with more than one presentation. Though it was 

most common for the rating to remain the same, when it 

changed, it increased almost twice as often as it decreased. 

Of all songs with more than one play, 43 of them showed 
a decrease in rating and 73 showed an increase, though 263 

retained their initial rating. Isolating the 116 songs with an 

initial rating of “neutral,” we see that 43 of them (37%) 

had a final rating of “like,” versus 20 (17%) whose rating 

decreased to “dislike” and 53 (46%) that remained at 

“neutral.” Therefore, there is a potential for missed 
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opportunities with a “neutral” song, since the initial listen 

may not entice the listener to revisit the song, whereas 

subsequent listens are likely to yield a more favorable 

response. We can answer RQ2 by saying that it is more 

likely for a person’s preference toward an unfamiliar song 

will increase with repeated listens, but most of the time 

their feelings will remain constant. A rating scale with 

finer granularity would have answered this question more 
effectively. 

 

 

 
Figure 3. The rating changes of all songs (top) and neutral 

songs (bottom) with more than one presentation during the 

study. 

 

Figure 4 illustrates the forgetting rate with respect to 

play count and initial rating. It also takes an isolated look 
at the songs with an initial “like” rating. In total, 105 of the 

544 songs (19.3%) were forgotten. Two one-tailed paired 

samples z-tests were performed, comparing the forgetting 

rate between songs with 1 and 2 plays, as well as 2 and 3 

plays, z(343) = 5.88, p < 0.00001 and z(342) = 2.38, p < 

0.01, respectively. The forgetting rate decreases 

significantly as the number of plays increases, which 

should be reciprocated with a higher retention rate, though 

any subjects who saved the songs for later would be less 

reliant on their memory. In terms of liking, two additional 

one-tailed paired samples z-tests were conducted to 
compare the difference between the forgetting rates for 

songs with an initial rating of “dislike” versus “neutral,” 

z(250) = 1.38, p < 0.1 and “neutral” versus “like,” z(423) 

= 0.44, p < 0.33. In both cases, we found no significant 

differences on the forgetting rates, which indicates a lack 

of connection between preference and memory. Looking 

at the forgetting rate of the liked songs, we can see another 

potential for missed opportunities, as the songs with only 

one presentation are significantly more likely to be 

forgotten, z(182) = 4.21, p < 0.00002 for 1 versus 2 plays 

and z(177) = 5.94, p < 0.00001 for 2 versus 3 plays. These 

missed opportunities occur when a person enjoys a song 

but does not save it and forgets its name or the artist name 

and is unable to search for it later. 

 

 
Figure 4. The percentage of forgotten songs by initial 

rating (top) and play count (middle), as well as the number 

of forgotten “liked” songs by play count (bottom) 

 

One month after the conclusion of the listening 

experiment, the subjects received a survey asking them to 

state whether they listened to each of the songs from the 
experiment on their own accord (i.e. in a playlist they 

created or by searching for the song). Of the 19 subjects, 

18 of them provided responses, and only one of those did 

not revisit any songs. Figure 5 shows the percentage of 

songs which were revisited with respect to both their play 

counts as well as the initial ratings. Figure 6 groups the 

songs by play count and shows the percentage of retained 

songs with respect to both initial and final rating. 

A series of paired samples one-tailed z-tests were 

performed to answer RQ1. First, the songs were grouped 

by the number of times they were presented, requiring a 

test comparing R1 and R2 and another comparing R2 and R3, 
z(343) = 2.41, p < 0.01 and z(342) = 1.22, p < 0.2, 

respectively. Clearly, there is no significant difference 

between the retention rate of songs with 2 and 3 plays. 
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Figure 5. The retention rate with respect to play count 

(top), initial rating (bottom). 

 

 
Figure 6. The number of retained songs, grouped by 

number of plays, with respect to initial (top) and final 

(bottom) ratings. 

 
However, if we assume that all additional plays have the 

same effect on retention, we can combine the songs with 2 

and 3 plays. Comparing the retention rate of these songs 

with R1, we get z(514) = 3.42, p < 0.0005. Therefore, we 

can answer RQ1 affirmatively on the premise that 

additional presentations of novel songs beyond the first are 

essentially the same. It is worth noting that this experiment 

did not test more than 3 presentations of a novel song, and 

it is likely there are diminishing returns beyond the third 

presentation. We conducted additional z-tests by grouping 

the songs by their initial rating, then comparing the songs 

with 1 play and the songs with more than 1 play, as 

follows: for songs rated “dislike,” z(91) = 1.98, p < 0.025; 

rating = “neutral,” z(159) = 0.62, p < 0.3; rating = “like,” 

z(264) = 3.37, p < 0.0004. The performance of the 

“neutral” songs is interesting and could be related to the 

change in rating for these songs with more than one play. 

In general, only the “liked” songs had a reasonably high 
retention rate, so it is possible that a neutral or worse 

feeling towards a song is insufficient to persuade a person 

to revisit it. As previously seen, the “neutral” songs 

increased in rating at a 37% rate, and when looking at the 

graph in Figure 6 which shows final ratings, the “liked” 

songs still show an increase with play count, but the 

remaining neutral songs do not. 

We performed similar z-tests to evaluate the 

relationship between the initial rating of the songs and their 

retention, one for “dislike” vs “neutral/not sure” and 

another for “neutral/not sure” vs “like,” z(250) = 3.11, p < 

0.001 and z(423) = 5.08, p < 0.00001, respectively. 
Clearly, initial rating is a strong predictor of the retention 

of a song, though this should be obvious and does not deter 

from the results with respect to play count. In practice, a 

personalized discovery system can infer liking via user 

interaction (i.e. button clicks, skips, page visits, etc.), then 

use that to select which songs to repeat. 

6. CONCLUSION AND FUTURE WORK 

Previous research has concluded that repeated listens of 

novel music will increase both memory and liking, but the 

evaluation has typically involved the subjects self-

reporting on their feelings. This study implemented a real-
world listening simulation and evaluated the effects of 

repeated listens of novel songs with respect to the rate at 

which the songs were revisited by the subjects. We found 

that when songs were played more than once, in general, 

their retention rate significantly increased, and the rate at 

which the songs could be recalled from name and artist 

alone also increased. Additionally, if the ratings of the 

songs changed after the first listen, it was significantly 

more likely to be an increase. 

We explored the concept of missed opportunities when 

assuming a music discovery process which recommends 
songs to users once and expects them to remember to 

revisit the songs. By only presenting songs once, liked 

songs are less likely to be remembered or revisited, and 

songs users feel neutral or unsure about will not have a 

chance to improve their favorability. Repetition of novel 

recommendations clearly decreases the potential for 

missed opportunities in both cases, giving users a greater 

chance to broaden their musical tastes. 

One aspect we did not evaluate was the proper split 

between new and repeated songs, which may be a user-

specific parameter and likely varies from week to week. In 

our future work, we intend to explore whether there is a 
predictable pattern to the amount of new music a person 

consumes on a weekly basis. In addition, we are planning 

several studies involving electroencephalograpy, where 

we will test memory and attention when listening to new 

music over a sustained period. 
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ABSTRACT 

This paper focuses on the computational study of figured 
bass, which remains an under-researched topic in MIR, 
likely due to a lack of machine-readable datasets. First, we 
introduce the Bach Chorales Figured Bass dataset (BCFB), 
a collection of 139 chorales composed by Johann Sebas-
tian Bach that includes both the original music and figured 
bass annotations encoded in MusicXML, **kern, and MEI 
formats. We also present a comparative study on automatic 
figured bass annotation using both rule-based and machine 
learning approaches, which respectively achieved classifi-
cation accuracies of 85.3% and 85.9% on BCFB. Finally, 
we discuss promising areas for MIR research involving 
figured bass, including automatic harmonic analysis.  

1. INTRODUCTION 

Figured bass is a type of music notation that uses numerals 
and other symbols to indicate intervals to be played above 
a bass note, and which can provide insight on underlying 
harmonies [1]. It was commonly used in Baroque music, 
and served as a guide for performance, especially for the 
instruments improvising the basso continuo accompani-
ment (e.g., harpsichord, organ, lute, etc.). Fig. 1 shows an 
example of figured bass, as well as how a harpsichordist 
might realize the figured bass as an improvised accompa-
niment. Such realizations are not typically explicitly in-
cluded in scores, as the musical tradition of the time left 
them to be improvised based on the skills and taste of the 
continuo player. There are three aspects of figured bass 
annotations (FBAs) that should be highlighted:  
(1) The Neue Bach Ausgabe edition [2] uses FBAs con-

sisting of numbers with backslashes through them to 
indicate raised intervals (e.g., m. 3.3 and m. 3.4). For-
ward slashes indicate lowered intervals (e.g., ). 

(2) FBAs followed by continuation lines indicate that the 
harmony of the preceding figure is prolonged (e.g., m. 
1.4, m. 4.2, and m. 4.4). 

(3) Multiple FBAs over a stationary bass (e.g., 4–3 in m. 
5) usually indicate a suspension being resolved.  

Figured bass also serves pedagogical and theoretical 
purposes: not only does it provide contrapuntal infor-
mation on how to conduct the resolution of dissonances, it 
also offers insights into the chords and harmonic rhythm 
intended by composers. Figured bass can therefore provide 
a preliminary description of harmonic structure, and serves 
as a promising basis for approaching harmonic analysis.  

As a useful analytical tool for studying Baroque com-
positional and performance practices,  figured bass has 
been an important topic in music pedagogy [3], music the-
ory, and musicology [4]. The computational study of fig-
ured bass, however, has drawn little attention over the 
years. We have only found two papers on automatic fig-
ured bass annotation, both using a rule-based approach: 
Barthélemy and Bonardi treated figured bass as a harmonic 
reduction and devised rules to identify and remove orna-
mental notes, permitting them to cluster the remaining 
chord tones as figures [5]; Wead and Knopke, in contrast, 
manually designed a decision tree to determine the figured 
bass for a given bass line [6]. Unfortunately, with no open-
source code and a lack of quantitative results, it is impos-
sible to objectively evaluate or compare the performances 
of these models. Furthermore, we are not aware of any pre-
vious applications of machine learning to figured bass, nor 
of any existing digital dataset with figured bass annota-
tions (FBAs). These limitations have likely limited the 
computational study of figured bass to date. 

There are four main contributions of this paper:  
(1) We introduce the new Bach Chorales Figured Bass 

(BCFB) dataset, which consists of 139 chorales com-
posed by Johann Sebastian Bach (Section 2). These 
chorales came from larger choral works composed by 
Bach: the cantatas, passions, motets, and the Christ-
mas Oratorio. We chose this repertoire due to its key 
role in modern music pedagogy and its general histor-
ical importance.  

(2) In order to facilitate the future creation of more fig-
ured bass datasets, we include our methodology for 
digitizing FBAs in an efficient and effective way.  

(3) We present a comparative study of automatic figured 
bass annotations of BCFB, using both rule-based and 
machine learning approaches (Section 3). The results 
are discussed with reference to specific musical exam-
ples (Section 4).  

(4) We highlight possible applications of figured bass an-
notation, especially in connection with converting fig-
ured bass to chord labels, which could benefit research 
on automatic harmonic analysis (Section 5).  
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2. BACH CHORALES FIGURED BASS 
DATASET 

To the best of our knowledge, there is no prior publicly 
available digital figured bass dataset. We therefore present 
the Bach Chorales Figured Bass dataset (BCFB), a corpus 
we constructed containing FBAs in MusicXML, **kern, 
and MEI (Music Encoding Initiative) formats. It consists 
of all 139 J. S. Bach four-voice chorales that include his 
own figured bass, based on the Neue Bach Ausgabe (NBA) 
critical edition [2]. NBA is chosen as the source of BCFB 
because it is the most up-to-date scholarly critical edition, 
prepared with exacting methods of source criticism. 

2.1.  Finding Chorales with FBAs 

To find all the chorales attributed to Bach, we constructed 
a reference table (https://bit.ly/303jzfS) with all 
420 chorales indexed by BWV catalogue numbers, and 
cross-referenced them with the NBA. We checked whether 
original FBAs are accessible for each of these chorales, 
and found 139 settings meeting this criterion. We then 
made an expanded reference table, consisting of the: BWV 
number,1 Breitkopf number (when relevant),2 title of the 
work of origin (e.g. cantata, passion, etc.), date of the first 
performance, text setting, location of the score in the NBA 
edition, and other musicological metadata for each cho-

 
1 Bach-Werke-Verzeichnis (BWV) catalogue number, which indexes all 
the compositions attributed to J. S. Bach. 
2 The Breitkopf edition contains 371 four-voice J. S. Bach chorales, and 
indexes them differently from BWV.  
3 KernScores (kern.ccarh.org) is maintained by Stanford’s Center for 
Computer Assisted Research in the Humanities, and includes 371 four-
part chorales encoded in the Humdrum **kern representation (www.hum-
drum.org). 
4 https://web.mit.edu/music21  
5 Including: adding a continuo line and/or instrumental voices; transpos-
ing; changing the meter, pitch, and duration of certain notes; etc. We did 
not encode the textual content specified in the NBA.  

rale. This table is designed to facilitate musicological re-
search, which, along with the BCFB dataset, is available 
at: https://bit.ly/2OoWC16. 

2.2.  Digitization 

We began the creation of BCFB by assembling existing 
symbolic encodings of the relevant Bach chorales from the 
KernScores repository, which contained 109 of the 139 
NBA chorales with FBAs.3 We automatically translated 
these 109 **kern files into MusicXML using music21 (v. 
5.1.0),4 and made changes to match the musical content5 
of the NBA edition before adding Bach’s figured bass. We 
manually encoded the remaining 30 figured chorales found 
in the NBA edition. We chose MusicXML as our master 
file format since it is widely supported by music notation 
software. We used the MuseScore 3 score editor6 for both 
editing musical content and adding FBAs.7  

2.3.  Converting to Other Symbolic File Formats 

BCFB includes encodings in two other symbolic file for-
mats 8  beyond MusicXML: **kern, and MEI. 9  Existing 
software was used to automatically convert the original 
MusicXML to the other two formats. Through a series of 
experiments with a variety of alternatives, we found that 
converting figured bass from MusicXML to **kern using 
musicxml2hum10 worked well, except for the continuation 
lines, and the conversion from **kern to MEI using Vero-
vio11 was perfect. However, direct conversion of figured 

6 https://musescore.org  
7 https://musescore.org/en/handbook/figured-bass 
8 This diversity of symbolic formats offers researchers the opportunity to 
use the format most convenient to their preferred software, because if 
only one format were offered, which might not be supported by a given 
piece of preferred research software, then it would need to be converted 
to the format supported by the software. This could lead to a potential 
loss of figured bass information or to other conversion errors [7]. 
9 We also used music21 (v. 5.1.0) to generate MIDI files from the master 
MusicXML, but they do not include FBAs. 
10 https://github.com/craigsapp/humlib 
11 https://github.com/rism-ch/verovio 

 
Figure 1. A sample musical passage we composed, where figured bass annotations (FBAs) are shown below the continuo 
line, and where we added the harpsichord line as an example of what a continuo player might improvise based on the 
figured bass. Figures indicate intervals above the continuo line that could be played in the improvisation. For example, 
the “6” in the first measure corresponds to the pitch class “G”, which is a 6th above the bass “B♭”. An actual improvisation 

would likely also typically contain the pitch class “D” (a 3rd above the bass “B♭”) in this slice, but this is not explicitly 
indicated in the figures. This is an example of how FBAs do not always specify all the notes to be played by the continuo 
player, and usually omit some obvious figures (see Section 3.2.2 for details).  

Proceedings of the 21st ISMIR Conference, Montréal, Canada, October 11-16, 2020
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bass from MusicXML to MEI (using Verovio) was prob-
lematic, as accidentals, slashes, and continuation lines 
were not converted. We therefore first converted from Mu-
sicXML to **kern, and then manually added the continu-
ation lines to the **kern files using a text editor. The re-
sulting **kern files were then converted to MEI files.  

3. AUTOMATIC FIGURED BASS ANNOTATION 

We automatically generated12 FBAs that closely resembles 
those of Bach for two main reasons: to learn about Bach’s 
figured bass habits, which are of musicological interest, 
and to provide figured bass for those Bach chorales for 
which no FBAs exist. We used both rule-based and ma-
chine learning algorithms to perform this automatic fig-
ured bass annotation:13 the rule-based approach has the po-
tential to model Bach’s style of writing figures in ways that 
are easily human-interpretable, and machine learning has 
the potential to model patterns in Bach’s style that might 
be difficult to codify into precise, direct rules. We there-
fore explored the efficacy of both approaches.  

3.1. Data 

We used 120 chorales out of the full 139 chorales in BCFB 
to train and test our models. We excluded 12 interlude cho-
rales14 because they are significantly different from the 

 
12 The generated FBAs use flats and sharps to respectively indicate low-
ered and raised intervals, and do not contain continuation lines.  
13 The code is available at: https://bit.ly/2P8Qbju.  
14 These chorales have elaborate instrumental interludes between phrases 
(BWV 24.06, 76.07, 100.06, 105.06, 113.01, 129.05, 167.05, 171.06, 
248.09, 248.23, 248.42, and 248.64). 
15 BWV 16.06, 48.07, 149.07, 195.06, and 447. 
16 “.06” in “BWV 8.06” means this chorale is the sixth movement of the 
“BWV 8” cantata.  

other largely homorhythmic chorales, and we excluded 
five other chorales15 that are barely figured. Finally, we ex-
cluded BWV 8.0616 and BWV 161.06 because they feature 
irregular textures, such as having an obbligato continuo 
and/or instrumental part.  

3.2. Rule-base algorithms 

3.2.1.Initial Simple Rule-based Algorithm 

We began by implementing a simple rule-based algorithm 
that labels all the intervals above the bass in the generated 
FBAs. First, the music is segmented into a series of note 
onset slices [8,9]. A new slice is formed whenever a new 
note onset occurs in any musical voice, and each slice con-
sists of the vertical set of notes sounding at that moment. 
Take the first slice of Fig. 2 as an example: since the pitch 
classes above the bass “G” are “G”, “D”, and “B,” the FBA 
generated is 8/5/3. 

We then compared the generated FBAs against Bach’s 
original FBAs, and found that the percentage of exact 
matches was only 3%. This is partly because Bach did not 
explicitly label all the intervals above the bass in his FBAs; 
it is often assumed that both he and other Baroque com-
posers employed FBAs that include what are in effect ab-
breviations that omit obvious intervals [1,10]. For exam-
ple, consider m. 3.2.517 of Fig. 2: although the pitch classes 
“A” and “D” are present in this slice above the bass “F♯”, 
only “D” is explicitly specified18 by the figure “6”; “3” is 
not explicitly indicated, but is nonetheless implied.  

3.2.2.Evaluation Metric 

To allow for the equivalence in musical content of differ-
ent figured bass notation conventions, as discussed above, 
we created an evaluation metric that treats figures that are 
musically equivalent as notationally equivalent. The pur-
pose of this metric is to realistically evaluate the generated 
figured bass when it does not match Bach’s figured bass 
exactly. The equivalence rules are inspired by Arnold [11]: 
 A “3” can be omitted (Fig. 3a, 3b, 3d, and 3e) unless 

there is a 4th in the sonority,19  or unless the 3rd is the 
resolution of a 4–3 suspension (Fig. 3c).  

 A “5” (Fig. 3a, 3c, and 3d) can be omitted, unless one 
of the following conditions is true: there is a 6th (Fig. 
3b) in the sonority, the 5th is the resolution of a 6–5 
suspension, or the 5th has an accidental (Fig. 3e).  

 An “8” (Figs. 3c and 3d) can be omitted, unless one of 
the following conditions is true: there is a 9th (Fig. 3b) 
in the sonority, the 8th is the resolution of a 9–8 sus-
pension, or the 8th has an accidental.  

 A “6” can be omitted if the sonority forms a “6/4/3” 
or a “6/4/2” chord, as shown in Fig. 3f.  

17 “m. 3.2.5” means the third measure, the second and half beat.  
18 Since “D” forms a 6th interval above the bass “F♯”. 
19 “Sonority” means the set of pitch classes present in a note onset slice. 
For example, the added bottom staff of Fig. 2 shows the sonorities of the 
four voices for each slice. “4th” means that a wrapped interval of a 4th 
can be found between the bass and an upper voice, regardless of whether 
it is labelled in the figured bass. 

 
Figure 2. Measures 3 and 4 from BWV 117.04 Sei Lob 
und Ehr dem höchsten Gut. The original FBAs are anno-
tated underneath the bass voice part. Note that not all slices 
are necessarily figured and not all the intervals in a sonor-
ity are necessarily specified in FBAs. We artificially added 
the final bottom staff, which collapses all sonorities into 
one octave so as to more directly reveal the pitch-class con-
tent. The number of semitones above the bass implied by 
the original FBAs have also been added underneath this 
bottom staff. We can also translate the number of semi-
tones back to FBAs by examining the actual notes in the 
score and then calculating and labelling the intervals from 
the bass note.  
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In order to see how the evaluation metric based on these 
rules operates in practice, consider Fig. 3a as an example: 
we can see that “5” and “3” can be omitted, which means 
“7”, “7/3”, “7/5”, and “7/5/3” are all considered equiva-
lent. Therefore, if the ground truth and the generated fig-
ured bass respectively consist of any pairing of “7”, “7/3”, 
“7/5”, or “7/5/3”, then the generated figured bass will be 
considered correct by the metric.  

3.2.3.Improved Rule-based Algorithm 

Using this evaluation metric, the simple ruled-based algo-
rithm described in Section 3.2.1 has an effective agreement 
of 64.5% with Bach’s FBAs. We found that when they dis-
agreed, the generated FBAs tend to have more figures than 
those of Bach. To improve this, we manually developed  
additional rules for omitting certain figures, permitting us 
to better predict Bach’s style of annotation.20  

First, we examine each note onset slice and omit the fig-
ure for a given note in an upper voice if both of the follow-
ing two conditions are met: (1) the note is labelled in the 
previous slice, and (2) the pitch class of the bass in the cur-
rent slice remains the same as in the previous slice.  

Then, we consider slices on fractional beats (e.g., beat 
2.5 and 3.5), looking for ornamental notes, such as passing 
tones, neighbour tones, escape tones, and anticipations, 
which are all approached or departed by step. If such a note 

 
20 The rules were proposed by observing the generated FBAs and were 
evaluated against the ground truth FBAs from BCFB. We selected the 
rules that yielded higher accuracy.  
21 We are using the term “interval class” here to refer to ordered interval 
class. Since we wish to calculate the intervallic relationship from the bass 
to and upper voice (in that order), we wish to distinguish between inter-
vals and their inversional equivalents (e.g. minor 7ths are distinguished 

is in an upper voice, its corresponding number is removed 
from the figure; if such a note is in the bass, the slice is left 
entirely unfigured. 

 After the addition of these rules, the model was able to 
achieve 85.3% agreement with Bach’s figures, a large im-
provement over the 64.5% agreement achieved with the 
simple method and equivalency rules. 

Although it would have been possible to invest more 
time manually analyzing Bach’s figured bass to develop 
still more rules to improve agreement, none were readily 
obvious from the perspective of music theory or perfor-
mance practice, and we wanted to avoid overfitting our 
rules. So, we turned our attention to machine learning, to 
see if it could be employed to model Bach’s FBA style 
with equal or better results. 

3.3. Machine learning algorithms 

In order to efficiently perform automatic figured bass an-
notation with machine learning methods—something that 
has never been explored in the literature—we transformed 
the FBAs into interval-class vectors.  

3.3.1.Transformation from Figured Bass to Interval Classes 

Recall that figured bass indicates intervals above the bass 
note. Thus, for each slice, we convert the figures to an in-
terval-class vector.21 An interval class, similar to a pitch 
class, is a set of intervals wrapped by octaves. For exam-
ple, an interval class of a major second includes a major 
ninth and all other octave expansions of a major second. 
As with a pitch-class vector, an interval-class vector con-
tains 12 elements, representing intervals in semitone incre-
ments. In our case, each FBA is converted to an interval-
class vector that includes all the notes above the bass that 
are sounding in the current slice. In cases where the figured 
bass does not specify the exact interval in semitones, such 
as the “6”, which could be either a major 6th or a minor 6th, 
we rely on the score to determine the exact interval using 
heuristics-based post-processing. We similarly rely on the 
score to later convert interval-class vectors back to figures: 
for example, an interval of three semitones can be inter-

preted as either a minor third (figure “♭3”) or an aug-
mented second (figure “♯2”). We can decide which is ap-
propriate by considering the pitch spelling in the original 
score.22  This representation of the figured bass is used for 
both input and output of the machine learning algorithms. 

3.3.2.Input Features 

The three feature vectors used as input to the machine 
learning algorithms are: (1) interval classes (see Section 
3.3.1); (2) onsets, which specify which notes above the 
bass have onsets within the slice, as opposed to being held 
from a previous slice; and (3) metrical context, which 
specifies whether a slice occurs on the downbeat of a 
measure, on another beat (e.g., beat 2, 3, or 4 in 4/4), or on 

from major 2nds). Thus, ordered interval classes range from 0 to 11, while 
unordered interval classes range from 0 to 6 only.  
22 For example, to distinguish “2” and “9” when unwrapping interval-
class vectors, we need to find the actual note above the bass and compare 
its pitch to the pitch of the bass. If they are one octave apart, the generated 
figure will be “9”, and “2” otherwise.  

 
Figure 3.  Common examples of standard figured bass ab-
breviations taken into account by the evaluation metric 
explained in Section 3.2.2. In each of the six examples (a)-
(f), all the intervals above the bass are shown to the right 
of the notes connected with arrows, and typical abbrevi-
ated FBAs for the chords are shown below the notes. For 
example, (a) consists of a dominant 7th chord in root posi-
tion, and includes notes that are a 3rd, 5th, and 7th above the 
bass: the figured bass consists of only a “7”, with the “3” 
and “5” omitted, as is often the practice in FBA.  
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a fractional beat (e.g., beat 3.5). These binary vectors are 
specified for each slice. The following example demon-
strates each of these feature vectors for m. 4.2.5 of Fig. 2 
(the bit-length of each feature is indicated in parentheses):  

 Interval classes (12): The bass note is “A” (held), with 
pitch classes of “C♯”, “G”, and “E” (held) above it, 
which are respectively four, ten, and seven semitones 
away from it. The feature vector is thus: 
[0,0,0,0,1,0,0,1,0,0,1,0].23 

 Onsets (12): “C♯” and “G”, which are respectively 
four and ten semitones above the bass, are the pitch 
classes with onsets on this slice, so the feature vector 
will be [0,0,0,0,1,0,0,0,0,0,1,0]. 

 Metrical context (3): Because the slice is on beat 2.5 
of a 4/4 measure, the feature vector will be [0,0,1] 
(i.e., it is a fractional beat). 

Each slice, therefore, is represented as a 27-dimensional 
(12+12+3=27) binary vector. To provide a context for each 
slice, the machine learning algorithms are also provided 
with the two 27-dimensional vectors for the previous and 
following slices (zero-padded for first and the last slices). 
Thus, the total length of the input vector for each slice is 
81 (27×3=81). 

3.3.3.Machine Learning Algorithms 

We experimented with two machine learning algorithms: 
Decision Trees (DT) 24  and Deep Neural Networks 
(DNN).25 Both algorithms used the input features specified 
above. Their output each consisted of a 12-dimensional bi-
nary vector specifying the number of semitones above the 
bass,26 as discussed in Section 3.3.1.  

3.3.4.Experimental Setup 

Ten-fold cross-validation was used for evaluation. For the 
DNN experiments, we divided the data into training 
(80%), validation (10%),27 and testing (10%) folds. For the 
DT experiments, the data was divided into training (90%, 
the union of the DNN training and validation sets) and test-
ing (10%, matching the DNN test sets) partitions.  

3.3.5.Results  

The Decision Trees and Deep Neural Networks respec-
tively achieved classification accuracies of 84.3±0.5% and 
85.9±0.6% on BCFB.28 These accuracies are calculated 
based on the evaluation metrics proposed in Section 3.2.2.  

4. DISCUSSION 

It is useful to examine the types of errors that our model 
made, in order to better understand its performance and 
how it can be improved. We will focus this discussion on 
the two musical examples shown in Fig. 4, as they are rep-
resentative of the kinds of errors our model made. One 

 
23 The first dimension indicates a unison (or collapsed octaves).  
24  We used the “DecisionTreeClassifier” function from the 
“scikit-learn” library, under default settings. This function is an 
optimized version of CART (Classification And Regression Tree). 
25 We used a feedforward network with three hidden layers, each with 
300 hidden units. Adaptive Moment Estimation was used as an optimizer, 
with a binary cross-entropy-based loss function. These hyperparameters 
were tuned using the validation set. 

common error made by our model was to miss figures that 
indicate the resolution of a suspension, such as the 9–8 
shown in Fig. 4(a), m. 8.4. This may be because the fea-
tures we used did not contain sufficient voice-leading in-
formation to detect such suspensions.  

Two further types of disagreement between our model 
and Bach’s figures are shown in Fig. 4(b). At m. 2.3 our 
model generated “♯”, but the ground truth had no label. In 
fact, the generated “♯” is technically correct, as the D is 
explicitly sharpened in the soprano. Turning to m. 3.2, our 
model’s prediction included a “♯7,” unlike the ground 
truth. Perhaps this suggests that Bach might have consid-
ered the corresponding “D♯” to be a passing tone? Or per-
haps the D♯ was understood as a “diatonic” note in this 
Dorian chorale tune? At any rate, the “♯7” in the generated 
figures should not necessarily be considered wrong. Both 
these figures are in fact theoretically acceptable answers. 

Such differences between the ground truth and the pre-
dicted figures are intriguing, as they hint at contrapuntally 
or harmonically meaningful information present in Bach’s 
figures that is not explicit in the four vocal lines. Or, per-
haps they are of negligible meaning? It is impossible to 
know with the information we have now, but future com-
parisons with models trained not just on Bach but on the 
figures of many Baroque composers could potentially re-
veal fascinating insights on compositional style. 

We also observed interesting variability in the types of 
figures Bach used under seemingly similar musical con-
texts. Three examples are shown in Fig. 4: 

 Accidentals: in Fig. 4(b), Bach did not label the first 
“♯” at m.2.3, but did label the second one at m. 3.3. 

 Suspensions: Bach sometimes labelled suspensions 
(e.g., m. 8.4 of Fig. 4(a)), and sometimes omitted them 
(e.g., m. 1.4 of BWV 194.06 [not shown]). 

 The same chord: Bach sometimes labelled a 6/4/2 
chord as a 4/2 chord (e.g., m. 2.1 of Fig. 4(b)), and 
sometimes as a 6/4/2 chord (e.g., m. 10.4 of BWV 
13.06 [not shown]). 

So, one cannot expect 100% agreement to be achieva-
ble, given such variability. Bach, like everyone, was some-
times inconsistent with himself, which imposes an artifi-
cial performance ceiling on our models [12]. Also, these 
types of variabilities can be of great interest to music the-
orists and musicologists, and offer significant potential for 
future research. 

26  For example, the output vector for m. 4.2.5 of Fig. 2 will be 
[0,0,0,0,1,0,0,0,0,0,0,0], considering only pitch class “C♯” is indicated by 
the FBA “♯” and is four semitones above the bass. 
27 The validation set was also used for the selection of the best DNN 
model using early stopping. 
28 Uncertainty values show standard error across cross-validation folds. 
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5. CONCLUSION AND FUTURE RESEARCH 

This paper presents the Bach Chorales Figured Bass da-
taset (BCFB), which consists of 139 four-voice Bach Cho-
rales with figured bass annotations encoded in Mu-
sicXML, **kern, and MEI. This dataset, and others that 
can be constructed using methodologies similar to those 
we propose, offer important potential for use in future 
computational studies in domains such as music theory, 
musicology, pedagogy, and performance practice.  

This paper further shows how BCFB can be used as the 
basis for developing and evaluating both rule-based and 
machine learning models for predicting figured bass; our 
models achieved classification accuracies of 85.3% and 
85.9% on BCFB, respectively. A potential reason the ma-
chine learning models did not outperform the rule-based 
model may be the relatively small size of BCFB. 

Such automatically generated figured bass could help 
performers improvise basso continuo accompaniment for 
the remaining unfigured Bach chorales, or inform the de-
sign of pedagogical software for teaching Baroque theory 
or composition. Of particular interest, figured bass can po-
tentially benefit automatic harmonic analysis research. Ex-
isting methods tend to either identify chords directly from 
the music [13–15], or identify and remove non-chord tones 
from the score and then generate chord labels from the re-
maining chord tones [16,17]. A new approach would be to 

first generate figured bass automatically from the music 
and then convert the figures to chord labels; this would al-
low a chord classifier to take advantage of knowledge im-
plicitly learned from Bach’s ground truth FBAs by a fig-
ured bass annotator during its training.  

There are several refinements that could potentially im-
prove the quality of the figured bass our approaches gen-
erate. The first is to add voice-leading information (how 
one voice moves horizontally), which may reduce some of 
the errors discussed in Section 4. The second would be to 
improve our rule-based model (e.g., by analyzing automat-
ically trained decision trees), which in turn could provide 
further insights into Bach’s approach to figuring bass, and 
perhaps provide musicological insight on how his methods 
changed over time or by the context of performance. 

Another potential extension to this research would be to 
incorporate FBAs from other pieces by Bach, such as his 
chamber music, or from pieces by other Baroque compos-
ers, which are usually figured throughout the Baroque pe-
riod. Once we have a variety of figured bass datasets for 
different genres and composers, we may then be able to 
train models that generalize better. Also, by comparing 
Bach’s FBAs to FBAs by other composers, we may gain 
meaningful insights into Bach’s unique compositional 
style and discover a sense of the degree of stylistic varia-
bility with which composers approached figured bass. 

 
Figure 4. An illustration of figured bass generated by our best-performing model for measure 8 of BWV 108.06 Es ist 
euch gut, daß ich hingehe, and measures 2 and 3 of BWV 145.05 Ich lebe, mein Herze, zu deinem Ergötzen, which are 
labelled (a) and (b) here, respectively. We artificially added the fifth (bottom) staff, which collapses all sonorities into 
one octave so as to more directly reveal the pitch-class content. As discussed in Section 3.3.1, our model predicts interval 
classes, and the figured bass is generated based on the intervals between the bass note and each predicted interval class. 
The agreement of each prediction with Bach’s FBAs are shown as well: “✓” means that the generated figured bass exactly 
matches Bach’s FBAs (the ground truth), “✓” in red means they are considered correct by our evaluation metric that 
treats musically equivalent figures as equivalent (see Section 3.2.2). An example of the latter can be found at m. 2.1 of 
(b) where the generated figures can be reduced to “2/4” from “2/4/6” (since the “6” can be omitted, as discussed in 
Section 3.2.2). “✘” means the generated figures are considered to be errors in our evaluations. 
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ABSTRACT

In this paper, we build on and extend a number of previous
studies of rhythmic patterns that occur in ragtime music.
All of these studies have used the RAG-C dataset of ap-
proximately 11,000 symbolically-encoded ragtime pieces
to identify salient rhythmic patterns in the corpus and qual-
ify how they are used. Ragtime music is distinguished
from other musical genres by frequent use of syncopation,
and previous computational studies have confirmed a num-
ber of musicological hypotheses regarding the use of syn-
copated patterns in ragtime compositions. In this work, we
extend these studies to investigate further questions involv-
ing the use of syncopation. Specifically, we introduce a
new methodological framework for processing the RAG-C
dataset and confirm that experiments from previous stud-
ies obtain similar results using the new methodology. We
investigate the use of the common “short-long-short” syn-
copated pattern in different time periods and present new
results detailing its use by three well-known ragtime com-
posers. We describe how the use of other syncopated
patterns has evolved over time and the different distribu-
tions of patterns that result from those changes. Lastly,
we present novel results identifying statistically significant
patterns in the way composers varied the amount of synco-
pation in consecutive measures in compositions.

1. INTRODUCTION

In this work, we present an analysis of the salient rhyth-
mic patterns that occur in ragtime piano music and quan-
tify how the use of these patterns has changed over time
and varies between composers. In particular, we illustrate
that the specific sequences of syncopated patterns found in
ragtime music and the ways in which they are ordered are
not due to chance, but due to deliberate choices made by
the composers. We argue that understanding and quanti-
fying the musical choices made by composers is crucial to
creating and improving the performance of various music
information algorithms, including those for genre classifi-
cation and algorithmic composition.

Recently, a number of corpus-based studies of ragtime

c© P. Kirlin. Licensed under a Creative Commons Attribu-
tion 4.0 International License (CC BY 4.0). Attribution: P. Kirlin, “A
Corpus-Based Analysis of Syncopated Patterns in Ragtime”, in Proc. of
the 21st Int. Society for Music Information Retrieval Conf., Montréal,
Canada, 2020.

music have been published [1–4] that use a dataset known
as the RAG-collection (RAG-C), a corpus of over 11,000
MIDI files first introduced by Volk and De Haas [1]. This
dataset presents particular challenges to use due to its het-
erogeneous nature: it contains compositions from a wide
variety of eras and composers, includes numerous ragtime
styles (some of which could be argued are not ragtime at
all), and has no standard method for encoding the music
in MIDI format: some files are derived from live perfor-
mances, while others are sequenced from sheet music.

Previous studies using the RAG-C corpus have iden-
tified the common usage of certain rhythmic patterns in
ragtime, but have varied in their techniques in processing
the corpus and interpreting the rhythmic patterns located.
We present a new methodology for analyzing the corpus
while taking care to confirm that our results align with
previously-published studies.

Our contributions are as follows. First, we illustrate
the feasibility of using automated algorithmic techniques
to extract rhythmic patterns from a collection of MIDI
files. We also argue for why our particular techniques work
given the heterogeneous nature of the RAG-C dataset, es-
pecially involving the different time signatures present in
the collection. Second, we extend previous corpus-based
studies of ragtime music to illustrate the importance of spe-
cific kinds of syncopated patterns across the entire corpus,
and also in subsets segmented by era and by composer. Be-
cause our methodological techniques are slightly different
than those used in previous work, we confirm a number
of earlier results and then extend them with new experi-
ments and findings. Third, we show that additional pat-
terns emerge when we study the way composers choose to
order the amount of syncopation in successive measures:
we statistically illustrate that this is done in a particular,
deliberate manner. All the code for the work described
here is publicly available. 1

2. RAGTIME AND SYNCOPATION

In music, syncopation occurs when notes that a listener
would expect to occur on strong beats in a measure are
shifted to weak beats. Syncopation is particularly identi-
fied with ragtime music; while various definitions of rag-
time exist, the unifying characteristic is the presence of
certain varieties of syncopated rhythms [5]. Though in the
modern era ragtime is often thought of as a form of music

1 https://github.com/pkirlin/ragtime-ismir-2020
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Figure 1. Different versions of the 121 pattern. Variations
(a) and (b) are untied; (c) and (d) are tied.

restricted to the piano, during ragtime’s heyday of roughly
1890–1920, this style of music was composed for all kinds
of instrumental ensembles as well as in song form [6]. Af-
ter 1920, ragtime fell out of compositional favor, though
one can still find many rags composed during the modern
era.

As syncopation is the defining characteristic of ragtime,
it is natural to study how the use of syncopated patterns has
changed over time. Ragtime scholars argue that a number
of specific syncopated rhythmic patterns that composers
gravitated towards changed in their frequency of use dur-
ing the original ragtime era, with particularly drastic shifts
occurring around the turn of the century. In particular,
musicologists often focus on the importance of the “short-
long-short” or “121” pattern. This pattern occurs with var-
ious note durations, but is usually found in the form ˇ “( ˇ “ ˇ “(
in 4

4 or 2
2 time signatures and ˇ “===̌ “ ˇ “=== in 2

4. It may occur at var-
ious locations within the measure; musicologists focus on
how its position within the bar changed as ragtime evolved
over time. In an untied syncopation, the pattern starts on
either the metrical downbeat or halfway through a mea-
sure, therefore occurring entirely in the first or second half
of a measure, as in Figure 1(a) and (b). In a tied syncopa-
tion, the pattern begins either one-quarter or three-quarters
of the way through a measure, and therefore either crosses
the midpoint of a measure or extends into the following
measure, leading to a tie displayed in the notation, as in
Figure 1(c) and (d). Music historians and previous stud-
ies of ragtime have noted that the untied syncopation was
more typical of the early ragtime period of approximately
1890–1901, while the tied syncopation picked up in popu-
larity after the turn of the century [5–7].

3. METHODOLOGY

Our methodology is similar to that used in previous stud-
ies [1–4], but different enough to warrant some explanation
and confirmation that our results align with those of previ-
ous work. We begin by preprocessing the RAG-C dataset,
with our goal being to identify a set of ragtime pieces shar-
ing a set of basic, consistent properties. We do this by
using an established MIR toolkit to identify the time sig-
nature and number of parts in each composition. We then
use a notation program to automatically quantize the MIDI
files and separate the melody from the accompaniment.
Because MIDI files do not consistently represent pickup
measures (anacruses, or fractional measures at the begin-
ning of a composition), we conduct an experiment to illus-
trate that they are correctly identified in the dataset. We
conclude the preprocessing stage with matching the MIDI
files with entries in the RAG-C compendium, which pro-

vides useful metadata for each composition, and extracting
the rhythms of all the melodic voices.

The RAG-C Dataset. The RAG-C dataset is a corpus
of approximately 11,000 ragtime compositions in MIDI
format, compiled over time by many enthusiasts of the rag-
time genre. In addition to the compositions, the dataset in-
cludes a compendium spreadsheet providing metadata for
each piece, including title, composer, year (or approximate
year) of composition or publication, subgenre within rag-
time such as march or two-step, and information about the
source of the MIDI file such as the person who played the
recording or sequenced the sheet music.

The MIDI file format, having been designed to support
communication between electronic music devices, only
contains low-level information about the timing of notes
in a composition, and therefore MIDI files are more akin
to transcriptions of a piece of music rather than a perfect
representation of a printed score. A MIDI file is organized
into tracks, with each track containing a sequence of events
specifying when certain notes should be played. Each track
also specifies the musical instrument that should play the
notes in that track. While it is possible to specify higher-
level information such as time or key signatures in a MIDI
file, they are not required and are often omitted. Therefore,
it is a non-trivial task to extract music-theoretic features
from such files [8], especially metrical information. Notes
in a MIDI file are only specified as starting and ending at
a timestamp given in “ticks” measured from the beginning
of the file. It is easiest to infer note durations when a time
signature is present in the file and the file is created from a
software sequencer, which will ensure that the notes within
a MIDI file correspond to a logical metrical grid. When
MIDI files are derived from human performances, how-
ever, notes that occur simultaneously on the printed page
may not match up exactly in terms of ticks due to natural
timing variances in performance. Quantization, the pro-
cess of aligning the notes within a MIDI file to a metrical
grid, must therefore occur to derive metrical information
in such cases.

Melody and Accompaniment Extraction. To address
these issues with the RAG-C dataset, we first decided to
study only ragtime pieces for solo piano, a decision made
in a number of previous studies using the dataset. Within
the ragtime piano repertoire, it is common for most of the
syncopated action to occur in the right-hand melody part,
while the left-hand plays a steady accompaniment. There-
fore, isolating the right-hand melody is a clear prerequisite
for investigating the syncopated rhythms of ragtime. To
accomplish this, we used the pretty_midi library [9]
to identify MIDI files from the dataset containing exactly
two piano tracks in the file. Normally such files contain
the melody in one track and the accompaniment in the
other; we verified this by calculating the average pitch of
the notes in each track and comparing them. The track with
the higher average pitch was labeled as the melody, and the
other as the accompaniment. To account for files having
two piano tracks due to other circumstances (such as two
different compositions in one file or a single piano track
duplicated twice), we hand-examined all MIDI files where
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the difference in the average pitches of the two tracks was
smaller than one octave to ensure that the melody iden-
tification algorithm functioned correctly. Furthermore, at
this point we verified that all files remaining had time sig-
natures of either 2

4, 4
4, or 2

2. While ragtime is occasionally
found in other time signatures, the vast majority of ragtime
music occurs in these meters.

Quantization. Quantizing a MIDI file means aligning
the notes in the file to a metrical grid in order to assign nat-
ural note durations to each note. To quantize our data, we
ran each two-piano-track MIDI file through the MuseScore
music notation program [10] and converted each file to its
MusicXML representation. MusicXML is a richer format
than MIDI that supports more features of common music
notation; we use it here specifically so MuseScore can de-
duce standard note durations and measure boundaries for
the MIDI files. We analyzed the resulting MusicXML out-
put files using the music21 library [11] and discarded any
files for which more than 5% of the note onsets in the piece
did not align with a 16th note grid. Most ragtime composi-
tions rarely go beyond the 16th note level; we determined
that any file with an overabundance of 32nd notes or notes
at other onsets in the metrical grid probably was quantized
incorrectly.

Title Matching. After all previous steps were com-
pleted, we were left with 1991 MIDI files. However, some
of these files corresponded to the same ragtime composi-
tion, but encoded by different contributors to the RAG-C
dataset. To ensure we only had one instance of each com-
position in our analyses, we used the Levenshtein edit dis-
tance to compare each MIDI filename — usually a com-
bination of the composition title and MIDI encoder —
against the set of composition titles in the RAG-C meta-
data spreadsheet. Any situation where a filename matched
more than one title with an edit distance of 5 or less trig-
gered an inspection by hand to assign the proper title. If
two or more files matched with a single composition, we
kept only the file with the highest quantization percentage;
that is, the version with the highest percentage of notes that
matched perfectly to the quantization metrical grid. This
left us with a final total of 1058 MIDI files in our corpus,
each one corresponding to a unique composition.

Accounting for Pickup Measures. Because of the lack
of sophisticated metrical information in MIDI files, incon-
sistencies may arise when processing MIDI files derived
from compositions containing a pickup measure, that is, an
incomplete measure at the beginning of the music. Such
music requires special handling as MIDI files do not ex-
plicitly store the locations of measure boundaries, and soft-
ware that assumes such boundaries occur at regular inter-
vals throughout the file will likely incorrectly process a
MIDI file containing an incomplete measure. Because we
will be investigating syncopation at different points within
a measure, it is important that we correctly identify the
measure boundaries in such cases.

A common convention is to “pad” a pickup measure
with silence at the beginning of a MIDI file, thereby length-
ening the first incomplete measure into a complete one.
Sometimes this convention is extended to MIDI files that

do not have a pickup measure: such files begin with a com-
plete measure of silence. Since any file with silence at the
beginning clearly has been padded, we are left with what
to do with any unpadded files — we made the decision to
treat these files as having full measures throughout, with-
out a pickup measure.

We justify this decision with the following experiment.
We identified one particular contributor to the RAG-C
dataset who chose to always encode MIDI files with si-
lence at the beginning: a padded partial measure of silence
for compositions beginning with a pickup, or a complete
measure of silence for compositions without a pickup. This
individual encoded 104 compositions in the dataset, and 26
of them began with a partial measure of silence, versus 78
with a complete measure of silence. Because 25% of this
particular contributor’s files begin with a pickup measure,
we would expect that this proportion would hold in the re-
mainder of the corpus as well. Of the 1991 MIDI files
remaining after the quantization step, 1887 of them do not
come from the contributor in question. Of the 1887, 539
begin with a fractional measure of silence and 1348 begin
with a complete measure of silence or no silence. Because
539 out of 1887 is approximately 28.6%, it is reasonable
to assume that the files with no silence at the beginning
correspond to compositions with no pickup measure.

Binary Onset Patterns. The last remaining step in pre-
processing the RAG-C dataset is to identify the rhythms of
the melody part. Previous studies of ragtime syncopation
used the convention of binary onset patterns to represent
rhythms. These patterns are sequences of ones and zeros
where a one represents the onset of a note and a zero rep-
resents a continuation of a note or a rest. These patterns
can be computed at different levels of metrical granularity
from a score. For instance, the binary onset pattern for a 2

4

measure of four eighth notes would be “10101010” com-
puted at the 16th-note level, but “1111” computed at the
eighth note level.

Our dataset contains ragtime compositions in three dif-
ferent time signatures, namely 2

4 (810 pieces), 4
4 (214

pieces), and 2
2 (34 pieces). We chose to compute binary

onset patterns at the sixteenth note granularity for 2
4 compo-

sitions, and at the eighth note granularity for 4
4 and 2

2 pieces.
The basis for this decision was the observation that the use
of sixteenth notes differed between pieces notated in the
three time signatures, verified by the following experiment.
We define the sixteenth note density for a measure of mu-
sic as the proportion of the weak sixteenth note beats in
a measure (that is, onsets 2, 4, 6, and 8 in 2

4) that contain
at least one note onset. We define the eighth note density
for a measure similarly. We then computed the distribution
of densities of sixteenth notes in all three time signatures,
and eighth note densities in 4

4 and 2
2. We observed that our

initial choices of appropriate granularities for binary onset
patterns — corresponding to the first three plots in Figure
2 — fall in similar ranges, while the last two plots do not,
justifying our mixed use of sixteenth and eighth note bi-
nary onset patterns. However, Figure 2 does show a num-
ber of outliers in the 4

4 and 2
2 sixteenth note density plots,

falling more in the range of the first three plots, indicating
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Figure 2. Box plots illustrating the distribution of 8th and
16th note densities in the various time signatures.

that in future experiments, we should consider analyzing
those particular pieces at the sixteenth note level.

4. EXPERIMENTS

In this section we describe a number of analytical exper-
iments that we conducted to extract information from our
corpus about the way syncopation is used in ragtime music.

4.1 Exploring the 121 Pattern

Ragtime scholars hypothesized untied syncopations were
the predominant form of syncopated pattern found in early
ragtime compositions from approximately 1890 to the turn
of the century, while tied syncopations did not become
common until around 1902 in the late ragtime period [6,7].
This hypothesis was confirmed by Volk and De Haas [1];
we replicate their experiment due to differing methodolo-
gies for processing the RAG-C dataset. These differences
in selecting and quantizing MIDI files naturally produce a
slightly different corpus with which we are working, and
therefore replicating earlier work shows that these results
are invariant with a well-rounded corpus and lends cre-
dence to our extended results that build on earlier studies.

In this experiment, we compared the frequency of use
of the 121 tied and untied patterns in ragtime compositions
from three eras: first, we compared the early ragtime pe-
riod of 1890–1901 (110 pieces) with the late ragtime pe-
riod of 1902–1919 (582 pieces), and then compared the
entire ragtime period of 1890–1919 (692 pieces) with the
modern period of 1920 to the present (362 pieces). The
121 patterns were found by looking at the binary onset pat-
terns that were collected earlier and counting the number of
times each variety of syncopation appeared in a composi-
tion. It is possible for multiple 121 syncopations to appear
in a single measure, as each syncopation covers only part
of a measure. To account for differing lengths of pieces,
we divided the total tallies by the number of measures in
each composition, resulting in frequency per measure.

Overall, these results are similar to those of Volk and
De Haas, taking into account some variation for differing
pieces selected from the RAG-C dataset. In particular, we
confirm that the number of tied patterns doubled between
the early and late ragtime eras, and the number of untied
patterns decreased between the eras as well. The left two
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Figure 3. Box plots illustrating the distribution of frequen-
cies of 121 patterns per measure, comparing different eras
of ragtime. Means (µ) are shown below each plot.

plots in Figure 3 illustrate this. Wilcoxon rank-sum tests
confirm (untied: p < 0.001, tied: p � 0.001) that the dif-
ferences between the eras are statistically significant given
the null hypothesis that the distributions are identical.

The right two plots in Figure 3 can be analyzed in a
similar fashion, and illustrate that the use of both types
of syncopation climbed after the end of the ragtime era.
Wilcoxon rank-sum tests again confirm (untied: p �
0.001, tied: p � 0.001) that these increases are statisti-
cally significant.

The Big Three. Ragtime scholars agree that three rag-
time composers stand out from the rest in terms of best ex-
emplifying the ragtime genre: Scott Joplin (1867 or 1868–
1917), James Scott (1885–1938), and Joseph Lamb (1887–
1960) [12–14]. These composers are well-represented in
the RAG-C dataset, and it is instructive to examine if they
used syncopation patterns differently than each other or as
compared to other ragtime composers.

When comparing the big three among themselves, small
differences in usage of the 121 pattern emerge but noth-
ing that cannot be attributed to chance. However, statis-
tically significant differences are evident when comparing
the output of the big three against other ragtime composers.
In particular, even when controlling for era, the big three
composers used more 121 patterns than other composers.
In this experiment, we isolated the output of the big three
composers during the late ragtime era of 1902–1919 (70
pieces), and compared their compositions against those of
the remaining composers from the same era (512 pieces).
Wilcoxon rank-sum tests confirm that the differences in the
frequency of use of both untied (p < 0.0001) and tied
(p < 0.0001) syncopations are different between the big
three and the remaining composers. Figure 4 illustrates
how the big three used, on average, almost 70% more un-
tied 121 syncopations and almost 50% more tied 121 syn-
copations.

4.2 Analyzing other syncopated patterns

Analyzing frequencies of the 121 pattern is instructive to
verify certain hypotheses put forth by musicologists. How-
ever, it is not a given that this pattern or its variants are nec-
essarily the most prevalent patterns found in ragtime. In

Proceedings of the 21st ISMIR Conference, Montréal, Canada, October 11-16, 2020
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Figure 4. Box plots illustrating the distribution of frequen-
cies of 121 patterns per measure, comparing compositions
by the “big three” ragtime composers in the late ragtime
era versus all other compositions from that same era.

this section, we expand our analysis to explore all possible
binary onset patterns and measure the amount of syncopa-
tion present in each pattern.

We follow the model of Koops, et. al. [2] and use the
Longuet-Higgins and Lee [15] metric, grounded in aural
perception of rhythm [16], to quantify the amount of syn-
copation present in a measure based on its binary onset
pattern. The LHL metric is zero for a measure with no
syncopation and increases with each instance of a note on-
set (1) occurring on a weak beat followed by no onset (0)
on the immediately-following (strong) beat. The increases
are larger for syncopations crossing more significant divi-
sions of the measure. For example, the binary onset pattern
01010101 contains three syncopations (instances of 10).
The syncopation in the middle that crosses the midpoint of
the measure has an LHL value of 2, and the two synco-
pations on either side have values of 1 because they cross
weaker divisions of the measure. Therefore, this measure
by itself has an LHL score of 4. If this measure were fol-
lowed by no onset on the downbeat of the next measure,
the LHL value would increase by 3 for the additional syn-
copation crossing the barline, for a total LHL value of 7.

In performing the following experiments, we calculated
the LHL values for each measure of the melody in the cor-
pus using the binary onset patterns computed earlier. Our
corpus of 1058 pieces contained 140,856 measures of mu-
sic, with the average LHL value for a measure being 1.17,
with a standard deviation of 1.35. However, only 77,012
of the measures (≈ 55%) contained any syncopation at all
(LHL > 0). If we only consider measures with LHL > 0,
the average LHL value becomes 2.14, with a standard de-
viation of 1.12.

We note that our methodology for computing and in-
terpreting binary onset patterns differs enough here from
Koops, et. al. [2] to warrant explanation. In their work,
binary onset patterns may be up to 16 bits in length, cor-
responding to measures in 4

4 or 2
2 analyzed at the 16th note

level, allowing for the possibility of having LHL values for
a single measure of music as high as 15. Here, all our bi-
nary onset patterns are of length 8, due to always analyzing
measures in 4

4 or 2
2 at the eighth note level and measures in

2
4 at the 16th note level. Therefore, it is difficult to draw
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Figure 5. Left: The ten most frequent binary onset pat-
terns overall, differentiating between unsyncopated pat-
terns (LHL > 0) and syncopated patterns (LHL > 0). Right:
Then ten most frequent syncopated patterns.

direct numerical equivalences between our studies.
Overall patterns. We first examine the frequencies of

all possible binary onset patterns in the corpus. To ensure
that the varying lengths of the compositions in the corpus
did not affect our results, we divided the number of times
each binary onset pattern appeared in a composition by the
number of measures in that composition, thereby obtain-
ing the frequency per measure for each pattern. We then
averaged the frequencies across all pieces in the corpus.
The top ten patterns overall, and the top ten with an LHL
score greater than 0 are shown in Figure 5. It is noteworthy
that for a genre identified with such high levels of synco-
pation, there are many common non-syncopated patterns.
In particular, patterns 1, 4, 5, 6, and 10 do not contain any
syncopation.

In analyzing the right side of Figure 5, we note the pres-
ence of a tied 121 pattern (1101) in the middle of patterns
1, 2, 4, and 5, along with untied 121 patterns at the be-
ginning of patterns 6, 7, and 9, and at the end of pattern
10. Additionally, pattern 3 is the 121 pattern in augmented
form. Only pattern 8 is not connected with the 121 figure.

Patterns by era. We conducted an experiment to de-
termine whether composers of different eras used certain
types of binary onset patterns differently. Using our ear-
lier grouping of compositions into the early ragtime era,
the late ragtime era, and the modern era, we computed the
most popular rhythms in each group, which can be seen
in Figure 6; we note that popular patterns in some eras be-
come unpopular in others. We used three Wilcoxon signed-
rank tests to compare pairs of eras, using all 256 possi-
ble binary onset patterns in each test. The results give us
weak statistical significance at the α = 0.05 level using
the Šidák correction to account for the multiple compar-
isons, suggesting that composers chose rhythmic patterns
differently in the three eras (p ≈ 0.01 for the early versus
late eras, p < 0.001 for the early versus modern eras, and
p ≈ 0.01 for the late versus modern eras).

4.3 Transitions Between Patterns

The overall sound of a piece of music depends not only on
the contents of the individual measures of music but also
on the choice of which measures follow other measures.
Ragtime is no exception, and we hypothesize that there are
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mic patterns, segmented by era.

24% 16% 5%

16% 21% 4%

5% 4% 5%

-1% -2% +1%

+1% +6% -20%

-1% -16% +24%

None

Low

High

HighLowNone HighLowNone

LH
L 

fir
st

 m
ea

su
re

LHL second measure LHL second measure
(a) Raw transition probabilities (b) Deviation from expected

None

Low

High

Figure 7. (a) The joint transition probabilities for observ-
ing of the nine possible LHL transition pairs. (b) The devi-
ation from the expected probability if there were no corre-
lation between the LHL value in one measure and the next.
The four highlighted deviations in (b) are statistically sig-
nificant.

relationships between the syncopated patterns in consec-
utive measures. Specifically, we propose the question of
whether the degree of syncopation in a measure of music
is related to the degree of syncopation in the surrounding
measures.

We chose to answer this question by examining all con-
secutive pairs of measures of music in the corpus and com-
puting their LHL values separately for the first measure
and the second measure of the pair. Recalling that the av-
erage LHL value for a syncopated measure of music was
approximately 2.14, we binned the LHL values according
to having a high amount of syncopation (LHL ≥ 3), a low
amount of syncopation (LHL = 1 or 2), or no syncopation
(LHL = 0). For each piece of music, we computed the fre-
quencies of each of the nine possible LHL transition pairs,
normalizing for the number of measures in each composi-
tion, and averaged the frequencies across all compositions.
The results are displayed as joint probabilities in a heatmap
in Figure 7(a). We observe that transitions between con-
secutive measures with no syncopation are extremely com-
mon, while any transition involving a high amount of syn-
copation is uncommon.

These joint probabilities, however, do not tell the whole
story. Because the distribution of LHL values is highly
skewed towards the smaller values, it is worthwhile to test
if any of these LHL transition pairs occur with certain ten-
dencies due to chance, or due to deliberate choices on the
composer’s part. For example, given that almost half of

the measures of music in the corpus do not contain any
syncopation, should we be surprised that 24% of the to-
tal transitions are between two measures without synco-
pation? We can answer this question with a final exper-
iment. We compared the LHL transition frequencies ob-
tained from the corpus against corresponding frequencies
that would be obtained if one were to randomly reorder
the measures in each piece of music. Specifically, for each
composition, we generated 1000 random reorderings of the
measures, computed the LHL transitions for every pair of
consecutive measures, averaged them across the 1000 re-
orderings, and then proceeded as we did earlier with nor-
malizing and averaging across all compositions. These re-
sults, illustrated in Figure 7(b), confirm that a number of
the LHL transitions occur significantly more or less fre-
quently than would be expected under a random reordering
of measures of the compositions.

We used nine individual binomial tests to compare the
the true LHL transition frequencies to the expected fre-
quencies under the null hypothesis that measure transitions
resemble those done randomly. At a significance level of
α = 0.05, taking into account the Šidák correction for mul-
tiple comparisons, the four highlighted transitions in Fig-
ure 7(b) are statistically significant (all with p � 0.0001).
This tells us, for instance, that even though it is overall rare
to find consecutive measures with high amounts of synco-
pation in a composition, this phenomenon still occurs more
often than would be expected if a composer were introduc-
ing syncopation at random.

5. CONCLUSION AND FUTURE WORK

In this study, we used new methods to extend a number
of previous analyses of ragtime syncopation to confirm
existing musicological hypotheses and present new ones.
Specifically, we confirmed the earlier finding that the 121
syncopation idiom varies in use between ragtime eras, even
when using a different preprocessing scheme for the RAG-
C dataset. We demonstrated a new finding that the “big
three” ragtime composers also employed this syncopation
pattern more often than their contemporaries did. We il-
lustrated how other rhythmic patterns evolved over time
and revealed different frequency distributions. Lastly, we
displayed novel results showing statistically significant dif-
ferences in the way the amount of syncopation changes be-
tween consecutive measures in a ragtime composition.

In future work, we plan to continue to study the use
of syncopation in ragtime, specifically towards uncover-
ing more information about varying musical parameters
(rhythmic, melodic, or harmonic) between measures. We
believe it will be useful to expand the ideas in this pa-
per to other musical genres as well. Previous research
has successfully used information about rhythmic patterns
to assist in genre classification [17–19], and we imagine
the data presented here could be useful in such circum-
stances. We also hypothesize that algorithmic composition
techniques that rely on probabilistic techniques for rhythm
generation [4, 20] might be improved by considering how
musical parameters like rhythm change from measure to
measure as well as within a single measure.
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ABSTRACT

The growing market of voice-enabled devices introduces
new types of music search requests. As voice assistants can
potentially support conversational requests, music requests
can be more ambiguous than requests in typed search in-
terfaces. However, these systems may not be able to ful-
fill ambiguous requests in a manner that matches the user
need. In this work, we study an example of ambiguous
requests which we term as non-specific queries (NSQs),
such as “play music,” where users ask to stream content
using a single utterance that does not specify what content
they want to hear. To better understand user motivations
for making NSQs, we conducted semi-structured qualita-
tive interviews with voice users. We observed four themes
that structure user perceptions of the benefits and short-
comings of making NSQs: the tradeoff between control
and convenience, varying expectations for personalization,
the effects of context on expectations, and learned user
behaviors. We conclude with implications for how these
themes can inform the interaction design of voice search
systems in handling non-specific music requests in voice
search systems.

1. INTRODUCTION

Voice assistants and smart speakers are rapidly becoming
ubiquitous. Globally, an estimated 600 million people use
voice assistants at least once a week [7]. In the U.S.,
roughly a quarter of adults own a smart speaker, such as
an Amazon Echo or Google Home [16, 28]. One of the
most popular use cases for smart speakers is music listen-
ing [1, 5]. If a user approaches a music search with a spe-
cific piece of content in mind and requests it by artist and
track name [14], current voice assistants are typically able
to fulfill such requests.

However, voice assistants also provide users with the
opportunity to search for music in a conversational and

c© J. Thom, A. Nazarian, R. Brillman, H. Cramer, S. Men-
nicken. Licensed under a Creative Commons Attribution 4.0 International
License (CC BY 4.0). Attribution: J. Thom, A. Nazarian, R. Brillman,
H. Cramer, S. Mennicken. ““Play Music”: User Motivations and Expec-
tations for Non-Specific Voice Queries”, 21st International Society for
Music Information Retrieval Conference, Montréal, Canada, 2020.

open-ended manner without mentioning specific entities.
We focus on non-specific queries (NSQs) in this research,
which are requests to play music but which lack any speci-
fications in the user’s language about which music to re-
turn. An example of a non-specific voice query would
be “Play music” (since no specifics are provided) but not
“Play me some hip hop,” since “hip hop” specifies a genre.

Due to the current limitations of voice search systems,
interactions that do not exactly specify what music to re-
quest are less likely to be successful. When faced with a
potentially unbounded space of conversational interactions
with a voice assistant, users may simply not know what to
say [9, 25]. As a result, users can end up falling back on
habits they developed when they first obtained their voice
assistants [5] and resort to more simple interactions. In
addition, users’ mental models of the voice assistant’s ca-
pabilities do not always match its actual capabilities [22].
This makes it difficult for users to know what types of
voice searches will end up providing the desired results.

Our research questions are as follows: (1) what are user
motivations for making non-specific queries (NSQ) and (2)
what do users expect from the system when they make
NSQs? To study these questions, we conducted a quali-
tative interview study with users who make such requests.
Finally, we conclude with implications for how voice assis-
tants can better meet these user needs and propose avenues
for future work.

2. RELATED WORK

2.1 Voice Assistants and Music Search

Voice has become a common interaction modality for users
to search for information. In particular, music has emerged
as a popular domain for voice search. This has been ob-
served across device types, ranging from mobile phones to
smart speakers. Guy’s [11] analysis revealed that music
videos were the top triggered results on voice search on
mobile phones. In the case of smart speakers, music listen-
ing is not only the most commonly requested functionality
but requests for information about music (e.g., “Who sings
this song”) also emerged as a prevalent search [1]. How-
ever, while voice interactions can potentially enable quick

1 The third author is now at Google and has not contributed to the paper
after joining Google.
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music playback on a smart speaker, issues such as difficult
to pronounce artist names can pose a challenge for users,
making these interactions more effortful [32].

2.2 Music Search and Discovery

To observe how users would use natural language to search
for music and to better understand users’ information
needs, researchers have turned to general domain reposi-
tories such as Google Answers. Bainbridge et al. [3] ob-
served that users typically employ a variety of metadata
to form music searches, such as bibliographic information
including performer, title of work, or date of recording.
Lee [19] also observed that music searches in Google An-
swers are typically known-item queries.

Music discovery on music streaming services also oc-
curs through personalized recommendations, which can
be potentially supported through natural language voice
queries. Such discovery often requires a user to be re-
ceptive to novelty, suggesting that listeners are selective
about the situations where this would be a positive expe-
rience [18]. Lee and Price [20] observe that music listen-
ers with more ‘adventurous’ music habits are more positive
about novelty in recommendations while more ‘discerning’
listeners expect recommendations to not be novel enough
to meet their tastes. Because users of voice assistants can
use natural language for ambiguous queries for a variety of
reasons, these systems will have to account for a listener’s
appetite for discovery.

We extend the research on music search and discovery
by studying a common query employing non-specific lan-
guage that may not necessarily indicate a tolerance for ex-
ploration. In addition, we note that the prior research cov-
ered in this section has predominantly focused on typed
search and modalities that offer visual feedback.

3. METHOD

3.1 INTERVIEWS

To elicit a rich descriptive user-centric dataset about non-
specific queries that may carry meaning to users despite
their simple format, we chose to employ semi-structured
interviews. The data collection took place over a one
month period in 2018 and consisted of 17 in-person 60
minute interviews. We sent a recruitment email to a ran-
dom sample of Spotify users in a city in the Northeastern
United States. The user selection criteria were: (1) owning
a voice-enabled device and (2) making at least one NSQ on
that device within the previous 30 days. The recruitment
email also asked users to indicate what voice-enabled de-
vices they owned and which music streaming services they
used.

We sampled participants who used smart speakers, such
as Google Home, Amazon smart devices as well as mobile
voice assistants to cover a broader range. To better reflect
the diversity of the listener population, we selected partic-
ipants from a range of ages, occupation, and gender. Par-
ticipant age ranged from 21 to 52 (mean = 31) with a wide
range of occupational backgrounds. Table 3.1 summarizes

P# Age Gender Job or Industry Used Device(s)

1 29 f Health care AA, MVA, Other
2 23 m Student GH, MVA
3 39 m Technology GH, MVA
4 26 f Asst Director MVA
5 21 f Student MVA
6 25 f Operations GH, MVA
7 26 f Clerk MVA
8 35 f Director AA, AA
9 52 m Education AA
10 39 m Dispatcher GH, MVA
11 26 m Advisor MVA
12 29 m Analyst AA, MVA
13 33 f Legal AA, MVA, Other
14 34 m Education MVA
15 25 m Student GH, MVA
16 32 m Manager MVA, Other
17 38 m Design MVA, Other

Table 1. Demographic information of our study partici-
pants and their voice assistant usage. Google Home (GH),
Amazon Alexa (AA), Mobile Voice Assistant (MVA)

the demographic characteristics of the participants. Partic-
ipants were paid $100 for their time, consistent with the
compensation level for industry user research.

Our interviews consisted of two parts. The first part fo-
cused on presenting scenarios to elicit user motivations for
making NSQs. The second part employed specific exam-
ples of common NSQs as probes to investigate user expec-
tations for the results of NSQs.

3.1.1 Part 1: Scenarios

The interviewer began by asking questions related to user’s
daily listening habits to develop an understanding of each
user’s unique music listening style. The participant would
then answer questions about their voice device habits re-
garding general domain voice interactions as well as those
specific to music streaming and recommendation. We
probed users’ motivations for requesting music through
voice, and any factors that might discourage them. Fol-
lowing this discussion, we prompted participants with
eight different scenarios in randomized order to describe
whether and how they would choose to issue NSQs to their
voice devices. We included the following scenarios: listen-
ing to music right now, during a workout, with friends at
party, in the morning, after work or school, during chores,
during the commute, while starting the day.

3.1.2 Part 2: Utterances as probes

Next, the interviewer presented five different wordings of
NSQs selected from a pool of the 50 most common NSQs
appearing in logged data in the 30 days preceding the
month of the study. The interviewer then asked the partici-
pants to provide the utterances verbatim to the voice assis-
tant in the room, which matched the assistant that partici-
pants reported owning and interacting with most frequently
in our recruitment email. The five utterances used dur-
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ing this part of the interview were: “Play Spotify playlist”,
“Turn on the music”,“Play music from Spotify”,“Play mu-
sic”,“Play my Spotify.”

3.2 Analysis

To identify broader themes encompassing the original an-
notation codes, researchers analyzed the interview tran-
scripts using Braun & Clarke’s 6-step framework [6]. The-
matic analysis [24] was used to develop annotation codes
to identify common themes and pervasive concepts. Three
coders verified the codes by annotating the transcripts
independently. The annotation tags were subsequently
grouped into larger conceptual categories to provide in-
sight into participants’ behaviors, motivations, expecta-
tions and desired experiences.

4. FINDINGS

Our findings can be categorized along four themes that
characterize user perceptions of the benefits and shortcom-
ings of NSQs.

4.1 Trade-offs Between Effort and Control

We observed that our participants perceived NSQs as a
convenient way to start listening to music with little effort
by ceding control to the voice assistant. On the other hand,
participants refrained from making NSQs when they be-
lieved that the returned content would be unpredictable. In
this section, we describe how participants actively weigh
the tradeoffs between user control and effort when decid-
ing whether to make an NSQ.

4.1.1 Starting music effortlessly is more important than a
specific outcome

Participants reported that they made non-specific queries
as a lower effort way to request music. For instance, they
described wanting to easily start a ‘lean back’ (or ‘hands
off’) music listening session where the music comprised a
soundtrack or background effect to the user’s activity. In
these situations, participants prioritized the convenience of
making a lower effort NSQs rather than requesting some-
thing specific.

I just need something to play in the back-
ground and accompany my morning. - P6, 25

Users also reported a desire to not add an additional
level of effort to a current activity, especially when that
activity required the use of the user’s hands or eyes. In
these cases, any keyboard or typed search would require an
extra level of effort, as it would involve interrupting their
current activity. Below, a participant enumerates the sit-
uations where they would choose voice search and NSQs
over text-based search.

Yeah, I would definitely say cooking, clean-
ing, housework type stuff, where I probably
have my hands full. - P8, 36

Some users identified NSQs as an effortless way to dis-
cover novel music. Here, a user describes using NSQs as
a fallback to specific queries when they needed an accessi-
ble and low-effort way to seek music that is new to them.
For this user, a willingness to make an NSQ for low-effort
music discovery is closely tied to their understanding of
Spotify’s reputation. When this user does not see one ser-
vice as allowing for new music discovery, they switch to
an alternative service when experiencing this NSQ intent.

I’ve been using [music service X] longer than
[music service Y]. And I consider [X] my go-
to, let’s say...But [Y] I like when I don’t want
to be so hands on...so, I would say if I can
find new music, it’s normally through [Y], but
I create lists – playlists on [X]. And so, a little
music that I’ve basically cultivated for at least
a decade...I typically go to [Y] when I’m try-
ing to be mindless about what I’m listening to
- P16, 32

Participants reported providing NSQs when they did not
have something specific in mind that they wanted to hear
but still wanted to begin a listening session without having
to expend decision-making effort.

I don’t want to make a decision necessarily, or
I can’t really think of what I want to listen to
at that point. - P1, 29

This effect was particularly strong when the act of
choosing a more specific piece of content felt like an ob-
stacle or burden.

[An NSQ] also sort of takes the edge off of
having to make your own playlist, which is
something I like doing, but if I didn’t feel like
putting the effort then. - P11, 26

This is consistent with findings observed by Hosey et
al. [14] in which users reported being open to various re-
sults when they did not have anything specific in mind
when searching for music. In the current study, we ob-
served this as well, in particular when participants also
wanted to initiate listening to music with as little effort and
mental load as possible.

4.1.2 Desire for predictable outcome and associated
feedback

Users consistently expressed the belief that they could
not exercise as much control through voice search, com-
pared to keyboard or touch searches. This was partly be-
cause users felt more context was available through typed
queries.

I’m a visual person. I guess I kind of like
to read all the songs that might come up in a
playlist or something like that. Whereas if I’m
[providing a voice request] I can’t really do
that, it’s just whatever [music streaming ser-
vice] picks out. - P2, 23
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This perceived lack of control is at least partially tied to
real-world limitations of voice assistants, which can break
down at multiple points. For instance, ASR systems can
struggle to correctly transcribe the non-standard spellings
(e.g., for artist “6lack”), difficult or ambiguous pronuncia-
tions (e.g., for the hip hop duo “Rae Sremmurd”), foreign
languages and non-Latinate alphabets (e.g., Hebrew, Ara-
bic, Greek) [32]. Named entity-recognition systems can
struggle with ambiguous requests, e.g., “Play Changes.”
Here, the voice system might still return an unintended
result, such as playing “Changes” by David Bowie rather
than “Changes” by 2Pac.

In an attempt to avoid these errors, users often make
voice requests that they perceive as safe bets, such as artists
they expect the system to understand. Below, a participant
discusses not requesting a particular album because ASR
systems often incorrectly transcribe it.

I definitely default to playing an artist rather
than a specific album...I try to have it play like
‘Citsuoka’ [an album by My Morning Jacket]–
there’ve been times when I’ve struggled and
it hasn’t been able to recognize that. And so
some of it is definitely a habit that I’ve devel-
oped where it’s more reliable to just go with
the artist. - P3, 39

These experiences with voice systems can influence
how a user will engage with NSQs. Users who trust the
recommender system may start to consider NSQs as safe
bets. Users who experience a sense of distrust due in part
to NLU errors may refrain from making NSQs, believing
that they would be too difficult for the system to fulfill.

4.2 Expectations for Personalization

Participants’ perceptions of NSQs are tied to their expecta-
tions of whether or not the requests would yield a person-
alized result. In particular, we observed that participants
had varying levels of trust in the quality of recommenda-
tions that they would receive in the first turn of their voice
interactions.

4.2.1 Trust that generic queries would lead to
personalized results

Participants who were open to musical exploration or felt
comfortable relinquishing control over their listening ses-
sion often used NSQs. By making such open-ended re-
quests, users were aware of the possibility of hearing some-
thing new or unexpected by requesting music in such an
open-ended manner. This was particularly marked with
participants who expressed high degrees of confidence in
the service’s recommendation algorithms.

I think the algorithms on here are super sharp
and I think that it does a really great job of
condensing what I’m into, what I have saved,
and pulling something up. - P4, 26

We observed that participants created their own theories
about how they would receive personalized results from

NSQs, consistent with Eslami et al. [8]. For instance, par-
ticipants hypothesized that they received personalized rec-
ommendations based on prior music listening behavior.

I’m assuming it bases it off of whatever kind
of music I like. I mean, it started playing
a song that I was okay with...Or, I assume,
based on whatever the app thinks that I would
like based on the kind of music that I currently
like and have favorited and stuff. - P10, 39

Participants also expressed a varying level of comfort
with proactive recommendations that could be fulfilled
with an NSQ. For instance, a participant describes a de-
sire for an NSQ result that could be personalized to meet
a user need for music discovery and exploration to return
something novel.

I would know at this point ‘play my [mu-
sic streaming service]’ is my default where
I’m at at that time, where I usually and if I
want something different in the usual time and
space, I have to look for something specific.
Because it doesn’t know that I don’t want the
usual. - P17, 38

In addition, some participants expected that personaliza-
tion could be sufficiently proactive to be predictive of user
need without explicit input from the user.

I think the ideal situation is I want [music
streaming service] to know what I want to hear
before I know what I want to hear. - P4, 26

When participants had positive expectations about the
personalization capabilities of the voice assistant, they
were more optimistic about making NSQs and receiving
a successful result.

4.2.2 Fear that generic requests might lead to unfamiliar
content

In contrast, participants who were less open to musical ex-
ploration refrained from making NSQs out of a reported
fear that the returned content will be outside the range of
music they normally listen to. As a result, familiar content
would be more likely to result in an enjoyable listening ex-
perience to these participants.

I’m usually really specific because I like cer-
tain things. Well, as you get older, you realize
this is what you like, and there’s enough mu-
sic for me to go back to and things I like. I
don’t discover too much anymore. Occasion-
ally, but not as much as I used to. - P9, 52

I’m not too adventurous with my music, so I
opt and like to listen to songs that are similar
to songs that I have heard before. - P6, 25

These findings are consistent with Li et al.’s [21]
observations that users who conduct non-focused music
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searches consume more novel songs. When users want to
hear familiar content, they will not use non-specific lan-
guage to request it.

Finally, our qualitative interview responses indicate that
users do not perceive all NSQs identically and had different
expectations for outcomes depending on unique meaning-
ful linguistic markers in the NSQ. For instance, there was
a consensus among users that the presence of a personal
pronoun in a non-specific request was tied to an elevated
desire to hear personalized content that is suited specifi-
cally to their musical taste.

I just assumed that ‘play my [music stream-
ing service]’ would yield a different thing than
just turning on the music because the ‘my’, to
me, indicates the music that I’ve already liked
or downloaded. - P11, 26

4.3 Context Affects User Motivation to Make NSQs

Our participants reported on different contextual factors
that affected their motivation to make a non-specific re-
quest.

4.3.1 More openness to discovery at certain times of day

Our participants reported that certain times of day were
more conducive to openness to new music and searching
for music in an exploratory mindset in the manner de-
scribed by Hosey et al. [14].

I can see myself doing this in the morn-
ings when I just need something to play in
the background and accompany my morning.
When I’m working out or when I’m sleeping
or when I’m reading, I kind of want a certain
mood, but in the mornings, I’m more open to
exploration. - P6, 25

Participants further noted that there were certain
activities that would occur at certain times of the day,
which may make time of day a potentially good proxy
for sensing context. This is consistent with other research
suggesting that listening preferences change throughout
the day [27].

4.3.2 Less individual control needed in a group setting

Social context can influence how participants perceive the
utility of making NSQs. Below, a participant expressed her
willingness to make NSQs with others in a group.

If I’m with a bunch of other people, my
friends, they’re like, ‘Oh, you’re still listen-
ing to this playlist? Put something else on.’
Just having – it’s like a nice neutral third party,
where it’s like, ‘Oh, I’m not dominating the
radio, and neither are you.’ - P8, 36

Here we see social context play a role in how partici-
pants would make NSQs. In social settings, participants

reported using non-specific queries to purposely relinquish
control over their music listening experience. In this spe-
cific context, being able to abdicate control allowed the
music streaming service to step in as a DJ and provide mu-
sic for their social listening session. This was motivated
not only by the aforementioned desire for an effortless ex-
perience, but also for users to avoid being judged for their
personal taste in music.

4.3.3 Desire for specific results to fit moods and activities

Because participants perceived the results of NSQs to be
unpredictable, they were less willing to make NSQs when
they wanted to hear music that would fit their current
mood or emotional state. This user motivation aligns
with previous work on how music serves to regulate af-
fect [15,27,29,33]. We distinguish this motivation from the
observation that participants make NSQs as a low-effort
way to start a background music session. Here, the stakes
felt higher to participants when the resulting music did not
match one’s mood, potentially even altering into an un-
wanted state.

Some users do not expect that music recommendation
systems can accomplish this level of emotional congru-
ence in the context of NSQs. Below, a participant describes
how unexpectedly hearing an album called “Planetarium”
as the content returned for an NSQ–music which she de-
scribes as having a deeply emotional quality and unpleas-
ant associations–would have a negative impact on her if
she wasn’t prepared to hear it.

I would probably be more specific than that
because the last thing I want is to be like, ‘Play
music’ and it puts on ‘Planetarium’ and now
I’m on my back on my bed with a jug of ice
cream like, ‘How did this happen?’ - P4, 26

To avoid such situations, she exercises control by asking
for specific artists or albums that fit her current mood rather
than handing control to the music streaming service.

4.4 Learned User Behaviors

As users become more familiar with the capabilities of
voice assistants, they fall fairly quickly into settled rou-
tines and habits [5]. We observed similar behaviors with
our participants in how they adopted NSQs over time.

4.4.1 Tool to learn about boundaries of the voice
assistant

Participants reported making NSQs out of initial curiosity.
Consistent with Mennicken et al. [23], we observed that
participants perceived NSQs as an opportunity to test the
limits of the system and playfully learn the rules for what
they can accomplish through their voice-enabled device.

I just said ‘Hey Google play some good mu-
sic’ or something like that just to see what it
would do, or I’ve also just [said] ‘play mu-
sic’ before just because I was curious what it
would play. - P2, 23
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Participants felt that if they received a result that they
deemed enjoyable, this would increase the likelihood that
they would use these types of queries in the future again.
This aligns with prior research in general web search that
suggests that users will change their request strategies if
their results are unsatisfactory [2, 13].

4.4.2 Simple requests facilitate habit formation

Participants who reported making NSQs frequently devel-
oped their mental models of how the system would respond
and then learned to integrate NSQs into their daily routine.

I think I’ve kind of just made it a habit. Go
up the stairs, set your keys down, set the back-
pack down, talk to [music streaming service],
take the shoes off, so I think it’s kind of in-
grained into that coming home routine. - P8,
36

Similar to developing hypotheses about how the voice
assistant would return personalized content, participants
also created folk theories of how the system would interact
with them depending on prior behavior.

I expect it to be some default behavior that
happens all the time, whether it’s resuming
whether it’s starting from like alphabetical
like the stuff I’ve tagged in my library [...] dif-
ferent stuff like over time that I’ve gotten used
to. - P3, 39

For those participants who were more familiar with pos-
sible results of NSQs, a final motivation for issuing NSQs
was to resume a previous listening session.

When I come home from work [and provide
an NSQ] it picks up [...] whatever thing I
was listening to on my phone, so that’s kind
of nice. It picks up where you left off. - P8,
36

For days like that, again, where I would pre-
fer to use [an NSQ], it’s when I’m in and out
of the Jeep constantly. That way I could just
jump in the Jeep, I throw the phone up on the
dashboard, I tell the Jeep to start playing the
music and I’m already rolling out of the park-
ing lot. If I’m gonna be in the Jeep for an ex-
tended period of time like when I’m on my
way to work, then I just pick it manually. But,
[...] Running errands and stuff where you’re
constantly in and out, it’d be nice to actually
just say, [an NSQ] and it just picks up right
where I left off. - P10, 39

5. DISCUSSION

Based on our findings, we discuss (1) how the user experi-
ence of NSQs could be improved through a better integra-
tion of feedback; and (2) what additional linguistic cues
could be considered in the NSQs to better address user
needs.

5.1 Design for Feedback

When participants perceived a lack of control over their
results, they were less inclined to make NSQs. One possi-
ble way to address that concern through design is to pro-
vide contextualized results when appropriate. For exam-
ple, voice output, such as text-to-speech, can be used to
give additional information about how the content is per-
sonalized. Metadata, such as an artist’s collaborators or
genre, can be used to feed into text-to-speech contextual-
ization of the results of an NSQ [4].

Our results revealed that participants were willing to
make NSQs when they wanted to start a low-effort listen-
ing session. However, this was balanced with a reluctance
to receive overly surprising results. For users who make
NSQs on a device with text-to-speech output, conversa-
tional search can help guide users by offering personalized
options in a dialogue. This guidance can help balance a lis-
tener’s need to retain control while minimizing cognitive
load [12]. To generate candidate responses in a conversa-
tional agent for music discovery and exploration, systems
can employ various NLP techniques to take advantage of
the semantic relationships between entities found in music
corpora and catalogs [26]. This can be helpful for the ‘dis-
cerning’ users, observed by [20], who are not satisfied with
their recommendations or users who are willing to put in
effort for exploration, as observed by [14, 17].

5.2 Leverage Linguistic Cues

Our findings can also be applied to queries slightly more
specific to the ones currently studied. Our observations
about NSQs can provide insight into descriptive music
queries, such as “Play hip hop” or “Play something calm-
ing.” While there are indeed categorically ‘wrong’ answers
for descriptive queries such as returning a classic rock song
for “Play hip hop,” we suggest that expectations of person-
alization and the trade-off between effort and control re-
main important motivators for users who make descriptive
queries.

Another future research direction related to non-specific
language would be requests such as “recommend me
something”. While this type of request does not specify the
type of content, the intent expressed by “recommend” sug-
gests that a user is open to new content or to personalized
results. Prior research [10] has uncovered different user
goals for discovery-related content, suggesting that fulfill-
ment of these voice requests should be aware of the dif-
ferent user needs behind these recommendation-related re-
quests. Additionally, if the assistant has knowledge of user
context such as location or time of day, the fulfillment of
parsimonious “recommend me something” utterances can
potentially be highly personalized [30, 31].

In summary, our research suggests that user intent when
making ambiguous and non-specific requests can vary de-
pending on user tolerance for effort and novelty, and that
this tolerance can impact the level of user trust with the sys-
tem. Future directions include iterating on system design
to better support NSQs and further investigating utterance
language to better understand user intent.
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ABSTRACT

While deep generative models have become the leading
methods for algorithmic composition, it remains a chal-
lenging problem to control the generation process because
the latent variables of most deep-learning models lack
good interpretability. Inspired by the content-style disen-
tanglement idea, we design a novel architecture, under the
VAE framework, that effectively learns two interpretable
latent factors of polyphonic music: chord and texture. The
current model focuses on learning 8-beat long piano com-
position segments. We show that such chord-texture dis-
entanglement provides a controllable generation pathway
leading to a wide spectrum of applications, including com-
positional style transfer, texture variation, and accompani-
ment arrangement. Both objective and subjective evalua-
tions show that our method achieves a successful disentan-
glement and high quality controlled music generation.1

1. INTRODUCTION
With the development of artificial neural networks, deep
learning has become one of the most popular techniques
for automated music generation. In particular, we see re-
current and attention-based models being able to gener-
ate creative and human-like music without heavily hand-
crafted rules [1–3]. However, the main drawback of these
deep generative models is that they behave like “black
boxes”, and it is difficult to interpret the musical meaning
of their internal latent variables [4]. Consequently, it re-
mains a challenging task to control the generation process
(i.e., to guide the music flow by manipulating the high-
level compositional factors such as melody contour, ac-
companiment texture, style, etc.). This limitation restricts
the application scenario of the powerful deep generative
models.

In this paper, we improve the model interpretability
for music generation via constrained representation learn-
ing. Inspired by the content-style disentanglement idea [5],

1 Code and demos can be accessed via https://github.com/
ZZWaang/polyphonic-chord-texture-disentanglement

c© Z. Wang, D. Wang, Y. Zhang, G. Xia. Licensed under
a Creative Commons Attribution 4.0 International License (CC BY 4.0).
Attribution: Z. Wang, D. Wang, Y. Zhang, G. Xia, “Learning inter-
pretable representation for controllable polyphonic music generation”, in
Proc. of the 21st Int. Society for Music Information Retrieval Conf.,
Montréal, Canada, 2020.

we enforce the model to learn two fundamental factors
of polyphonic music: chord (content) and texture (style).
The former refers to the representation of the underlying
chord progression, and the latter includes chord arrange-
ment, rhythmic pattern, and melody contour. The current
design focuses on learning 8-beat long piano composition
segments under a variational autoencoder (VAE) frame-
work.

The core of the model design lies in the encoder. We
incorporate the encoder with two inductive biases for a
successful chord-texture disentanglement. The former
applies a rule-based chord recognizer and embeds the in-
formation into the first half of the latent representation.
The latter regards music as 2-D images and uses a chord-
invariant convolutional network to extract the texture infor-
mation, storing it into the second half of the latent repre-
sentation. As for the decoder, we adopt the design from
PianoTree VAE [6], an architecture that can reconstruct
polyphonic music from the latent representation in a hi-
erarchical manner.

We further show that the interpretable representations
are general-purpose, empowering a wide spectrum of
controllable music generation. In this study, we explore
the following three scenarios:

Task 1: Compositional style transfer by swapping the
chord and texture factors of different pieces of music,
which can help us re-harmonize or re-arrange a music
piece following the style of another piece.

Task 2: Texture variation by sampling the texture fac-
tor while keeping the chord factor, which is analogous
to the creation of “Theme and Variations” form of com-
position.

Task 3: Accompaniment arrangement by predicting
the texture factor given the melody using a downstream
encoder-decoder generative model.

In sum, the contributions of our paper are as follows:
• We design a representation disentanglement method for

polyphonic music, which learns two interpretable fac-
tors: chord and texture.

• We show that the interpretable factors are general-
purpose features for controllable music generation,
which reduces the necessity to design heavily-
engineered control-specific model architectures. As far
as we know, this is the first attempt to explicitly con-
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trol the compositional texture feature for symbolic poly-
phonic music generation.

• We demonstrate that control methods are effective and
the quality of generated music is high. Some style trans-
ferred pieces are rated even higher than the original ones
composed by humans.

2. RELATED WORK
We review two techniques of automated music generation
related to our paper: controlled generation (in Section 2.1)
and representation disentanglement (in Section 2.2). For
a more general review of deep music generation, we refer
readers to [7, 8].

2.1 Controlled Music Generation
Most existing learning-based methods regard controlled
music generation a conditional estimation problem. That
is, to model p(music|control), in which both music and
control are usually time-series features. Another approach
that is closely related to conditional estimation is to first
learn the joint distribution p(music, control) and later on
force the value of control during the generation process.

The above two methods have been used in various tasks,
including generating chords based on the melody [9], cre-
ating the melody based on the chords [10, 11], completing
the counterparts or accompaniment based on the melody or
chord [3,12–16], and producing the audio waveform based
on timbre features [17, 18].

However, many abstract music factors, such as texture
and melody contour, could hardly be explicitly coded by
labels. Even if such labels are provided, the control still
does not allow continuous manipulation, such as sampling
and interpolation. Consequently, it remains a challenging
task to control music by more abstract factors without com-
plex heuristics [19].

2.2 Music Representation Disentanglement
Learning disentangled representations is an ideal solution
to the problem above, since: 1) representation learning
embeds discrete music and control sequences into a con-
tinuous latent space, and 2) disentanglement techniques
can further decompose the latent space into interpretable
subparts that correspond to abstract music factors. Recent
studies show that VAEs [20, 21] are in general an effective
framework to learn the representations of discrete music
sequences, and the key to a successful disentanglement is
to incorporate proper inductive biases into the representa-
tion learning models [22].

Under a VAE framework, an inductive bias can be real-
ized in various forms, including constraining the encoder
[23–25], constraining the decoder [26], imposing multitask
loss functions [27, 28], and enforcing transformation in-
variant results during the learning process [29, 30]. This
study is based on our previous work Deep Music Anal-
ogy [27] in which we disentangle pitch and rhythm factors
for monophonic segments. We extend this idea to poly-
phonic composition while the model design is more similar
to [24].

3. MODEL
In this section, we introduce the model design and data
representation in detail. The goal is to learn the represen-
tations of 8-beat long piano compositions (with 1

4 beat as
the shortest unit) and disentangle the representations into
two interpretable factors: chord and texture.

Figure 1: The model diagram.

Figure 1 shows the overall architecture of the model.
It adopts a VAE framework and contains four parts: 1) a
chord encoder, 2) a chord decoder, 3) a texture encoder,
and 4) a PianoTree decoder. The chord encoder and chord
decoder can be seen as a standalone VAE which extracts
the latent chord representation zchd. On the other hand,
the texture encoder aims to extract the texture represen-
tation ztxt using a chord-invariant convolutional mapping.
Finally, the PianoTree decoder takes in both zchd and ztxt

and outputs the original music in a tree-structured data for-
mat.

3.1 Chord Encoder
The chord encoder first applies rule-based methods [31,32]
to extract the chord progression under one-beat resolu-
tion. Each extracted chord progression is a 36 by 8 ma-
trix, where each column denotes a chord of one beat. Each
chord is a 36-D vector consisting of three parts: a 12-D
one-hot vector for the pitch class of the root, a 12-D one-
hot vector for the bass, and a 12-D multi-hot chroma vec-
tor.

The chord progression is then fed into a bi-directional
GRU encoder [21], and the last hidden states on both ends
of the GRU are concatenated and used to approximate the
posterior distribution of zchd. Following the assumption
of a standard VAE, zchd has a standard Gaussian prior and
follows an isotropic Gaussian posterior.

Note that although the chord progression here is ex-
tracted using algorithms, it can also be provided by ex-
ternal labels, in which case the whole model becomes a
conditional VAE [33].
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3.2 Chord Decoder
The chord decoder reconstructs the chord progression from
zchd using another bi-directional GRU. The reconstruction
loss of a chord progression is computed as a summation of
8 beat-wise chord loss using cross entropy functions [34].
For each beat, the chord loss is defined as the product of
three parts: 1) the root loss, 2) the bass loss, and 3) the
chroma loss. The root and bass are both considered 12-
way categorical distributions and the chroma is regarded
as 12 independent Bernoulli distributions.

3.3 Texture Encoder
The input of the texture encoder is an 8-beat segment of
polyphonic piece represented by an image-like data for-
mat slightly modified from the piano-roll [14]. Each 8-
beat segment is represented by a 128 by 32 matrix, where
each row corresponds to a MIDI pitch and each column
corresponds to 1

4 beat. The data entry at (p, t) records the
duration of the note if there is a note onset, and zero other-
wise.

The texture encoder aims to learn a chord-invariant rep-
resentation of texture by leveraging both the translation in-
variance property of convolution and the blurry effect of
max-pooling layers [35]. We use a convolutional layer
with kernel size 12× 4 and stride 1× 4, which is followed
by a ReLU activation [36] and max-pooling with kernel
size 4×1 and stride 4×1. The convolutional layer has one
input channel and 10 output channels. The convolutional
layer design aims at extracting a blurry “concept sketch”
of the polyphonic texture which contains minimum infor-
mation of the underlying chord. Ideally, when such blurry
sketch is combined with specific chord representation, the
decoder can identify its concrete pitches in a musical way.

The output of the convolutional layer is then fed into
a bi-directional GRU encoder to extract the texture repre-
sentation ztxt, similar to how we encode zchd introduced in
Section 3.1.

3.4 PianoTree Decoder
The PianoTree decoder takes the concatenation of zchd and
ztxt as input and decodes the music segment using the same
decoder structure invented in PianoTree VAE [6], a hierar-
chical model structure for polyphonic representation learn-
ing. The decoder works as follows. First, it generates
32 frame-wise hidden states (one for each 1

4 beat) using a
GRU layer. Then, each frame-wise hidden state is further
decoded into the embeddings of individual notes using an-
other GRU layer. Finally, the pitch and duration for each
note are reconstructed from the note embedding using a
fully-connected layer and a GRU layer, respectively. For
more detailed derivation and model design, we refer the
readers to [6].

3.5 Training Objective
Let x denote the input music piece and c = f(x) denote
the chord progression extracted by algorithm f(·). We as-
sume standard Gaussian priors of p(zchd) and p(ztxt), and
denote the output posteriors of chord encoder and texture
encoder by qφ(zchd|c), qψ(ztxt|x), the output distributions

of chord decoder and PianoTree decoder by pρ(c|zchd) and
pθ(x|zchd, ztxt). The objective of the model is:

L(φ, ψ, ρ, θ;x) =

− Ezchd∼qφ
ztxt∼qψ

[
log pρ(c|zchd) + log pθ(x|zchd, ztxt)

]
+ KL(qφ||p(zchd)) + KL(qψ||p(ztxt)). (1)

4. CONTROLLED MUSIC GENERATION
In this section, we show some controlled generation exam-
ples of the three tasks mentioned in the introduction.

4.1 Compositional Style Transfer
By regarding chord progression content and texture style,
we can achieve compositional style transfer by swapping
the texture representations of different pieces. Figure 2
shows the transferred results ((c) & (d)) based on two 16-
bar samples ((a) & (b)) in the test set by swapping ztxt every
2 bars (without overlap).2

We see that such long-term style transfer is successful:
The generated segment (c) follows the chord progression
of (b) while mimicking the texture of (a), while (d) follows
the chord progression of (a) while mimicking the texture
of (b). As shown in the marked scores, the style transfer
is effective. E.g., the cut-offs, melody contours, and the
shape of the left-hand accompaniment are all preserved.

4.2 Texture Variation by Sampling
We can make variations of texture by sampling from ztxt

while keeping zchd. Here, we investigate two sampling
strategies: sampling from the posterior qψ(ztxt|x), and
sampling from the prior p(ztxt).

Sampling from the posterior distribution qψ(ztxt|x)
yields reasonable variations as shown in Figure 3a. The
variations of the right-hand melody can be seen as an
improvisation following the chord progression and the
melody. On the contrary, there is only small variation in
the left-hand part, showing that the model regards the left-
hand accompaniment as the dominant feature of texture.

Sampling from the prior distribution p(ztxt) changes the
texture completely. Figure 3b shows a series of examples
of prior sampling under the same chord progression C-Am-
F-G. The resulting generations follow exactly the chord
progression but with new textures.

4.3 Accompaniment Arrangement
We use a downstream predictive model to achieve accom-
paniment arrangement. For this task, we provide extra vo-
cal melody tracks paired with the piano samples, and the
model learns to generate 16-bar piano accompaniment con-
ditioned on melody in a supervised fashion.

We encode the music every 2 bars (without overlap)
into latent representations. For the accompaniment, we
use the proposed model to compute the latent chord and
texture representation, denoted by zchd = [z

(1)
chd , ..., z

(4)
chd ]

and ztxt = [z
(1)
txt , ..., z

(4)
txt ]. For the melody, we use the

2 The presented excerpts are converted from MIDI by the authors. The
chord labels are inferred from the original/generated samples.
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(a) A real piece.

(b) The other real piece.

(c) The generated piece by combining ztxt from (a) and zchd from (b).

(d) The generated piece by combining ztxt from (b) and zchd from (a).

Figure 2: An example of compositional style transfer of 16-bar-long samples when k = 2.

EC2-VAE [27] to compute the latent pitch and rhythm rep-
resentations, denoted by zp = [z

(1)
p , ..., z

(4)
p ] and zr =

[z
(1)
r , ..., z

(4)
r ]. Then, we adopt a vanilla Transformer [37]

to model p(ztxt, zchd|zp, zr), in which the encoder takes in
the condition and the decoder’s input is a shifted right ver-
sion [zchd, ztxt]. Both encoder and decoder inputs are incor-
porated with a positional encoding indicating the time po-

sitions and a learned factor embedding indicating the rep-
resentation type (i.e., pitch, rhythm, chord or texture).

Figure 4 shows an example of accompaniment arrange-
ment, where the first staff shows the melody and the sec-
ond staff shows the piano accompaniment. In this case, the
whole melody, together with the complete chord progres-
sion and the first 2 bars of accompaniment are given. The
chord conditioning is done by forcing the decoded chord
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(a) An example of posterior sampling of ztxt of the first 8 bars of the segment (a) in Figure 2

(b) An example of prior sampling of ztxt under given chord progression C-Am-F-G. Each two-bar segment is independently sampled,
having different texture.

Figure 3: Examples of texture variations via posterior sampling and prior sampling.

Figure 4: An example of accompaniment arrangement conditioned on melody, chord progression, and first 2 bars of
accompaniment.

representation to match the given input during inference
time. (A similar trick is used in [15].) From Figure 4, we
see that the model predicts a similar texture to the given
accompaniment. Moreover, it fills in a secondary melody
line as a transition when the lead melody is rest.

Note that the arrangement can be generated in a flexi-
ble way by conditioning on different sets of latent factors.
Much longer examples and more conditioning settings are
available on our github page.

5. EXPERIMENTS
5.1 Dataset and Training
We train our model on the POP909 dataset [38], which
contains about 1K MIDI files of pop songs (including
paired vocal melody and piano accompaniment). We fur-
ther extract the chord annotations using [31, 32]. We only
keep the pieces with 2

4 and 4
4 meters and cut them into

8-beat music segments (so that each data sample in our
experiment contains 32 time steps under 16th note resolu-
tion). In all, we have 66K samples. We randomly split
the dataset (at song-level) into training set (90%) and test
set (10%). All training samples are further augmented by
transposing to all 12 keys.

In our experiment, the VAE model uses 256, 512, and
512 hidden dimensions for the GRUs in chord encoder,
chord decoder and texture encoder respectively. The latent
dimension of zchd and ztxt are both 256. The model size of
the PianoTree decoder is the same as the implementation

in the original paper [6]. The transformer model has the
following size: hidden dimension = 256, number of layers
= 4 and number of heads = 8.

For both models, we use Adam optimizer [39] with a
scheduled learning rate from 1e-3 to 1e-5. Moreover, for
the VAE model, we use KL-annealing [40], i.e. setting a
weight parameter for the KL-divergence loss starting from
0 to 0.1. We set batch size to be 128 and the training con-
verges within 6 epochs. For the downstream transformer
model, we use 12K warm-up steps for learning rate up-
date [41]. We use the same batch size and the model con-
verges within 40 epochs.

5.2 Objective Measurement
When zchd and ztxt are well disentangled, small variations
over the note pitches of the original music should lead to a
larger change on zchd, while variations of rhythm will influ-
ence more on ztxt. Following this assumption, we adopt a
disentanglement evaluation via data augmentation method
used in [42] and further developed in [27].

We define Fi as the operation of transposing all the
notes by i semitones, and use the L1-norm to measure the
change of latent z after augmentation. Figure 5a shows a
comparison between Σ|∆zchd| and Σ|∆ztxt|when we apply
Fi to all the music pieces in the test set (where i ∈ [1, 12]).

It is conspicuous that when augmenting pitch in a small
range, the change of zchd is much larger than the change of
ztxt. At the same time, the change of ztxt gets higher as the
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augmentation scale increases. Similar to the result in [27],
the change of zchd reflects human pitch perception as zchd is
very sensitive to a tritone transposition, and least sensitive
for a perfect octave.

(a) A comparison between ∆zchd, ∆ztxt after pitch transposition
on all notes.

(b) A comparison among ∆zchd, ∆ztxt after beat-wise pitch trans-
position and texture augmentation with different probabilities.

Figure 5: Results of objective measurement.

We further define Pi as the function to randomly trans-
pose all the notes in one beat either up or down one semi-
tone under a certain probability i, and Ri as the function
to randomly reduce the note duration by half. Figure 5b
shows a comparison between Σ|∆zchd| and Σ|∆ztxt| when
we apply Pi and Ri to all the music pieces in our test set
(where i ∈ [0.1, 1.0]).

For each value of i in the figure 5b, the first and sec-
ond bars demonstrate Σ|∆zchd| and Σ|∆ztxt| caused by Pi
function, while the third bar indicates Σ|∆ztxt| caused by
Ri function. (We did not show Σ|∆zchd| caused by Ri
since they are all zero.) It again proves that the chord repre-
sentation is more sensitive than texture representation un-
der pitch variations, and conversely, texture representation
is more sensitive than chord representation under rhythm
variations.

5.3 Subjective Evaluation
Besides objective measurement, we conduct a survey to
evaluate the musical quality of compositional style transfer
(see Section 4.1). Each subject listens to ten 2-bar pieces
with different chord progressions, each paired with 5 style-
transfer versions generated by swapping the texture repre-
sentation with a random sample from the test set. In other
words, each subject evaluates 10 groups of samples, each
of which contains 6 versions of textures (1 from the orig-
inal piece and 5 from other pieces) under the same chord
progression. Both the order of groups and the sample order

within each group are randomized. After listening to each
sample, the subjects rate them based on a 5-point scale
from 1 (very low) to 5 (very high) according to three crite-
ria: creativity, naturalness and musicality.

Figure 6: Subjective evaluation results. Here “TFRed: xth
largest” denotes the xth (largest) order statistic of the trans-
ferred segments.

A total of 36 subjects (26 females and 10 males) partic-
ipated in the survey. Figure 6 shows the comparison result
among the original pieces (indicated by the orange bars)
and the transferred pieces in terms of their mean and order
statistics. The heights of bars represent averaged ratings
across the subjects and the error bars represent the confi-
dence intervals computed via paired t-test [43]. The result
shows if we randomly transfer a piece’s texture 5 times, the
best result is significantly better than the original version
(with p-value < 0.005), and there are only marginal differ-
ences between the second-largest statistics and the original
(with p-value > 0.05) in terms of creativity and musical-
ity. We also see that on average the transferred results are
still rated lower than the original ones. How to automati-
cally decide the quality of a transferred result is considered
a future work.

6. CONCLUSION AND FUTURE WORK
In conclusion, we contributed an effective algorithm to dis-
entangle polyphonic music representation into two inter-
pretable factors, chord and texture, under a VAE frame-
work. Such interpretable representations serve as an intu-
itive human-computer co-creation interface, by which we
can precisely manipulate individual factors to control the
flow of the generated music. In this paper, we demon-
strated three ways to interact with the model, including
compositional style transfer via swapping the latent codes,
texture variation by sampling from the latent distribu-
tion, accompaniment arrangement using downstream con-
ditional prediction, and there are potentially many more.
We hope this work can shed light on the field of con-
trollable algorithmic composition in general, especially on
the paradox between model complexity and model inter-
pretability.

We acknowledge that the learned music factors are still
very basic. In the future, we plan to extract more abstract
and longer-range features using hierarchical models. We
also plan to explore more ways to control the music gener-
ation for practical usage.
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ABSTRACT

Recent machine learning techniques have enabled a large
variety of novel music generation processes. However,
most approaches do not provide any form of interpretable
control over musical attributes, such as pitch and rhythm.
Obtaining control over the generation process is critically
important for its use in real-life creative setups. Neverthe-
less, this problem remains arduous, as there are no known
functions nor differentiable approximations to transform
symbolic music with control of musical attributes.

In this work, we propose a novel method that enables
attributes-aware music transformation from any set of mu-
sical annotations, without requiring complicated derivative
implementation. By relying on an adversarial confusion
criterion on given musical annotations, we force the latent
space of a generative model to abstract from these features.
Then, reintroducing these features as conditioning to the
generative function, we obtain a continuous control over
them. To demonstrate our approach, we rely on sets of mu-
sical attributes computed by the jSymbolic library as anno-
tations and conduct experiments that show that our method
outperforms previous methods in control. Finally, com-
paring correlations between attributes and the transformed
results show that our method can provide explicit control
over any continuous or discrete annotation.

1. INTRODUCTION

For a long time, music composition has been considered
a skill reserved for highly-trained experts. However, since
the emergence of new technologies, it appears possible for
non-expert and untrained users to indulge in this task. One
such way is to rely on machine learning models, which
train on existing sets of music to produce pieces with
similar characteristics. The importance of music gener-
ation is growing in the industrial world as well, for in-
stance, in the generation of soundtracks for video games
and movies [1, 2].

In this context, models that provide control over the
attributes of the generated music are of critical impor-
tance [1, 3–5]. Indeed, the simple generation of “self-
contained” music through a single button rapidly becomes
dull. Instead, users are rather looking to transform aspects

c© L. Kawai, P. Esling, and T. Harada. Licensed under a
Creative Commons Attribution 4.0 International License (CC BY 4.0).
Attribution: L. Kawai, P. Esling, and T. Harada, “Attributes-Aware
Deep Music Transformation”, in Proc. of the 21st Int. Society for Music
Information Retrieval Conf., Montréal, Canada, 2020.

of the music to make it fit their intent in terms of musi-
cal attributes such as pitch, rhythm, and melody. Ideally,
these controls should be continuous, providing flexibility
akin to the knobs of musical synthesizers. For instance, if
a user wants to generate music with longer notes, the sys-
tem should provide a way to decide how much the notes
are extended, not just whether extend them or not.

Nevertheless, obtaining explicit controls over music
generation is still an open and complex problem [5]. Al-
though recent generative models can produce a large vari-
ety of music genres, they usually do not provide any mech-
anism on how to modify the generation with musical at-
tributes in a controllable way. However, acquiring such
controls seems to require the implementation of compli-
cated derivatives or approximation for each attribute [6].

In this paper, we introduce a novel method to gener-
ate symbolic music similar to a given dataset, while be-
ing able to control its musical attributes continuously. Our
method can be trained using raw annotations, without re-
quiring access to their computational functions nor deriva-
tive implementations. This allows us to rely on any form
of musical annotations, even high-level semantic or sub-
jective characteristics. To demonstrate this aspect, we rely
on attribute vectors computed by jSymbolic [7] as anno-
tations to make the model learn a continuous control for
each. This produces numerical descriptions of music, such
as pitch ranges and mean note durations, which enables us
to learn understandable control over the generation.

To empower our generative model with continuous con-
trol over non-differentiable musical attributes, we rely on
adversarial learning. Our model is based on a latent
encoder-decoder model, where the decoding function takes
continuous musical attributes as conditioning information.
As the model is trained to reconstruct input data, the la-
tent encoding potentially contains all the information nec-
essary for reconstruction. Hence, this would lead to a de-
coding function that can generate the output without re-
flecting changes in the conditioning. Aiming to prevent
this situation, we introduce an adversarial discriminator on
the latent space of the model. The role of this discrim-
inator is to drive the encoder to remove any attribute in-
formation from the latent vector. This adversarial frame-
work with an encoder-decoder model is similar to Fader
Networks [8]. However, one major difference is that we
handle continuous values instead of binary ones. Hence,
a major contribution of this paper is to define an approach
to train an adversarial discriminator on continuous values.
Indeed, discriminators across the literature [8–15] predict
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binary values such as real/fake or with/without attributes,
whereas we aim to deal with continuous values. We solve
this problem in two steps. First, we quantize attribute val-
ues and compute balanced class labels. Second, we extend
the discriminator so that it relies on multivariate class vec-
tors. As usual in adversarial training, the encoder is trained
to prevent the discriminator from predicting the labels cor-
rectly. This produces continuous controls over the musi-
cal characteristics by shifting the condition to the decoder.
This behavior stems from the need for the model to cor-
rectly utilize the decoder condition so as to reconstruct the
input data. That way, we force the generated data to reflect
the musical control values, for any attribute annotation.

For the purpose of evaluation, we demonstrate the abil-
ity to gain interpretable control over musical attributes
by conducting extensive experiments. We show that our
method outperforms previous proposals [6,16,17] and also
allows us to rely on unconstrained sets of attributes. We
evaluate these results by computing the correlation be-
tween control attributes and generation results. This en-
ables us to evaluate quantitatively how the generation re-
flects the control. Our contributions are: (1) We propose a
novel training framework to learn from ordered annotation
values. (2) We solve the above problem by quantizing an-
notations and adversarial training to obtain controllability
of musical attributes without their derivatives.

2. RELATED WORK

2.1 Generative Models

Generative models allow production of new data samples
x̃, by training on a collection of examples x, with the most
popular approaches being Generative Adversarial Net-
works [9] and Variational Auto-Encoder (VAE) [18, 19].

2.1.1 Variational Auto-Encoder

The VAE is based on an encoder-decoder architecture. The
encoder takes input data x ∈ Rdx and outputs a com-
pressed latent vector z ∈ Rdz . The decoder takes this la-
tent vector z as input and tries to reconstruct the input data
x. Hence, this approach models two distributions: z ∼
penc(z | x, θenc) and x̃ ∼ pdec(x | z, θdec), where θenc
and θdec are parameters of the encoder and the decoder.
The original objective function for training a VAE approx-
imates the distribution p(x), that we wish to model by a
lower bound (Evidence Lower Bound (ELBO)) [18, 19].

ELBO{θenc,θdec} = −(LR + LKL) ≤ log p(x) (1)

Here, LR and LKL are mean reconstruction error and
Kullback-Leibler divergence, respectively.

LR = −Epenc(z|x)
[
log(pdec(x | z))

]
(2)

LKL = DKL

(
penc(z | x) || p(z)

)
(3)

Therefore, the model optimizes its parameters by minimiz-
ing the reconstruction error LR, while regularizing the la-
tent space through LKL, so that the encoded latent vari-
ables match with a Gaussian prior.

2.1.2 Attribute Control in Generative Models

Several works have focused on attribute control for gen-
erative models in the image domain [8, 20–23], which en-
able changing properties of the generation, such as facial
attributes. In some cases [21], learning is not performed
on the attributes themselves, but rather through a rich pre-
trained model. This allows computing the mean directions
of interpolation, which maximize attribute change in fea-
ture space, in order to re-apply the obtained direction.

In Fader Networks [8], an encoder-decoder-based
model is trained to generate facial images given binary
visual attributes through adversarial learning. As the de-
coder is expected to rely on control attributes for genera-
tion, this requires that the other latent vector input does not
contain any information about the attributes. Thus, they in-
troduce a discriminator on those latent vectors, which tries
to classify the input latent vectors based on target binary
attributes, such as wearing glasses or not. The encoder is
simultaneously trained to prevent the discriminator from
predicting target attributes correctly. Therefore, this ad-
versarial criterion enables the model to learn an attributes-
invariant representation by forcing the encoder to remove
any attribute information from the latent vector. In a simi-
lar way, [20,22] also proposed to gain attributes control by
removing attribute information from a latent vector.

Given the success of these methods for facial image-
specific components, our proposed model explores a sim-
ilar approach. However, our model needs to train on con-
tinuous ordered values instead of binary attributes.

2.2 Controllable Music Generation

Several works have been focusing on music generation
conditioned on composer styles [1, 24] or chord progres-
sion [10]. In contrast, our work focuses on the direct and
continuous transformation of music.

2.2.1 Music Interpolation

In most music interpolation approaches, the models do not
rely on annotations while training [16, 17]. Instead, they
interpolate musical data by moving the latent vector in
different directions. These directions are usually defined
by reference points from the training set. In some cases,
musical annotations are also used to learn the characteris-
tics or certain styles of music, or even sequences of fea-
tures [4, 25], which mean the models have annotation val-
ues in every time step. For instance, [4] relies on contour
and fragmentation & consolidation sequences in addition
to rhythmic ones, and they split the latent vector between
a target attribute and the other unsupervised dimensions.
Although these models are able to account for target at-
tributes, their precise control remains unclear. Moreover,
only a single attribute can be learned in each model, requir-
ing a full model per attribute. In [26], the authors train sep-
arate models to explore the latent space based on gradient
descent using binary annotations or user-defined functions.

Similarly, [6] explicitly maps the number of notes to a
dimension of the latent vector with geometrical regulariza-
tion. However, it requires access to a differentiable compu-
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s̃
<latexit sha1_base64="MBKhJLrzQOlwJ4t1J/+EqK+/Zrw="></latexit><latexit sha1_base64="MBKhJLrzQOlwJ4t1J/+EqK+/Zrw="></latexit><latexit sha1_base64="MBKhJLrzQOlwJ4t1J/+EqK+/Zrw="></latexit><latexit sha1_base64="MBKhJLrzQOlwJ4t1J/+EqK+/Zrw="></latexit>

Figure 1. Overview of our proposed model. It is based on the Variational Auto-Encoder, and the decoder is conditioned
on an attribute vector a. To force the output to reflect the conditioning, our model has a classifier-discriminator in addition,
which induces the encoder to remove the attribute information from the latent vector z. The classifier-discriminator predicts
the class labels B, which are calculated by quantizing musical attributes a, and trains the encoder in an adversarial way.

tational function of attributes. Thus, there is no guarantee
that this model can deal with more complex attributes nor
multiple attributes at the same time. Recent works [27,28]
also map the musical attributes to certain dimensions.

2.2.2 Music Style Transfer

A field related to our research is music style transfer. In
this task, models aim to apply a target style while preserv-
ing the content of a given music piece. This task appears
more complex than music interpolation as the precise def-
inition of style is somewhat elusive. Depending on papers,
style is either defined as genre, composer, or other unde-
fined factors. The wide array of researches on music style
transfer [15, 29–31] can be broadly separated between su-
pervised and unsupervised approaches.

In the supervised realm, [31] relies on synthesized data
of the same content in a variety of target styles, which can
be considered as a ground-truth for transfer. Although this
work appears to perform transfer successfully, its problem
setting appears unrealistic, as we usually do not have ac-
cess to paired ground truth data for every style.

Unsupervised music style transfer [15,29,30], provide a
more realistic approach, by simply collecting random data
with style labels and aiming to learn a model of the differ-
ent musical styles. Therefore, these approaches avoid the
pitfall of providing a clear definition of content or style.
However, this leads to models which are extremely diffi-
cult to evaluate and does not provide controls on the pre-
cise characteristics of the generated material.

In our work, we aim to provide explicit control over a
set of interpretable musical attributes, which can be defined
as musical style collectively. Hence, we believe that our re-
search can provide the first step towards a more grounded,
interpretable music style transfer.

3. METHODOLOGY

In this paper, our goal is to devise a method for symbolic
music generation, providing understandable controls over
musical attributes of the generation. Furthermore, these
controls should provide continuous modifications to the
output, akin to the parameters of a modern synthesizer.

This implies that we need to control the extent of differ-
ent transformations, ensuring the quality of the generation.

3.1 Model Overview

To achieve our goal, we rely on a VAE architecture with
an adversarial classifier-discriminator on the latent vec-
tor, as depicted in Figure 1. The encoder-decoder model
is trained to reconstruct the input data, as in usual VAE
frameworks. Moreover, as we aim to address the explicit
control of musical attributes, the decoder takes these musi-
cal attributes as additional conditioning information to the
latent vector. However, this latent vector potentially al-
ready contains all the information required to reconstruct
the input data. This would lead to a decoder that sim-
ply does not use the information of conditioned attributes.
In this degenerate situation, the model would not account
for control modifications in the generation. The classifier-
discriminator solves this problem, by driving the encoder
to remove any information on the attribute from the latent
space. Hence, the decoder is forced to use the attribute in-
formation to reconstruct the input data adequately, as this
information is missing from the latent vector.

Although this architecture is similar to Fader Net-
works [8], our model is based on the VAE, and the at-
tributes in our work are continuous ordered values, instead
of binary indicators. This means that we cannot make di-
rect use of existing discriminators [8–15]. To overcome
this problem, we extend the discriminator mechanism so
that it acts as a classifier as well. To do so, we quantize
the attributes into K balanced classes and use these as tar-
gets to a multivariate discriminator. As a result of adver-
sarial training, the encoder prevents the discriminator from
predicting the class labels correctly. Hence, the resulting
latent vectors should not contain any musical attributes in-
formation.

3.2 Model Architecture

We consider a monophonic pitch sequence s1:T as input,
where T represents time steps, encoded in a piano-roll rep-
resentation, as a sequence of its one-hot vectors (Eq. 4).

Encoder: The encoder is simply defined as a one-layer
bidirectional Gated Recurrent Unit (GRU), followed by
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linear layers (denoted as MLP) to generate the mean and
variance of the latent vector z.

Et = onehot(st) (4)
(O,H) = GRU(E1:T ) (5)

penc(z | s) =N
(
z
∣∣∣MLP(OT ), diag

(
exp(MLP(OT ))

))
(6)

where O is the output feature, and H the hidden state.
Decoder: The decoder reconstructs the input Et at time

t, based on the latent vector z, the one-hot vector of the
previous step Et−1, and the vector of musical attributes a.
The difference between our decoder and a conditional VAE
is that this musical attributes vector is used along with the
latent information, based on the premise that the latent vec-
tor does not have information about these attributes. This
decoder is composed of a two-layer GRU.

pdec(z) = N (z | 0, I) (7)

(O1,H1) = GRU
(
[E0; z;a],MLP(z)

)
(8)

(Ot,Ht) = GRU
(
[Et−1; z;a],Ht−1

)
(9)

pdec(st | s1:t−1, z,a) = Cat
(
st
∣∣ σ(MLP(Ht))

)
(10)

where [; ] is a concatenation of vectors, Cat the categorical
distribution, and σ the softmax function.

3.3 Attribute Control

In this section, we detail our method to provide under-
standable control over musical attributes in the music gen-
eration process.

3.3.1 Musical Attributes

We rely on the jSymbolic [7] software to calculate sta-
tistical musical attributes from symbolic music data. It
provides 246 kinds of features, such as pitch statistics,
melodies, intervals, rhythm, instrumentation, texture, and
dynamics. Out of these, we picked twelve features based
on their interpretability such as the total number of notes,
pitch variability, and rhythmic value variability 1 . Each
feature is normalized to have zero mean and unit variance.
We obtain a set a = (a1, . . . , aN ) of N attributes, where
each attribute is averaged across a given input example.

3.3.2 Quantize Attributes

To train our discriminator, we first quantize the attributes
into class labels bn ∈ {1, 2, 3, . . . ,K}, where K = 8 in
this work. The quantization operation bn = quantize(an),
which is a µ-law compression, leading to an equal number
of training data in each class, as depicted in Figure 2.

3.3.3 Classifier-Discriminator

The classifier-discriminator takes a latent vector z and pre-
dicts the class which the data belongs to. Hence, the target
of the classifier-discriminator can be described as follows

gt(n, k) =

{
1 (k = bn)

0 (else)
(11)

1 The detailed set of features along with their meaning is available in
associated webpage of this paper (https://lisakawai.github.
io/music_transformation/).
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Figure 2. Data distribution of pitch variability, showing
how the data is split.

where k ∈ [1,K] is the index of the quantized class and
n ∈ [1, N ] is the attribute index. In order to define the ad-
versarial criterion, the target of the encoder is 1− gt(n, k).

The classifier-discriminator is defined as linear layers
followed by tanh activation functions for all layers, except
the last layer, which uses a sigmoid function. Thus, this
network outputs a matrix B ∈ RN×K . Hence, this is a
major difference of our classifier-discriminator, which re-
lies on a multivariate output, instead of a scalar one [8].

3.4 Loss Function

In this work, three separate loss functions are used to op-
timize the model, namely, the reconstruction loss LR, the
Kullback-Leibler divergence LKL, and the adversarial loss
LD. The first two functions are used to optimize the
VAE, as detailed in Section 2.1.1. LD is used to train the
classifier-discriminator and influences the encoded latent
vectors, as detailed in the following section.

3.4.1 Adversarial Loss

To compute LD, we rely on the vectors of attribute class
labels b = (b1, . . . , bN ), as detailed in Section 3.3.2.
The classifier-discriminator aims to predict the class la-
bels, by optimizing its probability distribution pdis. On
the other hand, the encoder aims to prevent the classifier-
discriminator from predicting the class labels correctly.
Hence, the targets of the encoder for the classifier-
discriminator prediction is the complement vector of the
class labels instead of a scalar in [8], defined as 1 − B ∈
RN×K , where all the elements of 1 are equal to 1.

B = onehot(b) (12)

LD(θdis|θenc) =− Epenc(z|s)[log(pdis(B|z))] (13)

LD(θenc|θdis) =− Epenc(z|s)[log(pdis(1−B|z))] (14)

where θdis is parameters of the discriminator. Note that
each element of the one-hot vectors Bn,k is equal to
gt(n, k) in Eq (11).

3.4.2 Total Loss Function

The complete loss function of our method is defined as:

L(θenc, θdec | θdis) = LR + αLKL + βLD(θenc | θdis) (15)
L(θdis | θenc) = LD(θdis | θenc) (16)

where α and β are hyperparameters for controlling the
impact of each loss in the optimization of the model.
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4. EXPERIMENTS

4.1 Dataset

In our experiments, we rely on Nottingham dataset [32], a
collection of monophonic British and American folk tunes,
including both melodies and chords information. The ex-
amples are divided between 694 train, 170 test, and 173
validation instances. We filtered the dataset to retain only
examples with 4/4 signature and used only the melody in-
formation. We split the data to obtain every sequence of
four bars and performed pitch augmentation by shifting
pitches from -5 to 6 for the training set. In the final dataset,
the pitch ranges from 50 (D3) to 95 (B6).

4.2 Input Representation

In this work, we use a piano-roll-like input representation
of monophonic music, which is a sequence of one-hot vec-
tors, representing fixed-bar melodies as a matrix of dimen-
sion time×(pitch+2). The difference from a piano-roll is
that we add two dimensions to represent continue (holding
the previous note) and rest (no pitch is on) information.
We choose this representation as it allows distinguishing
short repeated notes more precisely. We compute the final
matrix from the input s = (s1, s2, . . . , sT ), where T = 64.

4.3 Baselines

We compare our proposal with two baselines: naive VAE
and GLSR-VAE [6]. The implementation of the naive VAE
is the same as ours without the attribute conditioning and
the classifier-discriminator, and we calculate mean latent
vectors with/without an attribute to decide an interpolation
direction for a given latent vector following [16,17]. To ap-
ply binary attributes information, in this case, we split the
data into two classes so that the instance is considered with
an attribute if an ≥ 0 and without the attribute if an < 0.
We define the mean latent vector of the attribute presence
as zw and absence as zwo and perform the interpolation
by moving a latent vector as z+ δ × (zw − zwo), where δ
ranges from -0.5 to 0.5 by steps of 0.1, which is within the
interquartile range of N (0, I).

In the implementation of the GLSR-VAE, we simply
add its regularization term to the naive VAE model. In this
model, one dimension of the latent vector z0 corresponds
to the number of notes attribute. The interpolation is per-
formed by computing z0 + δ, where δ is as defined previ-
ously. Note that this model is only able to interpolate the
number of notes with existing implementation, while ours
is applicable to any attributes.

4.4 Implementation Details

We train all of the models by using a batch size of 64, the
learning rate is set to 1e-4, and we use the ADAM opti-
mizer [33] for 50K iterations. The GRU layer has a hidden
size of 1024 for both the encoder and the decoder, and the
latent vector has 128 dimensions. In the VAE loss function
(see Eq (15)), we use α = 0.1 and β = 0.1.

attribute Naive GLSR Ours
total number of notes 0.973 0.975 0.981

pitch variability 0.807 - 0.938
rhythmic value variability 0.830 - 0.938

pitch kurtosis 0.528 - 0.723
pitch skewness 0.366 - 0.492

most common rhythm val. 0.795 - 0.851
average note duration 0.968 - 0.983

note density variability 0.677 - 0.855
amount of arpeggiation 0.126 - 0.386

chromatic motion 0.284 - 0.622
direction of melodic motion 0.428 - 0.702
melodic arcs interval span 0.262 - 0.523

total number of notes 0.949 0.279 0.950
pitch variability 0.797 - 0.918

rhythmic value variability 0.809 - 0.849

Table 1. Correlation coefficient comparison of musical at-
tributes. Top: Results of transformed outputs by changing
δ. Bottom: Results of cycle transformation reverting orig-
inal attributes as condition to already transformed outputs.

4.5 Evaluation Metrics

To evaluate our model performance, we need to assess both
the reconstruction accuracy and the efficiency of the at-
tributes control. Hence, the outputs generated by the model
should adequately reflect the changes in the attributes. To
evaluate this aspect, we rely on Spearman’s rank-order cor-
relation coefficient between conditioning attribute ain and
the resulting attribute aout calculated from the output. The
conditioning attribute ain is calculated from the original at-
tribute aorg depending on the change made in the control,
so that ain = aorg + δ, where δ is the same as Section 4.3.

5. RESULTS

5.1 Results with Single Attribute

We compute the correlation coefficient between the target
attributes and the corresponding jSymbolic features calcu-
lated on the interpolated outputs. All the interpolation re-
sults can be found in Table 1 (Top). Although some at-
tributes such as the total number of notes and the pitch
variability are easily handled by a naive VAE, some oth-
ers such as chromatic motion and amount of arpeggiation
are largely more difficult to detect. Our model allows us
to obtain control over all the features, while outperforming
others on the interpolated results.

Cycle consistency check. We also perform an experi-
ment to check the consistency of attribute control. Ideally,
based on a transformed output, if we revert the attribute to
its original value, and use it as a condition to regenerate
the interpolated results, the model should be expected to
reproduce the original score. According to Table 1 (Bot-
tom), our model is able to maintain high correlation co-
efficients even after successive interpolations. Oppositely,
GLSR-VAE is unable to maintain this correlation, as the
model cannot control the degree of attribute change.
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Figure 3. Generated samples by changing the total number of notes and pitch variability attributes. Top left shows the orig-
inal score and the others are outputs from our model, which is able to transform multiple musical attributes simultaneously.

Naive GLSR Ours
NLL 2.269 1.002 1.679

accuracy 0.759 0.808 0.790

Table 2. Negative log-likelihood (NLL) and accuracy
comparison when models are trained on an attribute, the
total number of notes.

Naive
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Figure 4. Cosine similarity of chroma features changing
the total number of notes to compare chord consistency.

Reconstruction quality. We compute the negative log-
likelihood (NLL) and reconstruction quality (accuracy) for
unchanged attribute values and display results in Table 2.
It seems that the GLSR-VAE approach provides slightly
better results in the pure reconstruction scenario. However,
our proposed model does not deteriorate the reconstruction
quality as seen with the naive VAE.

Chord consistency check. Previous works in the field
of music style transfer [30, 31] rely on chord consistency
analysis to evaluate the capacity of the model to transfer
the style in a given music piece while keeping its content.
In [14], the authors use chroma feature as one of the crite-
ria for the evaluation of music similarity. We follow this
evaluation metrics to observe how different models can
preserve the chord structures. This feature possesses 12
dimensions, each of them representing the intensity of a
given pitch across octaves in one bar. To evaluate consis-
tency, we compute the cosine similarity between chroma
features of the original data and the interpolated one. The
results for the total number of notes attribute are displayed

N attribute corr

2
total number of notes 0.983

pitch variability 0.944

3
total number of notes 0.978

pitch variability 0.936
rhythmic value variability 0.922

Table 3. Correlation coefficient with multiple attributes
used in experiments for our model.

in Figure 4 for varying values of δ. As a result, our method
performs better than baselines for preserving chord con-
sistency. Although GLSR-VAE provides better results for
δ ≈ 0, its cosine similarity significantly drops for a posi-
tive δ, where its chord consistency quality rapidly degrades
as |δ| becomes larger.

5.2 Results with Multiple Attributes

We display in Figure 3 the samples generated by our model
trained on multiple attributes simultaneously (here the total
number of notes and pitch variability). It shows that we
can obtain interesting transformations on a given original
score, while using interpretable controls. This emphasizes
the ability of our model to control multiple attributes.

To further analyze this behavior, we compute the corre-
lation coefficient of multiple attributes by shifting only one
attribute at the same time, while inputting the original val-
ues for the others, as displayed in Table 3. These results in-
dicate that the correlation coefficient remains stable, even
when successively adding new controls. This shows that
our model is able to produce independent control of mul-
tiple musical attributes, which is of prime importance for
precise and intuitive music creation.

6. CONCLUSION

In our work, we proposed a new model for deep mu-
sic transformation. We relied on musical attributes and
introduced a model able to learn how to generate mu-
sic based on these attributes. This was done by quantiz-
ing the attributes and introducing an adversarial classifier-
discriminator on latent features. The experimental results
showed that our model leads to independent and robust
controls of musical attributes for monophonic music.
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ABSTRACT

A Dhrupad vocal concert comprises a composition section
that is interspersed with improvised episodes of increased
rhythmic activity involving the interaction between the vo-
cals and the percussion. Tracking the changing rhythmic
density, in relation to the underlying metric tempo of the
piece, thus facilitates the detection and labeling of the
improvised sections in the concert structure. This work
concerns the automatic detection of the musically relevant
rhythmic densities as they change in time across the ban-
dish (composition) performance. An annotated dataset of
Dhrupad bandish concert sections is presented. We inves-
tigate a CNN-based system, trained to detect local tempo
relationships, and follow it with temporal smoothing. We
also employ audio source separation as a pre-processing
step to the detection of the individual surface densities of
the vocals and the percussion. This helps us obtain the
complete musical description of the concert sections in
terms of capturing the changing rhythmic interaction of the
two performers.

1. INTRODUCTION

Dhrupad is one of the oldest forms of North Indian classi-
cal vocal music. A typical Dhrupad concert setting com-
prises a solo vocalist or vocalist duo as the lead and a
pakhawaj player for the percussion accompaniment, with
a tanpura in the background for the harmonic drone [1].
A Dhrupad performance lasts for over an hour and con-
sists of an elaborate, unaccompanied raga alap followed
by a composed piece, the bandish, performed along with
the percussion instrument [2]. The bandish is not only pre-
sented as composed but also used as a means for further
rhythmic improvisation (laykari), where the vocalist sings
the syllables of the bandish text at various rhythmic densi-
ties and in different patterns [3, Chapter 10]. All the while,
the pakhawaj accompaniment is either playing a basic pat-
tern (theka) of the metric cycle (tala), a rhythmic improvi-
sation to match the vocalist’s improvisation, or a free solo

c© M. A. Rohit, T. P. Vinutha, and P. Rao. Licensed under
a Creative Commons Attribution 4.0 International License (CC BY 4.0).
Attribution: M. A. Rohit, T. P. Vinutha, and P. Rao, “Structural Seg-
mentation of Dhrupad Vocal Bandish Audio based on Tempo”, in Proc.
of the 21st Int. Society for Music Information Retrieval Conf., Montréal,
Canada, 2020.

improvisation while the vocalist presents the lines of fixed
composition. The simultaneous rhythmic improvisation by
both players is peculiar to the Dhrupad genre.

Figure 1 depicts the structure of a bandish performance
from the vocalist’s perspective. The intermediate refrain
portions are the un-improvised sections where the artist
sings a portion of the bandish before diving back into an-
other spell of improvisation. A complete segmentation of

Bandish Refrain Refrain

Improvisation Improvisation

Time

Figure 1: The structure of a bandish performance - vocal-
ist’s perspective [3]

a Dhrupad bandish performance would thus involve pro-
viding rhythmic descriptions of un-improvised and im-
provised sections pertaining to each - the vocals and the
pakhawaj.

The goal of this work is to develop automatic meth-
ods for the structural segmentation of the Dhrupad bandish
concert. With tempo and the relationships of the rhythmic
densities of the individual instruments defining the distinct
sections of a Dhrupad bandish concert, we explore new
approaches to the reliable detection of these musical at-
tributes as they vary across the concert. Given that vocal
onsets are difficult to detect (even in isolated vocals due to
the diversity inherent to singing), we turn to alternate meth-
ods for the direct estimation of the local rhythmic density.
Advances in deep learning have led to the development of
methods that treat the estimation of the predominant tempo
from the raw audio spectral representation as a classifica-
tion task [4–6]. We explore a similar approach for our task
of estimating the changing surface tempo or rhythmic den-
sity across a concert audio. In view of the significant im-
provements reported in audio source separation in recent
years, we also consider the use of source separation fol-
lowed by tempo estimation for the constituent instruments
in order to give a more complete description of each sec-
tion.

The chief new contributions of our work are as follows:
(i) a dataset of tempo markings and rhythmic density based
structural segmentation annotations for Dhrupad bandish
concerts, (ii) adapting a state-of-the-art tempo estimation
method to the task of estimating local rhythmic density
of the polyphonic mix, and (iii) the use of source separa-
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tion to extend this to each instrument(vocals and pakhawaj)
to eventually obtain a musically relevant segmentation of
bandish concerts with section labels defined in terms of the
rhythmic density inter-relationships.

2. BACKGROUND

Compositions in Hindustani music are sung at a tempo
in one of roughly three broad ranges - vilambit (10.4-60
BPM), madhya (40-175 BPM) or drut (170-500 BPM) [3,
p. 86]. This tempo is determined by the interval between
the matras of the tala (a cyclic pattern of beats) that the
composition is set to, and is referred to as the metric tempo.
The metric tempo is fairly stable with only a gradual up-
ward drift across the performance. However there are local
variations in the rhythmic density of the singing or playing
during what can be called episodes of improvisation that
constitute the surface rhythmic density or surface tempo.
For the voice, this is calculated using the number of syl-
lables or distinct notes uttered in a unit interval and for
the pakhawaj, the number of strokes played in a unit inter-
val [3, p. 86], [7]. The surface tempo is found to gener-
ally be an integer multiple (ranging between 2 and 16) of
the underlying metric tempo and we use the term ‘surface
tempo multiple’(lay ratio) to refer to this integer. The met-
ric and surface tempi in this form of music thus have fairly
objective definitions in terms of the performers’ intentions
and do not necessarily coincide with ‘perceptual tempo’.
And indeed as stated in [3, p. 85], the perceived tempo at
extreme values of the metric or surface tempo may be quite
different due to subdivisions at the lower end and grouping
and accenting at the higher.

Related work on structural segmentation for Hindustani
classical music can be found in [8–11]. The work in [8]
relates to the segmentation of the initial unaccompanied
alap portion of a Dhrupad vocal concert into the alap, jod
and jhala sections. The methods exploit the changing na-
ture of the energy, pulse clarity (salience), speed, and tim-
bre of the vocals. In [10, 11], the task of segmenting the
unaccompanied, and in [9] the accompanied portion of in-
strumental concert audios consisting of a lead melodic in-
strument(sitar, sarod) and a tabla accompaniment, was ad-
dressed. Signal processing methods based on finding on-
sets followed by periodicity detection were made use of for
tempo and rhythmic density estimation. Section bound-
aries were obtained with the help of a similarity detection
matrix, using frame-level ACF vectors of the detected on-
sets in [9], and using additional acoustic features and fea-
ture transformations in [11]. Faced with the problem of
two instruments playing together, differences in the instru-
ment timbres were exploited to separate the plucked string
and tabla onsets in [9] to determine separately the metric
and the surface tempo. Other source separation methods
like HPSS [12, 13] and PLCA [14] have also been used to
obtain tempo estimates for individual sources, which are
then combined together to refine the overall tempo esti-
mate.

In this work we address the structural segmentation of
the bandish section in Dhrupad vocal performances, which

has not yet been attempted. We propose to achieve this
by first estimating the surface tempo using the CNN-based
approach of [4] with a modified architecture to predict
it directly as a multiple of the metric tempo. To obtain
the surface tempo of each instrument, we make use of a
pre-trained model provided by spleeter [15] that separates
vocals from the accompaniment. We then detect section
boundaries in a concert audio using changes in the esti-
mated local surface tempi.

3. DATASET DESCRIPTION

To the best of our knowledge there is no existing dataset of
tempo and segmentation related annotations for Dhrupad
bandish performances. The dataset chosen for this work
contains 14 concert audios in the vilambit and madhya laya
- 8 from the Dunya corpus [16] and the rest from publicly
available, good quality recordings. 9 of the 14 are by the
vocalist duo Gundecha brothers, and the others by Uday
Bhawalkar. Each recording is of a single bandish perfor-
mance by the vocals, accompanied by pakhawaj, with a
tanpura in the background. The recordings are 8-15 min-
utes long and the total duration of the dataset is about 3
hours. The performances are not all in the same raga or
tala with at least one composition in each of 4 distinct ta-
las commonly found in Dhrupad. 7 more publicly avail-
able audios were partially annotated to balance the cross-
validation dataset described in Section 3.2.

3.1 Annotations

Annotations are of (i) the sam positions of the tala, i.e., the
cycle boundaries, across the concert (ii) boundaries mark-
ing changes in the surface tempo multiple of each instru-
ment and (iii) a label for each section in terms of the sur-
face tempo multiple of each instrument. The annotations
were marked by one of the authors, who is a trained musi-
cian, using the relatively objective criteria described here.

Information about the tala was obtained from the meta-
data accompanying the recording. With this, the sam posi-
tions were inferred either from the particular stroke of the
pakhawaj or the syllable of the bandish refrain that appears
on the sam in performance [17], or the number of matras
elapsed since the previous sam. Although slight deviations
are commonly observed in the metric tempo, large abrupt
jumps do not occur. Hence, once a pass was made over
the entire audio, the annotations were corrected at points
of ambiguity to ensure coherence with adjacent sam mark-
ings. The metric tempo was then calculated versus time,
once for every cycle, by dividing the cycle duration by the
number of matras in the tala.

A section boundary was marked whenever the rhythmic
density of either instrument changed and the new density
was maintained for at least a duration of 5s. As mentioned
earlier, the surface tempo is typically related to the metric
tempo as an integer multiple. Therefore every section was
labelled with the surface tempo multiple of each instru-
ment, determined by calculating the rate of events (sylla-
bles for the vocals and strokes for the pakhawaj) as a mul-
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tiple of the metric tempo in the section. Pauses at the pulse
level occurring between syllables or strokes were consid-
ered as musical events contributing to the surface tempo,
while pauses longer than 5s were labeled as having no sur-
face tempo. A more detailed discussion on this appears
in [7]. The maximum of the vocal and pakhawaj surface
tempo multiples was then added to the section label as the
net surface tempo multiple denoting the overall level of
rhythmic density. Henceforth, we use the abbreviations
m.t., s.t. and s.t.m. to refer to the metric tempo, surface
tempo and surface tempo multiple.

Figure 2 is a visualisation of the annotations for a por-
tion of a bandish audio in the dataset 1 . This roughly 4
minute long snippet captures a few sections - (a) vocal s.t.
at 4 times the m.t.(∼60 BPM) and pakhawaj at 8, (b) vocals
at the m.t. and pakhawaj at 16 times - in each of these the
net is due to the pakhawaj, and (c) both at 4 times, where
the net is due to both.
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Figure 2: The ground truth metric tempo (m.t.) and sur-
face tempo (s.t.) annotations for a portion of an audio in the
dataset. Vertical dashed lines indicate section boundaries.

3.2 Dataset Statistics and Train-test Split

Every annotated section is homogenous in the sense that
the s.t. of each instrument remains the same throughout its
duration. We therefore pool the sections from all the con-
cert audios into a dataset for training and testing our meth-
ods, treating each section as an independent entity. The
total number of sections comes up to 634 (593 from the
completely annotated and the rest from the partially anno-
tated audios), but they are not all of similar durations. Fig-
ure 3 (a) shows the distribution of section durations with a
single bar at the end for values more than 51s. We see that
a section is mostly between 6 and 20s long. With the goal
of tracking the s.t. as it is changing across a performance,
we need to perform tempo estimation on shorter examples
from each section. The duration of these examples is set to
be 8s since a higher value would give us no examples from
the large number of sections that are only 6-9s long. Fur-
ther, for the slowest tempo in the dataset of about 30 BPM,
an 8s duration would contain at most 4 beats, fewer than
which may not be sufficient for accurate tempo estimation.

The distribution of s.t.m. in the dataset for each instru-
ment and the net is shown in Figure 3 (b) in terms of the

1 https://musicbrainz.org/recording/178b4cf6-88e6-414d-bfbd-
3d90bb368a9a
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Figure 3: Distributions of (a) section duration and (b) net,
pakhawaj and vocal s.t.m. across our dataset of 1127 ex-
amples.

relative number of non-overlapping 8s examples (extracted
from sections) available at each integer multiple, out of
a total of 1127 examples. The dataset has a narrow m.t.
range of 30 - 85 BPM, but the observed range of s.t. ex-
tends upto a large 960 BPM, due to the nature of the lay
ratios. For the pakhawaj, we find that the multiples 4 and
8 are more abundant than 1, 2 and 16, while the multiples
3, 6 and 12 are nearly absent. For the vocals, 1, 2 and 4 are
most represented and even though the multiples 3, 6 and 8
have a similar share, the sections for 8 were found to come
from several concerts, while 3 and 6 were only found in a
couple. We thus retain only the sections with s.t.m. values
from the set {1, 2, 4, 8, 16}.

To manage the data imbalance, while generating the 8s
training examples, the hop between consecutive examples
is kept shorter for sections belonging to the less populous
s.t.m values. We also augment the dataset by time-scaling
the audio of each section [18] using one or more factors
in the range {0.8, 0.84, 0.88, . . . 1.2} (the s.t.m. label
remains the same), generating more time-scaled versions
for the less populous classes. The whole pool of examples
is divided into three folds such that all the examples from
a single audio section are assigned to the same fold, and
each fold has a similar distribution of the s.t.m. values.

4. METHODS

We consider the recent CNN-based tempo estimation
method from [4] (denoted as tempo-cnn) for our work. Af-
ter examining the viability of the pre-trained model, we
first attempt to train new models with the same architecture
on our dataset, and then propose some suitable modifica-
tions.
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4.1 Metric Tempo Estimation

The m.t. of a Dhrupad bandish performance gradually
drifts across a performance. Hence, we are interested in
estimating it locally and tracking it versus time. With the
m.t. range of our dataset being a subset of the tempo-cnn
output range, the pre-trained model can be used as it is to
observe the nature of its predictions. Upon obtaining esti-
mates frame-wise at 0.5s hops and picking the output class
with the highest confidence in each frame, it is found that
the model almost always makes octave errors, which is to
be expected since the m.t. in our case is not always the per-
ceptual tempo that the model was trained to estimate. We
fix these errors by constraining the predicted tempo to lie
in the range of m.t. values in the dataset.

We do not attempt to train a new model for m.t. esti-
mation and instead compare the above with a non-learning
based approach from [9]. A spectral flux based method is
used to obtain the onsets and the autocorrelation function
is calculated on 12s long windows at 0.5s hops for values
of lag upto 2s. The tempo candidates are constrained to
be in the required range and an additional Viterbi smooth-
ing step is used to penalise jumps and obtain a consistent
estimate across a concert. We refer to this as the odf-acf
method. We also note that the metrical cycle tracking work
of [19] offers an alternative that can be investigated for m.t.
estimation in future work.

4.2 Surface Tempo Estimation

The s.t. values in our dataset fall outside the tempo-cnn
output range. And since the task requires correct identifi-
cation of tempo without octave errors, using the pre-trained
tempo-cnn is not possible. If we are to re-train tempo-cnn
on our dataset by increasing the output range, the huge size
of the range presents a problem due to the resulting target
class imbalance. Therefore, given that the s.t.m. is one of
a small set of integer values, we modify the task to predict-
ing this multiple instead of the actual s.t. value.

An attempt to train new models using the tempo-cnn
architecture on our dataset by reducing the final softmax
layer dimensions does not turn out to be fruitful as the
model overfits due to its high capacity and the small size of
our dataset. The main issues seem to be the high number
of dense layers at the end and the large filter lengths in the
multi-filter modules. After a series of simplifications with
some inspiration from [5], the architecture summarised in
Table 1 is found to be promising (details in [7]). The re-
duction of dense layers and the addition of dropout layers
is found to be crucial in overcoming overfitting. To pre-
vent too much information from getting cut-off due to the
dropout, the p value is set to 0.1 in the first three conv. lay-
ers, and 0.5 in the later ones. As for the multi-filter conv.
layer, fewer filters in parallel and smaller filter lengths are
found to make the network easier to train. However, to en-
sure adequate capacity, the number of filters in each layer
is kept moderately high.

Every 8s training example is transformed to a log-scaled
mel-filtered magnitude spectrogram, using the following
parameters - 40ms windows, 20ms hops and 40 mel filters

Layer Dimensions

Input 40 x 400
(BN, Conv, ELU, DO) x3 16 x 1 x 5
AvgPool 5 x 1
BN, MF Conv, DO 12x {1x16, 1x32, 1x64, 1x96}
Concat, Conv 16 x 1 x 1
AvgPool 1 x 400
BN, DO, FC, Softmax # output classes

Table 1: Proposed model architecture, adapted from [4]
& [5]

over the band 20-8000 Hz, at a sampling rate of 16kHz.
The input to the network is a spectrogram of size 40 x 400
with the values normalized to lie in the range 0 - 1, and the
target is one of 5 classes corresponding to the 5 s.t.m. val-
ues - 1,2,4,8,16. The network is trained using CCE loss on
examples from two folds, with the other fold as the valida-
tion set, for a maximum of 500 epochs. Training is carried
out using the Adam optimizer with a learning rate of 1e-4
and a batch size of 32, and is halted early if the validation
loss does not decrease for 50 epochs.

4.3 Extension to Separated Sources

Given our interest in estimating the s.t. of each instrument
to obtain a more complete rhythmic description and the
section boundaries in a concert, the pre-trained 2-stems
model by spleeter [15] is used to separate the mixture
audios into vocals and accompaniment, and new models
with the same architecture as proposed above are trained
to predict the s.t.m. for each. The dataset of sections re-
mains the same but the input examples are of the separated
sources and the training and validation folds are generated
again for each source to balance the number of examples
across the corresponding classes. The target classes for the
pakhawaj are the same as earlier but those for vocals do not
include the s.t.m. 16.

4.4 Boundary Detection and Section Labelling

We aim to automatically identify sections in a concert by
looking for abrupt changes in the s.t.m. values of each in-
strument across the concert duration. For this task only
the completely annotated 14 concert audios are used. Esti-
mates of s.t.m. are obtained once every 0.5s using 8s long
excerpts over the entire duration of each audio. While do-
ing so, each excerpt is presented to that saved model out of
the three from the 3-fold CV procedure, to which no por-
tion of the section that this excerpt lies in was presented
as a training example, thus preventing any train-test leak.
The output class with the highest confidence is taken as the
s.t.m. estimate. This procedure is applied to the mixture
and the source separated audios. A boundary is marked
wherever the s.t.m. of either instrument changes, and the
section label is the tuple of the three s.t.m. estimates.

We experiment with two methods for obtaining the
three s.t.m. estimates. One, the three values are estimated
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Method Accuracy 1 Accuracy 2

tempo-cnn 5.2 73.8
tempo-cnn with
range constraint

71.6 74.7

odf-acf 72.0 72.0

Table 2: Metric tempo estimation accuracies (%) at 4%
tolerance using tempo-cnn [4] and the odf-acf method [9].

independently, and we refer to this method as seg1. Here
the net s.t.m. may not be equal to the higher of the other
two (which should be true by definition). We thus report
results using the model output for the net s.t.m. as well
as by simply taking the maximum of the other two as the
net s.t.m. value. Two, to investigate whether using the ex-
pected relationship between the three s.t.m. values helps
improve performance, instead of obtaining them indepen-
dently, we pick that tuple of the three estimates in every
frame which has the highest average classifier confidence
value and in which the net s.t.m. is the maximum of the
other two. We refer to this method as seg2. To reduce
the number of false alarms, a post-processing step is used
with each method to smooth the outputs by constraining
the duration of a detected section to be at least 5s. This
is implemented by removing the boundaries of any section
that is shorter and replacing the label by that of the previ-
ous section.

5. EXPERIMENTS AND RESULTS

5.1 Metric Tempo Estimation

To evaluate m.t. estimation we calculate accuracy1 and
accuracy2 (allowing for octave errors) with a tolerance of
4% across each audio at a 0.5s frame-level and then aver-
age it across the dataset. We find that both the methods
fare equally well (Table 2) and the simple fix of includ-
ing a range constraint significantly improves accuracy1 for
tempo-cnn (except in cases where the prediction is an oc-
tave off but already in the m.t. range).

A closer look at concert-wise scores revealed that the
accuracy was below 70% in the same 4 (out of 14) con-
certs in both the methods, where most of the errors were
due to the predicted value being either 1.5 or 0.75 times
the actual m.t. value. The tempo-cnn makes errors only in
small portions of such concerts, but in the odf-acf method,
due to the imposed penalty on jumps, the predicted tempo
was found to be incorrect over longer durations. Even so,
what we take away from the overall results is that for most
of the concerts, m.t. is estimated well across the entire
duration despite the presence of sections where both the
instruments are improvising and playing at different multi-
ples of the m.t.

5.2 Surface Tempo Estimation

Here, we first report the average 3-fold cross-validation ac-
curacy values. This accuracy measures the proportion of 8s

Case Net s.t.m Vocal s.t.m Pakhawaj s.t.m

Accuracy 75.2 69.1 76.9

Table 3: Average 3-fold cross-validation accuracies (%)
for surface tempo multiple estimation

examples for which the s.t.m. was correctly identified. Ta-
ble 3 shows the results for all three cases - estimation of net
s.t.m. from the original mixture, and that of the individual
instruments from separated audios.

The results are poorer for separated vocals and better
for pakhawaj, which reflects also in the net score, given
that the net s.t.m is dominated by that of the pakhawaj. The
class-wise performance is shown using a confusion matrix
for each case in Table 4. In the case of vocals, classes 1 and
8 are estimated more accurately. For class 8, this could
be due to the distinct nature of vocalisation and the lim-
ited diversity of examples due to fewer available sections.
For class 1, most examples come from sections where the
bandish is sung at a steady rate without improvisation thus
making tempo estimation easier. For class 2, sections often
come from the earlier stages of improvisation in a concert
where the singing is not fully rhythmic and is characterized
by pauses, melismatic singing and changes to other s.t.m.
levels, making the estimation harder. The confusions be-
tween classes 2 and 4 could also be due to some bleed of
pakahwaj into the vocals during source separation.

In the case of net and pakhawaj s.t.m., classes 1 and 2
are estimated quite accurately, while the other classes are
confused with their immediate neighbours. The class 16
being confused with 8 is most likely because of the pres-
ence of accents on every other stroke. We also notice a
drop in the performance of this class in the case of sepa-
rated pakhawaj when compared to the mixture audios, pos-
sibly due to a further loss of weak onsets after separation.

5.3 Boundary Detection and Section Labelling

We evaluate boundary retrieval performance using preci-
sion, recall and F-score (Table 5a). A predicted boundary
is declared a hit if it falls within a certain duration of an
unmatched ground truth boundary, and a false alarm oth-
erwise. Results are reported at two values of temporal tol-
erance: ±1.5s and ±3s. The latter value is as used in [20]
and the former is included with the reason that since a large
number of sections are 6-9s long, even if both the detected
boundaries are off by 1.5s, the detected section still cap-
tures at least half of the ground truth section.

To evaluate section labelling, we report labelling accu-
racy (Table 5b) as the fraction of the duration of each con-
cert that is correctly labelled (excluding regions where the
ground truth is not one of {1,2,4,8,16}), averaged across
the dataset, as defined in [21]. Each of the three s.t.m. la-
bels are first evaluated individually and also when taken
together (i.e., a frame is said to be correctly labelled only
if all three labels are correct). We expect these scores to
be different from the cross-validation accuracies reported
in Table 3 as the test set is now no longer balanced, with
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Predicted
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1 90.1 2.2 6.4 0.0 1.3
2 5.8 82.0 10.8 0.8 0.5

(a) 4 4.5 13.4 66.9 11.9 3.3
8 2.4 1.8 14.4 65.7 15.7
16 1.8 1.0 6.5 15.1 75.5

1 77.3 15.5 5.3 2.0
(b) 2 21.0 50.8 26.2 2.0

4 5.8 20.1 64.6 9.4
8 1.8 0.0 13.2 84.9

1 93.0 0.9 5.0 0.8 0.2
2 0.2 83.3 14.4 1.7 0.3

(c) 4 5.8 15.1 65.4 11.1 2.6
8 2.9 1.1 11.5 69.9 14.5
16 1.4 1.1 6.1 24.8 66.6

Table 4: Confusion matrix of (a) net, (b) vocal, and (c)
pakhawaj s.t.m. predictions (values in %)

the confused classes being the more common ones.
The individual labelling accuracies are quite similar for

the pakhawaj and net tempo labels, slightly lower for the
vocals, but much lower for getting all the labels right in ev-
ery frame. With seg1, we see that the vocal and pakhawaj
estimates are reliable enough that taking their maximum as
the net s.t.m. instead of using the model estimate improves
the net s.t.m. labelling accuracy. Hence, for the evalua-
tion in the last column, the net is taken as the maximum of
the other two. Although this seemingly renders the model
trained to predict the net s.t.m. not very useful, we see
in seg2 that using it to obtain all the estimates together
improves all the accuracies, proving its utility.
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Figure 4: The ground truth (above) and estimated (below)
s.t.m. labels of the (a) vocals and (b) pakhawaj across the
concert GB_AhirBhrv_Choutal.

Although better tempo estimation should result in bet-
ter boundary detection since the boundaries are based en-
tirely on tempo changes, the boundary detection results us-
ing seg2 are only slightly better than seg1. In both the
cases, the smoothing step was found to improve the results
(detailed in [7]). Looking at the vocal and pakhawaj s.t.m.
estimates obtained using seg2 in Figure 4, we see that
for both the instruments, at a coarse level, the various sur-

±1.5s tolerance ±3s tolerance

Prec. Rec. F-sc. Prec. Rec. F-sc.

seg1 0.27 0.38 0.32 0.39 0.54 0.45
seg2 0.29 0.38 0.33 0.40 0.53 0.45

(a)

Vocals Pakhawaj
Net from
model

Net as
max.

All 3
labels

seg1 67.2 68.7 66.9 67.5 45.9
seg2 67.7 71.0 70.4 - 48.6

(b)

Table 5: (a) Boundary detection performance and (b) s.t.m.
labelling accuracies (in %).

face tempo regions are captured well. And while for the
pakhawaj, finer section changes are also estimated accu-
rately, such changes are not tracked well in the case of vo-
cals, thus reducing the overall boundary detection scores.

6. CONCLUSIONS

We have presented a system that provides a complete
rhythmic description of a Dhrupad bandish performance,
enabling its segmentation into musicologically relevant
sections based on the rhythmic interaction between the
instruments. The metric tempo is estimated by adapting
existing methods whereas the surface tempo, with its
much larger dynamic range, is estimated in a novel
manner by predicting its relationship with the m.t. to
directly obtain the musically significant lay ratio. Be-
cause of the challenges presented by imperfect source
separation, we benefit from using a model trained also
on the mixture audios. We find that s.t.m. values at the
lower and higher extremes are estimated better than the
intermediate values. This, despite the intermediate values
being the more represented classes in the dataset, points
to the diversity in the acoustic realisations of the different
surface densities. Future work could involve extending
the dataset to encompass more singers and compositions
in the drut lay, where we might see the same s.t.m.
manifesting completely different acoustic properties. In
such a scenario, estimating m.t. could help provide useful
‘conditioning’, and ways to jointly estimate the metric and
surface tempi could be explored. Source separation can be
improved by introducing new loss functions that preserve
onsets better and hence allow better tempo estimation on
separated audios. Finally this work provides an example
of adapting available MIR methods to music genre specific
problems.

Supplementary material
All the dataset details, annotations, code and pre-trained
models are available here: https://github.com/
DAP-Lab/dhrupad-bandish-segmentation.

Proceedings of the 21st ISMIR Conference, Montréal, Canada, October 11-16, 2020
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ABSTRACT

In this paper, we propose a method of utilizing aligned
lyrics as additional information to improve the perfor-
mance of singing voice separation. We have combined the
highway network-based lyrics encoder into Open-unmix
separation network and show that the model trained with
the aligned lyrics indeed results in a better performance
than the model that was not informed. The question now
remains whether the increase of performance is actually
due to the phonetic contents that lie in the informed aligned
lyrics or not. To this end, we investigated the source of per-
formance increase in multifaceted ways by observing the
change of performance when incorrect lyrics were given to
the model. Experiment results show that the model can use
not only just vocal activity information but also the pho-
netic contents from the aligned lyrics.

1. INTRODUCTION

Singing voice separation is one of the most widely studied
areas in the field of audio signal processing. In particular,
the importance of research is greatly emphasized because it
can contribute to the pre-processing step of research in var-
ious fields of Music Information Retrieval (MIR), such as
automatic music transcriptions and automatic lyrics align-
ments. With the recent development of deep neural net-
works, a number of music source separation studies have
been published and showed excellent performance. These
studies have a common feature of separating music source
by using only information from the sound source itself,
such as a 1-dimensional waveform [1,2] or a 2-dimensional
spectrogram [3–5].

One of the distinguishing characteristics that differen-
tiate music signals from other audio signals is that usu-
ally there exists the corresponding music scores or lyrics.
Therefore, several studies attempted to separate the sources
by utilizing additional information other than the informa-

c© C-B. Jeon, H-S. Choi, and K. Lee. Licensed under a Cre-
ative Commons Attribution 4.0 International License (CC BY 4.0). Attri-
bution: C-B. Jeon, H-S. Choi, and K. Lee, “Exploring Aligned Lyrics-
Informed Singing Voice Separation”, in Proc. of the 21st Int. Society for
Music Information Retrieval Conf., Montréal, Canada, 2020.

tion of the sound source itself. For example, the additional
information such as pitch [6] or even the whole score [7]
can be used as a prior to help separate the source of inter-
est from the mixture. In general, however, music scores for
certain songs are not readily available, while lyrics can be
easily collected on the web.

The lyrics are particularly closely related information to
singing voice; thus, have promising possibility to be used
as additional information for singing voice separation. Re-
cent studies proposed the ways of using linguistic features
extracted from the end-to-end automatic speech recogni-
tion model [8] or voice conversion model [9] to the singing
voice separation framework. However, the way of using
explicit lyrics information has not been studied enough so
far, which motivates us to study the possibility of lyrics-
informed singing voice separation. We expect that singing
voice separation systems can benefit from lyrics informa-
tion because of the rich information contained in the pho-
netic features such as formant frequencies.

To utilize the lyrics, we combined the highway network-
based lyrics encoder [10] into the current state-of-the-art
music source separation network, Open-unmix [5]. In addi-
tion, we tried two conditioning methods — 1. local condi-
tioning, 2. concatenation — and compare the performance.
Note that the alignment between the lyrics and songs itself
is another separate line of research [11, 12]. For our study,
we assume that the alignment is already done and only fo-
cus on the use of the aligned lyrics.

The information in the aligned lyrics can be seen from
two perspectives: 1. The timing information of vocal ac-
tivity, 2. phonetic information. Therefore, it is important
to check if the network is using the phonetic information
other than the vocal activity information. Various evalu-
ations were conducted to examine whether the phonetic
information of the aligned lyrics actually contribute to
improving the performance. We found that the proposed
model trained with the aligned lyrics clearly show bet-
ter performance than the baseline model trained without
any additional information. Furthermore, the experiment
results show that the performance of the proposed model
even exceeds the model trained only with additional vocal
activity information. To the best of our knowledge, this is
the first research to directly use the lyrics information for
a singing voice separation task.
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Figure 1: The structure of the baseline Open-unmix net-
work.

2. RELATED WORK

2.1 Informed Source Separation

Several studies using machine learning algorithms other
than deep neural networks attempted to separate singing
voice with side information. For example, robust Prin-
cipal Component Analysis (rPCA) was used with addi-
tional vocal activity information [13]. Also, rPCA and
Non-negative Matrix Factorization (NMF) were used with
pronounced lyrics [14].

Although only few studies have tried to use additional
information for singing voice separation using deep neural
networks, it was reported that vocal activity information
can be used as an input to the network along with spec-
trogram to enhance the performance of the singing voice
separation network [15]. Very recently, in the speech en-
hancement field, attempts have been made to utilize text
information to increase the separation performance [16].

2.2 Open-unmix

Open-unmix [5] is the state-of-the-art music source separa-
tion network using the MUSDB18 dataset [17]. In partic-
ular, it consists of 3 bi-directional Long Short-Term Mem-
ory (LSTM) layers for source separation with 3 additional
fully-connected layers. Batch normalization [18] was used
after every fully-connected layer and skip connection [19]
was used between the inputs and outputs of 3 consecu-
tive bi-directional LSTM layers. Trainable input and out-
put scalers through frequency-axis are also the special fea-

Figure 2: The structure of the lyrics encoder.

tures of Open-unmix, differentiating from other studies that
use decibel scales.

We used Open-unmix network as our baseline model be-
cause we wanted to check whether the aligned lyrics infor-
mation could improve the performance of the current state-
of-the-art model. The channel inputs and outputs are mono
in our study although the original study used stereo. This is
because our singing dataset is made up of a clean singing
voice without any reverberation, chorus, or doubling, as
opposed to the singing tracks in MUSDB18’s singing voice
dataset, which are already processed for the stereo. Details
and the full structure of the baseline Open-unmix are illus-
trated in Figure 1.

2.3 Singing Voice Synthesis

Singing voice synthesis and lyrics-informed singing voice
separation tasks share a similar framework in that the input
and output are the same as lyrics and singing voice spec-
trograms, respectively. Recently, [10] proposed the singing
voice synthesis network that succeeds in creating high-
quality singing based on 60 Korean songs sung by a single
singer. It is based on the Text-to-Speech model [20], which
consists of 1-dimensional convolutional neural networks
and highway networks [21]. Therefore, we borrowed the
idea of using the highway network-based lyrics encoder
and integrated it into the source separation network.

3. PROPOSED METHOD

3.1 Lyrics Encoder

The detailed structure of the lyrics encoder is shown in
Figure 2 and the structure of the highway networks used
in the lyrics encoder is defined as follows,

y = ReLU(x∗WH)·σ(x∗WT )+x·(1−σ(x∗WT )), (1)

, where x and y are input and output of the network and
· refers to the element-wise multiplication. x ∗ WH and
x ∗ WT are the 1-dimensional convolution layers which
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(a) (b)

Figure 3: The structure of the Open-unmix networks com-
bined with the lyrics encoder using (a) local conditioning
and (b) concatenation method.

have the same input and output channel sizes. Biases are
omitted in Eqn (1). Zero-padding was applied to keep the
input and output length the same in every convolution
layer. Dropouts [22] with 0.05 dropout rate, were applied
after the activation functions. Dilated convolution [23]
were used to expand the receptive field to 165 frames. It
is about seven times larger than the model without the di-
lation. In our experimental settings, 165 frames are equal
to about 1.915 seconds.

3.2 Local Conditioning of Lyrics Encoding

The local conditioning method [10] was used to insert the
encoded lyrics information into the singing voice separa-
tion network. The local conditioning is defined as follows,

y = ReLU(x ∗Wf + L1) · σ(x ∗Wg + L2), (2)

where, x ∗Wf and x ∗Wg are the 1-dimensional convo-
lution layers which have same input and output channel
sizes. L1 and L2 are equally separated features through the
channel axis from the output of the consecutive lyrics en-
coder and the 1-dimensional convolutional layer. The 1-
dimensional convolution layer with filter size 1 was added
on the output of the lyrics encoder so that the channel
size of each L1 and L2 could be 512. σ refers to the sig-
moid activation function. Details of the full structure are in
Figure 3a.

3.3 Concatenation of Lyrics Encoding

A concatenation method, which is a simple but powerful
conditioning method, was also used in our study to pass
the encoded lyrics information into the singing voice sep-
aration network. By concatenating the output of the first
fully-connected layer and the lyrics encoder output, the

Singer Gender Train Validation Test Total
1 Female 79 5 8 92
2 Male 8 2 0 10
3 Female 8 2 0 10
4 Female 9 0 1 10
5 Female 8 0 1 9
6 Male 10 0 0 10
7 Female 8 0 2 10
8 Female 9 1 0 10
9 Male 9 0 1 10

10 Male 7 1 1 9
11 Female 7 3 0 10
12 Female 0 5 5 10
13 Male 0 0 1 1

162 19 20 201

Table 1: The composition of our singing dataset.

channel size of LSTM layers input becomes 1024. Also,
the channel size of the second fully-connected layer input
becomes 1536 by the skip-connection of LSTM input and
output. Details of the full structure is in Figure 3b.

4. EXPERIMENTS

4.1 Dataset

Here we used a total of 201 Korean pop songs sung by
13 amateur singers as target clean singing sources. This
dataset has a total length of 11 hours and 44 minutes. Of
these, we used 162 songs (9h 3m) for training, 19 songs (1h
7m) for validation, and 20 songs (1h 7m) for test dataset.
The detailed composition of the dataset is described in
Table 1.

We aligned Korean syllable following [10]; one Korean
syllable is made up of onset (consonant), nucleus (vowel)
and coda (consonant), we aligned onset and coda for 4
frames, and nucleus for other frames. The example of the
alignment applied to the spectrogram is shown in Figure 6.

A total of 19,113 instrumental songs were used as
accompaniment for training networks because we did
not have real accompaniment tracks corresponding to
the singing voice dataset. Since various studies using
MUSDB18 [17] or DSD100 [24] dataset also used ran-
dom mixing techniques, i.e. creating random accompani-
ment for each iteration that was not related to the original
singing, we decided that using arbitrary accompaniments
would not be a problem for training. In addition, if we
used the same specific accompaniments for the test singing
voice dataset, we assumed that it is reasonable for identi-
fying how the information containing the phonetic features
of the aligned lyrics has changed the performance of the
network, the fact we wanted to identify. Therefore, for the
validation and test dataset, we randomly chose each 19 and
20 instrumental songs which have a longer length than the
singing data, and shorten the length to the same with the
singing.
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Figure 4: The example of inserting the aligned lyrics to the
networks.

4.2 Training

In our singing dataset, the number of songs recorded by
the first singer is outnumbered compared to the others, ac-
counting for about 46 percent of the total. In order to pre-
vent bias to a particular singer when training the networks,
a singer was first selected with the same probability when
constructing a batch to be used for each iteration, and the
vocal source to be used for training was sampled only for
the songs recorded by the selected singer.

A mono sound source with a sample rate of 22050 Hz
was used in the experiment. FFT point size and window
size were set to 1024 samples (0.0464 seconds) to con-
vert them into a spectrogram, and Short-time Fourier trans-
form (STFT) hop size to 256 samples (0.0116 seconds).
Adam optimization method [25] was used for training with
a learning rate of 0.001, β1 for 0.9, β2 for 0.999. Mean
squared error (MSE) loss function between the ground-
truth and the outputs of the models were used in our study.
We trained the models for 500 epochs with calculating
validation loss for every epoch. The learning rate was re-
duced to 30 percent if there was no decrease in validation
loss during 25 epochs. Early stopping was applied after 50
epochs without a decrease in validation loss.

4.3 Evaluation Methods

Here we briefly summarize the various experiments that
will be shown in the following Section 5. The experiments
will be conducted in three following ways.

First, in Section 5.1, we compare and analyze how much
performance improvement there are between the baseline
model trained without the lyrics and the model trained with
the aligned lyrics.

Second, in Section 5.2, we check if the network ex-
ploits the vocal activity information included in the aligned
lyrics. The lyrics include both the vocal activity informa-
tion and phonetic information, and thus expected to use the
vocal activity information correctly.

Third, in Section 5.3, we check if the given input is
correctly being used by the network trained with aligned
lyrics. This experiment was done by giving incorrect in-
puts in the evaluation stage. It is expected that the incorrect
inputs will significantly reduce performance.

For network performance evaluations, Signal-to-

Model name Inputs to the lyrics encoder
model 1 None
model 2 Meaningless inputs (all 0)
model 3 Vocal activity information
model 4 Aligned lyrics

Table 2: The description of each models in our experi-
ments.

Distortion Ratio (SDR), Signal-to-Interference Ratio
(SIR), Signal-to-Artifact Ratio (SAR) scores [26] were
computed by museval python library [27].

5. RESULTS

The configuration of the models we trained in our exper-
iments is in Table 2. We trained four models each using
local conditioning and concatenation method. model 1 is
the baseline model that trained without the lyrics encoder.
model 2 is the model that trained with meaningless 0 value
inputs to the lyrics encoder. This model is only for check-
ing the performance change of the networks caused by
the extended network capacity. model 3 is the model that
trained with only vocal activity information to the lyrics
encoder. We simply used 0 value as unvoiced sections and
1 as voiced sections so that the 128-dimensional embed-
ding can train useful meaning from it. model 4 is that
trained with aligned lyrics information. For both model 3
and model 4, note that 0 value has clear meaning, unvoiced
sections, unlike 0 value in model 2 is meaningless. Since
the baseline model is the same for each local conditioning
and concatenation method, we trained a total of 7 models
for the experiments. Except model 1, we will use the abbre-
viation of local conditioning and concatenation methods,
each LC and CC, in front of the model names for conve-
nience. For example, the model trained with aligned lyrics
and the local conditioning method is LC-model 4.

5.1 Performance Evaluation

The quantitative performance evaluation scores of the
models are shown in Table 3. Median scores were taken
from the median values of 20 songs, which were calcu-
lated for every frame (a median of frames, a median of
tracks). Mean scores represent the scores taken by a mean
of frames, a mean of tracks. Each frame was set to 1 sec-
ond.

It was confirmed that the separation performance of
both LC-model 4 and CC-model 4 improved from the
model 1. This implies that aligned lyrics information can
be used as helpful features for singing voice separation
networks. Comparing to LC-model 3 and CC-model 3, we
could verify that there were clear performance gains not
only from the lyrics alignment information but also the
phonetic features of the lyrics itself. It was also confirmed
that the performance gains do not come from just network
capacity growth, given that there are no significant differ-
ences in the performance of model 1 and model 2. The
spectrograms of the separated sample are in Figure 5.
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Models
Median Mean

SDR SIR SAR SDR SIR SAR
model 1 9.956 18.674 9.847 8.595 16.062 9.145

LC-model 2 10.140 18.465 9.766 8.589 16.001 9.093
LC-model 3 10.090 18.713 9.763 9.250 16.298 9.153
LC-model 4 10.767 19.505 10.223 9.723 17.116 9.699
CC-model 2 10.110 18.434 9.909 8.691 16.164 9.207
CC-model 3 10.444 19.328 10.169 9.718 17.031 9.609
CC-model 4 10.757 19.623 10.371 9.752 17.250 9.803

Table 3: Evaluation scores of our singing voice separation models. All scores are in [dB] scale.

Figure 5: The examples of the mixture, ground truth vocal,
separated vocal spectrograms of baseline model 1 and CC-
model 4.

Despite the expectation that the vocal activity infor-
mation is powerful information to the networks, perfor-
mance gains observed in LC-model 3 were very slight. It
was much smaller than the improvements achieved from
CC-model 3. By these, we analyzed that the concatenation
method is slightly better for making the networks to reflect
the vocal activity information. Nevertheless, we considered
that both conditioning methods were effective when giving
the networks aligned lyrics information.

5.2 Analysis of Vocal Activity Information Usage

In this section, we quantitatively assessed how well the net-
works leverage vocal activity information of aligned lyrics.
The purpose of this is to see if the models have not been
trained by focusing only on either one of the vocal activity
information or the phonetic information of aligned lyrics,
which are both critical for the separation performance.

To this end, the separated spectrogram values were di-
vided by the largest values of each source for normaliza-
tion, so that the minimum and maximum values become 0
and 1. Then, the energy of each time axis was summed to

Figure 6: The example of making the vocal activity vector
from the separated vocal spectrogram.

create a vector that contains vocal activity information. It
was decided whether vocal activity exists or not based on
whether the values were larger or smaller than 0.1 as was
done in [15]. Precision, recall, and F1 scores were calcu-
lated with the created vocal activity vectors by taking the
place where the lyric exists as the ground-truth voiced sec-
tions. Scores are contained in Table 4.

From the results of Table 4, we have confirmed that
model 4 can separate the vocal source by reflecting the
vocal’s timing information more accurately than model 1
for both lyrics conditioning methods. Also, it was con-
firmed that model 3 achieved higher scores for all measures
than model 4. This is a reasonable result because model
3 were trained with vocal activity information only, while
model4 needed to learn how to leverage both vocal activity
information and phonetic information appropriately while
training. Nevertheless, F1 score differences were negligi-
ble, which means model 4 was also capable of reflecting
timing information as well as model 3.

5.3 Analysis with Using Incorrect Lyrics

To check if model 4 effectively uses the information in
lyrics, we observed the performance change when incor-
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Models Precision Recall F1 score
model 1 0.807 0.853 0.828

LC-model 2 0.810 0.852 0.830
LC-model 3 0.887 0.857 0.872
LC-model 4 0.876 0.854 0.865
CC-model 2 0.814 0.853 0.833
CC-model 3 0.896 0.855 0.875
CC-model 4 0.879 0.855 0.867

Table 4: The precision, recall, and F1 scores to evaluate
how well the networks used the vocal activity information
from aligned lyrics.

Models Inputs SDR SIR SAR

LC-model 4

Zero 0.001 8.040 -4.286
Random 5.317 15.802 4.845

VA+Random 7.899 19.270 6.403
AlignedLyrics 10.767 19.505 10.223

CC-model 4

Zero 0.002 7.246 -3.671
Random 0.946 14.837 0.341

VA+Random 7.164 19.545 6.290
AlignedLyrics 10.757 19.623 10.371

Table 5: Performance comparisons when different inputs
are given in the evaluation stage. Zero : 0 value inputs.
Random : Random value inputs. VA+Random : Replace
voiced sections with random value. AlignedLyrics :
Aligned lyrics (The proposed method). All scores are in
[dB] scale.

rect lyrics were given as input during the evaluation stage.
The results are shown in Table 5.

If the networks had learned to effectively use the infor-
mation in lyrics it is expected to output silence when the
lyrics meaning unvoiced sections are given in the evalua-
tion step. To validate this assumption, we inserted 0 values
(Zero) to the lyrics encoder in to model 4 in the evalua-
tion step. As expected, almost every sound has been erased
from the mixture with only a little noise left as seen in
Figure 7 and critical performance degradation, over 10 dB
in SDR score, has occurred.

Furthermore, performance degradation was observed
when all the lyrics were replaced with random values
(Random). This also shows that the network is signifi-
cantly dependent on the encoded lyrics information and the
proposed conditioning method is effectively applied.

Next, we experimented to see if the network is able
to use the phonetic information included in the lyrics.
We show this by removing all the phonetic information
from the aligned lyrics. In other words, the changed lyrics
still contain the vocal activity information. More specifi-
cally, it was done by replacing all the voiced sections with
random values and leaving the unvoiced sections intact
(VA+Random). Interestingly, the performance was still
far below than the model trained tested on aligned lyrics,
which indicates that the network can reflect the phonetic
information into the separation process.

It is noteworthy that the SIR scores of VA+Random

Figure 7: The examples of the separated vocal spectro-
grams with incorrect inputs and correct aligned lyrics in-
puts were given to LC-model 4. The dashed line shows the
enhanced parts when the aligned lyrics are used. Note that
the region is closely related to the formant frequencies.

are not much different from the aligned lyrics input
(AlignedLyrics). Since SIR scores are heavily related
to the remained accompaniment sources of the separated
singing voice, we expected that the networks were still ca-
pable of removing the accompaniments only using the vo-
cal activity information. On the other hand, the impact on
SDR and SAR scores were significant. This implies that
while the network was able to erase the accompaniment
well by using vocal activity information only in unvoiced
sections, it was able to remove the accompaniment better
by using phonetic information in voiced sections.

In the experiments of using (Random) and
(VA+Random) inputs, median values of 5 different
experimental tries with different random seeds were taken.

6. CONCLUSION

In this study, we proposed an integrated framework of
combining the lyrics encoder into the state-of-the-art
Open-unmix separation network. Local conditioning and
concatenation methods were shown to be able to effec-
tively condition the aligned lyrics into the singing voice
separation networks. Through various experiments, it was
confirmed that the phonetic information of aligned lyrics
can contribute to the performance improvements as well
as the vocal activity information. We plan to use the un-
aligned lyrics for the singing voice separation for the future
works.

Proceedings of the 21st ISMIR Conference, Montréal, Canada, October 11-16, 2020
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ABSTRACT

A score-following program traces the notes in a musical
score during a performance. This capability is essential to
many meaningful applications that synchronize audio with
a score in an on-line fashion. Existing algorithms often
stumble on certain difficult cases, one of which is piano
music. This paper presents a new method to tackle such
cases. The method treats tempo as a variable rather than a
constant (with constraints), allowing the program to adapt
to live performance variations. This is first expressed by a
Kalman filter model at the note level, and then by an almost
equivalent switching state-space model at the audio frame
level. The latter contains both discrete and continuous hid-
den variables, and is computationally intractable. Weshow
how certain reasonable approximations make the computa-
tion manageable. This new method is tested on a dataset of
50 piano excerpts. Compared with a previously established
state-of-the-art algorithm, the new method shows more sta-
ble and accurate results: it reduces fatal score-following
errors, and improves accuracy from 65.0% to 69.1%.

1. INTRODUCTION

The score-following problem involves building a computer
program that can trace musical events in a given musi-
cal score during a live performance. This is called “on-
line audio-to-score alignment”, which constantly figures
out the current position in the score while the performance
is going on; the program can only access the audio received
before the current moment. In contrast, offline audio-to-
score alignments start the task after the performance is
done, allowing the program to access the entire recording.

Score following enables a number of useful applica-
tions: a musical score page turner [1], automatic accom-
paniment systems [2], virtual scores designed to react to a
live performance [3], real-time audio enhancement during
a music performance, and even a computer tutor [4].

A typical score-following algorithm infers the score
positions by evaluating the hypothesis paths through a
state graph, each path representing a possible performance.
From the Bayesian point of view, the evaluation criteria

c© Y. Jiang and C. Raphael. Licensed under a Creative
Commons Attribution 4.0 International License (CC BY 4.0). Attribu-
tion: Y. Jiang and C. Raphael, “Score following with hidden tempo using
a switching state-space model”, in Proc. of the 21st Int. Society for Music
Information Retrieval Conf., Montréal, Canada, 2020.

for a path include two aspects: how much a hypothesis is
consistent with the prior model, which represents the an-
ticipation of the musical performance before observing any
data, and how much the data support a hypothesis, which is
called the data model. This paper focuses on improving the
former aspect, which is essentially about timing—when a
note appears and how long it lasts.

Many researchers have considered timing in their prior
models. [5, 6] used a hidden semi-Markov model where
the duration of each state represents a note length. Others
chose to directly model the tempo as a latent variable: [7,
8] treated the tempo as a discrete variable, while [9–12]
adopted continuous state-space models, and used particle
filter to approximate the results. [13] developed a hybrid
graphical model, and tested it by aligning orchestra music
offline. [13] provides a jumping-off point for the proposed
method here. Note that feature-based methods (e.g., DTW
or DNN) are beyond the scope of this discussion.

Unfortunately, existing score-following algorithms can
still stumble on some challenging cases, especially when
the data model is not reliable; e.g., shared notes among
neighboring chords, extended sound from previous chords
by pedaling, and blurring effects caused by fast playing, as
in piano music. This paper presents a new method aim-
ing to improve the timing model—this aspect is especially
meaningful in those challenging cases. In practice, we can
assume that the tempo tends to be smooth: the tempo is
steady most of the time, sometimes floating around slowly,
but rarely jumps up and down abruptly. Therefore, the new
method models the tempo as a continuous variable, and it is
smooth. This allows the note lengths (or the local tempo)
to adapt to the performance data. One of the most pop-
ular state-space models, the Kalman filter model, is suit-
able for tracking such a tempo variable (Section 3.1). It
becomes a switching state-space model after changing the
scope of time (Section 3.2). Section 4 shows how the in-
creased computational complexity is manageable with ap-
proximations. This new method was tested on real piano
performance data presented in Section 5.

2. REPRESENTING SCORE AND AUDIO

We can view the musical score in a “homophonic” way,
representing the score as a sequence of chords, as in Figure
1. It enables polyphonic music to be linearly represented
as the same fashion as in monophonic music—a sequence
of chords, each chord associated with a score position.
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Figure 1. “Homophonic” view of polyphonic music [14].
The left bar is the original score with two voices. The right
bar is its “homophonic” view.

The audio is sampled, and evenly segmented into
frames, with some overlap between adjacent frames. Each
frame is transformed into a Fourier spectrum [15]. The
data model here defines the likelihood of observing the
data spectrum given the chord index. Denote y as the spec-
trum of a frame, a vector {yw}, 1 ≤ w ≤ W . Denote the
template (see [13]) of the kth chord as qk = {qkw}, which
sums to 1. The likelihood of observing the data y given the
index k is:

p(y|k) =
W∏
w=1

(qkw)y
′
w (1)

where y′w = yw/
∑W
w=1 yw.

3. THE MODEL

3.1 Kalman Filter Model for Tempo

The polyphonic score is represented as a sequence of
chords, with a new chord appearing whenever any note
is added, ended, or changed in the current chord. Let’s
assume there are K such chords in the musical score,
each chord with a nominal musical length (e.g., 1/4 for
a quarter note and 1 for a whole note) represented by lk,
k = 1, . . . ,K. Weassume every chord has its own tempo
value, and it doesn’t change within a chord’s lifetime. Let
tk be the tempo of the kth chord (seconds per whole note),
and ok be this chord’s onset time (in seconds). The joint
evolution of the tempo and the onset is modeled as a lin-
ear dynamical system. If we treat the onsets as observable
data, the formula is the same as a Kalman filter model:

ok+1 = ok + lktk + εk+1 (2)

tk+1 = tk + ηk+1 (3)

where all random variables have normal distributions:

o1 ∼ N(µo,1, σ
2
o,1)

t1 ∼ N(µt,1, σ
2
t,1)

εk ∼ N(0, σ2
ε,k), k = 2, . . . ,K

ηk ∼ N(0, σ2
η,k), k = 2, . . . ,K

The εk’s and ηk’s are all mutually independent, and they
are independent from o1 and t1 as well. (In the experi-
ments, however, σε,k was modified to be proportional to
tk, and ση,k proportional to lktk, with manually set scales.)
The dependency graph is in Figure 2. In the rest of this pa-
per, we refer to a “chord” as a “note” for simplicity’s sake.

3.1.1 Marginal Likelihood of Onsets

This linear dynamical system can be viewed as a Markov
process of generating the onsets, oK1 = (o1, o2, . . . , oK),

Figure 2. Dependency graph for the tempo and the onset.

demonstrated as follows. According to the chain rule and
the described model, we can write

p(oK1 ) = p(o1)

K−1∏
k=1

p(ok+1|ok1)

= p(o1)
K−1∏
k=1

∫
tk

p(ok+1|tk, ok)p(tk|ok1) dtk

Because ok+1 = ok + lktk + εk+1, the integral factors can
be further simplified as∫
tk

N(ok+1; ok + lktk, σ
2
ε,k+1)N(tk;µt(o

k
1), σ2

t (ok1)) dtk

= N(ok+1; ok + lkµt(o
k
1), σ2

ε,k+1 + l2kσ
2
t (ok1))

where µt(ok1) = E(tk|ok1) and σ2
t (ok1) = V ar(tk|ok1),

which can be iteratively calculated using a Kalman filter
as the system receives o1, o2, . . . , ok [16]. Thus, we have

p(oK1 ) = (4)

p(o1)
K−1∏
k=1

N(ok+1; ok + lkµt(o
k
1), σ2

ε,k+1 + l2kσ
2
t (ok1))

which can be computed iteratively as k increases.

3.2 Frame-wise Representation

The discussions in Section 3.1 is based on the linear dy-
namical system at the note level, as in Figure 2 where the
discretized “time step” is the note index. However, in real-
world applications, the audio is received frame by frame
(every 16 milliseconds in the experiments). In order to in-
corporate such audio frames as observed data, we have to
change the scope and view the model in Figure 2 at the
frame level, with each audio frame as a time step. Let’s
use n to denote the index of a frame, n = 1, . . . , N , where
N is the total number of frames in the audio. Any frame,
n, has a label variable, kn ∈ {0, . . . ,K}, which is the in-
dex of the sounding note at that frame. Frames before the
first note being played are labeled as 0, i.e., {n : kn = 0}.
Denote yn as the observed audio at the nth frame. We can
assume the distribution of the audio frame data only de-
pends on this frame’s label—which note is being played.
Figure 3 shows the model at both levels in the same graph.

The note onsets and the frame labels are nearly inter-
changeable. Let ∆ be the time difference between adja-
cent frames (in milliseconds), a sequence of frame labels,
kn1 , can be recovered from a sequence of onsets, ok1 , or vice
versa, like this:

kn = min
{
k ∈ {0, . . . ,K} : n∆ < ok+1

}
(5)

ok ≈ ∆ ·min
{
n ∈ {1, . . . , N} : kn = k

}
(6)
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Figure 3. Dependency graph. Upper panel is note level;
lower panel is frame level. Circles are continuous vari-
ables; squares are discrete. Observed variables are shaded.

The note-wise representation and the frame-wise repre-
sentation are almost equivalent, except that there are two
additional assumptions in the latter. First, the note onsets
are now discrete because they have to be multiples of ∆, as
in Equation 6. Second, a note must last at least one frame
long, so ok+1−ok ≥ ∆. Because the labels and the onsets
can be derived deterministically from each other as in the
above two equations, the onsets can actually be viewed as
“discrete” variables, and the tempo variables are the only
real continuous (hidden) variables. Such state-space mod-
els that involve both discrete and continuous hidden vari-
ables are called switching state-space models [17].

3.2.1 Marginal Likelihood of Labels

This section describes a generative model for the frame la-
bels, kN1 , (almost) equivalent to the generative model in
Section 3.1.1, but at the frame level. Using the chain rule,
we have

p(kN1 ) = p(k1)

N−1∏
n=1

p(kn+1|kn1 ) (7)

Following the assumptions in the frame-wise representa-
tion, there could be only two possible values for kn+1 in
each factor p(kn+1|kn1 ): the same as kn if it “decides” to
stay at the current note, or kn+1 if it “decides” to move on
to the next note. From Equation 4, we know that the onset
of the pending note kn + 1, given all previous onsets okn1

(equivalent to kn1 ), has a density function

p(okn+1|okn1 ) = (8)

N(okn+1; okn + lknµt(o
kn
1 ), σ2

ε,kn+1 + l2knσ
2
t (okn1 ))

Let’s write φ as the standard normal density, and define

f(x) = φ(
x− µ
σ

)

Then, the density in Equation 8 is f(okn+1), where

µ = okn + lknµt(o
kn
1 )

σ =
√
σ2
ε,kn+1 + l2knσ

2
t (okn1 )

We can use this density function to compute
p(kn+1|kn1 ) with two cases:

p(kn+1|kn1 ) =

{
p1, kn+1 = kn (same note)

1− p1, kn+1 = kn + 1 (new note)

(9)

We can focus on calculating the first case, and the second
case has the complimentary probability. In the first case
where it stays in the same note at frame n+1, the informa-
tion we know is that the onset of the next note will be after
frame n+ 1, given we already know that the onset must be
after frame n. Therefore, p1 is a conditional probability:

p1 = P (okn+1 > (n+ 1)∆ | okn+1 > n∆ , okn1 ) (10)

Writing Φ as the cumulative distribution function of φ, we
have

p1 =
1− Φ( c+∆−µ

σ )

1− Φ( c−µσ )
(11)

where c = (n + 1)∆. Therefore, we can calculate the
probability of any label sequence p(kN1 ) iteratively as in
Equation 7, by using Equation 9.

3.2.2 Note Duration and Note Age

In Equation 9, p(kn+1|kn1 ) is calculated based on
f(okn+1), the distribution of the onset for the pending
note. In this section, we introduce two variables—note
duration and note age—and calculate p(kn+1|kn1 ) from a
slightly different perspective.

The duration of the kth note is the difference between
its two adjacent onsets:

Lk = ok+1 − ok = lktk + εk+1

Given the previous onsets, Lk also has a Gaussian dis-
tribution with its mean as lkµt(ok1) and its variance as
σ2
ε,k+1 + l2kσ

2
t (ok1). In the frame-wise representation, a

note’s duration, Lkn , has additional requirements that it
should be multiples of ∆, and be at least ∆ (milliseconds)
long. Let’s define a note’s age as the number of frames this
note has been through so far at the nth frame, denoted as
an. The age of the note kn can be calculated by

an = n− okn/∆ + 1

To get p1 in Equation 9, we can rewite Equation 11 from
the angle of the note length: given that this note has lasted
an frames, what’s the probability of it lasting for at least
an + 1 frames. It can be expressed as

p1 = P (Lkn ≥ (an + 1)∆ | Lkn ≥ an∆ , okn1 )

=
1− Φ( (an+1)∆−µ

σ )

1− Φ(an∆−µ
σ )

(12)

where µ = lknµt(o
kn
1 ) and σ =

√
σ2
ε,kn+1 + l2knσ

2
t (okn1 ).

4. COMPUTATION

The number of possible label sequences grows exponen-
tially with n, as in the tree structure in Figure 4. This
section discusses the computational aspects of the model:
what is the filtered probability of the hidden variables,
given all observed audio data up to the current frame; how
to reasonably approximate the calculation so it is tractable.
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4.1 Tree Representation

The tree in Figure 4 represents all possible label sequences,
{kN1 }. At any frame n, each node has a label for its note
index, kn, and also includes the age information of the
note—the number of frames it has been through so far—
denoted by an. From a label sequence kn1 , we can thus
determine the age sequence an1 , and vice versa. The tree
includes the age variable because we need it in the genera-
tive model (see Equation 12). A node has two children: left
means it stays in the same note and thus the age increases
by one frame, and right means it moves on to the next note
and thus the age resets to 1. Any node in the tree actually
represents a label sequence by the path from the root to the
node. For example, the dotted line in Figure 4 represents
the label sequence of k6

1 = 011122 (or the age sequence
of a6

1 = 112312). A path can be viewed as a sequence of
decisions of choosing the left or right branch, from the root
node at frame 1 to the end node in the path.

Figure 4. Exponential growth of label sequences. Each
node has three aspects: note index label, age of this note
(in square brackets), and distribution of the tempo. Tempo
distributions at onset nodes are drawn with thicker lines.

For every node in the tree, denoted by its path of kn1 ,
we can calculate two probabilities: the discrete probability
of arriving at this node, p(kn1 ), and the continuous prob-
ability distribution of the tempo at this node, p(tkn |kn1 ).
As discussed before, the tempo has a Gaussian distribution
(drawn besides the nodes in the first four frames in Fig-
ure 4), given the path leading to this node. A Kalman fil-
ter keeps track of the tempo down the path, and updates
its distribution when and only when the path chooses a
right branch (drawn with thicker lines), i.e., whenever it
observes a note onset (discussed in Section 3.1).

The probability of arriving at a node, p(kn1 ), according
to the frame-wise generative model, can be iteratively cal-
culated by p(kn1 ) = p(kn−1

1 )p(kn|kn−1
1 ). Thus, p(kn1 ) can

be calculated from two parts: the probability of arriving at
its parent node, p(kn−1

1 ), and the probability of choosing
the left or the right branch when transitioning from frame
n− 1 to frame n, p(kn|kn−1

1 ). We can use either Equation
11 or Equation 12 to calculate the latter, and both equations
require the distribution of the tempo at the parent node,
p(tkn−1

|kn−1
1 )—or equivalently, p(tkn−1

|okn−1

1 ).
Adopting the iterative nature of the calculation, we can

compute the probability of (arriving at) every node and its

tempo distribution, frame by frame starting from the root.
Since the tree includes every possible label sequence, those
probabilities give us p(kn1 ) for all {kn1 }, n = 1, . . . , N .

4.2 Conditioning on data

This section continues to focus on calculating the prob-
ability of arriving at a node in the tree, but now condi-
tioned on the observed audio data up to the current frame—
p(kn1 |yn1 ). Considering yn1 ensures that sequences more
consistent with the observed data would receive higher
probabilities than the rest, helping identify more likely se-
quences. On the other hand, the tempo will not be affected
by the observed data since the tempo distribution at a node
depends only on the corresponding label sequence, i.e.,
p(tkn |kn1 , yn1 ) = p(tkn |kn1 ), as used later in Equation 13.

The audio frame data y1, . . . , yn are assumed to be con-
ditional independent from each other given the frame la-
bels k1, . . . , kn, so we can have

p(kn1 |yn1 ) =
1

Zn
p(kn1 , y

n
1 )

=
1

Zn
p(kn1 )p(yn1 |kn1 )

=
1

Zn
p(kn1 )

n∏
i=1

p(yi|ki)

Zn = p(yn1 ) =
∑
{kn1 }

p(kn1 , y
n
1 )

The joint probability p(kn1 , y
n
1 ) can be calculated itera-

tively from p(kn−1
1 , yn−1

1 ) by

p(kn1 , y
n
1 ) = p(kn−1

1 , yn−1
1 )p(kn|kn−1

1 )p(yn|kn)

The calculation of the middle factor p(kn|kn−1
1 ) is dis-

cussed in Equations 9, 11, and 12, which involve using
the tempo distribution of p(tkn−1 |kn−1

1 ). The third factor
p(yn|kn) is the data likelihood of the nth frame, discussed
in Section 2. Therefore, we can calculate p(kn1 , y

n
1 ) for ev-

ery node in the tree iteratively from frame 1 to frame N.
To get the filtered probability of p(kn1 |yn1 ), we simply nor-
malize p(kn1 , y

n
1 ) with Zn at every frame. In sum, with the

help of the data model factors
n∏
i=1

p(yi|ki), we should be

able to distinguish the sequences better by using p(kn1 |yn1 )
instead of p(kn1 ): hypothesized sequences that are closer
to the true sequence should have larger values of p(kn1 |yn1 )
than those of sequences further from the truth.

4.3 Filtering with Approximation

The task of filtering is to compute p(kn, tkn |yn1 ): the joint
distribution of the last hidden states in the sequence, given
the sequence of observed data so far. Writing K(kn) as the
set of all label sequences in Figure 4 that are n-label long
and end with kn, this filtered probability is:

p(kn, tkn |yn1 ) =
∑

kn1 ∈K(kn)

p(kn1 , tkn |yn1 )

=
∑

kn1 ∈K(kn)

p(kn1 |yn1 )p(tkn |kn1 ) (13)
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This is a Gaussian mixture distribution with |K(kn)| com-
ponents. Without approximation, the computation is in-
tractable because |K(kn)| grows exponentially with n.

In Figure 4, there are duplicated nodes in terms of “la-
bel[age]” at every level (except for the first three levels),
and these duplicates have the same subtree. The idea for
simplifying the computation is to merge any duplicates at
the same level into one node, as in Figure 5. The merged
node then has the summed probability:

p(merged node) =
∑

nodes
p(nodei)

Each node in the frame-wise model also carries a Gaussian
distribution for the tempo. The merged node would then
carry a Gaussian mixture distribution:

p(tmerged) =
∑

nodes

p(nodei)
p(merged node)

p(t | nodei)

As more and more merging operations happen over time,
the number of components in a tempo distribution grows
exponentially, with each component corresponding with
a possible label sequence, and the problem remains in-
tractable. We can solve this by using moment matching:
approximating a Gaussian mixture with a single Gaussian
that has the same mean and variance as the mixture. This
is proven to be the optimal approximation in the sense of
Kullback-Leibler distance [18]. This approximation is rea-
sonable if the components with larger weights are close to
each other (agreeing with each other) in terms of mean and
variance, and if those further away have smaller weights,
thus could be ignored anyway. It’s reasonable to believe
that reality more often reflects this case, because unlikely
nodes tend to have smaller probabilities and thus smaller
weights in the mixture (thus should be ignored anyway),
while more likely nodes tend to have more similar opin-
ions about the tempo because they lean towards the truth.

Figure 5. Limiting tree growth by merging nodes with
the same label and age. The first merge happens at frame
#4, when the right child of 1[1] and the right child of 1[2]
(at frame #3) merges into one node. This merged node’s
tempo has a Gaussian mixture distribution with two com-
ponents from the two copies of the 2[1], and is approxi-
mated by a single Gaussian (thicker blue line). The two
merges at frame #5 have similar approximations.

Under this strategy, it’s guaranteed that a left child
has no duplicates at a frame. All left children’s ages are

at least two (frames), because they represent continuing
notes. Merging nodes are always the right children of their
parent nodes, and these nodes always have the age of 1.
For nodes identified as kn[1] at frame n, their parent nodes
must have the label of kn−1 and could have the age of 1, 2,
. . . , n− kn from frame n− 1. Therefore, there are n− kn
copies of nodes kn[1] being merged together at frame n.
It’s worth noting that the size of the merging group, n−kn,
could be 1, which means there is no merging happening.

Distinguishing those two cases, we can iteratively ap-
proximate the discrete filtered probability of the label and
the age, p(kn, an|yn1 ), and the continuous filtered probabil-
ity of the tempo, p(tkn |kn, an, yn1 ). From previous discus-
sions, we know that p(tkn |kn, an, yn1 ) is always a single
Gaussian (after approximation), and we write its mean and
variance as µn = µ(kn, an, y

n
1 ) and σ2

n = σ2(kn, an, y
n
1 ).

The discrete and the continuous filtered probabilities
can be iteratively calculated as follows in two cases. In
the case where it stays in the same note, so kn = kn−1 and
an > 1, there is only one parent node (without merging):

p(kn, an|yn1 ) =
1

Wn
p(kn, an, yn|yn−1

1 )

=
1

Wn
g(kn−1, an−1, kn, an, y

n
1 ) (14)

g(kn−1, an−1, kn, an, y
n
1 ) = (15)

p(kn−1, an−1|yn−1
1 )p(kn, an|kn−1, an−1, y

n−1
1 )p(yn|kn)

Wn = p(yn|yn−1
1 ) =

∑
{kn,an}

p(kn, an, yn|yn−1
1 )

The middle factor in Equation 15 has been discussed in
Equations 9 and 12, and the third factor is the data model.
The filtered tempo in this case doesn’t change, i.e.,

p(tkn |kn, an, yn1 ) = p(tkn−1
|kn−1, an−1, y

n−1
1 ) (16)

In the other case where it transitions to the next note,
so kn = kn−1 + 1 and an = 1, the only difference for
the discrete filtered probability is that there is a merging
process represented by the summation operation:

p(kn, an|yn1 )=
1

Wn

∑
1≤an−1

≤n−kn

g(kn−1,an−1,kn, an, y
n
1 ) (17)

The filtered tempo becomes a Gaussian mixture:

p(tkn |kn, an, yn1 ) (18)

=
1

p(kn, an|yn1 )Wn

∑
1≤an−1

≤n−kn

g(kn−1, an−1, kn, an, y
n
1 ) ·

p(tkn |okn = n, okn−1
=n−an−1, µn−1, σ

2
n−1)

The last term can be calculated by the Kalman filter in Sec-
tion 3.1. We further approximate the above Gaussian mix-
ture using a single Gaussian with the mean as µn and the
variance as σ2

n. Putting Equations 14-18 together, we can
iteratively calculate p(kn, an, tkn |yn1 ) by

p(kn, an, tkn |yn1 ) = p(kn, an|yn1 ) p(tkn |kn, an, yn1 )
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5. PRELIMINARY EXPERIMENTS

5.1 Data Set

In score-following , the ground truth is the note onset times
in the performance audio. This is usually difficult to obtain
without tedious work of hand labeling or correction. One
idea is to record the performances on pianos that capture
movements of the keys, hammers and pedals, and store the
information in MIDI files (e.g., Disklavier pianos). We
can infer the note onsets from a MIDI file fairly easily.
The MAESTRO data set by [19] contains such audio and
MIDI data from 172 hours of piano performances from the
International Piano-e-Competition [20].

The preliminary experiments contained 50 excerpts of
real performances from 14 solo-piano pieces, as shown in
Table 1. A typical excerpt lasted from 40 sec. to 90 sec.,
making the entire data set 48 min. of music. About 33
min. of it was from the MAESTRO, and the rest from the
publicly available music recordings on the Internet. In the
former case, we matched the performance MIDI data with
the digital score according to the minimum-edit-distances
criterion, with some minor manual corrections. For the lat-
ter case, we ran an offline audio-to-score algorithm which
generated “close to perfect” results, and then manually cor-
rected them. The audio data, along with a detailed de-
scription of the measures in these pieces are available at
http://music.informatics.indiana.edu/papers/ismir20/.

Composer Piece #Excerpts
Mozart Piano Concerto No. 17 in G major, mvmt1 3
Schumann Piano Concerto in A minor, mvmt1 3
Chopin Barcarolle, Op. 60 2
Chopin Prelude, Op. 28 No. 4 2
Chopin Ballade No. 1 8
Liszt La campanella 5
Rachmaninoff Prelude, Op. 3, No. 2 5
Schubert Six Moments, D. 780 No. 2 1
Schubert Ständchen, D 957 No. 4 from Schwanengesang 4
Debussy Prelude, No. 2 (Voiles) 1
Debussy La fille aux cheveux de lin 3
Beethoven Piano Sonata No. 8 (Sonata Pathétique) 1
Beethoven Piano Sonata No. 31 8
Haydn Piano Sonata No. 24 in D major, mvmt1 1
Haydn Piano Sonata No. 24 in D major, mvmt2&3 3

Table 1. Piano music used in the experiments.

5.2 Evaluation Method

Write κ1, . . . , κN as the ground truth index labels of all
audio frames. At any frame, the probability of recognizing
the truth note is then the sum of the filtered probabilities
with the correct label (regardless of age), as in Equation 19.
The overall accuracy on an excerpt is the average across
all frames. This is called the frame-wise accuracy [14],
accounting for the accuracy of every frame.

Accn =
∑
kn=κn

1≤an≤n−κn+1

p(kn, an|yn1 ) (19)

Acc =
∑

n
Accn/N (20)

5.3 Results

The baseline algorithm for comparison was Music Plus
One [21], a state-of-the-art score-following systems, based
on a hidden Markov model. Both algorithms used 8kHz
sampling, 512-sample frame size (64 ms), and 128-sample
hop size. Both algorithms also deployed the beam search
technique to limit hypotheses at each frame to ≤200.

Out of the 50 excerpts, 12 excerpts had “very low” accu-
racies (< 40%) by at least one of the two algorithms. Very
low accuracy can either exemplify a fatal error, in which
the program got lost at certain frames, and never found its
way back, or it can mean high uncertainty among neigh-
boring chords. As shown in Table 2, the proposed method
failed exactly two times fewer than the baseline, and it also
had higher average accuracy among the failed excerpts.

baseline proposed
# failed excerpts 11 9
average accuracy 15.1% 22.1%

Table 2. Counts of low-accuracy excerpts.

Excluding those 12 excerpts, we calculated the aver-
age overall accuracy across all of the other 38 excerpts,
as shown in Table 3. The proposed method achieved 4.1%
higher accuracy than the baseline. A p-value of .0096 (α <
.01) on a paired t-test indicates that the proposed method
is measurably better than the baseline.

baseline proposed
average accuracy 65.0% 69.1%

Table 3. Average accuracies of 38 excerpts.

6. DISCUSSION AND CONCLUSION

Piano music is one of the most challenging cases in the
score-following realm, as the preliminary experiments in-
dicate: the baseline algorithm failed on 22% of excerpts.
Further investigation suggests that the proposed method is
more robust than the baseline: fewer fatal errors, easier re-
covery from mistakes, and successful following even when
the performance tempo was far from the default tempo.
With this evidence and significantly improved accuracy on
successfully followed excerpts, we can speculate that treat-
ing the tempo as a variable helps the program adapt to un-
predictable performance variations, and that modeling the
tempo as smooth helps discriminate among hypotheses.

Although the dataset is not large enough to draw general
conclusions, the preliminary experiments showed strong
promise in the direction of tracking tempo while follow-
ing a score. The presented method here is general and can
be applied to a variety of instruments, monophonic or poly-
phonic. The tracked tempo information is also meaningful
for anticipating the next note in automatic accompaniment
systems, and is scalable to analyze the timing aspects of
large numbers of performances.

In conclusion, this paper presents an interesting new
method for improved score-following, and suggests a
promising direction for future research endeavors.
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ABSTRACT

Disentangling factors of variation aims to uncover latent
variables that underlie the process of data generation. In
this paper, we propose a framework that achieves unsuper-
vised pitch and timbre disentanglement for isolated musi-
cal instrument sounds without relying on data annotations
or pre-trained neural networks. Our framework, based on
variational auto-encoders, takes as input a spectral frame,
and encodes pitch and timbre as categorical and continuous
variables, respectively. The input is then reconstructed by
combining those variables. Under an unsupervised train-
ing setting, a major challenge is that encoders are tasked
to capture factors of interest with distinct latent represen-
tations, without access to the corresponding ground-truth
labels. We therefore introduce auxiliary tasks and objec-
tives which leverage pitch shifting as a strategy to create
surrogate labels, thereby encouraging the disentanglement
of pitch and timbre. Through an ablation study we ana-
lyze the impact of the proposed objectives. The evaluation
shows the efficacy of the proposed framework for learning
disentangled representations, and verifies its applicability
to unsupervised pitch classification and conditional spec-
tral synthesis.

1. INTRODUCTION

The generative process from observed data can be de-
scribed as having multiple latent factors of variation to ex-
plain the observations. For example, we may consider that
a musical instrument sound consists of its pitch and timbre
characteristic as the major underlying factors of variation.
The concern of representation learning is to learn a model
that captures such explanatory factors which are expected
to be transferable to downstream tasks [1].

Disentanglement is said to be crucial for a good repre-
sentation [1]. A disentangled representation allocates dis-

c© Yin-Jyun Luo, Kin Wai Cheuk, Tomoyasu Nakano,
Masataka Goto, and Dorien Herremans. Licensed under a Creative Com-
mons Attribution 4.0 International License (CC BY 4.0). Attribution:
Yin-Jyun Luo, Kin Wai Cheuk, Tomoyasu Nakano, Masataka Goto, and
Dorien Herremans, “Unsupervised Disentanglement of Pitch and Timbre
for Isolated Musical Instrument Sounds”, in Proc. of the 21st Int. Society
for Music Information Retrieval Conf., Montréal, Canada, 2020.

tinct factors of variation into separate dimensions of the
representation, which facilitates an interpretable structure.
Interventions along certain dimensions thereby only affect
the corresponding latent factors, leading to a sparse change
to the observation. In this paper, we propose a framework
for learning disentangled representations of pitch and tim-
bre, the two dominant factors of an isolated musical in-
strument sound. Unlike the supervised frameworks that
address similar tasks [2, 3], we do not rely on data annota-
tions or networks pre-trained on any form of supervision.

Many of the recent endeavors to achieve disentan-
gled representation learning in an unsupervised setting are
based on variational auto-encoders (VAEs) [4]. VAEs
depict a data-generating process p(x, z) = p(x|z)p(z),
where a multivariate latent variable z is first sampled from
a prior distribution p(z), and the observation x is sampled
from the conditional distribution p(x|z) parameterized by
a neural network; a variational distribution q(z|x), also pa-
rameterized using a neural network, is introduced to ap-
proximate the true posterior p(z|x).

In order to achieve disentanglement without access to
data annotations, recent studies have proposed to impose
regularizations on the latent space to promote a factorized
aggregated posterior distribution q(z) [5–7]. These works,
however, demand further probes (e.g., traversal of latent
space) to identify the semantics of the learned representa-
tions. One can also leverage prior knowledge of data struc-
ture and inject specific constraints [8–11]. For example,
factors of variation of speech or video data are categorized
as sequence-level (e.g., speakers) and segment-level (e.g.,
phonetic contents) latent variables [9, 10]. The mentioned
prior knowledge, however, is not trivially applicable to fac-
tors of interest lacking of structural hierarchy (e.g., an iso-
lated musical instrument sound with a constant pitch has
both timbre and pitch as the sequence-level variable).

Given the challenge of disentangled representation
learning in the unsupervised setting, literature has also as-
sumed the accessibility to implicit or weak supervision in
the form of grouped or paired data [12–14]. Our proposed
framework, in contrast, does not require such a form of
supervision; instead, we leverage pitch-shifting to create
paired data, thereby introducing auxiliary objective func-
tions to enhance feature disentanglement.

The underlying assumption of the proposed framework
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is that a moderate shift of pitch does not alter the timbre
of the original musical instrument sound; we can thereby
consider the original and its pitch-shifted version as a pair,
and introduce several constraints to promote disentangle-
ment of pitch and timbre. In particular, we adapt the con-
trastive learning method [15] to our framework, and max-
imize the similarity measure of the paired data. We also
employ cycle-consistency loss [16, 17] to further improve
the disentanglement. Moreover, we propose an objective
function that explicitly accommodates the information of
pitch difference that arises from pitch-shifting [18], which
plays a key role for performance improvement. An abla-
tion study is conducted to evaluate the efficacy of the in-
troduced objective functions.

We consider a generative process that samples a cate-
gorical and a continuous latent variable, referred to as pitch
and timbre, respectively, and samples the data conditioned
on both the variables. This manifests the discrete nature
of pitch and introduces a strong inductive bias crucial to
the success of unsupervised disentanglement [19], which
is made feasible as each sample in this study corresponds
to a pitch class in the equal tempered scale.

For evaluation, classifiers are built to predict ground-
truth pitch and instrument labels, which take as input the
learned timbre representation. The low accuracy for pitch,
and the high accuracy for instrument indicate a disentan-
gled timbre representation. We also evaluate the pitch
latent variable in terms of the metrics used for cluster-
ing tasks, which demonstrates the model’s capability of
unsupervised pitch classification. Attributed to the in-
terpretability of the disentangled representation, we can
achieve pitch-conditioning spectral synthesis whereby dis-
entanglement is evaluated through the lens of conditional
generation. We also propose a metric that accounts for con-
sistency and diversity of pitch of the generated data. Our
main contributions can be summarized as follows:

• Propose a framework based on VAEs to tackle unsu-
pervised disentanglement of pitch and timbre.

• Leverage pitch-shifting which enables the auxiliary
objectives that further introduce inductive biases to
improve disentanglement.

• Design a metric that accounts for pitch consistency
and diversity which quantifies the performance of
disentanglement.

We present the proposed framework and the auxiliary
objective functions in Section 2, and detail the implemen-
tation along with the experimental setup in Section 3. The
evaluation methods and the proposed metric are elaborated
in Section 4, followed by experimental results and discus-
sions in Section 5. The paper is concluded in Section 6.

2. METHOD

In this section, we describe the proposed framework, and
present the auxiliary objective functions that are intro-
duced to further enhance the model.

Figure 1: The proposed framework. The dashed lines de-
note sampling, and the cross denotes concatenation.

2.1 Overview

Figure 1 illustrates the proposed framework, which depicts
a data-generating process of x ∈ RF being sampled from
a conditional distribution pθ(x|z, c), referred to as a de-
coder, where c ∈ RK is a categorical latent variable for
pitch, and z ∈ RL is a continuous latent variable for tim-
bre. θ denotes the parameters of the decoder. Variational
distributions qφ(c|x) and qφ(z|x), referred to as the pitch
and timbre encoder, are introduced to approximate the true
posterior distributions. The parameters of the two encoders
are collectively denoted as φ. Under the framework of
variational inference, the generative model is optimized
through the evidence lower bound (ELBO) of pθ(x):

L(θ, φ;x) = Eqφ(z|x)qφ(c|x)[log pθ(x|z, c)]
−DKL

(
qφ(z|x)‖p(z)

)
−DKL

(
qφ(c|x)‖p(c)

)
.

(1)

For the continuous latent variable z, we follow the lit-
erature [4] assuming p(z) = N (0, I) and qφ(z|x) =
N (µφ(x), diag(σ

2
φ(x))). For the categorical latent vari-

able c, we let p(c) = U(0, 1), a standard uniform dis-
tribution over number of categories K, and qφ(c|x) =
Cat(c|πφ(x)). We can treat the pitch encoder as a pitch
classifier that can be trained altogether with the entire net-
work without pitch labels.

A major challenge for the unsupervised disentangle-
ment is that the pitch encoder and timbre encoder are
tasked to capture pitch and timbre features, respectively,
without access to the corresponding labels. The presented
model manifests the discrete nature of pitch with the cate-
gorical variable, thereby encouraging the pitch encoder to
leave timbral information to the timbre encoder.

2.2 Gumbel-Softmax Distribution

In particular, we let ck be a one-hot encoding of pitch, in-
dexed at k, that is sampled from the qφ(c|x). To enable
back-propagation through sampling of the discrete node,
a common technique is to approximate argmax with the
Gumbel-Softmax distribution [20]. We specifically em-
ploy the straight-through estimator, which forward-passes
the one-hot vector ck, and approximates its gradient with
that of the Gumbel-Softmax distribution.
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2.3 Auxiliary Objective Functions

Based on the underlying assumption that a moderate shift
of pitch does not change the timbre of a musical instrument
sound, we exploit pitch-shifting, thereby enabling the fol-
lowing auxiliary objective functions to enhance the model.
We refer to x and x′ respectively for the original sample
and the pitch-shifted version throughout, and (z, c) and
(z′, c′) are the corresponding latent variables.

2.3.1 Latent Regression

One obvious auxiliary loss function enabled by pitch-
shifting would be Lregression = ‖z−z′‖22, which we include
in the ablation study for comparison.

2.3.2 Contrastive Learning

We adapt SimCLR [15], a discriminative approach for rep-
resentation learning [15, 21, 22], to our generative frame-
work. Particularly, each sample in a minibatch of size N is
pitch-shifted randomly upward or downward to a number
of semitones, resulting in an augmented minibatch of size
2N . A positive pair of data is defined as (x,x′), and the
other 2(N − 1) pairs are treated as negative ones, instead
of being explicitly defined. The loss function for a positive
pair, indexed as (i, j), is then defined as

Li,j = − log
exp(sim(zi, zj)/τ)∑2N

m=1 1[m 6=i] exp(sim(zi, zm)/τ)
, (2)

where 1[m6=i] ∈ {0, 1} is an indicator function evaluated
as 1 if and only if m 6= i, and τ is a temperature parame-
ter. The final loss Lcontrast is obtained by aggregating Li,j
across all positive pairs. Following SimCLR [15], the co-
sine similarity is used as the similarity measure sim(·, ·).

Intuitively, the loss function attracts z and z′ and re-
pels the other negative pairs that are possibly derived from
different instruments, which is expected to encourage the
timbre encoder to extract pitch-invariant latent variables
whereby the disentanglement is improved.

2.3.3 Cycle-consistency Loss

Cycle-consistency has been proposed to address un-
paired image-to-image translation between different do-
mains [16], which has been incorporated with VAEs to
learn disentangled representations for images [17, 23].

We adopt the approach to further constrain the model
and encourage disentanglement. Specifically, let Ep, Et,
and D denote the pitch encoder, the timbre encoder, and
the decoder, respectively; whereby the cycle-consistency
loss is defined as

Lcycle =‖Et(D(z, c′k))− z‖22 + ‖Et(D(z′, ck))− z′‖22
+CE(Ep(D(z, c′k)), k

′) + CE(Ep(D(z′, ck)), k),

(3)

where k = argmaxk qφ(c|x) (similar for k′), and CE(·, ·)
refers to cross-entropy loss.

Intuitively, given (z, c′k), D should generate a sample
embodying timbre z and pitch category k′, such that Et
and Ep can correctly predict z and k′ in order to minimize

the loss (similar for (z′, ck)). The objective function is
expected to enforce D to faithfully render the given con-
ditioning signals, and to further encourage Et and Ep to
encode the respective factors. Empirically, we freeze the
weights of Et and Ep when back-propagating Lcycle as
suggested in the literature [24].

2.3.4 Surrogate Label Loss

We also propose to exploit the information of the
shifted amount of semitones. Specifically, we minimize
Lsurrogate = CE(Ep(x′), y′). The surrogate label for x′ is
y′ = k + δ, where k = argmaxk qφ(c|x), δ ∈ [−S, S]
denotes the shifted number of semitones, and S is the max-
imum amount of shift. This enforces Ep to acknowledge
the pitch difference. As shown in Section 5, this loss term
plays a key role in reaching the best-performing model.

To sum up, based on the underlying assumption that
moderate shift of pitch does not alter timbre characteris-
tics, all the objective functions are made possible thanks to
the pitch-shifting strategy. The aggregated objective func-
tion to be maximized thereby becomes

L = L(θ, φ;x)− (λ1Lregression + λ2Lcontrast

+ λ3Lcycle + λ4Lsurrogate),
(4)

where λ1, λ2, λ3, and λ4 denote the weights of each loss
term. We conduct an ablation study to investigate the ef-
ficacy of each auxiliary objective in terms of the metrics
elaborated in Section 4.

3. EXPERIMENTAL SETUP

In this section, we describe the dataset used to evaluate our
framework along with the implementation details.

3.1 Dataset

We train the framework using a subset of Studio-On-Line
(SOL) [25], which includes 1,885 samples of 12 musical
instruments and 82 possible pitches. We resample all the
recordings to 22,050Hz, after which they are converted to
short-time Fourier transform (STFT) with a 92ms of Hann
window and 11ms of hop size. Mel-spectrograms with 256
filterbanks are then derived from power magnitude spec-
trum of the STFT. The dataset is split into a training set
(90%) and validation set (10%), both of which have a same
distribution of instruments. The magnitude of the Mel-
spectrogram is logarithmically scaled, and min-max nor-
malized within [−1, 1] using the minimum and maximum
values in the training set. The normalization is performed
corpus-wide to preserve the variety of dynamics.

As a preliminary study, we extract the spectral frame
at 200ms from the processed spectrograms, a time in-
stant that usually displays the sustained part of a musi-
cal note; a datum is therefore referred to as a spectrum
x ∈ R256 of a Mel-spectrogram. To facilitate the tim-
bre encoder to extract pitch-invariant features, we further
derive 30-dimensional Mel-frequency cepstral coefficients
(MFCCs) from the Mel-spectrograms. Therefore, the in-
puts to the timbre and pitch encoder are xMFCC ∈ R30 and
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xMel-spec ∈ R256, respectively. For convenience, we refer
x to input data and do not distinguish xMFCC and xMel-spec

in the text and Figure 1. Note that the reconstruction target
for evaluating pθ(x|z, c) remains as the Mel-spectrum.

As mentioned in Section 2, pitch-shifting is employed
to augment the model by enabling the auxiliary objective
functions. This is performed by stretching or shrinking an
audio waveform with linear interpolation, which results in
pitch-shifting in the frequency domain.

3.2 Implementation Details

Both the pitch and timbre encoders are comprised of three
512-unit fully-connected (FC) layers. They differ in the
parametric layer; the pitch encoder outputs a categorical
distribution qφ(c|x) through a FC layer with number of
units equal toK = 82, i.e., the number of possible pitches.
We henceforth refer c to pitch category, which differenti-
ates from the pitch labels y. The timbre encoder, on the
other hand, contains a Gaussian parametric layer, which
outputs two L-dimensional vectors, L = 8, representing
mean µφ(x) and variance σ2

φ(x).
c ∼ qφ(c|x) and z ∼ qφ(z|x) are concatenated as the

input to the decoder for reconstructing x. The straight-
through Gumbel-Softmax estimator [20] and the reparam-
eterization trick [4] enable gradients to back-propagate
through the parametric layers with stochastic gradient de-
scent. The decoder is also composed of three 512-unit FC
layers, which finally outputs x̂ ∈ R256. Except for the two
parametric layers, we use tanh as the activation function,
and batch normalization follows thereafter.

All the experiments are conducted with a batch size
of 256, and the model parameters are optimized using
Adam [26] with a learning rate of 10−4. The model stops
training if the objective function (Equation (4)) does not
improve over 300 epochs, i.e., we do not use any of the
metrics presented in Section 4 as the stopping criteria,
which assures absence of leakage of label information. We
conduct an ablation study of the loss terms in Equation (4);
however, we do not perform an exhaustive search for the
corresponding weights, and instead evaluate λi ∈ {0, 1} to
investigate their effects. Fine-tuning the weights is left for
future work.

4. EVALUATION METRICS

Our evaluation protocol relies on the properties of disen-
tangled representations. From the synthesis point of view,
the pitch of the synthesized spectrum should be invari-
ant to perturbations in the timbre space as much as pos-
sible; from the perspective of analysis, the timbre space
(pitch space) should mostly accommodate timbre informa-
tion (pitch information) while minimizing clues for pitch
(timbre). Accordingly, we consider the following metrics.
Note that ground-truth annotations and pre-trained classi-
fiers are employed only for evaluation purpose.

4.1 Classification Accuracy

We train logistic regression models which take as input the
learned timbre latent variable z and predict labels of instru-
ment and pitch. A well disentangled timbre representation
should yield high accuracy for instrument, and low accu-
racy for pitch.

4.2 Clustering Accuracy (ACC)

During testing, the pitch encoder outputs a categorical dis-
tribution qφ(c|x) from which a pitch category of x can be
assigned as k = argmaxk qφ(c|x). We can thereby con-
sider it as a clustering task and calculate ACC [27] using
pitch labels. Furthermore, since we do not train our model
with pitch labels, the mapping from the inferred pitch cat-
egories to the pitch labels is unknown. For each category,
we thus assign a pitch label that occurs the most within
that category, and pitch classification accuracy can be cal-
culated accordingly. This approximated pitch mapping is
termed PM. Both ACC and PM are served to evaluate the
unsupervised pitch classification.

4.3 Fréchet Inception Distance (FID)

We exploit FID [28] to quantitatively measure the quality
of the synthesized spectrum. The metric measures the dis-
tributional difference between two multivariate Gaussians,
which are fit to features derived from the real and gener-
ated samples, respectively. In our case, the features are ex-
tracted from a pre-trained instrument classifier, using the
identical training data, which shares the same architecture
with the encoder.

4.4 Consistency-Diversity Score (CDS)

In order to assess the model’s capability of pitch-
conditional generation, we propose a metric, termed CDS,
to account for consistency of pk(y|x̂) and diversity of
Ek[pk(y|x̂)], where pk(y|x̂) = p(y|D(z, ck)) is the pos-
terior distribution of a pre-trained pitch classifier given
the generated samples x̂; and Ek[·] denotes marginaliza-
tion over k, where k ∈ {1, 2, . . . ,K}. Note that we can
not simply measure pitch classification accuracy given the
generated samples, as the true mapping from categories to
pitch labels is unknown under the unsupervised setting.

Intuitively, the pre-trained pitch classifier should con-
sistently output similar posterior distribution pk(y|x̂), if
the generated samples x̂ are synthesized conditioned on
a fixed ck regardless of z; and the aggregated distribution
Ek[pk(y|x̂)] should be uniformly distributed over y, which
indicates that the generated samples x̂, when conditioned
on different ck’s, are predicted as having different pitches.
Formally, CDS combines the two indicators as follows:

CDS = −Ek[H(pk(y|x̂))] +H(Ek[pk(y|x̂]))
= Ek[DKL

(
pk(y|x̂)‖Ek[pk(y|x̂)]

)
],

(5)

namely, the marginal KL-divergence of the per-category
and the aggregated posterior. A higher CDS thus hinds
toward better consistency and diversity of pitch manifested
by the generated pitch-conditioning spectrum.
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λ1 λ2 λ3 λ4 Pitch Instrument Combine ACC PM FIDrecon FIDrand CDS

0 0 0 0
[ 8.81±3.47 87.68±1.09 89.43±1.85 95.14±0.98 96.04±0.71 21.80±1.05 23.78±1.47 24.33±0.71
] 33.78±7.38 80.90±4.41 73.55±5.77 72.65±4.82 74.46±4.06 24.86±2.27 25.27±1.80 8.49±1.96

M0 16.38±7.65 86.44±2.20 85.02±4.03 78.53±5.68 80.22±6.01 23.93±1.97 26.40±2.39 11.45±2.34

1 0 0 0 M1 17.85±4.52 87.34±1.26 84.74±2.53 77.28±3.47 78.75±3.60 18.86±1.77 21.53±1.10 9.15±1.28
0 1 0 0 M2 20.45±7.98 84.74±2.67 82.14±5.17 77.40±5.01 79.09±6.08 26.00±1.78 26.90±2.28 9.20±1.55
0 0 1 0 M3 32.54±6.28 84.18±1.92 75.81±4.08 80.45±1.58 82.71±1.26 18.68±2.36 20.82±1.67 10.79±2.37
0 0 0 1 M4 17.06±3.83 84.18±1.38 83.55±1.84 74.35±2.75 75.59±3.32 22.36±2.36 24.74±2.17 11.99±2.67
1 1 1 0 M5 18.19±4.79 87.90±1.62 84.85±2.48 78.19±2.35 79.66±2.81 16.73±2.13 21.39±2.49 9.35±2.81

1 1 1 1 M6 14.57±2.29 86.44±2.55 85.93±2.06 79.88±1.84 80.90±2.18 13.76±1.07 19.18±1.90 13.46±1.64

Table 1: The ablation study. For simplicity, we focus more on examining individual effects and do not exhaust all combina-
tions. Each model (per row) is evaluated over all the evaluation metrics. For Pitch and FID, lower numbers indicate better
performance, while the rest suggest the otherwise. The best-performing unsupervised models (], M0-M6) are highlighted.

Note that CDS bears resemblance to Inception Score
(IS) [29]; the latter, however, was originally proposed to
evaluate visual quality of synthetic images, whereas CDS
evaluates the extent to which the model faithfully renders
the conditional signal and enables correct classification.

5. EXPERIMENTS AND RESULTS

We train the framework with different configurations of the
objective function L (Equation (4)), and quantify the per-
formance of disentanglement with the metrics detailed in
Section 4. For each model configuration, we initialize the
model parameters with five random seeds, and report an
averaged score along with standard deviation for each met-
ric.

The results are summarized in Table 1, where we high-
light the best-performing unsupervised models for each
metric. Each row represents a model configuration; the
symbol [ denotes the pitch-supervised model, which is
trained to minimize an additional cross-entropy loss be-
tween the categorical distribution qφ(c|x) and the pitch la-
bels, and is treated as a reference. The symbol ] denotes
the unsupervised model trained without pitch-shifting. The
rest M0-M6 are all unsupervised, utilizing pitch-shifting
with maximum two semitones upward or downward.

For convenience, Ep, Et, and D denote the pitch en-
coder, the timbre encoder, and the decoder, throughout.

5.1 Timbre Space Classification

Using the learned timbre representation z, which we re-
place with µφ(x) (µ in Figure 1) as the input feature to the
logistic regression models, we obtain a relatively low accu-
racy for pitch classification, and a high accuracy for instru-
ment classification, as shown in columns Pitch and Instru-
ment in Table 1. As mentioned previously, low and high
accuracy of pitch and instrument, respectively, indicate
disentanglement of the timbre representation; we thereby
aggregate the two metrics by 1

2 (1−apitch+ainstrument) shown
in column Combine, where apitch and ainstrument are the clas-
sification accuracy.

The pitch-supervised (reference) model attains the best
aggregated score, as Ep is explicitly trained to classify
pitch, thereby preventing pitch leak to Et. Among the pro-
posed models, M6 outperforms in terms of the aggregated

score contributed by low apitch, which implies that com-
bining all the auxiliary loss terms helps prevent pitch from
leaking into the timbre space. Pitch-shifting alone im-
proves the baseline unsupervised model significantly; this
might be due to the rather imbalanced pitch distribution of
the data. The high score attained without additional losses
implies the efficacy of the proposed architectural design on
disentangling pitch and timbre, given the augmented data.

Individually adding the auxiliary objective functions
does not contribute much to the performance. For exam-
ple, while M1-M4 degrade the aggregated score, combin-
ing M1-M3 (M5) approaches the best-performing model
(M6). Notably, we can see that the proposed surrogate la-
bel loss further improves the performance of M5, which
similarly applies to other metrics that follow.

5.2 Unsupervised Pitch Classification

As described in Section 4.2, we can consider Ep as a pitch
classifier trained without labels as in our proposed models.
We thus evaluate the performance with ACC.

We also report the pitch classification accuracy derived
by the approximated mapping from pitch categories to
pitch labels, which is the PM described in Section 4.2.

The supervised model can therefore be treated as the
upper bound of pitch classification accuracy attained by
the unsupervised Ep. M3 is the best model in terms of
both ACC and PM, which could be attributed to the cycle-
consistency that acknowledges the pitch-swapping scheme
during training. This however promotes pitch leak to the
timbre space as shown in column Pitch, which implies
that an accurateEp does not guarantee the absence of pitch
leak, and, without supervision, more constraints are neces-
sary to maintain both the pitch accuracy and timbre disen-
tanglement, as demonstrated by M6.

5.3 Spectral Synthesis

We now turn our attention to the evaluation of generative
tasks. In particular, we first evaluate the timbre representa-
tion by FID between the synthesized spectrum and the real
one. To be more specific, the synthesized data are gener-
ated by D which takes as input z and ck, where z ∼ p(z)
and k = argmaxk qφ(c|x); that is, we first infer ck of the
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704



Figure 2: Pitch-conditioning spectrum generation. Each
column represents a model, the bottom row refers to seed
samples, and the top three rows correspond to generated
samples conditioned on different pitch categories.

validation set, which is then combined with the randomly
sampled z for decoding.

FIDrecon measures between the real and the recon-
structed data, while FIDrand is for the real and the synthe-
sized data. FIDrecon can thus be treated as a lower bound
of the metric. From Table 1, it is clear that M6 prevails.
As discussed earlier, adding the proposed Lsurrogate to M5
makes the best model in terms of FID.

Interestingly, the supervised model does not achieve
satisfying performance, which implies that the discrim-
inability gain of Ep does not correlate well with the gen-
erative quality of timbre features. This similarly applies to
the model that employs only the contrastive loss (M2).

5.4 Pitch-Conditioning Synthesis

Next we evaluate the disentanglement through the lens of
conditional generation. Particularly, we first infer z ∼
qφ(z|x) from the validation set, which we directly take the
mean µφ(x) as the representative latent variable. We then
enumerate all possible pitch categories k ∈ {1, 2, ...,K},
each of which is converted to a one-hot vector and con-
catenated with the inferred z. D consumes the pitch-
conditioned latent vector, and generates samples x̂ which
are then classified by a pre-trained pitch classifier. This
computes p(y|D(z, ck)), and CDS is derived by Equation
(5). We report exp(CDS) to restrict the value in {1,K}.

The supervised model performs well, due to the avail-
able pitch labels during training. M6 outperforms all the
unsupervised models. Notably, Lsurrogate alone (M4) out-
performs M0, and, once again, the loss term further im-
proves M5 to reach the best model M6.

The proposed Lsurrogate synergizes with other loss terms,
as evidenced by comparing M5 and M6 in terms of most
metrics. This is probably attributed to the extra infor-
mation from the amount of pitch-shift, which enables the
model to explicitly account for the pitch difference [18].

Among all metrics, the t-test only yields a significant
difference between the bold and M0 in terms of FID. Apart
from the relatively high variances obtained by M0, this
could be due to the small sample size (five random seeds)
and the suboptimal configuration of values of loss weights,
which we will investigate in future work.

5.5 Qualitative Study

We conclude our evaluation with a qualitative study on
pitch-conditioning synthesis, as demonstrated in Figure 2.
For each model (column), the bottom row refers to three
reconstructed samples (with corresponding z’s) which are
the seed spectrums sampled from the validation set. Each
of the rest of the rows corresponds to generated samples
conditioned on the same z’s but a different c.

As a result, for each model (column), a good perfor-
mance is indicated by a matched harmonic pattern across
all three frames in a row (consistency), and diverse har-
monic patterns across the top three rows (diversity). Note
that the seed samples (bottom row) and the three condi-
tioning pitches are not fixed across the four models, thus
a direct comparison is not available. Nonetheless, we can
have a rough idea that model ] does not perform as well as
others, as harmonic patterns do not clearly appear aligned
except for the one at the third row. This to some extent ver-
ifies the proposed CDS, in terms of which model ] attains
the worst performance, although a study of larger scale is
required for a faithful verification.

We can also observe that the overall timbre, character-
ized by the spectral energy distribution, stays rather consis-
tent along each frame of each column despite the change of
the pitch condition, which verifies the disentanglement.

6. CONCLUSION AND FUTURE WORK

We have proposed a VAE-based framework for unsuper-
vised learning of disentangled pitch and timbre represen-
tation. The framework accommodates a categorical and a
continuous latent variable, with the former embodying the
discrete nature of pitch. We exploit pitch-shifting which
enables the auxiliary objective functions, that are shown to
potentially enhance the performance in terms of the quan-
titative evaluation.

A major challenge for future research is to infer pitch
values from the categorical assignment, without access
to ground-truth annotations. Furthermore, the proposed
model imposes a strong inductive bias to the pitch en-
coder, by restricting degree of freedom through a one-
hot encoded categorical pitch variable. This might pose
a challenge when a tuning difference among instruments
is present in the dataset. Increasing the capacity of the
pitch representation while maintaining enough constraints
for disentanglement is a direction for future work. We also
aim to train the framework on a larger and more structured
dataset [30], and to evaluate the method on data with larger
time scale, for which we aim to learn dynamical latent fac-
tors on top of the global variables that we have studied.
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ABSTRACT

Machine learning is challenging the way we make music.
Although research in deep generative models has dramati-
cally improved the capability and fluency of music models,
recent work has shown that it can be challenging for hu-
mans to partner with this new class of algorithms. In this
paper, we present findings on what 13 musician/developer
teams, a total of 61 users, needed when co-creating a song
with AI, the challenges they faced, and how they lever-
aged and repurposed existing characteristics of AI to over-
come some of these challenges. Many teams adopted mod-
ular approaches, such as independently running multiple
smaller models that align with the musical building blocks
of a song, before re-combining their results. As ML mod-
els are not easily steerable, teams also generated massive
numbers of samples and curated them post-hoc, or used a
range of strategies to direct the generation, or algorithmi-
cally ranked the samples. Ultimately, teams not only had
to manage the “flare and focus” aspects of the creative pro-
cess, but also juggle them with a parallel process of explor-
ing and curating multiple ML models and outputs. These
findings reflect a need to design machine learning-powered
music interfaces that are more decomposable, steerable, in-
terpretable, and adaptive, which in return will enable artists
to more effectively explore how AI can extend their per-
sonal expression.

1. INTRODUCTION

Songwriters are increasingly experimenting with machine
learning as a way to extend their personal expression [12].
For example, in the symbolic domain, the dance punk
band Yacht used MusicVAE [59], a variational autoen-
coder type of neural network, to find melodies hidden in
between songs by interpolating between the musical lines
in their back catalog, commenting that “it took risks maybe
we aren’t willing to” [46]. In the audio domain, Holly
Herndon uses neural networks trained on her own voice
to produce a polyphonic choir. [15,45]. In large part, these

c© Cheng-Zhi Anna Huang, Hendrik Vincent Koops, Ed
Newton-Rex, Monica Dinculescu, Carrie J. Cai. Licensed under a Cre-
ative Commons Attribution 4.0 International License (CC BY 4.0). Attri-
bution: Cheng-Zhi Anna Huang, Hendrik Vincent Koops, Ed Newton-
Rex, Monica Dinculescu, Carrie J. Cai. “AI Song Contest: Human-AI
Co-Creation in Songwriting”, 21st International Society for Music Infor-
mation Retrieval Conference, Montréal, Canada, 2020.

human-AI experiences were enabled by major advances in
machine learning and deep generative models [18, 65, 67],
many of which can now generate coherent pieces of long-
form music [17, 29, 38, 54].

Although substantial research has focused on improving
the algorithmic performance of these models, much less is
known about what musicians actually need when songwrit-
ing with these sophisticated models. Even when compos-
ing short, two-bar counterpoints, it can be challenging for
novice musicians to partner with a deep generative model:
users desire greater agency, control, and sense of author-
ship vis-a-vis the AI during co-creation [44].

Recently, the dramatic diversification and proliferation
of these models have opened up the possibility of leverag-
ing a much wider range of model options, for the potential
creation of more complex, multi-domain, and longer-form
musical pieces. Beyond using a single model trained on
music within a single genre, how might humans co-create
with an open-ended set of deep generative models, in a
complex task setting such as songwriting?

In this paper, we conduct an in-depth study of what peo-
ple need when partnering with AI to make a song. Aside
from the broad appeal and universal nature of songs, song-
writing is a particularly compelling lens through which
to study human-AI co-creation, because it typically in-
volves creating and interleaving music in multiple medi-
ums, including text (lyrics), music (melody, harmony, etc),
and audio. This unique conglomeration of moving parts
introduces unique challenges surrounding human-AI co-
creation that are worthy of deeper investigation.

As a probe to understand and identify human-AI co-
creation needs, we conducted a survey during a large-scale
human-AI songwriting contest, in which 13 teams (61 par-
ticipants) with mixed (musician-developer) skill sets were
invited to create a 3-minute song, using whatever AI al-
gorithms they preferred. Through an in-depth analysis of
survey results, we present findings on what users needed
when co-creating a song using AI, what challenges they
faced when songwriting with AI, and what strategies they
leveraged to overcome some of these challenges.

We discovered that, rather than using large, end-to-end
models, teams almost always resorted to breaking down
their musical goals into smaller components, leveraging
a wide combination of smaller generative models and re-
combining them in complex ways to achieve their creative
goals. Although some teams engaged in active co-creation
with the model, many leveraged a more extreme, multi-
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stage approach of first generating a voluminous quantity
of musical snippets from models, before painstakingly cu-
rating them manually post-hoc. Ultimately, use of AI sub-
stantially changed how users iterate during the creative
process, imposing a myriad of additional model-centric
iteration loops and side tasks that needed to be executed
alongside the creative process. Finally, we contribute rec-
ommendations for future AI music techniques to better
place them in the music co-creativity context.

In sum, this paper makes the following contributions:

• A description of common patterns these teams used
when songwriting with a diverse, open-ended set of
deep generative models.

• An analysis of the key challenges people faced
when attempting to express their songwriting goals
through AI, and the strategies they used in an attempt
to circumvent these AI limitations.

• Implications and recommendations for how to better
design human-AI systems to empower users when
songwriting with AI.

2. RELATED WORK

Recent advances in AI, especially in deep generative mod-
els, have renewed interested in how AI can support mixed-
initiative creative interfaces [16] to fuel human-AI co-
creation [27]. Mixed initiative [32] means designing in-
terfaces where a human and an AI system can each “take
the initiative” in making decisions. Co-creative [43] in this
context means humans and AI working in partnership to
produce novel content. For example, an AI might add to
a user’s drawing [20, 49], alternate writing sentences of a
story with a human [14], or auto-complete missing parts of
a user’s music composition [4, 33, 37, 44].

Within the music domain, there has been a long his-
tory of using AI techniques to model music composi-
tion [22, 30, 52, 53], by assisting in composing counter-
point [21, 31], harmonizing melodies [13, 42, 50], more
general infilling [28, 34, 40, 60], exploring more adventur-
ous chord progressions [26, 36, 48], semantic controls to
music and sound generation [11, 23, 35, 62], building new
instruments through custom mappings [24], and enabling
experimentation in all facets of symbolic and acoustic ma-
nipulation of the musical score and sound [3, 7].

More recently, a proliferation of modern deep learning
techniques [8,9] has enabled models capable of generating
full scores [39], or producing music that is coherent to both
local and distant regions of music [38, 54]. The popular
song form has also been an active area of research to tackle
modeling challenges such as hierarchical and multi-track
generation [51, 56, 63, 69].

Despite significant progress in deep generative mod-
els for music-making, there has been relatively little re-
search examining how humans interact with this new class
of algorithms during co-creation. A recent study on this
topic [44] found that deep learning model output can feel
non-deterministic to end-users, making it difficult for users
to steer the AI and express their creative goals. Recent

work has also found that users desire to retain a certain
level of creative freedom when composing music with
AI [25, 44, 64], and that semantically meaningful controls
can significantly increase human sense of agency and cre-
ative authorship when co-creating with AI [44]. While
much of prior work examines human needs in the context
of co-creating with a single tool, we expand on this emerg-
ing body of literature by investigating how people assem-
ble a broad and open-ended set of real-world models, data
sets, and technology when songwriting with AI.

3. METHOD AND PARTICIPANTS

The research was conducted during the first three months
of 2020, at the AI Song Contest organized by VPRO [66].
The contest was announced at ISMIR in November 2019,
with an open call for participation. Teams were invited to
create songs using any artificial intelligence technology of
their choice. The songs were required to be under 3 min-
utes long, with the final output being an audio file of the
song. At the end, participants reflected on their experi-
ence by completing a survey. Researchers obtained con-
sent from teams to use the survey data in publications. The
survey consisted of questions to probe how teams used AI
in their creative process:

• How did teams decide which aspects of the song to
use AI and which to be composed by musicians by
hand? What were the trade-offs?

• How did teams develop their AI system? How did
teams incorporate their AI system into their work-
flow and generated material into their song?

In total, 13 teams (61 people) participated in the study.
The teams ranged in size from 2 to 15 (median=4). Nearly
three fourths of the teams had 1 to 2 experienced mu-
sicians. A majority of teams had members with a dual
background in music and technology: 5 teams had 3 to
6 members each with this background, and 3 teams had 1
to 2 members. We conducted an inductive thematic anal-
ysis [2, 5, 6] on the survey results to identify and better
understand patterns and themes found in the teams’ sur-
vey responses. One researcher reviewed the survey data,
identifying important sections of text, and two researchers
collaboratively examined relationships between these sec-
tions, iteratively converging on a set of themes.

4. HOW DID TEAMS CO-CREATE WITH AI?

The vast majority of teams broke down song composition
into smaller modules, using multiple smaller models that
align with the musical building blocks of a song, before
combining their results: “So my workflow was to build the
song, section by section, instrument by instrument, to as-
semble the generated notes within each section to form
a coherent whole” (T12). A few teams first attempted
to use end-to-end models to generate the whole song at
once, such as through adversarial learning from a corpus
of pop song audio files (T6) or through generating an au-
dio track using SampleRNN [47] (T13). However, they
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Music building blocks Models & techniques

Lyrics GPT2, LSTM, Transformer

Melody CharRNN, SampleRNN, LSTM + CNN, WaveNet + LSTM, GAN, Markov model
Harmony LSTM, RNN autoencoder, GAN, Markov model
Bassline LSTM + CNN, WaveNet + LSTM, GAN
Drums DrumRNN, Neural Drum Machine, SampleRNN, Markov model
Multi-part MusicVAE trio (melody, bass, drums), MiniVAE trio, Coconet/Coucou (4-part counterpoint),

MusicAutobot (melody, accompaniment), Transformer (full arrangement)
Structure Markov model

Vocal synthesis WaveNet, SampleRNN, Vocaloid, Sinsy, Mellotron, Emvoice, Vocaloid, custom vocal assistant
Instrument synthesis SampleRNN, WaveGAN, DDSP

Table 1. Overview of musical building blocks used by teams.

quickly learned that they were unable to control the model
or produce professional quality songs, and thus turned to
the modular approach instead. In the following sections,
we summarize how teams used modular building blocks,
combined and curated them, and in some cases more ac-
tively co-created with AI to iterate on the outcomes.

4.1 Leveraging modular musical building blocks

Overall, teams leveraged a wide range of models for musi-
cal components such as lyrics, (vocal) melody, harmony,
bassline, drums, arrangement, and vocal and instrument
synthesis. Table 1 shows an overview of models used for
each song component, and Figure 1 illustrates how the
13 teams co-created with AI along these different compo-
nents. The number of unique model types used by teams
ranged from 1 to 6 (median 4). Some teams used the same
type of model for modeling different song components.

All teams used AI to generate lyrics and melodies, and
more than half of the teams synthesized vocals for parts of
the song. Some of these decisions were due to model avail-
ability and existing levels of model performance. For ex-
ample, teams almost always generated lyrics using AI be-
cause high-performing models like GPT-2 [55] along with
a fine-tuning script were readily available.

Teams with professional musicians often chose to only
generate lyrics and melodic lines, in order to leave enough
creative space to musicians to decide how the various lines
can be put together and to arrange the song in their own
style (T5, 8). One exception is T3 who generated a lead
sheet with lyrics, melody and harmony.

Teams with more ML and less music expertise opt for
minimal arrangements (T10, 6, 9), and often used multi-
part models because they could generate melody, harmony,
bass, drums together in a coherent way, providing teams
with larger building blocks to work with. In one extreme
case, the team was able to generate all sections of their
song by traversing the latent space of MusicVAE (T9) (see
“Bridging sections through latents" below for more detail).

4.2 Combining building blocks

Teams leveraged many strategies for combining outputs
of smaller models, piecing together the musical building

Figure 1. An overview of how 13 teams co-created with AI
in songwriting. Each column shows whether each song’s
component was musician composed, AI generated then hu-
man curated, or both. Nearly all teams manually aligned
AI generated lyrics and melody, except teams in the first
three columns. T5 used a two-stage pipeline by first gen-
erating lyrics and melody separately, then algorithmically
matching them up using their stress patterns. T10 first gen-
erated lyrics, and then conditioned on lyrics to generate
melody. T1 jointly modeled lyrics and melody, generat-
ing syllables and notes in an interleaving fashion. T12,
8, 4, 7 all generated melodic lines first, and then manu-
ally stitched them together by layering them vertically as
melody and bassline to yield harmony. In contrast, T11, 3
first generated chords, then conditioned on chords to gen-
erate melody (and bassline separately) in a pipeline. T13
iterated between conditioning on melody to jointly gener-
ate the other parts and vice versa. T2, 6 and 9 focused on
models that could jointly generate multiple parts at once.

blocks to form a coherent song. These ranged from manu-
ally combining individual components, to using heuristics
to automatically pair them up, to creating a pipeline be-
tween models, to adopting models that jointly model mul-
tiple components at once.

Stitching Many teams manually “stitched” together
machine generated material, with the result informing the
manual composition of other musical components. In
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one team, a musician “selected, tweaked, and weaved AI-
generated melody, chords and drum parts into a ballad
song form”, while another musician wrote the bassline
“that seemed more or less implied by the AI materials”
(T7). This is echoed by another team, who composed the
accompaniment “based on chordal movements predicted
by the melodic fragments” (T5). Several teams layered
melodic lines to yield harmony (T1, 12, 8, 4).

Pipelines Several teams leveraged model pipe-lining,
feeding the output of one model into the input of another
model. To generate melody that aligns well with lyrics,
one team first used GPT-2 to generate lyrics, then a lyric-
conditioned model to generate melody [68] (T10). One
team decomposed melody generation into two steps, first
using a LSTM to generate rhythm as note onset patterns,
and then a CNN to assign a pitch to each onset (T8). While
many teams “stitched” together melodic lines to create har-
mony, two teams first generated chords and then melody
(and bassline) (T11 and T13). Pipeline approaches allowed
teams to refine the output at each intermediate stage before
passing content into the next model.

Joint modeling To generate multiple parts together,
several teams adopted models such as MusicVAE trio [56],
Coconet [34], MusicAutobot [61] or Transformers that are
trained to jointly model multiple instrumental parts (T13,
2, 6, 9). One team experimented with jointly modeling
notes and syllables from pairs of melodies and lyrics, but
found it “very hard to concurrently generate semantically
meaningful lyrics and a melody that is not aimless” (T1).

4.3 Generate then curate

A common approach was to generate a large quantity of
musical samples, followed by automatically or manually
curating them post-hoc. Teams took a range of approaches
to curating the large quantity of results, ranging from
brute-force manual curation, to a two-stage process of first
filtering with AI, then curating manually.

Generation Often, teams used models to generate a
large volume of samples to choose from. For instance, one
team used their pipeline LSTM + CNN model to gener-
ate over 450 melodies and basslines (T8). Another team
generated 10K lines of death metal lyrics (T13).

Manual curation While curating, teams were often
looking for the key musical themes or motifs to use for
their song. For example, one team used MusicVAE to gen-
erate several combinations of lead, bass, and drums, and
“handpicked the most appealing” version to serve as their
verse (T2). Another team was looking for a small, catchy
snippet or “earworms" to flesh out the music (T11).

Two-stage curation A few teams first used automated
methods to narrow down the choices, before manually se-
lecting what would fit best in their song. For example,
one team used a “catchiness” classifier trained on rank-
ings of songs to filter melodies before handing them to an
artist (T8). Another team curated their generated mate-
rial by first algorithmically matching up the stress patterns
of lyrics and melodies to make sure the material could be
more immediately useful (T5).

Several teams found the process of generating and cu-
rating painstaking, or similar to a difficult puzzle (T1).
However, one team described this massive generation pro-
cess as exhilarating, or like “raging with the machines"
(T5). They most appreciated the unexpected surprises, and
actively engaged with this firehose of raw, AI-generated
material: “We couldn’t resist including as much of the
good and quirky machine output as possible...makes it
much less repetitive than much of the music we might pro-
duce as humans. We really enjoyed having this firehose of
generative capability...its constantly moving nature" (T5).

4.4 Active co-creation

Some teams co-created music with AI in a more blended
manner, where the model outputs influenced human com-
posing and vice versa, similar to how human musicians
might work together to write a song.

A few teams used AI-generated output as an underlying
foundation for composing on top of, such as improvising a
melody over AI-generated chords: “we played the chords,
and all of us around the table hummed along until we got
to a simple and catchy melody” (T11). Others took the AI
output as raw material generated in a predefined structure,
and manually composed an underlying beat (T8).

Others took AI output as an initial seed for inspiration
and further elaboration. For example, one team trained
SampleRNN on acappellas, which generated nonsensical
output similar to babbling. A musician then tried to “tran-
scribe” the words and the melody, and sang along with it.
“She found sections that sounded like lyrics. She wrote
those lyrics down and sang them. She spent a day riffing
on those lyrics, building a dialogue". These riffs and words
fueled the formation of the larger story and song (T13).

For one participant, working with the AI was like jam-
ming with another musician, an active back and forth pro-
cess of priming the AI with chord progressions, hearing AI
output, riffing on that output, then using those new ideas to
seed the AI again (T12).

One team described making some deliberate decisions
about how much agency to provide the AI vs. themselves
as artists. To preserve the AI’s content, an artist tried to
only transpose and not “mute” any of the notes in two-bar
AI-generated sequences, as he chose which ones to stitch
together to align with lyrics. However, to bring the artist’s
own signature as a rapper, he decided to compose his own
beat, and also improvise on top of the given melodies freely
with a two-syllable word that was made up by ML (T8).

5. TEAMS OVERCOMING AI LIMITATIONS

In the previous section, we described the ways in which
participants co-created with AI. Although teams made
some headway by breaking down the composition process
into smaller models and building blocks, we observed a
wide range of deeper challenges when they attempted to
control the co-creation process using this plethora of mod-
els. In this section, we describe participants’ creative cop-
ing strategies given these challenges, and the strategies
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they used to better direct the co-creation process.

5.1 ML is not directly steerable

Due to the stochastic nature of ML models, their output
can be unpredictable. During song creation, teams lever-
aged a wide range of strategies in an attempt to influence
model output, such as through data during fine-tuning, or
through input or conditioning signals during generation.
Below, we describe the most common patterns observed:

Fine-tuning After experimenting with a model, many
teams tried to influence the mood or style of the generated
content by fine-tuning models on a smaller dataset. For
example, teams fine-tuned GPT-2 with lyrics from uplift-
ing pop songs to German death metal (T13), in order to
steer the generation towards phrase structures more com-
mon in lyrics and also sub-phrases that reflect the desired
sentiment and style.

Priming While co-creating, teams often desired to
create musical content in a particular key, chord, contour,
or pitch range. To do so, many attempted to reverse en-
gineer the process by priming the model’s input sequence
using music containing the desired property, in the hopes
that it would produce a continuation with similar character-
istics: “I found that I could control the generation process
by using different kinds of input. So if I wanted a sequence
that is going upward, I would give that kind of input. If I
wanted the model to play certain notes, I would add those
notes in the input pattern” (T12). This seemingly simple
way of requesting for continuations led to a wide range of
controls when used creatively.

To further direct content in lyrics, a team used spe-
cific words to start off each sentence (T5). Another team
wondered “can pop songs convey insightful messages with
only two words?”, and put together a verse with fre-
quent bigrams from that dataset, such as “my love”, “your
heart”. They entered this verse through the TalkToTrans-
former [41] web-app interface as context for GPT-2 to gen-
erate the next verses (T11).

Interpolating Models such as MusicVAE provide a
continuous latent space that supports interpolating between
existing sequences to generate new sequences that bear
features of both [58]. Some teams leveraged this latent
space as a way to explore. For example, one participant
found by chance that “interpolating between really simple
sequences at high temperatures would end up giving me
these really cool baseline sequences” (T12).

5.2 ML is not structure-aware

Because large, end-to-end models were not easily decom-
posable into meaningful musical structures, most teams
used multiple smaller, independent models. Yet, these
smaller, independent ML models are not able to take into
account the holistic context of the song when generating
local snippets. To address this, users created their own
workarounds to fill in this contextual gap, by arranging and
weaving these independent pieces into a coherent whole.

Creating an overall song structure To create a back-
bone for the song, some teams used their musical knowl-

edge to first curate chord progressions that can serve well
for each song section (i.e. verse, chorus). One team then
used a conditioned model (pretrained to be conditioned on
chord progressions) to generate melody and basslines that
would go well with those chords (T3).

Creating contrast between sections The verse and
chorus sections of a song often carry contrast. However,
participants did not have a direct way to express this desire
for structured contrast while preserving overall coherence
between verse and chorus. To address this, one team used
their verse as a starting point to generate various contin-
uations to the melody and bass lines, and finally chose a
variation for the chorus section (T2). Another team used
similar priming approaches but used different temperatures
to generate the verse and chorus in order to “add some
randomness into the generation” (T12). These approaches
gave users a way to manually create structured variety.

Rewriting to add variation Rewriting allows one
to generate new material while borrowing some structure
from the original material. For example, one team was able
to generate a “darker version” of the chorus of another
song by rewriting it multiple times, alternating between re-
generating the melody conditioned on the accompaniment,
and then re-generating the accompaniment conditioned on
the melody. To create a coherent song structure, the team
initially attempted to “repeat the same rave section twice",
but later “realized that was boring”. The team then de-
cided to vary how the second section ended by reharmo-
nizing the melody with a new flavor: “Coconet is great at
reharmonizing melodies with a baroque flavor. We entered
in the notes from our rave chorus. After a few tries, it made
this awesome extended cadence” (T13).

Bridging sections through latents One team devised
an unusual strategy for connecting different sections of a
song in a meaningful way (T9). They first trained multi-
ple miniVAEs [19], one for each section of the song (e.g.
intro, verse, chorus or genre such as rock and pop). They
then composed the song by computing the “shortest path”
through these latent spaces, allowing the sections to share
elements in common with each other, despite each being
distinctive. The genre miniVAEs also made style transfer
possible by interpolating an existing trio towards their la-
tent areas, allowing them to tweak the style of each section.

5.3 ML setup can interfere with musical goals

A logistical hurdle faced by teams was the significant setup
and customization issues encountered to even start com-
posing with a model. Aside from musical considerations,
many teams chose or abandoned models based on what
was available out-of-the-box, such as pre-trained check-
points, fine-tuning scripts, scripts for retraining on a dif-
ferent dataset, data pre-processing scripts. In addition,
different models expected different types of music repre-
sentation as input (e.g. MIDI, piano roll, custom), adding
additional pre-processing overhead to begin experimenting
with them. To decrease time spent model wrangling, large
teams sometimes divide-and-conquered, exploring several
models in parallel to see which worked best. Ultimately,
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teams’ co-creation process involved navigating not only
their musical goals, but also the logistical costs and ben-
efits of using one model or another.

6. DISCUSSION

6.1 Decomposeable and context-aware modeling

Writing a song involves composing multiple sections, and
multiple vocal and instrumental parts that all need to
work well together as a whole. Because end-to-end mod-
els lacked meaningful hierarchical structures, and because
smaller models lacked global awareness, participants often
needed to reverse engineer a multitude of models, apply-
ing heuristics and domain knowledge to approximate high-
level structure or to achieve desired musical effects. To
ameliorate this process, one approach could be to infuse
smaller models with more context-awareness, and expos-
ing the common ways that they can be customized through
user-facing controls. For example, a melody model could
allow users to express whether they are creating a verse
as opposed to a chorus, or whether they would like it to
contrast with the next section. Another possibility is to
design end-to-end models to have intermediate represen-
tations that align with the musical objects that musicians
already know how to work with. The sweet spot is proba-
bly a hybrid that combines the flexibility of smaller models
with the benefits of global context in end-to-end modeling.

6.2 AI-defined vs. User-defined building blocks

The design of ML models for music involves a series of up-
stream decisions that can have a large impact on how mu-
sicians think about music when they co-create with these
models downstream. Whereas regular songwriting often
starts with an initial spark of a human idea, in this work
we found that the practical availability and limitations of
AI tools were instead key drivers of the creative process,
defining the scope of what’s musically legitimate or pos-
sible. For example, most teams broke down songwriting
into lyrics, melody, chords, etc., in part because these mod-
els were readily available. Yet, there are also other mu-
sic building blocks that do not have corresponding, ready-
made generative modsels (e.g. motif, verse, chorus, coda,
etc.) or that currently are not treated as separate, first-class
building blocks in deep models (e.g. rhythm, pitch). Like-
wise, a musician’s creative thought process can be uninten-
tionally influenced by the order of steps taken to fine-tune,
condition, prime, and apply a model. In the future, the
design of ML models should be coupled with a more care-
ful consideration of what workflows and building blocks
end-users already use in their existing practice, and per-
haps start with those as first-class principles in guiding the
design of AI systems.

6.3 Support for parallel music and ML exploration

A central aspect of the creative process involves a “flare
and focus" [10] cycle of ideating, exploring those ideas,
selecting ideas, then rapidly iterating. We found that a key

challenge of human-AI co-creation was the need to juggle
not only this creative process, but also the technological
processes imposed by the idiosyncrasies and lack of steer-
ability of learning algorithms. For instance, while ideating
motifs for a song, participants needed to carry out a large
additional burden of sub-tasks, such as selecting which
combination of models to use, re-training or conditioning
them as necessary, chaining them together, and “gluing"
their outputs together. In essence, the typical “flare and
focus" cycles of creativity were compounded with a paral-
lel cycle of having to first explore and curate a wide range
of models and model outputs (Figure 2). While some of
these model-wrangling tasks led to new inspiration, many
interfered with the rapid-iteration cycle of creativity.

Figure 2. Parallel music and ML feedback loops in
human-AI co-creative songwriting.

These issues raise important questions around how best
to support users in juggling the dual processes of creative
and technological iteration cycles. One approach is to have
ML models readily available to musicians in their natu-
ral workflows. For example, Magenta Studio [57] makes
available a suite of model plug-ins to music production
software such as Ableton Live [1], and Cococo [44] allows
users to semantically steer a model directly in its user inter-
face. Beyond this, human-AI interfaces could scaffold the
strategic part of the model exploration and selection pro-
cess by surfacing effective model combinations (e.g. using
general infilling models for rewriting or to reharmonize an-
other generated melody) or fruitful workflows (e.g. match-
ing lyric and melody stress patterns), so that new users
can benefit from past users’ experiences. Reducing this
overhead of model-based decisions could empower users
to more easily prototype their creative ideas, accelerating
the feedback and ideation cycle.

7. CONCLUSION

We conducted an in-depth examination of how people
leverage modern-day deep generative models to co-create
songs with AI. We found that participants leveraged a
wide range of workarounds and strategies to steer and as-
semble a conglomeration of models towards their creative
goals. These findings have important implications for how
human-AI systems can be better designed to support com-
plex co-creation tasks like songwriting, paving the way to-
wards more fruitful human-AI partnerships.
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ABSTRACT

For recommending songs to a user, one effective approach
is to represent artists and songs with latent vectors and
predict the user’s preference toward the songs. Although
the latent vectors represent the characteristics of artists and
songs well, they have typically been used only for comput-
ing the preference score. In this paper, we discuss how
we can leverage these vectors for realizing applications
that enable users to search for songs from new perspec-
tives. To this end, by embedding song/artist vectors into
the same feature space, we first propose two concepts of
artist-song relationships: overall similarity and prominent
affinity. Overall similarity is the degree to which the char-
acteristics of a song are similar overall to the characteris-
tics of the artist; while prominent affinity is the degree to
which a song prominently represents the characteristics of
the artist. By using Last.fm play logs for two years, we an-
alyze the characteristics of the concepts. Moreover, based
on the analysis results, we propose three applications for
song search. Through case studies, we demonstrate that
our proposed applications are beneficial for searching for
songs according to the users’ various search intents.

1. INTRODUCTION

Embedding songs into a feature space is beneficial for re-
alizing various applications for music information retrieval
(MIR). For example, by using tags of each song, songs can
be embedded into a tag-based feature space [1]; this en-
ables a user to search for similar songs of her favorite song.
In another example, by embedding songs into the Arousal-
Valence space [2] according to their audio features [3], a
user can search for the song with the highest Arousal value
from her favorite artist’s songs. The same can be said for
artists; by embedding artists into a feature space based on
the topics of lyrics, artists similar to a user’s favorite artist
in terms of topic similarity can be retrieved [4].

Embedding heterogeneous data into a feature space is
also useful for MIR tasks: song recommendations for
playlists by embedding tags and songs [5, 6], comput-
ing tag similarity by embedding artists and tags [7], etc.

c© Kosetsu Tsukuda, Masataka Goto. Licensed under
a Creative Commons Attribution 4.0 International License (CC BY
4.0). Attribution: Kosetsu Tsukuda, Masataka Goto, “Analysis of
Song/Artist Latent Features and Its Application for Song Search”, in
Proc. of the 21st Int. Society for Music Information Retrieval Conf.,
Montréal, Canada, 2020.
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Figure 1. Overview of our proposed ideas: (a) embed-
ding artists’ latent vectors and songs’ latent vectors into
the same feature space and (b) concepts of overall similar-
ity and prominent affinity.

In spite of the potential to embed heterogeneous data,
there have been few studies that have embedded songs and
artists [8]. If both songs and artists are embedded into the
same feature space, greater variety of MIR applications can
be realized. For example, given an artist, we can search for
songs that have similar characteristics to those of the artist
(i.e., songs whose feature vectors are close to the feature
vector of the artist).

To realize this, we use Factorization Machines (FM) [9],
which is an item recommendation technique. By using
FM, each song, user, and artist can be represented by K-
dimensional latent vectors. Although such vectors are usu-
ally used to compute a user’s preference toward a song, we
leverage the latent vectors of songs and artists to embed
songs and artists into the same feature space (Fig. 1 (a)).

In the embedded feature space, we propose two con-
cepts of artist-song relationships: overall similarity and
prominent affinity. Suppose the vector’s direction of artist
a1 in Fig. 1 (b) represents the sadness. The length of the
vector indicates the degree of sadness. In this case, song
s1 has almost the same degree of sadness and s1 is simi-
lar overall to a1. On the other hand, song s2 has a higher
degree of sadness. This means that s2 prominently repre-
sents a1’s characteristics and has a higher prominent affin-
ity with a1 in terms of sadness. We can recommend s1 and
s2 to a user as a1’s characteristic songs because of the high
overall similarity and the high prominent affinity, respec-
tively. Such a recommendation would be useful when the
user listens to one of a1’s songs for the first time because
she can decide whether to listen to a’s other songs after lis-
tening to a characteristic song of a1. By using these con-
cepts, we can realize not only such song recommendations
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but also various applications for MIR, as in Section 5.
Our main contributions in this paper are as follows.

• We propose the concepts of overall similarity and
prominent affinity between an artist and a song by
leveraging their latent vectors learned through FM
(Section 3).

• By using Last.fm play logs for two years, we show var-
ious characteristics of overall similarity and prominent
affinity. For example, we reveal that an artist’s popu-
lar songs tend to have high prominent affinity with the
artist (Section 4).

• We demonstrate that the concepts of overall similar-
ity and prominent affinity can be used to realize vari-
ous applications for MIR. Specifically, we show three
applications: familiarity-oriented search, typicality-
oriented search, and analogy search (Section 5).

2. RELATED WORK

2.1 Matrix Factorization for Song Recommendations

Matrix Factorization (MF) [10] has been widely used for
item recommendations. In the context of song recom-
mendations, too, the effectiveness of MF has been re-
ported [11–14]. One of the characteristics of MF for song
recommendations is that each user and song are repre-
sented by K-dimensional latent vectors. This enables the
model to learn a user’s latent preference toward songs. Al-
though MF typically considers interactions between users
and songs, Factorization Machines (FM) [9] can include
side information in addition to information about users and
songs. Side information can be an artist, category of a
song, and even the weather when a user listens to a song.
Because of such flexibility, FM has also been used for song
recommendations [15–18]. The idea of using artist infor-
mation in FM for song recommendations has already been
proposed [15, 16]; in this case, each user, song, and artist
are represented by K-dimensional latent vectors.

Although such latent vectors in FM represent the char-
acteristics of users, songs, and artists well, they have typ-
ically been used for computing a user’s preference score
toward a song and generating a personalized ranked list of
songs for each user. Different from existing studies, we
analyze latent vectors of songs and artists based on new
relationships between artists and songs (overall similarity
and prominent affinity) and show their potential to imple-
ment MIR applications.

2.2 Heterogeneous Embedding for MIR

The usefulness of embedding heterogeneous data into a
feature space has been reported in various MIR tasks,
where data has been embedded by a Markov-model-based
method [5, 19], co-occurrence-based method [20], etc. For
example, by embedding tags and songs, song recommen-
dations for playlists have been realized [5, 6]. Other ex-
amples include computing tag similarity by embedding
artists and tags [7], retrieving songs by words by embed-
ding songs and words in playlist titles [20], and visualizing

the time-dependent listening preferences of a population
by embedding users and songs [19]. Our study is differ-
ent from theirs in that we embed artists and songs into a
feature space.

The study closest to ours is that by Weston et al. [8].
They proposed a method for embedding artists and songs
into a feature space and solved tasks such as predicting
songs for a given artist and retrieving similar songs for a
given song. To embed songs, their method requires audio
data for all songs. In contrast, we use users’ play logs.
Although comparing the embedding accuracy of these two
approaches is beyond the scope of this paper, our approach
using play logs has an advantage over their approach in
terms of the applicability of insights into the MIR com-
munity because various kinds of large play logs are easily
accessible [21–27] compared to the accessibility of large
audio data.

2.3 MIR Applications for Song Search

In the MIR community, various kinds of applications for
song search have been proposed. These applications have
enabled users to more easily find their desired songs and
search for songs from a new perspective. For example,
query by humming [28–34] and query by singing [35–38]
enable users to search for songs even when they do not
know the song title. Similarity-based song search is also
beneficial for searching for new songs that are similar to
a user’s favorite song, where similarity between songs is
measured by low-level acoustic features [39, 40], voice
timbres of vocals [41], tags [1], and a combination of these
characteristics [42]. When a user has a specific search in-
tent, searching for songs using metadata [43,44] and words
in lyrics [45] is also helpful to find her desired songs.

In this paper, we propose two concepts of artist-song
relationships. These concepts can be used to search for an
artist’s characteristic songs, as we will show in Section 4.3.
In addition, in Section 5, we demonstrate application ex-
amples that can be realized by leveraging these concepts
and latent vectors of artists and songs. Our proposed ap-
plications are also helpful for searching for users’ desired
songs and new songs. We believe our study is beneficial
for other researchers to implement MIR applications based
on our proposed concepts.

3. OVERALL SIMILARITY AND PROMINENT
AFFINITY

In this section, we first describe how to generate latent vec-
tors of artists and songs through FM. We then propose the
concepts of overall similarity and prominent affinity.

3.1 Notation

Let U , I, andA denote the sets of users, songs, and artists,
respectively. I+

u represents the set of songs preferred by
user u ∈ U . Following Lim et al. [46], we define the songs
played ≥ µ times by u as the preferred songs of u. By
using the data, we first aim to accurately generate a per-
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sonalized ranked list of songs for each user u from I \ I+
u ,

which is a set of songs not included in u’s preferred songs.

3.2 FM for Song Recommendation

FM [9] is a method for predicting a user’s preference to-
ward an item based on MF [10]. A typical MF deals with
only interactions between users and items; while in FM,
side information (e.g., the artist or category of a song) can
also be included in the model. By considering artist infor-
mation, we can extract new relationships between artists
and songs, as we will describe in Section 3.3. Below, we
describe FM considering artist information.

In FM, user u, song s, and artist a have K-dimensional
latent vectors νu, νs, and νa, respectively. The preference
score of user u toward song s based on the second-order
estimator of FM is computed with the following model:

x̂us = α+βu+βs+βas+〈νu,νs〉+〈νu,νas〉+〈νas ,νs〉,
(1)

where α is the global offset, as is the artist of s, and βu, βs,
and βas

are the user/song/artist bias terms. As can be seen
in the model, the preference score is computed by a user’s
affinity with a song (〈νu,νs〉), user’s affinity with an artist
(〈νu,νas〉), and artist’s affinity with a song (〈νas ,νs〉).
Regarding the last term 〈νas ,νs〉, if artist as tends to sing
calm songs and song s is also calm, the value of 〈νas ,νs〉
becomes high; while if s is exciting music, the value be-
comes low. Note that because a song’s popularity is re-
flected in βs (i.e., more popular songs tend to have higher
values of βs), popular songs do not always have high val-
ues of 〈νas ,νs〉. Rather, the value of 〈νas ,νs〉 is deter-
mined purely by the affinity between a and s.

Note that although we use simple FM just by adding
artist information, our goal in this paper is not to improve
recommendation accuracy. Rather, we aim to study how to
leverage latent vectors of songs and artists. Although this
simple FM can learn reliable latent vectors because it can
achieve high enough recommendation accuracy, as we will
report in Section 4.2, we can adopt more sophisticated FM
(e.g., FM considering song co-occurrence [47] and audio
information [11]); we leave this for future work.

We adopt Bayesian Personalized Ranking (BPR) [48] to
learn latent vectors. BPR is a pairwise ranking optimiza-
tion framework and is designed to deal with users’ implicit
consumption behaviors such as playing a song rather than
explicit ones such as rating. In BPR, the training set D
used for optimizing parameters is defined as follows:

D = {(u, i, j) | u ∈ U ∧ i ∈ I+
u ∧ j ∈ I \ I+

u }.
That is, a triad (u, i, j) means that user u prefers song i to
song j. The optimization criterion for D is given by:∑

(u,i,j)∈D

lnσ(x̂uij)− λΘ‖Θ‖2, (2)

where σ is the sigmoid function, Θ = {βs, βa,νu,νs,νa}
represents all model parameters, and λΘ is a regularization
hyperparameter. x̂uij represents the difference between
u’s preference for i and that for j, which is defined as
x̂uij = x̂ui − x̂uj . Finally, we learn the parameters by
using TensorFlow [49] with Adam optimizer [50].

3.3 Overall Similarity and Prominent Affinity

The learned model parameters are usually used for com-
puting a user’s preference score toward a song by using
Eq. 1. In this paper, we propose using the learned model
parameters (i.e., latent vectors) νa and νs for capturing the
relationships between artists and their songs. In Eq. 1, be-
cause the affinity between νa and νs is considered, the nth
(1 ≤ n ≤ K) dimension of νa and that of νs have the
same meaning. For example, if the first dimension of νa
represents the calmness, the first dimension of νs also rep-
resents the calmness of the song. Hence, we can embed νa
and νs into the same feature space, as shown in Fig. 1 (a).
In the feature space, the angle and length of a vector repre-
sents its qualitative and quantitative aspects, respectively.
Specifically, the difference of the angle between two vec-
tors represents the difference of their characteristics as a
song or artist because each dimension represents a charac-
teristic of songs and artists. While the length of a vector
represents the degree of its characteristics: if the value of
νs’s nth dimension is large, νs represents nth character-
istic well. By using the embedded feature space, we pro-
pose two concepts of the relationships between artists and
songs: overall similarity and prominent affinity.

3.3.1 Overall Similarity

Suppose artist a1’s song s1 is mapped fairly close to a1 in
the feature space, as shown in Fig. 1 (b). In this case, we
can say that s1 is similar overall to a1. Thus, we define
the closeness between an artist and a song in the feature
space as the overall similarity between them. More for-
mally, given artist a and song s, the overall similarity be-
tween a and s is computed based on the Euclidean distance
between them: fos(a, s) = 1

‖νa−νs‖+1 .
The concept of overall similarity can be used to search

for an artist’s song that represents the artist’s characteris-
tics well. Searching for such a song and listening to it
is useful to quickly understand the artist’s characteristic
songs. In particular, when a user listens to an artist’s song
for the first time, it might be helpful for her to listen to the
artist’s characteristic song and then decide if she wants to
listen to the artist’s other songs.

3.3.2 Prominent Affinity

Now suppose a1’s song s2 is mapped fairly close to the
extended position of a1 as shown in Fig. 1 (b). This means
that s2 prominently represents a1’s characteristics because
the degree of each characteristic of s2 is higher than that
of a1. Thus, we define the inner product of an artist vector
and a song vector as the prominent affinity between them.
More formally, given artist a and a’s song s, the prominent
affinity between a and s is given by fpa(a, s) = 〈νa,νs〉.

The concept of prominent affinity can be used to search
for an artist’s song that strongly represents the artist’s char-
acteristics. Similar to the overall similarity, searching for
such a song would be helpful when a user listens to an
artist’s song for the first time.
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Figure 2. Distributions of (A) distance between νs and νa, (B) angle between νs and νa, and (C) ratio of ‖νs‖ to ‖νa‖.
Each dot represents a song where songs are sorted in ascending order of the y-values in each graph.

Number of users (|U|) 84,708
Number of songs (|I|) 390,158
Number of artists (|A|) 32,448
Sum of preferred songs (

∑
u∈U |I+

u |) 18,478,304

Table 1. Dataset statistics.

4. ANALYSIS

In this section, we analyze the characteristics of overall
similarity (OS) and prominent affinity (PA).

4.1 Dataset

We use the LFM-1b dataset that includes music listening
logs on Last.fm [21]. Each listening log consists of user
ID, song ID, artist ID, and timestamp. The dataset also in-
cludes data for converting song ID and artist ID to song
name and artist name, respectively. We use logs for two
years (between 1/1/2012 and 12/31/2013). The µ in Sec-
tion 3.1 is set to five, where µ is the threshold to determine
that song s is included in I+

u when u listens to s equal to
or more than µ times. To increase the reliability of learned
model parameters, songs and artists that have been listened
to by less than 10 different users and users who have lis-
tened to less than 10 different songs are discarded. Table 1
shows the dataset statistics after the preprocessing.

4.2 Model Development

For each user, we split I+
u into training/validation/test sets.

To this end, we randomly select one preferred song (i.e.,
i ∈ I+

u ) for validation Vu and another for testing Tu [51].
All the remaining songs are used for trainingRu. The rec-
ommendation performance is evaluated by the AUC (Area
Under the ROC Curve), which is widely used to evaluate
whether model parameters are appropriately learned [52,
53]: AUC = 1

|U|
∑

u∈U
1
|Du|

∑
(i,j)∈Du

δ (x̂ui > x̂uj),
where Du = {(i, j) | i ∈ Tu ∧ j ∈ I \ I+

u }, and
δ(z) is 1 when z is true and 0 otherwise. The AUC value
ranges between 0 and 1, and a higher value represents bet-
ter performance (i.e., the model parameters are appropri-
ately learned). The hyperparameters (i.e., λΘ in Eq. 2 and
the learning rate) are tuned on a validation set in terms
of the AUC, where the hyperparameters are selected from
{0.0001, 0.001, 0.01, 0.1, 1}. We set the latent dimen-
sionality K to 50. 1 We emphasize that our goal here is
not to evaluate the recommendation accuracy of FM by
comparing with other methods. Rather, we aim to evaluate
whether the parameters in FM developed by our dataset are

1 We evaluated the AUC on the validation dataset by changing K from
10 to 100 in increments of 10. The AUC saturated when K = 50.

Rank OS PA
1 I’m So Tired Something
2 Get Back All You Need Is Love
3 The End Come Together
4 Sun King Hey Jude
5 Here Comes the Sun I Am the Walrus
6 She’s Leaving Home Lucy in the Sky with Diamonds
7 Glass Onion Eleanor Rigby
8 You Like Me Too Much A Hard Day’s Night
9 You Never Give Me Your Money I Want to Hold Your Hand

10 The Night Before Golden Slumbers

Rank OS PA
1 Minor Thing Californication
2 Police Station Scar Tissue
3 If Dani California
4 Can’t Stop Snow (Hey Oh)
5 Fortune Faded By the Way
6 Annie Wants a Baby The Adventures of Rain Dance Maggie
7 Happiness Loves Company The Zephyr Song
8 Brendan’s Death Song Brendan’s Death Song
9 Give It Away Torture Me

10 Emit Remmus Dosed

Table 2. Ranking results of songs in terms of OS and PA
(top: “The Beatles,” bottom: “Red Hot Chili Peppers”).

appropriately learned by showing that the AUC is close to
1 after the learning process.

The AUC on the test set achieved a high value: 0.973.
This result means that the model parameters and the em-
bedded feature space are appropriately learned and the
artist-song relations based on OS and PA are reliable. We
also computed the Spearman rank correlation between the
values of βs and song popularities to evaluate if βs cor-
rectly reflects song popularity, as mentioned in Section 3.2.
The popularity of song s was measured by the number of
different users who have played s. The popularity ranking
of songs are obtained by sorting them in descending order
of their popularities. For each artist, we compute the corre-
lation between the popularities of the artist’s all songs and
their values of βs. The average of the correlations over all
artists was relatively high: 0.502. When we define the pop-
ularity of artist a as the number of different users who have
played at least one of a’s songs, the average of the correla-
tions became high with increasing artist popularity: artists
whose popularities are ≥ 100 and ≥ 300 had correlation
values of 0.682 and 0.755 on average, respectively. From
these results, we can say that the bias term βs certainly re-
flects the song’s popularity, and the value of 〈νas ,νs〉 in
Eq. 1 is determined mainly by the affinity between as and
s especially for popular artists. Hereafter, the parameter
values computed in this section are used for artist latent
vectors and song latent vectors.

4.3 Analysis Results

Although we showed that the model parameters are appro-
priately learned, if most of an artist’s songs are mapped
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Rank Area (a) Area (b) Area (c) Area (d)
1 Gold on the Ceiling Have Love Will Travel Yearnin’ Can’t Find My Mind
2 Lonely Boy Same Old Thing Keep Your Hands Off Her Her Eyes Are A Blue Million Miles
3 Tighten Up I Got Mine Grown So Ugly Howlin For You
4 Little Black Submarines Run Right Back Till I Get My Way The Wicked Messenger
5 Everlasting Light Your Touch Just Got To Be The Baddest Man Alive

Table 3. Ranking results of familiarity-oriented search for “The Black Keys” in terms of PA.

very close to the artist, it would be useless to rank songs ac-
cording to the subtle difference of their positions. To con-
firm whether artists’ songs are well distributed, we evaluate
the distributions of (A) distance between νs and νa, (B)
angle between νs and νa, and (C) ratio of ‖νs‖ to ‖νa‖.
Fig. 2 shows the results. In all cases, the value distribution
is close to the Gaussian distribution. These results indi-
cate that songs are well distributed in the feature space and
it is meaningful to rank songs according to OS, which is
affected by (A), and PA, which is affected by (B) and (C).

Next, we analyze the ranked results of songs by OS/PA.
Table 2 shows the top 10 songs of “The Beatles” and “Red
Hot Chili Peppers.” Since the top ranked songs are largely
different between the two concepts, it would be meaning-
ful to generate two ranked lists so that we can show one
of them (or both of them) to a user according to her in-
tent. We can also see that the top ranked songs in PA
tend to be more popular than those in OS. To evaluate this,
we compute the Spearman rank correlation between OS-
based/PA-based song ranking and popularity-based song
ranking. As expected, the correlation of PA-based rank-
ing is high (0.577), while that of OS-based ranking is low
(-0.147). As mentioned in Section 4.2, the effect of song
popularity is eliminated by the bias terms βs. Therefore,
this high correlation of PA-based ranking is caused purely
by the characteristics of the songs: songs strongly reflect-
ing the artist’s characteristics tend to be popular.

5. APPLICATIONS

In Section 4.3, we showed how to directly use the con-
cepts of OS and PA to rank an artist’s songs. In this sec-
tion, by leveraging the concepts and learned parameters of
νa and νs, we demonstrate three applications: familiarity-
oriented search, typicality-oriented search, and analogy
search. Through these demonstrations, we show that this
paper brings reusable insights in that our proposed con-
cepts can be used for various kinds of MIR applications.

5.1 Familiarity-oriented Search

By considering PA and song popularity, an application to
search for songs according to a user’s familiarity with an
artist can be realized. As we mentioned in Section 4.3,
songs with a high PA tend to be popular, but some of them
are unpopular. Similarly, some popular songs have a low
PA. Hence, according to the degree of PA and the degree
of popularity, an artist’s songs can be classified into four
areas, as shown in Fig. 3. Searching for songs in area (a)
would be beneficial especially for a user who listens to the
artist’s song for the first time because these songs are pop-
ular and represent the artist’s typical characteristics well;
she can decide if she wants to listen to the artist’s other

High PALow PA

High popularity

Low popularity

(a) For users who
are not familiar
with the artist.

(b) For users who
want to know the
artist’s diversity.

(c) For users who
want to listen to
unexpected songs.

(d) For users who
want to become
an artist devotee.

Figure 3. Properties of songs classified by the degree of
PA and the degree of popularity.

songs by listening to the searched songs. After listening
to such songs, searching for songs in area (b) would be
useful to let her understand the diversity of the artist be-
cause area (b) includes songs that are popular but different
from the artist’s typical characteristics. Moreover, search-
ing for songs in area (c) enables her to listen to unexpected
songs in terms of the fact that the searched songs match
the artist’s typical characteristics well but are not known
by many people. Finally, searching for songs in area (d)
would be helpful for her to become an artist devotee by
listening to them.

In light of the above, given artist a, we rank all a’s songs
for each area in terms of PA as follows. For area (a), the
score of song s is computed by rap(s, Ia) + rpop(s, Ia),
where Ia is a set of all songs of a and rap(s, Ia) and
rpop(s, Ia) represent the ranks of s among Ia in terms
of AP and popularity, respectively. The songs are then
ranked in ascending order of score. For area (b), (c),
and (d), the score is given by rpop(s, Ia) − rap(s, Ia),
rap(s, Ia) − rpop(s, Ia), and −rap(s, Ia) − rpop(s, Ia),
respectively. In these areas, the songs are also ranked in
ascending order. Regarding OS, songs in each area has the
same meaning as with PA and we can also make a song
ranking for each area in the same manner as with PA.

Table 3 shows example results of the top five song rank-
ings in each area for “The Black Keys” in terms of PA. It
would be beneficial to show each ranking to a user accord-
ing to her familiarity with “The Black Keys.”

5.2 Typicality-oriented Search

Because the parameters of all artists and all of their
songs are learned by using the same optimization crite-
rion (Eq. 2), all artists and all songs can be embedded into
the same feature space. This means that given artist a, all
songs in the dataset can be ranked in terms of OS or PA.
In other words, we can search for songs that represent a’s
typical characteristics well even if they were not a’s songs.
By showing such songs to a user who is a fan of a, she
may be willing to listen to unfamiliar songs because they
are highly related to her favorite artist. This is also benefi-
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Rank OS PA
1 California Gurls / Katy Perry Circus / Britney Spears
2 Racy Lacey / Girls Aloud ...Baby One More Time / Britney Spears
3 Gimme More / Britney Spears I Wanna Go / Britney Spears
4 Cannibal / Ke$ha Hung Up / Madonna
5 Piece of Me / Britney Spears I Kissed a Girl / Katy Perry

Rank OS PA
1 Cymbal Rush / Thom Yorke Untitled / Interpol
2 Atoms for Peace / Thom Yorke The Clock / Thom Yorke
3 And It Rained All Night / Thom Yorke I’ve Seen It All / Björk
4 Convergence / Jonny Greenwood Svefn-g-englar / Sigur Rós
5 Quick Canal / Atlas Sound Kingdom of Rust / Doves

Table 4. Ranking results of typicality-oriented search (top:
“Lady Gaga,” bottom: “Radiohead”).

cial for online music streaming services because they can
expand users’ interests and let users listen to more songs.

Given artist a, when we generate a ranked list of all
songs in I in terms of OS, we compute the score of each
song by fos(a, s), which was defined in Section 3.3.1, and
rank all songs in descending order of scores. Similarly, for
PA, we use fpa(a, s), which was defined in Section 3.3.2,
and rank all songs in descending order of scores.

Table 4 shows the top five song rankings for “Lady
Gaga” and “Radiohead.” Although we do not use acous-
tic features and metadata of songs, in the case of “Lady
Gaga,” all artists in the table are female artists. Similarly,
in the case of “Radiohead,” members of the band such as
“Thom Yorke” and “Jonny Greenwood” are retrieved. In
addition, because “Radiohead” is a rock band, rock bands
such as “Interpol,” “Sigur Rós,” and “Doves” are ranked at
higher positions. These results show the potential of this
application to enable users to find new attractive songs.

5.3 Analogy Search

When a user searches for an object in an unfamiliar domain
and obtains the desired search results, it is helpful to give
an example object in her familiar domain to the search sys-
tem. This kind of search is known as analogy search and its
usefulness to search for persons [54] and restaurants [55]
has been studied. An analogy search for MIR can also be
an attractive application as follows. Suppose a user is a big
fan of “Eminem” and likes his song “Not Afraid.” She has
recently become interested in “Lady Gaga.” However, be-
cause she has little knowledge on “Lady Gaga” and there
are too many “Lady Gaga” songs, she is at a loss as to
which song she should listen to. In such a case, by using
an analogy, she can ask something like “what Lady Gaga
song corresponds to Not Afraid by Eminem?” If we can
return search results for such a query, it would be helpful
for her to try some songs of “Lady Gaga.”

In an analogy search for MIR, given a query consist-
ing of source artist as, source song ss, and target artist at,
our goal is to return at’s song st where the relation be-
tween at and st corresponds to that between as and ss. We
compute the relation between an artist and a song based on
the angle between their latent vectors and the ratio of their
lengths because they respectively represent the qualitative
and quantitative aspects of artists/songs as we described in
Section 3.3. Intuitively, if the angle between as and ss is
similar to that between at and st, and the ratio of ‖νss‖ to
‖νas‖ is also similar to that of ‖νst‖ to ‖νat‖, we regard

Query
Source artist: Madonna
Source song: Like a Prayer
Target artist: Lady Gaga

●

Rank Song title
1 Yoü and I
2 Poker Face
3 Telephone

Query
Source artist: Eminem
Source song: Not Afraid
Target artist: Lady Gaga

●

Rank Song title
1 The Edge of Glory
2 Bad Romance
3 Yoü and I

Query
Source artist: The Beatles
Source song: That Means A Lot
Target artist: Aerosmith

●

Rank Song title
1 Milk Cow Blues
2 Face
3 Temperature

Table 5. Ranking results of analogy search.

st as a good analogy search result of the query. However,
because the degree of the scatter of songs in the feature
space is different from one artist to another, we need to
normalize the angles and ratios between an artist and its
songs. Formally, given as, we first compute the angle be-
tween νas and the vector of each of as’s songs. The angles
are then normalized to fit into the interval [0, 1] by min-
max normalization. Let θss denote the normalized angle of
ss. We also compute the ratio of the length of each of as’s
songs to νas ’s length (i.e., ‖νs‖/‖νas‖ where s ∈ Ias ).
Again, min-max normalization is applied and let rss be the
normalized ratio of ss. Similarly, we compute the normal-
ized angles and ratios for each of at’s songs. The score of
st ∈ Iat for analogy search is then computed as follows:

fanalogy(as, ss, at, st) = γ|θss − θst |+ (1−γ)|rss − rst |,
where γ is a parameter to determine the weights on angle
similarity and length-ratio similarity. Finally, at’s songs
are ranked in ascending order of fanalogy(as, ss, at, st).

In Table 5, we show example results where the top three
songs are listed for each query. The value of γ is set to 0.5.
In the top table, the source song is “Like a Prayer,” which
is a signature piece for “Madonna,” and the target artist is
“Lady Gaga.” In this case, the signature pieces for “Lady
Gaga” are ranked higher. Even when the source artist is
“Eminem,” whose music is largely different from that of
“Lady Gaga,” her signature pieces are retrieved for his sig-
nature piece “Not Afraid.” When the source song is “That
Means A Lot,” which has a low PA with “The Beatles,”
songs with a low PA with “Aerosmith” are retrieved. From
these results, we can say that this application can search
for the target artist’s songs that have a similar relationship
between the source artist and the source song.

6. CONCLUSION
This paper analyzed song/artist latent features by embed-
ding them into a same feature space. Based on the analysis
results, we suggested three applications for song search.
We acknowledge a limitation of this paper in that we did
not quantitatively evaluate the search results of those appli-
cations. Nonetheless, we believe this study is worthwhile
contribution as a first step toward leveraging latent vectors
of songs and artists. In future work, we plan to quantita-
tively evaluate the usefulness of our proposed applications
by conducting user studies. We also want other researchers
to leverage the concepts of OS/PA and realize useful music
information retrieval systems.
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ABSTRACT

We analyze and identify collaboration profiles in success-
based music genre networks. Such networks are built upon
data recently collected from both global and regional Spo-
tify weekly charts. Overall, our findings reveal an increase
in the number of distinct successful genres from high-
potential markets, pointing out that local repertoire is more
important than ever on building the global music ecosys-
tem. We also detect collaboration patterns mapped into four
different profiles: Solid, Regular, Bridge and Emerging,
wherein the two first depict higher average success. These
findings indicate great opportunities for the music industry
by revealing the driving power of inter-genre collaborations
within regional and global markets.

1. INTRODUCTION

Artist collaborations are more popular than ever, as the
landscape of the music industry becomes more complex.
This widely adopted strategy is a strong force driving music
nowadays, maintaining artists’ presence and relevance in
the market. Such connections usually help artists bridge
the gap between styles and genres, overlapping new fan
bases and consequently increasing their numbers. Figure
1 illustrates this phenomenon and highlights the growing
trend in the number of collaborations within Billboard Hot
100 Charts. Although the general curve increases over time,
genres such as rap and hip-hop present a collaboration rate
higher than others (e.g., pop and rock). This contrast can be
explained by the intrinsic nature of each music genre. For
instance, rap and hip-hop artists frequently collaborate with
the pop community, mainly as featured artists. Moreover,
partnerships involving pop music may take place not only
through intra-genre collaborations but also through inter-
genres, bringing an additional dimension to their songs.

Musicians teaming up is nothing new but has risen far
beyond the norm. Remaining an industry of creative growth,
it is only natural for music (i.e., all musical scene members)

c© Gabriel P. Oliveira, Mariana O. Silva, Danilo B. Seufitelli,
Anisio Lacerda, Mirella M. Moro. Licensed under a Creative Commons
Attribution 4.0 International License (CC BY 4.0). Attribution: Gabriel
P. Oliveira, Mariana O. Silva, Danilo B. Seufitelli, Anisio Lacerda, Mirella
M. Moro, “Detecting Collaboration Profiles in Success-based Music
Genre Networks”, in Proc. of the 21st Int. Society for Music Information
Retrieval Conf., Montréal, Canada, 2020.
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Figure 1: Historical frequency of collaborative hit songs for
selected genres on Billboard Hot 100 Chart (1958 - 2020).

adapting to new conditions and redefining its layout. Not
surprisingly, the Grammy categories were tightened (from
109 to 78, in 2012) as a result of its dynamic nature. 1

That is, the notion of categories and genres are blurred as
never before. Through cross-genre collaboration, artists are
naturally venturing into new domains and working outside
of the category which they had originally been ascribed
to. Such a collaboration phenomenon may be drastically
reshaping music global environment, by challenging seg-
ments of certain genres to come up with something entirely
new [1]. Moreover, this gradual revolution is becoming
a driving force in creating a more collaborative scenario,
making music one of the most innovative art forms.

As this creative market changes, it becomes more unpre-
dictable; and doing both predictive and diagnostic analyses
in such a context remains challenging. Still, we believe
factors leading to an ideal musical partnership can be un-
derstood by exploring collaboration patterns that directly
impact its success [1–3]. Hence, we aim to unveil the
dynamics of cross-genre connections and collaboration pro-
files in success-based networks (i.e., connections formed by
genres of artists who cooperate and create hit songs). We
do so through the following research questions (RQ).

RQ1: Does the regional aspect impact on popular genres
and their hit songs?

RQ2: How has genre collaboration evolved over the past
few years?

1 Grammy Award: https://en.wikipedia.org/wiki/Grammy_Award
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RQ3: Which are the potentially intrinsic factors and indi-
cators that influence the collaboration success?

In order to answer such questions, we first model genre
collaboration in the music scenario as success-based net-
works (Section 3.1). Then, we build a novel dataset with
data from global and regional markets (Section 3.2) and
present the network science concepts and metrics required
for understanding the paper (Section 3.3). Overall, our
analyses and experiments over the networks reveal that:
(1) Individually analyzing regional markets is fundamental,

as local genres play a key role on determining hit songs
and popular artists (Section 4.1).

(2) In general, genre collaborations are increasing, with
emerging local genres hitting global success – despite
the differences in the evolution of regional markets
(Section 4.2).

(3) Genre collaborations analyses describe three significant
factors (Attractiveness, Affinity and Influence, Section
5.1) to uncover four profiles (Solid, Regular, Bridge and
Emerging, Section 5.3).

2. RELATED WORK

Genres are fundamental within the musical scenario by ag-
gregating songs that share common characteristics. Hence,
they are frequently used in the field of Music Information
Retrieval (MIR), which aims to extract relevant informa-
tion from music content. In fact, several tasks are genre-
dependent or directly related to them, such as automatic
genre classification, which has been largely studied by the
MIR community over the years [4–8]. Nonetheless, there
are also genre-aware studies assessing music source sepa-
ration [9], genre modeling [10], preferences [11], disam-
biguation/translation [12, 13], new datasets [14] and on-
tologies [15]. Network science, the core of our method-
ology, has also been used to model genres into influence
networks [2] and song communities [16].

Hit Song Science (HSS), which tackles the problem
of predicting the popularity of a given song, is also an
emerging field within MIR. Thus, different studies ana-
lyze the impact of acoustic and social features in musical
success [17–20], some of them including genre informa-
tion [21,22]. Moreover, Silva et al. [1] address collaboration
as a key factor in success, using topological properties to
detect relevant profiles in artist networks. Such an approach
is novel and promising in HSS, but it is restricted to the
artist and song levels. Therefore, studying collaboration
from a genre perspective may reveal important information
on how artists from different communities team up to make
a new hit song. To the best of our knowledge, we are the
first to build a success-based genre network and detect col-
laboration profiles within it, going deeper into the intrinsic
factors that make up a successful collaboration.

3. METHODOLOGY

This work aims to detect collaboration profiles over music
genre networks. Building a genre network (Section 3.1) re-
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Hit Songs

G1

G2 G3

(c) Genre Network

A1

A2 A3

G1 G2

G1 G2 G3

(b) Artist Network

G1
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S1

G2 G3

A2 A3
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(a) Tripartite Graph

Figure 2: Reduction from the tripartite (a) to the one-mode
Genre Collaboration Network (c). The intermediate step is
an Artist Network with genre information (b). Artists and
genres are linked when hit songs involve both nodes.

quires a proper dataset (Section 3.2), and finding its profiles
needs different metrics (Section 3.3), as described next.

3.1 Genre Collaboration Network

A Collaboration Network is usually modeled as a graph
formed by nodes (vertices) that may be connected through
edges. For example, nodes represent artists and are con-
nected by an edge if the respective pair of artists has collab-
orated in a song. Now, to analyze the interactions between
genres, we model music collaboration as a tripartite graph,
in which nodes are divided into three sets: genres, artists,
and hit songs; i.e., the minimum elements to evaluate suc-
cess. The building process of the genre network from the
tripartite model is illustrated in Figure 2. Collaborative hit
songs are sung by two or more artists, regardless of their
participation (e.g., a typical feat. or a duet). We also equally
consider all genres linked to an artist because they shape
how such an artist is seen by fans and music industry.

For analyzing the interaction between musical genres,
we reduce the tripartite model into a one-mode network
in which nodes are exclusively genres. However, such a
reduction is only possible by executing an intermediate
step: building the artist collaboration network, Figure 2(b).
In such a network, two artists are connected when both
collaborate in one or more hit songs. The genres are not
lost, as they are linked directly to the artists.

We may now build the final network by connecting the
genres of artists who collaborate in the artist network. The
edges are undirected and weighted by the number of hit
songs involving artists from both genres, Figure 2(c). Also,
self-loop edges are allowed, as there are hit songs from
artists of the same genre. For example, the song Old Town
Road 2 by Lil Nas X and Billy Ray Cyrus generates an edge
between these artists in the intermediate network; and each
of Lil Nas X’s genres (pop rap, country pop and hip hop) is
linked to Cyrus’ only genre (country) with weight 1.

3.2 Dataset Building Process

Over recent years, the world has seen a dramatic change
in the way people consume music, moving from physical
records to streaming services. Since 2017, such services
have become the main source of revenue within the global

2 #1 Song of 2019 according to Billboard Year-End Hot 100 Chart:
https://billboard.com/charts/year-end/2019/hot-100-songs
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recorded music market. In fact, streaming revenues in-
creased by 75.4% from then, reaching a total amount of
US$ 11.4 billion by the end of 2019. 3 Thus, we build our
dataset by using data from Spotify, the most popular global
audio streaming service, with more than 286 million users
across 79 markets. 4 It provides a weekly chart of the 200
most streamed songs in all its markets, and an aggregated
global chart. We collect global and regional charts from
January 2017 to December 2019, considering eight of the
top 10 5 music markets according to IFPI: United States,
Japan 6 , United Kingdom, Germany, France, Canada, Aus-
tralia, and Brazil. We also use Spotify API 7 to gather
information about the hit songs and artists present in the
charts, such as all collaborating artists within a song (since
the charts only provide the main ones) and their respective
genres, which is the core of this work. Our final dataset
contains 1,370 charts from 156 weeks, comprising 13,880
hit songs and 3,612 artists from 896 different music genres.

Then, a processing phase focuses on the artists’ genres,
because Spotify assigns a list of very specific genres to each
artist. For example, Jay-Z (one of the most popular rappers)
is assigned to both east coast hip hop and hip hop genres,
which may be described only by hip hop. To simplify
our modeling and further analyses, we choose to map all
specific genres to more embracing and well-established
super-genres. Note that the regional aspects are not lost in
such a mapping, because our analyses are made separately
for each considered market. Hence, the 896 existing genres
are now mapped into 162 super-genres. The dataset and
genre mapping are publicly available on our project page. 8

3.3 Network Science Metrics

In this work, we use well-established network science met-
rics to analyze musical collaboration. Such metrics consider
the network topological features, i.e., they relate to the net-
work structure (nodes and edges) as follows. 9

Degree and Weighted Degree. These metrics refer to the
connectivity of each node in the network. The degree of
a node is its amount of incident edges, and the weighted
degree is the sum of the edges’ weight. In our genre col-
laboration network, degree stands for the number of genre
connections, and weighted degree represents the number of
hit songs shared by both genres.
Clustering Coefficient (CC). Measures the tendency of
neighbors of a node to be connected themselves. The higher
its value, the more interconnected the node neighborhood.
Common Neighbors (CN). The number of neighbors that
a given pair of nodes has in common in a network.
Neighborhood Overlap (NO). The ratio between the com-
mon neighbors of a given pair of nodes and the union set of
their neighbors. Edges with low NO reveal local bridges in

3 IFPI Global Music Report 2019: https://gmr.ifpi.org/
4 Spotify Company Info: https://newsroom.spotify.com/company-info/
5 Data from South Korea and China was not available in Spotify.
6 The first Japanese weekly chart is from August 31, 2017.
7 Spotify API: https://developer.spotify.com/
8 Project Bàde: https://bit.ly/proj-Bade
9 For more information on such metrics, see references [23–25]

Table 1: Most popular music genres in each considered
market from 2017 to 2019.
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brazilian funk 559 156 rap 2,526 245 pop 1,704 340
dance pop 415 101 francoton 1,097 82 pop rap 1,518 139
electro 307 93 dance pop 391 119 trap 1,370 172

the network, i.e., nodes traveling in “social circles”, having
almost no common connection.
Preferential Attatchment (PA). The probability of a given
pair of nodes connecting in the future. The intuition is
the more neighbors they have, the more likely they are to
connect in the future.
Edge Betweenness (EB). The fraction of shortest paths that
go through an edge in the network. Edges with a high score
represent a bridge-like connector between two parts of the
network, and their removal may affect the communication
between others due to the lost common shortest paths.
Resource Allocation (RA). For a pair of nodes, it represents
the fraction of a resource (e.g., information) that a node can
send to another through its common neighbors.

4. EXPLORATORY ANALYSIS

We perform an exploratory analysis of the data collected in
two main steps. First, we analyze Spotify charts for each
market to detect popular genres (Section 4.1). Then, we
characterize the genre collaboration network to understand
the evolution of each market (Section 4.2).

4.1 Music Genres Overview

To answer RQ1, we analyze charts of eight markets over
three years (see Methodology) in Table 1. Each country
has its own musical inclinations, although the predominant
genres are mostly pop/pop rap, hip-hop, and rap. Such
preference may be due to the increasing number of collab-
oration songs among artists from different musical genres,
as revealed in Figure 1: growing collaborations of pop, rap,
hip-hop, and R&B in recent years. Also, except for R&B,
they are the main genres at the top-5 genre lists on most mar-
kets; i.e., such genres are among both the most collaborative
ones and the most listened on the globe. Moreover, there
are three markets with local genres on their top-5 list: Brazil
with sertanejo and brazilian funk; France with francoton;
and Japan with j-pop and j-rock. Although local, such gen-
res are potentially good choices for record companies to
encourage musical collaborations. Note local engagement
shapes the global environment, ensuring that music culture
within such countries can develop and progress.
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Table 2: Network characterization for global and three regional markets, representing the groups of countries with similar
network evolution. Underlined values are the highest metric value for a specific market throughout the considered period.

Metric Global USA (Group 1) Brazil (Group 2) UK (Group 3)
2017 2018 2019 2017 2018 2019 2017 2018 2019 2017 2018 2019

Number of genres (nodes) 72 79 89 76 73 83 58 63 61 74 76 79
Number of collabs (edges) 564 583 709 542 522 670 453 524 392 610 605 627
Average degree 15.7 14.8 15.9 14.3 14.3 16.1 15.6 16.6 12.9 16.5 15.9 15.9
Average degree (weighted) 256.9 247.4 236.7 324.6 287.9 241.4 136.1 133.0 95.3 216.5 203.6 159.5
Density 0.221 0.189 0.181 190 0.199 197 0.274 268 214 0.226 212 204
Average Clustering Coefficient 0.743 0.757 0.754 0.762 760 726 0.770 758 677 724 0.754 738
Number of self-loops 24 21 28 25 22 27 24 29 27 28 25 30

4.2 Network Characterization

After analyzing the charts, we build the genre collaboration
network for each market and year to find out how gen-
res connect to answer RQ2. With nine markets (global
and eight countries) during three years, we analyze 27 net-
works 10 . For each network, we calculate basic statistics on
its nodes and edges, as well as structural metrics (Section
3.3). Table 2 shows the results for selected markets.

First, the global genre networks reveal the world is more
open to new successful genres (number of nodes/genres
growth). Also, the number of genre connections (edges) in-
creased considerably, meaning more collaborative hit songs
are coming from artists whose genres are not linked in prior
networks, opening up new opportunities for those genres to
acquire new listeners. The networks average degree remains
stable, while its weighted value decreases over the years.
This could reveal a growth in the number of collaborations
of well-established genres with emerging ones, represented
by edges with low weight values (few hit songs). Still, such
low-degree emerging genres may become popular shortly,
expanding their collaborations to other unexplored gen-
res. For instance, k-pop connections double as it spreads
worldwide, approaching genres such as reggaeton (e.g., the
collaboration between J-Hope from BTS and Becky G in
the song Chicken Noodle Soup, September 2019).

For regional markets, we classify the countries into three
groups, according to the similarities in networks’ evolu-
tion: (i) USA and Canada; (ii) Brazil, France, Germany and
Japan; (iii) UK and Australia. As the global network, coun-
tries in the first group have an increasing average degree
and a decreasing average clustering coefficient, thus indi-
cating a stronger tendency to diversify the inter-genre col-
laborations. Then, the second group includes non-English
speaking countries with decreasing connectivity metrics in
2019, after a peak in 2018. The last group has countries
in which more genres are becoming successful, while the
connections are not increasing in the same proportion.

Overall, considering regional markets individually be-
comes more important for producers and record labels, as
they are delivering more global hits over time. Their dis-
tinct behavior emphasizes the strength of cultural aspects
on determining how music is consumed and the success of
a given genre or artist. In each market, genre connections
may reveal distinct profiles, which are an important tool for
analyzing successful genre collaborations.

10 All networks can be visualized in https://bit.ly/proj-Bade
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Figure 3: EFA diagram. Solid and red dashed lines repre-
sent positive and negative correlations, respectively. Dark
and lighter lines represent strong [0.6 − 1.0] and weak
[< 0.6] correlations, respectively.

5. GENRE COLLABORATION PROFILES

This section presents our approach to uncover significant
factors that compose a successful music genre collabora-
tion. Inspired by Silva et al. [1], we first extract informa-
tion from the success-based networks by evaluating six
edge-dependent metrics (Section 3.3). We perform an Ex-
ploratory Factor Analysis on such metrics to define factors
in Section 5.1, and then perform cluster analysis in Section
5.2. Finally, we organize the found clusters into collabora-
tion profiles in Section 5.3, to investigate the key driving
factors on successful collaborations and then answer RQ3.

5.1 Exploratory Factor Analysis

Exploratory Factor Analysis (EFA) [26] is a statistical
method designed to underline patterns of correlations
among observed variables and extract latent factors. Gen-
erally, EFA identifies the number of common factors and
the pattern of factor loadings (correlations). It assumes and
asserts that manifest (observed) variables are expressed as a
linear combination of factors and measurement errors. Each
factor explains a particular variance in the variables and may
find hidden data patterns. There are two main issues when
executing an EFA: (i) determining the number of factors to
retain for analysis, and (ii) selecting the final structure for
how the measured variables relate to the factors. For the
former, we use the Parallel Analysis criteria [27], which is
based on random data simulation. The suggested number of
factors to extract is then provided and based on examining
the scree plot [28] of factors of the observed data with that
of a random data matrix of the same size as the original.
Finally, the EFA is performed using the well known Ordi-
nary Least Squares (OLS) factoring method and an oblique
rotation, allowing factors to correlate with each other.

We use EFA to identify the common factors and the
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Figure 4: Clustering result for the USA network, in 2019,
with examples of some genre collaborations in each cluster.

relationships among the edge-dependent metrics of all 27
success-based networks. Overall, the analysis results sug-
gest a three-factor structure within those six metrics. A
graphical representation of the emerging structure is in Fig-
ure 3. As the three factors are conceptually coherent, we
labeled them as follows.
Attractiveness (F1). Factor 1 has high loads for both PA
and CN metrics, with a positive correlation between them.
Specifically, values close to 0 indicate that two nodes are
not close and attracted, while higher values indicate closer
nodes. Therefore, this factor corresponds to the predisposi-
tion of two nodes to connect in the future.
Affinity (F2). Factor 2 has high loads for both RA and W
metrics, with a positive correlation between them. High
values indicate strong social ties, and lower ones indicate
weak ties. Hence, this factor measures both the frequency
of collaboration between two nodes and the social strength.
Influence (F3). Factor 3 has high loads for both NO and EB
metrics, with a negative correlation between them. Edges
with low NO and high EB certainly consist of local bridges
in the network. That is, they represent a bridge-like con-
nector between two “social circles”. Therefore, this factor
corresponds to the importance level of an edge with access
to different regions in the network.

5.2 Cluster Analysis

The second step of our approach is cluster analysis to group
similar music genre connections based on the aforemen-
tioned factors. We use DBSCAN [29] as a clustering al-
gorithm, which assigns data points to the same cluster if
they are density-reachable from each other. Two important
parameters are required for DBSCAN: ε defines the radius
of neighborhood around a point x; and MinPts (minimum
points) is the minimum number of neighbors within the ε
radius. To choose the optimal ε value, we use a method
based on k-nearest neighbor distances, which calculates the
average of the distances of every data point to its k nearest
neighbors. In general, the value of k is specified by the user
and corresponds to the MinPts parameter. As a general
rule, the MinPts can be derived from the number of di-
mensions D in the dataset as MinPts ≥ D + 1. Since we
have six topological metrics, we set MinPts = 7.

Overall, four distinct clusters were detected in at least
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Figure 5: Collaboration profiles for all markets (2019). For
additional radar plots, see Supplementary Material.

one of the 27 collaboration networks. As an example in-
cluding all clusters, Figure 4 shows the result of the US
network in 2019, where Cluster 0 groups the outliers identi-
fied by DBSCAN (data points in low-density regions, i.e.,
not associated with any proper cluster). Clusters 1 and 2 are
slightly overlapping, but each covers groups of high-density
data points, which is successful information in this analysis.
We can also certainly conclude Cluster 3 is separate from
the others. Next, we describe each cluster.

5.3 Collaboration Profiling

Now that we have detected a set of predominant clusters
on all modeled networks, the next step is to look at their
characteristics for profiling them and defining proper iden-
tities. First, for each network, we calculate the mean of
the normalized metrics values grouped by each cluster id.
Then, for each year, we plot radar charts for each profile
with the mean values of each market present in that profile.
Figure 5 shows such radar charts, where each cluster is rep-
resented by a polygon that exhibits its identity. To compare
the metric values’ magnitude of each cluster, we adopt the
following scale: low is the bottom 30th percentile; medium
is between 30th and 80th percentile; and high is the top
20th percentile. Such scale is based on the annual general
values, i.e., considering the grouped normalized features of
all markets by year.

The differences among the three plots represent mini-
mal changes over the years. However, the distinct shapes
show each cluster is high or low in certain features. Particu-
larly, Cluster 0 presents collaborations with high values for
Attractiveness and Affinity factors, but medium values for
Influence. With a similar shape, Cluster 1 presents medium
values for all four factors. On the other hand, Cluster 2
presents high values only for Influence, with low Attractive-
ness and Affinity. Finally, Cluster 3 is the group with major
differences over the years: in general, its collaborations
have medium Attractiveness and Affinity, and low Influence.
Overall, each curve depicts a distinct collaboration profile,
acting as a class descriptor of a cluster.

With the collaboration profiles settled, we can now an-
swer RQ3. First, we analyze the distributions of success
rate, and then the number of intra- and inter-genre collabo-
rations for each profile. Here, we define success rate as the
average of total streams of songs belonging to the music
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Figure 6: Density ridgeline plots of streams in millions for each cluster. Darker vertical lines represent median values.

genres that compose the collaboration (edge) in that year.
Figure 6 shows the success density ridgeline plots for each
profile, indicating that Profiles 0 and 1 are composed of
the most successful music genre collaborations, on average.
With results from Table 3, in general, the most successful
profiles are those composed of more inter-genre collabo-
rations. Such a result may indicate a strong correlation
between musical success and inter-genre collaborations. In-
deed, by teaming up with one (or more) person of a different
musical style in a song, both artists may draw from one an-
other’s fan bases; i.e., they may promote themselves to new
public who could increase their fan base and audiences.

To summarize the characteristics of the collaboration
profiles, we name each as follows.
– Profile 0 is Solid Collaboration (Solid), composed of
well-established collaborations between most popular gen-
res (super-genres), which have been going on for decades.
Examples include: rap and hip-hop, whose collaborative
albums are hugely popular; and hip-hop and pop, whose sep-
arating line (between both genres) has become completely
blurred in the last decade, mainly in the USA;
– Profile 1 is Regular Collaboration (Regular), composed
of the most common collaborations in all markets, which
are very similar to solid collaborations but not as engaged.
For instance, collaborations between hip-hop/rap/pop and
jazz/blues/soul, which can be typical in many markets, but
not as consolidated when compared to Solid ones;
– Profile 2 is Bridge Collaboration (Bridge), composed of
collaborations with high influence, representing bridge-like
connectors between two regions of a network (mostly be-
tween divergent music styles). Such collaborations may be
possible sources of investment to increase connectivity and
strengthen ties among different audiences. One example is
collaborations between gospel and others, such as rap and
MPB (Brazilian Popular Music); and
– Profile 3 is Emerging Collaboration (Emerging), formed
mainly of collaborations between regional genres. Such
partnerships generally occur within the same genre; pos-
sibly between one (or more) unknown artist and one (or
more) established artist; or maybe in order to easily reach
that genre audience. We propose the term emerging be-
cause such a profile can be seen as a transition phase for
beginners, until they establish their fan bases. Examples
of regional genres here include k-pop (popular music from
South Korea), moombahton (fusion genre of house music
and reggaeton (from Washington, D.C.), and forró (a popu-
lar musical genre from Brazilian Northeastern Region).

Table 3: Total number of intra- and inter-genre collabora-
tions in each profile, from 2017 to 2019.

Collab Solid Regular
2017 2018 2019 2017 2018 2019

Inter-genre 140 (49%) 125 (42%) 103 (51%) 1,828 (99%) 1,916 (98%) 2,165 (94%)
Intra-genre 145 (51%) 174 (58%) 99 (49%) 23 (1%) 34 (2%) 128 (6%)

Collab Bridge Emerging
2017 2018 2019 2017 2018 2019

Inter-genre 10 (100%) 7 (100%) 16 (100%) 3 (7%) 1 (17%) 0 (0%)
Intra-genre 0 (0%) 0 (0%) 0 (0%) 40 (93%) 5 (83%) 7 (100%)

6. CONCLUSIONS

In this paper, we analyze and identify collaboration profiles
in success-based music genre networks. Our results suggest
that analyzing regional markets individually is fundamental,
as local genres play a key role in determining hit songs and
popular artists. Besides the differences in the evolution of
regional markets, genre collaborations are also increasing,
with emerging local genres achieving global success. More-
over, the networks’ structures reveal three main factors that
describe a genre collaboration: Attractiveness, Affinity and
Influence. Analyzing such factors uncovers four different
collaboration profiles: Solid, Regular, Bridge and Emerging,
which act as class descriptors of successful partnerships.
Overall, our results contribute to the understanding of the
relation between cross-genre collaboration and hit songs.

Indeed, detecting genre collaboration profiles is a pow-
erful way to assess musical success by describing similar
behaviors within collaborative songs from multiple angles.
Our findings may act as base material for further research
tasks, e.g., prediction and recommendation. The former
enables predicting the success of a given song/artist/album,
while the latter can be used to point out potentially success-
ful genre/artist collaborations. This not only benefits the
MIR community, but also the music industry as a whole. In
fact, music industry CEOs may maximize expected success
by properly investing in potential artist/genre collaborations.
Finally, artists may also profit by identifying the most suit-
able partnerships to lead the album to early stardom. In
conclusion, this work sheds light on the science behind the
collaboration phenomenon, providing potential impact to
the music industry.

Future Work. We plan to consider other data sources and
to expand the time period in order to better understand the
markets’ behavior, enhancing further analyses.
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ABSTRACT

Choral singing is a widely practiced form of ensemble
singing wherein a group of people sing simultaneously in
polyphonic harmony. The most commonly practiced set-
ting for choir ensembles consists of four parts; Soprano,
Alto, Tenor and Bass (SATB), each with its own range of
fundamental frequencies (F0s). The task of source separa-
tion for this choral setting entails separating the SATB mix-
ture into the constituent parts. Source separation for musi-
cal mixtures is well studied and many deep learning based
methodologies have been proposed for the same. However,
most of the research has been focused on a typical case
which consists in separating vocal, percussion and bass
sources from a mixture, each of which has a distinct spec-
tral structure. In contrast, the simultaneous and harmonic
nature of ensemble singing leads to high structural simi-
larity and overlap between the spectral components of the
sources in a choral mixture, making source separation for
choirs a harder task than the typical case. This, along with
the lack of an appropriate consolidated dataset has led to a
dearth of research in the field so far. In this paper we first
assess how well some of the recently developed method-
ologies for musical source separation perform for the case
of SATB choirs. We then propose a novel domain-specific
adaptation for conditioning the recently proposed U-Net
architecture for musical source separation using the funda-
mental frequency contour of each of the singing groups and
demonstrate that our proposed approach surpasses results
from domain-agnostic architectures.

1. INTRODUCTION

Choir music is a well-established and long-standing prac-
tice involving a body of singers performing together. Such
ensembles are usually referred to as choir and may perform
with or without instrumental accompaniment. A choir en-
semble is usually structured by grouping the voices into

c© D. Petermann, P. Chandna, H. Cuesta, J. Bonada, and
E. Gómez. Licensed under a Creative Commons Attribution 4.0 Interna-
tional License (CC BY 4.0). Attribution: D. Petermann, P. Chandna, H.
Cuesta, J. Bonada, and E. Gómez, “Deep Learning Based Source Separa-
tion Applied To Choir Ensembles”, in Proc. of the 21st Int. Society for
Music Information Retrieval Conf., Montréal, Canada, 2020.

four different sections, each depicting different frequency
ranges for the singers; "Soprano" (260Hz-880Hz), "Alto"
(190Hz-660Hz), "Tenor" (145Hz-440Hz), and "Bass"
(90Hz-290Hz) [1]. This type of structural setting is usu-
ally referred to as a SATB setting. Although different vari-
ants of this structure exist, the SATB is the most well doc-
umented, with several conservatories across Europe dedi-
cated to the study and practice of the art form, highlighting
its cultural significance. This will be the main focal point
of our study.

The segregation of a mixture signal into its components
is a well researched branch of signal processing, known as
source separation. For polyphonic music recordings, this
implies the isolation of the various instruments mixed to-
gether to form the whole. With applications such as music
remixing, rearrangement, audio restoration, and full source
extraction, its potential use in music is of great appeal.
While the task remains similar independently of the type
of setting involved, the nature of the sources (e.g.: speech,
musical instrument, singing voice) and their relations may
entail various challenges and, consequently, require differ-
ent separation methodologies to be employed.

The most studied case of musical source separation fo-
cuses on pop/rock songs, which typically have three com-
mon sources; vocals, drums, bass along with other instru-
mental sources which are usually grouped together as oth-
ers. A large body of research [2–4] has been published in
this field over the last few years, beginning with the con-
solidation of a common dataset for researchers to train and
evaluate their models on. In 2016, DSD100 [5] was first in-
troduced and made available to the public and was later ex-
tended to MUSDB18 [6], which comprises 150 full-length
music tracks for a total of approximately 10 hours of mu-
sic. To this day, MUSDB18 represents the largest freely
available dataset of its kind.

While source separation for the pop/rock case has come
leaps and bounds in the last few years, it remains largely
unexplored for the SATB choir case, despite its cultural
importance. This is partly due to the lack of a consoli-
dated dataset, similar to the MUSDB18, and partly due to
the nature of the task itself. The sources to be separated
in pop/rock have distinct spectral structure; the voice is a
harmonic instrument and has a distinct spectral shape, de-
fined by a fundamental frequency and its harmonic partials
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and formants. The bass element to be separated also has
a harmonic structure, but lacks the formants found in the
human voice and has a much lower fundamental frequency
than the human voice. In contrast, the spectrum of a per-
cussive instrument is generally inharmnoic and energy is
usually spread across the spectrum. In contrast, the sources
to be separated in a SATB choir all have a similar spectral
structure with a fundamental frequency, partials and for-
mants. This makes the task more challenging than its more
studied counter part. However, the distinct ranges of fun-
damental frequencies in the sources to be separated can be
used to distinguish between them, a key aspect that we aim
to explore in our study.

We build on top of some recently proposed Deep Neu-
ral Network (DNN) models to separate SATB monoaural
recordings into each of their respective singing groups and
then propose a specific adaptation to one of the models.
The rest of the paper is organized as follow: Section 2
presents and investigates some of the recently proposed
high performance deep learning based algorithms used for
common musical source separation tasks, such as the U-
Net [7] architecture and its waveform-based adaptation,
Wave-U-Net [8]. Section 3 goes over the dataset cura-
tion carried out for this experiment. Section 4 presents
our adaptation of the conditioned U-Net model described
in [9], with a control mechanism conditioned on the input
sources’ fundamental frequency (F0). Section 5 defines
the evaluation metrics and methodology used in this ex-
periment. In Section 5.2 we evaluate and compare how ex-
isting models and our proposed adaptation perform on the
task of source separation for SATB recordings. We then
present and discuss the results. Section 6 finally concludes
with a discussion around our experiment and provide com-
ments on future research that we intend to carry out.

2. RELATED WORK

While source separation has remained relatively unex-
plored for the case of SATB choirs, a number of archi-
tectures have been proposed over the last few years for
musical source separation in the pop/rock case. A com-
prehensive overview of all proposed models is beyond the
scope of this study, but we provide a summary of some
of the most pertinent models that we believe can easily be
adapted to the case in study.

2.1 U-Net

The U-Net architecture [7], which was specifically devel-
oped to process and segment biomedical images, inspired
many subsequent audio-related adaptations due to its un-
precedented performance.

The original model includes an encoding path, which
reduces the initial input into a latent representation (bot-
tleneck) followed by a decoding path, which expends the
channels’ receptive field back into its original shape while
concatenating the feature maps from the contracting path
by the mean of skip connection layers.

One of the first paper to present a U-Net adaptation to-
wards audio source separation was proposed by Jansson et
al. [10], where they propose an architecture which specif-
ically targets vocal separation performed on western com-
mercial music (or pop music). The authors present an ar-
chitecture directly derived from the original U-Net one,
which takes spectrogram representations of the sources as
input and aims at predicting a soft-mask for the targeted
source (either vocal or instrumental). The predicted mask
is then multiplied element-wise with the original mix-
ture spectrogram in order to obtain the predicted isolated
source. It is worth mentioning that for each of the given
sources, a U-Net instance is trained in order to predict its
respective mask. In the case of SATB mixtures, four U-Net
instances are necessary in order to predict each of the four
singing groups.

2.2 Conditioned-U-Net

Depending on the nature of the separation task, its under-
lying process can easily lead to scaling issues. The con-
ditioned U-Net (C-U-Net) architecture, described in [9],
aims at addressing this limitations by introducing a mech-
anism controlled by external data which govern a single
U-Net instance. C-U-Net does not diverge much from the
initial U-Net one; as an alternative to the multiple instances
of the model, each of which is specialized in isolating a
specific source, C-U-Net proposes the insertion of feature-
wise linear modulation (FiLM) layers [11], which repre-
sents an affine transform defined by two scalars - γ and β,
across the architecture. This allows for the application of
linear transformations to intermediate feature maps. These
specialized layers conserve the shape of the original in-
termediate feature input while modifying the underlying
mapping of the filters themselves.

FiLM(x) = γ(z) ˙x+ β(z) (1)

In eq. (1), x is the input of the FiLM layer, γ and β
the parameters that scale and shift x based on an external
information, z [9]. γ and β modulates the feature maps
according to an input vector z, which describes the source
to separate. The condition generator block described in
Figure 1 represents a neural network embedding the one-
hot encoding input z into the most optimal values to be
used by the FiLM layer.

2.3 Wave-U-Net

In [8], the authors present a time-domain adaptation of the
U-Net architecture, which performs the separation opera-
tion on the waveform. As the input is a one-dimensional
signal, the feature maps are computed directly from the
waveform samples through 1D convolution operations.
Because Wave-U-Net takes raw waveforms as input, the
initial U-Net model has to be adapted accordingly in order
to accommodate for the input’s nature. Consequently, the
feature maps along both contracting and expanding paths
are computed by the means of single-dimensional convo-
lution layers. Both paths contain twelve convolutional lay-
ers, each, for a total of 24 layers. In the down-sampling
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Figure 1: C-U-Net control mechanism with the vector z,
a one-hot representation of the source to separate, which
dictates the N sets of γ and β values to be used by the
FiLM layer at each of the block of the encoding path, 1 to
N.

path, the receptive field is reduced in half after each layer
while the input feature maps are increased by a factor of
24 every time. On the other hand, in the up-sampling path
the time-context is doubled after every convolutional layer
while the feature maps are reduced, again by 24, after ev-
ery layers. By that mean, the receptive field and the num-
ber of channels of the original input signal will remain
preserved at the output stage. Although Wave-U-Net has
proven to deliver satisfying results on common musical
source separation tasks, the fact remains that waveform-
based architectures in general require more data than their
spectrogram-based counter parts.

3. DATASET

The training data we have curated for this experiment are
composed of the following two datasets:

• Choral Singing Dataset [12] (CSD). Three songs
performed by 16 singers from the Anton Bruckner
Choir (SATB) 1 .

• A proprietary dataset with 26 Spanish SATB songs
by 4 singers, one for each part.

There are very few publicly available choir music
datasets, thus our choice remains limited. To this day
and to the best of our knowledge, there isn’t any existing
dataset which is specifically suited to our task, thus one

1 https://zenodo.org/record/1286570#
.XyGcHy-z3yU

of the subsidiary work of this experiment revolves around
curating a proper and complete dataset to train our vari-
ous models. For our experiment, we take advantage of the
CSD [12]. This dataset was recorded in a professional
studio and contains individual tracks for each of the 16
singers of a SATB choir, i.e. 4 singers per choir section.
It comprises three different choral pieces: Locus Iste, writ-
ten by Anton Bruckner, Nı̄no Dios d’Amor Herido, written
by Francisco Guerrero, and El Rossinyol, a Catalan popu-
lar song; all of them were written for 4-part mixed choir.
The dataset is very well suited for our experiment as the
isolated track for each individual singer will allow us to
proceed the same way as in [13], that is to create artificial
mixes by combining various stems from different groups
together. Using different combinations of all 16 singers,
we created 256 SATB quartets for each piece, which rep-
resent all possible combinations of singers taking into ac-
count the voice type restriction (i.e. exactly one singer per
voice is needed).

The second dataset we use is a proprietary one including
26 songs for exactly one singer per part (i.e. 4 stems per
song), which is a well-suited format for our task as well.
All songs offered as part of this dataset are performed in
Spanish and their length revolves around two to three min-
utes, for a total of 58 minutes of audio data.

Our curation work consists in consolidating these two
datasets and make sure all the data that we are using re-
main consistent and well-formatted across all the audio
stems, which includes length and amplitude normalization,
as well as properties standardization. Most of the files
included as part of the initial datasets were presented as
10-seconds long snippets as opposed to full-length songs,
which isn’t an ideal format to work with. Hence, some ad-
ditional efforts have been devoted to turn these files in a
more convenient and consolidated format.

4. APPROACH

Injecting domain knowledge in DNNs has been proved to
be an effective way to learn complex input-output relations
with high accuracy when the available data happen to be
scarce and limited [14], such as found in our case.

Each of the singing groups in a SATB recordings per-
forms within its own respective frequency range, that is,
the voices’ F0 contour will rarely overlap across the var-
ious groups. This factor makes the sources’ F0 a suitable
discriminative feature, which could be injected in the DNN
during the training stage and potentially improve the sepa-
ration of the various singing groups in SATB recordings.

In this view, we propose to adapt the original C-U-Net
architecture, which initially embeds the instruments to be
separated, z, in order to produce the various FiLM param-
eters (γ, β), and substitute the external control input data
for the F0 track of the target source. The new control input
vector z will thus hold time as well as frequency dimen-
sions.
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4.1 Control Input Representation

As previously mentioned, we use the frame-wise F0 as the
external control data of our condition generator network.
This entails that a few preliminary steps are required prior
to proceeding to the training stage. We first automatically
extract the sources’ F0 track using the DIO algorithm [15].
Once the raw pitch tracks are obtained, we convert each
time-step F0 into a one-hot encoded representation as pos-
tulated in [16], that is 60 frequency bins over 6 musical
octaves, with a base frequency of 32.7Hz Hertz, for a to-
tal of 360 frequency bins per time-step. As a result, for
128 time-steps, our control input will be in the shape of
[128, 360].

Figure 2: Control model architecture. The convolution
is performed across the frequency bins for each time-step.
The dense layer provides a specific conditioning for each
frequency bin.

4.2 Control Model

The control model used in our proposed architecture em-
beds the one-hot encoded CQT F0 representation for a
given time-step into a set of transforms of identical shape
as the spectrogram input. This is achieved by modeling the
condition vectors as 1-D data with multiple feature chan-
nels. The condition vectors are then fed into a convolu-
tional neural network (CNN) with a kernel of size 10 seiz-
ing contextual information from the adjacent time-steps.
As a result, all input channels of the initial convolution
contribute to all resulting feature maps in the output of the
first convolutional layer. Finally a dense layer provides a

Figure 3: C-U-Net Control Mechanism adapted to our
task, with the one-hot vector z depicting the various SATB
singing groups’ F0 contour.

specific conditioning for each frequency bin at each time-
step, taking into account the contextual information previ-
ously captured by the CNN. Figure 2 shows the condition
generator architecture in greater details.

As the temporal relation between the external control
input data and the input spectrogram is crucial, it is impor-
tant to apply these affine transformations while the recep-
tive field of the input is still intact. Hence the FiLM layer
is applied prior to the encoding path. Figure 3 shows the
overall structure behind the proposed conditioning archi-
tecture.

We propose two variants of the architecture described
above, each of which differs slightly in the way it embeds
the control input data; the first variant applies a unique
affine transform for each individual frequency bin at every
input time-step. The resulting scalars in the output of the
external CNN model will thus be in the shape [512, 128] for
a given input spectrogram of the same time context. On the
other hand, the second variant applies a single transform
for all frequency bins at a given time-step, resulting in a
set of scalars of shape [1, 128] for 128 spectrogram frames
given in the input. We refer to the two approaches as
"Domain-Specific Global" and "Domain-Specific Local",
respectively and define them with the acronyms C-U-Net
D-S G and C-U-Net D-S L in the rest of this paper. while
the three models covered in Section 2 will be referred to as
"Domain-Agnostic" models.

5. EVALUATION

To assess our proposed approach and show that inject-
ing domain knowledge as control input data to the net-
work improves its performance on SATB recordings, we
evaluate the performances of three domain-agnostic state-
of-the-art DNN models; U-Net, its waveform adaptation
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Wave-U-Net, and the original C-U-Net. We then compare
the results with the two domain-specific models proposed
in Subsection 4.2. We evaluate the performance of a model
by computing three metrics, SDR, SIR, and SAR [5], be-
tween the predicted and true audio sources. The three mea-
surement metrics describe the overall quality of the separa-
tion, the level of interference with other sources as well as
the amount of artifact added by the separation algorithm,
respectively. The metrics are computed using the mir_eval
toolbox [17] for each of the SATB singing groups.

5.1 Train - Test Split

Given the limited size of our data, we opted to set apart
one song from the proprietary dataset as well as one singer
per voice for each song from the CSD in order to build
our first use-case test set. The rest of the data was used
for training. This allowed us evaluate the model on unseen
songs and singers. Our second test case contains unison
singing, which was not seen at all during training. As such,
we used the three songs from the CSD with all singers for
evaluation.

5.2 Experiment Results

Subsections 5.2.1 and 5.2.2 present the performance re-
sults for the two test cases described earlier; that is, for
the test set involving exactly one singer per part and the
other involving exactly four singers per part, respectively.
C-U-Net D-A refers to the domain-agnostic architecture
while C-U-Net D-S L and C-U-Net D-S G refer to our two
domain-specific adaptations. For testing, we use the or-
acle fundamental frequency of each of the sources, pre-
computed prior to model inference. In a complete source
separation pipeline, we would complement our system
with the multi-pitch algorithm proposed by [18].

5.2.1 Use-Case 1:

Table 1 portrays the mean SIR and SAR results on all the
SATB parts and average for all five models mentioned in
previous sections. Figure 4a details the SDR score dis-
tributions on our first test set. We observe that our two
adaptations, C-U-Net D-S L and C-U-Net D-S G, call at-
tention to a significant score gap between domain-agnostic
and domain-specific models, with an average increase of
about 1dB SDR and 1.5dB SIR between the two different
approaches. These improvements underline an overall bet-
ter quality of the predicted sources (SDR) as well as a de-
cline in interference between the various predictions. Our
domain-specific architecture hence demonstrates a better
ability to cope with the correlated nature of the various
SATB sources and seem to predict an appropriate spec-
tral mask for each of them. We also observe that our pro-
posed adaptations return the lowest SDR, SIR and SAR
performances for the Bass part, specifically. This could
be due to the fact that the Bass group, among all SATB
groups, shares the highest number of harmonics with its
other source counter parts.

We also note that the mean SDR substantially drops for
the Tenor singing group across nearly all domain-agnostic

models, reaching a negative result with the C-U-Net D-A
architecture (−1.25dB SDR). We speculate that the rea-
son behind such decline can be directly related to the close
nature of the F0 contours of both Alto and Tenor singing
groups, making it harder for domain-agnostic architecture
to distinguish between the two sources. This limitation
brings yet another justification for the conditioning ap-
proach we have taken in this paper.

5.2.2 Use-Case 2:

Figure 4b as well as the bottom portion of Table 1 presents
the SDR, SIR and SAR scores on the second use-case test
set. We observe that the introduction of more complex
mixtures involving a higher number of singers (i.e.: 16
singers in this case) decreases the performance of our pro-
posed models, with an average SDR barely surpassing U-
Net’s for our C-U-Net D-S G model and levelling it out
for the C-U-Net D-S L model. This can be attributed to
the use of the mean of the various pitches present in a
singing group, to represent the pitch of the unison. Since
domain-agnostic models, such as the plain U-Net, don’t
hold this assumption, these architectures are less prone to
errors when exposed to these type of mixture settings 2 .

6. CONCLUSIONS AND FUTURE WORK

In this work we have presented the task of musical source
separation applied to SATB choir recordings. We first de-
scribed the consolidated dataset that we’ve specifically cu-
rated for this experiment and its potential use and appli-
cation for future related research. We then assessed how
well recent domain-agnostic deep learning based architec-
tures for musical source separation performed on this task,
given two different use-cases; 4-singers mixture and 16-
singers mixture separation. An adaptation of the U-Net
architecture was then proposed, consisting in condition-
ing some of the network parameters on the fundamental
frequency contour of each of the SATB mixture sources.
The preliminary results showed that taking advantage of
domain-knowledge during the training process improved
the performance on both of our proposed use-cases. For
the evaluation presented in this paper, we use the oracle F0
is currently used as external control input data to the net-
work. In a complete source separation pipeline, we plan
on combining the task of multi-pitch tracking [18] with
the system presented in this paper. We also plan on val-
idating our evaluation with perceptual listening tests and
exploring applications of the SATB separation. including
remixing, transcription and transposition combined with
the work presented in [19, 20].
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(a) Four-Parts SDR Boxplot Results, Use-Case 1: 4-Singers Mixture

(b) Four-Parts SDR Boxplot Results, Use-Case 2: 16-Singers Mixture

Figure 4: Boxplot SDR results on the five U-Net based models described in previous sections. Subfigure 4a shows the
result distribution over the first use-case test set while 4b depicts the results for the second use-case. For each one of the
SATB parts, the model performing with the highest median is indicated in a dark orange color.

Model Test Use-Case 1 - SIR (dB) Test Use-Case 1 - SAR (dB)
Soprano Alto Tenor Bass Avg. Soprano Alto Tenor Bass Avg.

Wave-U-Net 5.99±2.4 9.19±2.9 4.62±2.1 8.49±3.5 7.07 5.36±1.7 7.11±2.4 4.79±1.4 4.89±1.4 5.54
U-Net 10.28±2.4 10.77±4.1 6.70±3.2 9.45±2.0 9.30 5.35±1.8 7.13±3.0 5.32±1.8 4.94±1.1 5.69

C-U-Net D-A 10.09±2.6 7.81±1.6 3.32±3.3 7.61±2.2 7.21 5.19±1.6 4.41±2.8 2.65±1.2 4.12±2.0 4.09
C-U-Net D-S L 9.71±1.7 12.37±1.5 9.89±2.2 9.71±1.7 10.42 5.44±1.0 8.75±2.0 5.58±1.3 5.51±1.7 6.32
C-U-Net D-S G 12.72±1.8 14.04±1.5 11.79±1.5 9.78±2.1 12.08 7.02±1.1 9.02±1.6 6.86±1.5 5.93±1.6 7.21

Test Use-Case 2 - SIR (dB) Test Use-Case 2 - SAR (dB)
Soprano Alto Tenor Bass Avg. Soprano Alto Tenor Bass Avg.

Wave-U-Net 8.13±2.1 10.02±0.9 6.80±2.2 7.45±2.0 8.10 5.75±1.0 6.73±1.1 4.79±1.5 3.23±0.9 5.13
U-Net 12.41±1.8 13.11±1.2 10.26±1.1 8.50±2.3 11.07 6.31±1.4 7.97±1.0 6.59±1.8 5.27±1.1 6.54

C-U-Net D-A 11.99±1.8 9.08±2.8 5.65±3.1 7.60±2.0 8.58 5.77±1.7 4.60±2.9 3.39±1.8 4.15±1.2 4.48
C-U-Net D-S L 10.32±1.1 13.06±1.7 10.77±1.5 8.89±2.2 10.76 6.02±0.9 8.59±1.2 6.45±1.7 5.59±1.1 6.66
C-U-Net D-S G 12.08±1.5 13.50±2.5 12.05±1.3 8.91±2.1 11.63 6.68±1.2 7.70±1.3 6.17±1.6 5.17±0.8 6.43

Table 1: SIR and SAR mean and standard deviation results on the four SATB parts as well as their average for the five
U-Net based models described in previous sections. The top table depicts the results obtained from the first use-case test
set while the bottom one the second use-case test set.
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ABSTRACT

Labeling a music recording according to its genre is an in-
tuitive and familiar way to describe its content. Music gen-
res are valuable information especially for music organiza-
tion, personalized listening experience, and playlist gen-
eration. Automatically classifying music genres is a chal-
lenging endeavor due to the inherent ambiguity and subjec-
tivity. Most efforts on music genre classification consider
the complete independence between labels. However, mu-
sic genres typically respect a hierarchical structure based
on the influences or origins of each style. Conversely,
many of the methods available for hierarchical classifica-
tion are based on assumptions about the class hierarchy,
such as the need for multiple children in each hierarchy’s
node, which may limit their use in music applications.
Also, the local classifier per node approach that would be
the most suitable for this scenario is costly regarding time
and memory. In this paper, we present two local hierar-
chical classification approaches and show how to combine
them to obtain a single one that is more robust and faith-
ful to the music genre classification scenario. We evaluate
our proposal in a music dataset hierarchically labeled with
120 music genres. As shown, compared to state-of-the-art
approaches, our approach has a lower computational cost
and can achieve competitive performances.

1. INTRODUCTION

The music genre is a convention used by humans to catego-
rize and organize pieces of music. Besides being essential
metadata for large databases of music distribution, the mu-
sic genre resides in one of the most common descriptors
employed in studies involving storage, retrieval, and usage
of music knowledge [1–3].

The major problem with music genre information is that
it is usually fuzzy and inaccurate. At the core of this ques-
tion is human subjectivity, closely related to the several cri-

© Antonio R. S. Parmezan, Diego F. Silva, and Gustavo E.
A. P. A. Batista. Licensed under a Creative Commons Attribution 4.0 In-
ternational License (CC BY 4.0). Attribution: Antonio R. S. Parmezan,
Diego F. Silva, and Gustavo E. A. P. A. Batista, “A combination of lo-
cal approaches for hierarchical music genre classification”, in Proc. of
the 21st Int. Society for Music Information Retrieval Conf., Montréal,
Canada, 2020.

teria for labeling music in genres [4]. Because of subjectiv-
ity, the music genre classification task becomes even more
challenging, since it needs to deal with differences in inter-
pretation and an unavoidable intersection between genres.

Besides, as there is no standard for labeling music, some
music platforms may present a high number of genres. For
example, the streaming music service Spotify 1 catalogs
its music in over 1500 genres, which will eventually be
updated and increased in quantity in the future. Also, a
song classified as, for instance, “gothic metal” on Spotify
may be labeled as “alternative rock” and “indie rock” on
other platforms, such as Google Play Music 2 and Apple
Music 3 . Finally, some music genres overlap in these ser-
vices, while others have subgenres. Although there is no
unique way of determining an item’s music genre, the lit-
erature covers distinct approaches and methods to support
this complex and many-sided task.

So far, most of the work in music information retrieval
is only concerned with music genres as a flat classification
problem [5–8]. A flat classifier seeks to associate each ex-
ample with a class that belongs to a finite, devoid of struc-
tural dependencies and usually small, set of classes. How-
ever, the music genre classification calls for a genre tax-
onomy, i.e., a hierarchical set of categories to be mapped
onto a music collection.

In hierarchical music genre classification, supervised
machine learning algorithms are designed to induce a hi-
erarchical decision model. Such a model links the features
of the examples to a class hierarchy, generally represented
as a tree or a direct acyclic graph with varying specificity
and generality levels. An advantage in assigning exam-
ples to hierarchically organized classes is that the closer to
the root of the hierarchy a linkage occurs, the smaller the
classifier error rate tends to be. Conversely, the obtained
classification will be less specific and, therefore, less in-
formative [9, 10].

Having the genres structured into a class hierarchy helps
users to not only browse and retrieve music pieces but also
navigate the collection according to the similarity of its
content.

Most of the methods available for hierarchical classifi-
cation are based on the local classifier per node approach.

1 https://www.spotify.com.
2 https://play.google.com/music.
3 https://www.apple.com/music.
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This approach resides in training a binary classifier for
each node of the class hierarchy, except the root node, aim-
ing to predict whether or not an example has the corre-
sponding class [11]. The local binary dataset for a given
node in the class hierarchy contains positive examples,
those that have some relation to the class of the node in
question, and negative examples, those related to the re-
maining classes. We can determine the sets of positive and
negative examples in different ways; for instance, adopting
heuristics based on set operations [12] or strategies based
on nearest neighbors [13]. Depending on the number and
disposition of the classes in the hierarchy, we may choose
to use multiclass classifiers instead of binary ones. Thus,
while the local classifier per parent node approach builds
a multiclass classifier for each non-leaf class node of the
hierarchy, the local classifier per level approach generates
a multiclass classifier for each hierarchy level [11].

The multiclass approaches are much more efficient con-
cerning time and memory than the binary one because they
build fewer classifiers. On the other hand, they make some
assumptions about the class hierarchy, such as the need
for multiple children in each hierarchy’s node. Although
the assumptions help to avoid both the generation of one-
class local datasets and class-membership inconsistency,
they may limit the direct use of multiclass classifier-based
hierarchical approaches in music applications.

In this paper, we combine the per node and per par-
ent node approaches to obtain a single local hierarchical
method that is more robust and faithful to the music genre
classification scenario. We advocate using decision tree-
based classification algorithms to build the local classifiers
because they internally perform feature selection. As dis-
cussed throughout this work, this is a relevant consider-
ation in hierarchical music genre classification since the
features that most distinguish among classes tend to be dif-
ferent at each level of the class hierarchy.

We evaluate the proposed approach using a music
dataset with 120 hierarchically organized music genres.
Also, we compare our proposal with three well-known ap-
proaches in terms of performance and runtime. The results
show that our proposal is computationally inexpensive and
competitive against the traditional approaches.

The remainder of this paper is organized as follows:
Section 2 gives a general view of the problem and sum-
marizes research efforts in automatic music genre classi-
fication; Section 3 introduces the concepts of hierarchical
classification; Section 4 describes our proposal, from the
design of the hierarchical decision model to the prediction
strategy adopted; Section 5 presents the experimental pro-
tocol, as well as the results and our discussion about them;
Section 6 concludes this study and shows directions for fu-
ture work.

2. RELATED WORK

Recognition of music genres is one of the most prominent
research problems in music information retrieval. Studies
point out that genre is the most chosen concept to guide the
user browsing in music repositories [1, 14].

A music genre recognition system aims to categorize
an audio signal with an unknown label into a previously
known music genre from relevant features extracted from
this audio. A classifier makes use of such characteris-
tics to identify the music genre of the analyzed signal.
The benefits of categorizing pieces of music in genres ex-
tend to many other tasks, such as organizing digital audio
databases [15], building new search engines [16], and rec-
ommending songs [17].

Several approaches for audio-based music genre clas-
sification extract features associated with the timbral
information, such as Mel-Frequency Cepstral Coeffi-
cients (MFCC), and sets of spectral and rhythmic charac-
teristics [18].

There are three main categories of algorithms that can
be applied in this context [19]. The first one represents
the entire recording with one single set of features [5, 20].
The other two rely on classifying feature vectors extracted
from short frames of the recordings and achieve the fi-
nal result by an ensemble of these classifications. Some
methods perform this approach directly on the frame-level
features [21], while some other aggregate few consecu-
tive frames, creating a new set of features usually given
by the mean and standard deviations of the aggregated fea-
tures [6, 22, 23].

More recently, researchers have used deep learning
models to learn a feature representation that promises to
advance the task of genre recognition significantly [24–
27]. Although deep learning methods are computation-
ally expensive, they allow the extraction of relevant au-
dio features without having to depend on ad-hoc domain-
dependent signal processing strategies [24].

The literature has mostly treated the automatic music
genre classification as a problem of flat classification. In
other words, most papers in this domain consider all the
genres in the same hierarchy’s level [5–8]. However, the
music genre classification problem is better modeled with
a taxonomy of genres. We describe below some notable
works that have used class hierarchies to support the task
mentioned above.

A binary approach, which uses a feature selection
method on each generated local dataset and a Gaussian
Mixture Model as a base-level classifier, was proposed
in [28]. In this same direction, the authors in [29] ap-
plied an ensemble of Feed Forward Neural Networks and
k-Nearest Neighbors (kNN) over the local binary datasets.
For the kNN classifier, they employed a genetic algorithm
feature selection mechanism.

Two datasets with content-based features and a standard
local approach using Support Vector Machines classifiers
were explored in [30]. Differently, the authors in [31] de-
veloped a local approach that adopts feature selection, mul-
tiple representations from the same object, and enables hi-
erarchically multi-label classifications by using a two-layer
labeling process.

The study reported in [32] involved two selective mul-
ticlass hierarchical methods. The first one selects the best
feature set instead of the best classifier, while the second
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one selects both the best classifier and the best representa-
tion simultaneously.

The authors in [33] proposed a novel approach to build-
ing a classification tree through subspace cluster analysis.
On the other hand, hierarchical analysis of spectrograms
was investigated in [34] to help classify music in genres.

This paper presents a proposal that differs from the lit-
erature for having another point of view. Here we com-
bine two local approaches to quickly and efficiently obtain
a single hierarchical method that faithfully represents the
music genre classification scenario.

3. HIERARCHICAL CLASSIFICATION

Flat classification differs from hierarchical one because in
the latter the domain classes follow a logical organization.
In flat classification, while the absence of interrelationships
between classes characterizes some problems (single-label
classification), the non-structural relationships between la-
bels evidence others (multi-label classification). Structural
dependencies, which express super or subclass relations,
define hierarchical classification.

A dataset for hierarchical classification in the attribute-
value table format comprisesN pairs of examples (~xi, Yi),
where ~xi = (xi1 , xi2 , xi3 , . . . , xiM ) and Yi ⊂ L =
{L,L.1,L.1.1,L.1.2, . . .}. Specifically, each example ~xi is
represented by M predictive features (attributes) and has a
set of labels Yi for which there are relationships that obey
a hierarchical class structure stipulated a priori. The class
attribute, in turn, reflects the concept to be learned and
described by the induced hierarchical models using super-
vised machine learning algorithms.

We can discern the hierarchical classification methods
according to four central aspects [11]. The first one covers
the type of hierarchical structure – tree or Direct Acyclic
Graph (DAG) –, taken to depict the relationships among
classes. In the tree structure (Figure 1(a)), each node, ex-
cept the root node, is linked with at most one parent node.
In the DAG structure (Figure 1(b)), each node, except the
root node, can have one or more parent nodes.

L.1.1 L.1.2 L.2.1 L.2.2

L.2L.1

L

(a) Tree

L.1.1 L.1.2 L.1-2.1 L.2.2

L.2L.1

L

(b) DAG

Figure 1. Hierarchical class structures.

The second aspect determines whether the algorithm
can predict classes in one or more paths in the hierarchi-
cal structure. For instance, in the class hierarchy tree of
Figure 1(a), if the model is able to predict both classes
L.1.1 and L.1.2 for a provided example, which refers to the

paths L→L.1→L.1.1 and L→L.1→L.1.2, then it can pre-
dict multiple paths – Multiple Path Prediction (MPP). Con-
versely, the method performs Single Path Prediction (SPP)
when this type of association is invalid.

The third aspect involves the hierarchical level at which
the classification takes place. An algorithm can predict
using only classes represented by leaf nodes – Manda-
tory Leaf-Node Prediction (MLNP) – or by using classes
denoted by any internal or leaf node within the hier-
archical structure – Non-Mandatory Leaf-Node Predic-
tion (NMLNP). Figure 2 illustrates these two prediction
strategies; the path L→L.2→L.2.1 portrays the NMLNP
strategy, and the path L→L.2→L.2.1→L.2.1.3 indicates
the MLNP tactic. We need to highlight that the NMLNP
strategy is convenient mainly in applications that opt for
the freedom to conduct a more generic classification, but
with greater reliability.

L

L.1.1 L.1.2 L.2.1 L.2.2

L.1 L.2

L.2.1.1 L.2.1.2 L.2.1.3 L.2.2.1 L.2.2.2

Figure 2. Hypothetical class hierarchy.

The fourth and final aspect concerns the way that ma-
chine learning methods deal with the hierarchical structure.
We can group the approaches described in the literature
into three broad categories: (i) flat approach, (ii) local ap-
proach, and (iii) global approach. Further details are avail-
able in [11].

4. PROPOSED APPROACH

One interesting research aspect that has been neglected
by the music information retrieval and machine learning
communities is the development and evaluation of the fu-
sion of two or more hierarchical classification approaches.
The motivation behind this idea arises because, unlike the
global approach that generates a single classifier whose
structure includes the entire class hierarchy [32, 35, 36],
traditional approaches work with several local classifiers –
binary or multiclass – to model the taxonomy of the prob-
lem’s labels [9, 11].

Local approaches are generally preferred over the
global ones due to the possibility of employing conven-
tional supervised machine learning algorithms, which have
been extensively tested and validated in flat classification
tasks [37]. However, while some of the local approaches
are computationally expensive in terms of time and mem-
ory, others make assumptions about the class hierarchy
and, as a result, cannot be directly applied in some sce-
narios like the one treated here.
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As aforementioned, the purpose of this paper is to com-
bine the per node and per parent node local approaches to
obtain a more efficient one. The justification for proposing
a hybrid approach comes from the music genre classifica-
tion problem, and we will explain it below using the class
hierarchy tree of Figure 3.

A.1.2A.1.1

A.2A.1 A.3

R

A

B.1.1.1

B.1

B

B.1.1

{A, B}

{A.1, A.2, A.3}

{A.1.1, A.1.2 }

{B.1, − }

{B.1.1, − }

{B.1.1.1, − }

Figure 3. Proposed approach: a hybrid local approach
based on the per node and per parent node approaches.
Squares with curved corners symbolize multiclass classi-
fiers. Squares with dotted curved corners depict binary
classifiers.

The class hierarchy of Figure 3 shows 11 classes that
can be interpreted as music genres. A music genre can have
one or more subgenres. If we adopted the local classifier
per node approach, we would create a binary classifier for
each class in the hierarchy, except for the root node, em-
ploying a set of positive examples – examples representing
the current class – and a set of negative examples – ex-
amples that they are not associated with the current class.
In this sense, to find the local training sets related to each
class from the training dataset, several heuristics have been
proposed [12, 13, 37]. The per node approach is suited to
the task of music genre classification, but due to the con-
struction of |L| − 1 classifiers, it is expensive regarding
memory and processing.

On the other hand, if we were to use the local classifier
per parent node approach, we would build, for each non-
leaf node in the class hierarchy, a multiclass classifier to
label new examples according to their subclasses. There-
fore, in this approach, classifiers are also generated from
sets of local training examples. Each local training set
should be prepared so that the examples included therein
are labeled only with the classes that will be differentiated
by the multiclass classifier. The label of each example in-
serted in the training set selected for the classifier’s induc-
tion must be generalized so that only the labels referring
to the child classes of the analyzed node are present. Here
a problem arises: if the approach were to encounter nodes
B, B.1, and B.1.1 in Figure 3, it would generate one-class
local datasets. Single paths like B→B.1→B.1.1→B.1.1.1
are essential in music genre classification since it demon-
strates the evolution of the genre over time. Despite this

issue, the per parent node approach has better memory and
processing than the per node one, and the resulting classi-
fiers are less complex than the per level approach.

The local classifier per level approach, which creates a
multiclass classifier for each level of the hierarchy, is not
exempt from limitations. For the fourth level of the tree
structure in Figure 3, such an approach would generate a
local dataset containing only one class (B.1.1.).

In order to address the above issues, we propose a hy-
brid approach that represents the class hierarchy as a tree.
We set up it as follows: for each internal node in the hier-
archy with two or more children, we apply the local clas-
sifier per parent node approach and build a multiclass clas-
sifier with the children nodes, as indicated by the squares
with curved corners in Figure 3. Otherwise, if the node has
only one child, we apply the local classifier per node ap-
proach and generate a binary classifier, as symbolized by
the squares with dotted curved corners in Figure 3. Note
that we need to employ a strategy to choose the positive
and negative examples from the local binary datasets. The
literature shows that the more examples we consider in
the learning phase, the better the induced classifier per-
forms [12].

In this work, we suggest applying the “inclusive”
heuristic to create local datasets [12]. This heuristic de-
fines that the set of positive examples (S+) is the most
specific class and its descendants. In contrast, the set of
negative examples (S−) is all other classes except those in
the set of positive examples and the ancestors of the most
specific class. The output of the “inclusive” heuristic for
node L.2.1 is: S+ = {L.2.1, L.2.1.1, L.2.1.2, L.2.1.3},
and S− = {L.1, L.1.1, L.1.2, L.2.2, L.2.2.1, L.2.2.2}.

At each level of the hierarchy, groups of music gen-
res are distinguished by their differences. Intuitively, the
acoustic features that discriminate gothic metal from pop
music diverge from those that differentiate country from
gospel music. Hence, we can affirm that the classification
of distinct music genres, like many other objects, benefits
from different representations at distinct levels of the hi-
erarchy. For this reason, we advocate applying learning
algorithms based on decision trees to induce the local clas-
sifiers since they internally perform feature selection.

Finally, the hierarchy of music genres has some pe-
culiarities that allow the classification to stop at internal
nodes or go down up to the leaf nodes. To avoid inconsis-
tencies in the classification step, we recommend using the
top-down prediction strategy. In this strategy, an example
is initially classified – based on the classifier’s reliability
(classification score) – among the first-level classes, and
the subtrees of interest are only used to classify the ex-
amples at the other levels. The classification procedure is
interrupted when the current classifier’s reliability is less
than a predefined threshold.

5. EXPERIMENTAL EVALUATION

This section presents an empirical assessment of our
proposal and its comparison with three well-known ap-
proaches (Figure 4). First, we describe the considered
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dataset. Next, we report the experimental setup regarding
the adversary approaches, parameter setting, and evalua-
tion measures. Then, we show and discuss the obtained re-
sults in terms of predictive performance and learning time.

MFCC

Chroma

Spectral

hP

hR

hF

Runtime

①
Dataset for 

Hierarchical Music 
Genre Classification

Hierarchical
Classification
Approaches

Base-level
Classifier

③
Evaluation of

Results

FC

LCN

LCL

Hybrid

Random
Forest

②

Figure 4. High-level overview of the empirical evaluation.

5.1 Dataset

In our experiments, we used data from the Free Mu-
sic Archive (FMA) [38]. This dataset contains 106,574
recordings, organized in 161 imbalanced genres.

We note that this paper’s focus is not proposing novel
features or comparing them in the classification scenario.
For this reason, we considered the features available with
the FMA dataset instead of extracting or learning features
from the audios. Such a decision allowed us to compare
the hierarchical classification approaches without relying
on the gain provided by a better (or worse) feature set.

The features provided with the dataset, which we ap-
plied in our computational tests, are statistics from win-
dowed MFCC, chroma, and spectral features extracted
from 30 seconds in the middle of each recording using the
LibROSA framework [39]. Specifically, these statistics are
the mean, standard deviation, skew, kurtosis, median, min-
imum, and maximum.

As noted in Section 2, music genre classification is usu-
ally performed by timbre-related features, such as MFCC
and spectral characteristics. However, we also included the
chroma-based features in our experiments to evaluate both
the contribution of this kind of feature in the genre clas-
sification and our proposal’s behavior when dealing with
distinct music characteristics.

The FMA dataset has a default training-validation-test
split. As we did not use the validation set to tune parame-
ters, we merged it with the test examples. This operation
provided us a training set that comprises 80% of the ex-
amples. Consequently, 20% of the remaining recordings
belong to the test partition. Besides, this split is stratified
and is guaranteed that there is no artist in the test set that
also appears in the training set.

The genre hierarchy is an interesting characteristic to
observe in this dataset. As the FMA allows the artists to
label their songs themselves, the dataset presents a com-
plex hierarchy of genres.

Another challenging factor present in this dataset is the
class imbalance – “unbalanced with 1 to 38,154 tracks per
genre” [38].

Figure 5 illustrates one branch of the class hierarchy,
which presents the stated issues. It has nodes with single
and multiple children, as well as genres with a significant
difference regarding the number of tracks.

Soul-RnB
1499

Disco
367

Funk
773

Deep Funk
1

Figure 5. Example of genre hierarchy for the top-level
Soul-RnB genre.

To make the hierarchical classification of single paths
feasible, we address some issues found in the FMA dataset.
In so many cases, the associated genres belong to more
than one path in the genre hierarchy tree. In these cases,
we select the genre for which the leaf node is at the lowest
level. In case of ties, we kept that one in which the genre
in the lowest level of each path comprises the higher num-
ber of tracks. We also removed unlabeled examples and
examples from the test set whose classes were not present
in the training set. Therefore, the dataset evaluated in this
paper has 82,374 training examples and 15,681 test exam-
ples. These examples are described by 461 features and are
associated with 120 classes organized hierarchically. The
class hierarchy has four levels, each with 21, 107, 17, and
2 classes.

5.2 Compared Approaches and Parameter Settings

We compared the hybrid approach with three other well-
known ones: (i) Flat Classifier (FC), (ii) Local Clas-
sifier per Node (LCN), and (iii) Local Classifier per
Level (LCL). For FC, we assume each possible path in the
label tree to be a class. For LCN, we use the “inclusive”
heuristic to generate local datasets.

We adopted Random Forest [40] as a symbolic base-
level classifier with the number of variables available for
splitting at each tree node (mtry) equal to

√
(M − 1).

We considered the NMLNP strategy with threshold =
0.5. This setting means that the classification at the deepest
levels is interrupted when the classification score is less
than 0.5 or, in the case of per node classifiers, the predicted
class is negative.

The experimental protocol execution comprised the use
of the programming language R 4 with the following pack-
ages: caret, data.table, data.tree, and doParallel.

5.3 Evaluation Measures

In hierarchical classification problems, classes belonging
to the levels furthest from the root node are generally more
difficult to predict than classes associated with levels clos-
est to the root node. In view of this, we assessed the quality

4 https://www.r-project.org.
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of the hierarchical classification approaches according to
three hierarchical performance measures: (i) hierarchical
Precision (hP), (ii) hierarchical Recall (hR), and (iii) hier-
archical F-measure (hF). They are defined as follows:

hP =

∑
i |Yi ∩ Ŷi|∑

i |Ŷi|
(1) hR =

∑
i |Yi ∩ Ŷi|∑

i |Yi|
(2)

hF =
(β2 + 1)× hP × hR
β2 × hP + hR

(3)

In Eqns. 1 and 2, Ŷi denotes the set of labels predicted
for a test example i and Yi corresponds to the set of classes
correct for this example. During the hP and hR computa-
tions, we need to discard the root node of the label hierar-
chy since, by definition, it is common to all the examples.
The summations, in turn, are calculated over all the test
examples.

As for Eqn. 3, β belongs to [0,∞) and refers to the
importance assigned to the hP and hR values. Here, we
established β = 1.

We must emphasize that the described measures are ex-
tended versions of the well-known metrics of precision, re-
call, and F-measure but tailored to the hierarchical classi-
fication scenario.

5.4 Results and Discussion

In order to check the performance of the hybrid method,
we made comparisons with three other hierarchical classi-
fication approaches: FC, LCN, and LCL.

Our first evaluation criterion to be analyzed is predic-
tive performance. Table 1 exhibits the three hierarchical
performance measures obtained in the FMA dataset for the
proposed method, as well as for the approaches used as
baselines.

Hierarchical approaches
Performance

FC LCN LCL Hybridmeasure
hP 67.62 72.36 69.86 75.79
hR 66.10 71.96 69.46 77.38
hF 66.88 72.16 69.66 76.57

Table 1. Hierarchical predictive performance in % of the
traditional approaches from the literature compared to our
approach.

As shown in Table 1, the hybrid approach provided the
best results, surpassing by a margin of approximately 4%
the LCN scheme that is widely applied in the related lit-
erature. The poorest results came from the flat classifier.
We expected this since such a model completely ignores
the problem class hierarchy and, consequently, does not
use domain knowledge to decompose the feature space of
the problem in question into subproblems with a smaller
number of classes.

After the predictive performance, our second evalua-
tion criterion is runtime. In this work, runtime refers to

learning time, i.e., the time spent in inducing hierarchical
classifiers over a dataset. Table 2 presents the runtime re-
sults achieved in the FMA dataset using both our proposal
and the baseline approaches. We performed the tests on
a server running 2.10 GHz Intel Xeon E5-2620 v4 pro-
cessor (32-core) with 92GB RAM and operational system
Debian 4.9.130-2 (64 bits) under the same processing con-
ditions for all measurements. The times are indicated in
minutes (min) or hours (h).

Hierarchical approaches
FC LCN LCL Hybrid

Learning
48 min 92.44 h 4.41 h 3.53 htime

Table 2. Time costs of the traditional approaches from the
literature compared to our approach.

In Table 2, we can see that the hybrid method had a
relatively shorter execution time than the LCN and LCL
approaches. While LCN built 119 binary models and LCL
four multiclass classifiers, our approach induced 27 mod-
els, 16 of which are multiclass and 11 binaries. We high-
light that although our proposal has generated more classi-
fiers than LCL, the induced models involved fewer exam-
ples and classes.

Even though the flat classifier’s learning time was
shorter than that of the hybrid method, the latter provided
the best results in terms of predictive performance.

6. CONCLUDING REMARKS

In this paper, we introduced a novel approach for hierar-
chical music genre classification. The proposed method is
based on combining local approaches to adapt the genre
classification to more realistic hierarchies of music genre.
Our results showed that the designed approach is better
than the traditional ones in terms of predictive performance
and execution time.

As future work, we intend to extend our method to deal
with multiple labels in distinct paths in the hierarchy. Also,
we plan to evaluate the use of different features and learn-
ing algorithms for the local classifications.

Finally, this research covered one real music genre hi-
erarchy. As mentioned, distinct music platforms organize
their labels in different ways. Thus, it is also our interest to
perform a broad study on other real music genre structures
to find specific contrivances that may aggregate informa-
tion to improve hierarchical classifications in the context
of music data.
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ABSTRACT

Music source separation is a core task in music information
retrieval which has seen a dramatic improvement in the past
years. Nevertheless, most of the existing systems focus
exclusively on the problem of source separation itself and
ignore the utilization of other —possibly related— MIR
tasks which could lead to additional quality gains. In this
work, we propose a novel multitask structure to investigate
using instrument activation information to improve source
separation performance. Furthermore, we investigate our
system on six independent instruments, a more realistic
scenario than the three instruments included in the widely-
used MUSDB dataset, by leveraging a combination of the
MedleyDB and Mixing Secrets datasets. The results show
that our proposed multitask model outperforms the baseline
Open-Unmix model on the mixture of Mixing Secrets and
MedleyDB dataset while maintaining comparable perfor-
mance on the MUSDB dataset.

1. INTRODUCTION

Music source separation has long been an important task for
Music Information Retrieval (MIR) with numerous practical
applications. By isolating the sound of individual instru-
ments from a mixture of music, source separation systems
can be used, for example, as a pre-processing tool for music
transcription [22] or for audio remixing [37]. They also
enable special applications such as the automatic generation
of karaoke tracks by separating vocals from the accompa-
niment, stereo-to-surround upmixing, and instrument-wise
equalization [1, 24].

Most of the current source separation systems use deep
learning approaches to estimate a spectral mask for each
independent instrument, then apply the mask to the mixture
audio for separation. Although the utilization of deep learn-
ing has improved source separation performance dramati-
cally, one problem of this approach is the limited amount
of training data for the prevalent supervised learning ap-
proaches. More specifically, the datasets need to comprise

c© Yun-Ning Hung, Alexander Lerch. Licensed under a
Creative Commons Attribution 4.0 International License (CC BY 4.0).
Attribution: Yun-Ning Hung, Alexander Lerch. “Multitask learning for
instrument activation aware music source separation ”, 21st International
Society for Music Information Retrieval Conference, Montréal, Canada,
2020.

of the separated tracks of each instrument, which renders
most easily accessible music data useless as it is already
mixed. Multiple open-source datasets attempt to address
this issue [5, 11, 17]. MUSDB [23] is nowadays the most
frequently used dataset for the training and evaluation of
source separation systems. In addition to the limited size,
the main shortcoming of MUSDB is the limited number of
instrument tracks: ‘Bass,’ ‘Drums,’ ‘Vocals,’ and ‘Other.’
Other datasets show other drawbacks, for instance, the iKala
and MIR-1K datasets only contain short clips of music in-
stead of complete songs [5, 11].

In addition to the data challenge, one potential issue
with most existing music source separation systems is that
they exclusively focus on the source separation task itself.
Harnessing the information of other MIR tasks by incorpo-
rating them into source separation, however, has not been
explored in-depth. For example, Instrument Activation De-
tection (IAD) can help determine which time frame contains
the target instrument, while pitch detection can help deter-
mine which frequency bins are more likely to contain a
harmonic series [13, 19]. This kind of multitask learning
approach has been reported to be efficient for multiple other
MIR tasks. Böck et al. achieve state-of-the-art performance
for both tempo estimation and beat tracking by learning
these two tasks at the same time [4]. Bittner et al. show
that by estimating multi-f0, melody, bass line, and vocals
at the same time, the system outperforms its single-task
counterparts on all four tasks [2]. Similar results have been
reported for simultaneously estimating score, instrument
activation, and multi-f0 [12]. However, only recently was
multitask learning successfully applied to source separation
by combining it with pitch estimation [28].

In this paper, we propose a novel multitask learning struc-
ture to explore the combination of IAD and music source
separation. By training for both tasks in an end-to-end
manner, the estimated instrument labels can be used during
inference as a weight for each time frame. The goal is both
to suppress the frames not containing the target instrument
and to correct a potentially incorrectly estimated mask. To
increase the size of the available training data, we lever-
age two open-source large-scale multi-track datasets (Med-
leyDB [3] and Mixing Secrets [8]) in addition to MUSDB
to evaluate on a larger variety of separable instruments. We
refer to the combination of these two datasets as the MM
dataset.

In summary, the main contributions of this work are
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• the systematic investigation of the first multi-task
source separation deep learning model that incor-
porates source separation with IAD in the spectral
domain,

• the application of the IAD predictions during infer-
ence, and

• the presentation of the first open-source model
that separates up to six instruments instead of the
four tracks (3 independent instruments) featured by
MUSDB.

2. RELATED WORK

State-of-the-art systems for music source separation are
all based on deep learning due to proven superior perfor-
mance. Uhlich et al. presented one of the pioneering works
using a Deep Neural Network (DNN) architecture for mu-
sic source separation [35], and Nugraha et al. used a DNN
architecture and fully-connected layers for multichannel
music source separation [21]. In the following years, more
deep learning related systems were introduced. For exam-
ple, Takahashi and Mitsufuji used recurrent neural networks
to deal with temporal information [36], while others pro-
posed the U-net structure for multiple separation tasks [14].
The U-net structure had been previously found useful for
image segmentation [26] and treats the decomposition of
a musical audio signal into the target and accompanying
instrument tracks analogous to image-to-image translation.
Takahashi et al. presented a dense LSTM that achieved
the highest score in the SiSEC2018 [31] competition [34].
To preserve high resolution information, Liu and Yang in-
troduced dilated 1-D convolution and a GRU network to
replace pooling [16]. Different from other approaches us-
ing spectrograms as the input representation, Défossez et al.
experimented on time-domain waveform source separation
and showed that results comparable to spectrogram-based
source separation systems are achievable [6]. “Spleeter,”
based on a U-net model structure, is currently regarded as
one of the most powerful source separation systems [10].
It should be noted that —although the pre-trained model
is freely available— Spleeter is trained on a proprietary,
publicly unavailable dataset.

Stöter et al.’s “Open-Unmix” is frequently used as mod-
ern benchmark system on the MUSDB dataset [23]. It is
a well documented open-source music source separation
system with a recurrent architecture that achieves good
separation results [32].

Most of the methods mentioned above are trained and
evaluated on the open-source dataset used in SiSEC2018
competition [31]: MUSDB [23]. As mentioned above, one
of the main problems of the MUSDB dataset is that it has
only a limited amount of songs and instrument categories: it
only includes three separable independent instruments. To
include more separable instruments, Miron et al. proposed
a score-informed system able to separate four classical in-
struments by training it on synthetic renditions [19]. How-
ever, their system is limited to classical music and requires
the musical score for separation. While Spleeter is able
to separate four independent instruments and Uhlich et al.
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Figure 1. Multitask model structure for our proposed
source separation system. Block is the residual block com-
posed of convolutional layers while Up-Block is the residual
block composed of transposed convolutional layers. “c” is
the number of features.

constructed a dataset which contains nine separable instru-
ments [35], both their datasets are not publicly available.

To explore the possibility of separating unseen instru-
ments, Seetharaman et al. proposed to use instrument class
labels as a condition to cluster time-frequency bins for dif-
ferent instruments into the embedding space [28]. Their
work showed that the system can also separate unseen in-
struments during testing by sampling from the learned em-
bedding space. Lee et al. proposed to use audio queries for
music separation [15]. The learned feature vector from the
audio query acts as the condition to inform the separation
of the target source. Manilow et al. introduced a multi-
task learning structure for source separation, instrument
classification, and music transcription [18]. They showed
that by jointly learning these three tasks, the source separa-
tion quality increased. Furthermore, the network seems to
generalize better to unseen instruments. Other works such
as [29, 33] combine instrument activity with source separa-
tion, however, they utilized either the predicted activity or
ground truth as an input condition instead of learning in an
end-to-end manner.

3. METHOD

We propose a U-net-based [27] multitask structure to incor-
porate instrument recognition with music source separation,
which we refer to as Instrument Aware Source Separation
(IASS) system. An overview of the model is shown in
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Instrument Activation

Estimated Mask Mixture Magnitude Spectrogram

Frame-wise
Multiplication

Target Magnitude Spectrogram

Figure 2. Using instrument activation as a weight to filter
the estimated mask, which will be used to multiply with the
mixture of the magnitude spectrogram.

Figure 1. Although the multitask approach shows similari-
ties with previous approaches (compare [18]), we design our
model with a different goal: instead of just learning a joint
representation using the multitask structure, our model uses
estimated labels from multitask learning during inference
to improve source separation estimation.

3.1 Model structure

The U-net structure has been found useful for image de-
composition [26], a task with general similarities to source
separation. The skip connections of U-net enable the model
to learn from both high-level and low-level features leading
to its success for music source separation [10, 14, 30].

Our model differs from previous U-net-based source sep-
aration systems by using a residual block instead of a CNN
in each layer. The residual block allows the information
from the current layer to be fed into a layer 2 hops away and
deepens the structure. Each encoder and decoder contains
three blocks with each block containing three convolutional
or transposed convolutional layers, respectively, two batch
normalization layers, and two leaky ReLU layers. The mul-
titask objective is achieved by attaching a CNN classifier
to the latent vector. This classifier predicts the instrument
activity and has four transposed convolutional layers and
three batch normalization layers in between. The last convo-
lutional and transposed convolutional layers in each block
feature a (3,1) filter size for up-sampling or down-sampling,
while the others have a (3,3) filter size. During training, we
use a Mean Square Error (MSE) loss for source separation
and a Binary Cross-Entropy (BCE) loss for the prediction
of the instrument activity. A hyperparameter α is manually
tuned to balance these two loss functions:

L = LMSE + αLBCE. (1)

After successful training, the predicted instrument ac-
tivity is used as a binary weight to multiply with the mag-
nitude spectrogram along the time dimension. By doing
so, the instrument labels are able to suppress the frames
not containing any target instrument as shown in Figure 2.
However, this binary instrument mask has two potential
problems. First, false negatives of the predicted labels

(a) (b)

(c) (d)
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Figure 3. First 2000 frames of the separated vocal track
from the song Angels In Amplifiers — I’m Alright from the
MUSDB-HQ dataset, visualizing different post-processing
methods for applying instrument activity as a weight on the
predicted magnitude spectrogram: (a) ground truth spectro-
gram, (b) predicted spectrogram without post-processing,
(c) predicted spectrogram with raw predicted instrument
labels as a weight, (d) predicted spectrogram with smoothed
predicted instrument labels.

might mistakenly suppress wanted components in the spec-
trogram. Figure 3 (b) exemplifies that around frames 800
and 1000 with gaps caused by false negative prediction
within a continuous sound. Even if the gaps have only a the
length of a few milliseconds, it will have negative impact
on the perceived quality. Second, the binary mask might
cause repeated abrupt switching between silence and sound,
which might lead to artifacts such as musical noise further
decreasing the perceived quality. To address these problems,
a median filter is applied to smooth the predicted instrument
activities. The influence is discussed in Sect. 4.

An implementation of our system is publicly available
online. 1

3.2 Data representation

We extract magnitude spectrograms with a window length
and hop size of 4096 and 1024 samples, respectively, at a
sample rate of 44100 Hz for the input of our source sep-
aration model. The same magnitude spectrogram is ex-
tracted for the target audio reference. The instrument ac-
tivity ground truth is at the frame level, meaning there is a
binary label for each instrument to show whether the instru-
ment is active or not in each time frame. Instrument labels
have the same time resolution as the input spectrogram. We
use the original activation probability computed by both
datasets [3, 8], and binarize the activation with a threshold
of 0.5 as suggested.

4. EXPERIMENT

To show the efficiency of our proposed model, we first
compare our model with the baseline Open-Unmix model
[32] on the MUSDB-HQ dataset. Note that we choose

1 https://biboamy.github.io/Source_Separation_Inst
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Method Vocals Bass Drums Other
IASS 3 blocks 6.46 4.18 5.56 4.19
IASS 4 blocks 6.51 4.25 5.15 4.38

Table 1. SDR score for IASS source separation perfor-
mance with 3 and 4 residual blocks.

MUSDB-HQ instead of MUSDB because we want to obtain
a high-quality separation system without potential coding
artifacts. The audio of MUSDB is encoded in a lossy format
while MUSDB-HQ provides the raw audio data. Other
than that, there is no difference between the two datasets.
However, since MUSDB-HQ is a newly released dataset
it complicates comparing our results to other approaches
directly as most of the previous systems have not been
evaluated on the MUSDB-HQ dataset. Both the baseline
and the proposed method are then evaluated on the MM
dataset with six different instruments. For each source,
a separate model is trained for both the baseline and our
proposed method. Finally, an ablation study is conducted
to investigate the impact of instrument labels and median
filter on the source separation results. We train our models
with the Adam optimizer with a learning rate of 0.001 and
apply early stopping if the validation loss does not change
for 100 epochs.

4.1 Dataset

Two open-source datasets, MUSDB-HQ [25] and the com-
bination of Mixing Secrets [8] and MedleyDB [3] dataset
(MM dataset) are used for the experiments. MUSDB is the
most widely used dataset for music source separation and
contains four separated tracks: ‘Bass,’ ‘Drums,’ ‘Vocals,’
and ‘Others.’ The dataset has 150 full-length stereo mu-
sic tracks. We use the data split proposed by Stöter [32]:
86/14/50 songs for training, validation, and testing, respec-
tively. Since data augmentation has been proven to be
helpful [34], the following data augmentation is applied
during the training. First, one track is randomly selected
from each source and multiplied with a random gain factor
ranging from 0.25 to 1.25. The starting point of each track
is randomly chosen for chunking into a clip with length
of 6 s. Finally, the chunked audio clips from each source
are remixed for training. Since the original MUSDB-HQ
dataset does not include instrument activation labels, we ap-
ply the energy tracking method proposed for MedleyDB [3]
with a threshold of 0.5 to obtain the frame-level binary
instrument activity labels.

The MM dataset contains 585 pieces of songs (330 from
MedleyDB and 258 from Mixing Secrets) with more than
100 instruments and their individual tracks. We use the
training and testing split proposed by Gururani et al. [9] for
training (488 songs) and evaluating (100 songs) our system.
The most frequently occurring 6 instruments are picked as
target instruments: ‘Bass,’ ‘Drums,’ ‘Vocals,’ ‘Electrical
Guitar,’ ‘Acoustic Guitar,’ and ‘Piano.’ One of the prob-
lems with this dataset is that not all of the songs provide
parameters on how to remix the individual tracks into the
mixture. Therefore, the volume of each track is adjusted

Method SDR SIR SAR ISR
Vocals Open-Unmix 6.11 13.21 6.75 12.43

IASS 6.46 14.70 6.98 14.30
Bass Open-Unmix 4.48 8.23 5.40 10.29

IASS 4.18 7.30 4.52 6.85
Drums Open-Unmix 5.02 10.17 6.05 10.55

IASS 5.56 10.74 6.86 10.92
Other Open-Unmix 4.23 9.90 3.88 7.34

IASS 4.19 8.78 4.70 9.32

Table 2. BSS metrics for Open-Unmix and IASS on the
MUSDB-HQ dataset.

to the same loudness (RMS) during training before apply-
ing the random gain as detailed above. In addition, each
track is downmixed to a single channel. Furthermore, the
data augmentation technique introduced above is applied to
generate a large number of training samples from the MM
dataset. We construct two separate groups of songs. One
contains all the tracks including the target instrument, while
another contains the tracks without the target instrument
(“accompaniments”). There are total of 128 target tracks for
‘Acoustic Guitar,’ 189 for ‘Piano,’ 325 for ‘Electrical Gui-
tar,’ 374 for ‘Vocals,’ 468 for ‘Drums,’ and 458 for ‘Bass.’
During training, we randomly select 1 to 5 tracks in the
accompaniment pool to mix with the target instrument. By
doing so, we can generate various combinations of train-
ing “songs.” The random chunking approach applied to
MUSDB-HQ is also applied on MM dataset. The testing
set also balances the loudness of each track. We filter out
the songs from the testing set which do not contain any of
the 6 target instruments, resulting in 20 songs with ‘Piano,’
23 songs with ‘Acoustic Guitar,’ 54 songs with ‘Electrical
Guitar,’ 71 songs with ‘Vocals,’ 76 songs with ‘Bass,’ and
81 songs with ‘Drums.’

4.2 Evaluation

To reconstruct the waveforms from the resulting magnitude
spectrograms, we multiply the magnitude spectrogram with
the phase of the original complex spectrograms and apply
the inverse short-time Fourier transform on the complex
spectrogram. We do not use any post-processing such as
Wiener filtering here to focus on the raw result without
potentially confounding quality gains in post-processing.
Therefore, the Open-Unmix post-processing is disabled for
the evaluation.

The quality of the source separation is evaluated with
the four most frequently used objective metrics: source to
distortion ratio (SDR), source to interference ratio (SIR),
source to artifact ratio (SAR), and Image to Spatial dis-
tortion Ratio (ISR) [7]. We use the museval package for
calculating the evaluation metrics [31].

4.2.1 Source separation on MUSDB-HQ

To allow for comparison with other systems trained on the
MUSDB, the first experiment reports the result on MUSDB-
HQ.
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Open-
Unmix

IASS IBM input-
SDR

Vocals 3.68 4.78 6.49 -6.24
Elecgtr 1.55 1.77 4.56 -5.90
Acgtr 0.95 1.29 3.38 -6.65
Piano 1.08 1.91 3.63 -6.31
Bass 4.04 5.26 5.34 -5.77
Drums 4.45 4.89 6.23 -6.05

Table 3. SDR score for Open-Unmix, IASS, an ideal binary
mask and input-SDR.

In a first preliminary experiment we investigate whether
adding more residual blocks influences the performance
of the proposed method. We report the SDR score for the
four sources of the MUSDB-HQ dataset in Table 1. The
performance with three residual blocks and with four resid-
ual blocks is comparable on all instruments. For training
efficiency, we use three residual blocks in the following
experiment.

Table 2 shows the results of our proposed model com-
pared to Open-Unmix. Our model outperforms the Open-
Unmix model on ‘Vocals’ and ‘Drums’, performs equally
on ‘Other’, and slightly worse on ‘Bass’. This might be
because ‘Bass’ most likely to appear throughout the songs.
As a result, the improvement of using the instrument activa-
tion weight is limited. The imbalanced activity might also
impact the instrument classifier.

4.2.2 Source separation on MM

The results for the MM dataset are summarized in Table 3.
We re-trained the Open-Unmix model on the MM dataset
by using the default training setting provided with their
code. The results for the Ideal Binary Mask (IBM) (source
code [31]) represent the best case scenario. The worst
case scenario is represented by the results for input-SDR,
which is the SDR score when using mixture as the input.
Compared to MUSDB-HQ, the MM dataset has a larger
amount of training data. It can be observed from Table 3
that our proposed model generally achieves better source
separation performance on six instruments. We can also
observe a trend that both models have higher scores on
‘Drums,’ ‘Bass,’ and ‘Vocals’ than on ‘Electrical Guitar,’
‘Piano,’ and ‘Acoustic Guitar.’ This might be attributed to
the fact that ‘Guitar,’ ‘Piano,’ and ‘Acoustic Guitar’ have
fewer training samples (cf. Sect. 4.1). Another possible
reason is that the more complicated spectral structure of
polyphonic instruments such as ‘Guitar’ and ‘Piano’ make
the separation task more challenging.

4.2.3 Instrument activity detection

While our system’s source separation performance was the
primary concern, the accuracy of the instrument predic-
tions is also of interest. Our classifier output is compared
to the model proposed by Gururani et al. [9], which was
trained and evaluated on the same MM dataset. Note that
this comparison is still not completely valid as their system
uses multi-label prediction while our model is single-label.

Figure 4. IAD result for both Gururani et al.’s method
(orange) and our IASS (blue) with label aggregation. Indi-
cated in gray is the activation rate (percentage of the training
frames containing positive activity labels).

Still, it can provide some insights into how well our system
predicts the instrument activity. As Gururani et al.’s system
predicts instrument labels with a time resolution of 1 s, the
output resolution of our prediction has to be reduced. For
each second, all the estimated activations are aggregated by
calculating their median. Furthermore, instrument subcate-
gories from their work are combined. For example, female
and male singers are combined into ‘Vocals,’ electrical bass
and double bass are combined into ‘Bass,’ electrical and
acoustic piano are combined into ‘Piano’ and clean and dis-
torted electrical guitar are combined into ‘Electrical Guitar.’
We report the AUC score in Figure 4.

We can make the following observations. First, ‘Piano,’
‘Electrical Guitar,’ and ‘Bass’ tend to have lower detection
rates. This might be because all these instrument cate-
gories include both acoustic and electric instruments which
the model might easily confuse with the background music.
This might also influence the source separation performance.
The result can explain that in Table 4, ‘Vocals’ have the
highest increase in the average score when applying instru-
ment labels since ‘Vocals’ has better instrument detection
accuracy. In contrast, ‘Bass’ has a lower increase since
it has poorer instrument detection results. Second, from
Figure 4 we can observe that ‘Vocals’ and ‘Piano’ have a
lower activation rate, which means the model has fewer
sound samples containing ‘Vocals’ and ‘Piano’ during train-
ing. This aligns with the highest SIR score increase on
‘Vocals’ and ‘Piano’ in Table 4 when instrument activation
is added, since instrument activation can help suppress the
interference at the non-active frames. This also shows the
potential of our model to be used on instruments which only
appear in the song infrequently.

4.3 Ablation study

In this experiment, we investigate the impact of the in-
strument labels on our model. First, the IASS model is
trained and evaluated without using instrument labels, i.e.,
as a standard U-net without instrument classifier on the
latent vector. The model will only be updated by the MSE
between the ground-truth magnitude spectrogram and pre-
dicted spectrogram (α = 0). For testing, all instrument
“predictions” are set to 1. Second, the IASS model is trained
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Train Test SDR SIR SAR Avg
Vocals 7 7 4.26 8.58 4.48 5.77

3 7 3.94 8.48 4.69 5.70
3 3 4.78 11.62 5.31 7.24

Elecgtr 7 7 1.75 0.61 4.94 2.46
3 7 1.82 1.27 4.29 2.43
3 3 1.77 1.64 4.48 2.63

Acgtr 7 7 1.11 0.75 2.42 1.43
3 7 1.15 0.48 2.52 1.38
3 3 1.29 1.80 2.45 1.85

Piano 7 7 1.55 2.97 2.13 2.31
3 7 1.70 3.16 2.06 2.22
3 3 1.91 4.17 2.15 2.74

Bass 7 7 4.10 8.34 4.74 5.72
3 7 4.12 7.82 5.10 5.68
3 3 4.34 8.13 5.10 5.85

Drums 7 7 4.50 9.54 5.15 6.40
3 7 4.38 9.87 4.95 6.40
3 3 4.89 10.72 5.26 6.96

Table 4. Ablation study for IASS source separation per-
formance training and evaluating with (3) or without (7)
instrument labels.

with instrument labels but evaluated without instrument
labels. This is a traditional multitask scenario: the model
will be trained with both the MSE and the BCE losses in
Eq. (1). However, during evaluation, the output magni-
tude spectrogram is not weighted by the instrument activity
(predictions equal 1). Third, we include the IASS results
from Table 3 —computed with both losses and using the
instrument predictions as mask weights— for convenience.

The results are shown in Table 4. It can be observed that
using instrument labels as a weight generally leads to a bet-
ter performance than without using instrument labels. The
result also somewhat unexpectedly shows that training with
instrument detection loss influences source separation per-
formance, as the average quality score is often lower when
training with the multitask loss. One possible reason for
this is that adding the IAD sub-task forces more information
to be passed to the bottom layers, where the resolution is
compressed. We argue, however, that the multitask learning
structure does bring an extra benefit to the system: using the
instrument activity predictions as a weight leads to better
separation quality. Figure 3 visualizes the effect on one of
the songs from the MUSDB-HQ dataset. This song does
not have any vocals before 16 s, which is around time frame
700. Subfigure (a) shows the ground truth magnitude spec-
trogram before applying instrument labels while (c) and (d)
show the predicted spectrograms after applying the instru-
ment activations or the smoothed instrument activations,
respectively. Both the false positive predictions in the be-
ginning before time frame 700 as well as the false negative
predictions around frames 800 and 1000 have been repaired
by using smoothed activations. This result is consistent with
the results in Table 4 where SIR has the highest increase:
interferences are more successfully suppressed.

Furthermore, we investigate the influence of median
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Figure 5. Ablation study for IASS source separation per-
formance with or without median filter on instrument labels.
The orange bar shows the increase of the average score
(average of SDR, SIR, and SAR) after applying median
filtering. Gray shows the average score increase when using
instrument ground truth labels instead of estimated labels.

filtering the predicted instrument activity on our results.
Figure 5 shows the performance of our proposed source
separation model with and without applying the median fil-
ter on the predicted instrument activities. Using the median
filter generally increases performance across all instruments
as it eliminates spurious prediction errors.

Finally we are using the oracle ground truth labels in-
stead of the estimated labels as the weight. As we can
observe from Figure 5, using the ground truth labels brings
an average score increase in all instruments, especially for
vocals and piano. This can be seen as the upper-bound best
case scenario of our instrument-activity-weighted model
and emphasizes the potential for improvement when com-
bining instrument prediction with source separation.

5. CONCLUSION

In this paper, we proposed a novel multitask structure
combining instrument activation detection with multi-
instrument source separation. We utilize a large dataset
to evaluate on various instruments and show that our model
achieves equal or better separation quality than the baseline
Open-Unmix model. The ablation study also shows that
using instrument activation as a weight is able to correct
the false estimation from the source separation task and im-
prove source separation performance. In summary, the main
contributions of this work are the proposal of a multitask
learning structure combining IAD with source separation,
and insights into using new open-source datasets to increase
the number of separable instrument categories.

We have identified several directions for future exten-
sions of this model. First, we plan to increase the number
of target instruments by combining synthesized data with
the MM dataset especially for underrepresented instrument
classes. Second, we plan to incorporate other tasks, such
as multi-pitch estimation, into our current multi-task struc-
ture [20]. Third, we will explore using multi-label instru-
ment detection to separate multiple instruments at the same
time. Lastly, we will explore post-processing methods such
as Wiener filter to improve our system’s quality.
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ABSTRACT

Deep learning algorithms are increasingly developed for
learning to compose music in the form of MIDI files. How-
ever, whether such algorithms work well for composing
guitar tabs, which are quite different from MIDIs, remain
relatively unexplored. To address this, we build a model for
composing fingerstyle guitar tabs with Transformer-XL, a
neural sequence model architecture. With this model, we
investigate the following research questions. First, whether
the neural net generates note sequences with meaningful
note-string combinations, which is important for the gui-
tar but not other instruments such as the piano. Second,
whether it generates compositions with coherent rhythmic
groove, crucial for fingerstyle guitar music. And, finally,
how pleasant the composed music is in comparison to real,
human-made compositions. Our work provides prelimi-
nary empirical evidence of the promise of deep learning
for tab composition, and suggests areas for future study.

1. INTRODUCTION

Thanks to the cumulative efforts in the community, in re-
cent years we have seen great progress in using deep learn-
ing models for automatic music composition [8]. An im-
portant body of research has been invested on creating pi-
ano compositions, or more generally keyboard style music.
For instance, the “Music Transformer” presented by Huang
et al. [19] employs 172 hours of piano performances to
learn to compose classical piano music. Another group
of researchers extends that model to generate pop piano
compositions from 48 hours of human-performed piano
covers [20]. They both use a MIDI-derived representa-
tion of music and describe music as a sequence of event
tokens such as NOTE-ON and NOTE-VELOCITY. While
the MIDI format works the best for representing keyboard
instruments and less for other instruments (for reasons de-
scribed below), Donahue et al. [14] and Payne [31] show
respectively that it is possible for machines to learn from a
set of MIDI files to compose multi-instrument music.

There are, however, many other forms of musical nota-
tion that are quite different from the staff notation assumed

c© Licensed under a Creative Commons Attribution 4.0 In-
ternational License (CC BY 4.0). Attribution: “Automatic Composi-
tion of Guitar Tabs by Transformers and Groove Modeling ”, 21st Inter-
national Society for Music Information Retrieval Conference, Montréal,
Canada, 2020.

Figure 1. An example of fingerstyle guitar tab composed
by human, along with the corresponding staff notation.

by keyboard music. For example, the tabulature, or “tab”
for short, is a notation format that indicates instrument fin-
gering rather than musical pitches. It is common for fret-
ted stringed instruments such as the guitar and ukulele, and
free reed aerophones such as the harmonica. It makes more
sense for people playing such instruments to read the tabs,
as they suggest how to move the fingers.

As shown in Figure 1, a tab contains information such
as the fingering configuration on the fretboard (six strings
for the case of the guitar) as well as usage of the left-hand
or right-hand playing techniques. Such information is usu-
ally missing in the corresponding staff notation and MIDI
files. Learning to automatically compose guitar music di-
rectly from MIDI files, though possible, has the limitation
of ignoring the way people play these instruments. How-
ever, to our best knowledge, little has been done to use tabs
to train a deep generative model.

To investigate the applicability of modern deep learn-
ing architectures for composing tabs, we compile a new
dataset of 333 TAB files of “fingerstyle guitar” (including
originally fingerstyle guitar music and fingerstyle adapta-
tion) [3], and modify the data representation of the Mu-
sic Transformer [19] to make the extended model learn to
compose guitar tabs. With this model, we aim to answer
three research questions (RQs):
• Whether the neural network learns to generate not

only the note sequences but also the fingering of the
notes to be played on a fretboard, from reading only
the tabs (instead of, for example, watching videos
demonstrating how people play the guitar)?

• Whether the neural network generates compositions
with coherent “groove,” or the use of rhythmic pat-
terns over time [13, 32, 39]? It is generally assumed
that the layers of a neural network learn abstrac-
tions of data on their own to perform the intended
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task, e.g., to predict the next events given the his-
tory. However, in music, groove is usually indirectly
implied according to the arrangement of notes along
the time axis, instead of explicitly specified in either
a MIDI or TAB file. Therefore, it remains to be stud-
ied whether the model can do better if it has to ex-
plicitly handle bar-level GROOVING events, inserted
into the training data as a high-level information in
some way, or if such a modification is not needed.
This is in particular relevant in the context of finger-
style composition, as in fingerstyle a guitarist has to
take care of the melody, chord comping, bass line
and rhythm simultaneously [3].

• Finally, how the compositions generated by the neu-
ral network compare with human-composed guitar
tabs, when both rendered into audio waveforms and
presented to human listeners? This gives us a direct
evaluation of the effectiveness of the neural network
in modeling guitar music.

We provide audio rendition of examples of the gener-
ated tabs (using a guitar synthesizer of a DAW called Am-
ple Sound [1]) at https://ss12f32v.github.io/
Guitar-Transformer-Demo/, along with a video
recording of a guitarist playing a generated tab.

In what follows, we review some related work in Sec-
tion 2, and then present the tab dataset in Section 3. After
that, we describe in Section 4 the methodology for model-
ing and learning to compose guitar tabs. We present the re-
sult of objective and subjective evaluations addressing the
aforementioned research questions in Section 5.

2. RELATED WORK

2.1 Guitar-related Research in MIR

In the music information retrieval (MIR) community, re-
search concerning guitar is often related to automatic gui-
tar transcription [5, 7, 9, 16, 18, 21, 22, 27, 34, 46] and play-
ing technique detection [4, 10, 37, 38]. For example, Su et
al. [38] built a convolution neural network (CNN) model
for detecting the playing techniques associated with the
string-pressing hand, and incorporated that for transcribing
audio recordings of unaccompanied electric guitar perfor-
mances. Rodríguez et al. [34] presented a model for tran-
scribing Flamenco guitar falsetas, and Abeßer and Schuller
[5] dealt with the transcription of solo bass guitar record-
ings. We note that, while automatic transcription concerns
with recovering the tab underlying an audio guitar perfor-
mance, our work deals with automatic composition of orig-
inal guitar tabs in the symbolic domain, and therefore does
not consider audio signals.

As there are multiple fret positions to play the same note
on a guitar, it may not be easy for a novice guitar learner
to play a guitar song without the corresponding tab. Au-
tomatic suggestion of the fingering given a human-made
“lead sheet,” a symbolic format that specifies the melody
and chord sequence but not their fingering, has therefore
been a subject of research. Existing work has explored
the use of hidden Markov models, genetic algorithm, and

neural networks to predict the fingering by examining its
playing difficulty for a guitarist, viewing the task as an op-
timal path finding problem [6,28,35,40]. While such prior
arts can be considered as performing a MIDI-to-TAB con-
version, our work aims to model TABs directly.

Xi et al. developed the GuitarSet [45], a set of 360 au-
dio recordings of a guitar equipped with the hexaphonic
pickup. The special pickup is able to capture the sound
from each string individually, making it possible for a
model to learn to perform multipitch estimation and tab-
ulature fingering arrangement at the same time. Using the
dataset, Wiggins and Kim [43] built such a model with
CNN, achieving 0.83 F-score (i.e., the harmonic average
of precision and recall) for multipitch estimation, and 0.90
for identifying the string-fret combinations of the notes.
While the dataset is relevant for guitar transcription, its
recordings are all around 12–16 bars in length only, which
seems to be too short for deep generative modeling.

McVicar et al. [24–26] used to build sophisticated prob-
abilistic systems to algorithmically compose rhythm and
lead guitar tabs from an input chord and key sequence. Our
work differs from theirs in that we aim to build a general-
purpose tab composition model using modern deep gener-
ative networks. An extra complexity of our work is that we
experiment with fingerstyle guitar, a type of performance
that can be accomplished by a single guitarist.

2.2 Transformer Models for Automatic Composition
The Transformer [41] is a deep learning model that is de-
signed to handle ordered sequences of data, such as natu-
ral language. It models a word sequence (w1, w2, . . . wT )
seen in the training data by factorizing the joint prob-
ability into a product of conditionals, namely, P (w1) ·
P (w2|w1) · · · · · P (wT |w1, . . . , wT−1) . During the train-
ing process, the model optimizes its parameters so as to
correctly predict the next word wt given its preceding his-
tory (w1, w2, . . . wt−1), for each position t in a sequence.

Following some recent work on recurrent neural net-
work (RNN)-based automatic music composition [29, 42],
Huang et al. [19] viewed music as a language and for the
first time employed the Transformer architecture for mod-
eling music. Given a collection of MIDI performances,
they converted each MIDI file to a time-ordered sequence
of musical “events,” so as to model the joint probability of
events as if they are words in natural language (see Section
4.1 for details of such events). The Transformer with rel-
ative attention was shown to greatly outperform an RNN-
based model, called PerformanceRNN [29], in a subjective
listening test [19], inspiring the use of Transformer-like ar-
chitectures, such as Transformer or Transformer-XL [12],
in follow-up research [11, 14, 20, 31, 44]. 1

There are lots of approaches to automatic music com-
position, deep learning- and non-deep learning based in-
cluded [8, 15, 30]. We choose to consider only the Trans-
former architecture here, to study whether we can translate
its strong result in modeling MIDIs to modeling TABs.

1 We note that it is debatable whether music and language are related.
We therefore envision that some other new architectures people will come
up with in the future might do a much better job than Transformers in
modeling music. This is, however, beyond the scope of the current work.
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# tabs # bars # bars # events
per tab per tab

training 303 24,381 80±41 5,394±3,116
validation 30 2,593 74±35 5,244±3,183

Table 1. Statistics of the dataset; the last two columns
show the mean and standard deviation values across each
set. Please see Table 2 for definitions of the events.

3. FINGERSTYLE GUITAR TAB DATASET
There have been some large-scale MIDI datasets out there,
such as the Lakh MIDI dataset [33] and BitMidi [2]. The
former, for example, contains 176,581 unique MIDI files
of full songs. In contrast, existing datasets of tabs are usu-
ally smaller and shorter, as they are mainly designed for
learning the mapping between tabs and audio (i.e., for tran-
scription research), rather than for generative modeling of
the structure of tabs. The tabs in the GuitarSet [45], for
example, are performances of short excerpts of songs, typ-
ically 12–16 bars in length, which are not long.

For the purpose of this research, we compile a guitar
tab dataset on our own, focusing on the specific genre of
fingerstyle guitar. Specifically, we collect digital TABs of
full songs, to facilitate language modeling of guitar tabs.
We go through all the collected TABs one-by-one and fil-
ter out those that are of low quality (e.g., with wrong fin-
gering, obvious annotation errors), or are not fingerstyle
(e.g., have more than one tracks). We also discard TABs
that are not in standard tuning, to avoid inconsistent map-
ping between notes and fingering. As shown in Table 1,
this leads to a collection of 333 TABs, each with around
80 bars. This includes TABs of famous professional fin-
gerstyle players such as Tommy Emmanuel and Sungha
Jung. All the TABs are in 4/4 time signature, and they can
be in various keys. We reserve 30 TABs for validation and
performance evaluation, and use the rest for training.

Please note that, similar to the MIDI files available in
Lakh MIDI [33], the TAB files we collect do not contain
performance information such as expressive variations in
dynamics (i.e., note velocity) and micro-timing [23, 29].
To increase velocity variation, we use Ample Sound [1] to
add velocity to each note by its humanization feature. We
do not deal with micro-timing in this work.

3.1 Fingerstyle
It is interesting to focus on only fingerstyle guitar in the
context of this work, as we opt for validating the effec-
tiveness of Transformers for single-track TABs first, before
moving to modeling multi-track performances that involve
at least a guitar (e.g., a rock song). We give a brief intro-
duction of fingerstyle guitar below.

Fingerstyle [3] is at first a term that describes using fin-
gertips or fingernails to pluck the strings to play the guitar.
Nowadays, the term is often used to describe an arrange-
ment method to blend multiple parts of musical elements
or tracks, which are initially played by several instruments,
into the composition of one guitar track. Therefore, a gui-
tarist playing fingerstyle has to simultaneously take care of

category/type description

NOTE-ON 45 different pitches (E2–C6)
NOTE-DURATION multiples of the 32th note (1–64)
NOTE-VELOCITY note velocity as 32 levels (1–32)
POSITION temporal position within a bar;

multiples of the 16th note (1–16)
BAR marker of the transition of bars

STRING 6 strings on a tab
FRET 20 fret positions per string
TECHNIQUE 5 playing techniques: slap, press

upstroke, downstroke, and hit-top
GROOVING 32 grooving patterns

Table 2. The list of events adopted for representing a tab as
an event sequence. The first five are adapted from [19,20],
whereas the last four are tab-specific and are new. We have
in total 45+64+32+16+1+6+20+5+32=231 unique events.

Figure 2. An example of the result of “TAB-to-event” con-
version needed for modeling a tab as a sequence. Here, we
show the resultant event representation of a C chord.

the melody line, bass line, chord comping and the rhythmic
groove. Groove, in particular, is important in fingerstyle,
as it is now only possible to work on the rhythmic flow of
music with a single guitar and the use of the two hands.
We hence pay special attention to groove modeling in this
work (see Section 4.3).

4. MODELING GUITAR TABS

In this section, we elaborate how we design an event repre-
sentation for modeling guitar tabs, or more generally tabs
of instruments played by string strumming.

4.1 Event Representation for MIDIs: A Quick Recap

In representing MIDIs as a sequence of “events,” Huang
et al. [20] considered, amongst others, the following event
tokens. Each note is represented by a triplet of NOTE-ON,
NOTE-DURATION, and NOTE-VELOCITY events, repre-
senting the MIDI note number, quantized duration as an in-
teger multiple of a minimum duration, and discrete level of
note dynamics, respectively. The minimum duration is set
to the 32th note. The onset time of the notes, on the other
hand, is marked (again after quantization) on a time grid
with a specific resolution, which is set to the 16th note as
in [19]. Specifically, to place the notes over the 16-th note
time grid, they use a combination of POSITION and BAR
events, indicating respectively the position of a note onset
within a bar, among the 16 possible locations, and the be-
ginning of a new bar as the music unfolds over time. This
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event representation has been shown effective in modeling
pop piano [20]. We note that the time grid outlined with
this combination of POSITION and BAR events can also
contribute to modeling the rhythm of fingerstyle guitar.

4.2 Event Representation for Tabs
To represent TABs, we propose to add, on top of the afore-
mentioned five types of events for MIDIs, 2 the follow-
ing three new types of fingering-related events: STRING,
FRET, TECHNIQUE, and a type of rhythm-related events:
GROOVING. We introduce the first three below, and the last
in the next subsection. Table 2 lists all the events consid-
ered, whereas Figure 2 gives an example of how we repre-
sent a C chord with such an event representation.

We use the first 20 frets of the 6 strings in the collected
TABs, i.e., each string can play 20 notes. The pitch range
of the strings overlaps, so a guitarist can play the same
pitch on different strings, with moderate but non-negligible
difference in timbre. The fingering of the notes also affects
playability [46]. In standard tuning, the strings can play 45
different pitches, from E2 to C6.

In our implementation, we adopt the straightforward ap-
proach to account for the various possible playing positions
of the notes—to add STRING and FRET tokens right after
the NOTE-ON tokens in the event sequence representing a
tab. We note that the FRET tokens are actually redundant,
in that the combination of NOTE-ON and STRING alone
is sufficient to determine the fret position to use. However,
in pilot studies we found the inclusion of FRET makes the
model converges faster at the training time.

Specifically, instead of a 3-tuple representation of a note
as the case in MIDIs, we use a 5-tuple note representation
that consists of successive tokens of NOTE-VELOCITY,
NOTE-ON, NOTE-DURATION, STRING and FRET for
TABs. As such five tokens always occur one after another
in the training sequences, it is easy for a Transformer not to
miss any of them when generating a new NOTE-ON event
at the inference time, according to our empirical observa-
tion of the behavior of the Transformers.

However, as we do not impose constraints on the asso-
ciation between NOTE-ON and STRING, it remains to be
studied whether a Transformer can learn to compose tabs
with reasonable note-string combinations. This is the sub-
ject of the 1st RQ outlined in Section 1.

As for the TECHNIQUEs, we consider the following
five right-hand techniques: slap, press, upstroke, down-
stroke, and hit-top, which account for ∼1% of the events
in our training set. The inclusion of other techniques, such
as sliding and bending, is left as a future work.

Similar to [19,20], we consider the 16th note as the res-
olution of onset times, which is okay for 4/4 time signature.
Increasing the resolution further to avoid quantization er-
rors and to enhance expressivity is also left to the future.

4.3 Groove Modeling
Groove can be in general considered as a rhythmic feeling
of a changing or repeated pattern, or “humans’ pleasurable

2 Huang et al. [20] actually considered the Chord and Tempo events
additionally; we found these two types of event less useful in modeling
tabs, according to preliminary experiments.

(a) (b)

Figure 3. Samples of 16-dim hard grooving patterns as-
signed to 2 different clusters (a), (b) by kmeans clustering.

urge to move their bodies rhythmically in response to mu-
sic” [36]. Unlike the note-related or time-related events,
groove is usually implicitly implied as a result of the ar-
rangement of note onsets over time, instead of be explicitly
specified in either a MIDI or TAB file. Hence, it might be
possible for a Transformer to learn to compose music with
reasonable groove, without we explicitly inform it what
groove is. We refer to this baseline variant of our Trans-
former as the no grooving version, which considers all the
events listed in Table 2 but GROOVING.

However, as a tab is now represented as a sequence of
events, it is possible to add groove-related events to help
the model make sense of this phenomenon. Since our event
representation has the BAR events to mark the bar lines,
we can ask the model to learn to generate a “bar-level”
GROOVING event right after a BAR event, before proceed-
ing to generate the actual content of the bar. Whether such
a groove-aware approach benefits the quality of the gener-
ated tabs is the subject of our 2nd RQ.

To implement such an approach, we need to come up
with 1) a bar-level grooving representation of symbolic
music, and 2) a method to convert the grooving represen-
tation, which might be a vector, to a discrete event token.

In this work, we represent groove by the occurrence of
note onset over the 16-th time grid, leading to the following
four grooving representations of music.

• Hard grooving: A 16-dim binary vector marking
the presence of (at least one) onset per each 16 po-
sitions of a bar. A popular pattern in our dataset, for
example, is [1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0],
meaning onsets on beats only.

• Soft grooving: A soft version that considers the
number of onsets (but disregarding the velocity val-
ues) for each position, normalized by the maximum
in the bar, leading to a 16-dim real-valued vector.

• Multi-resolution hard (or soft) grooving: Variants
of the last two that additionally consider correspond-
ing down-sampled 8-dim and 4-dim vectors to em-
phasize the beats (e.g., counting only the onsets on
beats), and then concatenate the vectors together,
yielding a 28-dim vector (i.e., 16+8+4).

To convert the aforementioned grooving patterns to
events, a discretization is needed. Among various possi-
ble approaches, we experiment with the simplest idea of
grouping the grooving patterns seen in the training set into
a number of clusters. We can then use the ID of the cluster
a grooving pattern is associated with for the GROOVING
event of that grooving pattern. For simplicity, we employ
the classic kmeans algorithm [17] here, setting k to 32.
Please see Figure 3 for an example of the clustering result.
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Figure 4. Distributions of (a) the error rate for each note
in the string arrangement prediction of our model, and (b)
the counts of each note in the training set.

string (high-pitched↔ low-pitched)
1st 2nd 3rd 4th 5th 6th

(a) accuracy 100% 99% 97% 94% 91% 90%

(b) pitch 42 ∼0% ∼0% 10% ∼0% 27% 63%
(c) pitch 57 ∼0% 6% 65% 26% ∼0% ∼0%
(d) pitch 69 85% 14% ∼0% ∼0% ∼0% ∼0%

Table 3. (a) The average accuracy of our model in as-
sociating each STRING with a NOTE-ON, broken down
by string; (b–d) The string-relevant output probability esti-
mated by our model for three different pitches.

4.4 Transformer-XL-based Architecture

Following [14, 20], we use the Transformer-XL [12] for
the architecture of our model. Unlike the Transformer
used in [19], the Transformer-XL gains a longer receptive
filed with a segment-level recurrence mechanism, thereby
seeing further into the history and benefiting from the ex-
tended memory. We base our implementation on the open
source code of [20], adopting many of their settings. For
example, we also set the sequence length and recurrence
length to 512 events, and use 12 self-attention layers and 8
attention heads. The model has in total∼41M trainable pa-
rameters. The training process converges within 12 hours
on a single NVIDIA V100 GPU, with batch size 32.

5. EVALUATION

5.1 Experiment 1: On Fingering

The 1st RQ explores how a Transformer learns the associa-
tion between notes and fingering, without human-assigned
prior knowledge/constraints on the association. For sim-
plicity, we use the no grooving variant of our model here.

A straightforward approach to address this RQ is to let
the model generates randomly a large number of event se-
quences (i.e., compositions) and examine how often it gen-
erates a plausible STRING event after a NOTE-ON event.
Table 3(a) shows the average note-string association ac-
curacy calculated from 50 generated 16-bar tabs, broken
down into six values according to STRING. To our mild
disappointment, the accuracy, though generally high, is not

Hard accuracy ↑ Soft distance ↓
mean max mean min

hard grooving 76.2% 82.4% 56.3 44.6
soft grooving 76.9% 83.0% 56.2 43.7
multi-hard 79.0% 85.7% 57.8 44.3
multi-soft 74.6% 81.1% 64.7 52.9

no grooving 70.0% 80.1% 58.6 47.7

training data 82.1% 89.5% 43.8 28.6
random 64.9% 71.3% 70.6 59.6

Table 4. Objective evaluation on groove coherence.

perfect. This indicates that some post-processing is still
needed to ensure the note-string association is correct.

As Table 3(a) shows larger errors toward the 6th string,
we also examine how the errors distribute over the pitches.
Interestingly, Figure 4(a) shows that the model makes mis-
takes only in the low end; the fingering prediction is good
for pitches (i.e., MIDI numbers) from 64 to 84.

It is hard to find out why exactly this is the case, but we
present two more observations here. First, we plot in Fig-
ure 4(b) the popularity of these pitches in the training set.
The Pearson correlation coefficient between the note quan-
tity and the error rate is weak, at 0.299, suggesting that this
may not be due to the sparseness of the low-pitched notes.
Second, we show in Table 3(b)–(d) the note-string associ-
ation output probability estimated by our model for three
different pitches. Interestingly, it seems the model has the
tendency to use neighboring strings for each pitch. For ex-
ample, pitch 42 is actually a bass note playable on the 6th
string, and it erroneously “leaks” mostly to the 5th string.

5.2 Experiment 2: On Groove
Figure 5 gives two examples of tabs generated by the hard
grooving model. It seems the grooving is consistent across
time in each tab. But, how good it is?

The 2nd RQ tests whether the added GROOVING events
help a Transformer compose tabs with better rhythmic co-
herence. We therefore intend to compare the performance
of models trained with or without GROOVING for generat-
ing “continuations” of a given “prompt.”

We consider both objective and subjective evaluations
here. For the former, we compare the models trained with
GROOVING events obtained with each of the four vector-
quantized grooving representations described in Section
4.3. We ask the models to generate 16-bar continuations
following the first 4 bars of the 30 tabs in the validation
set. The performance of the models is compared against
that of the ‘no-grooving’ baseline, the ‘real’ continuations
(of these 30 tabs), and a ‘random’ baseline that picks the
next 16 bars from another tab at random from the valida-
tion set. The last two are meant to set the high-end and
low-end performances, respectively. For fair comparison,
we also project the note onsets of the validation data onto
the 16th-note grid underlying our training data.

We consider the following two simple objective metrics:

• Hard accuracy: Given the hard grooving patterns
X = (x1, . . . ,xN ) of the prompt, and those of the
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Figure 5. Segments of 2 tabs randomly generated by the hard grooving model; below each tab—the soft grooving patterns.

Figure 6. Result of the first user study asking subjects to
choose the best among the three continuations generated
by different models, with or without GROOVING, given a
man-made prompt. The result is broken down according to
the self-report guitar proficiency level of the subjects.

continuation Y = (y1, . . . ,yM ), where both xi and
yj are in {0, 1}K , N = 4, M = 16, K = 16, we
compare the similarity between X and Y by

meani=(1,...,N)
1

MK

M∑
j=1

K∑
k=1

XNOR(x(k)
i , y

(k)
j ) ,

(1)
where XNOR(·, ·) returns, element-wisely, whether
the k-th element of xi and yj are the same. Alter-
natively, we replace the mean aggregator by max, to
say it is good enough for yj to be close to any xi.

• Soft distance: We consider instead the soft groov-
ing patterns x̃i and ỹj , and compute the distance be-
tween them as meani=(1,...,N)

1
M

∑M
j=1 ‖x̃i− ỹj‖22 .

We can similarly replace mean by the min function.

Table 4 shows that, consistently across different metrics,
groove-aware models outperform the no-grooving model.
Moreover, the scores of the groove-aware models are
closer to the high end than to the low end. It is also im-
portant to note that, there is still a moderate gap between
the best model’s composition and the real data, which has
to be further addressed in the future work.

Figure 6 shows the result of the subjective evaluation,
where we present the audio rendition (using a guitar syn-
thesizer) of the aforementioned 16-bar continuations to hu-
man listeners, and ask them to choose the one they like
the most, among those generated by the ‘no-grooving,’

Real No grooving Hard grooving

MOS 3.48±1.16 2.80±1.03 3.43±1.12

Table 5. Result of the second user study (in mean opinion
score, from 1 to 5) comparing audio renditions of real tabs
and machine-composed tabs by two variants of our model.

‘soft-grooving,’ and ‘hard-grooving’ models. We divide
the response from 57 participants by their self-report pro-
ficiency level in guitar. Figure 6 shows that professionals
are aware of the difference between groove-aware and no-
grooving models. According to their optional verbal re-
sponse, groove-aware models continue the prompts better,
and generate more pleasant melody lines.

5.3 Experiment 3: On Comparison with Real Tabs
Finally, our last RQ involves another user study where we
ask participants to rate, on a Likert five-point scale how
they like the audio rendition of the continuations, this time
including the result of real continuations. For groove-
aware models, we consider hard-grooving only, for its sim-
plicity and also for reducing the load on the subjects. Much
to our surprise, the average result from 23 participants (see
Table 5) suggests that hard-grooving compositions are ac-
tually on par with real compositions. We believe this re-
sult has to be taken with a grain of salt, as it concerns
with only fairly short pieces (i.e., 16 bars) that do not con-
tain performance-level variations. Yet, it provides evidence
showing the promise of deep learning for tab composition.

6. CONCLUSION
In this paper, we have presented a series of evaluations
supporting the effectiveness of a modern neural sequence
model, called Transformer-XL, for automatic composition
of fingerstyle guitar tabs. The model still has troubles in
ensuring the note-string association and the rhythmic co-
herence of the generated tabs. How well the model gen-
erates tabs of plausible long-term structure is not yet stud-
ied. And, much of the expression in guitar music is left
unaddressed. Much work are yet to be done to possibly re-
design the network architecture and the tab representation.
Yet, we hope this work shows promises that inspire more
research on this intriguing area of research.
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ABSTRACT

A DJ mix is a sequence of music tracks concatenated seam-
lessly, typically rendered for audiences in a live setting by
a DJ on stage. As a DJ mix is produced in a studio or the
live version is recorded for music streaming services, com-
putational methods to analyze DJ mixes, for example, ex-
tracting track information or understanding DJ techniques,
have drawn research interests. Many of previous works
are, however, limited to identifying individual tracks in a
mix or segmenting it, and the sizes of the datasets are usu-
ally small. In this paper, we provide an in-depth analysis
of DJ music by aligning a mix to its original music tracks.
We set up the subsequence alignment such that the audio
features are less sensitive to the tempo or key change of
the original track in a mix. This approach provides tempo-
rally tight mix-to-track matching from which we can ob-
tain cue-points, transition length, mix segmentation, and
musical changes in DJ performance. Using 1,557 mixes
from 1001Tracklists including 13,728 tracks and 20,765
transitions, we conduct the proposed analysis and show a
wide range of statistics, which may elucidate the creative
process of DJ music making.

1. INTRODUCTION

A Disc Jockey (DJ) is a musician who plays a sequence of
existing music tracks or sound sources seamlessly by ma-
nipulating the audio content based on musical elements.
The outcomes can be medleys (mix), mash-ups, remixes,
or even new tracks, depending on how much DJs edit the
substance of the original music tracks. Among them, cre-
ating a mix is the most basic role of DJs. This involves
curating music tracks and their sections to play, deciding
the order, and modifying them to splice one section to an-
other as a continuous stream. In each step, DJs consider
various elements of the tracks such as tempo, key, beat,

c© Taejun Kim, Minsuk Choi, Evan Sacks, Yi-Hsuan Yang,
Juhan Nam. Licensed under a Creative Commons Attribution 4.0 Inter-
national License (CC BY 4.0). Attribution: Taejun Kim, Minsuk Choi,
Evan Sacks, Yi-Hsuan Yang, Juhan Nam, “A Computational Analysis of
Real-World DJ Mixes using Mix-To-Track Subsequence Alignment”, in
Proc. of the 21st Int. Society for Music Information Retrieval Conf.,
Montréal, Canada, 2020.

chord, rhythm, structure, energy, mood and genre. These
days, DJs create the mix not only for a live audience but
also for listeners in music streaming services.

Recently, imitating the tasks of DJ using computational
methods has drawn research interests [1–7]. On the other
hand, efforts have been made to understand the creative
process of DJ music making. In the perspective of reverse
engineering, tasks extracting useful information from real-
world DJ mixes can be useful in such a pursuit. In the
literature, at least the following tasks have been studied.
(1) Track identification [8–10]: identifying which tracks
are played in DJ music which can be either a mix or a
manipulated track. (2) Mix segmentation [11, 12]: finding
boundaries between tracks in a DJ mix. (3) Mix-to-track
alignment [13, 14]: aligning the original track to an au-
dio segment in a DJ mix. (4) Cue point extraction [14]:
finding when a track starts and ends in a DJ mix. (5) Tran-
sition unmixing [13, 14]: explaining how DJs apply audio
effects to make a seamless transition from one track to an-
other. However, the previous studies only focused on solv-
ing the tasks usually with a small dataset and did not pro-
vide further analysis using extracted information from the
tasks. For example, Sonnleitner et al. [8] used 18 mixes
for track identification. Glazyrin [11] and Scarfe et al. [12]
respectively collected 103 and 339 mixes with boundary
timestamps for mix segmentation. The majority of previ-
ous studies concentrated on identification and segmenta-
tion and few studies on the other three tasks used artifi-
cially generated datasets [13, 14].

To address the need of a large-scale study, we collected
in a total of 1,557 real-world mixes and original tracks
played in the mixes from 1001Tracklists, a community-
based DJ music service. 1 The mixes include 13,728 unique
tracks and 20,765 transitions. However, tracks used in DJ
mixes usually include various versions so-called “extended
mix”, “remix”, or “edit”. Also, a few tracks in track-
lists of the collected dataset are annotated incorrectly by
users. Therefore, an alignment algorithm is required to
ensure that the collected tracks are exactly the same ver-
sions as the ones used in the mixes. More importantly, the
alignment will be a foundation for further computational
analysis of DJ mixes. With these two motivations, we

1 https://www.1001tracklists.com
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Summary statistic All Matched

The number of mixes 1,564 1,557
The number of unique tracks 15,068 13,728
The number of played tracks 26,776 24,202
The number of transitions 24,344 20,765
Total length of mixes (in hours) 1,577 1,570
Total length of unique tracks (in hours) 1,038 913
Average length of mixes (in minutes) 60.5 60.5
Average length of unique tracks (in minutes) 4.1 4.0
Average number of played tracks in a mix 17.1 15.5
Average number of transitions in a mix 14.5 12.9

Table 1. Statistics of the 1001Tracklists dataset. The orig-
inal dataset size is denoted as ‘All’ and the size after filter-
ing as ‘Matched’.

set up the mix-to-track subsequence dynamic time warp-
ing (DTW) [15] such that the mix can be aligned with
the original tracks in presence of possible tempo or key
changes. The warping paths from the DTW provide tem-
porally tight mix-to-track matching from which we can ob-
tain cue points, transition lengths, and key/tempo changes
in DJ performances in a quantitative way. To evaluate the
performances of the alignment and the cue point extrac-
tion methods simultaneously, we evaluate mix segmenta-
tion performances regarding the extracted cue points as
boundaries dividing two adjacent tracks in mixes, compar-
ing them to human-annotated boundaries. Furthermore, by
observing the performance changes depending on the three
different types of cue points, we analyze the human anno-
tating policy of track boundaries.

Although DJ techniques are complicated and different
depending on the characteristics of tracks, there has been
common knowledge for making seamless DJ mixes. How-
ever, to the best of our knowledge, the domain knowledge
has never been addressed in the literature with statistical
evidence obtained by computational analysis. In this study,
we analyze the DJ mixes using the results from the subse-
quence DTW mentioned above for the following hypothe-
ses: 1) DJs tend not to change tempo and/or key of tracks
much to avoid distorting the original essence of the tracks.
2) DJs make seamless transitions from one track to another
considering the musical structures of tracks. 3) DJs tend to
select cue points at similar positions in a single track.

The analysis is performed based on the results obtained
from the subsequence alignment and provides insights sta-
tistically for tempo adjustment, key transposition, track-to-
track transition lengths, and agreements of the cue points
among DJs. We hope that the proposed analysis and vari-
ous statistics may elucidate the creative process of DJ mu-
sic making. The source code for the mix-to-track subse-
quence DTW, the cue point analysis and the mix segmen-
tation is available at the link. 2

2. THE DATASET

Our study is based on DJ music from 1001Tracklists. We
obtained a collection of DJ mix metadata via direct per-
sonal communication with 1001Tracklists. Each entry of

2 https://github.com/mir-aidj/djmix-analysis/

mixes contains a list of track, boundary timestamps and
genre. It also contains web links to the audio files of the
mixes and tracks. We downloaded them separately from
the linked media service websites on our own. We found
a small number of web links to tracks are not correct and
so filtered them out by a mix-to-track alignment method
automatically (see Section 3.3). The boundary timestamps
of tracks in a mix are annotated by the users of 1001Track-
lists.

Table 1 summarizes statistics of the dataset. The origi-
nal size of the dataset is denoted as ‘All’ and the size after
filtering as ‘Matched’ in Table 1. Note that the number of
played tracks is greater than the number of unique tracks
as a track can be played in multiple mixes. The dataset
includes a variety of genres but mostly focuses on House
and Trance music. More detailed statistics of the dataset
are available on the companion website. 3

3. MIX-TO-TRACK SUBSEQUENCE ALIGNMENT

The objective of mix-to-track subsequence alignment is to
find an optimal alignment path between a subsequence of a
mix and a track used in the mix. This alignment result will
be the basis of diverse DJ mix analysis concerning the cue
point, track boundary, key/tempo changes and transition
length. We also use it for removing non-matching tracks.
This section describes the detail of computational process.

3.1 Feature Extraction

When DJs create a mix, they often adjust tempo and/or
key of the tracks in the mix or add audio effects to them.
Live mixes contain more changes in timbre and even other
sound sources such as the voices from the DJ. In order to
address the acoustic and musical variations between the
original track and the matched subsequence in the mix,
we use beat synchronous chroma and mel-frequency cep-
stral coefficients (MFCC). The beat synchronous feature
representations enable tempo invariance and dramatically
reduces the computational cost in the alignment. The ag-
gregation of the features from the frame level to the beat
level also smooths out local timbre variations. The chroma
feature, on the other hand, facilitates key-invariance as cir-
cular shift of the 12-dimensional vector corresponds to
key transposition. The MFCC feature captures general
timbre characteristics. We used Librosa 4 to extract the
chroma and MFCC features with the default options ex-
cept that the dimentionality of MFCC was set to 12 and the
type of chroma was to chroma energy normalized statistics
(CENS) [16].

3.2 Key-Invariant Subsequence DTW

We compute the alignment by applying subsequence DTW
to the beat synchronous features [15]. We used an im-
plementation from Librosa, adopting the transposition-
invariant approach from [17]. Specifically, we calculated
12 versions of chroma features by performing all possible

3 https://mir-aidj.github.io/djmix-analysis/
4 https://librosa.github.io/librosa/
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Figure 1. Visualizations of the result of a DTW-based mix-to-track subsequence alignment between a mix and the original
tracks played in that mix. The colored solid lines show the warping paths of the alignment depending on the input feature,
and whether or not applying the transposition-invariant method on the subsequence DTW. The tagged numbers on warping
paths and ground truth boundaries indicate played and timestamped indices in the mix, respectively. A colored bar at the
bottom of the figures is added if the alignment of the method is considered successful according to the match rate. (Top)
A correctly matched example. (Middle) An unsuccessful example, due to the low sound quality of the mix. (Bottom) The
alignment can be improved using the key-invariant chroma. Best viewed in color.

circular shifts on the original track side and select the one
with the lowest matching cost in the subsequence DTW.
This result returns not only the optimal alignment path but
also the key transposition value of the original track.

Figure 1 shows three examples of the alignment results
when different combinations of features (MFCC, chroma,
and key-invariant chroma) are used. When the alignment
path of the subsequence satisfies a match rate (described
in Section 3.3), we put a color strip corresponding to each
feature in the bottom of the figure. Since we use beat syn-
chronous representations for them, the warping paths be-
come diagonal with a slope of one if a mix and a track are
successfully aligned. The top panel in the figure shows an
successfully aligned example for the most of tracks and
features where all warping paths have straight diagonal
paths. 5 The middle panel shows a failing example because
sounds from crowds are also recorded in the mix. 6 The
bottom panel shows a example where chroma with circular
shift distinctively works better others as the DJ frequently
uses key transposition on the mix. 7

3.3 Filtering Using Match Rates

As stated above, we can measure the quality of the align-
ment from the warping path. Ideally, when every single
move on the path is diagonal, that is, one beat at a time for
both track and mix axis, we will obtain a perfect straight
diagonal line. However, the acoustic and musical changes
deform the path. We define the ratio of the diagonal moves

5 https://1001.tl/14jltnct
6 https://1001.tl/15fulzc1
7 https://1001.tl/bcx2z0t

in a mix (one move per beat) as the match rate and use it
for filtering out incorrectly annotated tracks. We experi-
mentally chose 0.4 as a threshold. The size of the dataset
after the filtering is denoted as “Matched” in Table 1. We
only use the matched tracks for the analysis in this paper.

4. CUE POINT EXTRACTION

Cue points are timestamps in a track that indicate where to
start and end the track in a mix. Determining the cue points
of played tracks is an essential task of DJ mixing. This
section describes extracting cue points using the warping
paths obtained from the aforementioned mix-to-track sub-
sequence alignment.

4.1 Term Definitions

We first define terms related to cue points. In the context of
the track-to-track transition, a cue-out point is a timestamp
that the previous track starts fading out and the next track
starts fading in, and a cue-in point is when the previous
track is fully faded out and only the next track is being
played. The transition region is defined as the time interval
from the cue-out point of the previous track to the cue-in
point of the next track. Additionally, we define a cue-mid
point as the middle of a transition, which can technically
be considered as a boundary of the transition.

4.2 Methods

The mix-to-track alignment results naturally yield cue
points of matched tracks. Figure 2 shows an example of
extracted cue points (a zoomed-in view of the top figure in
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Figure 2. A zoomed-in view of a visualization of mix-to-
track subsequence alignment explaining the three types of
extracted cue points. The two solid lines indicate warping
paths representing alignment between the mix and tracks.
The vertical colored dotted lines represent the extracted
cue points on the mix and the horizontal dotted lines repre-
sent the points on each track. The vertical black dotted line
is a human-annotated ground truth boundary between the
two tracks. The solid lines are the fourth and fifth warping
paths from the top of Figure 1. Best viewed in color.

Figure 1). The two alignment paths drift from the diago-
nal lines in the transition region (between 2310 and 2324
in mix beat) because the two tracks cross-fades. Based on
this observation, we detect the cue-out point of the previ-
ous track by finding the last beat where preceding 32 beats
have diagonal moves in the alignment path. Likewise, we
detect the cue-in point of the next track by finding the first
beat where succeeding 32 beats have diagonal moves in the
alignment path.

5. MIX SEGMENTATION

The goal of mix segmentation is to divide a continuous DJ
mix into individual tracks, which can enhance the listen-
ing experience and can be a foundation of further analysis
or learning of DJ mixes. Since DJs make seamless tran-
sitions, it is difficult to notice that a track is fading in or
out. To quantitatively measure how difficult it is, a study
analyzed how accurate humans are at creating the bound-
ary timestamps and found that the standard deviation of
the human disagreement for track boundaries in mixes is
about 9 seconds, which implies it is difficult to find the
optimal boundaries even for humans [12]. Furthermore,
the ambiguous definition of the boundary and long lengths
of transitions makes it difficult to annotate the boundary
timestamps [8].

5.1 Cue Point based Estimation

Given the extracted cue point so far, we can estimate the
track boundaries with three possible choices. The first is
the position that the next track fully appears (cue-in point),
the second is the position that previous track starts to dis-
appear (cue-out point), and the last is the middle of the
transition (cue-mid point). By comparing each of them

with human-annotated boundary timestamps, we can mea-
sure which type of cue point humans tend to consider as a
boundary.

Figure 3 shows three histograms where each of them is
computed from the differences between human-annotated
boundary timestamps and one of the cue point types in
beat unit. The overall trend shows that the distribution
of cue-in point is mostly skewed towards zero. Interest-
ingly, the distribution of cue-out point has more distinctive
peaks around every 32 beat than the distribution of cue-in
point. Considering the histogram of the transition length
has peaks at every 32 beat as shown in Figure 6, this re-
flects that human annotators tend to label cue-in points as
a boundary compared to cue-out (note that the transition
length is computed by subtracting the cue-in point from the
cue-out point). On the other hand, the distribution of cue-
mid point has a gradually decreasing curve without peaks.
While this distribution looks like having better estimates
than the cue-out point, Table 3 shows an opposite result.
That is, in terms of the number of cue points closest to the
human annotations, the cue-out point is the second and the
cue-mid point is the worst among the three types. These re-
sults indicate that the cue-mid point is a safe choice. That
is, although the cue-mid point is least likely to be a bound-
ary as shown in Table 3, the difference between the esti-
mate and human annotation is relatively small because it is
the middle of the transition region.

Table 2 shows the difference between human-annotated
boundary timestamps and one of the cue point types in
terms of median time (in seconds) on the left side. The
overall trend confirms that the cue-in is the best estimate of
track boundary and the cue-mid is a safer choice than the
cue-out. The table also shows the result of “cue-best”. This
is computed with the minimum difference among the three
cue point types for each of the transition region. The result
shows that the median time differences are dramatically
decreased to 4-5 seconds. Table 2 also shows the differ-
ence between human-annotated boundary timestamps and
the cue-in point in terms of hit rates on the right side. The
hit rates are computed the ratio of correct estimates given
a tolerance window. If the estimate is within the tolerance
window on the human-annotated boundary timestamp, it
is regarded as a correct estimate. We set three tolerance
windows (15, 30, and 60 seconds) considering that the av-
erage tempo of tracks in the dataset is 127 beat per minute
(BPM) and then the tolerance windows approximately cor-
respond to 32, 64, 128 beats (multiples of a phrase unit).
The result shows that the best hit rate with the 30 second
window (about 64 beats) is above 80%. Given the long
transition time as shown in Figure 6, the cue-in point may
be considered as a reasonable choice.

5.2 Effect of Audio Features

Table 2 also compares the median time difference between
human-annotated boundary timestamps and one of the cue
point types for different audio features used in the subse-
quence DTW. In general, the chroma features are a better
choices than MFCC (p-value of t-test < 0.001 for chroma
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767



0 32 64 96 128
Difference of the number of beats

0

250

500

750

1000

1250

1500

1750

Fr
eq

ue
nc

y

Cue-out

0 32 64 96 128
Difference of the number of beats

0

250

500

750

1000

1250

1500

1750
Cue-in

0 32 64 96 128
Difference of the number of beats

0

250

500

750

1000

1250

1500

1750
Cue-mid

Figure 3. Histograms of distances to ground truth boundaries in the number of beats depending on the type of the cue
point. The dotted lines are plotted at every 32 beats which is usually considered as a phrase in the context of dance music.

Median time difference (in seconds) Cue-in hit rate

Feature Cue-out Cue-in Cue-mid Cue-best† 15 sec 30 sec 60 sec

MFCC 27.92 14.27 13.55 5.340 0.5187 0.7591 0.9023
Chroma 23.85 11.80 12.33 4.230 0.5837 0.7973 0.9286
Chroma with key-invariant 23.87 11.77 12.37 4.240 0.5843 0.7968 0.9282
Chroma + MFCC 23.41 11.48 12.16 4.380 0.5866 0.8035 0.9284
Chroma with key-invariant + MFCC 23.38 11.40 12.16 4.380 0.5881 0.8040 0.9288

Table 2. Mix segmentation performances depending on the type of cue point and the input feature used to obtain the
warping paths. Median time differences between cue points and ground truths are shown on the left side and hit rates of cue-
in points with thresholds in seconds are shown on the right side. “Key-invariant" indicates applying the key transposition-
invariant method for the DTW. The best score of each criteria is shown in bold. † indicates the scores are computed using
the best score among the three cue types.

Cue-out Cue-in Cue-mid

6,151 (30%) 10,844 (52%) 3,770 (18%)

Table 3. The number of ground truth boundary timestamps
closest to the type of cue point.

with or without key-invariant). When both of chroma and
MFCC are combined, the median time difference slightly
reduces but it is statistically insignificant (p-value of t-
test > 0.1). However, we observed that the subsequence
DTW does not work well for some genres such as Techno
which only contain drum and ambient sounds. This might
can be improved by using MFCCs with a large number of
bins or using mel-spectrograms. The use of key-invariant
chroma generally does not make much difference because
key transposition does not performed frequently as dis-
cussed in Section 6.2.

6. MUSICOLOGICAL ANALYSIS OF DJ MIXES

We hypothesize that DJs share common practices in the
creative process in terms of tempo change, track-to-track
transition, and cue point selection. In this section, we val-
idate them using the results from the mix-to-track subse-
quence alignment and the cue point extraction.

6.1 Tempo Adjustment

We compare the estimated tempo of the original track to
the tempo of each audio segment where the track is played
in a mix. Figure 4 shows a histogram of percentage dif-

ferences of tempo between the original track and the au-
dio segment in the mix. For example, a difference of 5%
indicates the tempo of the original track is increased by
5% while played in the mix. As shown in the histogram,
the adjusted tempo has an double exponential distribution,
which means the adjusted tempo values are skewed to-
wards zero. In detail, 86.1% of the tempo are adjusted less
than 5%, 94.5% are less than 10%, and 98.6% are less than
20%. If one implements an track identification system for
DJ mix that is robust to tempo adjustment, this distribution
could be a reference.

6.2 Key Transposition

A function so-called “master tempo” or “key lock” that
preserves pitch despite tempo adjustments is activated by
default in modern DJ systems such as stand-alone DJ sys-
tems, DJ softwares, and even turntables for vinyl records.
Therefore, key transposition is usually performed when a
DJ intentionally wants to change the key of a track. As
mentioned in Section 3.2, the transposition-invariant DTW
can provide the number of transposed semitones as a by-
product. We computed the statistics of key transposition
using them (using DTW taking both MFCCs and key-
invariant chroma). Figure 5 shows a histogram of key
transposition between the original track and the audio seg-
ment in the mix. Only 2.5% among the total 24,202 tracks
are transposed and, among those transposed tracks, 94.3%
of them are only one semitone transposed. This result in-
dicates that DJs generally do not perform key transposition
much and leave the “master tempo” function turned on in
most cases.
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Figure 4. A histogram of adjusted tempo of tracks in
mixes.
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Figure 5. The number of tracks depending on the number
of semitones in mixes.

6.3 Transition Length

Once we extract cue-in and cue-out points in the transition
region, we can calculate the transition length. This can
provide some basic hints on how DJ makes the track-to-
track transition in a mix. Figure 6 shows a histogram of
transition lengths in the number of beats. We annotated
the dotted lines every 32 beat which is often considered as
a phrase in the context of dance music. The histogram has
peaks at every phrase. This indicates that DJs consider the
repetitive structures in the dominant genres of music when
they make transitions or set cue points.

6.4 Cue Point Agreement among DJs

Deciding cue points of played tracks is a creative choice
in DJ mixing. Observing the agreement of cue points on a
single track among DJs may elucidate the possibility of
finding some common rules. To the end, we collected
all extracted cue points for each track and computed the
statistics of deviations in cue-in points and cue-out points
among DJs. Specifically, we computed all possible pairs
and their distances separately for cue-in points and cue-out
points. Since the two distributions were almost equal, we
combined them into a single distribution in Figure 7. From
the results, 23.6% of the total cue point pairs have zero de-
viation. 40.4% of them were within one measure (4 beats),
73.6% were within 8 measures and 86.2% were within 16
measures. This indicates that there are some rules that DJs
share in deciding the cue points. It would be interesting to
perform detailed pattern analysis to estimate the cue points
using this data in future work.
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Figure 6. A histogram of the transition lengths in number
of beats. The dotted lines are plotted at every 32 beats.
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Figure 7. A histogram of distances between cue points of
a single track in the number of beats.

7. CONCLUSIONS

We presented various statistics and analysis of 1,557 real-
world DJ mixes from 1001Tracklists. Based on the mix-
to-track subsequence DTW, we conducted cue point anal-
ysis of individual tracks in the mixes and showed the pos-
sibility of common rules in the music making that DJs
share. We also investigated mix segmentation by com-
paring the three types of cue point to human-annotated
boundary timestamps and showed that humans tend to rec-
ognize cue-in points of the next tracks as boundaries. Fi-
nally, we showed the statistics of tempo and key changes
of the original tracks in DJ performances. We believe this
large-scale statistical analysis of DJ mixes can be benefi-
cial for computer-based research on DJ music. The cue
point analysis can be the ground for the precise definition
of cue points and the tempo and key analysis can provide a
guideline of the musical changes during the DJ mixing.

As a future work, we plan to estimate cue points
within a track as a step towards automatically generating
a mix [3, 4]. The cue point estimation has many applica-
tion such as DJ software and playlist generation on music
streaming services. This will require structure analysis or
segmentation of a single music track, which is an important
topic in MIR. Furthermore, we plan to analyze the transi-
tion region in a mix to investigate DJ mixing techniques.
For example, it is possible to estimate the gain changes
in the cross-faded region by comparing the two adjacent
original tracks and the mix [13, 14]. The methods can be
extended to the spectrum domain. Such detailed analysis
of mixing techniques will allow us to understand how DJs
seamlessly concatenate music tracks and provide a guide
to develop automatic DJ systems.
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ABSTRACT

Even though local tempo estimation promises musicolog-
ical insights into expressive musical performances, it has
never received as much attention in the music information
retrieval (MIR) research community as either beat track-
ing or global tempo estimation. One reason for this may
be the lack of a generally accepted definition. In this pa-
per, we discuss how to model and measure local tempo in
a musically meaningful way using a cross-version dataset
of Frédéric Chopin’s Mazurkas as a use case. In particu-
lar, we explore how tempo stability can be measured and
taken into account during evaluation. Comparing existing
and newly trained systems, we find that CNN-based ap-
proaches can accurately measure local tempo even for ex-
pressive classical music, if trained on the target genre. Fur-
thermore, we show that different training–test splits have a
considerable impact on accuracy for difficult segments.

1. INTRODUCTION

While global tempo is well defined for music with lit-
tle or no tempo variability [1], this is less so the case
for local tempo, especially for expressive classical music.
Composer markings like rubato (expressive, local tempo
change) or ritardando (slow down) indicate continuous or
even abrupt tempo changes, leading to one or more seg-
ments with stable tempi and segments of tempo instability
in between. Figure 1, for example, shows tempo mark-
ings for Frédéric Chopin’s Mazurka Op. 68, 3 (details are
discussed in Section 2). Naïvely, one may model local
tempo for such a piece as one of two extremes: at the micro
level, as an instantaneous value, e.g., as the Inter Beat In-
terval (IBI) between two consecutive beats, or at the macro
level, by averaging the number of beats over a longer pe-
riod of time. For expressive music, both approaches have
disadvantages. IBIs exhibit a large variance, and averag-
ing beat counts may underestimate the tempo, because ex-
pression leads more often to longer than shorter IBIs [2].
Repp therefore attempts to find a definition for the basic
tempo [3], i.e., the implied tempo the instantaneous tempo

c© Hendrik Schreiber, Frank Zalkow, Meinard Müller. Li-
censed under a Creative Commons Attribution 4.0 International License
(CC BY 4.0). Attribution: Hendrik Schreiber, Frank Zalkow, Meinard
Müller, “Modeling and Estimating Local Tempo: A Case Study on
Chopin’s Mazurkas”, in Proc. of the 21st Int. Society for Music Informa-
tion Retrieval Conf., Montréal, Canada, 2020.

Work Measures Beats Recordings

Op. 17, 4 132 396 62
Op. 24, 2 120 360 64
Op. 30, 2 65 193 34
Op. 63, 3 77 229 88
Op. 68, 3 61 181 50

Table 1: Dataset overview [13]: Number of measures,
beats, recordings for five Chopin Mazurkas.

varies around. In [2], he suggests to derive the basic tempo
from the first quartile of eighth-note Inter Onset Intervals
(IOIs). Similarly, Dixon [4] proposes IOI clustering, using
centroids as tempo hypotheses. Grosche and Müller [5]
propose yet another approach by defining local tempo as
the mean of three consecutive IBIs, which is identical to
using Inter Measure Intervals (IMIs) for pieces in 3/4 time.
The same method is also used by Chew and Callender [6].
In summary, local tempo is usually modeled by aggregat-
ing local pulse information, but there appears to be no clear
consensus on how. Even though local tempo estimates are
popular intermediate features for beat trackers (e.g., [7,8]),
few works explicitly estimate and evaluate local tempo es-
timates. Peeters [9] simply measures whether 75% of the
estimated local tempi match the annotated global tempo.
In subsequent work [10], he compares the median of lo-
cal tempi with a global ground truth. A similar approach
is taken in [11]—after beat tracking, the median IBI is
used as global tempo and then evaluated. Similar to global
tempo evaluation, Grosche and Müller [5] compute the ac-
curacy of their IMIs allowing a 4% tolerance and certain
integer factors. Schreiber and Müller [12] only provide vi-
sualizations for local tempo estimates. To our knowledge,
there is no commonly accepted evaluation procedure. Even
less researched than local tempo is tempo stability, usually
only referred to as a precondition for global tempo esti-
mation [1]. Grosche et al. [13] mention that beat track-
ers tend to have problems with the first and last few beats
of Mazurkas due to boundary problems, and observe in-
creased error-levels caused by sudden tempo changes, but
as far as we know no measure for local tempo stability has
been proposed.

Modeling local tempo, determining its stability, and es-
timating it automatically from audio are problems at the
intersection of music information retrieval (MIR) and com-
putational musicology. We believe that all three prob-
lems have to be solved together in order to provide use-
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Figure 1: Local reference tempo depending on (a) selec-
tion and (b) aggregation functions for Op. 68, 3 (Cohen,
1997) with section boundaries and score tempo markings.

ful tools for computational music performance analy-
sis (MPA) [14]. Such tools can, for example, be used to de-
termine how well a given performance matches the score—
similar to how it has been done for dynamics [15]. Studies
like [16], comparing relative local tempo variations within
performance collections, could be enhanced by using ab-
solute tempo information.

Working towards this goal, we investigate how to model
local tempo (Section 2) and tempo stability (Section 3)
for expressive music using Mazurkas by Chopin. As our
main contribution, we estimate local tempi using neu-
ral network-based approaches, adapt these approaches to
our use case, and explore their behavior and potential
(Section 4). In our evaluation, we focus on identifying
error classes and sources, and in particular the effect of
stability. In Section 5, we discuss our findings and draw
conclusions.

2. LOCAL TEMPO

Cancino-Chacón et al. [17] see the global tempo of a per-
formance as the approximate rate at which musical events
happen throughout that performance. In contrast, local
tempo refers to the rate of events within a smaller time win-
dow and can therefore be regarded as local deviation from
the global tempo. In accordance with this definition, we
are interested in a musically meaningful, single-value de-
scription of a segment of limited length. We can define this
length musically, e.g., as three consecutive IBIs [5, 6], or
physically, e.g., as 6 s or 8 s segments [9,10]. In either case,
we first select beat events, because they fall into a time

span, and then aggregate them. For example, we may use
the mean or the median of all IBIs falling into a 4 s inter-
val. One purpose of this aggregation is to be able to largely
ignore expressive timing, which can be defined as devia-
tions of individual beat events from the local tempo [17],
e.g., rolled or arpeggiated chords [18]. Note that, in this
work, we are not attempting to find the most suitable se-
lection and aggregation functions (see [3]), but merely dis-
cuss options and aim to establish a framework that can be
used for such an endeavor. To illustrate different choices,
we use Chopin’s Op. 68, 3 (piano: Cohen, 1997) as an ex-
ample. It is one of over 2,700 recordings of 49 Mazurkas
by Chopin collected by the Mazurka Project. 1 Of all col-
lected recordings, 298 recordings of five Mazurkas have
been manually beat-annotated [19]. We refer to this subset
as the Mazurka-5 dataset. It contains between 34 and 88
different versions of each of the five Mazurkas (Table 1).

Our example, Op. 68, 3 (Cohen, 1997), consists of four
different musical sections A to D (Figure 1). While the
score does not contain section markers, 2 it explicitly spec-
ifies two tempo changes: at the start of section C from Alle-
gro, ma non troppo (♩=132) (fast, but not too fast), to Poco
più vivo (a little more lively), and back to Tempo I after the
second D-section. Figure 1a depicts the effects of different
selection functions using the mean for aggregation. We see
that defining local tempo as individual IBIs leads to very
high variance. Using three consecutive IBIs smoothes the
tempo curve slightly. The shown tempo curves based on
4 s, 8 s, and 12 s segments progressively lead to less vari-
ance. While the 4 s tempo curve still follows the phrasing
closely (distinct minima at the end of each musical sec-
tion), this is less the case for the curves based on longer
segments. This is especially obvious at the end of the 2nd

B section at 38 s.
Figure 1b shows the differences between using mean

and median as aggregation function. The tempo curves
for mean show local over-smoothing in transitional sec-
tions, leading to a triangular shape in the more lively CDD-
section from 50 − 60 s. Because of the edge-preserving
property of median-filtering, the median curve captures
sudden tempo changes better. The CDD-section resem-
bles a rectangle, i.e., a high tempo plateau. At the same
time, the local minimum at the end of the 2nd B disap-
pears. Thus, the median curve corresponds to the com-
poser’s markings.

So far we first selected IBIs, aggregated them, and then
converted the result to BPM (selection → aggregation →
conversion: sac). As an alternative, we could have first
converted IBIs to BPM and then aggregated them (selec-
tion → conversion → aggregation: sca). When using
mean, the result is not the same. For sections with chang-
ing tempo (Figure 1b, 30 − 70 s), local tempo values are
lower when we first average and then convert (sac, solid
red line) as opposed to first convert and then average (sca,
dotted red line). Note that the median is unaffected by this
issue.

1 http://www.mazurka.org.uk/
2 Section markers were added by us to allow an easier discussion.
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Figure 2: (a) Per recording normalized tempo distribution
with percentage of values between 0.96 and 1.04 (light-
blue area). (b) Local tempo (blue line) and stability (cvar)
for Op. 68, 3 (Cohen, 1997). cvar based either on IBIs
(gray line), the (sampled) median tempo over 12 s inter-
vals (dashed red line), or the averaged local cvar over 12 s
segments of median tempi (solid red line). (c) Percentage
of recordings with cvar ≤ τ .

3. TEMPO STABILITY

For the evaluation of global tempo estimation one typically
requires recordings with approximately constant tempi [1],
i.e., a certain degree of tempo stability. Since local tempo
estimation is in fact global tempo estimation for very short
segments, we seek to quantify local tempo stability in or-
der to conduct an informed evaluation of our experiments
in Section 4. As a first approach to describe tempo sta-
bility quantitatively on the intra-track level, we convert all
Mazurka-5 IBIs to tempo values and normalize them by
dividing by their respective track’s average. Figure 2a de-
picts the resulting normalized histogram. 3 Only 15.5% of
the Mazurka-5’s normalized tempi are in the interval be-
tween 0.96 and 1.04—the often used ±4% tolerance in-
terval for stable tempi [1]. For comparison, 90.9% of the
Ballroom [1,20] dataset’s normalized tempi are in the same
interval. Obviously, the two datasets are very different
w.r.t. intra-track tempo stability.

While the ±4% interval is illustrative when categoriz-

3 The comb pattern is a consequence of the 10ms resolution of the
original annotations.

ing stable vs. unstable, it is a rather arbitrary threshold.
Arguably, the standard deviation of a track’s normalized
tempi is better suited to describe intra-track tempo variabil-
ity. It is identical to the coefficient of variation, 4 which is
defined as the ratio between the standard deviation σ and
the mean µ:

cvar =
σ

µ
. (1)

We show this IBI-based cvar-value for our example
Op. 68, 3 (Cohen, 1997) as a horizontal gray line in
Figure 2b. As discussed in Section 2, instantaneous tempo
values like IBIs tend to overestimate the variance of a mu-
sically meaningful local tempo for expressive music. From
a musical point of view, it is therefore more appropriate to
analyze tempo stability of Mazurkas not based on individ-
ual IBIs, but on the basic tempo, which—for the purpose of
this discussion—we approximate with the median tempo
over 12 s segments (Figure 2b, blue line). Sampling the lo-
cal median tempo allows us to calculate an arguably more
appropriate cvar (Figure 2b, dashed red line), which lies
well below the gray line, indicating higher stability. This
however, still ignores the fact that Mazurkas may contain
multiple sections with stable but different tempi. We can
take this into account by calculating local coefficients of
variation for short segments of the median-based tempo
curve. The solid red curve in Figure 2b shows the results
for overlapping 12 s-segments. For most of the recording
it is very low. Only in the transitional regions, at the begin-
ning and end of the CDD-section, we see higher values.
Note that by averaging the local cvar we can obtain a mea-
sure for intra-segment stability, while the two track-level
cvar measures represent intra-track stability. Figure 2c de-
picts how many recordings of our dataset have a cvar below
a threshold τ for all three ways of calculating it. The com-
parison shows that for Mazurka-5 intra-segment variability
is far smaller than intra-track variability.

4. EXPERIMENTS

We now investigate how different local tempo estimation
systems perform when tested with Mazurka-5. We con-
sider the following systems: The RNN-based beat tracking
system Böck 5 [21] (estimated beats are aggregated iden-
tically to the ground truth), the CNN-based tempo estima-
tion system DeepTemp 6 [22], and the system DT-Maz,
which is set up identically to DeepTemp, but has been
trained on Mazurka-5 recordings instead of Pop/Rock,
EDM, and Ballroom music. Based on our observations
in Section 2 and informal experiments with several seg-
ment lengths, we model the local tempo with median-
aggregated IBIs from 11.9 s segments. 7 As mentioned
in Section 2, we do not claim that this is the best possible
selection or aggregation, but a reasonable configuration.

4 Also known as CV or relative standard deviation (RSD).
5 https://github.com/CPJKU/madmom with default parameters.
6 Scaled with model sizing parameter k=16, see [22] for details.
7 We chose 11.9 s instead of the previously used 12 s for practical rea-

sons. The system DeepTemp is already trained on 11.9 s.
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Figure 3: Dataset splitting into training, validation, and
test sets.

4.1 Setup

We trained DT-Maz from scratch 8 on Mazurka-5 record-
ings using 5-fold cross validation with two different kinds
of splits, M for Mazurka and V for version (or perfor-
mance). For M, each split contains all versions of one
Mazurka (Figure 3a). For V, each split consists of a disjoint
5th of all versions of each of the five Mazurkas (Figure 3b).
During training, three splits were used as training data and
one for validation. The remaining 5th split was used for
testing. Each split was used exactly once for validation
or testing. We refer to the models trained on M-splits as
DT-MazM and to the V-split models as DT-MazV. The em-
ployed training procedure was very similar to [12]. Audio
is first converted to mel-magnitude-spectrograms. Then
samples with the dimensions F×T are used as network in-
put. F = 40 being the number of frequency bins covering
the frequency range 20−5,000Hz, and T = 256 being the
number of time frames with a length of 46ms per frame,
corresponding to 11.9 s. We further use scale & crop data
augmentation [12] with time scale factors drawn from
N (1, 0.1), but limited to [0.7, 1.3] to avoid extreme dis-
tortions. After augmentation, samples are standardized to
zero mean and unit variance. Like [12], we use categorical
crossentropy as loss, because we cast tempo estimation as
a classification problem, predicting tempo as one of 256
linearly spaced classes ranging from 30 to 255 BPM. 9

Adam [23] is used as optimizer with a batch size of 32 and
an initial learning rate of 0.001. The rate is halved once the
validation loss stops improving and training is continued
with the best performing model up to that point (stepwise
annealing). We repeat this at most 10 times. If reduction
does not lead to a lower validation loss three times in a row,
training is stopped. To avoid overfitting to longer record-
ings, we ensure that samples from all training recordings
are presented with the same frequency.

4.2 Evaluation

To evaluate, we estimate the tempo for a sliding seg-
ment with length 11.9 s (256 frames) and a hop size of
186ms (4 frames) over all recordings. As metric we use
ACC1 (tempo accuracy) and ACC2 (accuracy allowing
so-called octave errors, i.e., estimates that are wrong by
the factor 2, 1/2, 3 or 1/3) from the global tempo estimation

8 Transfer learning on the DeepTemp model led to similar results.
9 For an eventual performance analysis, one may want to rescale esti-

mates logarithmically, as suggested in [6].
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Figure 4: (a) Local ACC1 and ACC2 depending on accu-
racy tolerance. (b) Density estimation for OE. (c) Local
ACC1 and ACC2 for the five Mazurkas. (d) Local ACC1

and ACC2 considering cvar ranges. (e) Accuracies for seg-
ments with cvar < 0.025.

task [1], which are meant for music with low intra-track
tempo variability. This is reasonable, because we apply
the metric locally for each segment, so that the tolerance
does not have to correspond to intra-track, but to intra-
segment variability, and as we have shown in Section 3,
intra-segment variability is relatively low. Nevertheless,
we consider the typical 4% tolerance an arbitrary threshold
and therefore plot accuracy values for the tolerance interval
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Figure 5: (top) Sweet octaves in light-blue. Local tempo
histograms in dark-blue. (bottom) Estimates of general-
ized additive models fit to OE/tempo-pairs

0−15% in Figure 4a. For both variants of DT-Maz, ACC1

values are higher than for the other systems, regardless of
tolerance. Not surprisingly, ACC1 values are also gener-
ally higher for higher tolerances. 10 The best performing
system for the tolerances 4%, 8%, and 12% is DT-MazV
with remarkable 64.6%, 86.4%, and 93.5%. The worst per-
forming system is Böck, with 16.8%, 24.8%, and 29.7%.
For ACC2 the best performing system is also DT-MazV
with 64.8%, 86.8%, and 94.0%, and the worst performing
system is DeepTemp with 27.3%, 47.5%, and 61.2%. In
the following paragraphs we discuss the most prominent
errors, namely octave errors, tempo stability related errors,
and problems with specific musical properties.

Tempo Octave. Using violin plots, Figure 4b depicts
kernel density estimates (KDE) of the octave error OE de-
fined as

OE(y, ŷ) = log2
ŷ

y
, (2)

with y, ŷ ∈ R>0 as the ground truth and estimate. Iden-
tifiable by the very dense section around −1 Tempo Oc-
taves (TO), DeepTemp and Böck suffer most from under-
estimating the actual tempo. As Figure 4c shows, octave
errors are not evenly distributed among the five Mazurkas.
Op. 24, 2 and Op. 30, 2 are much more affected than the
other three. This can be partially explained by the fact that
on average versions for Op. 24, 2 and Op. 30, 2 are much
faster. Their sweet octaves [24], i.e., the tempo octave most
tempo values are in, are [116, 232) and [112, 224)BPM,
while the sweet octaves for Op. 17, 4, Op. 63, 3, and
Op. 68, 3 are [72, 144), [86, 172), and [81, 162)BPM
(Figure 5, top). A closer investigation shows that for the
tested Mazurkas, both DeepTemp and Böck lean towards
negative octave errors for higher tempi, revealing an octave
bias [24]. This is visualized in Figure 5, bottom. It shows
the estimates of generalized additive models (GAM) that
are fit to measured OE per reference tempo. It illustrates
what kind of estimation error we can expect depending on a
given true tempo. For tempi greater than 100BPM, Böck
and DeepTemp tend to suffer from negative octave errors.

Stability. Figure 4d shows that accuracy is higher
when considering only segments with low cvar-values—
our proxy for tempo variability. When only considering

10 To keep the evaluation concise, the reported local accuracy in all fol-
lowing accuracy figures use 4% tolerance.

relatively stable segments with cvar < 0.025 (Figure 4e),
the accuracy scores for all five Mazurkas increase substan-
tially. The comparison of DT-MazM and DT-MazV shows
that DT-MazM performs much worse for some Mazurkas
(Op. 17, 4, Op. 63, 3, and Op. 68, 3) than DT-MazV. Ap-
parently, differences in stability cannot fully explain dif-
ferences in accuracy for the five works.

Musical Properties. We have seen in Figure 4e that
even for stable segments, DT-MazV performs better than
DT-MazM. To find out why, we exploit beat annotations
for each recording of the five Mazurkas. They allow us
to compute stability and the absolute octave error |OE |
for 11.9 s segments with a beat at their center, i.e., stabil-
ity and error on a musical time axis. Using musical time,
we can summarize errors and stability measures cross-
version by averaging per beat over all recordings of a given
Mazurka. Figure 6 shows the results for Op. 17, 4 and as
expected, the cvar-curve roughly correlates with errors by
both DT-MazM and DT-MazV. For DT-MazM we see four
additional peaks around beats 42, 89, 162, and 305 (high-
lighted in light-blue). These peaks loosely correlate with
the occurrence of dense mixtures of ornamented beats (red)
and weak bass beats (cyan), i.e., piece-dependent musical
properties (classification from [13]), which are apparently
the main reason for the difference in accuracy. Trained on
the V-split, DT-MazV was able to learn piece-specific mu-
sical properties and generalize them across versions. This
implies that expecting DT-MazM’s accuracy levels is more
realistic when using either model on unseen Mazurkas.

5. DISCUSSION AND CONCLUSIONS

With five of Chopin’s Mazurkas as use case, we have
shown that local tempo for expressive music can be mod-
eled using median aggregated IBIs, and tempo stability
can be measured using the coefficient of variation (cvar) of
local tempo values. Using these tools, we have found that
the five Chopin Mazurkas exhibit high intra-track tempo
variability, but low intra-segment variability, i.e., the lo-
cal tempo is relatively stable and thus musically mean-
ingful. This has allowed us to conduct a local tempo
estimation experiment. As was to be expected, a stan-
dard beat-tracker like Böck and a tempo estimation CNN
like DeepTemp—trained on Pop, EDM, and Ballroom
music—perform relatively poorly for Mazurkas. Even
when ignoring tempo octave errors, the results are by
far inferior to those achieved by the same kind of CNN
as DeepTemp, but trained on recordings from the tar-
get genre. It is reasonable to assume that training the
Böck system on Mazurkas would also improve perfor-
mance substantially—at the price of a strong genre bias.
More interestingly, we have been able to confirm a rela-
tionship between estimation accuracy and tempo stability
measured in cvar. Arguably, segments with a very high
cvar may not have a meaningful local tempo and should
therefore be excluded from local tempo evaluation. An-
other valuable insight results from the comparison of lo-
cal accuracy results for DT-Maz-models trained on ei-
ther the piece-wise M- or the performance-wise V-split. It
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777



0.00
0.25
0.50
0.75

|O
E|

 (T
O)

1 25 49 73 97 121 145 169 193 217 241 265 289 313 337 361 385
Beat

0.00

0.25

0.50

c v
ar DT-MazM

DT-MazV
cvar

Figure 6: Averaged cvar and |OE | for Op. 17, 4 around beats with classifications from [13]: non-event beats (black�),
boundary beats (blue�), ornamented beats (red�), and weak bass beats (cyan�). High-error sections, unexplained by
tempo instability, are highlighted in light-blue.

allows identification of piece-specific, musically difficult
passages. When training and testing on the V-split, the net-
work apparently has a chance to learn these piece-specific
features not covered by data augmentation. One might
also argue, DT-MazV overfits to the pieces (“cover song
effect” [25]). While usually seen as a negative effect, we
exploit this to learn about our dataset by contrasting results
with DT-MazM.

As with all deep learning systems, performance de-
pends largely on the training data. For a production sys-
tem, one is therefore well advised to use a larger and more
diverse training set than we did in this case study.

6. FUTURE WORK

We consciously refrained from attempting to find ideal seg-
ment lengths and aggregation functions. We would there-
fore welcome studies on larger corpora of expressive music
that search for optimal selection and aggregation functions
as well as cvar ranges useful for meaningful evaluations.

Additional Material. Trained models are available at
https://github.com/hendriks73/tempo-cnn
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ABSTRACT

This paper addresses the task of score following in sheet
music given as unprocessed images. While existing work
either relies on OMR software to obtain a computer-
readable score representation, or crucially relies on pre-
pared sheet image excerpts, we propose the first system
that directly performs score following in full-page, com-
pletely unprocessed sheet images. Based on incoming au-
dio and a given image of the score, our system directly pre-
dicts the most likely position within the page that matches
the audio, outperforming current state-of-the-art image-
based score followers in terms of alignment precision. We
also compare our method to an OMR-based approach and
empirically show that it can be a viable alternative to such
a system.

1. INTRODUCTION

Score following is a fundamental task in MIR and the basis
for applications such as automatic accompaniment [1, 2],
automatic page turning [3] or the synchronization of live
performances to visualizations [4, 5]. These applications
require a real-time capable system that aligns a musical
performance to a symbolic score representation in an on-
line fashion. To solve this, existing systems either require
a computer-readable score representation (e. g. extracted
using Optical Music Recognition (OMR) [6]) or rely on
fixed-size (small) snippets of sheet images.

Models from the latter category are by design only ca-
pable of handling fixed-sized excerpts of the sheet image
due to a limited action space to predict the next position
in the score. This is a severe constraint, as the sheet im-
age snippet has to (at least partly) correspond to the in-
coming audio excerpt. If it does not match the audio any-
more (due to some tracking error), no proper prediction
can be formed. To overcome this limitation, we attempt
score following directly in the full sheet image, enabling
the system to observe the whole page at any given time.
This makes the problem significantly more challenging,
e. g., due to repetitive musical score structures, compared

c© F. Henkel, R. Kelz, and G. Widmer. Licensed under a
Creative Commons Attribution 4.0 International License (CC BY 4.0).
Attribution: F. Henkel, R. Kelz, and G. Widmer, “Learning to Read and
Follow Music in Complete Score Sheet Images”, in Proc. of the 21st Int.
Society for Music Information Retrieval Conf., Montréal, Canada, 2020.

to locally constrained systems that only look at snippets.
To the best of our knowledge, we present the first sys-

tem that requires neither OMR nor any other form of score
pre-processing and directly follows musical performances
in full sheet images in an end-to-end fashion. 1

Specifically, we formulate score following as a refer-
ring image segmentation task and introduce an appropriate
model architecture in Section 3, including a conditioning
mechanism in the form of a Feature-wise Linear Modu-
lation (FiLM) layer [7] as a central building block. In
Section 4, we demonstrate the system on polyphonic pi-
ano music, taken from the MSMD dataset [8]. To ana-
lyze its generalization capabilities, we also test it on real
musical performances taken from the MSMD test split, in
Section 5. The results will show that our model outper-
forms current state-of-the-art image based trackers in terms
of alignment precision, but also that it currently lacks ro-
bustness across different audio conditions.

2. RELATED WORK

Score following approaches can be broadly categorized
into those that rely on the presence of a computer-readable
score representation, such as MusicXML or MIDI, and
those that try to do without such a symbolic represen-
tation. In the former category, techniques like Dynamic
Time Warping (DTW) [4,9,10] and Hidden Markov Mod-
els (HMMs) [11–13] are applied to achieve robust and reli-
able tracking results. The main issue with these approaches
is the need for computer-readable score representations,
which must either be created manually in a tedious and
time consuming process, or automatically extracted using
OMR. In the OMR case, the faithfulness of the symbolic
score to what is depicted on the sheet image strongly de-
pends on the quality of the OMR system, which may in-
troduce errors that impede the actual score following task.
Empirical evidence for this claim was published in [14],
where a DTW-based score following system that relied on
MIDI scores extracted via an OMR system had difficulties
tracking synthetically created test data.

Several recent publications deal with the latter cate-
gory, and investigate score following in the context of
non-computer-readable score representations, represented
as raw sheet images. In [15], the authors propose a multi-

1 Code and data will be made available on-line: https://github.
com/CPJKU/audio_conditioned_unet
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Target Frame

Figure 1. Score Following Task as modelled in this work: Given a score (sheet image) and an incoming musical performance (audio),
the goal is to predict the current location in the score in real time. The audio is fed to the tracker frame by frame and the system processes
the last 40 frames to predict the position for the latest frame (the Target Frame marked red in (a)). The ground truth (bounding box around
current score position; see (a)) is given as a binary segmentation mask. The system predicts a probability for each pixel to correspond to
the current audio; thus it highlights those regions that are most likely to match the correct location. Ideally, this should be only a single
region. However, in (b) we see that such a prediction is not perfect: while the highest probability is assigned to the correct position in
staff four, there is also a small likelihood in the last staff, as the notes are the same for both locations. To predict the location correctly,
the system needs to consider the whole audio up to the current point in time, which motivates our design choices introduced in Section 3.

modal deep neural network to predict the position within
a sheet snippet based on a short audio excerpt. In [16]
and [14], score following is formulated as a reinforcement
learning (RL) problem, where the RL agent’s task is to
adapt its reading speed in an unrolled sheet image, con-
ditioned on an audio excerpt. One of the limitations of all
these methods is that they require the score to be repre-
sented in an unrolled form, i. e., staves need to be detected
in the sheet image, cut out and presented to the score fol-
lowing system in sequence.

To overcome this, [17] introduced a system that directly
infers positions within full sheet images for monophonic
piano music. However, the temporal aspect of score fol-
lowing was neglected altogether — based on an audio ex-
cerpt all possible matching positions in the full sheet image
are highlighted, including those that were already played
— making it interesting preliminary work, but not a rea-
sonable score following system. In the following we build
upon their foundation and incorporate long term audio con-
text, proposing the first fully capable score following sys-
tem that works on entire sheet images, without needing any
pre-processing steps.

3. SCORE FOLLOWING AS A REFERRING
IMAGE SEGMENTATION TASK

Similarly to [17], we model score following as an image
segmentation task — more specifically, as a referring im-
age segmentation task. In computer vision, the goal of re-
ferring image segmentation is to identify a certain region
or object within an image based on some language expres-
sion [18, 19]. It shows similar characteristics as the multi-
modal approach to score following — we want to locate the
position in the sheet image that the incoming audio refers
to, meaning we treat the audio as the language expression,
and the score image as the entity to reason about. More

precisely, our modeling setup is as follows: based on the
incoming musical performance up to the current point in
time, the task of the model is to predict a segmentation
mask for the given score that corresponds to this currently
played music, as shown in Figure 1. The ground truth for
this task is chosen to be a region around the current posi-
tion in the score with a fixed width and a height depending
on the height of the staff. While the size of this mask can
be arbitrarily chosen, we define it such that it provides a
meaningful learning target first and foremost.

A challenging question arising with such a setup is how
to combine the different input modalities, audio and score.
While [14–16] learn a latent representation for both input
modalities which are subsequently concatenated and fur-
ther processed, we follow the direction of [17] instead, and
employ a conditioning mechanism that directly modulates
the activity of feature detectors that process the score im-
age. The former setup would be problematic due to the
increasing number of parameters. Furthermore, this de-
sign is able to retain the fully-convolutional property of our
model, i. e., if desired one could process sheet images of ar-
bitrary resolution. 2 In contrast to [17], we apply the con-
ditioning mechanism on top of a recurrent layer to provide
a longer temporal context. This permits the audio input up
until the current point in time to guide the segmentation
towards the corresponding position in the score image. We
argue that it is necessary for this task to have such a long
temporal audio context in order to form more reliable pre-
dictions. For example, it is common to have repeating note
patterns in the score spanning over a longer period of time
in the audio. Existing trackers that use only a fixed-size au-
dio input are not able to distinguish between such patterns,
if they exceed the given audio context.

2 Note that while we do not investigate this further and work with
fixed-sized sheets, this could be useful in a real world application.
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Figure 2. Sketch of the FiLM layer [7]. The layer scales and
translates the feature maps x using learned functions s(z) and
t(z), respectively. z is an additional, external input carrying the
conditioning information.

Audio (Spectrogram) 78× 40

2 x ( Conv(3, 1, 1)-24 - LN - ELU ) - MP(2)
2 x ( Conv(3, 1, 1)-48 - LN - ELU ) - MP(2)
2 x ( Conv(3, 1, 1)-96 - LN - ELU ) - MP(2)
2 x ( Conv(3, 1, 1)-96 - LN - ELU ) - MP(2)

Conv(1, 0, 1)-96 - LN - ELU
Dense(32) - LN - ELU

Table 1. The context-based encoder used for the experiments.
Conv(f , p, s)-k denotes a convolutional layer with k f × f ker-
nels, padding of p and stride s. We use layer normalization
(LN) [20], ELU activation [21] and max pooling (MP) with a
pool size of 2×2. The output of the last layer is fed into a LSTM
as shown in Figure 3. The network resembles the one used in [8].

3.1 Feature-wise Linear Modulation

The Feature-wise Linear Modulation (FiLM) layer is a
simple linear affine transformation of feature maps, con-
ditioned on an external input [7]. The purpose of using
this layer is to directly interfere with the learned represen-
tation of the sheet image by modulating its feature maps,
assisting the convolutional neural network to focus only on
those parts that are required for a correct segmentation. In
our case, the external input z is the hidden state of a re-
current layer that takes as input an encoded representation
of an audio excerpt. This encoded representation is cre-
ated by a neural network, e. g., as depicted in Table 1. The
FiLM layer itself is defined as

fFiLM(x) = s(z) · x+ t(z), (1)

where s(·) (for scaling) and t(·) (for translation) are arbi-
trary vector-valued functions implemented as neural net-
works. Their values depend on the conditioning vector z,
and together they define an affine transform of the tensor
x which refers to the collection of feature maps of a par-
ticular convolutional layer, after normalization. The affine
transformation is performed per feature map, meaning that
each feature map k is scaled and translated by sk(·) and
tk(·), respectively, with k identifying the k-th output of
the two functions. The number of output values for s(·)
and t(·) is the same as the number of feature maps con-
tained in x, denoted by K (cf. Figure 2).

3.2 Model Architecture

Our model is based on a U-Net architecture similar to the
one used in [22] for detecting musical symbols in sheet
images. U-Nets were originally introduced for medical
image segmentation, to segment an image into different
parts, by classifying each pixel into either foreground or

background [23]. This fits naturally to our interpretation
of the score following task, as a process of segmenting the
sheet image into a region that corresponds to the current
position in the audio input and labelling everything else as
background. The overall architecture, shown in Figure 3,
resembles the one proposed in [17], with several impor-
tant differences. Based on the empirical findings reported
in [17], we decide to incorporate conditioning information
from the audio input in blocks B-H, leaving only blocks
A and I without conditioning. However, we substitute the
transposed convolutions in the decoder part of the network
with bilinear upsampling operations with a factor of two,
followed by a 1 × 1 convolution, both aimed at reducing
checkerboard artifacts in the segmentation [24]. Due to the
small batch size used during training (cf. Section 4.3) as
well as the presence of the recurrent layer, we replace batch
normalization with layer normalization [20].

For deriving the conditioning information from the au-
dio input, we test two different spectrogram encoders. One
takes a spectrogram snippet with a length of 40 frames,
corresponding to two seconds of audio; the spectrogram
is processed by the network shown in Table 1, which is
roughly similar to the one used in [8]. The other version
takes as input a single spectrogram frame, using a dense
layer with 32 units, layer normalization and ELU activa-
tion function. The output of the encoders is fed to an
LSTM [25] layer with 128 units and its hidden state is then
used as the external input z in the FiLM layers.

4. EXPERIMENTS

To study the properties of our proposed approach, we con-
duct experiments on polyphonic piano music provided by
the MSMD [8] dataset. While this section is mainly con-
cerned with comparing data augmentation and different ar-
chitectures, later on in Section 5 we will investigate the
generalization capabilities of the system in terms of 16 real
piano recordings from the MSMD test split. We will also
contextualize the proposed system with related work de-
scribed in [14], which we use as baselines for comparison.

4.1 Data

We use the Multi-modal Sheet Music Dataset (MSMD)
[8], a standard dataset for such evaluations, comprising
polyphonic piano music from various composers including
Bach, Mozart, and Beethoven. The sheet music is typeset
with Lilypond 3 and the audio tracks are synthesized from
MIDI using Fluidsynth 4 together with a piano sound font.
The original MSMD splits used by [14] encompass 354
train, 19 validation and 94 test pieces. The precise align-
ments between audio and sheet music in this dataset are
created automatically. Despite that, it turned out that some
of the pieces still contain alignment errors. We manually
identified and fixed most of these errors, including wrongly
aligned notes and missing or wrongly detected staves. One
piece from the train set was removed, because we were not

3 http://lilypond.org/
4 http://www.fluidsynth.org/
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Figure 3. Audio-Conditioned U-Net architecture. Each block (A-I) consists of two convolutional layers with ELU activation and layer
normalization. The FiLM layer is placed before the last activation function. The spectrogram encoding given by the output of the network
shown in Table 1 is passed through a recurrent layer. The hidden state of this recurrent layer is then used for conditioning in the FiLM
layer. Each symmetric block has the same number of filters starting with 8 in block A and increasing with depth to 128 in block E.

able to fix it. Thus, the cleaned dataset consists of 353
train, 19 validation, and 94 test pieces, which will be made
publicly available. If a piece consists of several pages, each
page is treated as a single piece and the original MIDI
information is partitioned accordingly. 5 Altogether, we
have 945 train, 28 validation and 125 test pages. The ren-
dered score images have a resolution of 1181×835 pixels,
are downscaled by a factor of three to 393 × 278 pixels,
and are used as the input to the U-Net. Preliminary tests
showed that the downscaling does not significantly impact
the performance, and benefits the speed of the training pro-
cess. For the ground truth annotations, we rely on the auto-
matic notehead alignment described in [8]. The notehead
alignments yield (x, y) coordinate pairs in the sheet image,
which are further adjusted for our purposes such that the y
coordinates correspond to the middle of the staff the re-
spective note belongs to. Given these coordinates, we cre-
ate a binary mask with a width of 10 pixels and an adaptive
height depending on the height of the staff (see Figure 1).
The task of the U-Net is now to infer a segmentation mask
given the image of the score together with the condition-
ing information derived from the audio input. Note that
in theory it should be possible to directly predict x and y
coordinates instead of a segmentation mask, however as
shown in [26] this is a much harder task, and we were not
able to achieve acceptable performance so far, even using
their proposed CoordConv layer.

The audio is sampled with 22.05 kHz and processed at a
frame rate of 20 frames per second. The DFT is computed
for each frame with a window size of 2048 samples and
then transformed with a semi-logarithmic filterbank that
processes frequencies between 60 Hz and 6 kHz, yielding
78 log-frequency bins. Lastly, the spectrogram bins are
standardized to zero mean and unit variance. The audio
conditioning network is presented either with 40 consec-

5 This is mainly done to facilitate the training procedure. In an appli-
cation, this could be solved by some simple ‘hack’ that turns pages when
the score follower reaches the end of a page.

utive frames (two seconds of audio) or a single frame at
a time. We use the madmom python library for all signal
processing related computations [27].

4.2 Baselines and Evaluation Measures

In the following, we will present a series of experiments,
comparing the new proposed full-page tracking system to
several baselines (in order to better understand the impor-
tance of some of our design choices) as well as to related
state-of-the-art approaches from the literature.

First, we evaluate two different spectrogram encoders,
as introduced in Section 3.2, vis-à-vis a baseline version of
our system that does not have the capability to summarize
all the audio up to the current point in time, i. e., that does
not have memory in the form of an RNN. We do this in
order to obtain empirical evidence for our argument that
having access to long term temporal information is highly
beneficial for obtaining good approximate solutions to the
score following task. The two different encoders are de-
noted as context-based (CB) and frame-based (FB), using
40 spectrogram frames and a single frame, respectively.
The baseline without temporal context uses the CB en-
coder and replaces the RNN layer with a fully connected
layer of the same size. In the following this baseline will
be denoted as NTC (no temporal context).

The evaluation measures used for this comparison are
of a geometric kind (bounding box pixel error and dis-
tance on printed score page), in order to focus on the new
challenge of full-page orientation: we measure the pixel-
wise evaluation metrics Precision, Recall and F1-score that
were also used in [17], and the mean and median alignment
error between ground truth and prediction in centimeters,
both with the network output thresholded at 0.5. To cal-
culate the alignment error between the ground truth and
the predicted probability mask (recall Figure 1), we calcu-
late the center of mass over all pixels for both masks and
compute the euclidean distance between the two centers to
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obtain the alignment error in pixels. Given a resolution of
72 dpi, the error is converted to centimeter using a factor
of 0.0352 cm/pixel, under the assumption that the score
image is printed on a sheet of DIN A4 paper.

In the second experiment we compare our system to
alternative state-of-the-art approaches from the literature:
the first approach is based on an OMR system that ex-
tracts symbolic MIDI information from the sheet image.
The symbolic MIDI information is then synthesized to au-
dio. The system subsequently computes chroma features
with a feature rate of 20 Hz from both the synthesized and
the performance audio, and applies audio-to-audio align-
ment using a form of online DTW [28]. This is the method
described in [14] and will be abbreviated as OMR in the
upcoming result table. The second and third approach, de-
scribed in Section 2, are a multi-modal localization net-
work (MM-Loc) [15] and a Reinforcement Learning (RL)
agent [14, 16], both working with sheet image snippets.

The evaluation measure for this will be of a more
music-related kind (temporal tracking error in the perfor-
mance), reflecting the intended purpose of the systems
(score following), and permitting a direct comparison with
alternative methods. Similarly to [9, 10], we compute,
for each note onset, the absolute time difference between
prediction and ground truth. We set 5 threshold values,
ranging from 0.05 to 5 seconds, and report the cumulative
percentage of notes tracked with an error up to the given
threshold. Given the ground truth alignment from note on-
sets to the corresponding notehead coordinates in the sheet
image, we can interpolate from the predicted positions in
the sheet image back to the time domain. This is straight-
forward for MM-Loc and the RL agent, because they both
already use an unrolled score derived from the groundtruth,
whereas the proposed method requires further processing.
We first need to compute the center of mass of the seg-
mented region to obtain x, y coordinates. We map the y
coordinate to the closest staff, and apply a similar interpo-
lation as before in an unrolled score to get the time differ-
ence between the predicted and actual position in the score.

For evaluating the OMR baseline we face a problem that
has already been noted in [14] — we do not have the re-
quired groundtruth alignment between the OMR-extracted
score and the performance. Given that only onset posi-
tions are evaluated, we are justified to assume a perfect
alignment between score and audio, if for each unit of
time in the audio a constant distance in the score sheet is
travelled. If the OMR system makes no errors, the align-
ment between OMR score and performance is a diagonal in
the DTW global cost matrix, correcting the overall tempo
difference by a linear factor. As in [14], we evaluate the
OMR-based system by measuring the offset of the actual
tracking position relative to the perfect alignment.

4.3 Experimental Setup

All models are trained using the same procedure. We op-
timize the Dice coefficient loss [29], which is more suit-
able than e. g., binary cross-entropy, as we are facing an
imbalanced segmentation problem with far more unimpor-

tant background pixels than regions of interest. To opti-
mize this target we use Adam [30] with default parame-
ters, an initial learning rate of 1e−4 and L2 weight decay
with a factor of 1e−5. If the conditioning architecture in-
volves an LSTM, we use a batch-size of 4 and a sequence
length of 16. For the audio conditioning model without a
temporal context we use a batch size of 64. The weights
of the network are initialized orthogonally [31] and the bi-
ases are set to zero. If the loss on the validation set does
not decrease for 5 epochs, we halve the learn rate and stop
training altogether when the validation loss does not de-
crease over a period of 10 epochs or the maximum number
of 100 epochs is reached. The model parameters with the
lowest validation loss are used for the final evaluation on
the test set. Similar to [17], we perform data augmentation
in the image domain by shifting the score images along the
x and y axis. To investigate whether tempo augmentation
improves model performance, we train all models with-
out tempo augmentation as well as with 7 different tempo
change factors ranging from 0.5 up to 1.5.

4.4 Results

In Table 2, we compare different conditioning architec-
tures, no long term temporal context (NTC), a context of
40 frames (CB) and a single frame (FB) in combination
with an LSTM, respectively. We observe that the NTC
model has the lowest performance, both in terms of the
pixel-wise measures, as well as in terms of its alignment
error. A possible reason for this could be ambiguities in the
sheet image, since audio excerpts could match several po-
sitions in the score. The results for CB and FB support our
initial claim that a long term temporal context is required
for this task. While both models achieve a good perfor-
mance, CB outperforms FB in all measures. On average,
the alignment error is around 1.25 cm and the median is at
0.51 cm, meaning that half of the time our model is less
than 0.51 cm away from the true position. Furthermore,
we observe that tempo augmentation improves the results
for all models.

In Table 3, we compare our best model from Table 2
to several baselines from the literature in terms of the cu-
mulative percentage of onsets that are tracked with an error
below a given threshold. We observe that the context-based
proposed model (CB) outperforms all baselines except for
the highest threshold. This suggests that our method is very
precise on one hand, but on the other hand is not able to
track all onsets with a timing error below five seconds.

5. REAL PERFORMANCES

To test the generalization capabilities of the system under
real recording conditions, we evaluate our best model on
the 16 piano recordings (corresponding to 25 score pages)
from the MSMD test split introduced in [14], for which we
also manually corrected some of the alignments. We com-
pare again to the baselines introduced in Section 4.2, which
are likewise evaluated using the corrected alignments. In
line with [14], we compare four different settings with in-
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MSMD (125 test pages)

TA P R F1 dcm d̃cm

NTC 7 0.696 0.665 0.678 3.70 2.37
3 0.770 0.740 0.754 2.78 1.61

CB 7 0.810 0.790 0.799 1.62 0.73
3 0.854 0.835 0.843 1.25 0.51

FB 7 0.790 0.768 0.778 1.82 1.21
3 0.820 0.816 0.816 1.58 0.80

Table 2. Different conditioning architectures with/without
tempo augmentation (TA): no temporal context (NTC), context-
based (CB) and frame-based (FB). For each model the parameters
with lowest validation loss are chosen for evaluation on the test
set. Measures: pixel-wise precision (P), recall (R) and F1, and
mean (dcm) and median (d̃cm) of alignment error in centimeters.

MSMD (125 test pages)

Err. [sec] OMR [14] MM-Loc [32] RL [14] CB

≤ 0.05 44.7% 44.6% 40.9% 73.3%
≤ 0.10 51.9% 49.2% 43.3% 74.7%
≤ 0.50 76.0% 82.2% 79.7% 85.2%
≤ 1.00 85.0% 86.0% 87.8% 88.5%
≤ 5.00 97.4% 92.0% 97.2% 93.7%

Table 3. Our best model (CB) vs. existing baselines, in terms
of onsets tracked with an error below a given threshold. For the
RL agent we report the average over 10 runs due to its stochastic
policy. In contrast to [14], OMR, MM-Loc and RL do not stop
tracking if they fall out of a given tracking window.

creasing difficulty. The first is the same synthetic setting
as in Section 4. The second setting uses the performance
MIDI synthesized with the same piano synthesizer used
during training. The third uses the audio of the “direct
out” audio output of the “Yamaha AvantGrand N2” hybrid
piano used for recording, and the last one uses the audio
recorded via a room microphone.

Table 4 summarizes the results. Overall, we observe
that the proposed system (CB) achieves more precise re-
sults in terms of time difference (i.e., higher percentages
for the tighter error thresholds) in three out of four settings.
For the last setting we observe a worse performance, which
indicates that our model has possibly overfit to the synthe-
sized audio and is not yet robust enough. OMR yields very
robust results in all scenarios, which is possibly due to the
used chroma features. While the results are not as precise,
it outperforms the other methods for higher threshold val-
ues.

A possible explanation for this is that our model has
more freedom in being able to perform big jumps on the
sheet image paper, thus increasing the error possibility.
Models relying on sheet snippets are not designed to per-
form such jumps and thus can also not make very extreme
errors. Furthermore, our model is more sensitive to the au-
dio representation fed into the conditioning mechanism, as
it influences the convolutional filters in multiple layers that
process the sheet image. Overall, we assume that this is
an issue of the synthetic dataset which can be tackled by
training on more diverse performances and a more robust
audio model for the conditioning mechanism.

Err. [sec] OMR [14] MM-Loc [32] RL [14] CB

Original MIDI Synthesized (Score = Performance)

≤ 0.05 37.1% 41.6% 36.5% 69.8%
≤ 0.10 46.1% 44.2% 38.2% 70.6%
≤ 0.50 74.9% 77.6% 72.9% 80.6%
≤ 1.00 86.8% 79.9% 79.8% 82.4%
≤ 5.00 99.6% 90.3% 96.5% 89.1%

Performance MIDI Synthesized

≤ 0.05 28.9% 47.2% 23.4% 56.5%
≤ 0.10 39.8% 49.0% 24.8% 58.1%
≤ 0.50 71.7% 83.2% 54.5% 80.9%
≤ 1.00 83.4% 86.1% 64.0% 84.4%
≤ 5.00 98.8% 96.0% 81.2% 90.1%

Direct Out

≤ 0.05 22.6% 33.8% 27.7% 40.0%
≤ 0.10 33.0% 35.4% 29.1% 41.6%
≤ 0.50 70.3% 59.7% 60.7% 64.2%
≤ 1.00 83.9% 63.4% 73.3% 69.3%
≤ 5.00 99.3% 75.3% 95.5% 81.1%

Room Recording

≤ 0.05 22.6% 20.7% 19.2% 9.4%
≤ 0.10 32.2% 24.3% 20.6% 10.5%
≤ 0.50 70.2% 54.1% 46.6% 21.5%
≤ 1.00 82.7% 57.3% 58.7% 26.2%
≤ 5.00 97.4% 70.2% 89.1% 44.3%

Table 4. Comparing best performing model to several baselines
on a set of 16 real piano recordings (25 pages) from the MSMD
test split. Model evaluation is as described in Table 3, with the
difference that for the RL agent we report the average over 50
runs due to its stochastic policy and the smaller sample size.

6. DISCUSSION AND CONCLUSION

We have proposed the first end-to-end trained score follow-
ing system that directly works on full sheet images. The
system is real-time capable due to a constant runtime per
step, it compares favorably with existing baselines on syn-
thetic polyphonic piano music, and sets the new state of
the art for sheet-image-based score following in terms of
temporal alignment error. However, there are still gener-
alization problems for real piano recordings. While the
model shows a much more precise alignment in most sce-
narios, we see a performance deterioration over different
recording conditions. This will need to be solved in the
future, either with a more robust audio model, or a data
augmentation strategy that incorporates reverberation ef-
fects. Future work will also require testing on scanned or
photographed sheet images, to gauge generalization capa-
bilities of the system in the visual domain as well. As there
is currently no dataset consisting of scanned sheet images
with precise notehead to audio alignments, it will be nec-
essary to curate a test set. The next step towards a system
with greater capabilities, is to either explicitly or implicitly
incorporate a mechanism to handle repetitions in the score
as well as in the performance. We assume that the pro-
posed method will be able to acquire this capability quite
naturally from properly prepared training data, although
we suspect its performance will heavily depend on its im-
plicit encoding of the audio history so far, i. e., how large
an auditory context the recurrent network is able to store.
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ABSTRACT

Recent work has proposed the use of tensor decompo-
sition to model repetitions and to separate tracks in loop-
based electronic music. The present work investigates fur-
ther on the ability of Nonnegative Tucker Decompositon
(NTD) to uncover musical patterns and structure in pop
songs in their audio form. Exploiting the fact that NTD
tends to express the content of bars as linear combinations
of a few patterns, we illustrate the ability of the decomposi-
tion to capture and single out repeated motifs in the corre-
sponding compressed space, which can be interpreted from
a musical viewpoint. The resulting features also turn out to
be efficient for structural segmentation, leading to experi-
mental results on the RWC Pop data set which are poten-
tially challenging state-of-the-art approaches that rely on
extensive example-based learning schemes.

1. INTRODUCTION

A common problem in Music Information Retrieval do-
main (MIR) is the design of musical content representa-
tions and features able to capture meaningful information
in relation to a particular aspect of music. While short-term
features are dominant in the literature, higher-scale fea-
tures aiming to describe medium-term patterns and long-
term structural properties tend to be much less addressed.

Recent work by Smith and Goto [1] has proposed the
use of tensor decomposition to model repetitions in loop-
based electronic music, with the purpose of separating
tracks in audio content. In this paper, we explore the ability
of the method to provide a sparse description of music by
capturing and characterizing patterns at the bar-scale level
in western pop songs in their audio form. As a testbed, we
evaluate the effectiveness of the new features for structural
segmentation, i.e. the task of retrieving the boundaries of
the various musical sections (such as verses, choruses, in-
tros, bridges...) which form a music piece.

We first recall (in section 2) the mathematical theory
of the tensorial model called Nonnegative Tucker Decom-

c© Axel Marmoret, Jérémy E. Cohen, Nancy Bertin,
Frédéric Bimbot. Licensed under a Creative Commons Attribution 4.0 In-
ternational License (CC BY 4.0). Attribution: Axel Marmoret, Jérémy
E. Cohen, Nancy Bertin, Frédéric Bimbot, “Uncovering audio patterns in
music with Nonnegative Tucker Decomposition for structural segmenta-
tion”, in Proc. of the 21st Int. Society for Music Information Retrieval
Conf., Montréal, Canada, 2020.

position (NTD), and we provide detailed illustrations and
interpretation of the NTD components on the audio record-
ing of a well-known pop song. We then (in section 3)
elaborate on a number of practical considerations related
to NTD, which are needed to be taken into account when
applying the model to real music data. In the last part of the
article (sections 4 and 5), we report on experiments and re-
sults obtained with the NTD-derived features for structural
segmentation of the RWC Pop Music data set [2].

2. NONNEGATIVE TUCKER DECOMPOSITION

2.1 Time-Frequency-Bar Tensor

Music in its audio form is often represented in the time-
frequency domain as a spectrogram, i.e. a 2-dimensional
matrix (further denoted as X). Along the x-axis, the
temporal dimension unfolds, discretized as signal frames,
while the y-axis is a frequency-related dimension (such
as modules of the Fourier coefficients, pitches, constant-
Q transforms, wavelet coefficients...).
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Figure 1: Chromagram of “Come Together”, by The Beatles.

In this work, we describe music as chromagrams. Con-
ventionally, the 12 rows represent the energy distribution
across the song for each semi-tone of the classical western
music scale, where a note and all its octave counterparts
are represented in the same row. An example chromagram
is shown in Figure 1.

In the tensorial approach, the temporal dimension is
broken up into two distinct dimensions: a low-scale dimen-
sion representing time in terms of frame index normalized
at the bar scale, and a high-scale time dimension represent-
ing the bar index within the entire piece. This new view-
point makes it possible to represent a song as a third-order
tensor X of size F × T × B, F being the size of the fre-
quency dimension (12 in the case of chromas), T the num-
ber of frames used to describe bars (local time scale) and
B the number of bars in the song (global time scale). We
call X the Time-Frequency-Bar representation of the song
which, from a data structure viewpoint, is the recasting of
X as a 3D array. Tensor X can be seen as the concatenation
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Time at barscale
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(a) Tensor: multi-
dimensional array

(b) Time-Bar-Frequency representa-
tion of “Come Together” as a con-
catenation of barwise chromagrams

Figure 2: Principle and illustration of a Time-Bar-Frequency rep-
resentation as a third-order tensor.

of local time-frequency representations, each of them char-
acterizing the content of a bar, as illustrated on Figure 2.
Note that, as bars can be of different lengths in absolute
time, the frame hop depends on each bar, and is defined so
that all bars contain the same number of frames.

2.2 Mathematical Model and Formalism

Let us denote as X the Time-Frequency-Bar representation
of a song, with dimensions F ×T ×B. Assuming chroma
coefficients are all nonnegative, X is also a nonnegative
tensor. Computing a Nonnegative Tucker Decomposition
(NTD) of X consists in finding 3 nonnegative factor ma-
trices W , H and Q (corresponding to the three “modes”
of the Time-Frequency-Bar tensor) and a nonnegative core
tensor G which relates the three modes as of how to com-
bine them to reconstruct (an approximation of) X.

The dimensions F ′ × T ′ × B′ of the core tensor G are
usually set to be lower than those of X (i.e. F ′, T ′, B′ ≤
F, T,B respectively). As a consequence, matrices W , H
and Q are respectively of dimensions F × F ′, T × T ′ and
B × B′ and they can be understood as transformed and
compressed representations of the raw information con-
veyed across the three dimensions of the full tensor.

In conventional tensor-product notation [3], the approx-
imation of X can be written in compact form as:

X ≈ G×1 W ×2 H ×3 Q . (1)

which rewrites, using element-wise notation, as:

X(f, t, b) ≈
F ′,T ′,B′∑
f ′,t′,b′=1

G(f ′, t′, b′)W (f, f ′)H(t, t′)Q(b, b′)

(2)
In particular, any given bar of index b is represented as:

X(:, :, b) ≈W

 B′∑
b′=1

Q(b, b′)G(:, :, b′)

HT (3)

Figure 3 depicts a schematic 3-D representation of a
NTD. NTD core dimensions F ′, T ′ and B′ are assumed
to be known (or set empirically) prior to the decomposi-
tion. As they are lower than the dimensions of their re-
spective mode of the tensor, NTD achieves information
compression via nonlinear dimensionality reduction. In-
deed, for an original tensor of size F × T × B (i.e. com-
prising F.T.B numerical values), the NTD decomposition

=XF

T

B

F

F ′

B′
B

F ′

T ′

B′

T ′

T

W

QT

HTG

Figure 3: Nonnegative Tucker Decomposition of tensor X in fac-
tor matrices W,H,Q, and core tensor G, with their dimensions.

will total F.F ′ + T.T ′ + B.B′ + F ′.T ′.B′ values. For
example, in the decomposition presented further in Fig-
ure 4, the original tensor contains 102528 real positive val-
ues (F, T,B = 12, 96, 89), while only 3626 for the NTD
(F ′, T ′, B′ = 12, 12, 10).

2.3 Interpretation of the NTD

Loosely speaking, music can be viewed as composed of
musical events (notes, percussive sounds, ...) occurring
non-randomly in bars. Under that assumption, bars can
be modeled as the combination of a limited set of time-
frequency templates along time within a bar, according to
some rhythmic values, such as “half notes” or “beamed
eight notes” for example. This is the purpose of a con-
ventional musical score, where the major part of symbolic
information represents pitch and rhythm. Following that
idea, it is a very popular goal in MIR to design methods for
turning back musical content (in audio form) into a sparse
combination of musical events and temporal activations, as
is the case, for instance, with Nonnegative Matrix Factor-
ization (NMF) for music transcription [4]. Moreover, mu-
sic often contains repetitions: different bars can entirely or
partly share similar content. For instance, beside almost
identical repetitions, some instrumental lines can reoccur
in different contexts: an identical bass line in a verse and
in a guitar solo, for example.

Combining these observations, we assume that each bar
can be represented as the nonnegative combination of a few
“musical patterns” (as NMF would do), where a “musical
pattern” is itself a sparse combination of musical events
and rhythmic activations at the bar scale (for example a
melodic line, or a drum fill). Repetitions imply that some
of these musical patterns should appear in several bars
across a piece. NTD offers an ideal framework to model
these properties for music decomposition, musical patterns
being efficiently and sparsely shared across bars.

In the NTD, the W matrix represents the musical
events, such as the most recurrent notes or chords. H rep-
resents rhythmic activations at the bar scale, for example
4 quarter notes on the beats. Then, each 2D “slice” of the
core G linking these two matrices defines a musical pattern,
as a linear combination of some of their columns (musical
and rhythmic atoms): for example bass drum hits on the
on-beats and snare hits on the off-beats. Finally, Q indi-
cates, for each bar, the combination of musical patterns
forming it (generally a few) and their respective intensity.

Figure 4 provides a detailed example of the various
NTD components stemming from “Come Together” by the
Beatles. While the upper part of the figure illustrates the
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(a) Visual representation of the dominant musical pattern (far-left) corresponding to the first bar of “Come Together” [a mix of the bass and
guitar lines of the intro of the song]. It is decomposed as a linear combination of the columns of W (center-left) representing the chroma
information, and of H , factors of the rhythmic information (far-right). The musical pattern is itself a linear combination of columns of these
matrices, the weights of which are given by the corresponding slice of G (center-right).

(b) “Come Together” represented as its QT matrix. Each row represents a musical pattern, in their order of appearance in the piece. Grey lines
represent the segmentation annotation.

Figure 4: Visualizations of the NTD of Come Together by The Beatles, with ranks T ′ = 12 and B′ = 10.

dominant musical pattern for the first bar together with its
decomposition in NTD, the lower part depicts the descrip-
tion of the entire piece via the QT matrix of the NTD. This
example has been obtained from the chromagram repre-
sented in Figure 1. Because the song is expressed on the
12-chroma scale, we expect little compressibility with re-
spect to this dimension. We hence simplify the model by
fixing W to the 12-size identity matrix. This means that
each semi-tone is represented by one and only one column
of W . For higher dimensions or different representations,
columns of W could represent a wider range of harmonic
or percussive sounds, chords, or any other frequency pat-
tern. Conversely, ranks T ′ and B′ (respectively the second
dimension for H and Q) are adjustable parameters of the
model. In the decomposition presented in Figure 4, they
have been set to T ′ = 12 and B′ = 10. All columns of H
and all slices of the core linking the factor matrices W and
H , which define the musical patterns, are l2 normalized
(i.e. divided by their standard deviation).

3. PRACTICAL INSIGHTS ON THE NTD

In this section, we discuss a number of considerations
which are bound to have an impact on the actual result
of the NTD-based representations and must therefore be
taken into account in practical situations.

3.1 NTD Algorithm

NTD can typically be computed by minimizing the follow-
ing non-convex objective function with respect to the non-
negative matrices W,H,Q and the core tensor G:

‖X− G×1 W ×2 H ×3 Q‖2F (4)

While a direct global minimization of Eqn (4) is not
tractable in general, a standard approach in the literature
is to resort to alternating optimization. Following [5], we
solve Eqn (4) for W , H , Q and G alternatively. It can be
shown that each of these steps means solving a matrix non-

negative least-square problem of the form:

min
Z≥0
‖Y −AZ‖2F (5)

for some matrices Y,A,Z. This problem is convex, and it
is possible to solve it exactly, or up to an arbitrary preci-
sion. An efficient algorithm for solving matrix nonnegative
least squares with high precision is the Hierarchical Alter-
nating Least Squares, and we used an accelerated variant
of it to speed-up computation [6]. The problem of updat-
ing G is also a nonnegative least squares problem, but not
a matrix one. Therefore, to update the core tensor G, we
used a proximal gradient with optimal step [7, Ch. 10].

It can be shown that the proposed alternating algorithm
is guaranteed to converge to a stationary point of the objec-
tive function (4), since it boils down to an alternating prox-
imal gradient algorithm with optimal step [8]. In practice,
we used a stopping criterion based either on a fixed maxi-
mal number of iterations or on a fixed minimal tolerance of
improvement between two successive updates. The entire
code, along with experimental notebooks, are published
and open-source 1 . Under this implementation, comput-
ing the NTD for “Come Together” (4’16” song) with our
algorithm takes approximately 15 seconds on a laptop with
an Intel R© Core(TM) i7 processor and 16GB of RAM.

3.2 Robustness of the NTD

At least two issues with the NTD make the output of any
algorithm highly dependent on the initialization. First,
there might be several solutions W,H,Q,G that provide
the same (or a very similar) estimate X̂ ≈ X. This problem,
known as identifiability deficiency, has been little stud-
ied for NTD, and established identifiability conditions are
very restrictive [9]. Moreover, these conditions are hard to
check in practice. Therefore it is unreasonable to assess
the identifiability of the NTD in our application. As a con-
sequence, this means that there might be infinitely many

1 https://gitlab.inria.fr/amarmore/musicntd/-/tree/0.1.0
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790



solutions to minimizing Eqn (4) that are, from an optimiza-
tion point of view, equally satisfying. Second, even in the
case where the NTD is identifiable, the cost function of (4)
is highly non-convex, and local algorithms can only hope
to recover a local minimum at best.

These two issues combined give rise to a high depen-
dency of the solution on the initial condition: from two
different initializations, two different results – most prob-
ably non-identifiable local minima – are likely to be ob-
tained. We have observed such situations in our investi-
gations, with various initializations indeed resulting in dif-
ferent outputs. However, in most cases the decomposition
would provide results that were reasonably interpretable
from a musical perspective. In particular, when we initial-
ized the algorithm with the absolute values of the Higher
Order SVD [10] computed with the Tensorly toolbox [11],
the procedure consistently provided satisfying results for
segmentation, as detailed further in our experiments.

3.3 Rank Selection

The ranks F ′, T ′ and B′ of the decomposition are cru-
cial parameters of the NTD model. Indeed, low ranks
tend to over-compress information in the data, failing to
uncover relevant structural information in the song, while
high ranks may give too much importance to details in the
data, resulting in the unability of the model to group simi-
lar patterns in a same class of representations.

As developed further in section 5.4, our experiments in-
dicate that the optimal ranks are probably specific for each
song, which can be easily understood as a consequence of
the diversity of intrinsic variability across music pieces.
Providing an efficient method for selecting the ranks is a
challenging topic, left to future work.

4. NTD-BASED SEGMENTATION

To study further the relevance of the NTD representation,
we evaluated it in the context of structural segmentation.
To our knowledge, this is the first attempt to exploit tenso-
rial representations for this purpose.

4.1 Autosimilarity for Describing Structure

The autosimilarity matrix XTX of a music piece (X be-
ing its time-frequency representation) is commonly used
in structural segmentation. Indeed, similar portions of the
piece are likely to have high correlation values. A high
density of high values around the diagonal is expected in
passages with strong internal similarities, whereas low lo-
cal correlations would indicate a change in homogeneity.
In the ideal case, structural segments appear as consistent
blocks with a high level of internal correlation while seg-
ment boundaries are points connecting such blocks, sur-
rounded by zones of low cross-correlation.

Nonetheless, music signals usually generate dense au-
tosimilarity matrices, as dissimilar segments in the mu-
sicological/perceptive sense (for example a guitar line on
the chorus opposed to one in the verse) may still be close

in terms of signal properties. While similar parts gener-
ate high correlation blocks, it can be harder to character-
ize segments boundaries when the same instruments are
played in all segments (even when playing different lines).

In the present work, we replace XTX by an autosim-
ilarity matrix Q̃Q̃T computed from the row-wise normal-
ized Q matrix (denoted Q̃), and study its capacity to pro-
vide an efficient representation for structural segmentation.

Our assumption is that bar descriptions provided by Q̃
provide a better contrast between similar and dissimilar
musical constituents. For instance, we expect two differ-
ent lines of the same instrument to generate different mu-
sical patterns, resulting in lower similarity, whereas com-
pressive effects of NTD will increase correlation of similar
events in the transformed space. In that sense, NTD can
be seen as a way to uncover piece-dependent features for
describing bars, which can then be used to group the bars
according to their relative similarity.

Figure 5 depicts the “barwise” autosimilarity matrix of
the chromagram X of “Come Together”: the content of
each bar of the signal has been vectorized, and similarity
is computed between these barscale vectors. This matrix is
compared to the autosimilarity of the Q̃ matrix, presented
on Figure 4b. This figure visually supports the hypothe-
sis that autosimilarity matrices are sparser when computed
from the matrix Q rather than from the chromas X . Still,
highly similar blocks seem to be preserved.

4.2 A Segmentation Algorithm Using Autosimilarity

To assess this hypothesis, we implemented a segmentation
algorithm based on the principle of a sliding convolution
kernel along the diagonal of the autosimilarity matrix.

Figure 6: Kernel
of size 10

This kernel is a square binary
matrix, whose entries are non-zero
only on the lower and upper 4 sub-
diagonals around the main diagonal
(Figure 6). In other terms, denoting
kij the kernel elements, kij = 1 if
1 ≤ |i− j| ≤ 4. Otherwise, kij = 0.

For every possible segment (b1, b2), a kernel of size
n = b2 − b1 + 1 is convolved with the corresponding au-
tosimilarity sub-matrix (restricted to the bars between b1
and b2) which is then normalized by the size of the seg-
ment. This leads to a raw convolution score: cb1,b2 =
1
n

∑n−1
i,j=0 kijai+b1,j+b1 . The kernel aims at detecting lo-

cal similarities within the 8 bars surrounding each bar. The
more similar this surrounding is, the higher the score.

In addition, we combine the kernel score with a regular-
ity penalty p(n), depending on the size n of the segment.
Indeed, in pop music in general (and in the MIREX10
RWC Pop annotations in particular [12]), the distribution
of musical segment sizes (in bars) tend to be centered
around 8, and they are more likely to be even than odd.
In the experiments reported in the next section, we set em-
pirically, p(8) = 0, p(n) = 1

4 , if n is a multiple of 4,
p(n) = 1

2 if n is a multiple of 2, and p(n) = 1 if n is
odd. This penalty modifies the raw convolution score as
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Figure 5: Barwise l1-normalized autosimilarity matrices for “Come Together” (0: white - 1: black). Left: barwise chromagram autosim-
ilarity - Right: autosimilarity of Q̃ matrix from Figure 4b. Grey horizontal and vertical lines represent the segmentation annotation.

follows:
c′b1,b2 = cb1,b2 − λp(n)cmax

k8 (6)

where cmax
k8 is the maximum of the raw convolution score

over all restrictions of size 8 bars within the piece, in order
to cope with potential discrepancies in sparsity across au-
tosimilarity matrices for different pieces. In practice, λ is
fitted by cross-validation.

Finally, segment boundaries are found by a dynamic
programming algorithm, inspired from [13]: it keeps the
sequence of segments maximizing the global cost defined
as the sum of all segment costs.

5. EXPERIMENTS

The proposed method was applied to the Q̃T representation
and tested on the “structural segmentation” task, as defined
in the MIREX campaigns [14], on the 100 songs from the
RWC Pop database [2]. MIREX10 annotations [12] serve
as the reference segmentation (1680 segments). We com-
pare our results with state-of-the-art methods listed below.

5.1 Related Work

In the context of structural segmentation, numerous meth-
ods try to detect segment boundaries from the autosimilar-
ity matrix, or from an “affinity matrix” derived from it.

The use of autosimilarity for segmenting music struc-
ture probably traces back to Foote [15]. In this work,
structural boundaries are detected by applying a kernel
along the diagonal, as described above. Foote’s kernel
though aims at detecting “novelty” in the signal’s autosim-
ilarity matrix, by comparing inter-similarity between the
near past and near future at the current point. A high nov-
elty should indicate a low inter-similarity between past and
future, hinting towards a boundary between segments.

More recently, convex NMF was used for segmenting
a pre-processed autosimilarity matrix [16]. A variant of
NMF decomposition is used to enforce the feature space

(here, similarity between different bars) to be contracted in
convex combinations of columns of the autosimilarity ma-
trix. Factorization results are thus interpreted as the most
similar bars, which can then be processed into sections.

Spectral clustering can also be used. In [17], an affinity
matrix is computed from the signal, where the similarity
is obtained with k-nearest neighbors and time-proximity
rules. Then, interpreting this matrix as a graph, and its val-
ues as vertices connectivity, this method studies the eigen-
vectors of its Laplacian. These eigenvectors can be inter-
preted as principally connected vertices, forming cluster
classes for segmentation.

We primarily compare the NTD method with these tech-
niques for two reasons. First, they are implemented in
the MSAF toolbox [20]. Second, they reach state-of-the-
art performance among “blind” methods for structural seg-
mentation, i.e. methods which, like NTD, do not resort to
extensive training from examples. Note that the segmenta-
tion results we obtained with MSAF, though, are slightly
worse (≈ 3/4%) than those obtained at MIREX 2016 [21],
possibly due to evolutions of the toolbox itself in the inter-
val. We did not tune any of the default parameters.

As current state-of-the-art, we selected the algorithm
from [18] since it ranked first in this task in the last MIREX
campaigns. However, as opposed to the previous methods,
it requires supervised training from many examples.

5.2 Downbeat-Synchronous Alignment

By construction, the boundaries estimated by the NTD-
based approach are aligned on downbeats, which is not the
case for the techniques we use as baseline comparisons. As
segments generally start and end on downbeats of the song,
this alignment could induce a bias favouring our technique.
To compensate for this, in addition to the segmentation
scores computed with the original boundaries, we compute
the scores after having aligned boundaries on the closest
downbeat. We call this condition “Aligned on downbeats”.
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Algorithm P0.5 R0.5 F0.5 P3 R3 F3

NTD-based autosimilarity 53.3% 62.1% 56.6% 66.8% 78.1% 71.1%
Barwise chromagram autosimilarity 43.1% 45.7% 43.9% 64.8% 68.0% 65.8%
Foote Original 29.7% 22.3% 25.1% 63.9% 48.6% 54.5%
Novelty [15] Aligned on downbeats 42.0% 30.0% 34.5% 67.1% 47.7% 55.0%

CNMF [16]
Original 22.8% 21.5% 21.5% 46.8% 45.1% 44.7%
Aligned on downbeats 31.6% 28.1% 28.8% 50.7% 45.4% 46.5%

Spectral Original 31.2% 30.5% 29.4% 60.7% 60.8% 58.1%
Clustering [17] Aligned on downbeats 49.2% 45.0% 45.0% 65.5% 60.6% 60.3%

Table 1: Averaged segmentation scores, and their comparison with several “blind” reference methods.

Algorithm P0.5 R0.5 F0.5 P3 R3 F3

NTD, with “oracle ranks” for each song 67.1% 78.2% 71.5% 78.5% 90.2% 83.1%
Neural Networks [18], results from MIREX 2015 [19] 80.4% 62.7% 69.7% 91.9% 71.1% 79.3%

Table 2: Averaged segmentation scores in the “oracle ranks” condition, compared to the current state-of-the-art (non-blind) method.

In addition, we also processed the barwise autosimi-
larity obtained directly from the chromagram, in order to
measure the impact of the NTD-derived representation vs
the raw time-frequency representation.

5.3 Implementation Details

RWC Pop signals are sampled at 44100Hz. Bars were es-
timated by the madmom toolbox [22]. Chromas were ex-
tracted from the Constant-Q Transform of the signal with
32-sample hop using Librosa [23], then mapped to 96
equally spaced chroma vectors per bar. This results in a
chromagram X with 12 rows and 96 × B columns. Ten-
sors were handled with the Tensorly toolbox [11]. We use
our own implementation of the NTD algorithm (see Sec-
tion 3.1). Segmentation performance was computed with
the mir_eval toolbox [24].

5.4 Results

Segmentation performance is evaluated with metrics based
on “hit-rate”. The hit-rate considers a boundary as correct
if it coincides with a boundary in the reference segmenta-
tion within some time window. From the count of correct
and incorrect segment boundaries, we compute Precision,
Recall and F-measure. Tolerance windows were chosen to
be 0.5s and 3s, in line with MIREX standards.

As mentioned in Section 3.3, the ranks of the NTD
strongly influence the decomposition and, consequently,
the segmentation results. Ranks T ′ and B′ are treated as
adjustable parameters, and can vary between 12 to 48, with
a step of 4. W is fixed to the 12-size identity matrix. The
impact of T ′ and B′ is investigated under two rank selec-
tion conditions.

In the first condition (Table 1), the RWC Pop data set
is divided in two subsets (songs with odd vs even ID num-
ber), which are alternatively used as tuning (for global op-
timization of the ranks and the penalty parameter λ) and
test data sets, in a 2-fold cross-validation fashion. Results
shown in the table are averaged over the two folds. Hence,
in this condition, all songs of a test data subset are decom-
posed with the same ranks, namely T ′, B′ = 40, 28 for
odd songs, and 48, 24 for even ones.

In the second condition, presented in Table 2, the NTD
ranks are fitted a posteriori on each song individually: for
each tolerance value, separately, we select the ranks lead-
ing to the best F-measure for the given song. This is called
the “oracle ranks” condition, corresponding to the situa-
tion where a “perfect” rank selection procedure would ex-
ist. Resulting scores provide an (optimistic) performance
upper bound.

These two tables exhibit very competitive results. In the
first (and most realistic) condition, NTD-based segmenta-
tion performance exceeds those of the reference “blind”
methods segmentation. In the “oracle ranks” condition, the
NTD provides higher F-measures than the state-of-the-art,
showing strong potential for the technique, provided an ef-
ficient rank selection method is eventually developed.

6. CONCLUSION AND FUTURE WORK

Designing relevant audio features from music remains one
of the key questions in many MIR tasks. In this paper, we
have proposed a three-way tensor representation of music
in frequency, short-term (frames) and mid-term (bars), and
means to decompose it under the low-rank Nonnegative
Tucker Decomposition (NTD) model. This decomposition
turns out to be able to provide a compressed representation
of interest, capturing salient patterns in music.

We have illustrated the benefits of the method in a struc-
tural segmentation task. The NTD-based representation al-
lows to compute a new type of autosimilarity matrix which
exhibits a better contrast than those directly computed on
2D time-frequency representations, and seems well-suited
to identify musical patterns at the “right” time-scale for the
task. Experimental results are promising and show a poten-
tial to compete with state-of-the-art approaches, may they
be “blind”, or greedier on training data.

Additional research is required to consolidate the tech-
nique. First, as our experiments show, a rank selection
criterion would drastically improve segmentation perfor-
mance. Second, the model does not yet incorporate the no-
tion of proximity between patterns themselves. In parallel,
a number of theoretical questions on model identifiability
and algorithmic convergence also remain open.
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ABSTRACT

“Maracatu de baque solto” is a Carnival performance com-
bining music, poetry, and dance, occurring in the Zona
da Mata Norte region of Pernambuco (Northeast Brazil).
Maracatu percussive music is strongly repetitive, and is
played as loud and as fast as possible. Both from an MIR
and ethnomusicological perspective this makes a complex
musical scene to analyse and interpret. In this paper we
focus on the extraction of microtiming profiles towards the
longer term goal of understanding how rhythmic perfor-
mance in Maracatu is used to promote health and well-
being. To conduct this analysis we use a set of recordings
acquired with contact microphones which minimise the in-
terference between performers. Our analysis reveals that
the microtiming profiles differ substantially from those ob-
served in more widely studied South American music. In
particular, we highlight the presence of dynamic microtim-
ing profiles as well as the importance of the choice of time-
keeper instrument, which dictates how the performances
can be understood. Throughout this work, we emphasize
the importance of a multidisciplinary approach in which
MIR, audio engineering, and ethnomusicology must inter-
act to provide meaningful insight about this music.

1. INTRODUCTION

“Maracatu de baque solto”, also known as “Maracatu ru-
ral”, is a Carnival performance combining music, poetry,
and dance, occurring in the Zona da Mata Norte region of
Pernambuco (Northeast Brazil). Most inhabitants of this
region, dominated by the sugar cane monoculture, are ru-
ral workers with very modest income, who invest most of

c© M. E. P. Davies, M. Fuentes, J. Fonseca, L. Aly, M.
Jerónimo, and F. Bonini Baraldi. Licensed under a Creative Commons
Attribution 4.0 International License (CC BY 4.0). Attribution: M. E.
P. Davies, M. Fuentes, J. Fonseca, L. Aly, M. Jerónimo, and F. Bonini
Baraldi, “Moving in Time: Computational Analysis of Microtiming in
Maracatu de Baque Solto”, in Proc. of the 21st Int. Society for Music
Information Retrieval Conf., Montréal, Canada, 2020.

Figure 1: Maracatu de baque solto “Leão de Ouro de Con-
dado” during a Carnival parade in Tupaoca (Pernambuco),
Feb. 28th, 2017. Photo credit: Filippo Bonini Baraldi.

their time and money to participate in the Carnival “des-
file” (parade), taking place every year in Recife, the state
capital. More than 100 groups of Maracatu de baque solto,
of different sizes (ranging from 15-20 members up to 200
members) are currently active, each with their own head-
quarters (“sede”) which are generally linked to individual
families. A Maracatu performance is shown in Fig. 1.

Maracatu de baque solto differs from another Carnival
performance with a similar name, Maracatu “de baque vi-
rado,” not only in terms of its musical and choreographic
features, but also because it has remained a very local cul-
tural practice. Indeed, while Maracatu de baque virado,
like other music from Pernambuco (e.g., forró, coco de
roda, ciranda), has recently spread out nationally and in-
ternationally, Maracatu de baque solto (hereafter shortened
to Maracatu) is only performed within a radius of about
100 km2 and is strongly linked to the local afro-indigenous
spiritual and religious practices, specifically, the jurema-
umbanda worship [1]. This local dimension explains why,
barring a few exceptions, it remains a largely understud-
ied cultural expression. To the best of our knowledge no
in-depth analysis of its music has ever been realised.

Previous field research conducted in Condado, a small
city located in the Zona da Mata Norte region, suggests that
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the protective function of Maracatu is locally expressed
by two key concepts: “consonância” (consonance) and
“fechar” (closure) [2, 3]. Consonance points to a particu-
lar way of behaving, of dancing together, and of producing
sounds. It is associated with an idea of high interpersonal
coordination, as opposed to the idea of “desmantelo” (frac-
ture and breaking up). The expression “fechar o Maracatu”
(closing the Maracatu) refers to various aesthetic strategies
used to protect the individual and the community from the
threats that are at stake during Carnival. The percussive
nucleus of Maracatu plays as fast and loud as possible, sat-
urating the acoustical space and “filling” each metrical po-
sition in order to avoid any silence. To this end, the study
of systematic microtiming, i.e., intentional deviations from
strict metronomic timing, can be a promising first step to-
wards understanding Maracatu performances.

In December 2019, 13 members of a Maracatu group
“Leão de Ouro de Condado” were invited to Lisbon. Sev-
eral public performances were organised which culminated
in a two-part event: a parade in which musicians and
dancers moved through the streets, followed by a fixed lo-
cation, outdoor performance. We focus on the recordings
obtained from the latter, and perform an exploratory analy-
sis of the microtiming in the percussionists’ performances.

Our research is part of the emerging topic of compu-
tational ethnomusicology [4, 5], and falls within a grow-
ing body of work examining the role of microtiming and
rhythmic structure and its relationship to groove and mu-
sical embodiment [6–10]. It also intersects with the ex-
isting MIR literature on the analysis of rhythm in South
American music [11–16]. In our specific context, we face
two prominent, interconnected challenges. In the absence
of formal theories about Maracatu, there is little basis on
which to pose research questions that computational anal-
ysis (e.g., using MIR techniques) could address. From a
more practical perspective, the very nature of Maracatu
performance: musicians in tight proximity to one another,
playing very loudly, and moving between multiple ad-
hoc external locations, creates technical difficulties for the
high-quality signal acquisition necessary for temporally-
precise analysis of musical timing.

Our methodology to address these challenges is to con-
duct the research from a strongly multidisciplinary per-
spective. We directly leverage technical expertise in audio
engineering for signal acquisition, music signal process-
ing and machine learning for computational rhythm analy-
sis, and ethnomusicology to guide the interpretation of the
findings based on long-term field research. By necessity,
this leads to an exploratory approach concerning the pres-
ence and use of microtiming in Maracatu, where the com-
putational analysis can be used as a means to infer new
understanding about the musical practice.

To enable the isolated analysis of the microtiming of
each percussionist, we use contact microphones attached
to each individual instrument. We adapt a state-of-the-
art approach for microtiming analysis [12] and investi-
gate both “within-instrument” microtiming, where onset
and beat information are specific to a given instrument,

and “between-instrument” microtiming, where a “time-
keeping” instrument provides the beat reference. Our main
findings demonstrate that the choice of the time-keeper is
critical and can change the interpretation of the perfor-
mance. Furthermore, we observe microtiming profiles that
change dynamically within given pieces of music, and be-
tween pieces of music. Thus, the notion of a single charac-
teristic microtiming profile appears not to apply to the set
of Maracatu recordings under investigation here.

The remainder of this paper is structured as follows.
Section 2 provides an overview of the musical structure
and instruments of Maracatu. Section 3 describes the sig-
nal acquisition process. Section 4 summarizes the micro-
timing modelling approach, with our main findings pre-
sented in Section 5. We conclude the paper in Section 6
with a reflection on the broader impact of the research.

2. MARACATU DE BAQUE SOLTO

Maracatu is a combination of various elements: two to
four wind instruments (trumpet and trombone), played by
“musicos” (musicians), and a nucleus of five percussionists
called the “terno.” During performances, the musicos and
terno act in close cooperation with a poet (the “mestre de
apito”). When the poet improvises short verses about 30 s
in duration, the musicians remain silent and the dancers
and public remain still. When the poet finishes his verses
and blows his whistle (“apito”), the percussionists and the
wind musicians play for about the same duration and ev-
erybody dances. During this time, the poet prepares his
next verses. This alternating pattern remains throughout
the performance, which may last up to eight hours.

Maracatu percussive music is highly repetitive, and
played as loud and as fast as possible. These features give
rise to a very strong euphoria in the dancers and the pub-
lic. Just a few rhythmical patterns exist in Maracatu and
depend on the metrical form that the poet is following:
the main genres are “marcha” and “samba,” although the
samba of Maracatu has nothing to do with the well-known
samba music of Brazil. In Maracatu, marcha and samba in-
dicate both the metrical subdivision of the poet’s couplets,
the rhythm played by the terno, and the melodies played
by the musicos. Various melodies may be associated to
the marcha pattern and/or samba pattern, depending on the
melodic line that the poet chooses to sing his verses.

In Maracatu, the five percussion instruments of the
terno, shown in Fig. 2, are: Bombo – a bass drum-like in-
strument played with two sticks, one for each side. We
refer to Bombo High as the upper skin, and Bombo Low
as the lower. Gonguê – an iron instrument comprised of
two bells of different pitches. We refer to Gonguê High
as the higher, and Gonguê Low as the lower pitched bell.
Porca – a friction drum, played with a damp cloth holding
the stick. Tarol – similar to a small snare drum, but thin-
ner. Mineiro – a metal tube filled with beads or other small
objects, which is shaken to create a rattle-type sound.

Following transcriptions in [17] for both the marcha
and samba, the Porca plays a regular quarter note pattern.
Likewise for the marcha, the lower bell of the Gonguê has
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Figure 2: The instruments of the terno (with identifying
labels overlaid) including the connection of the contact mi-
crophones.

the same pattern. Thus, for marcha we assume that either
could provide a time-keeping role.

3. DATA ACQUISITION

In this work, we wished to analyse each percussionist’s
performance in isolation. While multiple microphone se-
tups have been successfully used to acquire separated au-
dio data for rhythmic and microtiming analysis [18], the
physical arrangement of the Maracatu percussionists in
a tight circle, together with the very loud playing style,
makes this impractical and highly prone to “spillage.” In
turn, this would make any subsequent annotation and mi-
crotiming analysis extremely challenging. A promising al-
ternative is to consider the use of contact microphones.

For this study, we used the Schertler Basik Set uni-
versal contact microphone. Each microphone includes a
phantom-power adaptor box which delivers a line-level
signal, with a 60 Hz–15 kHz frequency response. The sen-
sitivity on the instrument is −34 dB (time-averaged sound
level). We found these microphones provided high-quality
audio recordings with minimal spillage and distortion.

For the microphone placement, we sought to balance
the optimum location for sound capture while minimizing
any impact to each musician’s playing style. Given the
small size of the Schertler pickup (less than 1 cm in diam-
eter), this aspect was relatively straightforward.

We placed two pickups on the Gonguê – one per bell,
and two on the Bombo – one per skin. For the remain-
der, the Tarol, Porca, and Mineiro we used a single pickup.
The contact microphones were individually connected to a
Motu UltraLite-mk3 Hybrid (USB/Firewire) with nominal
gain at the input and no further processing. The recording
session consisted of discrete, synchronised tracks, one per
microphone, recorded in a Pro Tools 2019 mixing session
configured to record at 44.1 kHz, with 16-bit depth.

We used this setup in the fixed location performance,
rather than the parade. Over the total performance dura-
tion of 48 minutes, we partitioned the performance into 34
individual pieces (i.e., editing out the poetry), with a mean
duration of 39.4 s. Of these 34 pieces, 28 were marcha,
5 were samba, and in one piece the percussionists played

samba, while the musicos played marcha.

4. MICROTIMING MODEL

In order to undertake any assessment of the microtim-
ing present in recordings, we must obtain precise tempo-
ral markers which indicate the note onset positions. Fol-
lowing existing work in microtiming analysis [12, 14] it
is necessary to create a reference beat grid against which
to compare the locations of performed onsets with quan-
tised beat and/or sub-beat positions. In this way, each beat
interval can be assigned a normalised duration of 1, and
thus a rhythmic pattern containing four equal sub-divisions
would occur at normalised positions 0, 0.25, 0.50, and
0.75. When summarising this information over multiple
beats, it is possible to observe systematic microtiming pat-
terns–called microtiming profiles [12]–, where, in the case
of Brazilian samba, the third and fourth sub-divisions of
the beats have been shown to occur ahead of their quan-
tised position [12, 14]. Note that because the relative po-
sition of onsets is normalized with respect to the beat in-
terval, the modelling of microtiming profiles is indepen-
dent of tempo changes, which allows us to visualise their
change over time in a consistent manner. In this section,
we first describe the means by which onsets and beat an-
notations were obtained, followed by the technique used to
estimate microtiming profiles through time.

4.1 Onset Annotation

The 34 pieces in the Maracatu performance totalled ap-
proximately 22 minutes. Across all 7 channels, this led to a
total of 238 contact microphone signals to be analysed. As
shown in Fig. 3, even though the separation between chan-
nels is mostly very good, some spillage still occurred. This
is especially prominent between the bells of the Gonguê
which are physically connected. We also observed spillage
where one instrument had yet to begin playing and the vi-
brations carried through the air were picked up thanks to
the extremely high sensitivity of the contact microphones.

Given our proposed signal acquisition process using
contact microphones, we assumed that largely isolated per-
cussion tracks would be relatively straightforward for a
well-known onset detection method using deep neural net-
works [19]. On this basis, we hoped to be able obtain re-
liable onset information in a semi-automatic way, where
minor corrections (shifts, insertions, and deletions) could
be performed. In practice, we found that the rather un-
usual waveform shapes of the Gonguê, Porca, and Mineiro
events created numerous problems for the onset detec-
tion system and thus provided little benefit over manual
annotation from scratch. Indeed, the recordings of the
Mineiro were so challenging to annotate in a precise and
consistent way, that we chose not to include them at this
stage of our analysis. Ultimately, we selected four instru-
ments: two instruments with time-keeping roles (Porca and
Gonguê Low) and two rhythmically expressive instruments
in which to observe microtiming (Tarol and Bombo High).

To provide the final onset annotations we followed the
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Figure 3: Illustration of signals with annotated onsets in
approximately one bar. Top to bottom: Tarol with anno-
tations (solid line); Porca with annotations (dashed line);
Bombo High with annotations (dotted line); Gonguê Low
with annotations (dash-dotted line); Audio mixture with
overlaid onset times of the four instruments.

methodology applied to Brazilian samba [12] and adapted
an existing deep neural network [20] and retrained it spe-
cific to each instrument using a subset of manually anno-
tations. Even using instrument-adapted networks, some
manual correction was required, both to contend with is-
sues of temporal localization as well as extra and missed
detections. As a coarse indication of the annotation ef-
fort, we highlight 51 onsets in just 2 s in the lowest plot of
Fig. 3, with ∼ 45, 000 over the four instruments.

4.2 Microtiming Estimation

Our microtiming modelling is based on the approach in
[12], which models microtiming profiles per beat as a
multi-dimensional variable m, where each component mi

with i = 1, ..., N , with N the total number of onsets per
beat, describes the evolution over time of the relative posi-
tion of onset i with respect to the beat. The model in [12]
estimates the beat and onset likelihoods, and infers the beat
positions and associated microtiming profiles jointly using
conditional random fields (CRFs). In this work we fol-
low these ideas, but instead of inferring beat and micro-
timing profiles jointly with a CRF as in [12], we perform
the beat and onset inference offline, and then group the on-
sets and beats using Algorithm 1. The reason for this is two
fold: our proposed approach is simpler and computation-
ally cheaper than the CRF approach, with the limitation
that it would not be robust in presence of noisy signals or
mixtures, which is not the case here. Also, since we are in-

Algorithm 1: Microtiming modelling
Input: b, o, τ , r
Output: m, t
for i←− 1 to len(b)-1 do

∆b←− b(i+1) - b(i) ;
tini←− b(i) - τ ×∆b ;
tend ←− b(i+1) - τ ×∆b ;
obeat←− o[tini < o < tend];
if len(obeat) < r and obeat is not empty then

otemp ←− range(0, 1, 1/r) + tini;
for j←− 1 to len(obeat) do

kmin ←− arg mink(|o(j)beat − o
(k)
temp|);

ofix[kmin]←− o(j)beat;
end
obeat←− interp(ofix[nan], ofix[∼ nan])

else
continue;

end
for j ←− 2 to len(obeat) do

v
(j−1)
IOI ←− o(j)beat − o

(j−1)
beat

end
m(i) ←− vIOI / ∆b ;
t(i) ←− b(i)

end

terested in both within-instrument and between-instrument
microtiming, we need a flexible model that allows chang-
ing the beat reference, which we can do since we compute
beats and onsets offline and integrate them afterwards.

Algorithm 1 is structured as follows: for each beat b
we obtain the onsets obeat that fall within the beat inter-
val [tini, tend] by a tolerance given by τ , and check if we
have the expected number of onsets (denoted by r in Al-
gorithm 1). If not, we deduce which onsets are missing
by comparing the given onsets with a template containing
evenly-distributed positions (0.25, 0.5 and 0.75 in the case
of three expected onsets). Next, we interpolate the missing
onsets for better visualisation of the microtiming pattern.
Finally, we obtain the microtiming profile m by dividing
all inter-onset-intervals by the beat interval length. We ex-
clude beats with more than the expected number of onsets.

Microtiming deviations and their variation across time
have been studied in the context of time-keeper instru-
ments (e.g., in Brazilian samba [12], Uruguayan candombe
[18], and jazz [21]). While previous approaches focus
on within-instrument rhythmic patterns, we also explore
the microtiming generated between time-keepers and non-
time-keeper instruments. We apply a similar strategy to
that in [12] to analyse the profiles visually.

Both existing work and Algorithm 1 assume that there
is one main rhythmic pattern played during most of the
recording. This hypothesis holds in most of the record-
ings we obtained, however, unlike other examples such as
the BRID dataset [22] where it holds to a great extent, in
Maracatu, it is not true for samba.

For the analysis of between-instrument microtiming de-
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Figure 4: Comparison of Maracatu sub-genres and Tarol
(Caixa) in Brazilian samba.

viations, we follow the existing literature about Maracatu
[17] and use the Porca and Gonguê Low onsets as beat ref-
erences for the other instruments since they play the role
of time-keepers and are meant to play the beat. For the
within-instrument analysis for Tarol and Bombo, we es-
timated the beats using the madmom library [23] 1 , which
performed well in the solo tracks, and we adjusted the final
beat positions to the closest onset.

5. MICROTIMING ANALYSIS

Marcha vs. samba: Both by listening to the recordings
and inspection of the microtiming profiles, we discovered
that samba has far greater variation in rhythmic patterns
than marcha. In addition, the beat estimation revealed a no-
ticeable difference in tempo, with marcha approximately
165 bpm where as samba was faster at around 180 bpm.
Transcriptions from [17] also state that there is greater vari-
ation in the notated rhythmic patterns for samba compared
to marcha. From the perspective of drawing robust con-
clusions about microtiming profiles, which, using our ap-
proach, rely quite strongly on a consistent rhythmic pat-
tern, we were only able to conduct reliable analysis for
Tarol within-instrument microtiming. To enable a high-
level comparison, which also includes the use of Tarol (re-
ferred to as Caixa in [12]) in Brazilian samba we present a
scatter plot ofm1 vs.m2 vs.m3 in Fig. 4. Perhaps the most
striking observation is that for marcha, the Tarol shows a
much wider variation in them1 andm3 dimensions, where
as the limited data we obtain for Maracatu samba occupies
a tighter cluster, and Brazilian samba varies more promi-
nently over m2. This indicates a different use of micro-
timing for Tarol in our recordings both within Maracatu
sub-genres and compared to Brazilian samba.
Microtiming profiles in marcha: In Fig. 5 we ob-
serve both the within- and between-instrument microtim-
ing analysis for Tarol (left column) and Bombo High (right
column) for recording #28. For the between-instrument

1 We used the model that implements Böck et al. [24] in version 0.16.1.

analysis we use the Gonguê Low and Porca as time-
keepers (middle and bottom rows respectively). When
comparing between-instrument and within-instrument pro-
files, we observe one additional trace for both instruments:
the deviation at the beat level (which is normalised out for
within-instrument analysis). Referring back to Fig. 3 we
can see microtiming profiles consistent with a sub-division
of the beat into four 1/16th notes for Tarol, with the second
1/16th note (m1) not played for Bombo High.

Looking at the microtiming profiles through time, we
see more fluctuation in Tarol compared to Bombo High.
In particular for Tarol, the smoothed microtiming profiles
move above and below the quantised positions indicating
a dynamic use of microtiming. Furthermore, a direct com-
parison of Tarol with Bombo High illustrates different pro-
files. Across the entire set of recordings, we found the
following median profiles: Tarol [0.25, 0.47, 0.715], and
Bombo High [0.46, 0.69].

When contrasting the time-keepers, we observe much
greater variation when the Porca beats are used as refer-
ence compared to Gonguê Low, including an unexpected
downward trend for both Tarol and Bombo High. While
not present in all marcha, we observed several similar in-
stances, which can be attributed to the beats of the Porca
being played ahead of the beat and slowly aligning in
phase by the end. Looking again at Fig 3, we see the
Porca annotations are earlier than the other instruments
consistently by upto 20 ms. A possible explanation may
be that the Gonguê is louder and thus takes a more promi-
nent time-keeping role, allowing the Porca to take a more
expressive role. Regardless, we assert the importance of
analysing the behaviour of the time-keeper instruments.

6. REFLECTIONS

One objective of current ethnomusicological research is to
reveal how musicians of different cultures develop strate-
gies for playing together that differ in subtle ways to those
in Western culture. These strategies are often implicit, as-
sociated to verbal categories that express local views on
how music “should sound” in a particular cultural context
[25]. These verbal categories often rely on non-musical
concepts and metaphors, often related to other sensorial
domains (vision, taste, etc.) [26].

Ethnographic field research is a first, necessary step for
unveiling subtle strategies of playing together that are at
stake in a particular musical culture. Formal analysis of
live performances is then needed to understand to what
acoustic reality these local concepts refer. To this end, MIR
techniques, such as microtiming analysis, can provide in-
novative solutions for exploring qualities of the music that
would otherwise be hard to describe.

In the Zona da Mata region, Carnival is not a simple dis-
traction but rather a ritual involving a complex set of mys-
tical beliefs and social concerns. At this time of the year
invisible negative “entidades” (entities) are believed to be
more active and even dangerous, and interpersonal rela-
tions are marked by feelings of envy and jealousy. Carnival
is therefore considered as a threat both for individuals and
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Figure 5: Microtiming profiles in recording #28 for Tarol and Bombo High, left and right respectively. The microtiming
estimations use within-instrument, Gonguê Low and Porca beats as reference in top, middle and bottom plots respectively.

the community. Maracatu de baque solto is a performance-
ritual that allows people to overcome these risks.

It is important to stress that the Maracatu musicians had
never travelled outside of Brazil, and bringing them to Eu-
rope was logistically complicated. In addition, the sig-
nal acquisition and onset annotation were also non-trivial,
meaning several challenges needed to be overcome before
even beginning to analyse the microtiming in Maracatu in
a computational way. Nevertheless, within the confines of
a small dataset, limited to one set of musicians, our prelim-
inary analysis revealed new findings on the use of micro-
timing, in particular its dynamic nature in Maracatu.

In the long term, our aim is to understand what it means
to play in “consonance” and to “close the Maracatu.” Both
concepts point to subtle manners of producing sounds col-
lectively, that differ form the ones observed in other musi-
cal contexts. Since no formal analyses of Maracatu music
have been previously realised, this paper is a first attempt
to understand how musicians rhythmically interact during
a live performance. In future research, we intend to play
back the recordings to the musicians to understand if “con-
sonancia” and “closure” can be associated to the specific
microtiming profiles highlighted in this paper.
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801



[21] C. Dittmar, M. Pfleiderer, S. Balke, and M. Müller,
“A swingogram representation for tracking micro-
rhythmic variation in jazz performances,” Journal of
New Music Research, vol. 47, no. 2, pp. 97–113, 2018.

[22] L. S. Maia et al., “A novel dataset of Brazilian rhythmic
instruments and some experiments in computational
rhythm analysis,” in AES Latin American Congress of
Audio Engineering (AES LAC), 2018, pp. 53–60.

[23] S. Böck, F. Korzeniowski, J. Schlüter, F. Krebs, and
G. Widmer, “madmom: a new python audio and music
signal processing library,” in 24th ACM International
Conference on Multimedia, Amsterdam, The Nether-
lands, Oct. 2016, pp. 1174–1178.

[24] S. Böck and M. Schedl, “Enhanced beat tracking with
context-aware neural networks,” in Proc. Int. Conf.
Digital Audio Effects, 2011, pp. 135–139.

[25] N. Fernando and D. Rappoport, Eds., Cahiers
d’ethnomusicologie: Le Goût Musical, 28, 2015.

[26] F. Bonini Baraldi, E. Bigand, and T. Pozzo, “Measur-
ing Aksak Rhythm and Synchronization in Transylva-
nian Village Music by Using Motion Capture,” Empir-
ical Musicology Review, vol. 10, no. 4, pp. 265–291,
2015.

Proceedings of the 21st ISMIR Conference, Montréal, Canada, October 11-16, 2020
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ABSTRACT

Annotating music items with music genres is crucial for
music recommendation and information retrieval, yet chal-
lenging given that music genres are subjective concepts.
Recently, in order to explicitly consider this subjectivity,
the annotation of music items was modeled as a transla-
tion task: predict for a music item its music genres within
a target vocabulary or taxonomy (tag system) from a set
of music genre tags originating from other tag systems.
However, without a parallel corpus, previous solutions
could not handle tag systems in other languages, being
limited to the English-language only. Here, by learning
multilingual music genre embeddings, we enable cross-
lingual music genre translation without relying on a par-
allel corpus. First, we apply compositionality functions
on pre-trained word embeddings to represent multi-word
tags. Second, we adapt the tag representations to the mu-
sic domain by leveraging multilingual music genres graphs
with a modified retrofitting algorithm. Experiments show
that our method: 1) is effective in translating music genres
across tag systems in multiple languages (English, French
and Spanish); 2) outperforms the previous baseline in an
English-language multi-source translation task.

1. INTRODUCTION

Music genres are a key characteristic of music items [1,2].
In music streaming services, user profiles and interests
can be expressed through music genres, tracks and artists
can be grouped in genre-specific collections, and content-
based recommender systems frequently exploit music gen-
res as item tags. However, music genres are difficult to
infer due to their subjective nature. Based on their music
preferences, musicological knowledge and culture, people
inconsistently associate genres to music items [3–5]. Thus,
annotating music items with genres for providing person-
alized recommendation and retrieval is challenging.

Acknowledging this subjectivity and the absence of a
unique genre definition, recent works [6,7] framed the mu-
sic genre annotation as a translation. More precisely, given

c© E.V. Epure, G. Salha, and R. Hennequin. Licensed under
a Creative Commons Attribution 4.0 International License (CC BY 4.0).
Attribution: E.V. Epure, G. Salha, and R. Hennequin, “Multilingual
Music Genre Embeddings for Effective Cross-Lingual Music Item Anno-
tation”, in Proc. of the 21st Int. Society for Music Information Retrieval
Conf., Montréal, Canada, 2020.

music items annotated with music genres originating from
multiple source tag systems such as folksonomies, edito-
rial vocabularies or taxonomies, the goal was to predict the
equivalent music genres within a target tag system. In a
supervised setup, the translation relied on a parallel corpus
of music items jointly annotated with music genres from
the source and target tag systems [6,7]. In an unsupervised
setup, when the parallel corpus was unavailable, a solution
centered on taxonomy alignment was proposed [6].

However, the translation of music genres between mul-
tilingual sources remains unaddressed when a parallel cor-
pus is unavailable. The only past unsupervised solu-
tion [6] relied on heuristics specific to the English lan-
guage, making its adaptation to multilingual tags a chal-
lenge. Here, we propose to perform the unsupervised
cross-lingual translation by leveraging multilingual music
genre embeddings. Also, our method to learn these embed-
dings could be straightforwardly applied to new languages.

The proposed method is further summarised. First, by
acknowledging the compositional nature of music genres
(i.e. the meaning of multi-word music genres can be often
derived from the meaning of each word), we learn music
genre embeddings by applying compositionality functions
to pre-trained word vectors [8–10]. Moreover, as these pre-
trained vectors are often trained on language-specific text,
we need to align them across languages [11, 12].

Second, we fit the obtained music genre embeddings
into the music domain. The embeddings learnt on general-
language corpora could sometimes be semantically am-
biguous. For instance, house is closer to building than to
music and jazz is more similar to folk than to bebop in fast-
Text [8]. To tackle this problem, we create a music genre
knowledge graph from multilingual DBpedia [13] that con-
tains multilingual genres as nodes and exhibits different
types of music genre relations through its edges. Then,
we use retrofitting [14] to encode the relational knowledge
from the semantic graph in the embeddings. In this work,
we modify the original retrofitting algorithm [14] to dis-
tinguish between two types of relations: equivalence (e.g.
dnb and drum’n’bass) and other types of relatedness such
as sub-genres, derivative genres, fusion genres, stylistic
origins. Besides, we use retrofitting to learn embeddings
for music genres that do not exist in the pretrained embed-
ding vocabulary by exploiting their graph relations (e.g.
ethnotronica and chillstep are not in the pretrained fastText
vocabulary).

We evaluate the proposed method in two experiments.
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First, we collect a new parallel corpus of music items an-
notated with music genres in three languages (English,
French and Spanish) and demonstrate the effectiveness of
our method for unsupervised cross-lingual music genre
translation. Second, we show that using the embeddings
learnt with our method outperforms the previous base-
line [6] in a music genre translation task between multiple
English-language tag systems.

2. PROBLEM FORMULATION AND
RELATED WORK

Annotating music items from song lyrics or audio content
has concentrated significant research efforts in the music
information retrieval community [7, 15, 16]. Most existing
works fix a tag system and focus on general music genres
like jazz or pop [3–5]. Nonetheless, the dissimilarity of
music genre tag systems and their use in annotations has
been recently put forward for consideration, together with
the need to take into account tags with increased granu-
larity [15, 17]. In this direction, two previous works [6, 7]
have framed the music genre annotation as a tag translation
task between various music genre tag systems.

Specifically, given a set S of source tag systems, S =
∪E∈SE the union of all tags across all source tag systems,
P the partitions of S and T a target tag system, the goal is
to define a translation scoring f : P(S)→ IR|T | which es-
timates a score for each target tag from a set of source tags
drawn from S. While in this notation a tag system refers
to a set of tags, more general representations such as mu-
sic genre graphs or taxonomies can also include relations
between tags [18–20].

Hennequin et al. [7] proposed two translation strategies,
both relying on the existence of a parallel corpus of mu-
sic items annotated with music genres. Epure et al. [6]
addressed also the unsupervised case, when such a par-
allel corpus was absent, and designed a knowledge-based
method to learn tag embeddings. This method relied on
multiple building blocks corresponding to tag normaliza-
tion, the construction of an integrated music genre graph
bringing together all source and target tag systems, and a
taxonomy alignment algorithm mapping each music genre
on DBpedia [13] tags. The DBpedia-related building block
yielded music genre vectors quantifying the relatedness of
the tag under consideration to each DBpedia music genre.
For translation, considering {s1, . . . , sK} source tags and
any target tag t, f was computed using cosine similarity:

ft({s1, s2, . . . , sK}) =
K∑
k=1

skT t
||sk||2||t||2

, (1)

where sk and t are the vectors corresponding to each sk,
respectively t and || · ||2 is the Euclidian L2-norm.

In the previous unsupervised work, Epure et al. [6] fo-
cused on English-language music genres, claiming that the
extension of the knowledge-based method to include mul-
tilingual tag systems was feasible since it relied on multi-
lingual DBpedia. While we agree that it is feasible, the
extent to which the introduced method could be easily

changed to support other languages is questionable. Both
normalizing tags and mapping music genres into the DB-
pedia space rely on language-specific heuristics. For in-
stance, in normalization, heuristics referring to the length
of tokens were used. However, the average word length,
hence what is considered as a short or medium-length to-
ken depends on the language [21]. Then, mapping mu-
sic genres on English DBpedia genres is limiting because
some tags may exist in two languages but not in the English
DBpedia. Computing directly the degree of relatedness of
a source tag to a target tag could be a better alternative.

3. A MULTI-STEP METHOD FOR LEARNING
MUSIC GENRE EMBEDDINGS

In this work, we propose a method to learn multilingual
music genre embeddings that can be easily extended to
new languages and support cross-lingual translation. The
first step is to deduce initial embeddings for multi-word
music genres by leveraging pre-trained multilingual word
embeddings (Section 3.1). However, directly using these
music genre embeddings in cross-lingual translation is
prone to under-perform because:

• the embeddings often correspond to the most com-
mon word senses (e.g. country can refer to nations
or rock could be closer in meaning to stone) and they
are not disambiguated against the music domain.

• some music genres could contain rare words which
are absent from the pre-trained model vocabulary,
resulting in potentially unknown tag embeddings.

To address these issues, we complement distributional
concept representations with semantics from knowledge
bases that expose concept relations. Thus, in a second
step, we assemble a multilingual music genre graph (Sec-
tion 3.2). Then, we adjust the initial tag embeddings to
encode the tag relations from the collected graph, ensuring
the domain adaptation. For this, but also to learn embed-
dings for concepts with unknown vocabulary words, we
use retrofitting [14], which we modify to reflect the differ-
ent types of music genre relations (Section 3.3).

3.1 Initializing Music Genre Embeddings

Under the music genre translation framework introduced in
Section 2, the main goal boils down to quantifying the de-
gree of relatedness of two textual tags. This task is widely
popular in the natural language processing (NLP) commu-
nity and contemporary approaches resort to expressing the
relatedness as distance between corresponding word em-
beddings [8–10]. The mapping of words on embeddings is
guided by the distributional hypothesis [22], which states
that words in similar contexts are likely to have similar
meanings. Word embeddings have been proven effective
in capturing word syntactic and semantic similarities and
in improving downstream NLP tasks such as natural lan-
guage understanding [23] and information retrieval [24].

In order to measure the relatedness of multilingual
words using embeddings learnt from monolingual corpora,
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an alignment between the language-specific embedding
spaces is required. Through the alignment [25], we en-
sure that multilingual word embeddings are projected into
a common space where they are comparable. Practically,
a mapping function between two monolingual word em-
bedding spaces is learnt, for instance by using a bilingual
lexicon [12]. Effective alignments have been also found
using orthogonal Procrustes [11, 25].

Starting from multilingual word vectors, we discuss
strategies to initialize the music genre embeddings. Mu-
sic genres can contain multiple words. We claim that the
compositionality principle, stating that the meaning of a
multi-word expression is dictated by the meaning of each
word, often holds for our case. For instance, Dance pop is
related to dance and pop or Balada romántica is a type of
ballad which is romantic 1 . The contemporary approach
for compositional embeddings is to learn a function which
derives the embeddings of a multi-word expression from
the embeddings of its words [26]. The function is learnt
by minimizing the distance for each multi-word expression
between its distributional embedding and its embedding
computed from its word embeddings. Obtaining the dis-
tributional embedding for multi-word music genres would
be however challenging because sufficiently large corpora
with all tags in multiple languages are required.

For this reason, the first music genre initialization strat-
egy we propose consists of a simple compositionality func-
tion such as averaging word embeddings (avg). Let V =
{c1, c2, ..., cn} be the multilingual vocabulary, ci being a
concept composed of at least one word. We aim to com-
pute Q̂ ∈ IRn×d, the embedding matrix for the vocabulary
V , where q̂i ∈ IRd denotes the embedding of concept ci. If
ci is composed of the following words, {w1, w2, . . . , wM},
q̂i can be computed as 1

M

∑M
m=1 wm, where wm is the

embedding of the word wm. Of note is that if ci contains
words absent from the pretrained word embedding vocabu-
lary, the d-dimensional null vector, 0d, is used as a default.

The second music genre initialization strategy we pro-
pose exploits the fact that some words in a compounded
expression may be more illustrative than others. The more
frequently a word is observed in a corpus, the more likely
it is that the word is common for a language and seman-
tically less informative (e.g. music in post industrial mu-
sic). Thus, the compositional embedding computation of
a multi-word expression can be modified such that the
contribution of each word embedding is inversely propor-
tional to its frequency. Pre-trained word embeddings are
generally released sorted by decreasing word corpus fre-
quency. Let zwm

be the rank of wm in this vocabulary.
Then, based on the Mandelbrot’s generalization [27] of
the Zipf’s law [28], its frequency fwm can be estimated
to fwm

= 1/(zwm
+ 2.7).

Further, we rely on the smooth inverse frequency (sif )
based averaging proposed by Arora et al. [29] to compute
the multi-word expression embeddings. This method is
aligned with our previous observations and proven highly
effective compared to more complex neural network-based

1 Exceptions from the principle also exist (e.g. hard rock).

models on a large diversity of NLP tasks [29]. Given fwm

the estimated frequency of the word wm and a a fixed
hyper-parameter 2 , q̂i is computed as:

qi =
1

M

M∑
m=1

a

a+ fwm

wm (2)

q̂i = qi − uuTqi (3)

where u is the first singular vector from the singular value
decomposition of Q obtained with the Equation 2 [30].

3.2 Assembling a Multilingual Music Genre Graph

Previous related work [6] created a music genre graph by
integrating multiple English-language music genre tag sys-
tems and a crawled sub-graph of DBpedia through a node
English-language based normalization step. The other mu-
sic genre tag systems were Lastfm, Tagtraum and Discogs,
used in the 2018 MediaEval AcousticBrainz Genre Task
[17]. Here, we bypass the language-specific heuristics
normalization and propose a more robust alternative. We
crawl a multilingual DBpedia music genre sub-graph and
use its words as basis for normalizing new tag systems.

We further detail how we assemble the DBpedia-based
music genres graph. We set the seeds for crawling from:
1) DBpedia entities of type MusicGenre, 2) the music gen-
res of the multilingual DBpedia-based music item cor-
pus (described in Section 4.1), 3) synonyms of the mu-
sic genres of the previous two sources, linked through the
wikiPageRedirects relation. We discover new potential mu-
sic genres by crawling DBpedia entities linked to the seeds
through one of the relations: wikiPageRedirects, stylisticO-
rigin, musicSubgenre, derivative and musicFusionGenre 3 .
During crawling, seeds are updated with discovered enti-
ties that were not visited before, and the crawling goes on
until no seeds are left. This is applied for each language.
Finally, all music genres discovered as yet are connected to
their equivalent tags in other languages, when possible (the
DBpedia relation sameAs). In a post-processing step, we
remove music genre nodes written as free-style text, which
do not have DBpedia pages, and the connected components
which do not contain at least one high-confidence music
genre (empirically, we noticed that the highest-confidence
tags were those from the music item corpus).

To ensure that tag systems with different music genre
spellings benefit from the multilingual graph, we define a
normalization which we apply to both the graph nodes and
new tags. First, we tokenize each tag by non-alphanumeric
characters. Further, as in [6], we create prefix trees to split
multi-word tags such as sludgemetal or indierock. Never-
theless, we do not necessarily aim at a grammatically cor-
rect split, but at one based on lemmatized DBpedia music
genre words 4 . Namely, if sludgemetal is already among

2 Experimentally, it has been shown that a = 10−3 is a suitable choice
when using different types of pre-trained word embeddings [29].

3 These relation names correspond to the English-language DBpedia.
They have often translated versions in DBpedia in other languages.

4 Through lemmatization, we retrieve the base form of inflected words
using spacy (https://spacy.io). Most genre words are generally
in their base form (e.g. jazz). However, some other words benefit from
this (e.g. Northern / North or children / child)
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the DBpedia music genre words, then there is no further
split and we expect its initial embedding to be corrected
though the embeddings of its graph neighbors as explained
in the next section (Section 3.3).

3.3 Retrofitting Music Genre Embeddings

Retrofitting [14] has been proposed as a post-processing
step to improve concept embeddings by leveraging exist-
ing semantic lexicons or knowledge graphs (e.g. Word-
Net [31]). More precisely, concept embeddings are modi-
fied to also encode concept relations [14, 32–34].

Let G = (V,E) be the graph capturing the semantic
relations between the nodes in V through a set of edges
E ⊆ V × V . The objective of retrofitting is to learn Q ∈
IRn×d, the new concept embeddings, such that each new
embedding qi ∈ IRd does not stray too far from the initial
distributional embedding q̂i, but also becomes closer to the
new embeddings of the neighbour vertices qj ∈ IRd, j :
(i, j) ∈ E. The objective function to minimize is then [14]:

Φ(Q) =
∑
i∈V

(
αi||qi − q̂i||22 +

∑
j:(i,j)∈E

βij ||qi − qj ||22
)
(4)

where αi and βij are positive scalars specifying the im-
portance given to each component, the initial embedding
and each graph neighbor. As Φ is convex with respect to
Q, a solution minimizing the objective function Φ is found
in [14] via an iterative strategy derived from Jacobi iter-
ation algorithm [35] that converges for such graph-based
propagation problem [35, 36]. More precisely, until con-
vergence, qi is iteratively updated as follows:

qi ←−
∑
j:(i,j)∈E (βij + βji)qj + αiq̂i∑
j:(i,j)∈E (βij + βji) + αi

(5)

where Q is initialized to Q̂. Equation (5) is not the same as
the original one [14]. We observed that, when applying the
Jacobi method to optimize equation (4), the contributing
terms in the partial derivative with respect to the node i are
those where i appears as source as well as target node in
the inner sum, leading to a different update. In [36, 37],
the same conclusion referring to a corrected update rule,
different from the initial proposal, is reached.

Faruqui et al. [14] set αi = 1 and βij = 1
degree(i)

for (i, j) ∈ E, where degree(i) is the number of neigh-
bors i has in the graph G, or 0 for (i, j) 6∈ E. This
choice was largely adopted in other related works [32,38].
Speer and Chin [39] proposed to use a modified version of
retrofitting to learn embeddings for unknown vocabulary
concepts which are present in the knowledge graph. For
this case, αi is set to 0 for all unknown vocabulary con-
cepts. This results in qi being updated by averaging the
embeddings of its neighbours at each iteration. Despite
the change in the update rule we made, compared to the
original work, we retain this choice of hyper-parameters as
being a reasonable default, and defer the investigation of a
more principled way to pick αi and βij to future work.

We further modify retrofitting to take advantage of the
different types of music genre relations. On one hand, mu-

sic genres can be semantically equivalent to other music
genres (the relation types wikiPageRedirects and sameAs).
On the other hand, music genres can be related to other
music genres, but not semantically equivalent (e.g. stylisti-
cOrigin). The change we propose for computing these new
embeddings (Qβ) is through the coefficients βij , making
them dependent on music genre relation types:

βij =


1 if (i, j) ∈ Eε ⊂ E

βij if (i, j) ∈ E − Eε
0 otherwise

(6)

whereEε contains edges which represent equivalence rela-
tions (wikiPageRedirects, sameAs); E−Eε contains edges
with the remaining relation types (stylisticOrigin, music-
Subgenre, derivative, musicFusionGenre).

4. EXPERIMENTS

We evaluate the effectiveness of the learnt music genre em-
beddings, first, in a new cross-lingual music genre trans-
lation scenario (Section 4.3) and, second, in an exist-
ing English-language multi-source music genre translation
task [6, 17] (Section 4.4). The languages we focus on for
the cross-lingual annotation are English (En), French (Fr)
and Spanish (Es). We start by presenting the parallel cor-
pora used in the experiments (Section 4.1). Then, we dis-
cuss the detailed evaluation setup (Section 4.2). The results
show that our music genre vectors are highly effective for
cross-lingual translation and lead to improved results on
the past unsupervised Enligh-language translation task [6].

4.1 Datasets

For the cross-lingual translation experiment, we relied on
DBpedia [13] to collect a parallel corpus. During an ini-
tial manual analysis, we noticed that DBpedia music artists
or works could have associated quite different music gen-
res across languages. We present a few examples in Ta-
ble 1. Also, when the tags used in annotations were
equivalent, they were sometimes partially translated (e.g.
Rock_alternatif in Fr), while other times they maintained
the same form as in English (e.g. Soft_rock in Es). We
collected DBpedia entities of type MusicalArtist, Band, or
MusicalWork with music genres associated in at least two
languages. Then, in a post-processing step, we filtered out
the music items with tags that appeared less than 16 times.

For the English-language multi-source translation, we
use an existing dataset [6, 17], which contains tracks an-
notated with English-language music genres from three
sources. Discogs (Dc) tags are provided by editors per
album, and automatically propagated to each track [17].
Lastfm (Lf) and Tagtraum (Tt) tags are created by Internet
users per track. We show in Table 2 the number of music
items and unique music genres in the new multilingual and
the past English-language multi-source parallel corpora.

4.2 Evaluation Setup

We evaluated our models by translating music genre tags
associated with tracks from multiple source tag systems to
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Title Type En Fr Es
Morning View Album Alternative_metal, Funk_rock Rock_alternatif Metal_alternativo

Alternative_rock, Post-grunge Rock_experimental
Jimi Hendrix Artist Hard_rock, Psychedelic_rock Rock_psychédélique Blues_rock, Rock_psicodélico

Blues, Rhythm_and_blues Blues_rock, Hard_rock Hard_rock
Julio Iglesias Artist Dance-pop, Latin_music Pop_française Pop_latino, Balada_romántica

Adult_contemporary_music Soft_rock, Adult_contemporary

Table 1. Examples of DBpedia music items annotated with music genres. The tag choices are inconsistent across sources.
Tags may be adapted to a language (e.g. Pop_latino in es) or may keep the same form in all languages (e.g. Hard_rock).

En Fr Es Dc Lf Tt
Music items (tracks, albums, artists) 48 146 30 611 34 918 1 098 336 686 978 589 583

Unique music genres 489 338 491 315 327 296

Table 2. Number of music items and unique music genres in the multilingual and the English-language parallel corpora.

a target tag system. The translation scoring function com-
putes a score for each tag of the target tag system as the
degree of relatedness of the target tag to the input set of
source tags. Compared to Equation 1, the translation scor-
ing function we use here averages the cosine similarities
between each source and target tag embeddings:

f̂t({s1, s2, . . . , sK}) =
1

K
ft({s1, s2, . . . , sK}) (7)

Like in other multi-label prediction tasks [15, 40], we
use a ranking metric in evaluation, namely the area un-
der the receiver operating characteristic curve (AUC). We
macro-average the scores and report their mean and stan-
dard deviations computed over 4 folds. We split the multi-
label data in a stratified way, balancing the overall number
of music items and tag distribution across the folds [41].

For each experiment, English-language multi-source
and cross-lingual, we have three input tag systems repre-
sented as partially aligned music genre graphs. For the
multi-source translation, we assemble a graph from the
English-language DBpedia music genre sub-graph and the
input taxonomies, Discogs, Lastfm and Tagtraum. For
the cross-lingual translation, the new music genre graph,
which was assembled as described in Section 3.2, has
10748 tags in En, 2905 in Fr and 3988 in Es. The transla-
tion is performed using annotations from combinations of
two out of three tag systems to the kept-out tag system. We
also retain in evaluation annotations which are only from
one of the two selected source tag systems.

In each experiment, we compare the avg and sif strate-
gies to initialize the music genre vectors. We report results
when using directly the initial embeddings (Q̂) in transla-
tion or retrofitted with the original method (Q) or with our
modified version (Qβ). As for the choice of pre-trained
word embeddings, we use multilingual fastText [10] which
we align with the method proposed by Joulin et al. [42].

4.3 Results on Cross-Lingual Genre Translation

In Table 3, we present the results of the cross-lingual mu-
sic genre translation. The baseline we propose estimates
the relatedness of two tags to be the length of their shortest

path in the multilingual DBpedia-based music genre graph.
As a reminder, this graph is partially aligned, meaning that
some music genres have equivalent tags in other languages.
As shown in Table 3 in parentheses, the baseline scores
are quite high proving that the graph is fairly effective for
cross-lingual translation on this dataset. Even so, we are
able to exceed these scores by a large margin with our mu-
sic genre embeddings, initialized with sif and retrofitted to
take into account the music genre relations.

When comparing the initialization strategies, we can
observe that directly using sif embeddings in translation
outperforms the baseline, while avg yields lower AUC
scores. For all languages as targets, the sif initialization
is consistently more effective than the avg initialization. A
significant difference between the two types of retrofitting
applied to both initialization strategies exists, our version
resulting in higher AUC scores. By differentiating between
the two relation types, equivalence and other relatedness,
the music genre embeddings appear to encode more accu-
rately their relations within and across languages.

4.4 Results on Multi-Source Genre Translation

In Table 4, we present the results of the English-language
multi-source music genre annotation. We re-compute the
baseline [6] results using Equation 7. Compared to the
previously reported AUC scores [6], the re-computed ones
are higher showing that the modified translation scoring
function does not disadvantage the knowledge-based mu-
sic genre embeddings derived with the baseline. In con-
trast to the baseline, our most effective method, using sif
initialization and our version of retrofitting, yields consis-
tently higher AUC scores. The increase in performance is
of 11.3 percentage points for Dc as target, 5.9 points for Lf
as target and 9.3 points for Tt as target.

The sif initialization of tag embeddings results in higher
AUC scores than avg both when the embeddings are used
directly as they are or retrofitted, in particular, when Dc
is target. Also, let us notice that directly using the embed-
dings initialized with sif leads to an increased performance
compared to the baseline for Dc and Tt. Retrofitting the
embeddings significantly increases the AUC scores for all

Proceedings of the 21st ISMIR Conference, Montréal, Canada, October 11-16, 2020
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Baseline Q̂ (avg) Q (avg) Qβ (avg) Q̂ (sif ) Q (sif ) Qβ (sif )
En + Es =⇒ Fr 85.4± 0.4 73.7± 0.2 77.5± 0.1 87.0± 0.2 85.9± 0.1 87.7± 0.1 92.3± 0.1
En + Fr =⇒ Es 84.3± 0.2 73.6± 0.3 76.1± 0.2 84.9± 0.2 85.6± 0.0 86.3± 0.1 91.3± 0.1
Fr + Es =⇒ En 80.4± 0.1 76.7± 0.4 84.2± 0.2 87.0± 0.3 84.5± 0.2 88.4± 0.3 90.2± 0.2

Table 3. Macro-AUC (%) in cross-lingual music genre translation with standard deviation computed over 4 folds. Results
are shown for different embedding initialization (avg and sif ), used directly (Q̂) or retrofitted with the original retrofitting
(Q) or with our version (Qβ). The baseline is built on the shortest paths in the DBpedia-based multilingual graph.

Baseline Q̂ (avg) Q (avg) Qβ (avg) Q̂ (sif ) Q (sif ) Qβ (sif )
Lf + Tt =⇒ Dc 76.2± 0.1 75.2± 0.2 82.0± 0.2 83.0± 0.2 81.3± 0.2 87.3± 0.1 87.5± 0.0
Dc + Tt =⇒ Lf 84.5± 0.2 81.6± 0.2 87.2± 0.1 88.0± 0.1 84.6± 0.1 90.1± 0.1 90.4± 0.1
Lf + Dc =⇒ Tt 82.5± 0.3 82.2± 0.3 87.8± 0.2 88.1± 0.2 86.4± 0.1 91.6± 0.2 91.8± 0.2

Table 4. Macro-AUC (%) in English multi-source music genre translation with standard deviation computed over 4 folds.
Results are shown for different embedding initialization (avg and sif ), used directly (Q̂) or retrofitted with the original
retrofitting (Q) or with our version (Qβ). The baseline consists in tag alignment against English DBpedia music genres [6].

tag systems as targets. Compared to the experiments re-
ported in Section 4.3, this time, we observe only a marginal
difference between the original retrofitting and our version.

Further, we give more details about the translations en-
abled by the baseline and our retrofitted sif embeddings.
Often, we yield better music genre mappings (e.g. we map
Discogs:uk garage on Tagtraum:garagerock, while the
baseline maps it on Tagtraum:dubstep). However, there are
also cases where the baseline leads to more accurate map-
pings (e.g. Discogs:modal is mapped on Lastfm:cooljazz
compared to our best mapping on Lastfm:jazz). Finally,
the baseline could not map at all some music genres,
while we could (e.g. we map Discogs:crunk on Tag-
traum:gangstarap and on Lastfm:rap).

To sum up, exploiting the semantics of the music genre
graph edges leads to marginally improved results w.r.t. the
original retrofitting in the English-language multi-source
translation and significantly higher AUC scores in the
cross-lingual translation. The sif initialization yields better
translations than the avg initialization. Lastly, we outper-
form the baselines by large margins in both experiments.

5. CONCLUSION

In this paper, we presented a new multi-step method
for multilingual music genre embeddings learning. This
method combines pre-trained word embeddings, music
genre graphs and a retrofitting method leveraging differ-
ent types of music genre relations to adapt embeddings to
the music domain and learn embeddings for music genres
with unknown words in the pre-trained word embeddings
vocabulary. Our experiments demonstrate the effective-
ness of the proposed method, both in the English-language
multi-source and the new cross-lingual translation tasks.

For future work, we plan to learn embeddings for each
music genre relation type. Fang et al. [33] consider that
each edge represents a linear translation from the embed-
ding of one node to the embeddings of its neighbour. In
a generalized setup, functional retrofitting proposed by
Lengerich et al. [32] defines a linear relational penalty

function for each type of relation in the graph.
Then, we aim to address the incremental updates of the

music genre graph in order to avoid re-applying retrofitting
every time the graph is updated. Instead of relying on
the constraints represented by the graph edges directly in
retrofitting, Glavaš and Vulič [43] use them as training in-
stances to learn an explicit retrofitting function, which can
be after applied to new node embeddings.

Further, we want to apply our method to new languages,
especially from other language families, as well as to in-
vestigate other pre-trained word embeddings and alterna-
tives to embed multi-word concepts [26]. For this, the cur-
rent music genre graph needs to be populated with new
multilingual music genres and their relations, and a paral-
lel corpus of music items covering new languages should
be collected if further evaluation is required. Continuing
to rely on the multilingual DBpedia is an option, though
a limiting one, given that only some world languages
are supported. Thus, music genre translation involving
resource-poor languages remains a challenge. However,
for the supported languages, our approach allows gener-
ating cross-lingual music genre annotations, which could
be useful for other music information retrieval and recom-
mendation tasks such as language-aware music genre auto-
tagging, localized playlist captioning and music genre-
driven recommendations, cross-cultural music genre per-
ception modeling for user studies.

Finally, the multilingual data and the code to learn and
evaluate music genre embeddings are made available to the
community 5 . Also, a demo to visualize the music genre
vector space and the cross-lingual translation results for
DBpedia music items is available [44].
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808



7. REFERENCES

[1] M. I. Mandel, D. Eck, and Y. Bengio, “Learning tags
that vary within a song,” in Conference of the Interna-
tional Society for Music Information Retrieval, 2010.

[2] M. Schedl and B. Ferwerda, “Large-scale analysis of
group-specific music genre taste from collaborative
tags,” in IEEE International Symposium on Multime-
dia, 2017.

[3] A. J. Craft, G. A. Wiggins, and T. Crawford, “How
many beans make five? The consensus problem
in music-genre classification and a new evaluation
method for single-genre categorisation systems,” in
Conference of the International Society on Music In-
formation Retrieval, 2007.

[4] J. H. Lee, K. Choi, X. Hu, and J. Downie, “K-pop gen-
res: A cross-cultural exploration,” in Conference of the
International Society on Music Information Retrieval,
2013.

[5] M. Sordo, O. Celma, M. Blech, and E. Guaus, “The
Quest for Musical Genres: Do the Experts and the Wis-
dom of Crowds Agree?” in Conference of the Interna-
tional Society on Music Information Retrieval, 2008.

[6] E. V. Epure, A. Khlif, and R. Hennequin, “Leverag-
ing knowledge bases and parallel annotations for music
genre translation,” in Conference of the International
Society for Music Information Retrieval, 2019.

[7] R. Hennequin, J. Royo-letelier, and M. Moussallam,
“Audio based disambiguation of music genre tags,” in
Conference of the International Society of Music Infor-
mation Retrieval, 2018.

[8] T. Mikolov, E. Grave, P. Bojanowski, C. Puhrsch, and
A. Joulin, “Advances in pre-training distributed word
representations,” in International Conference on Lan-
guage Resources and Evaluation, 2018.

[9] J. Pennington, R. Socher, and C. D. Manning, “Glove:
Global vectors for word representation,” in Conference
on Empirical Methods in Natural Language Process-
ing, 2014.

[10] E. Grave, P. Bojanowski, P. Gupta, A. Joulin, and
T. Mikolov, “Learning word vectors for 157 lan-
guages,” in International Conference on Language Re-
sources and Evaluation, 2018.

[11] M. Artetxe, G. Labaka, and E. Agirre, “A robust self-
learning method for fully unsupervised cross-lingual
mappings of word embeddings,” in Annual Meeting of
the Association for Computational Linguistics, 2018.

[12] T. Mikolov, Q. V. Le, and I. Sutskever, “Exploiting
similarities among languages for machine translation,”
arXiv preprint arXiv:1309.4168, 2013.

[13] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyga-
niak, and Z. Ives, “Dbpedia: A nucleus for a web of
open data,” in The Semantic Web. Springer, 2007, pp.
722–735.

[14] M. Faruqui, J. Dodge, S. K. Jauhar, C. Dyer, E. Hovy,
and N. A. Smith, “Retrofitting word vectors to seman-
tic lexicons,” in Conference of the North American
Chapter of the Association for Computational Linguis-
tics: Human Language Technologies, 2015.

[15] S. Oramas, O. Nieto, F. Barbieri, and X. Serra, “Multi-
label music genre classification from audio, text and
images using deep features,” in Conference of the Inter-
national Society on Music Information Retrieval, 2017.

[16] E. Coviello, R. Miotto, and G. R. Lanckriet, “Combin-
ing content-based auto-taggers with decision-fusion,”
in Conference of the International Society on Music In-
formation Retrieval, 2011.

[17] D. Bogdanov, A. Porter, J. Urbano, and H. Schreiber,
“Mediaeval 2017 acousticbrainz genre task: content-
based music genre recognition from multiple sources,”
in MediaEval 2017 AcousticBrainz, 2017.

[18] H. Schreiber, “Genre ontology learning: Comparing
curated with crowd-sourced ontologies.” in Conference
of the International Society for Music Information Re-
trieval, 2019.

[19] M. Achichi, P. Lisena, K. Todorov, R. Troncy, and
J. Delahousse, “Doremus: A graph of linked musi-
cal works,” in International Semantic Web Conference,
2018.

[20] P. Lisena, K. Todorov, C. Cecconi, F. Leresche,
I. Canno, F. Puyrenier, M. Voisin, T. Le Meur, and
R. Troncy, “Controlled vocabularies for music meta-
data,” in Conference of the International Society on
Music Information Retrieval, 2018.

[21] R. D. Smith, “Distinct word length frequencies: distri-
butions and symbol entropies,” Glottometrics, vol. 23,
pp. 7–22, 2012.

[22] Z. S. Harris, “Distributional structure,” Word, vol. 10,
no. 2-3, pp. 146–162, 1954.

[23] J. Li and D. Jurafsky, “Do multi-sense embeddings im-
prove natural language understanding?” in Conference
on Empirical Methods in Natural Language Process-
ing, 2015.

[24] C. V. Gysel, M. De Rijke, and E. Kanoulas, “Neural
vector spaces for unsupervised information retrieval,”
ACM Transactions on Information Systems (TOIS),
vol. 36, no. 4, pp. 1–25, 2018.

[25] A. Joulin, P. Bojanowski, T. Mikolov, H. Jégou, and
E. Grave, “Loss in translation: Learning bilingual word
mapping with a retrieval criterion,” in Conference on
Empirical Methods in Natural Language Processing,
2018.

Proceedings of the 21st ISMIR Conference, Montréal, Canada, October 11-16, 2020
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ABSTRACT

Musical form and syntax in Western classical music are hi-
erarchically organised on different timescales. One of the
most important features of this structure is the organisation
of modulations between different keys throughout a piece.
Music theoretical research has established taxonomies of
prototypical modulation plans for different modes and mu-
sical forms. However, these prototypes still require empiri-
cal validation based on quantitative statistical methods and
cannot be retrieved automatically so far.

In this paper, we present a novel method to infer proto-
typical modulation plans from musical corpora. A modu-
lation plan is formalised as a transposition-invariant proba-
bilistic model over the underlying pitch class distributions
based on a hierarchical pitch scape representation. Proto-
typical modulation plans can be learned in an unsupervised
manner by training a mixture model (similar to a Gaussian
mixture model) on the data, so that different prototypes ap-
pear as distinct clusters.

We evaluate our approach by performing hierarchical
clustering on a corpus of more than 150 Baroque pieces,
with the extracted clusters showing excellent agreement
with the most common prototypes postulated in music
theory. Our method bears a great potential for mod-
elling, analysis and discovery of hierarchical key struc-
ture and prototypes in corpora across a broad range of
musical styles. An accompanying library is available at:
github.com/robert-lieck/pitchscapes.

1. INTRODUCTION

The hierarchical structure of a piece in Western classical
music is strongly determined by musical form [1] and har-
monic syntax [2, 3], based on different aspects, such as
repetition and variation of the rhythmic, melodic and har-
monic content and hierarchical relations between different
harmonies.

A central aspect that links musical form and harmonic
syntax is the modulation plan of a piece. Western musicol-
ogy assumes a number of prototypical modulation plans
that describe the overarching tonal structure of a piece,

c© R. Lieck and M. Rohrmeier. Licensed under a Creative
Commons Attribution 4.0 International License (CC BY 4.0). Attribu-
tion: R. Lieck and M. Rohrmeier, “Modelling Hierarchical Key Struc-
ture With Pitch Scapes”, in Proc. of the 21st Int. Society for Music Infor-
mation Retrieval Conf., Montréal, Canada, 2020.

such as I–V–I for pieces in major or i–III–i for pieces in mi-
nor [1]. These prototypes have a long-standing history in
musicology and have emerged from inspection of numer-
ous individual pieces and agreement among experts. How-
ever, a quantitative validation based on statistical meth-
ods constitutes an important supplement to confirm and
refine the music theoretic findings. Furthermore, they can-
not be automatically retrieved from musical data, which
impedes large-scale investigations and the application to
other styles and genres of music.

In this paper, we present a method to retrieve prototypi-
cal modulation plans from large corpora of musical pieces
in an unsupervised manner. This is achieved by modelling
the overall corpus as a mixture of multiple prototypes, sim-
ilar to how Gaussian mixture models [4] can be applied to
clustering in Euclidean space. A prototype is represented
by a transposition-invariant Bayesian model that describes
the pitch content of a piece (pitch class distributions) on
multiple time scales. Modelling is based on a novel pitch
scape representation of the musical content, which allows
to account for the hierarchical structure inherent to both
musical form and harmonic syntax. We evaluate our model
on a corpus of more than 150 Baroque pieces, with the ex-
tracted clusters showing excellent agreement with the most
common prototypes postulated in music theory.

By providing a solid statistical approach to modelling
prototypical modulation plans, we make an important con-
tribution to connecting music theory and empirical science.
Our approach relies on minimal prior assumptions, works
on simple pitch data, and learns prototypes in an unsu-
pervised manner, which bears a great potential for mod-
elling, analysis and discovery of hierarchical key structure
and prototypes in corpora across a broad range of musical
styles.

In the remainder of the paper, we describe the underly-
ing pitch scape representation in Section 2, introduce the
probabilistic Bayesian model that is used to learn proto-
types and prototype mixtures from musical corpora in Sec-
tion 3, and present and discuss the results of our evaluation
in Section 4.

2. PITCH SCAPES

We model prototypical modulation plans based on a novel
pitch scape representation of the musical content. Pitch
scapes (see Figure 1 for an illustration) represent the pitch
content of a piece on multiple time scales and can be for-
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Figure 1. Pitch scape (Prelude in C major, BWV 846, Jo-
hann Sebastian Bach). The two time values can be speci-
fied in start-end-coordinates (ts and te) or in center-width-
coordinates (tc and tw).

mally defined as the conditional probability distribution of
the pitch classes for a given section of the piece:

Definition 1 (Pitch Scape). A pitch scape S is a function
that maps each proper time interval [ts, te] (ts < te) to a
pitch class distribution

S : R× R→ [0, 1]12 ,

11∑
π=0

S(π | ts, te) = 1 . (1)

A pitch scape can equivalently be conceived as a condi-
tional probability distribution S(π | ts, te) with three vari-
ables or a vector-valued function S(ts, te) in two vari-
ables.

Pitch scapes are inspired by scape plot visualisations, to
which we draw the connection in Section 2.1, while Sec-
tion 2.2 describes how to compute pitch scape estimates
for a given piece.

2.1 Pitch Scape Visualisation

Scape plot visualisations were introduced in [5,6] to depict
key estimates for different sections of a piece in a hierar-
chical triangular plot and have since been used for a variety
of visualisation tasks [7–11].

Visualising the entire information contained in a three-
dimensional pitch scape in a single two-dimensional plot
is difficult. However, there are two convenient ways to vi-
sualise the relevant information. First, the 12 components
can be visualised separately by creating one scape plot per
pitch class. This preserves the entire information but does
not foster musical intuition because information about si-
multaneous events is scattered across multiple plots. Alter-
natively, a key finding algorithm can be employed [12–15]
to map the pitch class distribution of each point to a colour
value. This corresponds to a key-scape plot of the pitch
scape. For illustration, we show in Figure 2 an overlay
of the 12 separate pitch-scape plots and the corresponding
key-scape plot.

The colour mapping for a key-scape plot can be realised
in different ways. We use a template-based key finder that
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Figure 2. Separate pitch-scape plots and resulting key-
scape plot for the prelude in C major, BWV 846, Johann
Sebastian Bach (colour legend for keys on the right).

provides a score value for each major and minor key. The
scores can be transformed into a probability distribution
p(k) using a soft-max function. After choosing a unique
colour for each key, p(k) can be used to interpolate be-
tween colours by computing their weighted average. To
define the colour for each key, we let the hue value vary
either along the circle of fifths or chromatically, which has
complementary advantages. Fifth-based hue maps related
keys to similar colours, while chromatic hue allows to bet-
ter distinguish them. We add a lightness offset to distin-
guish major and minor keys and map the entropy of p(k)
to saturation. Entropy-based saturation allows to indicate
regions with uncertain key classification and avoids unin-
terpretable colour blends.

2.2 Pitch Scape Estimates

The pitch scape of a piece is computed from its musical
content and reflects the probability of a certain pitch class
to occur within the specified time interval. As we are work-
ing in a Bayesian framework, we model the pitch scape of
a piece as a posterior estimate given a prior distribution
and the observed notes. To formally define the pitch scape
estimate of a piece, we first define its pitch class density:

Definition 2 (Pitch Class Density). The pitch class den-
sity δ(π | t) for pitch class π at time t corresponds to the
normalised pitch class counts over all tones that sound at
time t

δ(π | t) :=
1

max{1, |Tt|}
∑
τ∈Tt

[[
τ mod 12 = π

]]
, (2)

where Tt is the multiset of all tones (as integers in MIDI
pitch representation) sounding at time t; [[ · ]] is the Iverson

Proceedings of the 21st ISMIR Conference, Montréal, Canada, October 11-16, 2020
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bracket, which equals 1 if its argument is true and 0 other-
wise; and the max avoids division by zero for silent parts
where Tt = ∅ is the empty set.

Using the pitch class density, we define the pitch scape es-
timate as follows:

Definition 3 (Pitch Scape Estimate). The posterior esti-
mate of the pitch scape S(π | ts, te) for pitch class π and
time interval [ts, te] is

S(π | ts, te) :=
1

te − ts + 12c︸ ︷︷ ︸
normalisation

[prior counts︷︸︸︷
c +

∫ te

ts

δ(π | t) dt︸ ︷︷ ︸
overall pitch class counts

]
, (3)

where the integral over the pitch class density computes the
overall pitch class counts, c ≥ 0 specifies the prior counts,
and the leading term ensures proper normalisation.

Using zero prior counts c = 0 thus corresponds to using
the average pitch class density as pitch scape estimate (in
Bayesian terms this would be a maximum likelihood esti-
mate). In contrast, using a prior count of c = 1, which is
done throughout the paper, corresponds to a Bayesian max-
imum posterior estimate with a uniform prior over pitch
classes (c = 1 corresponds to a uniform Dirichlet distribu-
tion, which is the appropriate conjugate prior for the cate-
gorical distribution over pitch classes). Note that choosing
c > 0 also circumvents the zero-count problem for silent
parts.

The relative weight of the overall pitch class counts,
computed in the integral in (3), depends on the scale on
which time is measured. Throughout the paper, we mea-
sure time in quarter notes, so that a time interval of one
quarter note has the weight of a single observation. That
means, for instance, a single pitch sustained for two quarter
note adds two to the respective overall pitch class counts;
two different pitches sustained for one quarter note add
half a count each; and three pitches sustained for an eight
note add one sixth count each. Thus, for small time inter-
vals the prior counts c introduce a significant bias towards
a uniform pitch class distribution, while for large time in-
tervals they have a vanishingly small weight relative to the
overall pitch class counts (e.g. a 32-bar piece in 4/4 yields
a total of 128 pitch class counts, so that the prior counts
do not cause a major change of the estimated pitch class
distribution for the entire piece).

3. MODELLING KEY STRUCTURE

We define our model for mixtures of prototypes in two
steps. First, we define a probabilistic pitch scape model
of a transposition-invariant modulation plan (Section 3.1).
Based on this model for single prototypes, we define a mix-
ture model (Section 3.2) that incorporates explicit transpo-
sition and models a musical corpus as a mixture of multiple
prototypes.

3.1 Prototypes

The idea of a prototype is to specify an object that rep-
resents a subset of the data. In probabilistic modelling

this corresponds to defining a probability distribution for
which a subset of the data has a high likelihood. Addition-
ally, this distribution should be unimodal so that its mode
can be taken as a representative of all data points belong-
ing to that prototype. In n-dimensional Euclidean space,
prototypes can for instance be defined using multivariate
Gaussian distributions.

When defining prototypes for pitch scapes, we are fac-
ing some additional challenges that will be addressed in the
following. First, the output of a pitch scape is a categori-
cal distribution (over pitch classes), which has to be nor-
malised. Second, time is continuous so that a pitch scape
itself is an inherently continuous object. Third, the pro-
totypes postulated in music theory are formulated in terms
of scale degrees, which makes them transposition-invariant
(i.e. transposing a piece does not affect its relation to a spe-
cific prototype). The first two points will be addressed
in the following Section 3.1.1, the third point is resolved
in Section 3.1.3 and incorporated in the mixture model in
Section 3.2.

3.1.1 Definition

We address the first two points by defining a prototype as
a point-wise Dirichlet distribution with a time-dependent
parameter vector α. The Dirichlet distribution is the con-
jugate prior of a categorical distribution and acts as a like-
lihood function if the observations themselves are categor-
ical distributions, as it is the case for individual points in a
pitch scape (first point). Making its parameter vector time-
dependent additionally allows it to vary continuously over
the pitch scape (second point). Formally, a prototype is
defined as follows:

Definition 4 (Prototype). Given a function

α : R× R→ R12
+ (4)

that maps each proper time interval [ts, te] (ts < te) to a
vector with positive entries, a prototype is defined as the
point-wise Dirichlet distribution with parameter vector α.
The likelihood of observing a pitch class distribution Π for
the interval [ts, te] given α is

p(Π |α, ts, te) = Dir(Π;α(ts, te)) . (5)

The log-likelihood of observing a full pitch scape S given
α is

log p(S |α) =
2

T 2

∫∫
0≤ts<te≤T

log Dir
(
S(ts, te);α(ts, te)

)
dtsdte ,

(6)
where T is the duration of the piece.

The definition of the log-likelihood in (6) is equivalent to
the (negative) cross-entropy of an infinite number of uni-
form samples from the pitch scape. It differs from a sim-
ple integration of (5) only by the normalisation 2

T 2 , which
rescales it to the magnitude of a single observation and
makes it invariant to the duration of the piece. Note that
both (5) and (6) are probability density functions with the
usual implications (i.e. they can be greater than 1; their log
can be positive; their cross-entropy can be negative).
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3.1.2 Proxy Function

To learn prototypes from data, we define α via a three di-
mensional real-valued proxy function α̃ that has a set of
adjustable parameters θ and an open parameter τ

α̃(θ,τ) : R× R× R→ R . (7)

The domain of interest is [0, 1]× [0, 1]×Z12 with the first
two arguments specifying the time interval in normalised
center-width-coordinates and the third specifying the pitch
class. The πth component of α is then defined to be

α(θ,τ)
π (ts, te) := eα̃

(θ,τ)(t̄c,t̄w,π) (8)

with

t̄c = 1
2T (ts + te) t̄w = 1

T (te − ts) , (9)

where T is the duration of the piece that is to be modelled.

3.1.3 Fourier Representation

We parameterise α̃ as a Fourier series in three dimen-
sions [16]

α̃(θ,τ)(x) =
∑
n

θne
2πikn·x , (10)

where π (only in this equation!) is the mathematical con-
stant. The index vector n, wave vector kn, and location
vector x are

x := (t̄c, t̄w, π) nc ∈ {−Nc, . . . , Nc} (11)

n := (nc, nw, nπ) nw ∈ {−Nw, . . . , Nw} (12)

kn :=
(
σcnc, σwnw,

nπ+τ
12

)
nπ ∈ {−6, . . . , 6} . (13)

Nc and Nw allow to independently control the smoothness
(or bandwidth) of α̃ for the center and width dimension,
respectively; τ ∈ Z12 represents the transposition of the
prototype (see below); and σ = 1− 1

2N is a scaling factor.
Scaling is required because we do not want α̃ to have pe-
riodic boundaries conditions in the time dimensions. The
Nyquist frequency of the unscaled function is 2N , the scal-
ing factor thus stretches the function such that a critical
fraction of 1

2N is moved out of the interval [0, 1]. This is
not relevant for the pitch dimension because the space of
pitch classes is inherently periodic and, moreover, we have
a complete discrete Fourier series that allows to represent
any function exactly. As α̃ is real-valued, θn and θ−n are
complex conjugates and (due to the properties of the dis-
crete Fourier transform) all coefficients with nπ = ±6 are
real-valued. We can thus store the parameters θ in a real-
valued array of dimensions (2Nc + 1, 2Nw + 1, 12).

As α̃ (and thus α) are periodic in the pitch dimen-
sion, the Fourier representation can be understood as a
transposition-invariant formulation of a prototype. When
creating a concrete instance of the prototype, τ needs to be
specified and defines a specific transposition by inducing
a corresponding phase shift through the cyclic pitch class
space.

3.2 Mixture Model

In Section 3.1 we defined prototypes that have a point-wise
Dirichlet distribution (Definition 4) and adjustable parame-
ters θ. We will now build a transposition-invariant mixture

Θ

cτ

α

tste

Π

(ts,te,Π)∈d
d∈D

Figure 3. Graphical representation of our mixture model.
Θ are the prototype parameters; c and τ the piece-specific
cluster index and transposition; α the deterministically
generated prototype instance; and Π = S(ts, te) the pitch
scape values at intervals [ts, te] (see text for more details).

model using these prototypes. The overall structure of the
model is shown in Figure 3 as a graphical model [17] and
will be explained in detail below.

Our model is similar to classical topic models for cor-
pora [18–20] with two nested levels. Each piece (or docu-
ment) d in the data set D is generated independently from
a specific prototype with parameters θ = Θc and transposi-
tion τ (outer plate) and for a specific piece, each point Π in
its pitch scape is generated independently (inner plate). 1

3.2.1 Inference

We want to find parameters Θ∗ that minimise the cross-
entropy (i.e. maximise the likelihood) of our data D

Θ∗ = argminΘ− 1
|D| log p(D |Θ) , (14)

where

log p(D |Θ) =
∑
d∈D

log
∑
c,τ

p(d |α(Θc,τ)) p(c) p(τ) , (15)

is the data log-likelihood with the latent variables c and τ
being marginalised out. The prior terms p(c) and p(τ) are
assumed to be constant so that a priori no specific proto-
type or transposition is preferred. We use

log p(d |α) =
1

|d|
∑
(ts,te,Π)∈d

log Dir
(
Π;α(ts, te)

)
(16)

to approximate the piece likelihood (6) based on a finite
number of uniform samples. Marginalising out c and τ
also readily yields the normalisation factor for the cluster
and transposition probability for a piece

p(c, τ | d) ∝ p(d, c, τ) = p(d |α(Θc,τ)) p(c) p(τ) . (17)

The optimal parameters Θ∗ can be found by performing
gradient descent on the cross-entropy (14).

1 The assumption of different points in the pitch scape being gener-
ated independently is obviously incorrect, which is common to all topic
models and the reason why they are not well suited to generate coherent
data (e.g. text or music). In fact, in a pitch scape the values at differ-
ent locations are highly correlated and would ideally be modelled as a
single continuous latent function. One approach to achieve this are Gaus-
sian processes (GPs) [21]. However, GPs are computationally expensive
and GPs for multi-class classification have complex kernel functions and
require approximations of the analytically intractable posterior distribu-
tion [21–23]. As we are primarily interested in extracting the mean pitch
scape (corresponding to the GP prior), which represents a specific proto-
type, we therefore chose the simpler approach of defining prototypes as a
point-wise Dirichlet distribution.
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3.2.2 Hierarchical Clustering

Training the mixture model on a data set allows to perform
unsupervised clustering with a fixed number of clusters.
However, our motivation is a comparison with the proto-
types described in the music theory literature. Instead of
choosing a fixed number of clusters, we are rather inter-
ested in how clusters split hierarchically from more generic
prototypes to more specific ones. We therefore take a hier-
archical top-down clustering approach.

We start by training a single prototype on the whole cor-
pus and perform a binary split of this cluster by using it to
initialise a mixture of two prototypes, while adding mini-
mal noise (10−8) to the parameters θ to allow the clusters
to properly split. This procedure is then recursively and
separately applied to the resulting prototypes. To this end,
the probability p(d | c′) of a piece d to fall into the parent
cluster c′ is used as a weight in (15) when training the two
child clusters. This ensures a clear assignment between
parent and child clusters and implies that only pieces that
fell into the parent cluster influence the children.

After establishing a hierarchy of prototypes in this way,
we perform a joint refinement of the resulting clusters. To
this end, all final child clusters are combined in a single
model while lifting the parent-specific piece weights. This
serves a two-fold purpose. First, the prototypes may be
sharpened as interactions between the clusters can now be
exploited. Second, it acts as a sanity check for the estab-
lished hierarchy: If the child clusters remain stable in the
refinement phase, this indicates consistency of the hierar-
chical splitting.

4. EVALUATION

4.1 Experimental Setup

The model was implemented in PyTorch [24] and the
parameters Θ were optimised via gradient descent using
the Adam optimiser [25]. The “warm start” with pre-
initialised clusters was realised by using a small initial
learning rate (10−5) to allow for the mean and variance
estimators (internals of the Adam optimiser) to stabilise
before reaching the normal learning rate (10−3).

We trained our model on a corpus of 155 Baroque
pieces in MIDI format by Johann Sebastian Bach (84%:
WTK I/II; Brandenburgisches Konzert No. 5; Inventions
and Sinfonias), Georg Friedrich Händel (4%: HWV 264,
Movement 2, 4, 9, 10, 11, and 13; HWV 435), and
Domenico Scarlatti (12%: Sonatas), see Appendix C for
a complete list. As opposed to later periods with an in-
creasing amount of chromaticism, the modulation plans
of Baroque pieces are expected to more closely conform
to the respective prototypes. Each piece was sampled by
choosing interval start and end points on a uniform time
grid of n = 50 points, resulting in n(n − 1)/2 = 1225
samples per piece.

Hierarchical clustering was performed up to depth 3
(8 final clusters) with subsequent refinement (see Sec-
tion 3.2.2). The hierarchy and final prototypes are shown
in Figure 4 and discussed below.

4.2 Results and Discussion

The root cluster, which was trained on the entire corpus,
represents a generic diatonic prototype. It does not un-
ambiguously belong to a particular mode, being classified
as minor based on ‘Albrecht’ profiles (as in Figure 4) and
major based on ‘Temperley’ profiles. This is also reflected
in the separate pitch-scape plots (Table 1 in Appendix B),
which have strong weights for the entire pentatonic seg-
ment of the line of fifths (C–G–D–A–E). This can be inter-
preted as confirming the view that Baroque music is fun-
damentally diatonic.

The initial split results in a clear separation of major and
minor keys, with cluster (0) and all its descendants being
globally classified as minor pieces while (1) and its descen-
dants are classified as major. From now on we can see a
pronounced weight on the tonic pitch class (C for major,
A for minor) at the beginning and end of a piece in the
separate pitch-scape plots. This split into major and mi-
nor prototypes again is an important finding that confirms
these two modes to be dominant in Baroque music.

4.2.1 Prototypes in Minor

The next split of the minor cluster separates the two most
common prototypes. Prototypical minor-mode pieces are
assumed to either modulate to the key of v (the dominant)
or to the key of III (relative major) before returning to i
(tonic), which corresponds to (0,0) and (0,1) and their de-
scendants, respectively. Note that the cluster (0,1,0) also
has a strong tendency to modulate to III, which becomes
more apparent when using ‘Temperley’ profiles.

The i–v–i modulation plan of cluster (0,0,0) and (0,0,1)
is one of the two standard prototypes for minor pieces. In
(0,0,1), the v is more pronounced and the middle section
also has a certain tendency to modulate to III, possibly even
including a short VII passage (see ‘Temperley’ profiles).
This corresponds to a i–III–(VII)–v–III–i modulation plan,
which is a common subtype of the i–v–i prototype that fea-
tures two fifth-related, modally distinct key pairs: i–v and
III–VII.

Cluster (0,1,0) and (0,1,1) both fall under the general i–
III–i prototype. The (0,1,0) cluster has a less pronounced
III, which may be partly due to the III being at differ-
ent locations in the corresponding pieces, thus leading to
smoothing/averaging. According to ‘Krumhansl’ profiles,
there is a tendency for modulation to v in the middle sec-
tion and ‘Temperley’ profiles classify larger parts of the
middle section as III. Cluster (0,1,1) has an additional
modulation to the iv after the III, possibly with a short re-
turn to the i in between (again this could also be an effect of
averaging over multiple pieces), representing the common
subtype i–III–(i)–iv–i.

4.2.2 Prototypes in Major

Major pieces are generally assumed to modulate to V be-
fore going back to I. However, this general prototype can
be elaborated in different ways. For the split of the major
cluster (1), we see a very pronounced I–V–I prototype on
the left with (1,0) and its child (1,0,0).
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(0) (1)

(0, 0) (0, 1) (1, 0) (1, 1)

(0, 0, 0) (0, 0, 1) (0, 1, 0) (0, 1, 1) (1, 0, 0) (1, 0, 1) (1, 1, 0) (1, 1, 1)

i–v–i i–v–i i–(III)–i i–III–(i)–iv–i I–V–I I–vi–I I–V–vi–I I–vi–ii–I
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Figure 4. Results of hierarchical clustering with subsequent refinement. To visualise the prototypes, the transposition pa-
rameter τ was fixed to minimise the accidentals of the diatonic root cluster. The corresponding absolute keys are shown in
the chromatic colour scale (right). However, only relative keys (scale degrees) bear interpretable meaning as the prototypes
are inherently transposition-invariant. Prototypes are labelled with a hierarchical index; the final prototypes (after refine-
ment) are labelled with the corresponding modulation plan in Roman numeral notation; numbers on the arrows indicate the
number of pieces falling into the respective cluster. Key estimates for colouring are computed using ‘Albrecht’ [14] tem-
plates; the final prototypes are repeated using ‘Krumhansl’ [12] and ‘Temperley’ [13] templates to improve interpretability.
For better disambiguation, Figure 5 and Figure 6 in Appendix A show chromatic and fifth-based colouring in comparison.

The remaining three clusters all belong to one of the
most common elaborations of the I–V–I prototype with an
additional vi (relative minor) passage after the V. The V
passage is most clearly pronounced in the (1,1,0) cluster,
to a lesser extent in the (1,1,1) and even less in the (1,0,1)
cluster (see especially the ‘Krumhansl’ profiles). Notably,
(1,1,1) has an additional ii passage after the vi.

The I–vi–I and the I–vi–ii–I cluster taken separately do
not contradict expectations from music theory, but due to
the missing V they are less typical than the other prototypes
so far. However, when being combined with the I–V–vi–I
cluster, theses clusters form the very common subtype I–
V–vi–ii–I [1]. This is typical in Baroque music but also in
modern Pop music, where on the chord-level this sequence
is known as “the four chord song” (optionally with a IV
as an equivalent pre-dominant replacement of the ii). This
combination of multiple prototypes suggests the existence
prototype sub-spaces.

5. CONCLUSION

To address the problem of modelling and automatic re-
trieval of prototypical modulation plans from a corpus
of musical pieces, a probabilistic Bayesian model of

transposition-invariant prototypes was introduced. This
model was based on a novel hierarchical pitch scape repre-
sentation of the musical content. We learned prototypical
modulation plans from a corpus of Baroque pieces, empir-
ically confirming common prototypes postulated in music
theory. Extending the conventional music theoretical con-
cepts, we found that continuous prototype sub-spaces can
be generated as the superposition of multiple prototypes.

Our approach relies on minimal prior assumptions,
works on simple pitch data and delivers robust results
while being scalable to large data sets. It can therefore
be applied to model, analyse and discover hierarchical key
structures and prototypes in a wide range of musical styles
and genres, including diachronic studies of musical form
and syntax in Western classical music, the influence of
style- and composer-specific elements, and the investiga-
tion of modulation plans in other genres such as Jazz, Pop
and Rock music. Therefore, our approach is suited for nu-
merous applications and contributes a valuable method for
music information retrieval.
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818



CONTENT BASED SINGING VOICE SOURCE SEPARATION VIA
STRONG CONDITIONING USING ALIGNED PHONEMES

Gabriel Meseguer-Brocal
STMS UMR9912, Ircam/CNRS/SU, Paris

gabriel.meseguerbrocal@ircam.fr

Geoffroy Peeters
LTCI, Institut Polytechnique de Paris
geoffroy.peeters@telecom-paris.fr

ABSTRACT

Informed source separation has recently gained re-
newed interest with the introduction of neural networks
and the availability of large multitrack datasets contain-
ing both the mixture and the separated sources. These
approaches use prior information about the target source
to improve separation. Historically, Music Information
Retrieval researchers have focused primarily on score-
informed source separation, but more recent approaches
explore lyrics-informed source separation. However, be-
cause of the lack of multitrack datasets with time-aligned
lyrics, models use weak conditioning with non-aligned
lyrics. In this paper, we present a multimodal multi-
track dataset with lyrics aligned in time at the word level
with phonetic information as well as explore strong con-
ditioning using the aligned phonemes. Our model follows
a U-Net architecture and takes as input both the magni-
tude spectrogram of a musical mixture and a matrix with
aligned phonetic information. The phoneme matrix is em-
bedded to obtain the parameters that control Feature-wise
Linear Modulation (FiLM) layers. These layers condition
the U-Net feature maps to adapt the separation process to
the presence of different phonemes via affine transforma-
tions. We show that phoneme conditioning can be success-
fully applied to improve singing voice source separation.

1. INTRODUCTION

Music source separation aims to isolate the different in-
struments that appear in an audio mixture (a mixed mu-
sic track), reversing the mixing process. Informed-source
separation uses prior information about the target source
to improve separation. Researchers have shown that deep
neural architectures can be effectively adapted to this
paradigm [1, 2]. Music source separation is a particularly
challenging task. Instruments are usually correlated in
time and frequency with many different harmonic instru-
ments overlapping at several dynamics variations. With-
out additional knowledge about the sources the separation
is often infeasible. To address this issue, Music Informa-

c© Gabriel Meseguer-Brocal, Geoffroy Peeters. Licensed
under a Creative Commons Attribution 4.0 International License (CC BY
4.0). Attribution: Gabriel Meseguer-Brocal, Geoffroy Peeters, “Con-
tent based singing voice source separation via strong conditioning using
aligned phonemes”, in Proc. of the 21st Int. Society for Music Informa-
tion Retrieval Conf., Montréal, Canada, 2020.

tion Retrieval (MIR) researchers have integrated into the
source separation process prior knowledge about the differ-
ent instruments presented in a mixture, or musical scores
that indicate where sounds appear. This prior knowledge
improves the performances [2–4]. Recently, conditioning
learning has shown that neural networks architectures can
be effectively controlled for performing different music
source isolation tasks [5–10]

Various multimodal context information can be used.
Although MIR researchers have historically focused on
score-informed source separation to guide the separation
process, lyrics-informed source separation has become
an increasingly popular research area [10, 11]. Singing
voice is one of the most important elements in a musi-
cal piece [12]. Singing voice tasks (e.g. lyric or note
transcription) are particularly challenging given its vari-
ety of timbre and expressive versatility. Fortunately, re-
cent data-driven machine learning techniques have boosted
the quality and inspired many recent discoveries [13, 14].
Singing voice works as a musical instrument and at the
same time conveys a semantic meaning through the use of
language [14]. The relationship between sound and mean-
ing is defined by a finite phonetic and semantic represen-
tations [15, 16]. Singing in popular music usually has a
specific sound based on phonemes, which distinguishes it
from the other musical instruments. This motivates re-
searchers to use prior knowledge such as a text transcript of
the utterance or linguistic features to improve the singing
voice source sparation [10, 11]. However, the lack of mul-
titrack datasets with time-aligned lyrics has limited them
to develop their ideas and only weak conditioning scenar-
ios have been studied, i.e. using the context information
without explicitly informing where it occurs in the signal.
Time-aligned lyrics provide abstract and high-level infor-
mation about the phonetic characteristics of the singing
signal. This prior knowledge can facilitate the separation
and be beneficial to the final isolation.

Looking for combining the power of data-driven models
with the adaptability of informed approaches, we propose
a multitrack dataset with time-aligned lyrics. We explore
then how we can use strong conditioning where the con-
tent information about the lyrics is available frame-wise to
improve vocal sources separation. We investigate strong
and weak conditioning using the aligned phonemes via
Feature-wise Linear Modulation (FiLM) layer [17] in U-
Net based architecture [18]. We show that phoneme con-
ditioning can be successfully applied to improve standard
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singing voice source separation and that simplest strong
conditioning outperforms any other scenario.

2. RELATED WORK

Informed source separation use context information about
the sources to improve the separation quality, introduc-
ing in models additional flexibility to adapt to observed
signals. Researchers have explored different approaches
for integrating different prior knowledge in the separa-
tion [19]. Most of the recent data-driven music source sep-
aration methods use weak conditioning with prior knowl-
edge about the different instruments presented in a mix-
ture [3, 5, 7–9]. Strong conditioning has been primarily
used in score-informed source separation. In this section,
we review works related to this topic as well as novel ap-
proaches that explore lyrics-informed source separation.

2.1 Score-informed music source separation

Scores provide prior knowledge for source separation in
various ways. For each instrument (source), it defines
which notes are played at which time, which can be linked
to audio frames. This information can be used to guide
the estimation of the harmonics of the sound source at
each frame [2,4]. Pioneer approaches rely on non-negative
matrix factorization (NMF) [20–23]. These methods as-
sume that the audio is synchronized with the score and use
different alignment techniques to achieve this. Neverthe-
less, alignment methods introduce errors. Local misalign-
ments influence the quality of the separation [21, 24]. This
is compensated by allowing a tolerance window around
note onsets and offsets [20, 23] or with context-specific
methods to refine the alignment [25]. Current approaches
use deep neural network architectures and filtering spec-
trograms by the scores and generating masks for each
source [2]. The score-filtered spectrum is used as input to
an encoder-decoder convolutional neural network (CNN)
architecture similar to [26]. [27] propose an unsupervised
method where scores guide the representation learning to
induce structure in the separation. They add class ac-
tivity penalties and structured dropout extensions to the
encoder-decoder architecture. Class activity penalties cap-
ture the uncertainty about the target label value and struc-
tured dropout uses labels to enforce a specific structure,
canceling activity related to unwanted note.

2.2 Text-informed music source separation

Due to the importance of singing voice in a musical
piece [12], it is one of the most useful source to separate
in a music track. Researchers have integrated the vocal
activity information to constrain a robust principal compo-
nent analysis (RPCA) method, applying a vocal/non-vocal
mask or ideal time-frequency binary mask [28]. [10] pro-
pose a bidirectional recurrent neural networks (BRNN)
method that includes context information extracted from
the text via attention mechanism. The method takes as in-
put a whole audio track and its associated text information

and learn alignment between mixture and context informa-
tion that enhance the separation. Recently, [11] extract a
representation of the linguistic content related to cogni-
tively relevant features such as phonemes (but they do not
explicitly predict the phonemes) in the mixture. The lin-
guistic content guide the synthetization of the vocals.

3. FORMALIZATION

We use the multimodal information as context to guide and
improve the separation. We formalize our problem satisfy-
ing certain properties summarized as [29]:

How is the multimodal model constructed? We divide
the model into two distinct parts [30]: a generic network
that carries on the main computation and a control
mechanism that conditions the computation regarding
context information and adds additional flexibility. The
conditioning itself is performed using FiLM layers [17].
FiLM can effectively modulate a generic source sepa-
ration model by some external information, controlling
a single model to perform different instrument source
separations [3, 5]. With this strategy, we can explore the
control and conditioning parts regardless of the generic
network used.

Where is the context information used? at which place
in the generic network we insert the context information,
and defining how it affects the computation, i.e. weak (or
strong) conditioning without (or with) explicitly inform-
ing where it occurs in the signal.

What context information? We explore here prior infor-
mation about the phonetic evolution of the singing voice,
aligned in time with the audio. To this end, we introduce
a novel multitrack dataset with lyrics aligned in time.

4. DATASET

The DALI (Dataset of Aligned Lyric Information) [31]
dataset is a collection of songs described as a sequence of
time-aligned lyrics. Time-aligned lyrics are described at
four levels of granularity: notes, words, lines and para-
graphs:

Ag = (ak,g)
Kg

k=1 where ak,g = (t0k, t
1
k, fk, lk, ik)g (1)

where g is the granularity level and Kg the number of el-
ements of the aligned sequence, t0k and t1k being a text
segment’s start and end times (in seconds) with t0k < t1k,
fk a tuple (fmin , fmax ) with the frequency range (in Hz)
covered by all the notes in the segment (at the note level
fmin = fmax , a vocal note), lk the actual lyric’s infor-
mation and ik = j the index that links an annotation ak,g
with its corresponding upper granularity level annotation
aj,g+1. The text segment’s events for a song are ordered
and non-overlapping - that is, t1k ≤ t0k+1∀k.

There is a subset of DALI of 513 multitracks with
the mixture and its separation in two sources, vocals
and accompaniment. This subset comes from WASABI
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Figure 1. Method used for creating the vocals, accompa-
niment and mixture version.

dataset [32]. The multitracks are distributed in 247 differ-
ent artists and 32 different genres. The dataset contains
35.4 hours with music and 14.1 hours with vocals, with
a mean average duration per song of 220.83s and 98.97s
with vocals. All the songs are in English.

The original multitracks have the mixture decomposed
in a set of unlabeled sources in the form track_1, track_2,
..., track_n. Depending of the songs, the files can be RAW
(where each source is an instrument track e.g. a drum
snare) or STEMS (where all the RAW files for an instru-
ment are merged into a single file). In the following, we ex-
plain how the vocals and accompaniment tracks are auto-
matically created from these unlabelled sources. The pro-
cess is summarized in Figure 1.

For each track τ of a multitrack song, we compute
a singing voice probability vector overtime, using a pre-
trained Singing Voice Detection (SVD) model [33]. We
obtain then a global mean prediction value per tracks ετ .
Assuming that there is at least one track with vocals, we
create the vocals source by merging all the tracks with
ετ >= maxτ (ετ ) · ν where ν is a tolerance value set
to 0.98. All the remaining tracks are fused to define
the accompaniment. We manually checked the resulting
sources. The dataset is available at https://zenodo.
org/record/3970189.

The second version of DALI adds the phonetic informa-
tion computed for the word level [33]. This level has the
words of the lyrics transcribed into a vocabulary of 39 dif-
ferent phoneme symbols as defined in the Carnegie Mellon
Pronouncing Dictionary (CMUdict) 1 . After selecting the
desired time resolution, we can derive a time frame based
phoneme context activation matrix Z, which is a binary
matrix that indicates the phoneme activation over time. We
add an extra row with the ’non-phoneme’ activation with
1 at time frames with no phoneme activation and 0 other-
wise. Figure 2 illustrates the final activation matrix.

Although we work only with phonemes per word infor-
mation, we can derive similar activation matrices for other
context information such as notes or characters.

5. METHODOLOGY

Our method adapts the C-U-Net architecture [5] to the
singing voice separation task, exploring how to use the
prior knowledge defined by the phonemes to improve the
vocals separation.

Input representations. Let X ∈ RT×M be the mag-
nitude of the Short-Time Fourier Transform (STFT) with

1 https://github.com/cmusphinx/cmudict

Figure 2. Binary phoneme activation matrix. Note how
words are represented as a bag of simultaneous phonemes.

M = 512 frequency bands and T time frames. We
compute the STFT on an audio signal down-sampled at
8192 Hz using a window size of 1024 samples and a hop
size of 768 samples. Let Z ∈ RT×P be the aligned
phoneme activation matrix with P = 40 phoneme types
and T the same time frames as in X . Our model takes
as inputs two submatrix x ∈ RN×M and z ∈ RN×P of
N = 128 frames (11 seconds) derived from X and Z.

Model. The C-U-Net model has two components (see
[5] for a general overview of the architecture): a condi-
tioned network that processes x and a control mecha-
nism that conditions the computation with respect to z. We
denote by xd ∈ RW×H×C the intermediate features of the
conditioned network, at a particular depth d in the archi-
tecture. W and H represent the ‘time’ and ‘frequency’ di-
mension and C the number of feature channels (or feature
maps). A FiLM layer conditions the network computation
by applying an affine transformation to xd:

FiLM (xd) = γd(z)� xd + βd(z) (2)

where � denotes the element-wise multiplication and
γd(z) and βd(z) are learnable parameters with respect to
the input context z. A FiLM layer can be inserted at any
depth of the original model and its output has the same di-
mension as the xd input, i.e. ∈ RW×H×C . To perform
Eqn (2), γd(z) and βd(z) must have the same dimension-
aly as xd, i.e. ∈ RW×H×C . However, we can define them
omitting some dimensions. This results in a non-matching
dimensionality with xd, solved by broadcasting (repeating)
the existing information to the missing dimensions.

As in [5, 18, 34], we use the U-Net [18] as conditioned
network, which has an encoder-decoder mirror architec-
ture based on CNN blocks with skip connections between
layers at the same hierarchical level in the encoder and de-
coder. Each convolutional block in the encoder halves the
size of the input and doubles the number of channels. The
decoder is made of a stack of transposed convolutional op-
eration, its output has the same size as the input of the en-
coder. Following the original C-U-Net architecture, we in-
sert the FiLM layers at each encoding block after the batch
normalization and before the Leaky ReLU [5].

We explore now the different control mechanism we
use for conditioning the U-Net.

5.1 Control mechanism for weak conditioning

Weak conditioning refers to the cases where
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Model U-Net Wsi Wco Sa Sa∗ Sc Sc∗ Sf Sf ∗ Ss Ss∗
θ 9.83 · 106 +14, 060 +2.35 · 106 +1.97 · 106 +327, 680 +80, 640 +40, 960 +40, 320 +640 +480 +80

Table 1. Number of parameters (θ) for the different configurations. We indicate increment to the U-Net architecture.

• γd(z) and βd(z) ∈ R1: they are scalar parameters
applied independently of the times W , the frequen-
cies H and the channel C dimensions. They de-
pend only on the depth d of the layer within the net-
work [5].

• γd(z) and βd(z) ∈ RC : this is the original config-
uration proposed by [17] with different parameters
for each channel c ∈ 1, ..., C.

We call them FiLM simple (Wsi ) and FiLM complex
(Wco) respectively. Note how they apply the same trans-
formation without explicitly informing where it occurs in
the signal (same value over the dimension W and H).

Starting from the context matrix z ∈ RN×P , we define
the control mechanism by first apply the autopool layer
proposed by [35] 2 to reduce the input matrix to a time-
less vector. We then fed this vector into a dense layer and
two dense blocks each composed by a dense layer, 50%
dropout and batch normalization. For FiLM simple, the
number of units of the dense layers are 32, 64 and 128.
For FiLM simple, they are 64, 256 and 1024. All neurons
have ReLU activations. The output of the last block is then
used to feed two parallel and independent dense layer with
linear activation which outputs all the needed γd(z) and
βd(z). While for the FiLM simple configuration we only
need 12 γd and βd (one γd and βd for each of the 6 different
encoding blocks) for the FiLM complex we need 2016 (the
encoding blocks feature channel dimensions are 16, 32, 64,
128, 256 and 512, which adds up to 1008).

5.2 Control mechanism for strong conditioning

In this section, we extend the original FiLM layer mecha-
nism to adapt it to the strong conditioning scenario.

The context information represented in the input matrix
z describes the presence of the phonemes p ∈ {1, . . . , P}
over time n ∈ {1, . . . N}. As in the popular Non-Negative
Matrix factorization [36] (but without the non-negativity
constraint), our idea is to represent this information as the
product of tensors: an activation and two basis tensors.

The activation tensor zd indicates which phoneme oc-
curs at which time: zd ∈ RW×P whereW is the dimension
which represents the time at the current layer d (we there-
fore need to map the time range of z to the one of the layer
d) and P the number of phonemes.

The two basis tensors γd and βd ∈ RH×C×P where
H is the dimension which represents the frequencies at the
current layer d, C the number of input channels and P the
number of phonemes. In other words, each phoneme p is
represented by a matrix in RH×C derived from Eqn (1).
This matrix represents the specific conditioning to apply

2 The auto-pool layer is a tuned soft-max pooling that automatically
adapts the pooling behavior to interpolate between mean and max-pooling
for each dimension

Figure 3. Strong conditioning example with (γd×zd)�xd.
The phoneme activation zd defines how the basis tensors
(γd) are employed for performing the conditioning on xd.

to xd if the phoneme exists (see Figure 3). These matrices
are learnable parameters (neurons with linear activations)
but they do not depend on any particular input informa-
tion (at a depth d they do not depend on x nor z), they
are rather “activated” by zd at specific times. As for the
‘weak‘conditionning, we can define different versions of
the tensors

• the all-version (Sa ) described so far with three di-
mensions: γd, βd ∈ RH×C×P

• the channel-version (Sc): each phoneme is repre-
sented by a vector over input channels (therefore
constant over frequencies): γd, βd ∈ RC×P

• the frequency-version (Sf ): each phoneme is repre-
sented by a vector over input frequencies (therefore
constant over channels): γd, βd ∈ RH×P

• the scalar-version (Ss ): each phoneme is repre-
sented as a scalar (therefore constant over frequen-
cies and channels): γd, βd ∈ RP

The global conditioning mechanism can then be written as

FiLM (xd, zd) = (γd × zd)� xd + (βd × zd) (3)

where � is the element-wise multiplication and × the ma-
trix multiplication. We broadcast γd and βd for missing di-
mensions and transpose them properly to perform the ma-
trix multiplication. We test two different configurations:
inserting FiLM at each encoder block as suggested in [5]
and inserting FiLM only at the last encoder block as pro-
posed at [3]. We call the former ‘complete’ and the latter
‘bottleneck’ (denoted with ∗ after the model acronym). We
resume the different configurations at Table 1.

6. EXPERIMENTS

DATA. We split DALI into three sets according to the nor-
malized agreement score η presented in [31] (see Table 2).
This score provides a global indication of the global
alignment correlation between the annotations and the
vocal activity.
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822



Train Val Test
Threshold .88 > η >= .7 .89 > η >= .88 .89 > η

Songs 357 30 101

Table 2. DALI split according to agreement score η.

Training Test Aug SDR SIR SAR
Musdb18 Musdb18 False 4.27 13.17 5.17

(90) (50) True 4.46 12.62 5.29

DALI
(357)

Musdb18 False 4.60 14.03 5.39
(50) True 4.96 13.50 5.92

DALI False 3.98 12.05 4.91
(101) True 4.05 11.40 5.32

Table 3. Data augmentation experiment.

DETAILS. We train the model using batches of 128
spectrograms randomly drawn from the training set with
1024 batches per epoch. The loss function is the mean
absolute error between the predicted vocals (masked input
mixture) and the original vocals. We use a learning rate
of 0.001 and the reduction on plateau and early stopping
callbacks evaluated on the validation set, using patience of
15 or 30 respectively and a min delta variation for early
stopping to 1e − 5. Our output is a Time/Frequency mask
to be applied to the magnitude of the input STFT mixture.
We use the phase of the input STFT mixture to reconstruct
the waveform with the inverse STFT algorithm.

For the strong conditioning, we apply a softmax on
the input phoneme matrix z over the phoneme dimension
P to constrain the outputs to sum to 1, meaning it lies on a
simplex, which helps in the optimization.

6.1 Evaluation metrics

We evaluate the performances of the separation using the
mir evaltoolbox [37]. We compute three metrics: Source-
to-Interference Ratios (SIR), Source-to-Artifact Ratios
(SAR), and Source-to-Distortion Ratios (SDR) [38]. In
practice, SIR measures the interference from other sources,
SAR the algorithmic artifacts introduce in the process and
SDR resumes the overall performance. We obtain them
globally for the whole track. However, these metrics are
ill-defined for silent sources and targets. Hence, we com-
pute also the Predicted Energy at Silence (PES) and Energy
at Predicted Silence (EPS) scores [10]. PES is the mean of
the energy in the predictions at those frames with silent tar-
get and EPS is the opposite, the mean of the target energy
of all frames with silent prediction and non-silent target.
For numerical stability, in our implementation, we add a
small constant ε = 10−9 which results in a lower bound-
ary of the metrics to be −80 dB [3]. We consider as silent
segments those that have a total sum of less than−25 dB of
the maximum absolute in the audio. We report the median
values of these metrics over the all tracks in the DALI test
set. For SIR, SAR, and SDR larger values indicate better
performance, for PES and EPS smaller values, mean better
performance.

Model SDR SIR SAR PES EPS
U-Net 4.05 11.40 5.32 -42.44 -64.84
Wsi 4.24 11.78 5.38 -49.44 -65.47
Wco 4.24 12.72 5.15 -59.53 -63.46
Sa 4.04 12.14 5.13 -59.68 -61.73
Sa∗ 4.27 12.42 5.26 -54.16 -64.56
Sc 4.36 12.47 5.34 -57.11 -65.48
Sc∗ 4.32 12.86 5.15 -54.27 -66.35
Sf 4.10 11.40 5.24 47.75 -62.76
Sf ∗ 4.21 13.13 5.05 -48.75 -72.40
Ss 4.45 11.87 5.52 -51.76 -63.44
Ss∗ 4.26 12.80 5.25 -57.37 -65.62

Table 4. Median performance in dB of the different mod-
els on the DALI test set. In bold are the results that signif-
icantly improve over the U-Net (p < 0.001) and inside the
circles the best results for each metric.

6.2 Data augmentation

Similarly as proposed in [39], we randomly created ‘fake’
input mixtures every 4 real mixtures. In non-augmented
training, we employ the mixture as input and the vocals
as a target. However, this does not make use of the ac-
companiment (which is only employed during evaluation).
We can integrate it creating ‘fake’ inputs by automatically
mixing (mixing meaning simply adding) the target vocals
to a random sample accompaniment from our training set.

We test the data augmentation process using the stan-
dard U-Net architecture to see whether it improves the per-
formance (see Table 3). We train two models on DALI and
Musdb18 dataset [40] 3 . This data augmentation enables
models to achieve better SDR and SAR but lower SIR. Our
best results (4.96 db SDR) are not state-of-the-art where
the best-performing models on Musdb18 achieve (approx-
imately 6.60 db SDR) [41].

This technique does not reflect a large improvement
when the model trained on DALI is tested on DALI . How-
ever, when this model is tested on Musdb18, it shows a bet-
ter generalization (we have not seen any song of Musidb18
during training) than the model without data augmentation
(we gain 0.36 dB). One possible explanation for not having
a large improvement on DALI testset is the larger size of
the test set. It also can be due to the fact that vocal targets
in DALI still contain leaks such as low volume music ac-
companiment that come from the singer headphones. We
adopt this technique for training all the following models.

Finally, we confirmed a common belief that training
with a large dataset and clean separated sources improves
the separation over a small dataset [42]. Both models
trained on DALI (with and without augmentation) improve
the results obtained with the models trained on Musdb18.

Since we cannot test the conditioning versions on
Musdb (no aligned lyrics), the results on the DALI test
(4.05 dB SDR) serves as a baseline to measure the contri-
bution of the conditioning techniques (our main interest).

3 We use 10 songs of the training set for the early stopping and reduc-
tion on plateau callbacks
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Figure 4. Distribution of scores for the the standar U-Net (Blue) and Ss (Orange).

7. RESULTS

We report the median source separation metrics (SDR,
SAR, SIR, PES, ESP) in Table 4. To measure the sig-
nificance of the improvement differences, we performed
a paired t-test between each conditioning model and the
standard U-Net architecture, the baseline. This test mea-
sures (p-value) if the differences could have happened by
chance. A low p-value indicates that data did not occur
by chance. As expected, there is a marginal (but statisti-
cal significance) improvement over most of the proposed
methods, with a generalized p < 0.001 for the SDR, SIR,
and PES, except for the versions where the basis tensors
have a ‘frequency’H dimension. This is an expected result
since when singing, the same phoneme can be sung at dif-
ferent frequencies (appearing at many frequency positions
in the feature maps). Hence, these versions have difficul-
ties to find generic basis tensors. This also explains why
the ‘bottleneck’ versions (for both Sf ∗ and Sa∗) outper-
forms the ‘complete’ while this is not the case for the other
versions. Most versions also improve the performance on
silent vocal frames with a much lower PES. However, there
is no difference in predicting silence at the right time (same
EPS). The only metric that does not consistently improve is
SAR, which measures the algorithmic artifacts introduced
in the process. Our conditioning mechanisms can not re-
duce the artifacts that seem more dependent on the quality
of the training examples (it is the metric with higher im-
provement in the data augmentation experiment Table 3).
Figure 4 shows a comparison with the distribution of SDR,
SIR, and SAR for the best model Ss and the U-Net. We
can see how the distributions move toward higher values.

One relevant remark is the fact that we can effectively
control the network with just a few parameters. Ss just
adds 480 (or just 80 for Ss∗) new learnable parameters
and have significantly better performance than Sa that adds
1.97·106. We believe that the more complex control mech-
anisms tend to find complex basis tensors that do not gen-
eralize well. In our case, it is more effective to perform
a simple global transformation. In the case of weak con-
ditioning, both models behave similarly although Wsi has
1.955 · 106 fewer parameters than Wco . This seems to in-
dicate that controlling channels is not particularly relevant.

Regarding the different types of conditioning, when re-
peating the paired t-test between weak and strong models
only Ss outperforms the weak systems. We believe that

strong conditioning can lead to higher improvements but
several issues need to be addressed. First, there are mis-
alignments in the annotations that force the system to per-
form unnecessary operations which damages the computa-
tion. This is one of the possible explanations of why mod-
els with fewer parameters perform better. They are forced
to find more generic conditions. The weak conditioning
models are robust to these problems since they process z
and compute an optimal modification for a whole input
patch (11s). We also need to “disambiguate” the phonemes
inside words since they occur as a bag of phonemes at
the same time (no individual onsets per phonemes inside
one word, see Figure 2). This prevents strong condition-
ing models to properly learn the phonemes in isolation, in-
stead, they consider them jointly with the other phonemes.

8. CONCLUSIONS

The goal of this paper is twofold. First, to introduce a
new multimodal multitrack dataset with lyrics aligned in
time. Second, to improve singing voice separation using
the prior knowledge defined by the phonetic characteris-
tics. We use the phoneme activation as side information
and show that it helps in the separation.

In future works, we intend to use other prior aligned
knowledge such as vocal notes or characters also defined in
DALI . Regarding the conditioning approach and since it is
transparent to the conditioned network, we are determined
to explore recent state-of-the-art source separation meth-
ods such as Conv-Tasnet [43]. The current formalization
of the two basis tensors γd and βd does not depend on any
external factor. A way to exploit a more complex control
mechanisms is to make these basis tensors dependent on
the input mixture x which may add additional flexibility.
Finally, we plan to jointly learn how to infer the alignment
and perform the separation [44, 45].

The general idea of lyrics-informed source separation
leaves room for many possible extensions. The present
formalization relies on time-aligned lyrics which is not the
real-world scenario. Features similar to the phoneme ac-
tivation [46, 47] can replace them or be used to align the
lyrics as a pre-processing step. This two options adapts the
current system to the real-world scenario. These features
can also help in properly placing and disambiguating the
phonemes of a word to improve the current annotations.
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ABSTRACT

A major bottleneck in the evaluation of music generation
is that music appreciation is a highly subjective matter.
When considering an average appreciation as an evalua-
tion metric, user studies can be helpful. The challenge
of generating personalized content, however, has been ex-
amined only rarely in the literature. In this paper, we
address generation of personalized music and propose a
novel pipeline for music generation that learns and opti-
mizes user-specific musical taste. We focus on the task
of symbol-based, monophonic, harmony-constrained jazz
improvisations. Our personalization pipeline begins with
BebopNet, a music language model trained on a corpus of
jazz improvisations by Bebop giants. BebopNet is able to
generate improvisations based on any given chord progres-
sion 1 . We then assemble a personalized dataset, labeled
by a specific user, and train a user-specific metric that re-
flects this user’s unique musical taste. Finally, we employ
a personalized variant of beam-search with BebopNet to
optimize the generated jazz improvisations for that user.
We present an extensive empirical study in which we ap-
ply this pipeline to extract individual models as implicitly
defined by several human listeners. Our approach enables
an objective examination of subjective personalized mod-
els whose performance is quantifiable. The results indi-
cate that it is possible to model and optimize personal jazz
preferences and offer a foundation for future research in
personalized generation of art. We also briefly discuss op-
portunities, challenges, and questions that arise from our
work, including issues related to creativity.

1. INTRODUCTION

Since the dawn of computers, researchers and artists have
been interested in utilizing them for producing different

1 Supplementary material and numerous MP3 demonstrations of jazz
improvisations of jazz standards and pop songs generated by BebopNet
are provided in https://shunithaviv.github.io/bebopnet.

c© Shunit Haviv Hakimi, Nadav Bhonker, and Ran El-
Yaniv. Licensed under a Creative Commons Attribution 4.0 Interna-
tional License (CC BY 4.0). Attribution: Shunit Haviv Hakimi, Na-
dav Bhonker, and Ran El-Yaniv, “BebopNet: Deep Neural Models for
Personalized Jazz Improvisations”, in Proc. of the 21st Int. Society for
Music Information Retrieval Conf., Montréal, Canada, 2020.

forms of art, and notably for composing music [1]. The ex-
plosive growth of deep learning models over the past sev-
eral years has expanded the possibilities for musical gen-
eration, leading to a line of work that pushed forward the
state-of-the-art [2–6]. Another recent trend is the devel-
opment and offerings of consumer services such as Spo-
tify, Deezer and Pandora, aiming to provide personalized
streams of existing music content. Perhaps the crowning
achievement of such personalized services would be for
the content itself to be generated explicitly to match each
individual user’s taste. In this work we focus on the task of
generating user personalized, monophonic, symbolic jazz
improvisations. To the best of our knowledge, this is the
first work that aims at generating personalized jazz solos
using deep learning techniques.

The common approach for generating music with neu-
ral networks is generally the same as for language mod-
eling. Given a context of existing symbols (e.g., charac-
ters, words, music notes), the network is trained to predict
the next symbol. Thus, once the network learns the dis-
tribution of sequences from the training set, it can gener-
ate novel sequences by sampling from the network output
and feeding the result back into itself. The products of
such models are sometimes evaluated through user studies
(crowd-sourcing). Such studies assess the quality of gen-
erated music by asking users their opinion, and computing
the mean opinion score (MOS). While these methods may
measure the overall quality of the generated music, they
tend to average-out evaluators’ personal preferences. An-
other, more quantitative but rigid approach for evaluation
of generated music is to compute a metric based on musical
theory principles. While such metrics can, in principle, be
defined for classical music, they are less suitable for jazz
improvisation, which does not adhere to such strict rules.

To generate personalized jazz improvisations, we pro-
pose a framework consisting of the following elements: (a)
BebopNet: jazz model learning; (b) user preference elicita-
tion; (c) user preference metric learning; and (d) optimized
music generation via planning.

As many jazz teachers would recommend, the key to at-
taining great improvisation skills is by studying and emu-
lating great musicians. Following this advice, we train Be-
bopNet, a harmony-conditioned jazz model that composes
entire solos. We use a training dataset of hundreds of pro-
fessionally transcribed jazz improvisations performed by
saxophone giants such as Charlie Parker, Phil Woods and
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Figure 1. A short excerpt generated by BebopNet.

Cannonball Adderley (see details in Section 4.1.1). In this
dataset, each solo is a monophonic note sequence given
in symbolic form (MusicXML) accompanied by a syn-
chronized harmony sequence. After training, BebopNet is
capable of generating high fidelity improvisation phrases
(this is a subjective impression of the authors). Figure 1
presents a short excerpt generated by BebopNet.

Considering that different people have different musi-
cal tastes, our goal in this paper is to go beyond straight-
forward generation by this model and optimize the gener-
ation toward personalized preferences. For this purpose,
we determine a user’s preference by measuring the level of
their satisfaction throughout the solos using a digital vari-
ant of continuous response interface (CRDI) [7]. This is
accomplished by playing, for the user, computer-generated
solos (from the jazz model) and recording their good/bad
feedback in real time throughout each solo. Once we have
gathered sufficient data about the user’s preferences, con-
sisting of two aligned sequences (for the solos and feed-
back), we train a user preference metric in the form of
a recurrent regression model to predict this user’s prefer-
ences. A key feature of our technique is that the result-
ing model can be evaluated objectively using hold-out user
preference sequences (along with their corresponding so-
los). A big hurdle in accomplishing this step is that the
signal elicited from the user is inevitably extremely noisy.
To reduce this noise, we apply selective prediction tech-
niques [8, 9] to distill cleaner predictions from the user’s
preference model. Thus, we allow this model to abstain
whenever it is not sufficiently confident. The fact that it
is possible to extract a human continuous response prefer-
ence signal on musical phrases and use it to train (and test)
a model with non-trivial predictive capabilities is interest-
ing in itself (and new, to the best of our knowledge).

Equipped with a personalized user preference metric
(via the trained model), in the last stage we employ a vari-
ant of beam-search [10], to generate optimized jazz solos
from BebopNet. For each user, we apply the last three
stages of this process where the preference elicitation stage
takes several hours of tagging per user. We applied the pro-
posed pipeline on four users, all of whom are amateur jazz
musicians. We present numerical analysis of the results
showing that a personalized metric can be trained and then
used to optimize solo generation.

To summarize, our contributions include: (1) a use-
ful monophonic neural model for general jazz improvi-
sation within any desired harmonic context; (2) a viable
methodology for eliciting and learning high resolution hu-
man preferences for music; (3) a personalized optimization
process of jazz solo generation; and (4) an objective eval-
uation method for subjective content and plagiarism anal-
ysis for the generated improvisations.

2. RELATED WORK

Many different techniques for algorithmic musical compo-
sition have been used over the years. For example, some
are grammar-based [11], rule-based [1, 12], use Markov
chains [13–15], evolutionary methods [16, 17] or neural
networks [18–20]. For a comprehensive summary of this
broad area, we refer the reader to [21]. Here we con-
fine the discussion to closely related works that mainly
concern jazz improvisation using deep learning techniques
over symbolic data. In this narrower context, most works
follow a generation by prediction paradigm, whereby a
model trained to predict the next symbol is used to greed-
ily generate sequences. The first work on blues improvisa-
tion [22] straightforwardly applied long short-term mem-
ory (LSTM) networks on a small training set. While
their results may seem limited at a distance of nearly two
decades 2 , they were the first to demonstrate long-term
structure captured by neural networks.

One approach to improving a naïve greedy genera-
tion from a jazz model is by using a mixture of experts.
For example, Franklin et al. [23] trained an ensemble of
neural networks were trained, one specialized for each
melody, and then selected from among them at genera-
tion time using reinforcement learning (RL) utilizing a
handcrafted reward function. Johnson et al. [24] gener-
ated improvisations by training a network consisting of
two experts, each focusing on a different note represen-
tation. The experts were combined using the technique
of product of experts [25] 3 . Other remotely related non-
jazz works have attempted to produce context-dependent
melodies [2, 3, 5, 26–30].

A common method for collecting continuous measure-
ments from human subjects listening to music is the con-
tinuous response digital interface (CRDI), first reported
by [7]. CRDI has been successful in measuring a variety
of signals from humans such as emotional response [31],
tone quality and intonation [32], beauty in a vocal perfor-
mance [33], preference for music of other cultures [34] and
appreciation of the aesthetics of jazz music [35]. Using
CRDI, listeners are required to rate different elements of
the music by adjusting a dial (which looks similar to a vol-
ume control dial present on amplifiers).

3. PROBLEM STATEMENT

We now state the problem in mathematical terms. We de-
note an input xt = (st, ct) consisting of a note st and its
context ct. Each note st ∈ S , in turn, consists of a pitch
and a duration at index t and S represents a predefined
set of pitch-duration combinations (i.e., notes). The con-
text ct ∈ C represents the chord that is played with note
st, where C is the set of all possible chords. The context
may contain additional information such as the offset of
the note within a measure (see details in Section 4). Let
D denote a training dataset consisting of M solos. Each

2 Listen to their generated pieces at www.iro.umontreal.ca/
~eckdoug/blues/index.html.

3 Listen to the generated solos at www.cs.hmc.edu/~keller/
jazz/improvisor/iccc2017/
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solo is a sequence Xτ = x1· · ·xτ ∈ (S × C)τ of arbitrary
length τ . In our work, these are the aforementioned jazz
improvisations.

We define a context-dependent jazz model fθ (Eq. 1),
as the estimator of the probability of a note st given the
sequence of previous inputs Xt−1 and the current context
ct, where θ are the parameters of the model. This is similar
to a human jazz improviser who is informed of the chord
over which his next note will be played.

fθ(Xt−1, ct) = Pr(st|Xt−1, ct) (1)

For any solo Xτ , we also consider an associated se-
quence of annotation Yτ = y1· · · yτ ∈ Yτ . An annotation
yt ∈ Y represents the quality of the solo up to point t by
some metric. In our case, yt may be a measure of prefer-
ence as indicated by a user or a score measuring harmonic
compliance. Let D̃ denote a training dataset consisting of
N solos. Each solo Xτ of arbitrary length τ is labeled
with a sequence Yτ . Given D̃, we define a metric gφ (Eq.
2) to predict yτ given a sequence of inputs Xτ . gφ is the
user-preference model and φ are the learned parameters.

ŷτ = gφ(Xτ ) (2)

We denote by ψ a function that is used to sample notes
from fθ to generate solos. In our case, this will be our
beam-search variant. The objective here is to train viable
models, fθ and gφ, and then to use ψ to sample solos from
fθ while maximizing gφ.

4. METHODS

In this section we describe the methods used and imple-
mentation details of our personalized generation pipeline.

4.1 BebopNet: Jazz Model Learning

In the first step of our pipeline, we use supervised learning
to train BebopNet, a context-dependent jazz model fθ from
a given corpus of transcribed jazz solos.

4.1.1 Dataset and music representation

Our corpus D consists of 284 professionally transcribed
solos of (mostly) Bebop saxophone players of the early
20th century. These are Charlie Parker, Sonny Stitt, Can-
nonball Adderley, Dexter Gordon, Sonny Rollins, Stan
Getz, Phil Woods and Gene Ammons. We consider only
solos that are in 4/4 metre and include chords in their tran-
scription. The solos are provided in musicXML format.
As opposed to MIDI, this format allows the inclusion of
chord symbols 4 . We represent notes using a representa-
tion method inspired by sheet music (see Figure 2).
Pitch The pitch is encoded as a one-hot vector of size 129.
Indices 0—127 match the pitch range of the MIDI stan-
dard. 5 Index 128 corresponds to the rest symbol.

4 The solos were purchased from SaxSolos.com [36]; we are thus un-
able to publish them. Nevertheless, in the supplementary material we
provide a complete list of solos used for training, which are available
from the above vendor.

5 The notes appearing in the corpus all belong to a much smaller range;
however, the MIDI range standard was maintained for simplicity.
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Figure 2. An example of a measure in music notation and
its vector representation. Integers are converted to one-hot
representations.

Duration The duration of each note is encoded using a
one-hot vector consisting of all the existing durations in
the dataset. Durations smaller than 1/24 are removed.
Offset The offset of the note lies within the measure and is
quantized to 48 “ticks” per (four-beat) measure. This cor-
responds to a duration of 1/12 of a beat. This is similar to
the learned positional-encoding used in translation [37].
Chord The chord is represented by a four-hot vector of
size 12, representing the 12 possible pitch classes to appear
in a chord. As common in jazz music, unless otherwise
noted, we assume that chords are played using their 7th

form. Thus, the chord pitches are usually the 1st, 3rd, 5th,
and 7th degrees of the root of the chord. This chord repre-
sentation allows the flexibility of representing rare chords
such as sixth, diminished and augmented chords.

4.1.2 Network Architecture

BebopNet, as many language models, can be implemented
using different architectures such as recurrent neural net-
works (RNNs), convolutional networks (CNNs) [5, 26, 38]
or attention-based models [39]. BebopNet contains a
three-layer LSTM network [40]. Recent promising results
with attention based models enabled us to improve Bebop-
Net by replacing the LSTM with Transformer-XL [41].
The architecture of the network used to estimate fθ is il-
lustrated in Figure 3. The network’s input xt includes
the note st (pitch and duration) and context ct (offset and
chord). The pitch, duration and offset are each represented
by learned embedding layers. The chord is encoded by
using the embedding of the pitches comprising it. While
notes at different octaves have different embeddings, the
chord pitch embeddings are always taken from the octave
in which most notes in the dataset reside. This embed-
ded vector is passed to the LSTM network. The LSTM
output is then passed to two heads. Each head consists
of two fully-connected layers with a sigmoid activation in-
between. The output of the first layer is the same size as the
embedding of the pitch (or duration), and the second out-
put size is the number of possible pitches (or durations).
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Figure 3. The BebopNet architecture for the next note prediction. Each note is represented by concatenating the embed-
dings of the pitch (red bar), the duration (purple bar) and the four pitches comprising the current chord (green bars). The
output of the LSTM is passed to two heads (orange bars), one the size of the pitch embedding (top) and the other the size
of the duration embedding (bottom).

Following [42, 43], we tie the weights of the final fully-
connected layers to those of the embedding. Finally, the
outputs of the two heads pass through a softmax layer and
are trained to minimize the negative log-likelihood of the
corpus. To enrich our dataset while encouraging harmonic
context dependence, we augment our dataset by transpos-
ing to all 12 keys.

4.2 User Preference Elicitation

Using BebopNet, we created a dataset to be labeled by
users, consisting of 124 improvisations. These solos were
divided into three groups of roughly the same size: so-
los from the original corpus, solos generated by BebopNet
over jazz standards present in the training set, and gener-
ated solos over jazz standards not present in the training
set. The length of each solo is two choruses, or twice the
length of the melody. For each standard, we generated a
backing track in MP3 format that includes a rhythm sec-
tion and a harmonic instrument to play along the improvi-
sation using Band-in-a-Box [44]. This dataset amounts to
approximately five hours of played music.

We created a system inspired by CRDI that is entirely
digital, replacing the analog dial with strokes of a keyboard
moving a digital dial. A figure of our dial is presented in
the supplementary material. While the original CRDI had
a range of 255 values, our initial experiments found that
quantizing the values to five levels was easier for users.
We recorded the location of the dial at every time step and
aligned it to the note being played at the same moment.

4.3 User Preference Metric Learning

In the user preference metric learning stage we again use
supervised learning to train a metric function gφ. This
function should predict user preference scores for any solo,
given its harmonic context. During training, for each se-
quence Xτ we estimate yτ , corresponding to the label the
user provided for the last note in the sequence. We choose
the last label of the sequence, rather than the mode or
mean, because of delayed feedback. During the user elici-
tation step, we noticed that when a user decides to change
the position of the dial, it is because he has just heard a
sequence of notes that he considers to be more (or less)

pleasing than those he heard previously. Thus, the label in-
dicates the preference of the past sequence. The labels are
linearly scaled down to the range [−1, 1]. Since the data in
D̃ is small and unbalanced, we use stratified sampling over
solos to divide the dataset into training and validation sets.
We then use bagging to create an ensemble of five models
for the final estimate.

4.3.1 Network Architecture

We estimate the function gφ using transfer learning from
BebopNet. The user preference model consists of the same
layers as BebopNet without the final fully-connected lay-
ers. Next, we apply scaled dot-product attention [45] over
τ time steps followed by fully-connected and tanh layers.
The transferred layers are initialized using the weights θ
of BebopNet. Furthermore, the weights of the embedding
layers are frozen during training.

4.3.2 Selective Prediction

To elevate the accuracy of gφ, we utilize selective pre-
diction whereby we ignore predictions whose confidence
is too low. We use the prediction magnitude as a proxy
for confidence. Given confidence threshold parameters,
β1 < 0, β2 > 0, we define g′φ,β1,β2

(Xi
t) in Eq. 3.

g′φ,β1,β2
(Xi

t) =

{
0 if β1 < gφ(X

i
t) < β2

gφ(X
i
t) else

(3)

The parameters β1 and β2 change our coverage rate
and are determined by minimizing error (risk) on the risk-
coverage plot along a predefined coverage contour. More
details are given in Section 5.2.

4.4 Optimized Music Generation

To optimize generations from fθ, we apply a variant of
beam-search, ψ, whose objective scores are obtained from
non-rejected predictions of gφ. Pseudocode of the ψ proce-
dure is presented in the supplementary material. We denote
by Vb = [X1

t , X
2
t , ..., X

b
t ] a running batch (beam) of size

(beam-width) b containing the most promising candidate
sequences found so far by the algorithm. The sequences
are all initialized with the starting input sequence. In our
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Name Adderley Gordon Getz Parker Rollins Stitt Woods Ammons BebopNet (Heard) BebopNet (Unheard)

Chord 0.50 0.54 0.53 0.52 0.52 0.53 0.50 0.54 0.53 0.52
Scale 0.78 0.83 0.81 0.80 0.81 0.83 0.78 0.83 0.82 0.81

Table 1. Harmonic coherence: The average chord and scale matches computed for artists in the dataset and for BebopNet.
A higher number indicates a high coherency level. BebopNet is measured separately for harmonic progressions heard and
not heard in the training dataset.

case, this is the melody of the jazz standard. At every time
step t, we produce a probability distribution of the next
note of every sequence in Vb by passing the b sequences
through the network fθ(Xi

t , c
i
t+1). As opposed to typical

applications of beam-search, rather than choosing the most
probable notes from Pr(st+1|Xi

t , c
i
t+1), we independently

and randomly sample them. We then calculate the score of
the extended candidates using the preference metric, gφ.

Every δ steps, we perform a beam update process. We
choose the highest scoring k sequences calculated by gφ.
Then we duplicate these sequences b/k times to maintain
a full beam of b sequences. Choosing different values of
δ allows us to control a horizon parameter, which facili-
tates longer term predictions when extending candidate se-
quences in the beam. The use of larger horizons may lead
to sub-optimal optimization but increases variability.

5. EXPERIMENTS

We start the experimental process by training BebopNet as
described in Section 4. After training, we use BebopNet to
generate multiple solos over different jazz standards 6 . To
verify that BebopNet can generalize to harmonic progres-
sions of different musical genres, we also generate impro-
visations over pop songs (see supplementary material).

This section has two sub-sections. First, we evaluate
BebopNet in terms of harmonic coherence (5.1). Next, we
present an analysis of our personalization process (5.2).
All experiments were performed on desktop computers
with a single Titan X GPU. Hyperparameters are provided
in the supplementary material.

5.1 Harmonic Coherence

We begin by evaluating the extent to which BebopNet was
able to capture the context of chords, which we term har-
monic coherence. We define two harmonic coherence met-
rics using either scale match or chord match. These metrics
are defined as the percent of time within a measure where
notes match pitches of the scale or the chord being played,
respectively. We rely on a standard definition of match-
ing scales to chords using the chord-scale system [46].
While most notes in a solo should be harmonically coher-
ent, some non-coherent notes are often incorporated. Com-
mon examples of their uses are chromatic lines, approach
notes and enclosures [47]. Therefore, as we do not expect a
perfect harmonic match according to pure music rules, we

6 To appreciate the diversity of BebopNet, listen to seven solos gener-
ated for user-4 for the tune Recorda-Me in the supplementary material.

take as a baseline the average matching statistics of these
quantities for each jazz artist in our dataset. The harmonic
coherence statistics of BebopNet are computed over the
dataset used for the preference metric learning (generated
by BebopNet), which also includes chord progressions not
heard during the jazz modeling stage. The baselines and
results are reported in Table 1. It is evident that our model
exhibits harmonic coherence in the ‘ballpark’ of the jazz
artists even on chord progressions not previously heard.
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Figure 4. 4i Predictions of the preference model on se-
quences from a validation set. Green: sequences labeled
with a positive score (yτ > 0); yellow: neutral (yτ = 0);
red: negative (yτ < 0). The blue vertical lines indicate
thresholds β1, β2 used for selective prediction. 4ii Risk-
coverage plot for the predictions of the preference model.
β1, β2 (green lines) are defined to be the thresholds that
yield a minimum error on the contour of 25% coverage.

Proceedings of the 21st ISMIR Conference, Montréal, Canada, October 11-16, 2020
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5.2 Analyzing Personalized Models

We applied the proposed pipeline to generate personalized
models for each of the four users, all amateur jazz musi-
cians. All users listened to the same training dataset of
solos to create their personal metric (see Section 4). Each
user provided continuous feedback for each solo using our
CRDI variant. In this section, we describe our evaluation
process for user-1. The evaluation results for the rest of the
users are presented in the supplementary material.

We analyze the quality of our preference metric func-
tion gφ by plotting a histogram of the network’s predic-
tions applied on a validation set. Consider Figure 4i. We
can crudely divide the histogram into three areas: the
right-hand side region corresponds to mostly positive se-
quences predicted with high accuracy; the center region
corresponds to high confusion between positive and neg-
ative; and the left one, to mostly negative sequences pre-
dicted with some confusion. While the overall error of the
preference model is high (0.4 MSE where the regression
domain is [-1,1]), it is still useful since we are interested
in its predictions in the positive (green) spectrum for the
forthcoming optimization stage. While trading-off cover-
age, we increase prediction accuracy using selective pre-
diction by allowing our classifier to abstain when it is not
sufficiently confident. To this end, we ignore predictions
whose magnitude is between two rejection thresholds (see
Section 4.3.2). Based on preliminary observations, we fix
the rejection thresholds to maintain 25% coverage over the
validation set. In Figure 4ii we present a risk-coverage plot
for user-1 (see definition in [8]). The risk surface is com-
puted by moving two thresholds β1 and β2 across the his-
togram in Figure 4i, and at each point, for data not between
the thresholds, we calculate the risk (error of classification
to three categories: positive, neutral and negative) and the
coverage (percent of data maintained).

We increase the diversity of generated samples by tak-
ing the score’s sign rather than the exact score predicted
by the preference model gφ. Therefore, different posi-
tive samples are given equal score. For user-1, the aver-
age score predicted by gφ for generated solos of Bebop-
Net is 0.07. As we introduce beam-search and increase the
beam width, the performance increases up to an optimal
point from which it decreases (see supplementary mate-
rial). User-1’s scores peaked at 0.8 with b = 32, k = 8.
Anecdotally, there was one solo that user-1 felt was excep-
tionally good. For that solo, the model predicted the per-
fect score of 1. This indicates that the use of beam-search
is indeed beneficial for optimizing the preference metric.

6. PLAGIARISM ANALYSIS

One major concern is the extent to which BebopNet plagia-
rizes. In our calculations, two sequences that are identical
up to transposition are considered the same. To quantify
plagiarism in a solo with respect to a set of source solos,
we measure the percentage of n-grams in that solo that also
appear in any other solo in the source. These statistics are
also applied to any artist in our dataset to form a baseline

for the typical amount of copying exhibited by humans.
Another plagiarism measurement we define is the

largest common sub-sequence. For each solo, we consider
the solos of other artists as the source set. Then, we aver-
age the results per artist. Also, for every artist, we com-
pare every solo against the rest of his solos to measure
self-plagiarism. For BebopNet, we quantify the plagiarism
level with respect to the entire corpus. The average plagia-
rism level of BebopNet is 3.8. Interestingly, this value lies
within the human plagiarism range found in the dataset.
This indicates that BebopNet can be accused of plagiarism
as much as some of the famous jazz giants. We present the
extended results in the supplementary material.

7. CONCLUDING REMARKS

We presented a novel pipeline for generating personalized
harmony-constrained jazz improvisations by learning and
optimizing a user-specific musical preference model. To
distill the noisy human preference models, we used a se-
lective prediction approach. We introduced an objective
evaluation method for subjective content and numerically
analysed our proposed pipeline on four users.

Our work raises many questions and directions for fu-
ture research. While our generated solos are locally coher-
ent and often interesting/pleasing, they lack the qualities of
professional jazz related to general structure such as motif
development and variations. Preliminary models we have
trained on smaller datasets were substantially weak. Can a
much larger dataset generate a significantly better model?
To acquire such a large corpus it might be necessary to
abandon the symbolic approach and rely on raw audio.

Our work emphasizes the need to develop effective
methodologies and techniques to extract and distill noisy
human feedback that will be required for developing many
personalized applications. Our proposed method raises
many questions. To what extent does our metric express
the specifics of one’s musical taste? Can we extract precise
properties from this metric? Additionally, our technique
relies on a sufficiently large labeled sample to be provided
by each user, a substantial effort on the user’s part. We
anticipate that the problem of eliciting user feedback will
be solved in a completely different manner, for example,
by monitoring user satisfaction unobtrusively, e.g., using a
camera, EEG, or even direct brain-computer connections.

The challenge of evaluating neural networks that gen-
erate art remains a central issue in this research field. An
ideal jazz solo should be creative, interesting and mean-
ingful. Nevertheless, when evaluating jazz solos, there are
no mathematical definitions for these properties—as yet.
Previous works attempted to define and optimize creativ-
ity [48], but no one has yet delineated an explicit objective
definition. Some of the main properties of creative per-
formance are innovation and the generations of patterns
that reside out-of-the-box— namely, the extrapolation of
outlier patterns beyond the observed distribution. Present
machine learning regimes, however, are mainly capable of
handling interpolation tasks and not extrapolation. Is it at
all possible to learn the patterns of outliers?
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ABSTRACT 

Much of the existing research on user aspects in the music 
information retrieval field tends to focus on general user 
needs or behavior related to music information seeking, 
music listening and sharing, or other use of commercial 
music services. However, we have a limited understanding 
of the personal and social contexts of music fans who en-
thusiastically support musicians and are often avid users of 
commercial music services. In this study, we aim to better 
understand the contextual complexities surrounding music 
fans through a case study of the group BTS and its fan 
community, ARMY. In particular, we are interested in dis-
covering factors that influence the interactions of music 
fans with music services, especially in the current environ-
ment where the prevalence of social media and other 
tools/technologies influences musical enjoyment. Through 
virtual ethnography and content analysis, we identified 
four factors that affect music fans’ interactions with com-
mercial music services: 1) perception of music genres, 2) 
participatory fandom, 3) desire for agency and transpar-
ency, and 4) importance of non-musical factors. The dis-
cussion of each aspect is followed by design implications 
for commercial music services to consider. 

1. INTRODUCTION 

Understanding users’ motivations, needs, and behavior re-
lated to music is fundamental in designing commercial 
music services that will be well-received by users. Since 
the early 2000s, a steady stream of user studies has been 
conducted in the field of music information retrieval 
(MIR) [1]. These studies have investigated a variety of 
user aspects, such as their information needs and searching 
behavior [2], perception of music genres and moods [3], 
[4], and social music behavior [5], [6]. Some of these stud-
ies have focused on improving our understanding of MIR 
issues related to specific populations, such as youth [7], 
music creators [8],  members of certain cultures [9], or 
people who use streaming, cloud, or recommender ser-
vices [6], [10], [11]. 

One user group that has not been studied much in past 
MIR user studies are music fans. The term “fan,” as an ab-
breviation for “fanatic,” first appeared in a religious con-
text in late 17th-century England, and became significant 
in the United States as it started to be used to describe pas-
sionate sports enthusiasts and later “dedicated audiences 

for film and recorded music” [12, p.28]. Understanding 
what motivates and influences fans’ behavior is important 
since they are often avid users of systems and services de-
signed to provide access to media. Their digital touch-
points subsequently shape the design of these systems and 
services. While much of the current research involving 
user elements investigates user interactions with MIR sys-
tems and services, such as their usage of music and 
playlists [6], [10], [13], fewer works explore users more 
holistically or the characteristics of unique user groups. 
This work aims to fill this gap by 1) investigating the con-
textual factors that influence users’ engagement with mu-
sic services, and 2) attending more closely to music fans 
as an important subset of users. We conducted an empirical 
study of music fans to reveal the underlying motivations 
and reasons explaining why we see certain user behavior 
in commercial music services. The particular case we ex-
amined was a fandom called ARMY, consisting of sup-
porters of the music group BTS and considered to be one 
of the largest pop music fandoms today [14]. BTS ARMY 
is an excellent case to study not only due to the sheer size 
of the fandom, but also because of its diversity and impact. 
ARMY is known to be an extremely dedicated fan base 
that actively participates in numerous initiatives to support 
BTS and relevant causes globally [15], [16]. 

In this paper, we aim to answer the following research 
questions: What does the case of BTS and ARMY tell us 
about the current landscape of music fans, specifically re-
lated to how they interact with commercial music services? 
Subsequently, what are the implications for designing and 
providing commercial music services for these fans? 

2. RELATED WORK 

2.1 Music Fans and Participatory Culture 

Over the past two decades, user studies in MIR have shown 
that the way users interact with music has significantly 
changed. During this time, a majority of users moved from 
sharing actual music files and listening to personal collec-
tions to using streaming or subscription-based models and 
sharing YouTube links and music metadata [10]. Addition-
ally, social media has become an important venue for peo-
ple to share and discuss music [11]. These cultural and 
technological shifts have changed the ways people con-
sume, create, and share music [17], and have altered the 
role of music users from passive listeners to more active 
participants, indicative of a larger trend in media use [18], 
[19]. Recent MIR user studies point out that users are not 
merely consumers of music but also shapers of music ser-
vices. For instance, Lee and Price [20] observe that music 
users are getting increasingly savvy about the tools and 
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technologies available to them—rather  than using only a 
single platform, music users very intentionally choose par-
ticular platforms that work well for specific purposes [10]. 
Contextual factors, sometimes unrelated to music itself, 
were also found to influence people’s interaction with mu-
sic services, such as their decisions about whether to listen 
to music recommendations [21]. These factors, of course, 
included reasons such as convenience or being in the mood 
to listen to recommendations, but interestingly, they also 
related to personal values. For instance, researchers 
learned that some participants actively “refused” to listen 
to certain songs based on how well their personal values 
aligned with those of the artist or their perception of the 
artist’s ethical stance [21]. These findings imply the com-
plexity of users’ engagement with music services: they are 
often motivated by contextual factors going beyond pref-
erence for music based on musical attributes. In addition, 
many users have embraced participatory culture and con-
tribute user-generated content related to music on social 
media, especially streaming venues like YouTube [22].  

Music fans are at the center of this technological and 
cultural landscape and often drive trends taken up by other 
music users. Jenkins [18] discusses how in “convergence 
culture,” fans play a central role in how culture operates, 
demonstrating the influence of an active audience in con-
temporary popular culture. While fandom suffered from 
stigma in earlier media studies, participatory culture has 
now become central in understanding fans and fan-based 
online communities in popular culture [18]. Users actively 
engage in online communities, produce creative works, 
and develop new knowledge [23], especially in the context 
of games [24], [25] and YouTube [26], [27]. Researchers 
also started investigating the participatory nature of user 
involvement related to music in certain contexts. For in-
stance, Waldron [28] discusses how user-generated con-
tent in YouTube is used for music learning and teaching in 
online participatory communities. Schneider [22] uses 
qualitative media analysis to examine audience engage-
ment with music videos on YouTube. 

While it is important to understand how fans interact 
with music in commercial music services, it is also critical 
to consider the broader context in which users are situated 
to understand what factors may impact how they engage 
with commercial music services. Jenkins [23, p.7] empha-
sizes various aspects such as “the social, cultural, legal, 
political and economic institutions, practices, and proto-
cols” that shape the communication technologies in media 
systems. 

2.2 BTS and ARMY 

Before Korean pop (Kpop) music became a global sensa-
tion, the Korean Wave, also known as “Hallyu,” popular-
ized Korean culture in media channels such as television 
dramas and digital games [15]. As it emerged alongside 
social media, Hallyu was able to reach audiences beyond 
East Asia including Latin America, Europe, and North 
America [29], [30]. While Hallyu became popular through 
various mediums, one of the driving forces behind its suc-
cess is Kpop [15]. Artists such as Psy and BTS have col-
lectively gained billions of views on YouTube, bringing 
Hallyu music fandom to North America.  

BTS is a South Korean band with seven male musicians, 
managed by their entertainment agency, Big Hit, since 
June 2013. The abbreviation stands for “Bangtan Sonyeon-
dan” or “Bulletproof Boy Scouts,” which depicts the chal-
lenges that the younger generations face in modern social 
life [31]. A large part of BTS’s success is its high engage-
ment with fans on social media where band members share 
visual stories of their lives, aesthetic preferences, and com-
mentary on their work. Tweets, Instagram posts, and other 
social media updates also enable fans from all over the 
world to connect with the band members [15]. 

Additionally, BTS engages with global campaigns to 
digitally connect with youth culture around the world. In 
November 2017, BTS launched a two-year anti-violence 
campaign called “Love Myself” in partnership with 
UNICEF that raised over $2,000,000 (USD) [32]. In 2018, 
the band delivered a speech at the United Nations General 
Assembly in New York to launch the “Generation Unlim-
ited,” a global partnership of UNICEF [32].  

BTS’s popularity has reached a global scale thanks to 
the unity of its fandom, ARMY, which has bonded through 
the band members’ story of growth, authenticity, and de-
termination to pursue musical careers. The influence of 
ARMY is massive in its own right [16], [33]. When the 
band’s scheduled tour was cancelled in Korea due to 
COVID-19, ARMY followed the lead of one BTS mem-
ber, Suga, by donating their refunds to disaster relief or-
ganization Hope Bridge—amounting to over $300,000 in 
just a few days [34]. In another instance, after ARMY 
learned that BTS and Big Hit Entertainment donated 
$1,000,000 to support Black Lives Matter, they organized 
a campaign to match the donation and raised another mil-
lion dollars in a little over 24 hours [35]. The campaign is 
still ongoing on the One In An Army website (https:// 
www.oneinanarmy.org/), along with many other cam-
paigns for social good across the globe. These are just a 
few of numerous examples illustrating the power and im-
pact the fandom has.  

3. STUDY DESIGN AND METHODS 

We employed a multimethod approach of virtual ethnog-
raphy and content analysis. While traditional ethnography 
focuses on observing the interactions among individuals 
situated in a particular setting, as technologically mediated 
communications and online communities become ubiqui-
tous, virtual ethnography is becoming increasingly com-
mon [36], [37]. Virtual ethnography explores social inter-
actions taking place in virtual environments and empha-
sizes the immersion of the researcher in the setting for ex-
tended periods of time for a holistic understanding of the 
culture [38]. Beneito-Montagut [36] points out that apply-
ing physical boundaries in the context of the Internet dur-
ing virtual ethnography provides limited understanding of 
everyday life in the Internet, as the various intersections 
between different sites are lost. For this reason, the re-
searchers chose to examine multiple online websites and 
venues, including a swath of social media (such as Twitter, 
Facebook, Instagram, Reddit, and TikTok), YouTube, 
Daum BTS fan café, which used to be the official fan com-
munity, and Weverse, the current official channel for in-
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teractions between BTS and ARMY. The first author ob-
served the interactions among the fans for approximately a 
year from April 13, 2019, to March 30, 2020. During this 
phase, the researcher generated field notes documenting 
reflections and questions, while being cautious to mini-
mize bias in collecting and interpreting the data.  

In order to complement the ethnographic approach, the 
researchers also collected user data from Twitter and a sub-
reddit, r/Bangtan. A total of 3,195 recent tweets (the max-
imum number allowed in the API policy) were pulled from 
the bts_twt timeline on Twitter. The tweets, along with the 
field notes generated from the observation phase, informed 
some of the prominent themes to be further investigated 
(e.g., streaming, radio play, award, donation). Addition-
ally, discussion threads were scraped from r/Bangtan, and 
the second author, taking a deductive approach [39], qual-
itatively examined and coded the data into categories rep-
resenting prominent themes identified in the observation 
phase. Here, we present selected user quotes that are help-
ful for discussing four aspects that commercial music ser-
vices should consider to better cater to music fans. 

This research investigates a single case study of BTS 
and its fandom, ARMY, to examine the current landscape 
of the music listening environment and the role of music 
fans in shaping it. Yin [40] describes a case study as “an 
empirical inquiry that investigates a contemporary phe-
nomenon in depth and within its real-life context, espe-
cially when the boundaries between phenomenon and con-
text are not clearly evident” (p. 18). Single case studies and 
multiple case studies have their own merits. While study-
ing multiple cases may help with generalizing the data, 
delving deeply into a single case can provide a richer un-
derstanding of the context that is being studied. In this pa-
per, we selectively chose to study the case of BTS and 
ARMY for two reasons. First, BTS/ARMY is a unique 
case because it demonstrates an exemplary manifestation 
of the fandom phenomenon—ARMY could be seen as an 
outstanding success as it is often characterized as the most 
powerful, dedicated, and organized fandom in the world 
[14], [41]. Second, BTS/ARMY presents a longitudinal 
case where a single case is examined across time to 
demonstrate how situations and processes change. In-
depth observation of user interactions over an extended pe-
riod of time and examination of artifacts on various media 
channels enabled the researchers to have a better under-
standing of how ARMY might react to certain situations 
due to historical reasons. The case overall serves as an ex-
cellent candidate to examine the complexity of the user’s 
context, which affects how fans engage with commercial 
music services. 

4. FINDINGS AND DISCUSSION 

4.1 Perception of Music Genres 

Kpop is a prime example of how the boundaries of music 
genres are becoming increasingly blurry. The hybridity of 
Kpop music has been noted in prior research [15] and dis-
cussed in relation to the popularity of “idol” groups, often 
strategically created to consist of members with different 
musical strengths [42]. As a result, the music they produce 
tends to have elements accentuating the diverse strengths 

of the members, embodying a fusion of multiple music 
styles [42]. This is also true in the case of BTS—in a recent 
interview about its latest album, Map of the Soul: 7, one 
BTS member actually stated that “the genre is BTS,” and 
“it’s less and less meaningful to divide music into genres 
now” [43]. Fans on the BTS subreddit also discuss this 
genre issue, as shown in the following quotes: 

 
“"bts is the genre" wasn't them saying they're not kpop, 

they were saying that their music is diverse and that put-
ting it into a box is pointless.”  

 
“I love how he tried to highlight artistry and talent in-

stead of focusing on artificial (and unrealistic) plastic sub-
genres like kpop. I am one of those firm believers that kpop 
(much like *pop*) is not a music genre but an industry with 
specific practices.” 

 
Beyond discussing the specific label “Kpop,” which is 

already problematic given that it often refers to all music 
originating from Korea regardless of style, users also rec-
ognize the limitation of genre labels in general. They com-
ment on the difficulty of applying one set of genre labels, 
commonly used in a certain culture, to all music. 

 
“Yoongi [one of the BTS members] said stop limiting 

south korea to a single genre when genre itself is meaning-
less as music continues to mix and evolve and we love to 
see it. Let's appreciate the artist no matter the genre!” 

 
“I don't know of one western equivalent in terms of the 

genre since BTS has a lot of different styles to their music.” 
 
Considering the wide range of artists who collaborate 

with BTS makes the band’s music further challenging to 
label. For instance, its recent collaborators have ranged 
from vocalists such as Zara Larsson and Halsey to rappers 
like Desiigner and Nicki Minaj, who have very different 
music styles.  

While BTS well exemplifies how different music gen-
res and styles can be successfully mashed up to create hy-
brid music styles, this trend is also becoming increasingly 
popular among other Kpop groups and genres of music. 
Hybridity, fueled by increasing global collaboration 
among musicians and producers around the world, is be-
coming more prevalent in the music industry in general. 
“Genres have blended together so completely and seam-
lessly” that it is “almost impossible to label a lot of popular 
music as any one thing” [44]. 

 
Design Implication: Think of alternative means to 

show the connections of music, rather than relying on mu-
sic genres, especially genres represented in a hierarchical 
structure. 

 
For MIR researchers and designers of commercial mu-

sic services, the blurred boundaries of genres raise an in-
teresting question about how to best categorize music to 
support and improve users’ access and discovery. The lim-
itation of genre labels has been noted in previous MIR user 
research, especially with regards to users’ perception of 
genres and the lack of consistency in their description in 
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839



  
 
cross-cultural contexts [42]. The trend of hybrid genres 
supports the importance of exploring other metadata ele-
ments that can be used to organize music, such as mood 
and suitable contexts (e.g., accompanying activities, users’ 
biological rhythm). It also highlights the limitation of a hi-
erarchical structure in organizing music, as it becomes in-
creasingly difficult to find a single appropriate category for 
these kinds of music in a tree-like structure. Rather, a fac-
eted approach may be more suitable, in which different 
musical styles can be described as a collection of organized 
tags, which avoids the pitfall of having to categorize the 
music with one correct label. In addition, a network-based 
approach (such as MusicLynx (http://www.semanticaudio. 
ac.uk/demonstrators/16-musicweb/) or Mora-Mcginity et 
al. [45]) could also complement a more traditional hierar-
chical organizational structure, as networks can represent 
the relationships and influences among artists that are of-
ten meaningful to the music fans. For instance, mapping 
the influences between BTS and other music groups based 
on their collaboration would probably generate a more in-
teresting social network for users to explore than simply 
categorizing the music as Kpop.  

4.2 Participatory Fandom  

Our observation of fan activities on social media showed 
that fans engage in a wide variety of activities in addition 
to simply listening to and enjoying music from the artists 
they support. These additional activities include not only 
appreciating non-music content related to the artists (such 
as documentary films or books), but also interacting with 
the artists and other fans through social media and offline 
events. For example, a substantial number of user-gener-
ated videos, featuring reactions, theory (analytical videos 
examining music videos or lyrics), cover dances, unbox-
ing, lyrics, and remixing, are regularly uploaded to 
YouTube [16], [46]. Many fans also donate a significant 
amount of time and resources to helping other fans or sup-
porting various causes that the artists support [16]. For in-
stance, much of the BTS content is translated by fans who 
volunteer their time—the massive followings on transla-
tion team and individual accounts on Twitter (e.g., 
@BTS_Trans with 1.5 million followers; @btstransla-
tion7 with 340,700;  @doolsetbangtan with 316,600; and 
many more) demonstrate their impact. Yoon [46] discusses 
how youths took on these roles as cultural translators and 
how they engage transnationally with digital media. 

ARMY also showcases how to effectively use social 
media for participatory fandom, including Twitter, Face-
book, Vlive, Reddit, etc. [46]. The various streaming, do-
nation, and hashtag campaigns in which fans participate 
require them to utilize these apps and services to organize. 
While there is an app called Weverse, established by Big 
Hit as the official communication channel for BTS and 
fans, due to the volume of daily posts and the lack of or-
ganization, it is not an effective venue for systematically 
organizing these efforts. Instead, it primarily serves as a 
venue where the artists can directly communicate with fans 
by sharing posts and responding to fans’ posts.  

While globally there is no central coordinating organi-
zation within ARMY, the fan group is still extremely suc-
cessful in coordinating to support the artists despite its 

loose structure—for instance, there are various accounts 
that provide streaming guides (e.g., @AllForARMY, 
@BTS_graphs, @BTS_Billboard, @ARMY52Hz) that 
recommend strategically curated streaming lists in specific 
music streaming services to enhance the band’s rankings 
in various charts [15], [16]. The big BTS Fan Twitter ac-
counts (Twitter accounts with a lot of followers) often fol-
low these streaming guide accounts and retweet these mes-
sages so they can quickly and efficiently reach a large 
number of fans. Lee [16] and Lee [33] also discuss in depth 
how international ARMY, coordinating its efforts on Twit-
ter and other social media, worked systematically to trans-
late and distribute BTS content to get BTS to debut on US 
radio and television by providing ARMY members with 
instructions for requesting BTS’s songs and actions to take 
if a request is rejected.  

Sometimes fans actively use commercial music services 
to make a statement—in the case of BTS, when the Peo-
ple’s Choice Awards awarded another band Group of 
2019, Music Video of 2019, and Concert of 2019 despite 
BTS receiving the largest number of Twitter votes in all 
three categories (according to data collected and tracked 
by accounts like @ResearchBTS), fans protested by band-
ing together on social media and re-charting BTS’s entire 
discography (20 albums including solo mixtapes and two 
Japanese repackage albums) in iTunes in less than 24 hours 
[47]. This happened again when BTS did not receive any 
Grammy nominations despite having a huge success with 
its Persona: Map of the Soul album in 2019, with the 
hashtag #ThisIsBTS trending in Twitter [48]. The purpose 
of these organized movements is partly to show support 
and appreciation for the artists, but also to express listen-
ers’ discontent and disapproval of outdated customs and 
systems, such as the management of music awards.  

 
Design Implication: Consider ways to promote artist 

and fan interactions in a two-way communication model 
and features that can support fans’ activities to achieve 
group goals. 

 
The active, participatory nature of fans should prompt 

designers of commercial music services to think about fea-
tures they might employ to support fans’ activities and 
maintain strong communities. One idea might be to ex-
plore features within commercial music services where 
fans and artists can have interactions. While existing social 
media platforms already offer venues for artist-fan interac-
tions and community discussions, commercial music ser-
vices can offer other unique types of interactions. For in-
stance, Spotify for Artists allows artists to put together and 
share their own playlist through their profile page. This en-
ables fans to feel closer to artists they like, as they can bet-
ter understand artists’ tastes and know what they are cur-
rently listening to. Furthermore, this feature has an addi-
tional benefit of encouraging listeners to venture out of 
their typical music realm and discover new songs and art-
ists, as prior research suggests people tend to be more re-
ceptive to music recommendations coming from people 
who are experts or those they trust to have good music taste 
[21]. One suggestion is to expand this feature by turning it 
into a two-way interaction, in which fans can also suggest 
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music to artists. We observed that this occasionally hap-
pens in social media such as Twitter or Weverse, espe-
cially when fans want the artist to collaborate with another 
artist. A voting mechanism could be implemented so that 
fans could collectively put together a playlist for the artists, 
which would increase user engagement and provide a 
sense of bonding. Another idea is to consider features that 
better support group activities among fans. While sharing 
music and playlists is already a feature in many commer-
cial music services, tweaking these features so that they 
can support group goals may appeal to fans. For instance, 
the streaming guide account’s use of playlists is unique 
compared with other use scenarios in that the goal is not to 
enable group members to collaboratively create or modify 
the queue. Rather, it is to effectively distribute a specific 
playlist—created by a small team of users—that has been 
deemed most efficient to support the artists. Gifting music 
or codes for streaming to fans who cannot afford access to 
music also frequently occurs within the fan community, 
which can potentially be supported in commercial music 
services. 

4.3 Desire for Agency and Transparency 

During our observation of ARMY’s interactions in online 
communities and our examination of tweets and reddit 
posts, we noticed a strong desire among users to have more 
agency in how they interact with music. For many BTS 
fans, the act of streaming is not only to simply listen to and 
enjoy music but also to strategically support the artist. As 
discussed above, sometimes streaming can also be an act 
of resistance against the existing social structure and sys-
tems that fans feel are unjust. These fans’ selection of mu-
sic services is often driven by their desire to maximize the 
impact of their streaming on the rankings of artists’ albums 
in various charts. 

A recent event that well illustrates this desire for agency 
among fans concerns the lack of radio play BTS received 
in Western radio stations after the release of its latest al-
bum, Map of the Soul: 7. Despite the group’s past success 
in album sales, sold-out stadium tours worldwide, and par-
ticipation in various promotional events in the US orga-
nized by radio stations, BTS received almost no radio play 
for its latest album [49], [50]. This led to many fans spec-
ulating why, resulting in discussion of multiple factors in-
cluding payola (the illegal practice of payment from record 
companies in exchange for more radio exposure for their 
artists, discussed extensively in Leight [51]), DJs’ percep-
tion that ARMY consists exclusively of teenage girls, the 
public’s perception of BTS as “foreign” artists, and xeno-
phobia [49], [50]. While we do not have space for a full 
discussion of all of these factors here, what is clear is that 
many fans expressed frustration and actively boycotted ra-
dio, opting to use music streaming services as a result. 
Many believed that their participation would matter and 
that they would have more control over how they inter-
acted with music on streaming services, as opposed to ra-
dio, in which gatekeepers control what is played. Fans on 
Bangtan subreddit share: 

 
“Ugh it's 2020. Traditional radio just needs to die and 

make way for streaming. I know radio matters for charting 

and GP exposure, etc but ever since we proved BTS can chart 
well without it, the tiny bit of interest I have in it has all but 
evaporated. If anything, I would rather they continue to suc-
ceed without it. Especially if getting on radio still means they 
have to play their ridiculous games (interviews, payola).”  

 
“People in radio here who don't play BTS, that's why I use 

Spotify AND buy BTS albums. Living in the past, these radio 
people are. That's what Freddie Mercurys "Radio Gaga" was 
about. Barely anything has changed. Look, most of the world, 
their first language isn't English anyway. You know? Thanks 
to internet, people are waking up. These people in the industry 
continuing to sleep screams hello, boomer. They do their 
thing, I'll continue to support BTS.” 

 
“why is radio so important still in terms of charting, i feel 

my generation doesn't even listen to it in the car or whatever, 
we all just use our spotify etc. bc it's more personalized 
playlist and u don't have to sit thru annoying ads every 2 or 3 
songs.”  

 
Hertweck [50] points out that “streaming’s prevalence 

creates an avenue to success in the music industry, and art-
ists are no longer required to rely on Big Radio to reach 
mainstream.” In addition to streaming services’ access and 
convenience, the desire for user agency is a critical reason 
why certain streaming services have become increasingly 
relevant and supported by users. Fans are now much more 
aware of potential issues that traditional media carry due 
to abundant information shared on social media. Further-
more, listeners now have a legitimate alternative option to 
support their artists and still make the impact they want by 
focusing “efforts on streaming and purchasing digi-
tal/physical albums to make sure that BTS charts well” 
[49]. Indeed, BTS’s latest album debuted as number one in 
the US Billboard 200, with the lead single “On” debuting 
at number four on the Billboard Hot 100 even with almost 
no radio play [52]. Some fans, however, noted that Bill-
board also potentially made mistakes in its calculation and 
wanted clarification on how it arrived at the final numbers. 
Transparency is extremely important for these fans, as 
shown in the following tweets:  
 

“I think the ranking of no. 4 is amazing, but the calculation 
seems very suspect. At very least, Billboard should clarify 
how it arrived at those numbers because they are not adding 
up, and it doesn’t seem like they counted other streams out-
side of Spotify and YT. #billboardrecalculate.” 

 
“You tweeted the wrong date representing an incorrect 

tracking week, then made a new tweet, still claiming 18.3M 
US streams when the true figures show 18.9M streams in the 
US on Spotify and YouTube ALONE. Please hear us and re-
calculate @billboardcharts.” 
 

Design Implication: Recognize that users want more 
agency and provide transparency in how usage and popu-
larity are measured. 

 
Streaming services in fact benefit to some degree from 

fans’ desire to have more agency, as fans intentionally 
choose streaming services over traditional models of mu-
sic access like radio. Interestingly, streaming services are 
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also attempting to adopt a model similar to radio’s as they 
seek to expand their revenue sources by asking artists to 
pay to advertise their songs within the app. Spotify’s Mar-
quee, for example, notifies listeners about new songs/al-
bums for artists who pay $5,000 or more, but Shaw warns 
that “the effort is controversial because it’s complicating 
wider talks over long-term music rights between Spotify 
and the record companies” [53]. As music services try to 
balance meeting user needs and ensuring revenues, it is 
difficult to say which model is in the best interests of all 
stakeholders. Regardless of the final decisions made by 
music services, at the minimum, it is important to recog-
nize fans will continue to demand more agency, the ability 
to see the impact of their efforts, and transparency in how 
various statistics are collected and shared.   

4.4 Importance of Non-musical Factors 

One of the reasons for BTS’s massive success is often at-
tributed to the group’s abundant visual content, such as 
high-quality music videos and choreography videos [31]. 
Music listeners’ consumption and appreciation of music is 
changing as they consider more non-musical factors such 
as visual elements or information about the artists or labels 
when deciding what to listen to [37]. 

In addition to publishing various types of non-music 
materials, the transmedia storytelling BTS does through 
these different works is impressive. In order to truly under-
stand the whole narrative created by the band, fans not only 
have to listen to the music and decipher the lyrics, but also 
connect the clues hidden in the music video, choreography, 
performances from concerts and award shows, and printed 
books and webtoons containing episodes from the fictional 
narrative. In fact, there are numerous “theory” videos on 
YouTube analyzing the music of BTS in depth, connecting 
the symbols embedded in various creative works and ex-
plaining the ideas behind them [31].  

The visual elements that accompany music do not 
merely serve to enhance individuals’ experiences. Prior re-
search also shows that users watching the music videos 
with friends and family and engaging with other people 
around music videos or user-generated videos (such as re-
action or theory videos) are important and memorable so-
cial experiences [44]. This community connection is also 
evident for many reaction videos related to BTS, as re-
searchers have observed these videos generate substantial 
numbers of views and user comments.  

Jenkin [24] also discusses the importance of recogniz-
ing the interrelationship among different technologies and 
thinking beyond the affordances of individual technologies 
or tools, stating: 

  
Rather than dealing with each new technology in isola-
tion, we would do better to take an ecological approach, 
thinking about the interrelationship among different 
communication technologies, the cultural communities 
that grow up around them, and the activities they sup-
port. (p. 8) 
 
This assertion hints at the importance of exploring how 

tools and technologies that were not necessarily designed 
to support music listening or sharing music information 

could be used to complement the activities in commercial 
music services. 
 

Design Implication: Consider incorporating more vis-
ual and non-musical content, along with metadata pointing 
to related works, to promote fans’ engagement.  
 

In MIR user studies, YouTube consistently ranks very 
highly as the most used music service, often above services 
that are specifically designed for music [10], [20], [54]. 
While providing album art or sharing links to relevant mu-
sic videos are already basic features in many existing com-
mercial music services, we can envision more features that 
creatively incorporate visual elements. Spotify’s Enhanced 
Albums (which BTS used for its Map of the Soul: 7 album) 
or Pandora Stories, which allow artists to add video mes-
sages explaining the album concept, other visual materials, 
or voice commentaries, are good examples. These kinds of 
features not only enrich the music listening experience by 
adding a visual layer, but also provide more information 
about the music and the artist, which helps fans understand 
the context of creation and the creator’s intent. One sug-
gestion for expanding this feature is to allow users to in-
terpret the music and related materials and share their per-
spectives, or share stories about what the music means to 
them individually, which would contribute to the sense of 
bonding. This currently happens mainly in Twitter, 
YouTube, or online forums for fans, but it could be inter-
esting to foster the conversation within commercial music 
services, alongside the artist’s expression of the original 
intention. Additionally, providing metadata that links users 
to related non-music materials would allow fans to more 
easily access a variety of materials to assist their analysis 
and interpretation of creative works.  

5. CONCLUSION AND FUTURE WORK 

In this paper, we investigated a case study of BTS and 
ARMY to better understand the contextual complexities 
that drive music fans’ perceptions and behavior in com-
mercial music services. Through a case study of BTS and 
its fandom, ARMY, we derived and described four design 
implications for commercial music services to consider.  

This study examines only a single case study of BTS 
and ARMY; thus, there could potentially be additional fac-
tors that are missing in our discussion. As previously 
stated, this is an intentional methodological choice, given 
that the aim of the study is not to produce generalized find-
ings, but to gain insights from a deep investigation of a 
highly impactful single case study to help us think about 
design ideas related to commercial music services.  

The bonding experience created in these fan communi-
ties is increasingly important in our current situation, 
where most people are practicing some degree of social 
distancing due to COVID-19. In our future work, we plan 
to continue our research on fan communities and investi-
gate the underlying social structure and practices of the 
ARMY fandom. Additionally, we are interested in explor-
ing how fans are finding ways to connect with one another 
through music in this unprecedented situation by co-listen-
ing, participating in streaming events, and collaboratively 
creating and sharing playlists.  
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ABSTRACT

In this paper, we introduce the MIDI Degradation Toolkit
(MDTK), containing functions which take as input a musi-
cal excerpt (a set of notes with pitch, onset time, and dura-
tion), and return a “degraded” version of that excerpt with
some error (or errors) introduced. Using the toolkit, we
create the Altered and Corrupted MIDI Excerpts dataset
version 1.0 (ACME v1.0), and propose four tasks of in-
creasing difficulty to detect, classify, locate, and correct
the degradations. We hypothesize that models trained for
these tasks can be useful in (for example) improving au-
tomatic music transcription performance if applied as a
post-processing step. To that end, MDTK includes a script
that measures the distribution of different types of errors in
a transcription, and creates a degraded dataset with simi-
lar properties. MDTK’s degradations can also be applied
dynamically to a dataset during training (with or without
the above script), generating novel degraded excerpts each
epoch. MDTK could also be used to test the robustness
of any system designed to take MIDI (or similar) data as
input (e.g. systems designed for voice separation, metrical
alignment, or chord detection) to such transcription errors
or otherwise noisy data. The toolkit and dataset are both
publicly available online, and we encourage contribution
and feedback from the community.

1. INTRODUCTION

Music language models (MLMs) have been the subject of
much research in recent years. In the most general terms,
their goal is to learn the structure of a typical piece of
music, usually in symbolic form, as either a piano roll or
a (monophonic or polyphonic) sequence of notes. Such
models can be designed either as a stand-alone system (i.e.
to perform a specific task such as voice separation, metrical
alignment, or chord detection), or as part of an automatic
music transcription (AMT) system along with an acoustic
model.

In AMT systems, MLMs have thus far led to only
small increases in performance compared to state-of-the-
art acoustic models by themselves [9]. One possible reason

c© Andrew McLeod, James Owers, Kazuyoshi Yoshii. Li-
censed under a Creative Commons Attribution 4.0 International License
(CC BY 4.0). Attribution: Andrew McLeod, James Owers, Kazuyoshi
Yoshii. “The MIDI Degradation Toolkit: Symbolic Music Augmenta-
tion and Correction”, 21st International Society for Music Information
Retrieval Conference, Montréal, Canada, 2020.

is that such MLMs are typically run at the frame-level 1 ,
rather than at the note-level or the beat-level [20]. Re-
gardless, even beat- or note-level MLMs have not led to
very large improvements by themselves (e.g. [19,21]). One
approach to solving this issue has been proposed in [22],
where a separate “blending model” is used to combine the
acoustic model with the MLM. The blending model leads
to a small but significant increase in performance over us-
ing the acoustic model only.

Another possible reason for their minimal improvement
is that such MLMs are not directly trained to solve the task
at hand—to correct errors produced by the acoustic model.
That is, they are not discriminative models taking data with
errors as input and producing the correct transcription as
output. Instead, they are typically trained to model the dis-
tribution of clean (usually MIDI) data, and used to alter
the probabilistic predictions of the acoustic model. The
integration of such an MLM into an AMT system usually
involves searching through a large space of possible out-
put transcriptions. One potential solution to this problem
(at least when using an RNN-based MLM), is to train the
model with scheduled sampling [3], which uses its own
(noisy) outputs during training, teaching it to recover from
such mistakes. In fact, the MLM from [22] is trained us-
ing scheduled sampling. However, this training strategy is
only designed to allow the MLM to recover after a mistake,
rather than to recognize and correct a mistake directly.

Training a discriminative model which “cleans” the out-
put of an acoustic model is only feasible in the presence of
a dataset mapping degraded data to clean data. Whilst this
dataset could be produced by running an acoustic model on
a dataset mapping audio to the correct transcription, such
datasets are small relative to the amount of clean MIDI
data available elsewhere. Our MDTK package allows the
user to take any clean data and degrade it to have mu-
sical errors of their choosing. The pool of clean MIDI
data is many orders of magnitude larger than that which
maps audio to transcription data. For example, MAE-
STRO [7] has aligned MIDI and audio data of ~1 300 per-
formances totalling ~200 hours. In comparison, the Lakh
MIDI Dataset [14] comprises ~175 000 MIDI files 2 to-
talling ~9 000 hours. This is over 40 times the size, and

1 It is debatable as to whether frame-based models should be called
“language” models, since they do not work at a step related to the lan-
guage (e.g. musical notes or beats), but rather the frames of the acoustic
model. However, such a distinction is not the focus of this work.

2 The true number of files is slightly smaller than this as it is known
that some of these MIDI files are corrupted.
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additionally spans diverse genres. Using a dataset such
Lakh MIDI, MDTK allows for the creation of datasets
large enough to make the direct discriminative task fea-
sible. In addition, as we will discuss later in Section 2.2,
there is no need to restrict learning capability by explicitly
creating a degraded dataset: MDTK’s Degrader objects
can be used to degrade clean input dynamically when load-
ing it into the model, thus providing on-the-fly data aug-
mentation, enabling the model to be trained on a degraded
dataset which is essentially unlimited in size.

This process is analogous to performing learned data
augmentation—MDTK makes the discriminative task of
correcting errors feasible by increasing the effective size
of the dataset. Data augmentation has proved essential in
other fields. In [5], the authors advocate the automated ap-
plication of data augmentation for the ImageNet task [6], a
classification task for image data. They find that by auto-
matically tuning the type of data augmentation they apply
for each task, they can attain a significant improvement
over the state-of-the-art. In [1], the authors explicitly in-
vestigate the effects of generating augmented data in low-
data regimes, advocating the use of learned generators—
essentially what MDTK’s Degrader objects are—using
GANs. Finally, in [17], the authors solve their low-data
regime issue for environmental sound classification by us-
ing data augmentation, finding that performing augmenta-
tions such as pitch shifting and time stretching leads to a 6
percentage point boost in classification accuracy. MDTK
enables similar such data augmentation techniques to be
performed easily for AMT.

For non-AMT tasks, standalone MLMs typically take
as input MIDI files and output some alignment or label,
depending on the task. To our knowledge, the robustness
of these MLMs to noisy or incorrect data is rarely if ever
analysed. This is not necessarily an important factor when
clean MIDI files are used as input, but when such a MIDI
file is the result of noisy process such as AMT or Optical
Music Recognition (OMR; e.g. [18]), a model’s robustness
to noise becomes an important piece of information.

We propose that both of these shortcomings—poor
AMT post-processing, and that MLMs’ robustness to noise
has not been analysed—can be addressed using excerpts
of music to which noise is added. In an AMT system, a
post-processing model which is trained directly to identify
and correct similar noise should be better able to correct
noisy acoustic model outputs than a generic MLM. Like-
wise, the robustness of a standalone MLM to noisy input
can be analyzed with such noisy data, allowing the MLM
to be evaluated for its potential usefulness in downstream
tasks such as those involved in creating a complete piece
of sheet music given an audio signal.

In this paper, we introduce the MIDI Degradation
Toolkit (MDTK), a set of tools to easily introduce con-
trolled noise into excerpts automatically extracted from a
set of MIDI files. MDTK is similar to the Audio Degra-
dation Toolbox [11] for audio, but to the authors’ knowl-
edge, ours is the first toolkit of its kind for MIDI data.
The controlled noise includes (1) shifting the pitch of a
note; (2) lengthening, shortening, or shifting a note in time;

(3) adding or removing a note; and (4) splitting or joining
notes.

We also introduce the Altered and Corrupted MIDI Ex-
cerpts dataset version 1.0 (ACME v1.0), containing MIDI
excerpts which have been degraded (and some which have
not been degraded) using the toolkit, and four new tasks
of increasing difficulty: to (1) detect whether each excerpt
has been degraded; (2) if so, classify what degradation has
been applied and (3) locate where a degradation has taken
place; and (4) recover the original excerpt.

We present a simple baseline model for each task and
analyse its performance. These baselines are provided as
an easy starting point for researchers wanting to attempt
our proposed tasks or post-process their own AMT data.
We provide evaluation metrics for assessment and postu-
late that, if high performance were achieved, we would be
able to improve AMT output using models trained for these
tasks. We can easily swap out ACME v1.0 for a dataset
matching the errors for a specific AMT system using a pro-
vided script.

2. THE TOOLKIT

The MIDI Degradation Toolkit (MDTK) is a python pack-
age, installable with pip, which can be used to introduce
errors to MIDI excerpts. The code is released open source
under an MIT License, and is available online. We encour-
age feedback and contribution from the community in its
continued development.

Internally, MDTK stores each excerpt as a set of notes
in a Pandas [12] DataFrame with columns pitch (MIDI
pitch, with C4=60), onset (the onset time of the note, in
milliseconds), track, and dur (the duration of the note, in
milliseconds), all integers. It contains functionality to load
an excerpt from a MIDI file (using pretty_midi [15]), as
well as to read from and write to a CSV file.

2.1 Degradations

Each degradation provided in MDTK takes as input a
pandas DataFrame of an excerpt of music, and returns a
DataFrame with the given degradation. Some degrada-
tions (e.g. removing a note from an empty excerpt) are
not always possible. In such cases, a warning is printed
and None is returned. Care is also taken to ensure that no
overlaps on the same pitch are introduced by a degrada-
tion. There are a total of 8 degradations in MDTK, each of
which is described below.

The pitch_shift degradation changes the pitch of
a random note. By default, the new pitch is chosen uni-
formly at random from all possible pitches (a minimum
and maximum pitch can be given, and the valid range de-
faults to 21–108 inclusive). It can also be drawn from a
weighted distribution of intervals around the original pitch,
for example to emphasize octave errors from overtones.
We also include a flag to force the new pitch to align with
the pitch of some other note in the excerpt, to reduce out-
of-key shifts, if desired.

Three degradations shift a random note in time in some
way: onset_shift changes the note’s onset time, leav-
ing its offset time unchanged; offset_shift changes
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the note’s offset time, leaving its onset time unchanged;
and time_shift changes the note’s onset and offset
times by the same amount, leaving its duration unchanged.
For all of these degradations, care is taken to ensure that
the shifted note does not lie outside the excerpt’s initial
time range. A minimum and maximum resulting duration
can be specified, as well as a minimum and maximum shift
amount. We also include flags to align some combination
of the shifted note’s onset or duration with those of other
notes from the excerpt, ensuring the note lies on some met-
rical grid, if desired.

Two degradations can be used to either add a random
note to an excerpt (add_note), or remove a random note
from an excerpt (remove_note). Flags to align an added
note’s pitch, onset, or duration to those of existing notes are
included.

Two degradations can be used either to split a note into
multiple shorter consecutive notes or to combine consec-
utive notes at the same pitch into a single longer note.
Specifically, split_note will cut a random note into
some number of consecutive notes of shorter duration (the
first of which begins at the original note’s onset time and
the last of which ends at the original note’s offset time).
By default the note is split into two shorter notes, but
this—as well as a minimum allowable duration for the
resulting notes—can be set with a parameter. Similarly,
join_notes takes two or more consecutive notes at the
same pitch (with a maximum allowable gap—set with a
parameter—allowed between them), and joins them into a
single note with onset time equal to that of the first note
and offset time equal to that of the last.

2.2 Other Tools

2.2.1 Dynamically degrading clean data

MDTK includes the Degrader class, which can be
used to degrade excerpts dynamically. When instanti-
ating a Degrader object, the proportion of excerpts
that should remain undegraded is set with a parame-
ter (which can be 0). The probability of each degra-
dation being performed on an excerpt (if it is to be
degraded) can also be set at this time. Then, each
time Degrader.degrade(excerpt) is called, a ran-
domly degraded version of the input excerpt is generated
according to the proportions set during object creation.
The Degrader class can be easily inserted into any model
training procedure in order to dynamically create new de-
graded excerpts during each epoch, dramatically increas-
ing the amount of data available for training.

2.2.2 Automatically matching model errors

MDTK includes a measure_errors.py script, which
can be used to estimate the types of errors (specifically,
as degradations) typical to a particular AMT system,
given a set of transcriptions and ground truths from that
system. Note that there is no unique set of degrada-
tions which reproduce the errors that a transcription sys-
tem has made (e.g., any shift degradation can be triv-
ially replaced by a remove_note and an add_note).

We make no claim that the degradations found by the
script correspond to the exact causes of the errors made
by the AMT system. Rather, only that the distribution
of degradations produces excerpts with similar proper-
ties to those transcribed by that system. Nonetheless,
the script finds what we believe are a reasonable set of
degradations to have produced those errors using a sim-
ple heuristic-based approach. Notes are first matched
as correct if possible (same pitch, and onset and offset
within a changeable threshold), and the remaining notes
are checked for the various degradations in the follow-
ing order: (1) join_notes and split_note, either
of which may include an additional offset_shift
or onset_shift; (2) offset_shift, if the pitch
and onset time match; (3) onset_shift, if the pitch
and offset time match; (4) time_shift, but only if
the transcribed note overlaps the position of the corre-
sponding ground truth note; and (5) pitch_shift,
which must match in onset time, although an additional
offset_shift can be added. Finally, any remain-
ing unmatched notes are counted as add_note and
remove_note.

The output of the script is a json file containing the es-
timated proportion of each degradation in the given set of
transcriptions. It does not yet include values for the var-
ious degradation parameters (though this is planned for a
future update to MDTK). This output file can be used, for
example, to create a custom-tuned, static, degraded dataset
for training a model. However, the two tools can also be
combined in powerful ways. By passing this json file to
the Degrader constructor, a Degrader object can be
instantiated that generates degradations exactly matching
the estimated proportions. This could then be used to train
a model to correct the errors of that specific AMT system
using a relatively small amount of raw data.

3. THE DATASET
3.1 ACME version 1.0
The Altered and Corrupted MIDI Excerpts dataset v1.0
(ACME v1.0) is a dataset of 5 second excerpts with degra-
dations implemented by MDTK. It is not intended to emu-
late the errors of any specific AMT system, but rather serve
as a starting point for the modelling tasks we introduce be-
low.

The dataset is taken from two sources: (1) the piano-
midi dataset 3 , which contains 328 MIDI files of pseudo-
live performance 4 piano pieces of various styles (gen-
erally classical); (2) the 22194 primes from the small,
medium, and large sections of the monophonic and
polyphonic Patterns for Prediction Development Datasets
(PPDD-Sep2018) 5 , which contain excerpts drawn ran-
domly from the Lakh MIDI Dataset (LMD) [14].

We remove track information, flattening each excerpt to
a single track, simplifying the modelling tasks 6 ; analysis

3 http://www.piano-midi.de
4 The files are quantized and beat-aligned, but their tempo curves were

manually edited by their creator to sound more like live performance.
5 https://www.music-ir.org/mirex/wiki/2019:

Patterns_for_Prediction
6 The use of tracks is not standard our different data sources.
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of multi-track MIDI files will be addressed in future work.
We then fix any pair of overlapping notes of the same pitch
by cutting the first note at the onset time of the second.
We additionally set the offset time of the second note to
the maximum of the original offset times of the two notes,
such that no sustain is removed.

Once this pre-processing is complete, we select a ~5
second excerpt from each piece by choosing a random note
and all notes beginning in the subsequent 5 seconds, but
require that at least 10 notes be present. The excerpt ends
when the last held note is released. This duration is approx-
imately 2 bars for most songs so is small enough for the
models proposed in section 4 to train quickly. We degrade
8
9 of the excerpts, selecting the degradation uniformly at
random from the set of 8 defined degradations, and leave
the remaining 1

9 undegraded. For ACME v1.0, we use de-
fault parameter settings for all degradations, although we
intend to investigate the effect of different settings in future
work (and future releases of ACME datasets).

The excerpts and degraded excerpts are split randomly
into training, validation, and test sets of proportion 0.8,
0.1, and 0.1, creating the official splits for ACME v1.0.
The canonical form is available online as a set of CSV
files. Additionally, the MDTK package includes the
make_dataset.py script which we used to create the
dataset from scratch—including the automatic download-
ing of the raw data—and thus serves as a record of how it
was created.

3.2 Custom Dataset Creation

The make_dataset.py script can also be used to gen-
erate an ACME-style dataset from a user-provided set of
MIDI or CSV files. The user can specify custom sizes for
the excerpts, a custom distribution of the various degrada-
tions, as well as custom parameters for each. The script can
be given the json output of the measure_errors.py
script in order to match the properties of the generated
dataset with those measured from an AMT result. Alter-
natively, a user can simply choose to degrade individual
excerpts from their own training set by calling MDTK dur-
ing the training process, either manually or randomly using
the Degrader class.

4. PROPOSED TASKS

4.1 Motivation

These tasks are performed on ACME v1.0, and proposed in
lieu of taking existing AMT systems and measuring their
improvement when trained with the assistance of MDTK.
It is proposed that the output of arbitrary AMT systems
could be improved with models that can solve these tasks.

For instance, we could use a model trained to classify
the error contained within a given excerpt to call out for
human intervention. We could also train models to per-
form the actual fix; however, we show that, with the mod-
els we have chosen for our baseline, this problem is far
from solved.

Figure 1. Example piano rolls of a clean excerpt (left) be-
ing degraded with pitch_shift (right), including the labels
for Error Location (top right).

4.2 Tasks

We propose four tasks of increasing difficulty. Figure 1
shows a simple toy data point which has been pitch shifted
(changed note in red). We will use it as an example when
necessary throughout this section. We should note that
the tasks we introduce here are not in any way trivial, but
represent significant steps towards successful AMT post-
processing.

1. Error Detection: detect whether a given excerpt has
been degraded. This is a binary classification task with a
skewed distribution: 8

9 excerpts are degraded (the positive
class), and 1

9 are not degraded (the negative class). We
evaluate performance using F-measure but, since the neg-
ative class is the minority, for the purposes of F-measure
evaluation, we treat those as positives. Thus, a model
which always outputs “degraded” achieves a “reverse F-
measure” of 0.00 (with precision and recall both 0) rather
than its F-measure of 0.94 (with precision 8

9 and recall 1).
2. Error Classification: specify which degradation

(if any) was performed on each excerpt. This is a multi-
class classification problem, and since ACME v1.0 con-
tains a uniform distribution of each class, we evaluate per-
formance using accuracy and a confusion matrix to show
specific error tendencies for each degradation.

3. Error Location: assign a binary label to each (40
ms) frame of input identifying whether it contains an error
i.e. whether this frame contains a degradation. We evaluate
performance using the standard F-measure. The labels for
this task are shown in the top right of Figure 1.

4. Error Correction: output the original, un-degraded
version of each excerpt. In Figure 1, a model is given the
degraded excerpt (right) and expected to output the orig-
inal excerpt (left). For this task, we define our own met-
ric, helpfulness (H), based on two F-measures proposed by
[2]: frame-based F-measure with 40ms frames, and note-
based onset-only F-measure. We use the mir_eval [16]
implementation of note-based F-measure (with 50ms on-
set tolerance) to evaluate both the given excerpt and the
system’s output compared to the original excerpt. We take
the average between the two F-measures for each excerpt,
which we denote Fg (for the given excerpt) and Fc (for
the system’s corrected output). If Fg = 1 (the given ex-
cerpt was not degraded), H = Fc. If the given excerpt
was degraded, however (Fg < 1), H is calculated as in
Equation (1). An intuition for this calculation is as fol-
lows: H = 0.5 represents an output which is exactly as
accurate as the given excerpt (the error correction system
has neither helped nor hurt), and H scales linearly up to 1
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and down to 0 from there. For example, H = 0.75 repre-
sents an output which is in some sense twice as accurate
as the given excerpt (its error, 1 − Fc, is half of the given
excerpt’s error, 1−Fg). Similarly, H = 0.25 represents an
output which has twice as many errors as the input.

H =

{
1− 1

2
1−Fc

1−Fg
Fc ≥ Fg

1
2
Fc

Fg
Fc < Fg

(1)

4.3 Baseline Models
4.3.1 Data Formats

For input into our baseline models, we first quantize each
excerpt onto 40 ms frames, rounding note onsets and off-
sets to the nearest frame. We use two different input for-
mats for our baseline models, and provide data conversion
and loading functions for each of them.

The command format is based on the one designed by
[13]. Each excerpt is converted into a sequence of one-hot
vectors representing commands from a pre-defined vocab-
ulary of 356 commands: note_on(p), note_off(p), and
shift(t) (p ∈ [0, 127], t ∈ [1, 100]). The note on and off
commands represent note onsets and offsets at the current
frame, and the shift command skips t frames. Longer shifts
are represented by multiple shift commands.

The piano roll format represents each excerpt as two
binary piano rolls: one representing pitch presence in each
frame, and another represent pitch onsets in each frame.
These two piano rolls are concatenated together frame-
wise to form the model’s input.
4.3.2 Model details

The details for the models provided in this paper are brief.
For code which fully defines the models and the code used
to train and evaluate them, see the repo 7 . Our choice of
models was relatively arbitrary; they are easy to implement
with existing open source packages and easy to improve
upon.

Our baseline for Error Detection uses the command
format as input. It consists of an embedding layer of
size 128, followed by a basic Long Short-Term Memory
(LSTM) [8]. A dropout of 0.1 is applied to the final LSTM
state’s output, which is then passed to a fully-connected
layer of size 2 with softmax activation, resulting in a sin-
gle output for each input sequence.

Our Error Classification baseline uses the same de-
sign, but with output dimensionality 9 for the final layer
(one for each degradation plus one for no degradation).

For Error Location, we use the piano roll format. We
first feed the input frames into a bi-directional LSTM (Bi-
LSTM), and send the output of each Bi-LSTM state (with
dropout 0.1) into 3 linear layers, each with dropout 0.1
and ELU activation. These are each fed into a final fully-
connected layer of size 2 with softmax activation, resulting
in one output per input frame.

For Error Correction, we use the piano roll format,
and base our network on a basic Encoder-Decoder struc-
ture [4], where both the encoder and the decoder are Bi-
LSTMs. The input is passed directly into the encoder Bi-
LSTM, and the output at each frame is passed through a

7 https://www.github.com/JamesOwers/midi_
degradation_toolkit

Task Model Loss Metric

Error Detection Rule-based 0.466 0.000
Baseline 0.344 0.000

Error Classification Rule-based 2.197 0.113
Baseline 2.130 0.189

Error Location Rule-based 0.404 0.000
Baseline 0.109 0.525

Error Correction Rule-based 0.690 0.590
Baseline 0.693 0.000

Table 1. Loss and evaluation metric for the baseline and
rule-based models for each task on the ACME v1.0 test set.
Each task’s metric is different, as explained in the text.

single fully connected layer with dropout 0.1. This se-
quence is input into the decoder Bi-LSTM, each output of
which is fed into 4 linear layers which output a vector of
the same length as the input.

The models were trained using the Adam optimizer
[10], and a grid search was performed for weight decay,
learning rate, LSTM hidden-unit size, and linear layer sizes
(for full details, see the code). The model with the lowest
validation loss on each task is used as the baseline.

4.4 Analysis

To gauge the difficulty of each task, we compare each of
the baseline models to a simple rule-based approach. Like
our baseline models, the rule-based systems output proba-
bility values ∈ [0, 1]. For Error Detection, the rule-based
system returns an 8

9 probability of each data point being
degraded. For Error Classification, the rule-based system
outputs a 1

9 probability for each class. For Error Location,
the rule-based system outputs a 0.06 probability that each
frame has been degraded (the proportion of frames that are
degraded in the training set is 0.06). Finally, for Error Cor-
rection, we calculate p(1|0) = 0.01 and p(1|1) = 0.96
from the training set 8 and have the system output these
values for each cell in a given piano roll.

The results for each task on the ACME v1.0 test set
are shown in Table 1. From the losses, it is clear that the
baseline models have learned something, since all of their
losses are lower than the rule-based losses except for in Er-
ror Correction. However, from the metrics, it is also clear
that there is much room for improvement on each of the
proposed tasks (as we would hope).

For Error Detection, the baseline predicts 1 (degraded)
for every data point, just like the rule-based system, likely
because of the skew of the training data. As a simple at-
tempt to overcome this tendency, we trained another model
identical to the baseline which weights the loss of each data
point inversely proportional to that label’s frequency in the
training set. This results in a model with greater overall
loss (as expected), but which outputs some 0s, achieving a

8 That is, for the degraded piano rolls from the training set, 1% of cells
with a 0 and 96% of cells with a 1 map to a value of 1 in the corresponding
cell of the clean piano roll.
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Figure 2. Left: Confusion matrix showing the distribution
of the baseline Error Classification model’s classifications,
normalized by true label. Rows show the true label, and
columns show the predicted label. Right: The baseline Er-
ror Location model’s F-measure for each degradation type.

reverse F-measure of 0.155. Overcoming the skew of the
dataset may prove to be a challenge for this task.

For Error Classification, the baseline achieves an accu-
racy of greater than that of the rule-based system. The
baseline’s confusion matrix is shown in Figure 2 (left),
where rows represent the ground truth label and columns
represent its output. This shows error tendencies, and
(more importantly) gives an idea of the general difficulty
of detecting each degradation. Here, it can be seen that the
maximum point in each column is always on the diagonal,
showing that the model does seem to have learned some-
thing sensible. It performs well on the add note degrada-
tion, classifying 32% of those data points correctly. Pitch
shift, time shift, and remove note seem to be the most diffi-
cult, while join notes is a common target for false positives.
We are interested to see whether the above trends continue
in future work on Error Classification, and intend to further
investigate their causes.

The Error Location baseline outperforms the rule-based
system in terms of both loss and F-measure by wide mar-
gins. It achieves this F-measure with a precision of 0.844
and a recall of 0.381, so although it rarely guesses that a
frame has been degraded, it is usually correct when it does.
Figure 2 (right) presents the baseline’s F-measure split by
degradation type, which shows the model performing best
on add_note, but also well for onset and offset shifts (preci-
sion is over 0.9 for all three). It is slightly worse with pitch
and time shifts (precision over 0.6 for both), and performs
poorly on the other degradations (the value for “none” will
always be 0 since it has no positives). Given the relative
success of this model compared to the other tasks’ base-
lines, pre-training a model for this task before continuing
to train it for another task might be an avenue for improved
performance. Another strategy could be to use a model
trained for this task as an attention mechanism for some of
the other tasks.

Error Correction is clearly the most difficult task of the
four, and the baseline model’s performance reflects this.

Although its loss is similar to that of the rule-based system,
its helpfulness lags clearly behind. The rule-based model’s
strategy of (essentially) reproducing the input turns out to
be a strong baseline. Our baseline, on the other hand, al-
most always outputs empty piano rolls, no matter the input.
The difficulty of this task might require a more modular
approach than the presented end-to-end baseline, perhaps
combining the results of models from tasks 2 and 3 with a
system designed to correct a specific degradation affecting
a specific set of frames.

5. CONCLUSION

In this paper, we have introduced the MIDI Degradation
Toolkit (MDTK), which contains tools to “degrade” (in-
troduce errors to) MIDI excerpts. The toolkit is publicly
available online 9 under an MIT License, and we encour-
age contributions and feedback from the community. Us-
ing MDTK, we have created the Altered and Corrupted
MIDI Excerpts v1.0 (ACME v1.0) dataset 10 and include
in MDTK a tool to create custom ACME-style datasets
with different settings or data. We have proposed a set
of four new tasks of increasing difficulty involving such
datasets: Error Detection, Classification, Location, and
Correction, and designed evaluation metrics and scripts for
each of them. We also designed and presented simple mod-
els to be used as a baseline for each, which show that the
proposed tasks are non-trivial, and may require innovative
solutions.

The toolkit is ready to be used for improving Automatic
Music Transcription (AMT). To do so, a user can:

1. use measure_errors.py to analyse the types of
errors made by an AMT system or acoustic model.

2. instantiate a Degrader with the configuration pro-
duced by measure_errors.py—this can gener-
ate unlimited data matching the errors made by the
system from step (1).

3. train a discriminative model using data generated by
the Degrader.

4. apply that model to the output of the model from step
(1) and evaluate the difference in performance.

As performance on the proposed tasks modelling
ACME v1.0 improves, we intend to introduce ACME v2.0
with additional features such as multi-track excerpts, a
track-based degradation, longer excerpts, multiple degra-
dations per excerpt, and various parameter settings for
the degradations. We also intend to analyze the effect of
adding noise on MLM performance.
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ABSTRACT

Tagging a musical excerpt with an emotion label may re-
sult in a vague and ambivalent exercise. This subjec-
tivity entangles several high-level music description tasks
when the computational models built to address them pro-
duce predictions on the basis of a "ground truth". In
this study, we investigate the relationship between emo-
tions perceived in pop and rock music (mainly in Euro-
American styles) and personal characteristics from the lis-
tener, using language as a key feature. Our goal is to under-
stand the influence of lyrics comprehension on music emo-
tion perception and use this knowledge to improve Music
Emotion Recognition (MER) models. We systematically
analyze over 30K annotations of 22 musical fragments to
assess the impact of individual differences on agreement,
as defined by Krippendorff’s α coefficient. We employ
personal characteristics to form group-based annotations
by assembling ratings with respect to listeners’ familiar-
ity, preference, lyrics comprehension, and music sophisti-
cation. Finally, we study our group-based annotations in a
two-fold approach: (1) assessing the similarity within an-
notations using manifold learning algorithms and unsuper-
vised clustering, and (2) analyzing their performance by
training classification models with diverse "ground truths".
Our results suggest that a) applying a broader categoriza-
tion of taxonomies and b) using multi-label, group-based
annotations based on language, can be beneficial for MER
models.

1. INTRODUCTION

Several studies suggest that the main reason people en-
gage with music is its emotional effect [1–3]. This makes
the idea of computational algorithms that can "predict" the

c© Juan Sebastián Gómez-Cañón, Estefanía Cano, Perfecto
Herrera, Emilia Gómez. Licensed under a Creative Commons Attribution
4.0 International License (CC BY 4.0). Attribution: Juan Sebastián
Gómez-Cañón, Estefanía Cano, Perfecto Herrera, Emilia Gómez, “Joyful
for you and tender for us: the influence of individual characteristics and
language on emotion labeling and classification”, in Proc. of the 21st Int.
Society for Music Information Retrieval Conf., Montréal, Canada, 2020.

emotions in music particularly intriguing and provocative.
These algorithms evaluate emotionally relevant acous-
tic features from the audio signals, and correlate them
with certain emotions that the music could convey, ex-
press or induce. Recently, deep learning approaches have
been used to further improve emotion recognition [4–6].
However, the performance of these algorithms may have
reached a "glass ceiling" possibly due to the subjective na-
ture of the perception of emotions [7,8], the limited agree-
ment in the annotations of datasets [9–11], the lack of an
agreed methodology for annotation gathering [2], the gen-
eralized confusion between perceived and induced emo-
tions [3, 12], amongst other reasons. In particular, the low
agreement problem extends to other high-level description
tasks in Music Information Retrieval (MIR) such as music
auto-tagging [13], music genre recognition [14, 15], music
similarity [9, 11], and even computationally well-defined
tasks like automatic chord estimation [16] and beat track-
ing [17]. Given the importance of annotation collection
and in an attempt to improve their quality, we address two
research questions in this paper: RQ1 - Do personal char-
acteristics and mother tongue have an influence on the an-
notation of perceived emotions for listeners? RQ2 - Can
this information be used to improve MER algorithms? The
rest of the paper is structured as follows: Section 2 reviews
basic definitions and previous work, in Section 3 we detail
the methodology of our study, including annotation gather-
ing, clustering, and classification schemes. Section 4 pro-
vides results of our study which are later discussed in Sec-
tion 5.

2. RELATED WORK

In this study, we focus on the perception of emotions as
a key factor in the "musical communication" between mu-
sic itself and a listener. Perceived emotions refer to those
recognized by the listener through the interpretation of mu-
sical properties [3]. In contrast, induced emotions concern
the arousal of psycho-physiological responses [18]. 1 The
relation between musical properties and emotion percep-
tion has been widely researched in the literature [3, 12]:

1 For a review of the emotivist-cognitivist argument, refer to [19, 20].
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happiness is linked to fast mean tempo, bright timbre,
sharp duration contrasts; sadness is related to slow mean
tempo, low sound level, dull timbre, slow vibrato; fear is
linked with very low sound level, large sound level vari-
ability, large timing variations.

From music psychology, two dominant views or tax-
onomies for emotion representation prevail [21]:

• Categorical approach: emotions are represented as
categories, distinct from each other - such as happi-
ness, sadness, anger, and fear [22]. The major draw-
backs of this approach are: (1) the amount of cate-
gories results too small compared to the richness of
human emotion, and (2) the ambiguity of using lan-
guage during self-reports [7].

• Dimensional approach: emotions are conceptual-
ized based on their positions on a few dimensions,
mainly arousal and valence (AV). Russell popular-
ized the two-dimensional circumplex model, where
the valence dimension describes the pleasantness or
positiveness of the emotion, and the arousal dimen-
sion describes the activation or energy (i.e., happi-
ness would have positive arousal and valence) [23].
However, the major flaw is that categories are not
mutually exclusive and tend to overlap (i.e., rage-
anger), making the mapping of categories on the di-
mensional space vague and unreliable [7].

In the particular case of instrumental classical music,
Schedl et al. explored the relationship between listeners’
characteristics and nine categories of emotion on segments
from the 3rd Symphony Eroica by L.V. Beethoven [10].
Their results suggest that: (1) the perception of transcen-
dence and power correlates significantly with affinity to
classical music; (2) participants trained on classical mu-
sic tend to disagree more on perceived emotions of peace-
fulness, tension, sadness, anger, disgust, and fear; (3) the
agreement among perceived emotions decreases with in-
creasing familiarity with the piece. Our work is based on
this study, however we focus on music with lyrics of pop
and rock style. Very few studies have explored different
styles of music and researchers report that 50% of music
and emotion studies focus on classical music [2,24]. When
it comes to annotation reliability, researchers have studied
ways of increasing inter- and intra-rater agreement for mu-
sic similarity. Flexer and Lallai found evidence that upper
bounds for inter-rater agreement (i.e., measured between
different subjects) cannot be increased for this task, while
the intra-rater case can be improved (i.e., measured on rat-
ings from the same subject at different time) [11]. We base
our research on increasing inter-rater agreement by ana-
lyzing listeners with similar characteristics and assembling
group-based annotations based on listeners characteristics.
Group-based MER has been attempted by Yang et al. by
assembling annotations according to cultural factors, mu-
sic experience, and personality traits [7, 25]. Their results
suggest insignificant improvement for the regression task
as compared to using general averaged annotations. How-
ever, and to the extent of our knowledge, this is the first

work that uses language and self-reported lyrics compre-
hension to group annotations of perceived emotion.

3. METHODOLOGY

The main contribution of our work is to address open ques-
tions from previous studies by focusing on rock and pop
music. We use these musical styles since they appear to be
similar across different cultures and are musically homo-
geneous, even when sung in different languages. Contrary
to most studies, we focus on a small set of songs with ex-
isting emotion annotations and gather large-scale, diverse
annotations per song from participants of different mother
tongues. The goal of our work is to study the relationship
between listeners’ demographics, preference, familiarity,
musical knowledge, and native language with agreement
of perceived emotions in music. In order to achieve this,
we use these personal characteristics to form group-based
annotations and analyze the agreement of participants be-
longing to these groups. We then perform manifold learn-
ing and K-means clustering to study if group-based anno-
tations yield representations that are more similar amongst
them. Finally, we compare the performance of well-known
classifiers trained using these annotations, in order to ana-
lyze the impact of grouping variants on the MER task.

3.1 Emotion annotation gathering

Our pool of annotators were presented with surveys de-
signed with PsyToolkit [26] in four languages: Spanish,
English, German and Mandarin. The survey was structured
as follows: (1) collection of general demographic infor-
mation (age, gender, country of origin and formation, and
language), (2) volume adjustment task, (3) explanation of
the difference between perceived and induced emotions,
(4) random presentation and annotation of excerpts with
a 5-point Likert response format per emotion, and (5) the
Music Sophistication Index self-report inventory [27]. In
(2), each user was asked to set the volume w.r.t. a 1 KHz
sinusoid making it barely audible. In (4), we used syn-
onyms for each emotion for clarity, which were validated
by native speakers from each language, following [10]. For
each excerpt, we collected information about the listeners’
preference, familiarity, and understanding of the lyrics. 2

We selected a set of excerpts from the 4Q emotion
dataset [28], which was previously annotated with cat-
egories in the four arousal-valence (AV) quadrants: Q1
(positive valence and arousal, A+V+), Q2 (positive arousal
and negative valence, A+V-), Q3 (negative valence and
arousal, A-V-), Q4 (negative arousal and positive valence,
A-V+). In order to gather annotations on a larger scale,
we asked participants to rate the excerpts with the follow-
ing emotion categories: Q1 - joyful activation, power, sur-
prise, Q2 - anger, fear, tension, Q3 - bitterness, sadness,
Q4 - peace, tenderness, transcendence. These emotion
adjectives were selected from the Geneva Emotion Music
Scale (GEMS) [29] and a subset of basic emotions [30]. To
select the target songs, we queried for these adjectives in

2 Refer to Figure 1 - supp. mat. for the annotation interface.
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English on the datasets’ metadata. Since some words were
not found, synonyms were used for certain emotions (e.g.,
fear - anguished). 3 From the resulting excerpts, we ran-
domly selected two excerpts per emotion for a total of 22
fragments. All audio excerpts were normalized from -1 to
1 in amplitude, in order to balance the volume during play-
back. We collected additional audio features from Spotify
API [31]: beats per minute, energy [0,1], and valence [0,1].

3.2 Emotion agreement analysis

Following [4, 10, 16], we used inter-rater reliability statis-
tics to assess the agreement of the annotated data with re-
spect to personal characteristics [32]. Researchers have
found that Krippendorff’s α is used increasingly to assess
reliability in content analysis methodologies [33]. We em-
ployed Krippendorff’s coefficient α defined as:

α = 1 − Do

De
(1)

where Do is the measure of observed disagreement:

Do =
1

n

∑
c

∑
k

ock · metricδ
2
ck (2)

and De is a measure of the expected disagreement given
chance:

De =
1

n(n− 1)

∑
c

∑
k

nc · nk · metricδ
2
ck (3)

The variables ock, nc, nk are the frequencies of values of
observed coincidences of c and k values or ranks, and n
is the total amount of paired c − k values or ranks. Ad-
vantages of using α are: the suitability for any number of
observers, handling of any type of metric (nominal, inter-
val, ordinal), handling incomplete or missing data, and not
requiring a minimum of sample size. When disagreement
is absent (Do = 0), there is perfect reliability (α = 1). Con-
versely, when agreement and disagreement are a matter of
chance (De = Do), there is absence of reliability (α = 0).
Nevertheless, α could be smaller than zero if the sample
size is too small or agreement below what would be ex-
pected by chance. According to [32], data with α ≥ 0.8 is
considered to have good agreement and 0.4 ≤ α ≤ 0.667
shows fair agreement. Finally, metricδck represents the dif-
ference function: the squared difference between any two
values or ranks c and k, depending on the data gathering
approach (in our case, we use an ordinal metric).

To obtain annotation groupings, we defined positive and
negative filters to classify ratings based on different user
responses and characteristics. Considering the 5-point Lik-
ert response format, we define a positive filter by keeping
ratings higher than 3 (neither agree or disagree) and a neg-
ative filter by keeping those less than 3. These filters were
used to form groups using the users’ response of prefer-
ence, familiarity, and understanding for each excerpt. In
the case of behavioral factors of music sophistication, we

3 Note that query synonyms in English differ to the description syn-
onyms used and translated for each survey, refer to Table 1 (supp. mat.).

specified positive and negative filters by grouping the an-
notations of participants with higher and lower scores than
the population mean, respectively. We collected six behav-
ioral factors, yet used the ones in bold to group ratings:
Active Engagement, Perceptual Abilities, Musical Train-
ing, Emotion Perception, Singing Abilities, and General
sophistication. 4

In order to evaluate the collected annotations, we clus-
tered group-based ratings in 2D and 3D spaces. Our in-
tuition is that group-based annotations are more similar
amongst them, and that clusters obtained with these an-
notations show less variance than those obtained with the
original "ground truth". We generated a low-dimensional
representation of all annotations with manifold learning,
used one of the proposed filters to keep a group, clus-
tered the resulting embeddings, and compared the resulting
clusters with the original "ground truth" (i.e., four quad-
rants of emotion). We use Adjusted Rand Index (ARI)
and Adjusted Mutual Information (AMI) for all filters as
measures of quality of the clusters. We proceeded as fol-
lows: (1) standarization of the annotations, (2) categorical
Principal Component Analysis (CATPCA), (3) manifold
learning for dimensionality reduction, and (4) clustering
of embeddings into the four quadrants of emotion using K-
means (k-means++ initialization [34]). In (2), we use 10
components retaining 97.4% from variance. 5 In (3), we
used the following algorithms: Multi-dimensional Scaling
(MDS) [35], t-distributed Stochastic Neighbor Embedding
(t-SNE) [36], and Uniform Manifold Approximation and
Projection for Dimension Reduction (UMAP) [37]. 6

3.3 Emotion classification approach

Despite the low number of data instances (22), we trained
support vector machine (SVM) classifiers to study how
group-based annotations compare to annotations from all
participants. Following relevant literature [4, 38, 39], we
extracted the IS13 ComParE feature set with the openS-
MILE toolbox [40]: 260 low-level features (mean and stan-
dard deviation of 65 emotionally-relevant acoustic descrip-
tors, and their first order derivatives) with a frame size of
60 ms and a 10 ms hop size. These features are widely
used as a benchmark for speech and music emotion recog-
nition tasks [4]. Each feature vector was aggregated in seg-
ments of 5 seconds with a 75% overlap, resulting in 24
feature vectors per excerpt and 528 samples in total. We
performed standarization over each feature and PCA for
dimensionality reduction. After a Scree test, we selected 8
components that retained 65.7% of the variance. We per-
formed a grid search for parameter optimization with the
following settings (final parameters in bold): regulariza-
tion parameter C [0.001, 0.01, 0.1, 1, 10] and radial ba-

4 Refer to Table 2 - supp. mat. for music sophistication results.
5 Refer to Figure 2 - supp. mat. for an example of CATPCA.
6 We used different settings for each algorithm (final parameters in

bold): (1) MDS - metric and non-metric, iterations [300, 1000, 3000],
epsilon [1e-1, 1e-3, 1e-9, 1e-12], (2) t-SNE - perplexity [3, 5, 10, 30, 50,
100], learning rate [200, 500, 1000], number of iterations [1000, 3000],
(3) UMAP - minimum distance [0.1, 0.25, 0.5, 0.8, 0.99], number of
neighbors [10, 30, 100, 200], metric [Euclidean, Cosine and Chebyshev].
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855



Q1 Q2 Q3 Q4
Configuration Ratings % joy surp. pow. ang. fear tens. sad bit. pea. tend. tran.
All 27720 100.00% 0.393 0.064 0.273 0.335 0.169 0.253 0.340 0.215 0.357 0.396 0.062
By Preference (>3) 11275 40.67% 0.402 0.074 0.275 0.264 0.142 0.171 0.367 0.204 0.363 0.414 0.066
By Preference (<3) 8976 32.38% 0.325 0.036 0.267 0.368 0.158 0.309 0.308 0.191 0.352 0.384 0.049
By Familiarity (>3) 4477 16.15% 0.445 0.065 0.199 0.314 0.223 0.158 0.376 0.284 0.266 0.297 0.038
By Familiarity (<3) 21439 77.34% 0.319 0.047 0.275 0.329 0.145 0.270 0.304 0.173 0.385 0.414 0.070
By Understanding (>3) 13827 49.88% 0.428 0.074 0.276 0.269 0.160 0.195 0.361 0.250 0.324 0.365 0.046
By Understanding (<3) 9977 35.99% 0.328 0.044 0.263 0.361 0.156 0.299 0.308 0.159 0.361 0.391 0.070
By Music Training (>µ) 12320 44.44% 0.406 0.074 0.327 0.407 0.190 0.268 0.364 0.235 0.424 0.456 0.067
By Music Training (<µ) 15400 55.56% 0.381 0.052 0.231 0.283 0.151 0.236 0.318 0.194 0.306 0.348 0.054
By Emotion (>µ) 16500 59.52% 0.430 0.058 0.299 0.381 0.212 0.288 0.378 0.260 0.411 0.426 0.068
By Emotion (<µ) 11220 40.48% 0.343 0.067 0.230 0.273 0.114 0.206 0.287 0.149 0.289 0.351 0.046
By General Sophistication (>µ) 13640 49.21% 0.415 0.083 0.319 0.400 0.195 0.274 0.357 0.251 0.441 0.466 0.091
By General Sophistication (<µ) 14080 50.79% 0.371 0.043 0.225 0.275 0.147 0.226 0.327 0.180 0.283 0.331 0.038

Table 1. Krippendorff’s α for each emotion for all participants filtered by preference, familiarity, lyrics comprehension,
and music sophistication (positive and negative) using only music with lyrics (17 in English and 3 in Spanish).

sis function kernel with coefficient gamma [0.001, 0.01,
0.1, 1]. We report precision, recall, and F1-score using 5-
fold cross-validation to evaluate the models. We test three
possible "ground truths" per excerpt: (1) single-label an-
notations from the original metadata (MD), (2) multi-label
annotations from all participants (All), and (3) multi-label
annotations from participants belonging to a group (Fil-
tered). In cases (2) and (3), we summarized ratings by
taking the statistical mode of each emotion rating across
participants. We employ the mode as some ratings showed
a bimodal distribution and our annotations were categori-
cal. Since the mode may result in multiple maximum val-
ues, we created multi-label annotations (i.e., an excerpt can
have a mode of 4 for both anger and tension). Anonymized
data and evaluation code are available online. 7

4. RESULTS

4.1 Emotion annotation and agreement analysis

The participation was unbalanced regarding languages: a
total of 126 (65 Male, 61 Female, M = 34.12 years,
SD = 11.75) participants completed all tasks in our ex-
periment from English (n = 26), Spanish (n = 56), Man-
darin (n = 27), and German (n = 17) surveys. Listeners
that wanted to participate in the survey but were not na-
tive to any of the languages were asked to take the English

7 https://github.com/juansgomez87/
agreement-emotion

Emotions Eng. (26) Spa. (56) Man. (27) Ger. (17) All (126)
anger 0.429 0.311 0.367 0.482 0.364
bitter 0.278 0.209 0.155 0.278 0.202
fear 0.241 0.175 0.091 0.207 0.171
joy 0.304 0.437 0.311 0.476 0.372
peace 0.401 0.332 0.401 0.438 0.371
power 0.379 0.287 0.296 0.325 0.289
sad 0.330 0.343 0.279 0.378 0.326
surprise 0.041 0.055 0.068 0.218 0.075
tender 0.444 0.314 0.452 0.581 0.396
tension 0.264 0.324 0.282 0.323 0.296
transc. 0.080 0.049 0.083 -0.012 0.057

Table 2. Krippendorff’s α for each emotion across differ-
ent languages.

version (n = 15). Since the surveys were made available
through different channels, listeners were asked to state the
country in which they spent the formative years of child-
hood and youth 8 . We evaluated outliers for every musical
fragment, finding that the participants that systematically
annotated outside the interquartile range (Q1-Q3) did so at
most 10.33% of the time. Hence, we decided to keep all
ratings for analysis. Median and Kruskal-Wallis H tests
showed that there was a statistically significant difference
in the ratings of emotions between raters from the surveys
of each language (p < 0.01). 9 Concretely, the ratings of
anger, bitterness, fear, sadness, surprise, tenderness, ten-
sion, and transcendence have different distributions across
the surveys. This suggests that emotion significance varies
across cultures and languages as hypothesized in our study.
Emotion adjectives might have varied meanings and asso-
ciations across different languages and cultures as stud-
ied by [41], but results should be validated with a higher
amount of participants and excerpts.

Results from the agreement analysis are presented in
Tables 1 and 2, and appear bold when the agreement of
the emotion is higher than 0.05 as to the agreement mea-
sured across all participants. Conversely, the text in italic
indicates a difference less than -0.05, following [10]. Ta-
ble 1 shows agreement over all participants that belong
to a certain group (see Configuration column). Hence, it
contains information about the number of ratings for the
corresponding filters (groups). The music selection con-
tained 20 songs with lyrics (17 in English and 3 in Span-
ish), thus agreement was analyzed only for this subset for
lyrics comprehension to be meaningful. We find two ten-
dencies for groups assembled with preference, familiarity,
and lyrics comprehension: (1) positive filters will result
in higher agreement with respect to all ratings for emo-
tions such as joy, surprise, power, sadness, and bitterness;
(2) positive filters will result in lower agreement for emo-
tions such as anger, fear, tension, peace, tenderness and
transcendence. Interestingly, emotions in (1) belong to

8 Subjects participated from the following countries: (1) Spanish - Bo-
livia, Colombia, Ecuador, Perú, Spain, Uruguay, (2) Mandarin - Mainland
China, Taiwan, (3) German - Austria, Germany, Switzerland, and (4) En-
glish - Australia, Bulgaria, Belgium, Brazil, France, Greece, India, Italy,
Portugal, Romania, United Kingdom, United States.

9 Refer to Table 3 - supp. mat. for multiple pairwise test results.
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quadrants Q1 (A+V+) and Q3 (A-V-), while emotions in
(2) belong to Q2 (A+V-) and Q4 (A-V+). Regarding mu-
sical sophistication, we find a consistent trend in groups
assembled with musical training, emotion perception and
general sophistication: positive filters will result in higher
agreement in all filters with respect to all ratings. Table
2 shows agreement over all participants from each survey
and exposes low agreement over certain emotions: bitter-
ness, fear, power, surprise, and transcendence. On the
other hand, a higher agreement is reached for emotions
such as anger, joy, peace, sadness, and tenderness. The
results confirm that participants of different surveys show
significant differences in the emotions perceived from mu-
sic. Additionally, we found positive linear correlations, as
obtained by Pearson’s coefficient, between anger, bitter-
ness, fear, and tension; peace and tenderness; joy, power,
and surprise; sadness and bitterness. 10

4.2 Implications for MER models

Table 3 shows the clustering evaluation when comparing
clusters from manifold learning representations with the
original "ground truth". Scores are reported in bold when
they are higher than the scores obtained without filters
(All). In every case, positive filters result in improved
clusterability (particularly when selecting participants with
high scores for music sophistication). MDS and UMAP
appear to separate the data better than t-SNE before per-
forming K-means. As a baseline, applying K-means on
the raw data shows that manifold learning techniques can
be useful to find similarities between group-based ratings.
We argue that using manifold learning previous to clus-
tering extracts possible similarities across annotations that
belong to a given AV quadrant, yielding annotation embed-
dings that are easier to cluster. 11

MDS +
K-Means

t-SNE +
K-Means

UMAP +
K-Means

K-Means
Raw data

ARI AMI ARI AMI ARI AMI ARI AMI
All 0.248 0.255 0.191 0.214 0.244 0.257 0.221 0.229
Pref. (>3) 0.267 0.282 0.195 0.230 0.252 0.271 0.197 0.223
Pref. (<3) 0.234 0.234 0.184 0.206 0.244 0.248 0.215 0.234
Fam. (>3) 0.301 0.319 0.252 0.264 0.295 0.305 0.223 0.251
Fam. (<3) 0.231 0.241 0.183 0.202 0.236 0.245 0.218 0.220
Und. (>3) 0.253 0.260 0.225 0.239 0.250 0.263 0.213 0.230
Und. (<3) 0.235 0.250 0.187 0.210 0.244 0.243 0.209 0.219
MT (>µ) 0.283 0.290 0.210 0.242 0.302 0.309 0.286 0.289
MT (<µ) 0.214 0.227 0.180 0.203 0.207 0.220 0.172 0.185
Emo. (>µ) 0.303 0.305 0.216 0.242 0.297 0.309 0.262 0.271
Emo. (<µ) 0.186 0.199 0.159 0.176 0.179 0.196 0.151 0.162
GS (>µ) 0.303 0.303 0.221 0.245 0.291 0.303 0.307 0.308
GS (<µ) 0.202 0.217 0.169 0.193 0.202 0.219 0.155 0.165

Table 3. Clustering metrics for all filters and manifold
learning algorithms. MT refers to Musical Training, Emo.
to Emotion Perception, GS to General Sophistication. The
last column shows clustering results on the raw data.

An example of the group-based, multi-label annotations
produced by using the positive understanding filter can be
seen in Figure 1. This plot compares different "ground

10 Refer to Table 4 - supp. mat. for full correlation analysis.
11 Refer to Figures 3-5 - supp. mat. for visual sample embeddings.

truths" for the data according to the collected ratings and a
given filter that we used to train our classifiers. For exam-
ple, excerpt 0 (originally labeled as anger) is also labeled
with bitterness, fear, power, and tension when considering
our annotations (top-right plot). In contrast, excerpt 1 is la-
beled as power when considering all ratings, but labeled as
anger, bitter, and power when considering the filter (com-
parison of top- and bottom-right plots).
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Figure 1. Example of annotations using All ratings (top
row) and the positive understanding filter (bottom row).
White rectangles highlight the original annotation from the
metadata (MD - single-label). For every plot, rows repre-
sent one of the 22 excerpts and columns represent an emo-
tion. The plots on the left show the mode over the partic-
ipants for each emotion. The plots on the right show se-
lected multi-labels for each excerpt used for classification.
The color bar represents the 5-point Likert scale.

Classification experiments are reported in Table 4, in-
cluding precision (P), recall (R) and F1-Score (F) of clas-
sifiers trained on annotations with different filters and 5-
fold cross-validation. We compare three settings: original
labels from the metadata (MD - single-label), annotations
collected from all raters (All - multi-label), and annotations
from selected raters with respect to the defined groups (Fil-
ter - multi-label). Comparisons are presented by subtract-
ing the mean performance scores of classifiers trained on
two annotation scenarios. For example, All - MD refers to
the comparison between a classifier trained on all annota-
tions and one trained on the original metadata. Scores are
reported in bold when the difference is greater than 0.05
and in italic when it is less than -0.05. We also report the
Jaccard coefficient (JC), bounded from [0,1], to estimate
the similarity of the compared ratings in each case [42]. JC
shows that the similarity from the original "ground truth"
and the collected annotations is low (i.e., All - MD and Filt.
- MD), which is expected since we compare single- and
multi-label annotations. Interestingly in these two cases,
classification results from the collected annotations (multi-
label) provide consistent mean improvements of 15.01 per-
cent points in precision and 11.8 in F1-scores with respect
to classifiers trained on the original "ground truth" (single-
label). We argue that improvements are due to the corre-
lations between tags that are exploited in the multi-label
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case. In the case of comparing filtered and all collected an-
notations (i.e., Filt. - All), we find that a classifier trained
on the group-based annotations generated from the posi-
tive understanding filter consistently results in better clas-
sification for this dataset. In this case, both classifiers were
trained on multi-label annotations. In contrast, other fil-
tered group-based annotations result in very similar per-
formance as with all annotations, confirming previous find-
ings from Yang [7].

Comparison Filter JC ∆ P ∆ R ∆ F
All - MD - 0.287 0.171 0.056 0.124

Filt. - MD

Pref. (>3) 0.286 0.210 0.061 0.134
Pref. (<3) 0.326 0.055 -0.086 -0.008
Fam. (>3) 0.236 0.171 0.069 0.150
Fam. (<3) 0.297 0.159 -0.026 0.038
Und. (>3) 0.322 0.228 0.130 0.179
Und. (<3) 0.284 0.051 -0.093 -0.017
MT (>µ) 0.253 0.198 0.008 0.100
MT ( <µ) 0.314 0.084 -0.056 0.019
Emo. (>µ) 0.314 0.144 0.015 0.091
Emo. (<µ) 0.255 0.121 -0.025 0.041
GS (>µ) 0.308 0.133 -0.037 0.037
GS (<µ) 0.282 0.078 -0.002 0.053

Filt. - All

Pref. (>3) 0.718 0.039 0.005 0.010
Pref. (<3) 0.639 -0.116 -0.142 -0.132
Fam. (>3) 0.547 0.001 0.013 0.026
Fam. (<3) 0.851 -0.011 -0.082 -0.086
Und. (>3) 0.783 0.057 0.074 0.056
Und. (<3) 0.697 -0.120 -0.149 -0.141
MT (>µ) 0.861 0.027 -0.048 -0.024
MT (<µ) 0.794 -0.087 -0.113 -0.105
Emo. (>µ) 0.898 -0.026 -0.041 -0.033
Emo. (<µ) 0.767 -0.050 -0.081 -0.083
GS (>µ) 0.842 -0.038 -0.093 -0.087
GS (<µ) 0.844 -0.093 -0.058 -0.070

Table 4. Performance comparison of models trained with
different "ground truths". We report the difference of mean
Precision (P), Recall (R), and F1-Score (F1). MD refers to
metadata (single-label) and JC refers to Jaccard coefficient.

5. DISCUSSION AND CONCLUSION

In this paper, we systematically evaluated agreement of
categorical annotations of emotions in 22 fragments of mu-
sic. We characterized listeners by language, preference, fa-
miliarity, lyrics comprehension, and music sophistication.

With respect to RQ1 - Do personal characteristics and
mother tongue have an influence on the the annotation of
perceived emotions for listeners? - our main finding is that
there are substantial differences in the annotations of our
surveys. In fact, the collected annotations show different
distributions in the majority of emotions, and only the dis-
tributions of joy and peace appeared to be similar across
languages. This relates to recent research on "colexifi-
cation" of semantically related emotion concepts, where
researchers found evidence that the relationship between
emotion words varies significantly across languages [41].
Our results have also confirmed that certain basic emo-
tions have higher agreement, while complex ones show
the opposite. However, agreement in our experiment ap-

pears to be lower than values reported in [4] and similar
to [10]. Our results advocate for taking into account di-
verse languages while gathering annotations and reducing
the number of categories when dealing with cross-cultural
MER models (i.e., four quadrants in AV space). Our find-
ings suggest that preference, familiarity, and lyrics com-
prehension increase agreement for emotions correspond-
ing to quadrants Q1 and Q3, and decreases it for quadrants
Q2 and Q4. Regarding music sophistication, positive fil-
ters result in higher agreement for all emotions, conflict-
ing with results from Schedl et al. [10]. We argue that
in the case of classical music, music experts could tend
to disagree more on subtle musical expression cues, while
pop and rock music have stronger indicators for emotion
(tempo, musical instruments, and meaning of lyrics). This
has given us new understanding of the effect of language
and lyrics comprehension: in the case of Q1 (A+V+) and
Q3 (A-V-) higher agreement is found, contrasted to Q2
(A+V-) and Q4 (A-V+) where dimensions have opposite
signs.

As to RQ2 - Can this information be used to improve
MER algorithms? - we find that models trained on multi-
label annotations (all and filtered) will consistently show
higher precision and F1-score than models trained with the
original annotations from metadata (single-label) for this
particular dataset. Our results show increments up to 18
percentage points in F1-Scores, when comparing single-
and multi-labeled "ground truths". As to models trained
with all collected annotations and our proposed filters (Filt.
- All), we only find consistent gains for the case of posi-
tive lyrics comprehension. Nonetheless, further research
is needed in order to confirm these findings. We propose
four recommendations when creating datasets for MER al-
gorithms with cross-cultural applications: (1) previous se-
lection of listeners’ population and music style have a deep
impact on the agreement of annotations - good understand-
ing of the population of annotators is required; (2) inter-
rater reliability is crucial to define categories - agreement
should be reported and analyzed; (3) group-based anno-
tations can lead to improved agreement - models should
be evaluated with both average ratings and group-based
ratings; and (4) selecting annotators that are proficient in
the language sung in the music may result advantageous
- understanding the semantic content of lyrics could help
increase the agreement in annotations and possibly lead
to improving models. As future work, we consider bal-
ancing the styles with respect to different languages. It is
also arguable that pop and rock are in fact musically ho-
mogeneous, since several variations across the world show
different ways of conveying emotions (e.g., Hindi pop).
Lastly, the experiment could have biased responses when
asking for lyrics comprehension, forcing the participants’
attention on lyrics and compromising ecological validity.
Different studies regarding lyrics intelligibility should be
taken into account in future research, such as [24, 43, 44].
Nevertheless, our study attempts to dispute Henry Wad-
worth Longfellow’s famous quote - is in fact music the
universal language of mankind?
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ABSTRACT

Psychology research has shown that song lyrics are a rich
source of data, yet they are often overlooked in the field
of MIR compared to audio. In this paper, we provide an
initial assessment of the usefulness of features drawn from
lyrics for various fields, such as MIR and Music Psychol-
ogy. To do so, we assess the performance of lyric-based
text features on 3 MIR tasks, in comparison to audio fea-
tures. Specifically, we draw sets of text features from the
field of Natural Language Processing and Psychology. Fur-
ther, we estimate their effect on performance while statisti-
cally controlling for the effect of audio features, by using a
hierarchical regression statistical model. Lyric-based fea-
tures show a small but statistically significant effect, that
anticipates further research. Implications and directions
for future studies are discussed.

1. INTRODUCTION

Popular Western music very often contains lyrics. Social
science research has shown informative relationships be-
tween popular songs and their lyrical content: e.g., coun-
try music lyrics rarely include political concepts [1], songs
with more typical [2] and more negative [3] lyrics appear
to be more successful, and the psychological content of
song lyrics appears to correlate with cultural changes in
psychological traits [4]. As for music consumption, lyrics
have also been shown to be a salient component of mu-
sic in the minds of listeners [5]. Furthermore, [6] showed
that patients are more likely to choose music with lyrics

* Authors contributed equally to the work.
Quoted words are lyrics written by Clifford Smith, from the song 

“The What”, by the Notorious B.I.G. featuring Methodman, on the album 
“Ready to Die”, released in 1994.

c© Jaehun Kim, Andrew M. Demetriou, Sandy Manolios, 
Stella M. Tavella, Cynthia C. S. Liem. Licensed under a Creative Com-
mons Attribution 4.0 International License (CC BY 4.0). Attribution: 
Jaehun Kim, Andrew M. Demetriou, Sandy Manolios, Stella M. Tavella, 
Cynthia C. S. Liem, ““Butter Lyrics Over Hominy Grit”: Comparing 
Audio and Psychology-Based Text Features in MIR Tasks”, in Proc. of 
the 21st Int. Society for Music Information Retrieval Conf., Montréal, 
Canada, 2020.

when participating in music-based pain reduction interven-
tions; [7] showed that lyrics enhance self reported emo-
tional responses to music, although melody had an overall
larger effect, and [8] showed a number of additional brain
regions were active during the listening of sad music with
lyrics, vs. sad music without lyrics.

In the Music Information Retrieval (MIR) field, some
interest for lyrics and how they can be used to improve
MIR tasks has been shown. Popular uses of lyrics for MIR
tasks consider mood classification [9–12], genre classifi-
cation [13,14] and topic detection for indexing and brows-
ing [15, 16]. [17] also proposed a metric to assess the nov-
elty of lyrics, and suggested that novelty can play a role in
music preference.

From these findings, one can conclude that lyrics are a
rich data source. Although MIR interests have historically
focused more on audio, lyrics information may fruitfully
be leveraged for various MIR tasks. Still, there are many
possible ways to extract information from lyrics text, and
it is an open question what information extraction proce-
dure will turn out most fruitful. To gain more insight into
this, we present a study investigating several textual feature
sets. In shaping these sets—acknowledging potential value
of the topic for social science research—we are inspired by
the way text analysis has been performed in the Psychol-
ogy domain, and draw several of our extractors from prior
work in that field. We will assess the performance of these
textual feature sets on 3 common MIR tasks, and will sta-
tistically control for the effect of each chosen feature set,
including an audio feature set for comparison. Our anal-
ysis will be performed on a large dataset from the online
Musixmatch lyrics catalogue.

In the remainder of the paper, in Section 2, we discuss
relevant previous work on text information extraction in
the Psychology literature. Section 3 will subsequently ex-
plain our research design, after which Section 4 discusses
the feature sets we used. Section 5 describes the data col-
lection and pre-processing procedures, after which Sec-
tion 6 details the experimental design. Section 7 justifies
our chosen analytical strategy, followed by a presentation
of results in Section 8 and the conclusion in Section 10.

†
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Figure 1. Overview of the experimental pipeline.

2. RELATED WORK

The field of Psychology has long pondered the impor-
tance of the words people choose to use, and how this
reflects their individual differences [18]. The features
we use in present work are primarily inspired by two
prior lines of work in which Natural Language Process-
ing (NLP) techniques were applied in psychology research:
one employing closed-vocabulary lexicon approaches, the
other employing open vocabulary approaches. Firstly, [19]
used NLP techniques to derive estimates of personality
for music genres. Specifically, they created a lexicon (a
meaningful group of words) from psychology research
that described personality dimensions, as well as a cor-
pus of lyrics, separated into music genres. They then
computed the similarity between the lyrics of music gen-
res and the groups of personality dimension words, and
considered this result to be an estimate of the person-
ality dimension represented in the lyrics of each genre.
Lexicon-based approaches have generally been popular,
also thanks to the release of the Linguistic Inquiry Word
Count (LIWC) lexicon-based software [20]; e.g., in the
context of lyrics, [21] used it to examine psychological dis-
tress in the lyrics of musicians that committed suicide vs.
those who had not.

Secondly, [22] demonstrated the usefulness of an open
vocabulary approach vs. a lexicon approach while ex-
amining personality in the context of online social net-
works. Although lexicons are carefully curated and mean-
ingful, they are also time-consuming to create and context-
specific. In contrast, data-driven techniques can automati-
cally estimate latent topics from groups of words that tend
do appear together. [22] showed relationships between per-
sonality scores and automatically extracted latent topics.
Further, they showed that the open vocabulary approach
may have stronger correlations to self-reported personality
scores than the closed-vocabulary lexicon approaches.

3. RESEARCH DESIGN

In this study, we seek to examine the relative importance of
lyric-based text features—especially features drawn from
psychology research— for various popular MIR tasks. We
wish to compare this importance to that of conventional
audio based features.

An overview of our experimental pipeline is given in
Figure 1. Various feature sets will feed into various sys-
tems, that are appropriate for various MIR machine learn-

ing tasks. We employ a full-factorial experimental design
for feature sets, tasks, and the systems attached to each
task, which means we research all the possible combina-
tions of those factors. For each combination, we will em-
ploy the traditional train-validation-test machine learning
setup. Performance results on the test sets will feed into
our statistical analysis, where we will explicitly control for
the effect of each of the feature sets.

4. FEATURE SETS

In this work, we will consider 5 lyric-based text feature
sets and an audio-based feature set. More details are given
in the following subsections; a summary of the dimension-
alities of all feature sets is given in Table 1.

4.1 Linguistic Features

As baseline textual features for this study, we first extract
several simple linguistic features:

• NumWords: the number of words included in the
lyrics text.

• NumUniqueWords: the number of unique words in
the lyrics text.

• NumStopWords: the number of stop words in the
lyrics text 1 .

• NumRareWords the number of words that appeared
in less than 5 lyrics.

• NumCommonWords the number of words extremely
commonly used within a lyrics corpus. We set the
threshold as the 30% percentile of the document fre-
quency of words.

Along with the absolute number, we also compute the
ratio over the total number of words for each lyrics text.

4.2 Topic Modeling

As a more advanced feature extraction technique, we em-
ploy probabilistic Latent Semantic Analysis (pLSA) [24]
for topic modeling. We treat each of the lyric texts as a doc-
ument, and will take the found topic distribution for a given
document as the document feature. We chose the num-
ber of topics K = 25, which maximizes validation log-
perplexity. Taking advantage of the unsupervised learning
setup, we use the total pool of songs to setup the training-
validation-test split.

4.3 LIWC

Linguistic Inquiry Word Count (LIWC) is a software pack-
age built on a lexicon that has been validated for text anal-
ysis in psychological studies [20]. It uses a curated lexi-
con, separated into 73 categories (e.g., the category ‘So-
cial Processes’ includes references to family and friends).
The software outputs the counts of words in a given text
for each of the 73 categories. We employ the latest LIWC,
released in 2015.

1 As we will focus on English lyrics in this study, we used the English
stop words corpus from the Natural Language Toolkit (NLTK) [23]
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4.4 Psychology Inventory Scores

We will consider two more feature sets, inspired by psy-
chology inventory scores: a feature set focusing on person-
ality and a feature set focusing on values. In both cases, we
will use lexicons from literature. However, rather than per-
forming a word count as was done in LIWC, we will use
more contemporary NLP techniques based on word em-
beddings.

Contemporary personality theory is derived from lex-
ical studies: it has been suggested that meaningful indi-
vidual psychological differences between people are cap-
tured in the adjectives that describe people [25]. Although
the number of meaningful clusters of adjectives (called
Personality Dimensions) is under debate, the OCEAN or
Big-Five model is often used. It is composed of 5 traits
: Openness to Experience, Conscientiousness, Extrover-
sion, Agreeableness and Neuroticism [25]. Our personal-
ity feature set consists of 2 word clusters per dimension,
comprised of words representing positive and negative as-
pects for each personality dimension, derived from prior
research [26].

Personal values are another important component of
identity, though less studied. They are stable over time
and represent who people want to be, targeting the most
important things for them in life at the most abstract level.
The traditional way to obtain people’s personal values is
through questionnaires, but recent works focused on NLP
techniques to extract them from text [27–29]. In our work,
we used the value inventory and lexicon from [28].

Both for the personality and values feature sets, we will
exploit the word2vec model [30] to approximate dis-
tances between lyrics and the various inventory categories
in the feature sets. For this, we use the model pre-trained
on the Google News dataset 2 . The average distance score
sd,c for each lyric text d, and category c is computed by
taking the average cosine distance between the words be-
longing to the lyrics and the categories, respectively:

sd,c =
1

|Wd||Wc|
∑

n∈Wd

∑
m∈Wc

〈vn,vm〉
||vn|| · ||vm||

(1)

whereWd andWc represent the set of words belonging to
the lyrics text d and the category c. vn and vm denote the
pre-trained word vectors corresponding to word n in the
lyrics and word m in the category, respectively.

4.5 MFCC

Finally, we employ a set of audio features based on the
Mel-Frequency Cepstral Coefficients (MFCC). We include
these, such that the effect of the lyric-based text features
can be compared to a commonly used feature set from the
primary modality of interest in many MIR tasks. Specifi-
cally, we adopt the feature computation introduced in [31]
with 40 mel bins.

2 https://code.google.com/archive/p/word2vec/

Feature Set Dimensions
Audio 240
LIWC 73
Values 49
Topics 25

Personality 10
Linguistic 9

Table 1. Number of dimensions per feature set

5. DATA COLLECTION

We analyzed the lyrics contained in the Musixmatch
dataset 3 , which is the official lyrics metadata selection in-
tegrated in the Million Song Dataset (MSD) [32], a col-
lection of relevant data and metadata for one million pop-
ular contemporary songs. Musixmatch is a lyrics and mu-
sic language platform. The Musixmatch community drives
the content production by adding, correcting, syncing and
translating lyrics of songs. The process of lyrics quality
verification involves several steps, including spam detec-
tion, formatting, spelling and translation checking. These
steps are accomplished by the use of both artificial intelli-
gence and machine learning models. In addition, they are
manually verified by more than 2000 Curators worldwide,
and a local team of Musixmatch Editors, who are native
speakers in different languages.

The data used for the purpose of this project consists of
182, 808 lyrics, plus relevant metadata such as the unique
identifier, artist and title. The data encompasses 20, 219
unique artists over various genres of music.

5.1 Preprocessing

For the given lyrics dataset, we consider the following pre-
processing steps: the sentence strings are 1) tokenized and
2) lemmatized, followed by 3) stop-words filtering and 4)
filtering extremely rare and extremely common words (see
Section 4.1). Finally, we filter out non-English lyrics by a
filtering process using the topic modeling. More precisely,
we fit the topic model to detect whether the topics contain
non-English words above a certain threshold. Songs that
mostly load on non-English topics are removed.

6. EXPERIMENT

6.1 Tasks & Systems

As shown in Figure 1, to assess the lyrics feature set, we
consider 3 popular MIR machine learning tasks; for each
of these, we use 3 different commonly used types of sys-
tems, and a task-specific performance measure is consid-
ered, as detailed below.

6.1.1 Music Genre Classification

Music Genre Classification (MGC) is a multi-class classi-
fication problem. Typically, a set of music genres is given
as the classes, and music audio content or features are used
as the observations. In this study, we examine 3 machine

3 http://millionsongdataset.com/musixmatch/
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learning based systems: Gaussian Naive Bayes (GNV),
Logistic Regression (LR) and the Multi-Layer Perceptron
(MLP). For performance quantification, we opt for classi-
fication accuracy.

For this task, we use the data in the intersection between
our lyrics database and the part of the MSD for which the
music genre mapping introduced in [33] can be made. By
choosing the intersection with the MSD, our audio features
can be extracted from the MSD preview audio excerpts.
Due to genre label availability, this leads to 67, 719 songs
being used in this task.

6.1.2 Music Auto-Tagging

Music Auto-Tagging (MAT) is often formulated as a multi-
label classification problem in which multiple positive la-
bels may exist for one input music observation. We used
the same set of systems as in the MGC task 4 . Again,
we cross-match to the MSD, now also considering MSD’s
LastFM social tags. Similarly to [31], we choose to focus
on the 50 most frequent tags from the dataset. The Area
Under Curve - Receiver Operating Characteristic (AUC-
ROC) is used as the performance measure, which will be
referred to as AUCsong for the rest of this paper 5 . Due
to tagging label availability, 137, 095 songs are used under
this task.

6.1.3 Music Recommendation

Finally, Music Recommendation (MR) is considered for
a user-related retrieval task. In particular, we consider a
cold-start scenario, in which a batch of songs is newly in-
troduced to the market, and required to be recommended
to users. Due to the lack of previous interaction history,
in such a scenario, a model will be maximally dependent
on item attributes. As this is a substantially different type
of task than the previous classification tasks, a different
set of the systems common to the recommender systems
field is used. Item Nearest Neighbor (INN) is a memory-
based collaborative filtering method, which recommends
the items closest to those that the user had consumed. We
employ the feature vector introduced in Section 4 to com-
pute the distance between entities using the cosine dis-
tance. We also use the Feature-augmented Matrix Factor-
ization (FMF) [34] method, as well as the Factorization
Machine [35] (FM). These models are more sophisticated
collaborative recommenders, which also are capable of ex-
ploiting item attributes. The systems are developed and
evaluated using the MSD-Echonest dataset [32]. Due to
limits on available computational resources, we exploit a
densified subset with 96, 551 users and 66, 850 songs from
the initial song pool with the lyrics 6 . Finally, the bina-
rized normalized Discounted Cumulative Gain (nDCG) is

4 We employ a one-vs-rest strategy for the LR and GNV, which trans-
forms a multi-label classification problem to multiple binary classification
problems.

5 We employed song-wise aggregation for this study
6 We initially matched the original Echonest dataset to our initial song

pool and 30% of randomly sampled users. Consequentially, we apply a
filter, such that users who interacted with more than 5 songs remain, and
vice versa for songs.

considered as performance measure, for the top-100 songs
recommended.

6.2 Task Simulation Setup

All MIR tasks above are machine learning tasks, but the
systems and data we choose to use for them did not yet ex-
ist in a real-life system. Therefore, we ran the machine
learning procedures to initiate them. For this, for each
task, we randomly split the available song data into train-
ing/validation/test subsets by a ratio of 8 : 1 : 1. Each
model is trained using the training set and evaluated on
the validation set to tune the hyper-parameters. Once the
optimal hyper-parameters are found, final performance is
measured on the the test set.

For MLP and FMF, which have more than one hyper-
parameter, automatic hyper-parameter tuning is conducted
through a Bayesian approach, using the Gaussian Pro-
cess 7 8 . Every search process iterates through 50 training-
validation procedures to reach the optimal point. For the
MGC and MAT tasks, the hyper-parameters are searched
at every trial, while in the MR task, the search process runs
only once and is used for all the other trials.

7. ANALYTIC STRATEGY

We wish to assess the usefulness of each of the feature sets
for the 3 MIR tasks. Therefore, the resulting performance
score from each trial run in our experimental setup (see
Section 3) forms the measurement that is our outcome vari-
able of interest. We seek to estimate the relative contribu-
tion of each feature set, while statistically controlling for
the contribution of all other variables in the analysis. In
addition, we assess whether feature sets perform better or
worse, depending on the task.

Our data has a nested structure. Specifically, we might
say that our systems are nested within the tasks: each task
is likely to influence the score, as will the underlying sys-
tems that were used for each task. Further, not all systems
were used in all tasks. To account for this structure, we
employed hierarchical regression models which allow for
the modeling of variances of nested data.

The typical example for this category of models is the
task of modeling the standardized test scores of various
students within various schools. Test scores may be due to
the performance of the student, but the school itself may
also influence the scores. In this case, the students are said
to be nested within the school. If we wanted to accurately
assess the effect of e.g. a specific teaching technique on the
scores of the students, we would want to statistically con-
trol for the effect of the nested structure. A hierarchical
regression allows for us to estimate the variance in both
intercept and slope of the school, to more accurately as-
sess the effect of the teaching technique on the score of the
student. For example, the following equations allow us to
model the varying intercepts and slopes of each school:

7 We use the implementation from the scikit-optimize package.
8 We do not search the hyper-parameters for FM and use a manually

tuned setup, mostly due to the computational complexity required for this
specific model.
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yi = aj[i] + βxi + εi (2)

αj = a0 + b0uj + ηj1 (3)

βj = a1 + b1uj + ηj2 (4)

where i refers to the individual students, and j[i] refers to
the school that student i attends. The first line is similar to
a classic regression, where the x represents a predictor at
the level of student, the teaching technique in our example,
and the ε represents the error term of the main regression.
However, equations (3) and (4) allow for the modeling of
the intercept and slope respectively, where the u and η ex-
pressions are the predictors and error terms at the school
levels.

By statistically controlling for these additional vari-
ances, hierarchical modeling allows for a more precise es-
timate of the variables of interest. A more complete dis-
cussion can be found in [36].

In our study, we treat the task similarly to the school in
our example, and the systems similarly to the students. By
controlling for these variances, we estimate the effect of
each feature set. From the resulting parameter estimates,
we extract 95 % confidence intervals, which we then inter-
pret for our results.

This approach also allows for the comparison of mod-
els containing different specifications, where the specifica-
tions refer to which specific parameter estimates are com-
puted. As some parameters may not meaningfully con-
tribute to the variance, their effects will be estimated at
very close to 0, and may be removed to improve model
fit. Indices of fitness, i.e. Akaike and Bayesian Informa-
tion Criteria (AIC and BIC respectively) give an estimate
of model fit, which is penalized by the number of terms.
We can therefore arrive at the best-fitting model with the
fewest parameters estimated, by systematically removing
poorly performing parameter estimates, comparing succes-
sive fit indices e.g. with a Likelihood Ratio Test.

Following from our strategy, we examined the useful-
ness of the inclusion of the various features sets on the 3
considered MIR tasks. Our variables of interest are 1) bi-
nary indicators for the inclusion of each of the feature sets:
linguistic, topic, LIWC, personality, and values, as well as
the set of audio features, where (0 = not included, 1 = in-
cluded), 2) a categorical variable representing each of the
MIR tasks, 3) a categorical variable representing the sys-
tems implemented within each task, and 4) the resulting
Measurement scores which were standardized within each
task for comparability. We further estimate whether feature
sets perform better or worse for certain tasks, by examin-
ing interactions between each feature set, and our task vari-
able. Feature sets had differing numbers of sub-dimensions
which were not individually analyzed (see Table 1) 9 .

We ran multiple models and compared the results of our
feature sets across specifications (see Figure 2). Model
specifications varied based on 1) how we accounted for the
nested structure (i.e. task and systems), as we can estimate

9 Analyses were conducted on two servers running R 3.6.3. and 3.4.4.
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Figure 2. A: Parameter estimates of 5 hierarchical re-
gression models. Error bars are 95% confidence intervals,
bootstrapped 500 times. B: Specific parameters that are
estimated in the each of the models. Parameters that form
the structure of the model are denoted both in red and with
a “!” symbol, feature sets of primary interest are denoted
in black, and variables for which two terms separated by a
“*” are interaction terms.

intercepts for task, for system, for system within task, as
well as as slopes for tasks, for systems, and for systems
within task, etc., and 2) the interaction terms we specified,
i.e. whether we estimated an interaction term for a given
feature set and our task variable.

8. RESULTS

We assessed models with two nested structures specified,
where the parameters estimated are referred to as “random
effects”. The first included intercepts for each task, and the
system used within task. The second estimated the same
intercepts, and additionally estimated a slope for each sys-
tem. For each of these two random effects structures, we
then determined which parameters to estimate, referred to
as “fixed effects”. Specifically, we estimated parameters
for each feature set, and interactions between all feature
sets and the tasks. We first specified a “maximal” model,
with all features and the task variable, and all two-way in-
teractions among these variables. To remove unnecessary
parameters, we ran a protocol which iteratively removed
parameter estimates, retaining only those that either 1) sig-
nificantly decrease model fit if not included, or 2) do not
significantly decrease model fit if excluded. The Step func-
tion in the lmerTest package, was used for this phase [37].
What remained were two interaction terms: the interac-
tion between values and task, and between LIWC and task.
As such, we estimated models with no interaction terms,
as well as models with and without each of those inter-
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Figure 3. A: Parameter estimates of model 4. Error bars
are 95% confidence intervals. Interaction terms are de-
noted with the “*” symbol. B: Predicted scores for the
inclusion of LIWC on each of three MIR tasks, where 1 in-
dicates that it was included and 0 indicates that it was not.
C: Predicted scores for the inclusion of values on each of
three MIR tasks, where 1 indicates that it was included and
0 indicates that it was not.

action terms. When we assessed the interaction term, we
also included the main effect of task. Thus, we also ran
models with and without task included. The 5 models in-
cluded for interpretation were those that converged without
error. Parameter estimates are shown in Figure 2A, and
Figure 2B shows which parameters were estimated in each
model. For the full specification of our models, we refer
the readers to the reproducibility package 10 accompany-
ing this paper.

As is shown in Figure 2A, we observe a consistent,
large, positive effect of audio features on the score, and
no meaningful effects of topic and personality feature sets.
Further, we observe a consistent, small, positive effect of
values across our specifications. This effect size increases
in model 4, where the interaction between values and task
was included. Similarly, LIWC shows a small but positive
effect, that appears to decrease when the interaction term
of LIWC and task is included. This suggests that LIWC and
values may perform differently, depending on the task.

To clarify if this is the case, we examined the parame-
ter estimates of model 4, which included interaction terms
for both LIWC and values (see Figure 3A). Although both
interaction terms were statistically significant, we observe
that the confidence intervals for the main effect of task are
very wide. This was expected, as 1) we were assessing an
interaction effect which might increase the width of a the
confidence interval, and 2) we were largely accounting for
this variance by standardizing the score within each task,
and by including task in the random effect structure. Fig-
ures 3A and 3B show the predicted values for both LIWC
and values across tasks. Although the score was higher
when LIWC was included in the MR task and when values
was included in the MAT task, the predicted estimates are
imprecise, as evidenced by the wide confidence intervals.
As such, a more sensitive study design is likely required to
obtain estimates of these interaction effects, e.g. analyses

10 https://github.com/mmc-tudelft/
lyricpsych-ISMIR20

on individual dimensions of feature sets, to establish the
most informative features, and/or more systems and more
MIR tasks. Thus, we conclude that linguistic and values
feature sets show the most consistent positive effects, and
that LIWC and values may vary in performance based on
task.

9. LIMITATIONS AND FUTURE WORKS

Several limitations are still present in our current study.
Firstly, although our feature sets did show promising yet
small effect sizes, we did not assess the performance of
individual dimensions. Given that the feature sets vary
greatly in both in terms of the number and content of sub-
dimensions (see Table 1), reducing the overall set may re-
sult in a more sensitive set of features to examine.

Secondly, we did not consider subgroups of users, or of
groups of songs. It may be possible that some users are
more sensitive to the content of lyrics than others, and that
lyric-sensitive users would benefit far more from lyric fea-
tures than others. Further, it may be the case that lyrics are
very important in some groups of songs vs. others (e.g Hip-
Hop music vs. electronic dance music). Further research
could examine the potential existence of a lyric-sensitive
sub-group of users, lyric-sensitive songs, and how these
two may interact.

Thirdly, aspects of our experimental design can be elab-
orated in future work: 1) Although we strategically sam-
pled a limited number of MIR tasks and a limited number
of systems, we did not fully address all possibilities. For
instance, future work can include more contemporary sys-
tems such as deep learning, thereby increasing generaliz-
ability of our results. 2) Certain task metrics could be im-
proved, although we strategically designed our experiment
to prevent local noise from skewing our conclusions: e.g. a
different performance measure for the genre classification
(i.e. AUC-ROC) could deliver a more accurate experimen-
tal result, given its skewed class distribution.

Lastly, the reliability of all of our feature sets could be
better assessed in the future. This is particularly true of
our personality features: they contain words that have been
shown to describe individuals that have or lack in personal-
ity traits, but it is not clear that individuals with those traits
use the specific words that describe them.

10. CONCLUSION

Although the audio features in our analysis most positively
affected performance on various MIR tasks, our lyric-
based text features did show some promise. More specif-
ically, linguistic and values feature sets showed consis-
tent, small effect sizes. Given that the interactions between
LIWC and task were significant, it may be the case that
LIWC features are also useful. We can conclude that text-
based features drawn from Psychology literature anticipate
further research, and that further investigations addressing
the current limitations will lead to better data-driven un-
derstanding of the role lyrics play in music consumption.
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ABSTRACT

Many musics across the world are structured around mul-
tiple modes, which hold a middle ground between scales
and melodies. We study whether we can classify mode in
a corpus of 20,865 medieval plainchant melodies from the
Cantus database. We revisit the traditional ‘textbook’ classi-
fication approach (using the final, the range and initial note)
as well as the only prior computational study we are aware
of, which uses pitch profiles. Both approaches work well,
but largely reduce modes to scales and ignore their melodic
character. Our main contribution is a model that reaches
93–95% �1 score on mode classification, compared to 86–
90% using traditional pitch-based musicological methods.
Importantly, it reaches 81–83% even when we discard all
absolute pitch information and reduce a melody to its con-
tour. The model uses tf–idf vectors and strongly depends
on the choice of units: i.e., how the melody is segmented.
If we borrow the syllable or word structure from the lyrics,
the model outperforms all of our baselines. This suggests
that, like language, music is made up of ‘natural’ units, in
our case between the level of notes and complete phrases, a
finding that may well be useful in other musics.

1. INTRODUCTION

In his seminal Grove entry, Harold Powers [1] points out a
remarkable cross-cultural generalisation: many musics are
structured around multiple modes. Modes are often asso-
ciated with the major–minor distinction in Western music,
but there are much richer systems of modes: examples in-
clude Indian raga, Arabic makam, Persian dastgah, pathet
in Javanese gamelan music and the modes of Gregorian
chant. The specifics obviously vary, but all these phenom-
ena share properties with both scales and melodies, and
are perhaps best thought of as occupying the continuum in
between [1]. On the one hand, a mode is more than a scale:
it might imply a hierarchy of pitch relations or favour the
use of characteristic motifs. On the other hand, it is not
as specific as a particular tune: a mode rather describes a
melody type. Modes are of central importance to their mu-
sical tradition, both as means to classify the repertoire, and

c� Bas Cornelissen, Willem Zuidema, and John Ashley Bur-
goyne. Licensed under a Creative Commons Attribution 4.0 International
License (CC BY 4.0). Attribution: Bas Cornelissen, Willem Zuidema,
and John Ashley Burgoyne, “Mode Classification and Natural Units in
Plainchant”, in Proc. of the 21st Int. Society for Music Information
Retrieval Conf., Montréal, Canada, 2020.

as practical guides for composition and improvisation [1].
Characterising modes computationally is therefore an im-
portant problem for computational ethnomusicology.

Several MIR studies have investigated automatic mode
classification in Indian raga [2, 3], Turkish makam [4, 5]
and Persian dastgah [6, 7]. These studies can roughly be
divided in two groups. First, studies emphasising the scalar
aspect of mode usually look at pitch distributions [2, 5, 7],
similar to key detection in Western music. Second, stud-
ies emphasising the melodic aspect often use sequential
models or melodic motifs [3, 4]. For example, [4] trains
=-gram models for 13 Turkish makams, and then classifies
melodies by their perplexity under these models. Going
beyond =-grams, [3] uses motifs, characteristic phrases, ex-
tracted from raga recordings to represent every recording as
a vector of motif-frequencies. They weigh counts amongst
others by the inverse document frequency (see section 3.4),
which balances highly frequent motifs, and favours specific
ones.

In this paper, we focus on automatic mode classifica-
tion in Medieval plainchant. This has only rarely been
studied computationally, even though the term (if not the
phenomenon) ‘mode’ originates there. At first glance, mode
in plainchant is relatively clear, though certainly not entirely
unambiguous. With a second glance, it has a musicological
and historical depth that inspired a vast body of scholar-
ship going back over one thousand years. The music is
indeed sufficiently distant in time from most other musics,
including Western classical and pop music, to provide an
interesting cross-cultural comparison. And for once, data is
abundant, thanks to the immense efforts of chant scholars.

Chant has mostly figured in MIR studies in optical music
recognition of medieval manuscripts: the SIMSSA project,
for example, has used such systems to transcribe plainchant
from the Cantus database [8]. Recent ISMIR conferences
have also included analyses of Byzantine plainchant [9] and
Jewish Torah tropes [10], and a comparison of five Christian
chant traditions using interval =-grams [11]. But, to the best
of our knowledge, Huron and Veltman’s study [12] is the
only computational study addressing mode classification
in chant. They took a scalar perspective on mode by using
pitch class profiles, an approach which was later criticised,
partly for ignoring mode’s melodic character [13].

We aim to revisit this work on a larger dataset, and also to
model the melodic aspect of mode. Concretely, we compare
three approaches to mode classification:

1. Classical approach: based the range, final, and ini-
tial note of a chant.
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2. Profile approach: uses pitch, pitch class and repeti-
tion profiles (cf. [12]).

3. Distributional approach: uses tf–idf vectors based
on various segmentations and representation of the
melody.

2. GREGORIAN CHANT

Gregorian chant is the monophonic, Latin chant sung during
services in the Roman church. It started out as an oral
tradition, coexisting with several others in late Antiquity.
Although the specifics are debated [14, ch. 2], from the 9th
century onwards it gradually turned into a (partly) written
tradition, displacing other chant traditions. Initially, only
the texts of the chants were written down, as singers would
know the melodies by heart. Chant is rooted in recitation,
and the music and text are intimately related: “the basic
unit of music-writing [was] not the note, but the syllable”
[15], the smallest singable unit of text. Accordingly, the
earliest notation lived between the lines of text: signs, called
neumes, reminding the singer of the contour of the melody:
perhaps how many notes and their direction, but not which
exact pitches. The earliest melodies are therefore unknown,
but later manuscripts use a pitch-specific notation by placing
neumes on staff lines, preserving those melodies to the
present day (see Figure 1A).

There are different chant genres for different parts of the
liturgy, each with own musical characteristics [16]. Some
genres consist of recitations of a sacred text mostly on a
fixed pitch, with common starting and ending formulae,
while others use elaborate melodies and few repeated notes.
Genres also differ in their melismaticness: the number of
notes per syllable (see Figure S5). In syllabic genres like
antiphons, every syllable of text aligns with roughly one
note. More melismatic genres like responsories align single
syllables to long melismas of ten notes or more. In this
paper, we focus on antiphons and responsories, two melodic
and common genres.

Gregorian chant uses a distinct tonal system of eight
modes, usually numbered 1–8, but sometimes named like
church scales. Modes come in pairs that share the same
scale (Dorian, Phrygian, Lydian or Mixolydian), but have a
different range or ambitus: authentic modes moves mostly
above the tonal center or the final, plagal ones mostly
around it. Mode 3 is for example also called Phrygian
authentic, and melodies in this mode rarely go below the
final note E. The standard way of determining the mode is
to first determine the final, and then the range [16]. For the
majority of the chants this will be sufficient, but one might
further consider the initial note, characteristic phrases or
circumstantial evidence (e.g. psalm tones). Nevertheless,
the mode of some chants will remain ambiguous: the theory
of eight modes was borrowed from Byzantine theory in the
8th century, and applied to an already existing chant reper-
toire (with its own modalities [13]). The fit between theory
and practice was reasonable, but not perfect [1]. This also
suggests that perfect classification accuracy is likely out of
reach.
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Figure 1. Overview of this study which compares three
approaches to mode classification in a corpus of Gregorian
chant. Cantus contributors have transcribed a vast number
of melodies from medieval manuscripts (A). We classify
mode based on the final, range and initial in the classical
approach (B), and based on pitch (class) and repetition pro-
files in the profile approach (C). Finally in the distributional
approach (D), we use tf–idf vectors where we tweak two
parameters: the segmentation, or which melodic units we
use (E), and the representation (F), where we gradually
discard information about the scale when we move from
pitches to contours. In this way we aim to capture the
melodic, rather than scalar, aspect of mode.
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3. METHODS

The design of this study is visualized in Figure 1.

3.1 Data: the Cantus Database

We use chant transcriptions from the Cantus database [17].
This is primarily a digital index of medieval chant ma-
nuscripts, recording the chant location in the manuscript,
its full text, and properties like the mode, the liturgical
feast, but also links to manuscript images. Cantus cur-
rently consists of almost 150 manuscripts, containing over
450,000 chants, contributed by chant scholars from all over
the world. Over 60,000 chants also contain melodic tran-
scriptions written in Volpiano. 1 It sets plain text as musical
notes on a five-line staff, as illustrated in Figure 1a. Volpi-
ano also supports some accidentals, clefs, liquescents, bar-
lines and strokes. All submissions to Cantus are subject to
strict guidelines and manually checked by the Cantus edit-
ors (see also [18]). This ensures the quality and consistency
of database, making it a valuable resource for computational
research.

We scraped the entire database of 497,071 chants via
its REST API and we have released this as the CantusCor-
pus. 2 We here only consider chants that have a Volpiano
transcription (63,628 chants) and further filter out chants
with incomplete or non-standard transcriptions, without a
complete melody, without ‘simple’ mode annotation, and
exact duplicates (see section S1). This resulted in 7031
responsories (966,871 notes, avg. length 138 notes) and
13,865 antiphons (825,143 notes, avg. length 60 notes). We
fixed a 70/30 train/test split for all datasets and only used
training data in exploratory analyses. Cantus often contains
multiple variants of any particular melody, transcribed from
different manuscripts (see Figure S11). One may wonder
whether the simple train/test split is sufficient, or whether
even more care is needed to avoid overlap between such
melodic variants in the train and test sets. This is a difficult
issue that also applies to other musical corpora (e.g., the
Essen folk-song corpus), and for which there is no perfect
solution. We tried repeating our experiments on a subset
without variants and return to this issue in section 4.4.

According to the transcription guidelines, flat symbols
are transcribed only once, directly before the first flattened
note. We replace the first and later flattened notes by the
corresponding accidental, a Volpiano character that sits at a
specific staff line. In this way, flat notes are also encoded
by a single Volpiano character. We discard characters like
clefs and pausas, and only retain the notes, accidentals and
boundaries (hyphens). The resulting string is used in our
three classification experiments, which we now discuss.

3.2 Classical Approach: Final, Range, Initial

The first approach is motivated by the classical procedure
for mode classification. We extract three features from every
chant: the final pitch, the range (lowest and highest pitches)

1 Volpiano is a typeface developed by David Hiley and Fabian Weber
for notating plainchant. See fawe.de/volpiano/

2 See github.com/bacor/cantuscorpus, here we use v0.2.

B BC CD DE EF FG GA ABb B BC CD DE EF FG GA ABb

1 2

3 4

5 6

7 8

initialhighestlowestfinal

Figure 2. Classical features. The classical approach uses
the final, range and initial to determine the mode. The
overall distribution for each of the modes (1–8) is clearly
different, although not entirely without ambiguity.
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Figure 3. Pitch profiles showing the relative frequency of
every pitch in each of the 8 modes. Again, although the
distribution of individual modes are clearly distinct, some
residual ambiguity remains.
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Figure 4. PCA of tf–idf vectors. Principal component pro-
jection of the tf–idf vectors of responsories in several con-
ditions. The figure suggests that classification gets harder
when moving from a pitch to a contour representation. The
legend shows a theoretical ordering of the modes based on
their range. See Figure S9 and Figure S10 for larger plots.
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and the initial pitch. Theory suggests that the final alone
should give an accuracy of roughly 50%, and adding the
range should further increase that by roughly 50%, if there
is no ambiguity. Figure 2 shows the feature distributions for
all modes. It suggests that there is some ambiguity, and so
numbers will be a little lower. For this task we use random
forest classifiers [19], which aggregate multiple decision
trees. Training details of all models are discussed below.

3.3 Profile Approach: Pitch (Class) Profiles

The second approach is inspired by Huron & Veltman [12].
Using 97 chants from the Liber Usualis, they compute av-
erage pitch class profiles (the relative frequency of each
pitch class) for each of the modes and then classified chants
to closest profile. We take a similar approach and use :-
nearest neighbour classification, where : is tuned (see sec-
tion 3.5). In a commentary, Wiering [13] argued for using
actual pitches rather than pitch classes, as the pitches an
octave above the final have a very different role than those
an octave below it. We follow that suggestion by also
computing pitch profiles (Figure 3). Finally, we propose a
repetition profile aiming to describe which notes function
like a recitation tone. For every Volpiano pitch @ we com-
pute a repetition score A (@), which is the relative frequency
of direct repetitions, and collect these to get a repetition
profile. Formally, if a chant has pitches ?1, . . . , ?# , then
A (@) = #{8 : ?8 = @ and ?8+1 = @}/(# � 1) since there are
# � 1 possible repetitions.

3.4 Distributional Approach: tf–idf Vectors

Our third approach aims to capture the melodic aspect of
mode. In short, we use a bag of ‘words’ model (cf. [3]) and
tweak two parameters: the segmentation (which melodic
units to use as ‘words’) and the representation (pitches, in-
tervals and contours). The idea is to discard more and more
information about the scale, and see if we can nevertheless
determine the mode.

First, the units. For chant, three natural segmentations
suggest themselves: one can segment the melody (1) at
neume boundaries, but also wherever we find (2) a syllable
or (3) a word boundary in the lyrics. Given the close relation
between text and music in chant, there is some reason to
believe that these are meaningful units. Conveniently, all
of these boundaries are explicitly encoded in Volpiano, by
a single, double and triple dash respectively. Note that
these natural units are nested: neumes never cross syllable
boundaries. We compare the natural units to two types of
baselines. The first is an =-gram baseline where we slice
the melody after every = notes, for = = 1, . . . , 16. The
second is a random, variable-length baseline. Here the
melody is segmented randomly, but in such a way that the
segment length is approximately Poisson distributed with a
mean length of 3, 5, or 7. We stress that all these units are
proper segmentations: units do not overlap. In particular,
we choose not to use a higher-order model (using =-grams of
units), because we are only interested in comparing different
segmentations.

Second, the representation. We represent melodies in
three ways: as a sequence of pitches, intervals (the num-
ber of semitones between successive notes) and contours
(the contour between successive notes: up, down or level).
There is one complication when segmenting sequences of
intervals or contours: we introduce dependencies between
the units. All units would, for example, start with the in-
terval from the previous unit. We call this a dependent
segmentation. Alternatively, you could discard the intervals
between units to obtain an independent version. This effect-
ively makes every unit one interval shorter. We analyse both
independent and dependent versions, but in the independent
one we found it convenient to start all units (including the
first) with a dot to keep the segmentation identical across
representations. You can think of the dot as marking the
omitted interval to the previous unit.

Third, the model. Given a segmentation, we represent
every chant by a vector of unit frequencies, but weighted
to favour frequent, yet specific units: units that do not oc-
cur in too many chants. A standard way of doing this in
textual information retrieval is using term-frequency inverse-
document-frequency (tf–idf) scores, which multiply the fre-
quency of a term in a document (tf) by the inverse document
frequency (idf): the inverse of the number of documents
containing the term. We use +1 smoothing for the idf, at
most 5000 features, and found it was important not to set
a minimum or maximum document frequency. We train a
linear support vector machine to classify mode using the
resulting tf–idf vectors.

In sum, we analyse 22 segmentations (3 natural ones,
16 =-grams, 3 random) and 5 representations (pitch and
dependent/independent interval/contour), giving a total of
110 conditions.

3.5 Training

We tune every model using a randomised hyperparameter
search with 5-fold stratified cross-validation. That is to
say that we randomly sample hyperparameters from a suit-
able grid (determined by extensive manual analyses) and
determine their performance using 5-fold cross-validation
on the training set, where we ensure the class frequencies
are similar in all folds. We use the hyperparameters yield-
ing the highest cross-validation test accuracy to train the
final model. All models were implemented in Python using
scikit-learn [20] and data and code are available online. 3

4. RESULTS

Figure 5 gives support-weighted 4 averages of �1-scores
obtained on the full test sets for all three approaches. The
scores are averages of five independent runs of the experi-
ment, using different train/test-splits. Standard deviations
were small and are included in figure S12. We now compare
the three approaches and then discuss the effect of repres-
entation and segmentation on the distributional approach.

3 See github.com/bacor/ismir2020
4 The retrieval scores for all classes (modes) are averaged, weighted by

the number of instances in each class.
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Figure 5. Classification results. Weighted �1-score for three approaches to mode classification, using two chant genres:
responsories and antiphons. Scores are averages of five independent runs of the experiment. The classical approach (A)
using the final, range and initial reaches �1-scores of 90% and 86%. The profile approach (B) works better for antiphons
(90% vs. 86%) and somewhat worse for responsories (88% vs. 90%). As [13] suspected, pitch profiles outperform pitch class
profiles by a small margin. The distributional approach (C) reaches the highest �1 scores of 95% on both responsories and
antiphons. The choice of segmentation (vertically) is crucial: classification is improved by using ‘natural’ units, word-based
units in particular, rather than =-grams. As the representation (horizontally) becomes cruder, from pitches to intervals and
finally to contours, the task becomes much harder. But, when using word-based segmentation, performance remains high.

4.1 Approaches: Distributional Approach Works Best

First of all, we report the highest classification scores with
our distributional approach using pitch representations: an
�1-score of 93% for responsories and 95% for antiphons.
This corresponds of an error reduction of 30–60% compared
to the classical approach (90% and 86%). The classical
approach confirms the rule of thumb: the range and final
are very informative features. Using only these, we obtain
�1-scores of 89% and 79%, which are further increased by
also adding the initial. The profile approach outperforms
the classical approach for antiphons (90% vs. 86%), but is
outperformed for responsories (88% vs. 90%). Our results
support Wiering’s [13] intuition that pitch profiles more
accurately describe mode than pitch class profiles, but the
effect is small: it increases �1 scores by 2–3%. Repetition
profiles appear to be less useful for both genres.

In broad strokes, our results validate the classical and pro-
file approach, both of which peak around a 90% �1-score,
using simple features. The distributional approach improves
this, up to 95% using complex features. Importantly, we
now show that the distributional approach maintains high
performance when using interval or contour representations.

4.2 Representations: Contours are Sufficient

We find that the classification task gets harder when the
representation gets cruder, from those based on pitch, to
intervals and finally to contours (figure 5C, horizontally).
This was anticipated: cruder representations are obtained
by discarding information from every unit. Shorter units
are impacted more by this information loss. For example,
the performance with 1-grams drops by over 75% when
moving from pitch to independent contour representation.
At that point it performs at majority baseline (a 7% �1-score
for responsories and 12% for antiphons). 5 For longer units
such as 10-grams, the drop is not as dramatic (around 10%).
However, this comes at the cost of a comparatively low
performance using the pitch-representation, presumably
because of increasing sparsity.

Natural units, however, escape this trade-off. Word-
based segmentations perform consistently well, dropping

5 For 1-grams in independent interval and contour representation, every
unit is identical: a dot representing the omitted contour to the previous
note. The majority class for both responsories and antiphons is mode 8,
taking up 21% and 28% of the test data respectively (see table S3). This is
precisely the accuracy of the model in those conditions.
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only 3% below the classical baseline using the highly im-
poverished independent contour representation. In contrast
to the other representations, the contours do not carry any
information about the scale: the same contour can be repro-
duced in any scale. Apparently, we can discard the scalar
aspect of mode, and still classify it: contours alone contain
sufficient information for mode classification. The success
of pitch-based methods might obscure the fact that mode is
as much a melodic phenomenon as a scalar one.

It is interesting to note that the earliest chant notation
used unpitched neumes that mainly described the contour
of the melody—not the exact pitches. Our results reinforce
the idea that contour is highly informative—so informative
that given a mode, text and contour, an experienced singer
could reconstruct the chant melody.

4.3 Segmentations: Natural Units Work Best.

Our most important result is that among all the represent-
ations we considered, natural units (neume, syllables, and
words) yield the highest classification performance. The 4-
and 6-gram baselines also reach top �1-scores in antiphons,
but only when we use representations that include informa-
tion about pitch. Furthermore, the success of natural units
cannot be explained solely by their length. In responsor-
ies, neumes, syllables and words are on average 2.3, 3.0
and 7.1 notes long, respectively (see table S6), and yet the
performance of these natural units is consistently higher
than =-grams of comparable length. The performance of
the natural units is also consistently higher than that of the
variable-length Poisson baselines, which are intended to
mimic the overall distribution of natural lengths but ignore
musical and textual semantics.

A few other observations merit discussion. Firstly, al-
though neume and syllable segmentations behave differ-
ently for responsories, they behave similarly to each other
for antiphons. The reason may be that in antiphons, neumes
and syllables more often coincide. Antiphons are less melis-
matic than responsories (i.e., they use fewer notes per syl-
lable, 1.5 to be precise). Secondly, both the =-grams and
the Poisson baseline perform better on antiphons than on
responsories, possibly because the =-grams are more likely
to end up being coincidentally aligned with the natural units
the less melismatic the genre.

4.4 Controlling for Melodic Variants

We repeated all experiments on a subset of the data from
which we removed melody variants (see supplement S13
for details). In terms of the number of notes, this meant
a 75% and 66% reduction in data size for responsories
and antiphons respectively. The performance of all models
decreased on this subset, and for responsories more than
for antiphons. Our main findings that contours are suffi-
cient and that natural units work best across representations
stand. We do observe some reorderings: some already high-
performing =-grams in antiphons now for example slightly
overtake word segmentations, although only for pitch and
dependent interval representations. The distributional ap-
proach works best for antiphons regardless of including or

excluding chant variants, but for responsories, the distribu-
tional approach drops slightly below the classical approach
on the subset (where the profile approach is worst). These
findings might be explained by increased sparsity in the
smaller dataset: natural units in responsories are, after all,
longer. Exploring these issues further is left for future work.

5. DISCUSSION AND CONCLUSION

In this paper, we analyzed three approaches to mode clas-
sification in a large corpus of plainchant: (1) the classical
approach using the final, range and initial; (2) the profile
approach using pitch (class) profiles and (3) the distribu-
tional approach using a tf–idf vector model and various
segmentations and representations. We found that the dis-
tributional approach performs best, and that it can main-
tain high performance on contour representations if using
the right segmentation: at word boundaries, in this case.
The main findings were largely upheld when we removed
melody variants, but the handling of variants is an issue
that deserves further investigation and that has implications
beyond this study.

Although our results are specific to one corpus of me-
dieval music and one classification task, we believe our
conclusions are of wider relevance. We often fall back on
=-grams because they are well understood and easy to use.
A more natural segmentation may be harder to obtain, but
if finding them can have such a large effect on a relatively
simple task like mode classification, their advantages may
be even stronger for more complex tasks.

A first next step could be to explore whether lyrics yield
equally useful units in other vocal musics. As noted, the
link between text and music in plainchant is particularly
tight. This at least suggests that the text may be useful in
other types of chant, like Byzantine chant or Torah trope.
For folk melodies designed to standard poetic meters, it
is not as obvious whether lyrics would help or hinder the
identification of useful units. This is worth investigating,
as characteristic motifs and repeated pattern are commonly
used in computational folk-song studies, in particular for
tune family identification [21, 22].

Our results raise another question: is chant indeed com-
posed by stringing together certain melodic units, much like
a sentence is composed of words? It has been suggested
(and disputed) that Gregorian chant is composed in a pro-
cess of centonization, and that a chant is a patchwork of
existing melodic chunks called centos. A recent study used
the tf–idf weighting to discover centos in Arab-Andalusian
music [23]. This raises the possibility that classification
using natural units may have been successful because they
indeed are the building blocks, the centos.

Chant is not yet commonly studied in the MIR com-
munity, but we hope that this study shows that chant is
an interesting repertoire that can yield insights of broader
relevance. The immense efforts of chant scholars mean
that data are abundant. In short, we think chant can aid the
development of models that apply beyond Western classical
and pop music, and embrace the true diversity of musics
around the world.
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ABSTRACT

We introduce CONLON, a pattern-based MIDI generation
method that employs a new lossless pianoroll-like data de-
scription in which velocities and durations are stored in
separate channels. CONLON uses Wasserstein autoen-
coders as the underlying generative model. Its generation
strategy is similar to interpolation, where MIDI pseudo-
songs are obtained by concatenating patterns decoded from
smooth trajectories in the embedding space, but aims to
produce a smooth result in the pattern space by comput-
ing optimal trajectories as the solution of a widest-path
problem. A set of surveys enrolling 69 professional mu-
sicians shows that our system, when trained on datasets
of carefully selected and coherent patterns, is able to pro-
duce pseudo-songs that are musically consistent and po-
tentially useful for professional musicians. Additional ma-
terials can be found at https://paolo-f.github.
io/CONLON/.

1. INTRODUCTION

Algorithmic music generation has attracted the interest of
musicians and practictioners for long time, starting from
early works by Guttman, Hiller and Isaacson [1] and Xe-
nakis [2] in the 1950’s. Significant progress has recently
resulted from the widespread application of new and pow-
erful methods based on deep generative models, letting this
class of data-driven approaches gradually take over more
traditional rule-based or probabilistic techniques [3, 4].
This thriving line of research spans several dimensions of
the generation process, including different types of data:
audio signal [5, 6] vs. symbolic MIDI data; musical tex-
tures: monophonic [7] vs. polyphonic [8, 9]; ensem-
bles: single-instrument [9] vs. multi-instrument [7]; goals:
e.g., continuation [10], accompaniment [11], style trans-
fer [12–14], or interpolation [7, 14].

c© Luca Angioloni, Tijn Borghuis, Lorenzo Brusci, Paolo
Frasconi. Licensed under a Creative Commons Attribution 4.0 Inter-
national License (CC BY 4.0). Attribution: Luca Angioloni, Tijn
Borghuis, Lorenzo Brusci, Paolo Frasconi, “CONLON: A Pseudo-Song
Generator Based on a New Pianoroll, Wasserstein Autoencoders, and Op-
timal Interpolations”, in Proc. of the 21st Int. Society for Music Informa-
tion Retrieval Conf., Montréal, Canada, 2020.

We are particularly interested in developing a tool for
a context where the automatic generation and prolifera-
tion of new music material (not necessarily finished pieces)
is useful to assist musicians in music and media produc-
tion. Usefulness in this context may have different facets:
supporting and accelerating personal explorations of un-
known or semi-known music areas, collecting intra-genre
or cross-genre ideas of various complexity and abstraction,
augmenting the composer’s ability to explore the combina-
torial space of rhythmic, melodic, and harmonic variations.
In other words, what Boden calls “exploring conceptual
spaces” [15]. In spite of the impressive amount of recent
advancements in music generation with machine learning
approaches, the musical quality of the results is still not
always sufficient to enable a widespread adoption in real-
istic professional scenarios such as studio production using
standard Digital Audio Workstations (DAWs) or live per-
formance of electronic music.

In this paper, we focus on the autonomous generation of
polyphonic and multi-instrument MIDI partitures, aiming
at producing relatively long pseudo-songs (i.e. tracks that
have the duration of a song but whose temporal structure
is not controlled by a compositional intent) in mainstream
genres such as Acid Jazz, Soul or High Pop, that are effec-
tively usable in a professional music production context.
We argue that achieving this goal requires not only the ef-
fective exploitation of algorithmic ideas but also a care-
ful selection of coherent musical materials to be used as
training data. Unlike the case of image data, where there
exist large scale high quality coherent datasets (for exam-
ple CelebA [16] focusing on human faces), existing sym-
bolic music datasets for mainstream music contain large
variations in genre, style, and track/instrument role, that
make it more difficult to learn to generate musically co-
herent pseudo-songs. In the attempt to verify the impact
of dataset quality on the results, we introduce in this paper
(perhaps for the first time in this research area) two new
datasets that were not extracted from existing collections
but that have been especially composed and edited by two
musicians made aware of creating training sets for genera-
tive models. One dataset, ASF-4, is in Acid Jazz, Soul and
Funk; the other one, HP-10, in High Pop. Compared to
datasets used in other experiments (e.g. LPD-5 [17]) they
are small, i.e. of a size that individual musicians would be
able to compose or curate by themselves. This opens up the
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possibility of personalized generators, assisting musicians
in producing their own music.

From the algorithmic point of view, possible solutions
to the music generation problem can be characterized
across several separate dimensions (see [3] for a thorough
taxonomy). The most important ones for the goals of this
paper are (1) the type of data structures that are used to de-
scribe MIDI patterns (2) the nature of the generative learn-
ing models, and (3) the strategy used to produce a whole
musical piece. The system presented in this paper intro-
duces novelties across all these three dimensions, whose
combination allows us to generate meaningful and profes-
sionally usable streams of music. In terms of data descrip-
tion, we introduce a novel pianoroll-like pattern descrip-
tion that stores velocities and durations in two separate
channels. The description is lossless (i.e., it can be in-
verted to recover the original MIDI data exactly) and per-
ceptually robust to reconstruction errors (i.e., it does not
suffer the note shattering problem associated with binary
pianorolls that store consecutive high bits to represent note
durations). As a generative model, we experiment with
Wasserstein autoencoders (WAE) [18], a type of autoen-
coder that is less subject to the “blurriness” problem typi-
cally associated with variational autoencoders (VAE) [19].
To the best of our knowledge, WAEs have not been applied
to music generation before. Third, our generation strategy
is based on interpolation as in previous works [7,14] but we
formulate it as an optimization problem for exploring the
autoencoder latent space in a way that prevents abrupt tran-
sitions between consecutively generated patterns, as well
as regions with little variation.

We call our system CONLON, for Channeled Onset of
Notes and Length Of Notes, and in honor of Conlon Nan-
carrow (1912–1997), a pioneer of piano roll compositions.
A thorough evaluation with human experts suggest that
CONLON is able to produce pseudo-songs that are truly
exploitable by professional musicians in mainstream gen-
res.

2. A NEW PIANOROLL WITH EXPLICIT
DURATIONS

Each track in a MIDI stream consists of a sequence of time
stamped events. We consider here only two types of note
events: ON(t, n, v), and OFF(t, n). Here t denotes the
time at which a note with pitch n begins or ends, measured
in MIDI clock pulses. In general, n takes values between 0
(C-1) and 127 (G9). The MIDI velocity, v, takes values in
the integer range [0, 127]. Roughly, velocity is associated
with the note intensity (allowing to represent dynamic ex-
pression elements, such as pianissimo, forte, or accents in
percussive instruments) but depending on the instrument
attached to the track, it can also affect timbre (for exam-
ple, a “clicked” Hammond organ sound could be selected
in the sound bank when the velocity exceed a given thresh-
old). Note that although n and v take values in the same
range, v should be regarded as a continuous variable and n
as a categorical one.

Before this data can be fed into a learning algorithm,
it needs to be arranged in a proper description format.

Both variable-lenght and fixed-lenght descriptions have
been studied in the literature. Variable-length descriptions
are typically used in conjunction with various types of re-
current neural networks (RNNs) [20]. Fixed-length de-
scription include the pianorolls (PR) introduced in [21] for
melodies and later extended to the multitrack polyphonic
case [17, 22], and are suitable for modules based on con-
volutional neural networks (CNNs) [23]. Pianorolls, how-
ever, are a lossy description of MIDI data in at least two
ways. First, they do not include note velocities, which are
important for dynamic expression in many musical gen-
res. Second, they make it impossible to distinguish be-
tween long notes and repeated occurrences of the same
notes (see Fig. 1). The latter limitation can be mitigated
by using a finer quantization step or fixed by adding a re-
play matrix [9]. Still, the PR description may suffer a fun-
damental problem when there are imperfections in the re-
constructions generated by a trained model. In facts, false
negatives in the reconstruction may shatter a long note into
several shorter ones, which may produce a musically ob-
sessive and unpleasant result.

Figure 1. A short phrase described as PR (top right) and
as PRC (bottom). To construct a simple example, here we
set quantization at 1/8.

The solution proposed in this paper uses a second chan-
nel as in [9] but explictly represents note durations as con-
tinuous variables. More precisely, in our PRC description,
the tensor associated with a fixed-length music pattern is
constructed as follows. First, we introduce a time quan-
tization function q that maps fine-grained timestamps into
coarse-grained temporal positions in the range 1, . . . , T .
For example T = 128 if we quantize four 4

4 bars at 1/32th.
Assuming for simplicity a single instrument and denoting
by N the number of pitches in the used range, we create a
tensor x of shape T×N×2. In the first channel, xq(t),n,1 =
v if there occurs an event ON(t, n, v) and xq(t),n,1 = 0
otherwise. In the second channel, xq(t),n,2 = d if there
occurs an event ON(t, n, v) whose duration (expressed in
quantized steps) is d, and xq(t),n,2 = 0 otherwise. The
construction is illustrated in Fig. 1. Polyphony is handled
naturally in this description and multi-instrument patterns
with K tracks can be easily described by allocating two
channels for each track as above, resulting in a T×N×2K
tensor. Our PRC description does not suffer the ambiguity
between long notes and repeated occurrences of the same
note and, except for time quantization, is completely loss-
less (i.e., a quantized MIDI pattern transformed into the
corresponding PRC tensor can be recovered exactly). Ad-
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ditionally, it can be perceptually more robust to reconstruc-
tion errors. A further advantage is that all the information
about a note is local, whereas in the case of PR, a convo-
lutional network requires a wide receptive field to infer the
note duration.

3. GENERATING PATTERNS WITH
WASSERSTEIN AUTOENCODERS

Generative models that have been applied to music include
various types of encoder/decoder architectures, different
variants of generative adversarial networks (GAN) [24], as
well as transformer based architectures [25]. Variational
autoencoders (VAE) [19] have been used in systems like
VRAE [26], GLSR-VAE [27] and MusicVAE [7] while
GANs have been used in systems like C-RNN-GAN [28]
MidiNet [21] and MuseGAN [17, 22].

Both with autoencoders and GANs, a network G(z)
(called either decoder or generator) is trained to map a la-
tent or noise vector z ∈ Rdz into a pattern. Here we are
interested in autoencoder based approaches (see also Sec-
tion 4.1 for a motivation). Among these approaches, VAEs
are theoretically elegant and applicable to music genera-
tion. They are regularized by penalizing the expected KL
divergence between the posterior q(z|x) and a zero-mean
Gaussian prior pz , with the expectation being taken over
training points. However, as nothing prevents different
patterns being mapped to close latent codes, the decoder
is sometimes asked to reconstruct different patterns from
similar codes, resulting into a well known blurriness phe-
nomenon in the case of images [29]. In the case of music
patterns described as tensors, we observed that a form of
“blurriness” also occurs, resulting in large clusters of notes
being played together and sometimes in swarms of short
notes that are never present in the training data. WAEs [18]
avoid this problem by pushing the expectation inside the
divergence, i.e., penalizing a divergence D between the
prior qz and the aggregated posterior qz(z) = Ep q(z|x),
where p is the data distribution. WAEs thus minimize, with
respect to the parameters of the decoder, the quantity

min
q(z|x)

Ep Eq(z|x) c(x,G(z)) + λD(qz, pz) (1)

where c is a reconstruction loss and λ a hyperparameter to
be fixed. In all our experiments we employed the Maxi-
mum Mean Discrepancy (MMD) [30] for D and a Gaus-
sian prior for pq , and we structured the encoder and the de-
coder as in the DCGAN [31] architecture. Note that unlike
MuseGAN, which stacks bars over an additional tensor
axis and uses 3D convolutional layers, tensors in PRC can
be processed by 2D convolutional layers. The input ten-
sors are normalized in the (−1, 1) range. The final layer of
all our decoders has hyperbolic tangent output units. The
mean squared error between reconstructions and input pat-
terns was used in the optimization criterion during training.

The latent vector size, dz , was adjusted with a trial-and-
error approach, trying to find the smallest possible value
yielding good quality interpolations. If dz is too small the
validation error is large but if dz is too large, interpolations

tend to create many patterns that are too close to those in
the training set, in spite of a small validation error (which is
therefore not an useful metric). Additionally, nearly empty
patterns tend to appear in the middle of interpolations. We
found dz = 3 for ASF-4 and dz = 5 for HP-10 and LPD-5
to be a reasonable compromise. The remaining hyperpa-
rameters were tuned using random search [32] guided by
the validation set reconstruction error. We focused in par-
ticular on the learning rate, η, and the number of epochs T
used in conjunction with the Adam algorithm; the number
of layers nl; the number of filters nf and the size of filters,
k, used in the the DCGAN encoder and decoder (strides
were fixed to 2). Interestingly, large filter sizes k = 8
were found to perform better than standard smaller sizes
as compact filters are not able to capture musical patterns
and distant relationships between notes.

3.1 Converting Generated Tensors to MIDI

In the case of PRC descriptions, “decoding” a MIDI pat-
tern from the output tensor is almost straightforward (un-
like the case of PR, where specialized GAN architectures
have been introduced to avoid post-processing based on ei-
ther hard thresholding or Bernoulli sampling [22]). First,
predicted velocities and durations for each time t, pitch n,
and instrument i, are rescaled in the range 0–127. Events
whose rescaled predicted velocity v(t, n, i) < 1 or dura-
tion d(t, n, i) < 1 (i.e., non-audible notes) are discarded.
Finally, we apply the following transformation (similar to a
gamma correction) to obtain corrected velocities vc(t, n, i)
as follows:

vc(t, n, i) =

⌊
127

(
v(t, n, i)

127

) 1
γi

⌋
(2)

where γi is an instrument specific correction factor rang-
ing from 2.9 for drums to 4.0 for Rhodes. Durations are
directly retrieved from the (rescaled) duration channel.

4. PSEUDO-SONGS

The following approach assumes that a generative model
G : z ∈ Rdz 7→ x ∈ Rm×q×2 from embeddings to pat-
terns is available. Function G can be either the decoder
of an autoencoder or the generator of a GAN. A pseudo-
song is then generated by creating a trajectory of length T ,
z1, . . . , zT , and applyingG to each latent vector to produce
a corresponding sequence of patterns.

4.1 Interpolations

When using autoencoders, we have the choice of picking a
start pattern xs and a goal pattern xg (both from the test set)
and use the encoderE to obtain z1 = E(xs), zT = E(xg).
This for example allows users to produce a pseudo-song
that moves smoothly from one genre to another. Musicians
could even create ex-novo start and goal patterns with a
particular purpose in mind. When using GANs to gener-
ate, this option is not available but z1 and zT can be sam-
pled from p(z) (with a less intentional result) or, alterna-
tively, users may be given a set of pre-generated patterns
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from which to pick the endpoints from the pre-images of
the generator.

Two options are common for creating trajectories, linear
interpolation: zt = t−T

1−T z1 + 1−t
1−T zT , t = 2, . . . , T − 1,

and spherical interpolation:

zt =
sin
(

1−t
θ(1−T )

)
z1 + sin

(
θ t−T1−T

)
zT

sin(θ)
(3)

where θ = arccos(z1/‖z1‖, zT /‖zT ‖). The latter is
preferable when p(z) is Gaussian and dz is large [33].

4.2 Swirls

In this approach (also applicable to GANs), latent trajec-
tories are produced by taking real and imaginary parts of
periodic complex-valued parametric functions of the form

f(t; al, bl, cl, dl) = ejalt − ejblt/2 + jejclt/3 + ejdlt/4

for random choices of (al, bl, cl, dl), i.e., using z2l,t =
<(f(t; al, bl, cl, dl)) and z2l+1,t = =(f(t; al, bl, cl, dl)),
for l = 1, . . . , bdz/2c, t = 1, . . . , T .

4.3 Trajectory Smoothing

Equally spaced points in the embedding space do not nec-
essarily correspond to equally spaced reconstructions in
the pattern space. This essentially depends on how gen-
erative models allocate points in the pattern space to points
in the embedding space. When creating pseudo-songs with
either interpolations or swirls, this fact may lead in some
cases to abrupt transitions and in some other cases to repet-
itive regions that might be musically uninteresting. To ad-
dress this issue, we suggest to increase T beyond the de-
sired length and then subsample the trajectory. Smooth-
ness can be achieved by maximizing the minimum distance
between consecutive reconstructions and constraining the
final length to a desired integer L:

max
t1,...,tL

min
i=1,...,L−1

δ(G(zti), G(zti+1
)) (4)

s.t. 1 ≤ ti < ti+1 ≤ T i = 1, . . . L− 1 (5)

ti+1 − ti ≤ H i = 1, . . . L− 1 (6)

where δ is a distance function on patterns (e.g., the Eu-
clidean distance on PRC tensors) and H a lookahead hori-
zon, i.e., the maximum allowed number of positions that
may be skipped. Problem (4) can be reduced to an instance
of the bottleck shortest path problem [34] on the T×L trel-
lis with vertex set {(t, τ), t = 1, . . . , T ; τ = 1, . . . , L},
edge set {((t, τ), (t + 1, τ + s)), t = 1, . . . , T ; τ =
1, . . . , L, s = 1, . . . ,H}, and edge weights w((t, τ), (t +
1, τ + s)) = δ(G(zt), G(zt+s)) (see Fig. 2). The problem
is solvable by a slightly modified version of the Dijkstra
algorithm (where nodes in the frontier are labeled by their
maximum step cost rather than the sum of the step costs)
or by a faster algorithm based on bucketing [34].

5. DATASETS

We tested CONLON on three dataset. ASF-4 is a set of
910 patterns of four bars in three genres: acid jazz, soul

Figure 2. Trellis for trajectory smoothing. The horizon H
is 2 in this example. Among all paths from Start to Goal,
the highlighted path is the one whose smallest edge weight
is maximum.

and funk. Each pattern has K = 4 tracks associated with a
simple electro-acoustic quartet: drums, bass, Rhodes pi-
ano, and Hammond organ. HP-10 is a set of 968 pat-
terns of four bars in two genres: high-pop and progres-
sive trance. Each pattern has K = 10 tracks associated
with the following instrument set: drums, bass, Rhodes,
brass-synth, choir, dark-pad, guitar, lead, pad, and strings.
Both ASF-4 and HP-10 have been especially composed by
two professional musicians for this study. In both cases,
composers were instructed to create coherent 120bpm pat-
terns of four bars. All patterns in these datasets were sub-
sequently quantized at 1/32th resolution, manually curated
for mistakes (including fixing errors due to quantization),
and finally transposed to either Cmaj or Amin to prevent
tonality variations. The resulting PRC tensors have size
128 × N × 2K, where N = 55 for ASF-4 and N = 60
for HP-10. LPD-5 (cleansed version) was derived from
the Lakh MIDI dataset [35] by Dong et al. [17] by retain-
ing only songs with high matching scores to the Million
Song Dataset. It contains 21,425 multitrack MIDI songs
with K = 5 tracks and N = 108 pitches, where original
tracks/instruments were merged into instrument families
and cut by the authors of [17] into patterns consisting of
two 4/4 bars. Automatic quantization at 1/48 was applied
yielding tensors of size 192× 108× 10.

Being manually curated, ASF-4 and HP-10 are much
more coherent than LPD-5 in at least three ways. First,
music style and genre is highly constrained, whereas LPD-
5 contains a wide assortment of different genres. Second,
instrument-role is well defined, i.e., the instrument that
plays in a certain track always maintains its role across the
whole dataset. In LPD-5, some heuristics have been ap-
plied by the authors of [17] to map instruments to the five
tracks but in some cases very different instruments may
collide on the same track. Third, the endpoints that demar-
cate patterns always cover homogeneous phrases, i.e., the
phrase always begins on the first bar. In LPD-5, patterns
are extracted by an automatic segmentation technique that
cannot be equally reliable.

6. LISTENING EXPERIMENTS
To validate the CONLON approach, we conducted three
listening experiments with a group of 69 musicians, re-
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cruited by the authors with the help of colleagues teaching
in several music educational institutes. Subjects mainly
identified themselves as composers and producers (often
in combination with instrumentalist/performer), working
mostly in three (non mutually exclusive) genres: Classi-
cal, Contemporary and Electronic Dance Music. Over half
the participants had more than 10 years of professional ex-
perience in music, only one less than 3 years.

Participants were told that the survey was part of a re-
search project on the generation of music with machine
learning techniques, with the long-term aim of developing
new tools for music production and performance. They
participated through an online survey service 1 that allows
for questions with audio materials. The experiments con-
sisted of two types of tasks.

Comparison Subjects listen to a pair of short music tracks
(64 bars, 130s), and indicate which of the two tracks
is most usable in the context of mainstream music
production (forced choice). The scenario they are
asked to keep in mind is that they would receive the
tracks as a midi file for inclusion and editing in the
production of a mainstream song in their own DAW.

Analysis Subjects listen to a single track, an excerpt (64
bars) from a longer piece and assess the musical de-
velopment of the composition over time, with re-
gards to four aspects: Harmony, Rhythm, Melody,
and Interplay of instruments, each judged on a 5-
point Likert scale (from “very incoherent" to “very
coherent"). To obtain further feedback, we asked the
subjects to comment on good points of the composi-
tion and points for improvement.

Answers in the comparison task were converted to ranks
for the tracks in a pair (i.e. rank is 1 for the preferred track
and 2 for the other). We then computed the mean rank of
the tracks across subjects. Following [36], we employed
Kendall’s Coefficient of Concordance (W ) [37], to analyse
the level of agreement among subjects, along with a com-
monly used significance test against the null hypothesis of
no agreement [38].

In the following we describe three experiments aim-
ing at testing specific hypotheses relating CONLON to
MuseGAN, PR to PRC, and the usability of pseudo-songs.
For all models we set the interpolation length T=64, the
desired length L=16, and the widest-path horizonH=20.

1 http://www.surveygizmo.com

Method HP-10 LPD-5

CONLON 1.17 1.45
MuseGAN 1.83 1.55

Concordance 0.64 0.01
Significance p<0.0005 ns

Table 1. Mean ranks assigned by subjects to the usability
of interpolations generated with our system (CONLON)
and MuseGAN [22]. m = 75 pairs were ranked.

Description ASF-4 HP-10 LPD-5

PRC 1.08 1.31 1.5
PR 1.92 1.69 1.5

Concordance 0.72 0.15 0
Significance p<0.0005 p<0.001 ns

Table 2. Mean ranks assigned by subjects to the usability
of pseudo-songs generated with PRC and PR descriptions.
m = 78 pairs were ranked.

Aspect
Harmony Rhythm Melody Interplay

Coherent 49% 67% 42% 51%
Neutral 35% 20% 29% 20%

Incoherent 16% 13% 29% 29%

Significance p<.005 p<.0005 p<.005 p<.0005

Table 3. Coherence of CONLON pseudo-songs as judged
by subjects, with respect to harmony, rhythm, melody, in-
terplay of instruments. m = 69 judgements were col-
lected.

6.1 Comparing CONLON and MuseGAN
To substantiate that CONLON is more usable in music pro-
duction than previous approaches, we tested Hypothesis 1:
Musicians find pseudo-songs generated with WAEs and
PRC descriptions more useable in music production than
pseudo-songs generated with the MuseGAN model and PR
(other factors being equal). A WAE-model was trained on
PRC representations of the datasets HP-10 and LPD-5, and
a MuseGAN model on PR representations of datasets HP-
10 and LPD-5 to generate interpolations. On the same data,
we trained a MuseGAN model with binary neurons [22]
using the implementation at https://github.com/
salu133445/musegan. Subjects were given pairs of
matching interpolations to compare, differing in the ap-
proach used, but with the same start, goal and length. Six
pairs (three for each dataset) were presented for compari-
son to 25 subjects, producing a total of 75 observations per
dataset.

Subjects generally judged pseudo-songs generated by
CONLON to be more usable than pseudo-songs generated
with the MuseGAN approach (for 5 out of the 6 pairs). But
whereas the difference in ranking is clear and concordance
among participants is significant for the three pairs on the
HP-10 dataset, differences were small and concordance
not significant among subjects for pseudo-songs generated
from LPD-5. Table 1 shows the aggregated mean ranking
per dataset.

6.2 Comparing PR and PRC

To investigate whether part of the improvement over previ-
ous approaches is due to the representation, we tested Hy-
pothesis 2: Musicians find pseudo-songs generated with
PRC descriptions more useable in music production than
pseudo-songs generated with PR descriptions (other fac-
tors being equal). A WAE-model was trained on PR
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ASF-4 HP-10 LPD-5

P R V D P R V D P R V D
PR 6.1 51.1 32.2 2.5 4.1 58.9 28.8 3.1 1.4 89.7 41.0 5.5

PRC 32.1 53.9 24.3 1.0 37.0 58.0 23.4 1.8 35.5 60.2 19.5 2.6

Table 4. Test set precision (P ), recall (R), mean absolute errors on velocity (V ) and duration (D) for PR and PRC .

and PRC representations of the datasets ASF-4, HP-10 and
LPD-5 to generate interpolations. 26 subjects were given
nine pairs of matching interpolations to compare (differing
only in representation used), three for each dataset, result-
ing in 78 observations per dataset.

Subjects generally judged pseudo-songs generated with
PRC representations to be more usable than pseudo-songs
generated with PR representations (for 8 out of the 9 pairs).
The difference in ranking is clear and concordance among
participants is significant for the 6 pairs on the ASF-4 and
HP-10 datasets, but differences were small and concor-
dance not significant for the 3 pairs generated on different
representations of the LPD-5 dataset. Table 2 shows the
aggregated mean ranking and cross-subject concordance
per dataset.

6.3 Analyzing Development over Time

To validate the way patterns are chained together by
CONLON, we tested Hypothesis 3: Musicians find the
development over time of pseudo-songs generated with
WAEs and PRC description coherent rather than incoher-
ent (in terms of harmony, rhythm, melody and interplay
between instruments). A WAE-model was trained on a
PRC representation of datasets ASF-4 and HP-10 to gen-
erate swirls. All subjects were given the analysis task for a
swirl, resulting in 69 observations per aspect.

Subjects generally judged the coherence of pseudo-
songs on the positive side of the scale. For the three swirls
presented in the experiment, each with four aspects, the
median for all aspects lies at “somewhat coherent” (8 out
of 12) or “neutral” (4 out of 12). The rating “very coher-
ent” is reached for all aspects, the rating “very incoherent”
in 10 out of 12. For all swirls, rhythm is the aspect with
the highest coherence rating. Table 3 shows the aggregated
answers for the three swirls, recoded to a 3-point scale.

7. QUANTITATIVE EVALUATIONS

When only a limited amount of human expert time is avail-
able for surveys, it becomes difficult to cover all differ-
ent dimensions on which alternative methods can be com-
pared. Rather that allowing non experts in our surveys, it
may be preferable to complement human evaluation with a
number of automatically computed metrics [39]. Here we
consider reconstruction error and note shattering.

7.1 Reconstruction error

Here we complement human evaluations with some auto-
matically computed metrics that are derived from test set
reconstructions and are applicable to autoencoder-based
methods. In particular, we aim to compare WAEs fed by

PR vs WAEs fed by PRC . Precision and recall are defined
on the binary classification problem where the ground truth
consists of Bernoulli variables y(t, n, i) = 1 if there is
a note-on event at time t for note n and instrument i.
For these metrics we considered as predictions the binary
quantities ŷ(t, n, i) = 1 if the reconstructed value of the
velocity at position (t, n, i) is above the smallest velocity
encountered in the training set. In the case of PR descrip-
tion, the predicted note-on event was the first element in the
merged row of consecutive predictions. We further consid-
ered the mean absolute errors in predicting velocities (in
the range [0 − 127]) and durations (in units of 1/32ths of
bar). Test set results comparing PR and PRC (everything
else being equal) are reported in Table 4.

7.2 Note Shattering

Results in Table 4 indicate that PR yields good recall but
very low precision, and has a higher error on both velocity
and duration. This can be partially explained by the pres-
ence of a high number of shattered notes. To verify this
hypothesis we computed the note number growth due to
shattering as follows. For each note in the ground truth,
identified by the triplet (n, i, T ), being n the pitch, i the
instrument, and T = [tON, tOFF] the temporal interval, we
counted the number of notes in the reconstruction that have
the same pitch n and instrument i, and whose note-ON
time falls within T . We then summed these counts over
all notes in the test set. In the absence of shattering, the
total count equals the original number of notes. We found
that WAE-PR increased the number of notes by 19%, 12%,
38% on ASF-4, HP-10, and LPD-5, respectively. By com-
parison, the increase factors were only 5%, 3%, and 10%
in the case of WAE-PRC .

8. CONCLUSIONS

CONLON combines the new PRC data description with
Wasserstein autoencoders and generation strategies based
on optimized interpolation and swirling to produce pattern-
based pseudo-songs. When trained on coherent datasets,
the generated material is musically coherent and poten-
tially useful in music production by professional musi-
cians.

Pseudo-songs can sound like directed musical flows,
but this is entirely due to the properties of the embed-
ding space, longer-term structure is not considered. In that
sense, interpolating and swirling are closer to improvisa-
tion than to composition. A natural next step is to label
dataset patterns with structural categories (e.g. verse, cho-
rus) and introduce form via mechanisms of conditioning.
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ABSTRACT

Version identification systems aim to detect different rendi-
tions of the same underlying musical composition (loosely
called cover songs). By learning to encode entire record-
ings into plain vector embeddings, recent systems have
made significant progress in bridging the gap between ac-
curacy and scalability, which has been a key challenge for
nearly two decades. In this work, we propose to further
narrow this gap by employing a set of data distillation
techniques that reduce the embedding dimensionality of
a pre-trained state-of-the-art model. We compare a wide
range of techniques and propose new ones, from classi-
cal dimensionality reduction to more sophisticated distilla-
tion schemes. With those, we obtain 99% smaller embed-
dings that, moreover, yield up to a 3% accuracy increase.
Such small embeddings can have an important impact in
retrieval time, up to the point of making a real-world sys-
tem practical on a standalone laptop.

1. INTRODUCTION

The concept of music versions is as old as the concept of
music itself. Before the existence of recorded music, lis-
tening to a piece mostly meant listening to a version of
it. Nowadays, with the advancements in recording tech-
nologies, most music we listen to comes in recorded form.
Nevertheless, musicians keep creating their own versions
of existing songs for various reasons, including commer-
cial ones (for example, to attract new audiences), political
ones (to connect people or make a stance), and artistic ones
(to re-imagine a song with a personal touch).

Version identification (VI) is the task of automatically
detecting different renditions of the same underlying mu-
sical composition. VI systems are mainly focused on re-
trieval, aiming to find all renditions of a query song in
a reference database. Although creating new versions is
common practice, defining the characteristics that enable
us to perceive the links connecting different renditions of

c© F. Yesiler, J. Serrà and E. Gómez. Licensed under a Cre-
ative Commons Attribution 4.0 International License (CC BY 4.0). At-
tribution: F. Yesiler, J. Serrà and E. Gómez, “Less is more: Faster and
better music version identification with embedding distillation”, in Proc.
of the 21st Int. Society for Music Information Retrieval Conf., Montréal,
Canada, 2020.

the same piece is not a straightforward task [1, 2]. Based
on quantitative evidence, many successful systems exploit
tonal and melodic descriptors that are invariant to the typ-
ical differences among versions, including the differences
in timbre, tempo, structure, lyrics, and so on [3–5]. By
further processing such descriptors, the ultimate goal is to
obtain representations that allow inferring links among ver-
sions.

The accuracy-scalability trade-off stands as a key chal-
lenge in version retrieval. The early, alignment-based
systems [6, 7] incorporated musical know-how to cap-
ture the similarities among versions, resulting in strong
performances. However, due to the scarcity of data,
and their dependence on complex representations and
computationally-intensive algorithms, they ended up in
limited evaluation environments and, ultimately, not be-
ing suitable for industrial-size databases. With the re-
lease of the Million Song Dataset [8], researchers were
further encouraged to address the scalability issue by ex-
ploring embedding-based systems that encode songs into
more compact vectors. Although offering significant im-
provements for the scalability aspect, the performance
of such systems failed to match their predecessors [9].
Recent embedding-based systems that use deep learning
techniques pave the way to encapsulate the similarities
among versions in ways that are both efficient and accu-
rate [5, 10–12].

The main use case of version retrieval in commercial
settings is to detect copyright infringement cases in me-
dia streaming platforms and live performance venues or
events. Such application scenarios require having fast and
scalable solutions. For example, more than 500 h of video
content are uploaded to YouTube every minute 1 , and han-
dling the music licensing aspect of that requires having
accurate and scalable systems that can identify the cases
where a video includes a copyrighted piece of music.

In this paper, we investigate a number of ways to im-
prove the scalability of existing embedding-based VI sys-
tems that use neural networks as encoders. Specifically,
our goal is to reduce the size of embedding vectors without
compromising the accuracy of the systems. Since embed-
dings can be pre-computed, reducing their size is crucial
to improve data storage and, more importantly, retrieval

1 https://www.cnbc.com/2018/03/14/with-over-1-billion-users-heres-
how-youtube-is-keeping-pace-with-change.html

884



time. For this purpose, we consider three core state-of-the-
art strategies, namely unsupervised dimensionality reduc-
tion, neural network pruning, and knowledge distillation.
Apart from introducing a number of techniques from other
fields to VI research, we also consider a novel knowledge
distillation loss for metric learning, which aims to opti-
mize a clustering evaluation metric. Moreover, inspired
by transfer learning applications, we propose a technique
called latent space reconfiguration, to show that learning a
compact and efficient latent space is facilitated by using a
pre-trained feature extractor due to its stronger priors, com-
pared with using a randomly-initialized one. Our exper-
iments suggest that the performance of a pre-trained net-
work can be preserved, or even improved, while shrinking
the embedding vectors down to less than 1% of their origi-
nal sizes. We evaluate our approach on a publicly-available
test set, and share our code, instructions for using a newly-
contributed training dataset and supplementary materials
(SM) on Github 2 .

2. RELATED WORK

2.1 Version identification

Like many other systems in music information retrieval
(MIR), VI systems extract audio descriptors to obtain rel-
evant information from signals, including mid-level ones,
such as pitch class profiles (PCP) [7, 13–16] and predom-
inant melody [4, 10, 17], or low-level ones, such as the
constant-Q transform (CQT) [18–20]. To achieve invari-
ance against the changes in musical characteristics, fur-
ther processing steps have been proposed, including beat-
synchronous features for handling tempo variations [13,15,
21], and the optimal transposition index for handling pitch
transpositions [6, 7, 14, 15]. Many rule-based VI systems
use alignment algorithms to then compare these represen-
tations, resulting in long retrieval times.

Embedding-based VI systems are designed to obtain
compact representations that speed up the retrieval phase.
Compact embeddings reduce the required storage and fa-
cilitate similarity estimation through the use of efficient
nearest-neighbor libraries implementing common metrics
like Euclidean or cosine distances. Early attempts of
such systems use techniques like the 2D Fourier trans-
form, principal component analysis, and linear discrimi-
nant analysis for encoding and dimensionality reduction
operations [21, 22].

Current deep learning-based systems learn non-linear
transformations that map the feature representations into
embedding vectors of various sizes, ranging from 300
to 16,000. Xu et al. [23] and Yu et al. [11] train their
convolutional networks with a classification loss, but ob-
tain the embedding vectors to use in the retrieval phase
from the penultimate layer of their networks. Doras and
Peeters [10], and Yesiler et al. [5] formulate the network
training as a metric learning setting, in which they use the
triplet loss for optimizing distances among training sam-
ples.

2 https://github.com/furkanyesiler/re-move

2.2 Metric learning

This line of research is concerned with learning functions
that produce low distance values between semantically
similar data points, and high values otherwise. The early
approaches include learning Mahalanobis distances [24]
with linear [25, 26] or non-linear [27] transformations.
Parametrizing such transformations with neural networks
was pioneered by Chopra et al. [28] and Salakhutdinov and
Hinton [29], and the research domain combining these two
concepts is often called deep metric learning.

Deep metric learning methods offer new solutions re-
garding how to exploit the semantic relations among data,
often by formulating or revising loss functions. The triplet
loss [30], similar to LMNN [26], manipulates the distances
between genuine and impostor pairs with an energy-based
approach. The ProxyNCA loss [31], similar to NCA [25],
and NormalizedSoftmax loss [32], similar to cross entropy
loss, maximize the likelihoods of samples being close to
particular class proxies. The group loss [33] incorporates
the idea that similar elements should belong in the same
class by using replicator dynamics [34]. Although there
is a variety of deep metric learning losses, each one with
distinctive advantages, the triplet loss variants remain the
popular (and almost unique) choice in MIR research.

2.3 Model reduction

2.3.1 Neural network pruning

Pruning a large neural network can preserve the orig-
inal performance while eliminating more than 90% of
its weights [35–38]. The main challenge is to identify
the importance of connections and weights, and previous
techniques explored the use of absolute weight magni-
tudes [36–38] and the Hessian of the loss function [35].
Pruning operations can be performed layer- or network-
wise, in a one-shot or an iterative fashion, and combined
with quantization or clustering. To the best of our knowl-
edge, network pruning has not been considered for VI, nor
further explored in MIR systems in general.

2.3.2 Knowledge distillation

Bucilă et al. [39], and later Hinton et al. [40], explored the
idea where a small neural network (the student model) is
trained with the guidance from a wide, deep, and better-
performing network (the teacher model). In the metric
learning context, some works explored this idea with a
slightly changed formulation: Classical knowledge dis-
tillation methods use teacher networks to guide the stu-
dents on individual examples, but metric learning methods
exploit similarity relations among samples. For this, re-
searchers proposed methods that match a number of prop-
erties between the embeddings obtained from the teacher
and the student models, including the ranks of retrieved
samples [41], distances between samples [42], class likeli-
hood distributions [43], and absolute positions of embed-
dings in the latent space [44]. With few exceptions [45,46],
distillation techniques are largely under-explored in MIR,
and we believe that no attempt has been done within VI.
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Figure 1: An overview of neural network-based embedding distillation methods. The hollow arrows denote training
process, the boxes with dashed and with solid outlines denote feature extractors and fully-connected layers, respectively.

3. METHODOLOGY

3.1 Embedding distillation

Our study focuses on a set of techniques for improving the
scalability of existing VI systems in the retrieval phase by
reducing the size of the embeddings, rather than building a
novel network architecture. 3 We hypothesize that a high-
capacity encoder is still needed to extract the essential in-
formation from complex and noisy signals such as current
tonal representations. However, once a reliable encoder is
obtained, it can be used for training a second model that
outputs embeddings with a lower dimensionality, ideally
without compromising accuracy. Due to the goal of having
smaller embeddings that yield a similar performance, we
call this set of methods embedding distillation techniques.

3.2 Data

Our models are developed with the Da-TACOS training set
that we make available under Creative Commons BY-NC-
SA 4.0 license together with this publication. It features
a training partition of 83,904 songs in 14,499 cliques (or
unique works), and a validation partition of 14,000 songs
in 3,500 cliques. The annotations for the songs are ob-
tained using the API of secondhandsongs.com. We
share the crema-PCP features [47] and the related meta-
data. Further detail on the contributed dataset is available
in SM.

3.3 Model architecture and training details

Our methods require to start from a pre-trained and suf-
ficiently reliable model. For this, we take advantage of
the publicly-available MOVE model [5], together with its
pre-trained weights. Nonetheless, we believe all methods
introduced here can be applied to other embedding-based
systems using neural networks (initial results are available
in SM).

3 To illustrate the benefits of using smaller embeddings, consider com-
puting distances between a query and a reference database with 10 M em-
beddings. This takes us (with a simple brute-force, double-loop Euclidean
distance function) 0.32 s using d = 256, but the elapsed time increases
up to 4.75 s for d = 4k, and to 18.43 s for d = 16k (the embedding size
of MOVE [5]). Although the absolute values are subject to change based
on computational resources, for real-world applications on portable de-
vices, such differences in magnitude for the retrieval time (from 0.32 to
18.43 s) may drastically affect user experience and product appeal.

MOVE uses crema-PCP features X ∈ [0, 1]12×T as in-
put, where T is the number of frames, pre-computed with
non-overlapping windows of 93 ms. The model outputs
embedding vectors v = f(X) ∈ Rd, where d is the em-
bedding size. The original work reports results for d be-
tween 128 and 32 k, and shows a clear accuracy drop for
d < 2048 (the final model employs a rather high dimen-
sionality d = 16 k). In contrast, the dimensionalities we
consider in this work are d = {128, 256, 512, 2048}.

To find a suitable learning rate and an optimizer for each
experiment setting, we perform a grid search over both
stochastic gradient descent and Ranger 4 optimizers and
initial learning rates in {0.0001, 0.001, 0.01, 0.1}, using
our validation set. The full training lasts for 70 epochs, and
we decrease the learning rate by a factor of 10 at epochs 50
and 60. We save the model weights that result in the best
performance on the validation set. The remaining training
details and design decisions follow the ones made by the
MOVE authors [5]. All neural network models are trained
using PyTorch [48], and the hyper-parameter values used
for each experiment can be found at our repository.

3.4 Methods for embedding distillation

3.4.1 Classical unsupervised techniques

Before going into complex solutions, we investigate the
benefits of using classical dimensionality reduction tech-
niques for embedding distillation. For this, we use prin-
cipal component analysis (PCA), independent component
analysis (ICA), and Gaussian random projection (GRP)
techniques. Each model is fit using the training set embed-
dings obtained with MOVE-16k, and applied to the eval-
uation set embeddings. We use the implementations from
the scikit-learn library [49] and change only the number of
target components.

3.4.2 Pruning

Based on the approach of Han et al. [37], we study whether
we can prune the dimensions of the latent space con-
structed by MOVE-16k in an iterative way. Although prun-
ing the weights of all layers throughout the network is the
most common practice, the underlying idea can be applied

4 https://github.com/lessw2020/Ranger-Deep-Learning-Optimizer
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to only the final linear layer of the model in order to obtain
embeddings with fewer dimensions. Denoting the weights
of the linear layer of MOVE-16k as W ∈ Rd×f , where d
is the size of the embeddings and f is the number of in-
put connections to the linear layer, we compute the mean
of the absolute values per row for W and sort the rows
based on these mean values. At the end of each iterationm
(m ∈ {0, 1, ...}), the weights of the top 50% rows are re-
stored to their initial values from Iteration 0 and retrained.
The weights of the bottom 50% rows are zeroed-out and
not considered for the next iterations (Figure 1(a)) .

3.4.3 Knowledge distillation

This set of experiments consider MOVE-16k as a teacher
model, and our goal is to train from scratch a student model
of the same size but with a lower embedding dimensional-
ity. Our approach is formulated in a deep metric learning
setting where the guidance of the teacher model is shaped
by the distances among samples (Figure 1(b)). In the ex-
periments described next, the weights of the teacher model
are frozen, and the weights of the student model are initial-
ized randomly.
Distance matching — Perhaps the most intuitive way of
guiding the student model is to match the distances ob-
tained from the student with the ones from the teacher, al-
lowing the two models to have different embedding sizes.
In our implementation, we pass the samples in each mini-
batch to both models, compute in-batch pairwise distances,
and use the mean absolute error between the pairwise dis-
tance matrices from the teacher model and the student
model to train the latter:

LDM
i =

∑
j

∣∣D(vs
i, v

s
j)−D(vt

i, v
t
j)
∣∣ , (1)

using

D(vi, vj) =
1

d
‖vi − vj‖2, (2)

where ‖ ‖ represents the Euclidean norm, and vs
i and vt

i the
embeddings of song i obtained with the student and teacher
models, respectively.
Cluster matching — Our second knowledge distillation
scheme aims to obtain a student model that constructs
clusters with both low intra-class and high inter-class dis-
tances. Assuming the teacher model holds this desired
property, we take advantage of this information to guide
the student model. To the best of our knowledge, this dis-
tillation criterion has not been explored in previous deep
metric learning research.

Our criterion exploits internal cluster evaluation met-
rics [50]. In the experiments reported here, we use the
Davies-Bouldin (DB) index [51], but other cluster evalu-
ation metrics can be used:

LDB
i = max

j 6=i

(
σi + σj
D(ci, cj)

)
, (3)

where σi denotes the average intra-class distance, com-
puted with a suitable distance measure D, and ci denotes
the centroid for class i. The DB index yields low values

for configurations that have low intra-class and high inter-
class distances.

In our implementation, we pre-compute the class cen-
troids using the MOVE-16k embeddings from the entire
training set. To match the dimensions of the centroids with
the student model embeddings, we train a linear projection
simultaneously with the student model. The intra-class
and inter-centroid distances are computed using only the
samples present in the mini-batch and their respective cen-
troids. After computing DB scores for each class in the
mini-batch, we average them to obtain the final loss value.

3.4.4 Latent space reconfiguration

Transfer learning applications take advantage of the strong
priors learned by the feature extractor part of successful,
high-capacity models that are trained on large datasets.
Inspired by this idea, we hypothesize that, by using the
feature extractor of a pre-trained model, we can ob-
tain a better-structured and lower-dimensional latent space
that cannot be obtained by training a randomly-initialized
model from scratch.

To test this idea, we use the pre-trained convolutional
layers of MOVE-16k as the feature extractor, remove the
final linear layer, and learn a new latent space with a
randomly-initialized linear layer using a metric learning
loss function (Figure 1(c)). Note that the original MOVE-
16k model is trained with a triplet loss, meaning that it
learned a distance metric parametrized by a neural net-
work. Our approach uses the non-linear part of that metric,
and ‘reconfigures’ the latent space and the distance met-
ric by optimizing a second loss function (hence the name
latent space reconfiguration). Our motivation is based on
two assumptions: (1) training losses play an important role
in shaping the latent space where the embeddings lie, and
(2) embeddings with lower dimensionalities may be suf-
ficient to successfully represent semantically meaningful
information, as long as the dimensions are effectively uti-
lized. Note that although this technique follows the same
procedure as transfer learning, the latter requires, by defi-
nition, distinct source and target tasks (or datasets), which
is not the case for the proposed technique. Focusing on
metric learning schemes, the term latent space reconfigura-
tion denotes the process of starting with an already learned
distance metric and modifying it to represent the semantic
relations in a more compact embedding space.

In our experiments, we consider 4 loss functions which
are explained below. The weights of the feature extractor
are frozen during the first epoch and updated with a lower
learning rate during the rest of the training. Batch normal-
ization is applied after the linear layer as in MOVE-16k.
Apart from using the loss functions below for latent space
reconfiguration, we also use them individually and train
models from scratch with the same settings to set baseline
models.
Triplet loss — We follow the triplet loss formulation used
by Yesiler et al. [5]. Distances among vectors are com-
puted using D as specified in Eqn (2):

LT
i = max (D (vi, v+)−D (vi, v−) +m, 0) , (4)
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where vi corresponds to the anchor, v+ to the positive
sample, v− to the negative sample, and m = 1 is a mar-
gin hyper-parameter. For selecting which triplets to use,
we follow the hard-positive, hard-negative mining strategy
used by the authors.

ProxyNCA loss — Our implementation of ProxyNCA
loss [31] also uses the normalized squared Euclidean dis-
tance metric from Eqn (2). Every class in our training set
is represented with one proxy vector that is initialized ran-
domly and trained simultaneously with the model parame-
ters. In mathematical notation, the ProxyNCA loss can be
expressed as:

LP
i = − log

(
exp(−D(vi, y))∑
z∈Z exp(−D(vi, z))

)
, (5)

where y ∈ Rd denotes the proxy vector for the class of vi
and Z denotes the set of proxies for all classes different
than the one of vi.

NormalizedSoftmax loss — As proposed in [32], we im-
plement this function using the cosine distance. We ran-
domly initialize one proxy per class and update their pa-
rameters at each training step. We use

LN
i = − log

(
exp(〈vi, y〉/τ)∑
z∈Z exp(〈vi, z〉/τ)

)
, (6)

where 〈 〉 denotes cosine similarity, y ∈ Rd the proxy for
the positive class, Z the set of proxies for all classes, and
τ = 0.05 the temperature parameter.

Group loss — Following the approach of [33], we use
Pearson’s correlation coefficient as the similarity metric
and replace the negative values with 0. We perform three
iterations for refining the class probabilities and, unlike the
original implementation, we select one anchor per class in
the mini-batch. The main loss is regular cross-entropy:

LG
i = − log

(
exp(lci )∑
t∈C exp(lti)

)
, (7)

where lci denotes the logit of sample i with respect to its
positive class c, and C denotes the set of all classes in the
training set. However, in group loss, logits are updated
with replicator dynamics using pairwise similarities [33].

4. RESULTS

4.1 Evaluation methodology

For development, we use the newly available dataset men-
tioned in Section 3.2 and detailed in SM. Results are then
evaluated on Da-TACOS benchmark subset [9], which
contains a non-intersecting set of cliques with respect to
our training and validation data. Da-TACOS contains
1,000 cliques with 13 songs each and 2,000 noise songs
that do not belong to any other clique and are not queried.
Following common practice, we report the performance of
our models using mean average precision (MAP) and mean
rank of the first relevant item (MR1) metrics.

Method d
128 256 512 2048

Baselines (no reduction, training from scratch)
Triplet 0.459 0.469 0.478 0.487
ProxyNCA 0.168 0.185 0.212 0.206
NormalizedSoftmax 0.445 0.470 0.475 0.422
Group 0.265 0.271 0.269 0.271
Unsupervised
PCA 0.494 0.507 0.507 0.507
ICA 0.456 0.425 n/a n/a
GRP 0.429 0.465 0.485 0.502
Knowledge distillation
Distance matching + Triplet 0.492 0.499 0.503 0.500
Cluster matching + Triplet 0.424 0.471 0.465 0.455
Latent space reconfiguration
Triplet 0.485 0.491 0.494 0.506
ProxyNCA 0.424 0.465 0.485 0.502
NormalizedSoftmax 0.513 0.524 0.525 0.525
Group 0.465 0.483 0.495 0.511

Table 1: MAP for different embedding sizes d when train-
ing from scratch (top) and when using pre-trained mod-
els and embedding distillation (middle-bottom). MAPs for
the original MOVE-4k and MOVE-16k baselines are 0.495
and 0.507, respectively (values equal to or above MOVE-
4k are highlighted in bold).

4.2 Embedding distillation experiments

Table 1 presents the exhaustive list of results for the meth-
ods described in Section 3. The baseline results (top block)
show that, when training from scratch, changing the loss
function of a network causes significant accuracy differ-
ences. It should be noted that all alternative losses we con-
sider achieve state-of-the-art performances in computer vi-
sion datasets. Nevertheless, our results suggest that they
may not generalize across other types of data or tasks, or
that they may be oversensitive to hyper-parameters or spe-
cific architectural decisions.

For unsupervised dimensionality reduction (second
block of Table 1), we find that PCA successfully projects
the information contained in MOVE-16k embeddings,
even when using 256 dimensions. This suggests that,
although achieving state-of-the-art performance, MOVE-
16k embeddings contain redundant information that can
be drastically compressed. GRP reaches a similar perfor-
mance as PCA with d = 2048, but the resulting perfor-
mance decreases when using lower-dimensional embed-
dings.

The initial experiments on pruning reached the same
performance as MOVE-16k after one iteration, that is, af-
ter reducing the dimensionality by 50%. However, fur-
ther pruning iterations drastically decreased MAP, up to
the point of yielding non-useful embeddings. Therefore,
we decided to stop iterating and not to report the corre-
sponding results.

Among the considered knowledge distillation tech-
niques (third block, Table 1), the additional distance
matching loss clearly increases the model performance
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d MAP MR1
2DFTM [21] 50 0.275 155
Dmax [16] 5.5 k 0.322 132
SiMPle [14] 2.2 k 0.332 142
Qmax [7] 5.5 k 0.365 113
Qmax* [52] 5.5 k 0.373 104
EarlyFusion [15] 8.5 k 0.426 116
LateFusion [16] 5.5 k 0.454 177
MOVE [5] 4 k 0.495 42
MOVE [5] 16 k 0.507 40
Re-MOVE 256 0.524 38

Table 2: Comparison with existing VI systems using Da-
TACOS (taken from [9]). When not explicit, embedding
sizes d are estimated for a song duration of 3.5 min (see
text). Results for the proposed methodology are high-
lighted in bold.

compared with the case where only the triplet loss is op-
timized. However, the same advantage is not observed
with cluster matching using DB loss. We hypothesize that
this may be related to training an extra linear projection for
compressing the centroid embeddings to match the size of
the embeddings obtained with the student model.

Latent space reconfiguration results seem to justify our
hypothesis regarding the use of strong priors of a pre-
trained feature extractor (last block, Table 1). All con-
sidered alternatives outperform their baseline counterparts.
Moreover, we find that using probabilistic losses such as
NormalizedSoftmax and Group for latent space reconfig-
uration even outperforms the original model while reduc-
ing the embedding size by a large margin (128/16000 =
0.8%). Notice that, in addition to these advantages, la-
tent space reconfiguration does not suffer from the setbacks
of network pruning and knowledge distillation methods,
namely training a model for multiple iterations and using
two models simultaneously during training, respectively.

4.3 Comparison with the state of the art

Lastly, Table 2 compares our best result with state-of-the-
art methods. The second column, d, shows the size of
the smallest representation (per song) required for each
method to estimate pairwise similarities (equivalent to the
embedding dimensionality). As the results for the first
7 methods are computed with the publicly-available acoss
library [9], we use those implementations for estimating
the embedding sizes 5 . As the sizes of some representa-
tions depend on the song duration (SiMPle, Qmax, Dmax,
LateFusion) or tempo (EarlyFusion), we use 3.5 min and
102 bpm estimates, which correspond to average song du-
ration and bpm of the songs in Da-TACOS, respectively.

Re-MOVE, which stands for ‘reduced MOVE’, denotes
the model trained with latent space reconfiguration using
NormalizedSoftmax. With d = 256, it demonstrates rel-

5 For 2DFTM, the acoss library uses a 450-dimensional embedding
while the authors apply PCA to reduce the dimensionality to 50.
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Figure 2: MAP with respect to embedding dimensional-
ity d for Re-MOVE (red stars), MOVE (blue squares), and
other existing approaches (blue circles). Notice the loga-
rithmic axis.

ative performance increases of 3%, 6%, and 15% when
compared with MOVE-16k, MOVE-4k, and LateFusion
systems, respectively (Table 2). We also find that Re-
MOVE improves over MOVE for a wide range of dimen-
sionalities d ∈ [32, 2048] (Figure 2). Along with its state-
of-the-art performance, Re-MOVE provides a crucial ad-
vantage in terms of scalability, which positions it as the
most viable system from a practical point of view.

5. CONCLUSION

In this work, we have studied a set of techniques for re-
ducing the embedding sizes of existing VI systems, which
we consider under the name embedding distillation. We
have claimed that by using a pre-trained and high-capacity
network, we can train a second network that yields smaller
embedding vectors without a decrease in performance. To
investigate this idea, we have studied a wide range of tech-
niques, including classical dimensionality reduction, neu-
ral network pruning, and knowledge distillation methods.
Moreover, we have introduced latent space reconfigura-
tion, which is a technique that builds upon the non-linear
part of a distance metric learned by a pre-trained network
to construct a compact latent space with fewer dimensions.
Our results show that it is possible to reduce the embed-
ding dimensionality of a model while maintaining, or even
surpassing, its performance.

As future work, we plan to investigate further tech-
niques for compressing entire networks rather than just
embedding vectors. We emphasized the importance of
having smaller embeddings for real-world applications,
and we plan to demonstrate it further in carefully-designed
version retrieval scenarios that mimic real-world use cases.
Lastly, we believe that optimizing the existing methods to
make them applicable in industrial scenarios is a valuable
research direction, and we hope to facilitate bridging the
gap between academy and industry in MIR research.
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ABSTRACT

We describe a novel approach for generating music using a
self-correcting, non-chronological, autoregressive model.
We represent music as a sequence of edit events, each of
which denotes either the addition or removal of a note—
even a note previously generated by the model. During
inference, we generate one edit event at a time using di-
rect ancestral sampling. Our approach allows the model
to fix previous mistakes such as incorrectly sampled notes
and prevent accumulation of errors which autoregressive
models are prone to have. Another benefit is a finer, note-
by-note control during human and AI collaborative com-
position. We show through quantitative metrics and human
survey evaluation that our approach generates better results
than orderless NADE and Gibbs sampling approaches.

1. INTRODUCTION

There have been two primary approaches to generating
music with deep neural network-based generative models.
In the first class, music generation is essentially treated as
an image generation problem [1, 2]. In the second class,
music generation is treated as a musical time series gener-
ation problem, analogous to autoregressive language mod-
eling [3–7]. The human process of music composition,
however, is often non-chronological. Notes can be filled in
anytime throughout the music piece to create new chords
and melodies, add harmony, or embellish existing motifs.

In this work, we propose ES-Net 1 , a method that uses
elements from both the image-based and time series gen-
eration techniques. Our method operates on piano roll
images with a 2D convolutional neural network, but au-
toregressively adds or removes notes one at a time in an
arbitrary, non-chronological order. We model the condi-

1 Code: https://git.io/esnet
Samples: https://git.io/esnet-samples

c© Wayne Chi, Prachi Kumar, Suri Yaddanapudi, Rahul
Suresh, Umut Isik. Licensed under a Creative Commons Attribution 4.0
International License (CC BY 4.0). Attribution: Wayne Chi, Prachi
Kumar, Suri Yaddanapudi, Rahul Suresh, Umut Isik, “Generating Mu-
sic with a Self-Correcting Non-Chronological Autoregressive Model”, in
Proc. of the 21st Int. Society for Music Information Retrieval Conf.,
Montréal, Canada, 2020.

tional distribution of note add or remove events given pre-
existing notes. After sampling from the distribution, we
re-input the resulting piano roll into the model to get the
distribution of the next add and remove events. From a
probabilistic point of view, this corresponds to consider-
ing each piano roll as obtained from a randomly ordered
sequence of add and remove events and autoregressively
modeling the distribution of such sequences of events.

Poor samples due to accumulation of errors is a well-
documented problem with autoregressive models [8–11],
especially when directly sampling from the conditional
distribution (i.e. direct ancestral sampling). While other
sampling techniques such as Gibbs sampling [12] can be
used to bypass this problem, we show that direct ancestral
sampling is sufficient if the data representation includes re-
moval of past samples. This allows the model to detect
previous mistakes and fix them.

Our primary use case is melody assistance for users
generating musical compositions. Users can feed in a
melody as a conditional input and have the model gener-
ate musical accompaniments as well as fix any off-beat or
out of tune inputs. One distinct advantage of our approach
is that it allows note-by-note control for users. A user can
undo and redo the generation of individual notes or explic-
itly add and remove individual notes to collaborate with
the model and guide the music composition process. Thus,
this approach allows users to have a finer degree of con-
trol during sampling and better promotes human and AI
collaboration.

The remainder of the paper is organized as follows. In
Section 2 we discuss related works. In Section 3 we show
how to model a distribution of musical pieces using a new
representation of music. In Section 4 we discuss our train-
ing procedure. In Section 5 we discuss our sampling pro-
cedure. In Section 6 we provide empirical results in the
form of quantitative metrics and human evaluation com-
pared against other approaches. Finally, in Section 7 and 8
we describe future work and conclusions.

2. RELATED WORK

Following the introduction of NADE [13, 14] and order-
less NADE [15] there have been several works built upon
the concept of ordered and unordered autoregressive mod-
els. Coconet—the algorithm behind Google’s Bach Doo-

893



dle 2 —is a machine learning model that also uses a convo-
lutional model to generate music by adding counterpoints
to existing user input [12]. The difference with this work
is that Coconet’s inference uses Gibbs sampling rather than
direct ancestral sampling. DeepBach [16] generates Bach
style chorales using pseudo-Gibbs sampling. PixelCNN
[17] models an image autoregressively and generates pix-
els one by one in a pre-specified order while our generation
is unordered. In a NLP setting, recent works also explore
non left-to-right ordering [18, 19] and deletion [20].

In general, there is a rich history of using deep learn-
ing to generate music [21]. Many of them use autore-
gressive based approaches. RNN-RBM models tempo-
ral dependencies to generate polyphonic music in a single
track [22]. Hierararchical RNNs have been used to encode
different features of pop music [23]. LSTMs were able
to successfully model and generate music as well [24].
Music Transformer is able to capture and generate mu-
sic with long term structure and motifs [3]. So far, these
approaches have been mostly chronological while ours is
non-chronological. While GAN-based approaches clearly
differ from ours, these methods have shown the ability
to generate high quality music. MuseGAN is a GAN-
based approach for multi-track piano roll generation [1].
MidiNet uses a CNN-based GAN to generate music [2]. C-
RNN-GAN generates music using a RNN based architec-
ture with adversarial training [25]. SeqGAN use GANs for
sequence generation and apply it to music generation [26]
.

3. PROBLEM DEFINITION

We consider a musical piece x ∈ X as a point in
{0, 1}T×P where T is the number of time steps and P is
the number of note pitches. This represents a simplified pi-
ano roll (PR)—a discrete representation of music as an im-
age matrix across pitch and time. There exists a probability
density function pPR(x) on {0, 1}T×P of musical pieces.
Note in particular that this does not model velocity and
that notes adjacent in time are treated as one continuous
held note; we discuss ways to represent velocity and re-
peated notes in Section 7. Instead of modeling pPR(x) on
{0, 1}T×P directly, we model the distributions as pES(s)
on the set of edit sequences (ES). An edit sequence of
length M is a tuple of M -many edit events where an edit
event is a matrix e(t,p) ∈ {0, 1}T×P that has one entry
equal to one, and all other entries equal to zero (i.e. a one-
hot matrix). We denote the set of all edit events by E and
of edit sequences of lengthM by EM . The following maps
edit sequences to piano rolls:

π :
∞⋃
M=1

EM → {0, 1}T×P (1)

π(e1, . . . , eM ) =
M∑
i=1

ei (mod 2). (2)

2 https://magenta.tensorflow.org/coconet

where (2) allows edit events to handle either note addition
or removal depending on if a previous edit event exists at
the same time and pitch.

Figure 1. Mapping from an edit sequence (left) of length
M to a piano roll (right). Each slice in an edit sequence is
the addition or removal of a note.

The mapping between the two joint probability distri-
butions is as follows:

pPR(x) = pPR({(t1, p1), . . . , (tN , pN )})

=
∞∑

s∈π−1(x)

pES(s)
(3)

where N is the number of notes in the piano roll, (ti, pi) is
the time and pitch of a note or edit event, π−1(x) is the in-
verse image set of π(x), and s is a sequence of edit events
(t1, p1) . . . (tM , pM ) where M ≥ N . We can further fac-
torize pES(s) as:

pES(s) = pES
(
(t1, p1), . . . , (tM , pM )

)
=

M∏
i=1

pES
(
(ti, pi)|(t1, p1), . . . , (ti−1, pi−1)

) (4)

We assume that pES((ti, pi)|(t1, p1), . . . , (ti−1, pi−1)) is
ordering invariant (i.e. the ordering of edit events in an
edit sequence does not affect the resulting piano roll).

Our goal is to train a model to map the distribution of
edit sequences pES(s). By sampling autoregressively from
pES(s), we will generate a sequence of edit events that can
be mapped back into a piano roll representation and then
converted to MIDI.

3.1 Orderless NADE

We compare our approach to orderless NADE which gen-
erates music by randomly choosing an ordering and sam-
pling notes one by one until termination. We can rep-
resent the iterative notewise addition of orderless NADE
as a special case of edit sequences where edit events can
only represent note addition. Let us call this distribution
pO-NADE(x). Since notes are only added, M = N for
unconditioned generation; thus, there is a finite set of or-
derings and we can factorize pO-NADE(x) as:

∑
σ∈SN

N∏
i=1

pO-NADE
(
(tσ(i), pσ(i))|

(tσ(1), pσ(1)), ..., (tσ(i−1), pσ(i−1))
)
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where SN is the set of all permutations {1, 2, ..., N} →
{1, 2, ..., N}. This factorization is equivalent to orderless
NADE [15]. In practice, the orderless NADE approach
leads to poorer musical samples due to accumulation of
errors which we confirm in Section 6.

4. TRAINING

Given an input piano roll, I, and target piano roll, T ,
we train our model to output the conditional probabili-
ties pES((ti, pi)|(t1, p1), . . . , (ti−1, pi−1)) of the next edit
event in edit sequences that can recreate the target from the
input piano roll. For each piano roll in the training set, we
generate the input piano roll by (a) masking existing ran-
dom notes and (b) adding extraneous random notes to the
target piano roll. We train the model to recreate T from
I; augmentation (a) trains the model to add notes and (b)
trains the model to remove notes. For each target piano
roll, we generate multiple augmented inputs with varying
number of notes masked and added, in order to train the
model to handle varying number of differences between
the input and target. We find that masking between 0 to 100
percent of all existing notes and adding 0 to 1.5 percent of
all possible extraneous notes gives us the best results.

Our goal is to have the model output the conditional
probabilities for the next edit event. Since we assume or-
dering invariance in (4), we can also assume that every note
difference between I and T—whether it requires the addi-
tion or removal of a note—is equally likely to be the next
edit event. Thus, we model the distribution of edit events
for the next step as the uniform distribution U supported on
the symmetric difference I∆T between I and T (i.e the
exclusive or of each note between I and T ).

We use the Kullback-Liebler divergence between U and
the model’s output distribution as the loss function:

L(I, T , P ) = DKL(P ‖ U), (5)

where P is the softmax over the model’s logits at each time
and pitch. Normally, binary cross-entropy loss—where the
label is the next note—would be used, but since we assume
ordering invariance in (4), the next note is equally likely to
be any of the future notes. Therefore, training with (5) is
equivalent to training many times where the label is ran-
domly chosen from future notes.

4.1 Model

We train a model based on the U-Net architecture [27].
This choice is not critical as our approach should general-
ize to other CNN architectures. We describe our approach
for reproducibility. Our U-Net contains five downsampling
blocks and five upsampling blocks. In each block there
contains a batch normalization layer, two 2D convolutional
layers each with a 3x3 kernel, a max pooling layer, and a
drop out layer with a 0.5 dropout rate. We begin with 32
filters. We double the number of filters after each down-
sampling block and halve the number of filters after each
upsampling block. We use the Adam optimizer [28] with
a learning rate of 0.001. We use RELU for our activation

function, except for the final layer where we output a linear
activation at each time and pitch. Finally, we apply soft-
max over the logits when calculating the loss and during
sampling.

5. INFERENCE

We sample from the model’s output probabilities through
direct ancestral sampling. We feed the input melody to the
model, sample from the softmax over all times and pitches
to determine the next edit event, modify the input melody
based on that edit event, and then feed that melody back
into the model. We repeat this over multiple iterations and
condition each time on our previous predictions. Since we
do not differentiate between adding and removing notes
during training, the sampling process is the same for any
type of edit event. We allow users to restrict the number of
notes to remove; this prevents the model from completely
overwriting the original input. We also allow users to con-
trol how many sampling iterations are performed. Lastly,
we allow the user to change the temperature during sam-
pling. By changing the shape of the distribution, users can
make compositions more or less “creative” at the risk of
lowering quality. We surface these hyperparameters to al-
low users to more freedom and customizability when gen-
erating music compositions.

6. EMPIRICAL EVALUATION

We compare our approach against orderless NADE and
Gibbs sampling using quantitative metrics and human sur-
vey evaluation. We also describe a notewise approximate
log likelihood calculation for our approach and explain
why log likelihood is not a good metric for comparing
our approach to orderless NADE. We build an orderless
NADE model using the approach described in Section 3.1
and training with only masked notes. We use Coconet [12]
to represent Gibbs sampling. While our main focus is
to only use Coconet for sampling technique comparisons,
there are a few notable differences between Coconet and
our approach. First, Coconet does not explicitly train the
model to remove notes, but notes—including the input—
may be removed during the Gibbs sampling masking pro-
cess; our approach explicitly models note removal. Sec-
ond, Coconet assumes that there are four instruments and
that “each instrument plays exactly one pitch a time” [12];
our approach has no such constraint and can generate mu-
sic across all times and pitches. Third, Coconet trains a
CNN that preserves the same size for each layer; we train
a model based on the U-Net architecture. Since Coconet
is trained on the JSB Chorales dataset, we evaluate our re-
sults and Orderless NADE’s results using the same dataset
and the same train-val-test split in order to provide a fair
comparison. For all other parameters (e.g. temperature),
we maintain identical settings for each approach in order
to benchmark fairly.
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Figure 2. Input piano roll (left), target piano roll (middle), and symmetric difference between the input and target piano
rolls (right)

6.1 Data

We use the Infinite Bach dataset 3 and the JSB Chorales
dataset 4 . The JSB Chorales and Infinite Bach datasets
contain MIDI files—382 for JSB Chorales and 498 for In-
finite Bach—of chorales harmonized by J.S. Bach. The
MIDI files in Infinite Bach dataset are generally longer in
duration allowing for approximately three times more sam-
ples overall compared to the JSB Chorales dataset. Since
the Gibbs sampling model is trained on JSB Chorales, we
use the JSB Chorales dataset for benchmarking.

For both datasets, we preprocess the data by: 1) map-
ping MIDI to its piano roll representation using a sixteenth-
note quantization, 2) converting multi-track inputs into a
single track by merging all tracks, and 3) splitting each
MIDI into multiple 2 or 8 bar samples.

6.2 Log Likelihood

We calculate log likelihood using equation (3). Since for
each piano roll x the inverse image π−1(x) is infinite, the
sum cannot be calculated exactly; thus, we calculate an
approximate log likelihood for a subset of all possible edit
sequences in π−1(x). This value lower bounds the true
log likelihood value. We compare this lower bound to the
log likelihood for orderless NADE. Since our method re-
moves notes as well, the proposed model is modeling a
distribution with larger support so we do not expect the
likelihood value of our method to be better than orderless
NADE’s. Our likelihood values show that—in the toy case
when the sum can be sufficiently expanded—the likelihood
lower bound value approaches that of orderless NADE.

Consider a graph where each vertex corresponds to a pi-
ano roll state and each edge corresponds to an edit event. A
path in the graph corresponds to an edit sequence described
in equation (2). As we traverse over a path, we calculate
the log likelihood of the edit sequence corresponding to
that path.

For each input I and target T pairing, we calculate our
log likelihood over multiple levels, traversing over edit se-
quences of length K + 2d at level d. K is the minimum
number of edit events needed to reach the target from the
input. All K edit events are unique along time and pitch.
For level d = 0, there exist K! different edit sequences.

3 https://github.com/jamesrobertlloyd/infinite-bach
4 https://github.com/czhuang/JSB-Chorales-dataset

We calculate the average log likelihood over a randomly
chosen subset of these edit sequences and approximate it
over all K! edit sequences. During the traversal we keep
track of the most probable (time, pitch) predictions that do
not occur in the edit sequences, and add them to a pool
Q. We keep these predictions as they will appear in the
most probable edit sequence paths at level d = 1. For level
d = 1, we traverse down the same paths, but we add two
edit events with the same time and pitch chosen from Q
to the path. This increases the path length to K + 2 and
results in the same target pianoroll since the two new edit
events cancel out. We approximate the log likelihood sum
over all possible edit sequences. We repeat this for each
(time, pitch) pair in Q. This process can be repeated until
level d = D expanding our coverage of the edit sequence
graph along the most probable paths.

We calculate the approximate log likelihood as:

1

K
log

D∑
d=0

∑
Q

(K + 2d)!

2d
1

|S|
∑
s∈S

pES(s)

where S is a random subset ofK+2d length edit sequences
that can transform I to T . 5 As we increase the levels
of our approximation, our log likelihood will converge to-
wards orderless NADE which we see in Table 1 at d = 1.

Since music completion is a task with high uncertainty,
the large number of low probability predictions leads to
underflow issues, which we avoid by using the log-sum-
exp trick. Also, since log likelihood in this case is highly
dependent on the number of notes in a piece, we compute
an approximate notewise log likelihood by dividing the ap-
proximate log likelihood by the minimum number of note
additions and removals needed to reconstruct the target pi-
anoroll. We do not use log likelihood to compare our ap-
proach with Gibbs sampling used in Coconet as they use
framewise log likelihood, which is different than our cal-
culation [12].

6.3 Quantitative Metrics

We calculate several quantitative metrics to compare the
quality of generated music using our approach, orderless
NADE, and Gibbs sampling. For each approach, we gen-
erate 3405 bars of music—the same number of bars in the
5 We divide the K+2d factorial by 2d as we cannot “remove" before

we “add" a note.
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Approach Notewise Approximate Log Likelihood

ES-Net -0.635
Orderless NADE -0.558

Table 1. Notewise approximate log likelihood for recon-
structing 10 missing notes from each test sample.

training data—and compare them to the training data. We
generate the music by conditioning on 150 8-bar mono-
phonic inputs. We evaluate on the following metrics de-
signed in [1, 29]:

• PC - Number of unique pitch classes used. Notes
whole octaves apart from each other (e.g. C4 and
C5) belong to the same pitch class.

• P - Number of unique pitches used.

• ISR - In-scale rate which is the proportion of all
notes that lie in C Major 6 .

• PR - Polyphonic rate which is the proportion of
timesteps where the number of pitches being played
is greater than or equal to 4.

We use pypianoroll [29] to calculate these values.

PC P ISR PR

Training Data 6 46 0.541 0.917

ES-Net 6 46 0.540 0.930
Gibbs Sampling 6 46 0.535 0.898
Orderless NADE 8 55 0.559 0.759

Table 2. Quantitative metrics for each approach. Closer
to training data is better. Bold values are best between the
three approaches.

We observe that our approach and the Gibbs sampling
approach both produce music that have similar characteris-
tics to the dataset, while orderless NADE shows less sim-
ilarity to the dataset. As seen in Table 2, our approach is
the closest for all four metrics, with Gibbs sampling tying
for number of unique pitches and pitch classes used.

Bhattacharyya
Kolmogorov-Smirnov

df D p

ES-Net 0.028 46 0.17 0.49
Gibbs Sampling 0.021 46 0.13 0.83
Orderless NADE 0.049 46 0.17 0.49

Table 3. Various metrics for how far pitch appear-
ance frequency is from the training data. Lower is bet-
ter and bolded is best for Bhattacharyya distance. The
Kolmogorov-Smirnov test is unable to show significant
difference between any of the approaches and the training
data.

6 The C-Major scale was chosen arbitrarily.

Figure 3. Frequency of occurrence for each pitch bin.
Each bin is two pitches (i.e. one bin contains both pitch
31 and 32).

In Figure 3, we plot the frequency of pitch values for
each approach and compare with the distribution of pitches
in the training data. We observe that the distribution of
pitches for all three approaches is very similar to that of
the training data. In Table 3, we evaluate the similarity of
each approach’s pitch appearance frequency to the training
data using various metrics. We calculate the Bhattacharyya
distance [30] showing Gibbs sampling as the closest to the
training data and orderless NADE as the furthest from the
training data. We perform Kolmogorov-Smirnov tests and
are unable to show significant differences between each ap-
proach and the training data.

6.4 Human Evaluation

We conducted a human opinion test in order to compare
our approach against orderless NADE and Gibbs sampling.
We generated 8 bar samples with a pitch range from 36 to
81. We assume 4/4 time (i.e. 4 beats per bar) and quantize
to 16 time steps per bar (i.e. 1/16th note). We assume two
notes continuous in time as one note. For orderless NADE,
we sample 400 times to generate samples that approximate
to 4 pitches per time step. Coconet optimizes the num-
ber of iterations it requires. Since our approach allows for
the model to both add and remove notes, there is no fixed
number of iterations to run the model; instead, the model
eventually stabilizes and adds or removes the same set of
notes repeatedly. We sample for 10,000 iterations for our
approach. When conducting the surveys, we chose a large
number of iterations to ensure stabilization; through later
experiments, however, we found that the output almost al-
ways stabilizes before 2000 iterations.

Each survey contained fifteen randomly chosen sets of
comparisons where each set of comparisons contained a
random sample from each of the three approaches. Each
of the samples in each set were randomly ordered. All
three samples in a set were conditioned on the same input
track which was also given to the participant. In order to
simulate real user input, we created input tracks by taking
two bar user inputs from the Bach Doodle Dataset [31]—
a dataset of real user inputs to Coconet and its resulting
composition—and repeated them four times to form eight
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(a) (b) (c)

Figure 4. Human Survey Evaluation Ratings: (a) describes whether users thought a sample improved on the input. (b)
describes user rankings for music quality. (c) describes user rankings for how similar a sample is to real Bach data. Bars
are ordered from left-to-right as ES-Net, Gibbs Sampling, and Orderless NADE.

bars. Bach Doodle ranks their inputs based off of user feed-
back from the resulting Coconet composition; we chose
an equal number of samples randomly from each feedback
level. Each survey contained the same fifteen sets of com-
parisons. These inputs are monophonic (i.e. only one pitch
per time step). For each set of comparisons, users were
asked (a) if each sample improved on the input, (b) to rank
the samples based on music quality, and (c) to rank the
samples based on similarity to music composed by Bach.

We receive a total of 207 ratings for question (a), 211
ratings for question (b), and 213 ratings for question (c). 7

For question (a), we see that all approaches are compara-
ble and each approach almost always improved the input
as seen in Figure 4(a). For questions (b) and (c), we see
in Figures 4(b) and 4(c) that our edit sequence approach
is the best approach while the orderless NADE approach
is the worst. We perform a Kruskal-Wallis H-test across
all ratings for questions (b) and (c). We show that there
is a statistically significant difference (X 2(2) = 64.47,
p < 0.001 for question (a) and X 2(2) = 73.07, p < 0.001
for question (b)) between the three models. We use the
Wilcoxon signed-rank test to conduct a pairwise post-hoc
analysis. We show that there is a statistically significant
difference (p < 0.001 for questions (b) and (c)) between
our approach and both the Gibbs sampling and orderless
NADE approaches.

7. FUTURE WORK

We currently trained on a limited number of datasets, both
of which are based on Bach chorales. There is no reason,
however, that our approach should be limited to any feature
of Bach. By training on other datasets, we will be able to
evaluate how well our approach generalizes.

We show that allowing the model to remove notes in-
creases music quality which we believe is due to the model
correcting its past mistakes. During our training process,
we generate random notes in order to mimic those mis-
takes. Rather than merely mimicking those mistakes, how-
ever, we can generate real mistakes by feeding outputs

7 Some users did not answer all three questions per set of samples.
Partial or incomplete rankings were discarded.

from the model back into itself. We believe that this self-
adversarial training paradigm will allow the model to cap-
ture more realistic sampling mistakes and further improve
performance.

Our current data representation does not convey fea-
tures such as note velocity, repeated notes, or explicit note
duration. These features, however, can add to the technical
and emotive quality of music. We can map these new fea-
tures as additional channels and concatenate this informa-
tion with our existing piano roll. This new data represen-
tation will allow our model to learn from these new feature
dimensions and produce more expressive and technically
challenging music.

An advantage of our algorithm is the ease with which
we can extend our approach to other use cases. For in-
stance, currently our model generates fixed length outputs
depending on the length of the training samples. In this
way, we can extend user melodies up to a fixed length;
however, we never explicitly train our model to extend in-
puts. By augmenting our dataset so that the latter portion
of each sample is masked out, we can explicitly train our
model to extend melodies. Then, during sampling, we can
generate a fixed length output, feed the latter portion of
that output back into the model to generate a new output,
concatenate those two outputs together, and repeat. This
would allow us to extend melody repeatedly rather than up
to a fixed length output.

8. CONCLUSION

We show that by modeling removal of notes, we can train a
model to produce better music by fixing past mistakes and
preventing accumulation of errors. We discuss how our
note-by-note approach allows for a finer degree of control
and better human and AI collaboration. We demonstrate
how to map an edit sequence representation into a piano
roll representation and how we can use that to model a dis-
tribution of musical pieces. We discuss how we train our
model by masking and adding erroneous notes and how we
sample from our model during inference. Finally, we show
through quantitative metrics and human evaluation that our
approach is able to generate musical compositions that are
of better quality than orderless NADE and Gibbs sampling.
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ABSTRACT

Human annotation is still an essential part of modern
transcription workflows for digitizing music scores, either
as a standalone approach where a single expert annota-
tor transcribes a complete score, or for supporting an au-
tomated Optical Music Recognition (OMR) system. Re-
search on human computation has shown the effectiveness
of crowdsourcing for scaling out human work by defining a
large number of microtasks which can easily be distributed
and executed. However, microtask design for music tran-
scription is a research area that remains unaddressed. This
paper focuses on the design of a crowdsourcing task to de-
tect errors in a score transcription which can be deployed in
either automated or human-driven transcription workflows.
We conduct an experiment where we study two design pa-
rameters: 1) the size of the score to be annotated and 2) the
modality in which it is presented in the user interface. We
analyze the performance and reliability of non-specialised
crowdworkers on Amazon Mechanical Turk with respect
to these design parameters, differentiated by worker expe-
rience and types of transcription errors. Results are encour-
aging, and pave the way for scalable and efficient crowd-
assisted music transcription systems.

1. INTRODUCTION

Written musical resources, such as tablature or musical
scores, are increasingly being digitized. The physical form
of such resources would typically be a book, hence, the
most obvious digitized form is a scan of the book, en-
coded in the form of images. In fact, numerous PDF files
of scanned sheet music are commonly found on popular
music websites such as the Petrucci Music Library (IM-
SLP 1 ). One of the main disadvantages of scans though, is
that the musical content contained in them cannot be com-
putationally accessed. Having easily machine-readable

1 https://imslp.org/wiki/Main_Page

c© Ioannis Petros Samiotis, Sihang Qiu, Andrea Mauri,
Cynthia Liem, Christoph Lofi, Alessandro Bozzon. Licensed under a Cre-
ative Commons Attribution 4.0 International License (CC BY 4.0). At-
tribution: Ioannis Petros Samiotis, Sihang Qiu, Andrea Mauri, Cynthia
Liem, Christoph Lofi, Alessandro Bozzon, “Microtask Crowdsourcing
for Music Score Transcriptions: An Experiment with Error Detection”,
in Proc. of the 21st Int. Society for Music Information Retrieval Conf.,
Montréal, Canada, 2020.

formats allows for computational analyses, easier enrich-
ment of the digitized musical resources, and, most impor-
tantly, to ease the preservation of and the access to our writ-
ten musical culture.

The majority of transcriptions for professional use in-
volve experts using specialised interfaces, such as Finale 2

and Sibelius 3 , to fully transcribe new editions of exist-
ing music manuscripts. Optical Music Recognition (OMR)
aims at performing the transcription work automatically;
state-of-the-art methods show acceptable performance in
the case of clean music scores, but their quality quickly
degrades in case of hand written notes [1]. In general, they
still require substantial human intervention to provide re-
sults with consistent quality [1, 2], while interactive sys-
tems that could utilize human evaluation in an efficient and
scalable way are still an open issue [3].

Microtask crowdsourcing is a popular approach for
scaling up digital content annotation tasks. On online mi-
crotask crowdsourcing platforms, such as Amazon Me-
chanical Turk, large groups of individuals - called workers
- perform microtasks such as image categorization, and au-
dio or text transcription. By splitting a complex and cogni-
tively intensive task into simpler steps, microtasks crowd-
sourcing allows people with little to no expertise, to con-
tribute to knowledge-intensive activities [4].

Explicit control over a crowd’s product, is in the heart
of microtask crowdsourcing [5,6]. To that end, microtasks
design should allow the measurement of their outcomes
in an algorithmic fashion. Few studies addressed the use
of microtask crowdsourcing for music scores transcription,
and they typically focus on guiding the workers in the tran-
scription of whole scores [7] or by providing support to the
experts [8,9]. However, music scores are complex artefacts
that need specific domain knowledge to read and under-
stand, making the task of transcribing a score complex and
cognitively demanding. To the best of our knowledge, how
to address the task of score transcription through microtask
crowdsourcing remains an open research question [10].

This paper contributes towards a better understanding
of how music transcription could be supported, and po-
tentially scaled up, through microtask crowdsourcing. We
focus on a simple yet fundamental problem: the identifica-
tion of differences (errors) between two music scores seg-
ments. Spotting errors is, in itself, a very useful operation

2 https://www.finalemusic.com/
3 https://www.avid.com/sibelius
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in music transcription workflows, as it could be of assis-
tance for experts transcribing a score, with the creation of
labeled data to train automated OMR systems, or with the
identification of errors made by such a system. Workers
operating in online microtask crowdsourcing platforms are
already accustomed to such type of tasks, but the under-
standing of music scores is not a common skill.

The main research question addressed in this work is:
To what extent are workers from microtask crowdsourc-
ing platforms able to detect errors in transcribed music
scores?. To answer the question, we setup an experiment
where two microtask design factors were adjusted respec-
tively, the score transcription’s modality (spotting errors on
visual vs. audio), and the size (in terms of measures) to
be analysed. We recruited 144 workers from Mechanical
Turk, asked them to check 144 segments for several types
of errors, and measured their performance in terms of com-
pletion time, accuracy, and sustained cognitive load.

Results show that crowd workers were able to achieve
maximum precision of 94% and accuracy of 85% using an
interface that combines visual and audio modalities, thus
showing that microtask crowdsourcing is useful for error
detection, and that workers benefit from the audio extract
of the transcribed score, both alone and as a support for the
visual comparison.

2. RELATED WORK

The topic of microtask crowdsourcing for music transcrip-
tion is scarcely addressed in literature, with many rele-
vant research questions left unanswered. In Burghardt et
al. [7] the Allegro system was developed, a tool to allow the
transcription of entire scores by a (single) human worker.
However, Allegro has only been tested on a limited num-
ber of users, and it was not deployed on an online micro-
task crowdsourcing platform. The same limitation holds
for the work in [8], one of the first attempts to study hu-
man input and how the task design can affect human input.
This study focused on analysing segments which are one
measure long, which is the smallest unit of analysis in our
study as well. We expand this, by studying also how the
size of the segment shown to the crowd affect its perfor-
mance. An important work to mention is OpenScore [11],
up to now the largest scale project to incorporate humans
in music score transcription. In terms of user participa-
tion though, it was mainly carried out by seven community
members with extensive musical background. Moreover
they report different issues related to the management of
data (done manually by the administrators of the platform)
and user engagement (without any control they would fo-
cus on their preferred music score) admitting in the end
that in their project “OMR (involving humans) is not cur-
rently a scalable solution”.

So far, there is not any literature that has targeted un-
known crowds with varying skills for music transcription
tasks, thus research questions on [10] about what type of
tasks users can perform and how to evaluate them still
remain open. In this work we address this research gap
by looking into similar crowdsourcing works in other do-

mains. More specifically, in [12] it was found that for
knowledge-intensive tasks involving artworks, a crowd
with varying and unknown domain-specific knowledge
found on online platforms can produce useful annotations
when aided by good task design. Research has shown that
UI design is an important part of a microtask design [13].
Research so far has experimented with various designs
such as showing spectogram visualisations for audio anno-
tation [14] or the use of chat-bots to assist common types
of microtasks [15], all of which have yielded positive re-
sults on the performance of the crowdworkers. Inspired
by this we make the design of the work interface a central
point of our study.

3. EXPERIMENTAL DESIGN

The main focus of this work is to study to what extent a
general crowd can identify errors in a music score tran-
scription. We therefore designed an experiment aimed at
testing the ability of crowd workers to spot errors using
interfaces having a combination of visual and audio com-
ponents.

3.1 Task Design

Our aim is to study how different task design factors can
influence the crowdworkers performance, focusing on two
aspects:

1. The modality (visual versus audio) used to spot er-
rors: as music scores are complex artefacts, and mu-
sic is primarily an auditory experience. Therefore,
we investigate how the score comparison modality
affect the error detection performance in workers
that are potentially not familiar with musical nota-
tion. Intuitively, we want to investigate if “hearing”
errors is easier that “seeing” errors.

2. The score size offered to crowdworkers for annota-
tion. The goal is to assess how the size (in terms of
measures) of the score offered to worker affects their
performance.

To develop a better understanding on the characteristics
of the crowd, we open the tasks with questions about their
demographic information (occupational status, level of ed-
ucation and age) and their music sophistication. For the
latter, we compiled a list of 6 questions from The Gold-
smiths Musical Sophistication Index (Gold-MSI) [16].

Crowd workers’ performance with error identification is
measured using accuracy, precision and recall and time to
execute a microtask. In addition, we measure user con-
fidence with their judgements with a seven-value Likert
scale.

Finally, we measure the sustained cognitive load when
executing the microtask, measured through the NASA
Task Load Index (TLX) 4 , which ranges from 0 to 100
(higher the TLX is, the heavier cognitive load the worker
perceives).

4 https://humansystems.arc.nasa.gov/groups/TLX/
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902



3.2 Evaluation Dataset

Selecting a suitable music score was our first step prepar-
ing our experiments. We use a single classical music score
to avoid introducing additional variable in workers’ perfor-
mance. Specifically we use the Urtext of “32 Variations in
C minor" by Ludwig van Beethoven. It is a piano piece
and the music artifacts are all printed typeset forms. This
is a slightly easier use case than hand-written scores. The
score was retrieved from IMSLP as a PDF 5 .

As a Gold standard transcription of that PDF we used
an MEI 6 file that had been transcribed by an expert. This
file was accepted as error free, and it allowed us introduce
errors in a controlled way for our experiments.

We segmented the music score in varying sizes to inves-
tigate how workers cope with shorter or longer tasks. We
distinguish 1) one measure segments, 2) segments of two
measures and 3) segments of three measures. Both of the
two digital versions of the score, the PDF file of the orig-
inal score and the transcribed MEI file, were segmented
using the aforementioned segment sizes. The segmenta-
tion of the PDF was performed manually, while for the
MEI we used the appropriate identifiers of each measure
that was included in the corresponding image segment, to
isolate the correct headers in the MEI. Since it’s a piano
score, each measure contains two staves.

We then introduced errors in the MEI segments derived
from common errors that can occur in automatic OMR
systems. The type of errors could impact the crowdwork-
ers’ ability to spot them and correctly identify them as er-
rors. Some of them can be challenging to notice even to
experts of the field. Therefore, we study different types
of errors, all focusing on the music notes themselves and
their accidentals. Errors on performance annotations, clefs,
finger numbers etc, are out of scope in this study. We in-
troduced the following types of error per MEI segment:
1) Missing notes; 2) Wrong vertical position of a note; 3)
Wrong duration of a note; 4) Wrong accidental.

Each segment that was shown to the user contained only
one type of error. The amount of errors per segment was
kept constant at 40% of the notes present in the segment.
Thus, if a crowdworker is presented with two measures
with notes missing, then notes are missing on both mea-
sures at a 40% rate of the total notes on both measures
combined. No more types of error are present in the seg-
ment.

To make the performance comparisons meaningful, we
ensured that our dataset is balanced across all error types.
In total we used 144 segments derived from the entirety of
the selected piano score, with 48 segments per size cate-
gory, from which 24 were equally distributed to each type
of error, while the remaining 24 were kept correct.

3.3 User Interface Design

To test the modalities’ effects separately and accurately,
we designed three different interfaces: one that would have

5 https://imslp.org/wiki/32_Variations_in_C_
minor%2C_WoO_80_(Beethoven%2C_Ludwig_van)

6 https://music-encoding.org/

(a)

(b)

(c)

Figure 1. Microtask User Interfaces: (a) Visual, (b) Audio
and (c) Combination

image to image comparison to test the traditional form of
the task, one with only audio to audio comparison, and one
with both audio and image comparison. The interfaces are
designed to include the following data. 1) Original Score:
the segment’s image from the scanned score. 2) Correct
MEI Render: a render of the transcribed version of the
Original Score’s segment; 3) Incorrect MEI Render: a
render of the MEI transcription containing errors. 4) Cor-
rect MIDI: the MIDI extract of the correct version of MEI
Transcript’s segment. 5) Incorrect MIDI: the MIDI ex-
tract of MEI Transcript’s segment containing errors.

We refrained from using audio from a recorded perfor-
mance against a MIDI extract containing errors to avoid
confusing the crowd on what constitutes as “different” or
an “error” in the audio comparison task. A recorded per-
formance would introduce performance-related artefacts to
the audio, which do not exist in a MIDI extract, thus in-
creasing the chance of false negatives in identifying an au-
dio snippet as "incorrect". Finally, for the combined com-
parison, we used the same elements as with the individual
comparisons. For the renders of the MEI transcripts and
MIDI extracts we used Verovio 7 on our interfaces.

From a design perspective, the interfaces needed to be
7 https://www.verovio.org/index.xhtml
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simple and closely resembling each other to minimize their
effect on the workers’ judgements. They should also be
able to facilitate the different segment sizes without chang-
ing the layout. Eventually, we also wanted to accommo-
date error detection in the same manner for both image
and audio comparisons, to avoid differences on the annota-
tion tools being another factor to the crowd’s performance.
Therefore, we designed the error detection task to ask from
the users to annotate a given MEI transcript or MIDI ex-
tract as “Incorrect” if it exhibit errors and as "Correct" if
they did not.

In all interfaces, the segments to the left are associated
to the the original scanned score and the correct MEI tran-
scription of it, while to the right we always place the seg-
ments that need to be annotated. The MEI render or the
MIDI extract to the right can be either “Correct” or “In-
correct” and we calculate the performance of the workers
based on identifying this correctly. In addition to the two
buttons for the labels, we included a slider to indicate the
worker’s confidence in their label. Later in the analysis
of the results, we used this indicator to study how each
interface and segment size affected the confidence of the
workers’ to their judgements. These design considerations
resulted in the following three interface designs:

• Original Score against Correct/Incorrect MEI
Render (Visual): This user interface, depicted in
Figure 1(a), shows the segment of the original
scanned score to the left, with the corresponding
MEI render to the right. The user needs to compare
the two images and spot differences related to the
types of errors.

• Correct MIDI against Correct/Incorrect MIDI
(Audio): In this interface, as shown in Figure 1(b),
we let the user listen to the correct MIDI extract on
the left and the one generated from the MEI tran-
scription to the right.

• Original Score and Correct MIDI against Cor-
rect/Incorrect MEI and Correct/Incorrect MIDI
(Combination): This final user interface, as shown
in Figure 1(c), combines elements of the previous
two. The user here has the option to either use the
visual comparison, the audio comparison or both to
realise if there are errors to the segment to the right.
The MEI render and MIDI extraction to the right
always originate from the same MEI transcription,
therefore both will be correct or both will contain
errors.

Each combination of interface with a segment size con-
sists of a microtask. To efficiently and effectively gather
performance data, we wanted the same worker to be “ex-
posed” to all nine possible combinations. Therefore, in
its final form, a worker would have to execute a task that
would begin with a set of demographic and music sophisti-
cation questions, followed by the nine microtasks and end
with the cognitive load questionnaire. To minimise the im-
pact of issues related to the familiarity of workers with the
interface, the task also includes an introductory explana-

tion of the work interface, with examples of errors and ex-
pected responses. The results of our experiment are anal-
ysed based on the overall, but also on error type, perfor-
mance of workers.

4. RESULTS

As discussed in previous sections, we published our tasks
on Amazon Mechanical Turk (MTurk). The platform of-
fers several configurations for each batch of tasks submit-
ted. We published them as public so they can be accessed
by all the users of the platform and we did not require any
Mechanical Turk Master (expert workers). Only to avoid
malicious workers, we filter them by their previous HIT
Approval Rate, and we set it to 95%.

In total, 144 workers executed our tasks on MTurk and
we paid them per task execution according to the average
US minimal hourly wage 8 . In order to minimize the effect
of any biases or learning effect we randomized the order of
the presentation of the different task designs (UI-segment
size combination). One worker eluded the quality verifica-
tion on task interface, which results in 143 unique workers.

4.1 Worker Demographics

From a demographic aspect, most of the workers (84.6%)
reported that they had a full time occupation. Also, 67.8%
of total workers reported their education level was Bach-
elor’s degree, while 14.9% of them had Master’s degree.
Only 8.3% of the workers were above 45 years old.

Answers to the Gold-MSI questions indicate that the
majority of workers seem to be familiar with listening to
music, as 56% of them listen to music for at least 1 hour a
day and 65% say they can hit the proper notes while listen-
ing to a record. Also, the majority of them (75%) state they
can properly compare and discuss different performances
of the same music piece. On the other hand, 52.4% of the
workers reported having up to one year formal training in
music theory, where the 26.6% has no prior education on
the subject. Also, 41.95% of the workers have trained for
maximum one year on a music instrument, while 22.4% of
never had. Their answers here suggest that the majority of
the crowd has little to no music theory background, and a
considerable amount of them also no formal studies on an
instrument. The results also suggest that the crowd execut-
ing our tasks was mainly composed of workers with little
expertise with music theory.

4.2 Accuracy

The results per target segment were aggregated from three
different individual workers. Table 1 shows that tasks
performed with the Audio interface consistently achieved
higher accuracy than the Visual one. The Combined in-
terface achieved good accuracy figures with all segments
sizes, but best accuracy with the 3-measure-long segments.
The Visual interface yielded consistently the lowest recall
and accuracy results, for all segment sizes. Interestingly,

8 We estimated an average task completion time of 15’; each crowd-
worker was awarded 2.5$
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Interface segment size

1 2 3

Visual P=66.22 R=59.76 A=60.27 P=65.28 R=61.84 A=62.24 P=59.72 R=74.14 A=69.23
Audio P=60.27 R=81.48 A=72.92 P=62.50 R=81.82 A=74.13 P=64.79 R=80.70 A=74.83

Combined P=59.70 R=68.97 A=67.63 P=65.28 R=74.60 A=71.33 P=68.06 R=83.05 A=76.92

Table 1. Precision, Recall and Accuracy of individual answers, by segment sizes and interfaces.

Interface segment size

1 2 3

Visual P=60.71 R=70.83 A=62.50 P=67.86 R=79.17 A=70.83 P=88.89 R=66.67 A=79.17
Audio P=100.0 R=62.50 A=81.25 P=88.24 R=62.50 A=77.08 P=90.00 R=75.00 A=83.33

Combined P=76.47 R=56.52 A=70.21 P=85.00 R=70.83 A=79.17 P=94.74 R=75.00 A=85.42

Table 2. Overall Precision, Recall and Accuracy of aggregated answers by segment sizes and interfaces. In bold you find
the highest precision, recall and accuracy by segment size, while underlined you find the highest overall performance

the precision for this interface on segment size one, was
the highest compared to Audio and Combined for the same
size.
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Figure 2. Workers error detection accuracy (unit:%) (a)
per user interface and (b) per segment size.
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Figure 3. Aggregated error detection accuracy (unit:%) (a)
per user interface and (b) per segment size.

Figure 2 shows the accuracy of the workers in detecting
specific type of errors. Wrong duration error seems to be
accurately spotted in any user interface and segment size,
with the Audio interface resulting in the highest accuracy
(87.04%). Workers perform better detecting the Missing
Note error using the Combined interface and the 3-measure

segments. The accuracy obtained with the Visual interface
though, suggests that workers might rely more on the im-
age of the score rather than the audio for this type of er-
ror. The Wrong Vertical position error was more difficult
to detect in general; the highest accuracy was obtained with
the Audio interface (54.72%) and with the segment size of
2 measures (53.70%). Finally, the Wrong accidental type
was the second most demanding error to be detected with
the highest accuracy achieved using Combined interface
(61.11%), with a slight improvement in segments contain-
ing 2 measures.

In microtask crowdsourcing it is common to aggre-
gate individual results to improve overall quality. Table
2 shows the performance achieved using a simple majority
voting aggregation scheme. The Combined interface with
3-measure-long segments still achieves best performance
with a remarkable 94% in precision, and 85% in accu-
racy. The Audio interface achieves best precision perfor-
mance for both 1-measure-long and 2-measure-long seg-
ments, while the Visual interface achieves best recall.

Figure 3 shows the aggregated accuracy in detecting
specific type of errors. In terms of Wrong Duration error,
the accuracy remains the highest after the aggregation. The
Audio interface and the 3-measure-long segments achieve
100% and 94% in accuracy respectively. Visual interface
and the 3-measure-long segments obtain the highest accu-
racy (82% and 88% respectively) in detecting Missing note
error. The Wrong Vertical position error and the Wrong ac-
cidental error still have relatively low accuracy.

4.3 Execution Time

Figure 4 shows that, as expected, execution time gener-
ally increases as the segment size increase. We performed
statistical tests (independent t-tests, α = 0.05) to find sig-
nificant differences between interfaces and segment sizes.
In the case of Wrong vertical position error though, the Au-
dio interface allowed the worker to spot the errors signifi-
cantly faster compared to Combined interface (p = 3.5e-3).
For the Wrong duration error the addition of audio and the
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increased segment size can lead to a significantly longer
average execution time (for both Audio and Combined in-
terfaces compared to Visual, p = 1.3e-4 and p = 1.9e-5 re-
spectively; and for 3-measure-long segment vs 1-measure-
long segment, p = 2.5e-3).

For the Wrong accidental case, we see that worker spent
less execution time on the Visual interface (no signifi-
cance). However, comparing it with the results, the worker
most probably dismissed the segment as "Correct", rather
spend more time in case they had missed the error.
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Figure 4. Worker execution time (unit: seconds) of each
microtask by (a) user interface and (b) segment size.

4.4 Music Sophistication and Cognitive Load

The average score of cognitive task load (NASA-TLX) is
47.7%, a typical value for classification and similar cog-
nitive tasks [17]. To investigate how music sophistication
relates to worker performance and cognitive load on spot-
ting music errors, we select and analyze a corresponding
question from Gold-MSI questionnaire – “I find it diffi-
cult to spot mistakes in a performance of a song even if
I know the tune.”, where workers need to select an op-
tion from Completely Disagree to Completely
Agree, before they execute the music transcription tasks.

Results show that 47% workers agreed with the state-
ment that it was difficult to spot mistakes in a performance
of a song; 33% of them disagreed with the statement, and
the rest of them (20%) were unsure. We calculated the
worker accuracy and the cognitive task load score, and per-
formed significant testings (independent t-test, α = 0.05).
Workers who reported lower difficulty with spotting music
errors (accuracy = 81± 15%, TLX score = 44.36± 13.05)
outperformed workers who had higher difficulty (accu-
racy = 63 ± 16%, TLX score = 50.86 ± 13.61) in terms
of both worker accuracy and perceived cognitive load (p
= 3.3e-8 and 0.013 respectively). The workers who re-
ported lower difficulty also had significantly higher accu-
racy (p = 0.011) compared to unsure workers (accuracy =
0.70±0.20%, TLX score = 46.01±14.27). Results suggest
that the self-reported music sophistication in some specific
aspects strongly relates to actual worker performance in er-
ror identification and cognitive load. Nonetheless, workers
with lower sophistication still achieved good performance,
with a small additional cost in terms of cognitive load.

5. DISCUSSION

As expected, people with some formal knowledge in mu-
sic, which could be useful to comprehend music scores,
are very rare “in the wild”. To enable the use of microtask
crowdsourcing for music score transcription, good task de-
sign is therefore of essence. Results show that error detec-
tion is a task that could be successfully performed in a mi-
crotask crowdsourcing setting. Offering audio extracts of
a target music score can positively affect the performance
of the crowdworkers, especially for short segments of one
or two measures. With larger segments, even though au-
dio extracts are still yielding better results against to the
textual measures of the score, a combination of the two
modalities is more preferable. This result gives important
indications for task splitting and scheduling purposes, as
it suggests that it is possible to evaluate larger portions of
scores without incurring accuracy penalties. This has ob-
vious implications in terms of overall transcription costs.

In terms of types of detected errors, results suggest that
the Missing Note and Wrong Duration errors are the easiest
to be found, while the crowd had relatively more difficulty
detecting Wrong Accidentals and Wrong vertical position
ones. Furthermore, we see the clear effect of user interface
and segment sizes in identifying correctly specific errors.
Specifically, the Audio interface helps in finding Wrong du-
ration errors, while the Combined one increases the accu-
racy in finding Wrong accidental mistakes. Showing seg-
ments longer than two measures seems to slightly hinder
the ability of the crowd to detect any errors besides Miss-
ing notes.
Limitations. Correct MEI render and correct MIDI files
of scores to be transcribed are typically not available in
the real world. The distribution of errors in the evalua-
tion dataset might not reflect the actual distribution of er-
rors produced, for instance, by OMR systems. Given these
limitations, the results of our experiment are probably to
be interpreted as an “upper bound” in terms of achievable
performance; nonetheless, they clearly indicate that the de-
tection of errors in transcribed music score is an activity
that can be successfully performed by crowdworkers.

6. CONCLUSION

Music score transcription is an important activity for writ-
ten music preservation. Through this work, we show that
microtask crowdsourcing can be used to scale up specific
transcription activities. Worker interfaces that combine vi-
sual and audio modalities allow the evaluation of longer
score segments. Focusing on the error detection task, re-
sults show that crowd workers can achieve high precision
and recall, especially with Missing Note and Wrong Dura-
tion errors. In future work, we plan to expand the evalua-
tion dataset, perform experiments where workers are asked
to compare recorded performance, and address a broader
set of transcription errors. Finally, we will investigate other
types of microtasks, and study to what extent crowd work-
ers could also be employed to transcribe scores.
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ABSTRACT

The assessment of music performances in most cases takes
into account the underlying musical score being performed.
While there have been several automatic approaches for
objective music performance assessment (MPA) based on
extracted features from both the performance audio and the
score, deep neural network-based methods incorporating
score information into MPA models have not yet been inves-
tigated. In this paper, we introduce three different models
capable of score-informed performance assessment. These
are (i) a convolutional neural network that utilizes a simple
time-series input comprising of aligned pitch contours and
score, (ii) a joint embedding model which learns a joint la-
tent space for pitch contours and scores, and (iii) a distance
matrix-based convolutional neural network which utilizes
patterns in the distance matrix between pitch contours and
musical score to predict assessment ratings. Our results pro-
vide insights into the suitability of different architectures
and input representations and demonstrate the benefits of
score-informed models as compared to score-independent
models.

1. INTRODUCTION

A performance is a sonic rendition of a written musical
score (in the case of Western classical music). The charac-
teristics of a music performance play a major role in how
listeners perceive music, even if performances are based
on the same underlying score [14]. To perform a musical
piece, the performer must first parse the score, interpret or
modify the musical information, and utilize complex motor
skills to render the piece on their instrument [21].

From the perspective of the performer, mastery over the
art of music performance is often a journey spanning several
years of instruction and practice. A major factor in learning
and improving one’s skill as a performer is to analyze and
obtain feedback regarding the performance. Due to the com-
plex nature of music performance, students require regular

c© Jiawen Huang, Yun-Ning Hung, Ashis Pati, Siddharth
Gururani, Alexander Lerch. Licensed under a Creative Commons At-
tribution 4.0 International License (CC BY 4.0). Attribution: Jiawen
Huang, Yun-Ning Hung, Ashis Pati, Siddharth Gururani, Alexander Lerch.
“Score-informed Networks for Music Performance Assessment”, 21st In-
ternational Society for Music Information Retrieval Conference, Montréal,
Canada, 2020.

feedback from trained professionals. Teachers are expected
to grade or rate students based on various performance cri-
teria such as note accuracy or musicality. These criteria
are often ill-defined and subject to interpretation, thus mak-
ing objective and consistent music performance assessment
(MPA) rather difficult [26, 29]. Regardless, this subjec-
tive manner of MPA is still used, e.g., in school systems
where ensemble members are selected based on instructors’
assessments of student auditions.

Wu et al. discussed the notion of objective descrip-
tors (features) which are potentially useful for automatic
MPA [30]. Such features are computed by applying signal
processing methods to recorded performances and are used
to model teachers’ assessments of the performances using
machine learning. With the rise of deep learning, neural
networks were found to outperform the classical pipeline
of feature extraction followed by regression [22]. However,
one issue with these approaches is that they ignore the score
that the students are meant to play. We will refer to such
approaches as score-independent. The idea of incorporat-
ing score-based features utilizing audio to score alignment
was explored, e.g., by Vidwans et al. [27]. Further analy-
sis of hand-crafted features for MPA showed the relative
importance of score-based features over score-independent
ones [8]. Therefore, the design of deep architectures that
incorporate score information is an obvious and overdue
extension of previous approaches.

The goal of this paper is to explore different methods to
incorporate this score information. Our hypothesis is that
including score information will lead to improved perfor-
mance of deep networks in the objective MPA task. To this
end, we present three architectures which combine score
and audio features to make a score-informed assessment of
a music performance. First, we concatenate aligned pitch
contours and scores into a 2-dimensional time-series feature
representation that is fed to a convolutional neural network
(CNN). Second, we propose a joint embedding model for
aligned score and pitch contours. The assessment ratings
are predicted using the cosine similarity between the score
and performance embeddings. Third, we utilize the distance
matrix, a mid-level representation combining both the score
and pitch contour, as the input to a deep CNN trained to
predict the teachers’ assessments. Finally, using a fairly
large scale dataset of middle school and high school student
auditions, we perform an in-depth evaluation comparing
these proposed architectures against each other and with a
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score-independent baseline approach for MPA .

2. RELATED WORK

MPA deals with the task of assessing music performances
based on audio recordings. Progress in MPA is roughly
categorized into feature design-based approaches [8, 13, 20,
24, 30] and feature learning-based approaches [9, 22, 31].
Feature design-based methods rely on signal processing
techniques to either extract standard spectral and temporal
features [13], or use expert knowledge to extract perceptu-
ally motivated features capable of characterizing music per-
formances [20, 24]. The extracted features are then fed into
simple machine learning classifiers to train models which
predict different performance assessment ratings. Feature
learning-based approaches, on the other hand, stem from the
argument that important features for modeling performance
assessments are not trivial and cannot be easily described.
Hence, they rely on using mid-level representations (such
as pitch contours or mel-spectrograms) as input to sophisti-
cated machine learning models such as sparse coding [9,31]
and neural networks [22].

Most performances of Western music, however, are
based on written musical scores. Hence, performances
are also assessed based on their perceived deviations from
the underlying score. There has been some prior research
on incorporating the score information into the assessment
modeling process. Most of the these approaches rely on
computing descriptive features using some notion of dis-
tance between the score representation and the performance
representation [3, 6, 11, 17, 19]. The most common ap-
proach has been to first use an alignment algorithm, e.g.,
Dynamic Time Warping (DTW) [25], to temporally align
the performance recording with the score and then compute
descriptive features which characterize the deviations of the
performance from the score [1, 27]. However, to the best
of our knowledge, incorporating score information directly
into neural network-based models for MPA has not been
investigated before.

Score-informed approaches have helped improve results
for both related performance analysis tasks and other music
information retrieval tasks. Most of these methods have
also relied on an alignment between the audio recording
and the score as the primary tool for incorporating score
information. Aligning audio recordings with scores has
been useful for several tasks such as detecting expressive
features in music performances [15], identifying missing
notes and errors in piano performances [5], and segmenting
syllables in vocal performances [23]. Scores have also been
used to generate soft labels and/or artificial training data for
tasks such as source separation [4, 18].

3. METHODS

We propose and compare three different approaches to incor-
porate the score information with audio features for MPA. 1

The score information is represented as the MIDI pitch se-
quence (in ticks) obtained from the sheet music of the score

1 The code is available at: https://github.com/biboamy/FBA-Fall19
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Figure 1. Schematic for the SIConvNet. The aligned score
and pitch contour are stacked together and fed into a 4-layer
CNN to directly predict the assessment ratings.

to be performed. Henceforth, the MIDI pitch sequence will
be referred to as the score. The student’s performance is
represented by the pitch contour of the audio. We use pitch
contour since it captures both pitch and rhythmic informa-
tion. Musical dynamics and timbre are ignored in this study;
while dynamics are an important expressive tool for the per-
former [14], the score usually lacks specificity in dynamics
instructions and cannot serve as the same absolute reference
as for pitch and rhythm.

3.1 Score-Informed Network (SIConvNet)

The first approach that we use is probably the most straight-
forward way of incorporating score information into the
assessment model. A simple CNN is used that relies on
both the score and performance as the input and directly
predicts the assessment ratings.

3.1.1 Input Representation

The input representation for this approach is constructed by
simply stacking an aligned pitch contour and score pair to
create a N × 2 matrix, where N is the sequence length of
the pitch contour. The two channels correspond to the pitch
contour and score, respectively.

In order to obtain this representation, we first consider a
pitch contour snippet of length N (sequence of logarithmic
frequencies). Then, we find the corresponding part of the
score using a DTW-based alignment process. The obtained
score snippet (sequence of MIDI note numbers) is then
resampled to have the same length N as the pitch contour.

3.1.2 Model Architecture

A schematic of the model architecture is shown in Figure 1.
We use a simple 4-layer CNN based on the architecture
proposed by Pati et al. [22] and append a single linear
layer which predicts the assessment. Each convolutional
stack consists of a 1-D convolution followed by a 1-D batch
normalization layer [12] and ReLU non-linearity. The linear
layer at the end comprises of a dense layer followed by
Leaky ReLU non-linearity.
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Figure 2. Schematic of the JointEmbedNet architecture.

3.2 Joint Embedding Network (JointEmbedNet)

The second approach is based on the assumption that perfor-
mances are rated based on some sort of perceived distance
between the performance and the underlying score being
performed. Consequently, we use two separate encoder
networks to project the score and the pitch contour to a
joint latent space and then use the similarity between the
embeddings to predict the assessment ratings.

3.2.1 Input Representation

This approach uses the same input representation as SICon-
vNet (see Section 3.1.1). However, instead of stacking the
aligned pitch contour and the score, the individual N × 1
sequences are fed separately to the two encoders.

3.2.2 Model Architecture

This network (see Figure 2) uses two 1-D convolutional
encoders having the same architecture as SIConvNet. Each
encoder has 4 convolutional blocks to extract high level
feature embeddings. The performance encoder is expected
to extract relevant features pertaining to the performance
from the pitch contour. On the other hand, the score en-
coder is expected to extract the important features from the
score. Assuming that the assessment rating for the perfor-
mance is high if these two embeddings are similar, we use
the cosine similarity cos(Escore, Eperformance) between the
two embeddings to obtain the predicted assessment rating.
Escore and Eperformance are the embeddings obtained from
the score and performance encoders, respectively. If the
two embeddings are similar, the cosine similarity is close
to one, and the model will predict a higher rating.

3.3 Distance Matrix Network (DistMatNet)

The final approach uses a distance matrix between the pitch
contour and the score as the input to the network. Given
the information from both the pitch contour and the score,
the task of performance assessment might be interpreted as
finding a performance distance between them. Thus, the
choice of the distance matrix as the input representation
allows the model to learn from the pitch differences. A
Residual CNN [10] architecture is chosen for the network.

3.3.1 Input Representation

The distance matrix elements are the pair-wise wrapped
distances between the pitch contour and the MIDI pitch
sequence. The octave-independent wrapped-distance is
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Figure 3. Schematic of the DistMatNet architecture.

used to compensate for possible octave errors made by the
pitch tracker. To ensure a uniform input size to the network,
the matrix is resampled to a square shape of a fixed size.
Thus, a performance with constant tempo would result in an
aligned path located on the diagonal. Unlike the previous
two methods where the input pitch contour and the score
are aligned using DTW, the distance matrix input avoids
any error propagation caused by alignment errors. The
choice of this input representation stems from the success
of distance matrices (or self-similarity matrices) in other
areas of MIR such as structural segmentation [2, 7] and
music generation [28].

3.3.2 Model Architecture

The model architecture is shown in Figure 3. It is composed
of 3 residual blocks. Each residual block has 2 convolu-
tional layers. Dropout and max-pooling are added between
each residual block. A classifier with two linear layers (128
features) with one ReLU and dropout layer in between is
used after the residual network to perform regression pre-
diction. We use (3,3) kernal size and 4 feature maps for all
convolutional layers, 0.2 dropout rate, and a (3,3) kernal
size for all max-pooling layers.

4. EXPERIMENTS

4.1 Dataset

The dataset we use to evaluate our methods is a subset
of a large dataset of middle school and high school stu-
dent performances. These are recorded for the Florida
All State Auditions, which are separated into three bands:
(i) middle school band, (ii) concert band, and (iii) sym-
phonic band. The recordings contain auditions spanning 6
years (from 2013 to 2018), and feature several monophonic
pitched and percussion instruments. Each student performs
rehearsed scores, scales and a sight reading exercise. For
the purpose of this study we limit our experiments to the
technical etude for middle school and symphonic band au-
ditions. We choose Alto Saxophone, Bb Clarinet and Flute
performances due to these being the most popular across
all pitched instruments. Table 1 shows the distribution of
data across different instruments. The average duration of
each performance is 30 s for middle school and 50 s for
symphonic band students. The dataset also includes the
musical scores that the students are supposed to perform for
each exercise. The average length (in notes) of the musical
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Middle School Symphonic Band
Alto Saxophone 696 641
Bb Clarinet 925 1156
Flute 989 1196

Table 1. Number of performances for the different instru-
ments per band.

scores are 136 for middle school and 292 for symphonic
band. Note that these scores are the same across all students
performing the same instrument in the same year but vary
across years and instruments.

The dataset also contains expert assessments for each
exercise of a student performance. Each performance is
rated by one expert along 4 criteria defined by the Florida
Bandmasters’ Association (FBA): (i) musicality, (ii) note
accuracy, (iii) rhythmic accuracy, and (iv) tone quality. All
ratings are on a point-based scale and are normalized to
range between 0 to 1 by dividing by the maximum. Since
we focus on pitch contours as the primary audio feature,
tone quality is excluded from this study.

4.1.1 Data pre-processing

The pitch contours are extracted using the pYIN algo-
rithm [16] with a block size and hop size of 1024 and 256
samples, respectively. The audio sampling rate is 44100 Hz.
The extracted frequencies are converted from Hz to MIDI
pitch (unlike the MIDI pitches from the musical score, these
can be floating point numbers). Both the resulting pitch
contour and musical score are normalized by dividing by
127. Finally, for the purpose of model training and evalu-
ation, we divide our dataset into three randomly sampled
subsets: training, validation, and testing. We use a ratio of
8: 1 : 1 for splitting the dataset.

We use random-chunking as a data augmentation tool
when training SIConvNet and JointEmbedNet since it has
shown to be useful in improving model performance [22].
First, the pitch contour is chunked into snippets of length N
by randomly selecting the starting position. The correspond-
ing aligned and length-adjusted score snippet is obtained
using the method described in Section 3.1.1. We assume
the chunked segment has the same assessment score as the
whole recording. We do not perform chunking on our dis-
tance matrix since the matrix has already been resampled
into a smaller resolution. Instead, we discuss how varying
the resampling size could effect the performance in one of
the experiments.

4.2 Experimental Setup

We present three experiments to evaluate our proposed meth-
ods. First, we compare the overall performance of the pro-
posed architectures against a score-independent baseline
system PCConvNet [22] which uses only the randomly-
chunked pitch contour as input. This experiment also gives
us an indication of the effectiveness of each of the proposed
methods. Second, we look at the sensitivity of the SICon-
vNet and JointEmbedNet to the chunk size N . Finally, we
investigate the effect of varying the resolution of the input

SIConvNet JointEmbedNet DistMatNet
3,089 6,144 63,417

Table 2. Number of parameters for each model.

distance matrix for the DistMatNet model. The latter two
experiments were aimed at understanding the effects of the
different hyper-parameters used while constructing the in-
put data for each model. These helped us arrive at the best
parameters for each approach.

The number of trainable parameters for each method
is shown in Table 2. DistMatNet has a higher number of
parameters because it uses a higher-dimensional input with
a deeper architecture to capture high level information [10].

For each method, we trained separate models to predict
each assessment criterion. Moreover, to measure the varia-
tion of each model, we trained each model on 10 different
random seeds. We used Mi to represent the model training
on different random seed where i = 0 . . . 9. A boxplot with
median and variation of each Mi is shown to demonstrate
the results. All the models are trained based on the mean
squared error between estimated and ground truth ratings.
All the models are trained with a stochastic gradient descent
optimizer with a 0.05 learning rate. We apply early stopping
if the validation loss does not improve for 100 epochs. The
performance of all models is measured using the coefficient
of determination (R2 score):

R2 = 1 −
∑

i (yi − ŷi)
2∑

i (yi − ȳi)2
, (1)

where yi is the ground truth rating, ŷi is the estimated rating,
and ȳi is the average of the ground truth rating. R2 is a
common metric to evaluate the fit of a regression prediction
to the ground truth value.

5. RESULTS & DISCUSSION

5.1 Overall Performance

Figure 4 shows the comparative performance for all models
for middle school and symphonic band. We can make
the following observations (with independent t-test results
reported):

(i) We compare the performance of various models
trained on different band performances. All systems
perform better (higher R2 value) on the middle school
recordings than on the symphonic band recordings
(p < 0.01 except JointEmbedNet for musicality). One
possible explanation for this is that symphonic band
scores are usually more complicated and longer. For
example, symphonic band scores tend to be performed
at high tempo with high note density. The chunking
into smaller lengths (and the downsampling of the
distance matrix) compared to the score length might
lead to a less accurate mapping to the assessment
rating. An additional factor is that most performers
in the symphonic band auditions exhibit greater skill
level than middle school performers thus making it
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Figure 4. Box plots showing comparative performance (higher is better) across different models and assessment criteria.

potentially more difficult to model the differences in
proficiency levels.

(ii) All score-informed models generally outperform the
baseline, implying that score information is indeed
helpful for MPA (p < 0.01 except SIConvNet for mu-
sicality, DistMatNet for musicality and note accuracy
on middle school). We notice, however, that the dif-
ference between the score-independent baseline and
the score-informed models is smaller for the middle
school than for symphonic band. Given the signifi-
cant improvement over the baseline for symphonic
band performances (which have complicated scores),
we speculate that the score-informed models bene-
fit more from access to score information. In other
words, a score reference becomes more impactful with
increasing proficiency level while the pitch contour
alone contains most relevant information for medium
proficiency levels.

(iii) While the two models SIConvNet and JointEmbed-
Net both use the same input features, JointEmbedNet
either outperforms or matches SIConvNet in all ex-
periments. The main difference between these two
architectures is that SIConvNet simply performs a
regression to estimate the assessments while JointEm-
bedNet learns a similarity in the embedding space to
model the assessments. Therefore, we can assume
that JointEmbedNet is able to explicitly model the
differences between the input pitch contour and score
especially in the case of symphonic band where the
scores are more complicated.

(iv) We observe that while DistMatNet and JointEmbed-
Net both utilize the similarity between the score and
pitch contour, albeit at different stages of the network,
JointEmbedNet typically performs better across cate-
gories and bands, and the gap is larger for musicality
than for the other two categories. It is possible that the
absolute pitch at the input may be important for the
final assessment (octave jumps, for example, would
not be properly modeled in the distance matrix). More
likely, however, is that the significantly larger input

dimensionality of the matrix (compared to the aligned
sequences for JointEmbedNet) negatively impacts per-
formance. Most of the relevant information for MPA
centers around the diagonal of the distance matrix
with relatively small deviations depending on the stu-
dents’ tempo variation. Most of the distance matrix
elements far from the diagonal contain redundant or
irrelevant information, thus complicating the task. An-
other advantage that JointEmbedNet might have over
DistMatNet in terms of overall assessment is that the
distance is computed on the whole performance while
DistMatNet computes a frame-level pitch distance,
potentially complicating the task for overall quality
measures like musicality.

5.2 Chunk Size

In this experiment, we look at the impact of two different
chunk sizes for the first two methods. Figure 5 shows the
results on middle school (a) and symphonic band (b). For
both SIConvNet and JointEmbedNet, a chunk size of 10 s
outperforms that of 5 s across all the bands.

Chunking with random sampling is a form of data aug-
mentation. By using the ground truth rating of the whole
performance, the chunks are assumed to reflect the quality
of the whole performance. The results show that 5 s chunks
might be too short to evaluate the whole performance while
10 s chunks are much better suited regardless of category
and score complexity. Chunk lengths greater than 10 s were
not tested because we restricted ourselves to the length of
the shortest performance in the dataset. Consequently, we
used a 10 s chunk size for the experiment in Figure 4.

5.3 Distance Matrix Resolution

In this experiment, we study the impact of the different input
matrix resolutions 400 × 400, 600 × 600, and 900 × 900,
for the DistMatNet model. The results for both middle
school and symphonic band are shown in Figure 6. First,
the performance of rhythmic accuracy criterion tends to de-
crease with increasing distance matrix resolution. It might
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Figure 5. Box plots showing comparative performance
(higher is better) across different chunk sizes for SIConvNet
and JointEmbedNet.

be more difficult for the same model structure to capture
the complexity inside a larger matrix. This can also explain
the result for middle school: although increasing the input
resolution from 400 × 400 to 600 × 600 will capture more
details, the performance decreases when the matrix resolu-
tion is further increased. Second, an input matrix size of
600 × 600 leads to a slightly higher average score (0.46)
on both symphonic and middle school than the other two
resolutions (0.45 for 400×400 and 0.43 for 900×900). We
ended up using the 600× 600 resolution for the experiment
in Figure 4.

6. CONCLUSION

This paper presents three novel neural network-based meth-
ods that combine score information with a pitch representa-
tion of an audio recording to assess a music performance.
The methods include: (i) a CNN with aligned pitch contour
and score as the input, (ii) a joint embedding model that
learns the assessment as the cosine similarity of the embed-
dings of both the aligned pitch contour and the score, and
(iii) a distance-matrix based CNN, using a differential repre-
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Figure 6. Box plots showing comparative performance
(higher is better) across different matrix sizes for the dis-
tance matrix network (DistMatNet).

sentation of pitch contour and score at the input. The results
show that all the methods outperform the score-independent
baseline model. The joint embedding model achieves the
highest average performance.

Beyond the obvious applications in software-based mu-
sic tutoring systems, score-informed performance assess-
ment models (and objective MPA in general) can benefit
the broader area of music performance analysis. Models ca-
pable of rating performances along different criteria could
serve as useful tools for objective evaluation of generative
systems of music performance. In addition, such mod-
els could also be explored for objective analysis of inter-
annotator differences in rating music performances.

In the future, we plan to incorporate timbre and dynamics
information into the models as it has been shown to improve
accuracy [22]. This will also enable the model to assess
performances in terms of tone quality, the criterion ignored
in this study. We also plan to investigate other instruments
and to examine cross-instrument relationships by training
instrument-specific models. Furthermore, the musical score
reference could be replaced with other representations such
as the pitch contour of a highly-rated performance.
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913



7. ACKNOWLEDGMENTS

Jiawen Huang and Yun-Ning Hung are the main contribu-
tors and contributed equally to this work.

We would like to thank the Florida Bandmasters Associ-
ation for providing the dataset used in this study. We also
gratefully acknowledge Microsoft Azure who supported
this research by providing computing resources via the Mi-
crosoft Azure Sponsorship.

8. REFERENCES

[1] B. Bozkurt, O. Baysal, and D. Yuret. A dataset and base-
line system for singing voice assessment. In Proc. of
International Symposium on Computer Music Multidis-
ciplinary Research (CMMR), pages 430–438, Matosin-
hos, Porto, 2017.

[2] Alice Cohen-Hadria and Geoffroy Peeters. Music struc-
ture boundaries estimation using multiple self-similarity
matrices as input depth of convolutional neural net-
works. In Proc. of Audio Engineeing Society (AES) In-
ternational Conference on Semantic Audio, Erlangen,
Germany, 2017.

[3] Johanna Devaney, Michael I Mandel, and Ichiro Fu-
jinaga. A Study of Intonation in Three-Part Singing
using the Automatic Music Performance Analysis and
Comparison Toolkit (AMPACT). In Proc. of 13th Inter-
national Society of Music Information Retrieval Confer-
ence (ISMIR), Porto, Portugal, 2012.

[4] Sebastian Ewert and Mark B Sandler. Structured
dropout for weak label and multi-instance learning and
its application to score-informed source separation. In
Proc. of IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 2277–
2281, New Orleans, USA, 2017.

[5] Sebastian Ewert, Siying Wang, Meinard Müller, and
Mark Sandler. Score-informed identification of missing
and extra notes in piano recordings. In Proc. of 17th
International Society for Music Information Retrieval
Conference (ISMIR), New York City, USA, 2016.

[6] Felipe Falcao, Baris Bozkurt, Xavier Serra, Nazareno
Andrade, and Ozan Baysal. A Dataset of Rhythmic Pat-
tern Reproductions and Baseline Automatic Assessment
System. In Proc. of 20th International Society for Music
Information Retrieval Conference (ISMIR), Delft, The
Netherlands, 2019.

[7] Thomas Grill and Jan Schluter. Music boundary detec-
tion using neural networks on spectrograms and self-
similarity lag matrices. In Proc. of 23rd European Sig-
nal Processing Conference (EUSIPCO), pages 1296–
1300, Nice, France, 2015.

[8] Siddharth Gururani, Ashis Pati, and Alexander Lerch.
Analysis of objective descriptors for music performance
assessment. In Proc. of International Conference on
Music Perception and Cognition (ICMPC), Montréal,
Canada, 2018.

[9] Yoonchang Han and Kyogu Lee. Hierarchical approach
to detect common mistakes of beginner flute players. In
Proc. of 15th International Society of Music Informa-
tion Retrieval Conference (ISMIR), pages 77–82, Taipei,
Taiwan, 2014.

[10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In
Proc. of IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 770–778, Las Vegas,
USA, 2016.

[11] Jiawen Huang and Alexander Lerch. Automatic assess-
ment of sight-reading exercises. In Proc. of 20th Inter-
national Society for Music Information Retrieval Con-
ference (ISMIR), Delft, The Netherlands, 2019.

[12] Sergey Ioffe and Christian Szegedy. Batch normaliza-
tion: Accelerating deep network training by reducing
internal covariate shift. In Proc. of 32nd International
Conference on Machine pyin (ICML), pages 448–456,
Lille, France, 2015.

[13] Trevor Knight, Finn Upham, and Ichiro Fujinaga. The
potential for automatic assessment of trumpet tone qual-
ity. In Proc. of 12th International Society of Music Infor-
mation Retrieval Conference (ISMIR), pages 573–578,
Miami, USA, 2011.

[14] Alexander Lerch, Claire Arthur, Ashis Pati, and Sid-
dharth Gururani. Music performance analysis: A sur-
vey. In Proc. of 20th International Society for Music
Information Retrieval Conference (ISMIR), Delft, The
Netherlands, 2019.

[15] Pei-Ching Li, Li Su, Yi-Hsuan Yang, Alvin WY Su,
et al. Analysis of expressive musical terms in violin us-
ing score-informed and expression-based audio features.
In Proc. of 16th International Society of Music Infor-
mation Retrieval Conference (ISMIR), pages 809–815,
Málaga, Spain, 2015.

[16] Matthias Mauch and Simon Dixon. pYIN: A fundamen-
tal frequency estimator using probabilistic threshold dis-
tributions. In Proc. of IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP),
pages 659–663, Florence, Italy, 2014.

[17] Oscar Mayor, Jordi Bonada, and Alex Loscos. Perfor-
mance analysis and scoring of the singing voice. In Proc.
of Audio Engineering Society (AES) Convention, pages
1–7, London, UK, 2009.

[18] Marius Miron, Jordi Janer Mestres, and Emilia
Gómez Gutiérrez. Monaural score-informed source sep-
aration for classical music using convolutional neural
networks. In Proc. of 18th International Society for Mu-
sic Information Retrieval Conference (ISMIR), Suzhou,
China, 2017.

Proceedings of the 21st ISMIR Conference, Montréal, Canada, October 11-16, 2020
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ABSTRACT

We present a fast and high-fidelity method for music gen-
eration, based on specified f0 and loudness, such that
the synthesized audio mimics the timbre and articula-
tion of a target instrument. The generation process con-
sists of learned source-filtering networks, which recon-
struct the signal at increasing resolutions. The model op-
timizes a multi-resolution spectral loss as the reconstruc-
tion loss, an adversarial loss to make the audio sound
more realistic, and a perceptual f0 loss to align the out-
put to the desired input pitch contour. The proposed ar-
chitecture enables high-quality fitting of an instrument,
given a sample that can be as short as a few minutes,
and the method demonstrates state-of-the-art timbre trans-
fer capabilities. Code and audio samples are shared at
https://github.com/mosheman5/timbre_painting.

1. INTRODUCTION

The melody, as depicted by a sequence of notes, or alterna-
tively by a sequence of frequencies, is one generic aspect
of the musical experience. The dynamic loudness signal
is another prominent aspect that is also almost instrument-
invariant. Due to the invariance property of these two as-
pects, it is natural to employ them as specifications to the
instrument-independent essence of a musical piece.

A prominent aspect that does depend on the instrument
is the timbre. The music-AI task of timbre-transfer consid-
ers methods that receive, as input, an audio segment and a
target instrument, and output the analog (melody preserv-
ing) audio in the target domain, by replacing the timbre of
the original audio clip with that of the specified instrument.

Another aspect that defines a musical instrument is ar-
ticulation, or the joining-up of notes. Timbre transfer
methods address this implicitly with varying degrees of
success. The physical properties of the instrument lead to
constraints and subsequently different characteristic ways
to move from one note to the next in a smooth manner.
This aspect, therefore, varies considerably, e.g., between
violin, guitar, and trumpet.

While this interpolation process is second nature for
trained musicians, it can be sophisticated and involves the

c© Michael Michelashvili, Lior Wolf. Licensed under a
Creative Commons Attribution 4.0 International License (CC BY 4.0).
Attribution: Michael Michelashvili, Lior Wolf, “Hierarchical Timbre-
painting and Articulation Generation”, in Proc. of the 21st Int. Society
for Music Information Retrieval Conf., Montréal, Canada, 2020.

introduction of new frequencies that are not part of the
original notes. See Fig. 1.

In this work, we build a hierarchical music generator
network. Given a fundamental frequency (f0) and loud-
ness inputs, the network generates audio in four different
scales. While the different scales share the same architec-
ture, they have different roles. The first (lower) scale intro-
duce the articulation, while the top scales introduce much
of the timbre and the final audio-spectrum quality, which
we call timbre-painting. See Fig. 2.

The model is trained on a relatively short sample from
the target instrument, typically consisting of few minutes.
The network is trained to minimize multiple losses: an ad-
versarial loss encourages the output to be indistinguishable
from audio in the output domain, multi-scale reconstruc-
tion losses in the frequency domain are used to ensure that
the network can recreate the training sample, and the f0 of
the output is compared to the specifications.

One possible application of the network is for the task of
music domain transfer, similar to the application of other
timbre-transfer methods. In this case, the f0 and loud-
ness inputs are extracted from an existing audio clip and
the network generates the analog music in the target do-
main. Our experiments show that our method generates
audio that sounds more realistic and is perceived to be of
a better fit to the original melody than the recent state-of-
the-art method DDSP [1].

2. RELATED WORK

The task of timbre-transfer was tackled by [2]. An image-
to-image pipeline that uses cycle consistency losses [3] is
applied to the audio domain by representing audio signals
as 2D images with the Constant-Q-Transform (CQT). To
move back from the CQT representation, a WaveNet [4]
synthesizer that is conditioned on CQT representation was
used. Another prominent work [5] suggested to learn
the audio melody by using a WaveNet Autoencoder ar-
chitecture [6]. One “universal” encoder is used to repre-
sent melody from raw data, and multiple domain-specific
decoders are used for audio generation. By presenting
domain-adversarial loss on the encoding, this method rep-
resents only the domain-invariant data needed for genera-
tion, which is predominantly the melody. Even though this
method presents impressive results on timbre transfer and
audio translation, it has few major disadvantages: the re-
liance on large amounts of data, and the heavy computation
resources required (tens of GPUs).
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(a) (b) (c)

Figure 1. An illustration of our method’s articulation capabilities. (a) The spectrogram of a violin audio. (b) The extracted
fundamental frequency (f0) of the violin. (c) The results of our method. Both the timbre and the articulations were
manipulated. See arrows for a few specific locations where the violin’s articulation is demonstrated.

The differentiable digital signal processing (DDSP)
method [1], which was proposed recently, is much more ef-
ficient with regards to both data and computational needs.
The method presents a DSP hybrid model in which a syn-
thesizer with learned parameters is used. Like our method,
DDSP conditions the signal generation on f0 and the loud-
ness signal. Therefore, it can apply timbre-transfer to any
audio for which a pitch tracker, e.g., CREPE [7], can suc-
cessfully extract the f0 signal.

DDSP and other methods [8] follow the high fidelity
speech synthesizer of [9] in employing convolutional neu-
ral networks as shape-shifting filters to a sine-wave input.
While many speech generation techniques condition the
network on the f0 signal, this line of methods employ the
corresponding sine-wave.

Hierarchical generation was shown to be effective for
image generation tasks. The progressive GAN method [10]
breaks down the generation scheme into cascading gener-
ators and discriminators, improving the image generation
quality and stabilizing the training process. The SinGAN
method [11] performs convincing image-retargeting and
image generation, using multi-scales learning from a sin-
gle input image.

3. METHOD

Our method is hierarchical and consists of generators in
four different scales. All generators have the same archi-
tecture of a non-autoregressive WaveNet applied on (scale-
dependent) input and conditioned on extracted audio fea-
tures on each scale. The learning process is optimized to:
(i) decrease the distance between the spectral representa-
tions of the generated and the target audio, (ii) minimize
pitch perceptual loss in order to improve pitch coherence,
and (iii) create realistically sounding examples by the us-
age of an adversarial loss.

3.1 Input Features

An audio sample is denoted by xn = (xn1 , . . . , x
n
T ), where

T is the length of the signal and n is the finest scale we
consider. The scaled version of it are denoted by xn−1,

xn−2, up to x0, which is the coarsest scale. The scaling is
carried out by down-sampling,

xn−1[t] =
K−1∑
k=0

xn[tM − k]h[k] (1)

WhereM is the reduction factor, h a FIR anti-aliasing filter
and K the length of the filter.

In our experiments, we use four scales j = 0..3. The
finest generates audio in 16 kHz, while the coarsest gener-
ates audio in 2 kHz. We chose the coarsest scale to be as
small as possible on the articulation generation phase, yet
to include the f0 signal of our target instruments (max of
1kHz as given by Nyquist rule)

In our method, audio is generated based on the speci-
fications of the loudness of the output audio and its pitch.
The other characteristics (timbre, articulation, and spectral
quality) are being added by the model, based on the train-
ing sample. The loudness is given, following [12], by the
A-Weighting scheme, which is a weighted sum of the log
of the power spectrum. We denote the loudness extraction
computation by loud(xj), which is a 1D signal of a length
that is 32 times shorter than the length of the input xj ,
j = 0..3, due to the power spectrum extraction.

The fundamental frequency f0, which is also a 1D
signal, is extracted using the CREPE pitch tracking net-
work [7], as is done in [1,13]. We denote the extracted sig-
nal by f0(xn) and compute it only at the finest-resolution
scale. The CREPE network has a resolution of 250Hz,
which differs from the sampling rate of our network. How-
ever, this conditioning is provided as a sine-wave at the
resolution of the coarsest layer (2kHz).

Specifically, following previous work in speech [9] and
music synthesis [1, 8], we apply what is known as “neural
source-filtering”. In this technique, instead of conditioning
the generated sample directly on the extracted f0 signal, the
generator is conditioned on a raw waveform that is synthe-
sized via a single sinusoid sine-excitation, calculated from
upsampled f0(xn). The f0 is downsampled by 32 from
the input signal xn and the coarsest scales j = 0, which
is generated first, has a frequency that is one eighth of the
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(a) (b) (c)

(d) (e) (f)

Figure 2. An illustration of the hierarchical generation process. (a) A spectrogram depicting the original melody as sang
by a male singer. (b) The extracted fundamental frequency (f0) of the melody. (c-f) The generated audio for a saxophone
from the coarsest scale x0 to the finest x3, respectively. While articulation-based manipulations are already seen in x0, the
full effect of the timbre and spectral-quality is only observed at the final output x3.

original audio. Scaling is, therefore, by a factor of 4. We
denote the generated waveform by η(f0(xn)).

η(f0(xn)) = sin(

T∑
k=0

2π↑f0(xn)k/fs), (2)

where fs is the sample rate of the audio and ↑ denotes an
upsampling operator.

3.2 Hierarchical Generation
The generated waveform η(f0(xn)) serves as the input to
the lowest scale generator in the hierarchy, which is de-
noted by G0. Similarly to our other generators and unlike
conventional GAN generators, the generator does not re-
ceive random noise as input.

In our method, we propose a conceptual relaxation to
the audio generation task, and divide the generation into
two distinct phases: timbre painting and articulation on
the lowest scale, followed by upsampling networks which
learn to generate higher resolution audio based on the pre-
vious scale. By doing so, we separate what we consider the
most difficult part in the generation, namely converting a
sine wave into well-articulated music, from the aspects of
timbre painting and spectral quality adjustment. Therefore,
fewer errors are introduced during the generation process
and the method produces more coherent audio samples.

Denote by zj = loud(xj). A set of input encoding
networks Ej transforms the raw input signal zj into a se-
quence of vectors, which G is conditioned upon.

The lowest scale generator operates as follows:

x̂0 = G0(η(f0(xn)), E0(z0)) , (3)

where the second input is the conditioning signal.
The following generation steps receive as input the out-

put of the previous scale generator:

x̂j = Gn(↑(x̂j−1), zj), (4)

where ↑(x̂n−1) is an upsampled signal that matches the
next scale. An illustration of the generation process is
given in Fig. 3.

3.2.1 Architecture

The architecture of the generators and discriminators is
similar to that of [14]. Each generator is composed of 30
layers stacked into three stacks. The kernel size is 3, using
64 residual channels and 64 skip channels. The dilation is
exponentially growing in each stack, providing a receptive
field of 3072 samples, which translates to a window size of
1.5sec on the lowest scale and 192ms on the finest.

The input encoder Ej is composed of instance normal-
ization, followed by 1D-convolution with kernel size of 1
that is applied on the condition input z. The number of
output channels is 80. The output of Ej is provided after
upsampling via convolutional layers and nearest neighbor
interpolation to the temporal dimension of the input signal.
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Figure 3. An illustration of the generation process. The generator of the coarsest scale receives as input a sine-wave that
is based on the fundamental frequency of the input sample. All generators are conditioned on the loudness signal of the
appropriate scale. The output of the first generator G0 serves as the input for the subsequent generator G1 and so on.

Training involves a set of discriminators Dj , one per
scale. Each discriminator is composed of 10 layers of 1D-
convolution, followed by leakyReLU with negative slope
of 0.2. The kernel size is 3, and 64 channels are used per
layer. The dilation is growing linearly. Weight normaliza-
tion is applied both on the generator and the discriminator.

3.3 Training
The learning setup and objective functions are the same for
all the scales, with respect to the target audio signal. Con-
veniently, each generator Gj is trained separately, after the
previous generator Gj−1 is completely trained. We found
that using the weights of the previous scale generatorGj−1

to initialize the weights of Gj leads to faster convergence
than random initialization on every scale. Similarly, the
discriminator Dj that provides the adversarial training sig-
nal to the generator Gj is initialized based on Dj−1.

At each scale j, we obtain a training set Sj by dividing
the training sample, after it has been downsampled to scale
j to audio clips xj of length 2sec.
3.3.1 Objective function

A time-frequency reconstruction loss is used to align to the
generated audio sample with the target audio. Specifically,
the spectral amplitude distance loss [15, 16], in multiple
FFT resolutions [1, 9, 14] is used. For a given FFT size m,
the spectral amplitude distance loss is defined as follows:

L(m,j)
recon =

∑
xj∈Sj

(
‖|STFT(xj)| − |STFT(x̂j)|‖F

‖STFT(xj)‖F

+
‖ log |STFT(xj)| − log |STFT(x̂j)|‖1

N

)
(5)

where x̂j is given by Eq. 3 and Eq 4, ‖·‖F and ‖·‖1 denotes
the Frobenius and the L1 norms, respectively. The first ele-
ment in the sum penalizes dominant bins in the magnitude
while the second penalizes the silent parts. STFT denotes
the magnitude of a Short-time Fourier transform with N
elements in the spectrogram.

The multi-resolution loss is defined as the mean of the
above loss for multiple scales:

Lj
recon =

1

NM

∑
m∈M

L(m,j)
recon (6)

where M = [2048, 1024, 512, 256, 128, 64] and NM = 6
is the number of FFT scales. Using the multi-resolution
loss, we implicitly constrain the phase of the output signal
to be correct and prevent artifact noises.

To make the generated quality of the audio signals
sound realistic, we introduce an adversarial loss. On each
scale, we apply a different discriminator Dj to account for
different statistics between scales. We follow the least-
squares GAN [17], where the discriminator minimizes the
loss

Lj
D =

∑
x∈Sj

[||1−Dj(xj)||22 + ||Dj(x̂j)||22] (7)

Each trained generator Gj minimizes the adversarial
loss (recall that x̂j is computed with Gj):

Lj
adv =

∑
xj∈Sj

||1−Dj(x̂j)||22 (8)

To further improve the generation quality, we add a per-
ceptual loss [18] on the generator output, using the CREPE
network [7]. Denoting the mapping between the input sig-
nal x and the intermediate activations the CREPE network
as h(↑x), which requires an upsampling to 16kHz, this loss
takes the form:

Lj
percep =

∑
xj∈Sj

‖h(↑xj)− h(↑x̂j)‖1 . (9)

The optimization with this loss requires the upsampling
operator to be differentiable.

In order to support a more direct comparison of the
methods, following DDSP [1], the fifth max-pool layer of
the small CREPE model is employed.

Overall, the optimization loss for a generator Gj , is de-
fined as:

Lj
G = Lj

recon + αLj
adv + βLj

percep (10)

where α, β are weight factors that balance the contribution
of each loss term.

4. EXPERIMENTS

We conduct timbre-transfer experiments for multiple in-
struments, and compare the results to the state-of-the-art
timbre transfer method DDSP [1].
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Target Similarity Melody Similarity

Instrument/Method DDSP Our DDSP Our

Cello 4.11 ± 0.16 4.24 ± 0.16 4.00 ± 0.32 4.01 ± 0.49
Saxophone 3.09 ± 0.53 3.47 ± 0.54 3.87 ± 0.41 3.91 ± 0.53
Trumpet 3.29 ± 0.45 4.01 ± 0.33 3.99 ± 0.29 4.11 ± 0.51
Violin 4.02 ± 0.35 4.13 ± 0.27 4.13 ± 0.39 4.22 ± 0.39

All samples 3.63 ± 0.60 3.96 ± 0.46 4.00 ± 0.36 4.06 ± 0.50

Table 1. MOS evaluation for the timbre transfer task for multiple target instruments.

4.1 Datasets

We used the University of Rochester Music Performance
(URMP) dataset [19], a multi-modal audio-visual dataset
containing classical music pieces. The music is assembled
from separately recorded audio stems of various mono-
phonic instruments. For our experiments, we used only the
separated audio stems for each instrument. f0 extraction
was carried out by CREPE [7], although the URMP dataset
provides ground truth melody signals, since we wanted to
apply similar methods during train and test.

We trained both the baseline DDSP [1] method and our
model on generating four different instruments from the
URMP dataset: cello, saxophone, trumpet and violin. As a
prerocessing step the audio files were resampled to 16kHz.
To improve the ability of learning meaningful f0 represen-
tation we removed in each dataset samples which achieved
less than 0.85 mean confidence on CREPE extractor. Each
dataset was separated into a training and evaluation set by
0.85/0.15 split. After the preprocessing, we ended up with
small dataset sizes: 6.5 minutes of cello, 6 minutes of sax-
ophone, 17 minutes of trumpet and 39 minutes of violin.

4.2 Experiment Setup

Our models were trained with α=1 and β=1. We used the
Adam optimizer [20] with a learning rate of 0.0005 for the
generators and 0.0001 for the discriminators. Each scale
was trained for 120K iterations, with batch sizes of 32, 16,
8 and 4, from coarsest to finest. The learning rates were
halved after 60K iterations. The discriminators were intro-
duced to the training process on iteration 30K. To improve
the robustness of our method we added a random Gaussian
noise with a standard deviation of 0.003 to the η(f0(xn))
signal, inspired by [9].

For the baseline evaluation of the DDSP method, the
open source GitHub implementation 1 provided by the au-
thors of [1] was used. The experiments were carried out
for 100K iterations with a batch size of 16. The hyper-
parameters used are the ones provided by the recipe avail-
able in that repository.

4.3 User Study

To inspect the results of the timbre transfer experiments we
carried out a mean opinion scores (MOS) evaluation. We
sampled six audio clips varying from 5-10s, long enough

1 https://github.com/magenta/ddsp

for good evaluation. The origin instruments are: clarinet,
saxophone, female singer, male singer, trumpet and vio-
lin. For each audio sample, we conducted timbre transfer
using the four models of the target instruments, resulting
in a matrix of 24 inspection files for our method and 24
for the baseline. The timbre-transfer was done by extract-
ing the loudness and pitch features from the source audio,
aligning pitch key to the target (if needed) and generation
procedure. The evaluations samples are available in the
supplementary material. Twenty raters were asked to rate
the generated outputs by two criteria: (i) target similarity
to the transferred instrument, and (ii) the melody similarity
to the original tune. Scores vary on a scale of one to five.

4.4 Results

As can be seen in Tab. 1, our method outperforms DDSP
both by the melody similarity and target similarity. While
the baseline method gets a relatively close score on melody
similarity, it is inferior in sound quality and its ability to
mimic the target instrument. For example, in some cases
DDSP fails to imitate the target domain timbre, and pro-
duces a sine-sounding signal in the correct pitch. An ex-
ample of a challenging conversion is depicted in Fig. 4.

The high melody preserving results of both methods re-
flect the fact that both utilize a meaningful f0 sine-wave
signal, which aligns the output melody well with the in-
put melody. However, the target similarity results can be
explained through the crux of the DDSP mechanism: the
learnable function on this network optimizes control pa-
rameters of a deterministic noise-additive synthesizer, thus
it is upper bounded by the quality of the best-setup syn-
thesizer. Our method, on the other hand, enjoys the ex-
pressiveness of a fully capable neural generator, thus can
deviate considerably from the source, if needed, in order to
generate realistic sounds.

4.5 Data efficiency

Another advantage of our method is the need for a min-
imal amount of training data to generate high quality sam-
ples. Successful timbre-transfer results are produced from
datasets of few minutes long. For comparison we have
trained a state-of-the-art WaveNet based model for music
translation [5] on two different datasets: URMP, as pre-
sented above, and a 30min subset of MusicNet [21], as
discussed in Sec. 5. In both cases, the music translation
method [5] failed due to the limited amount of data.
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(a)

(b)

Figure 4. A challenging conversion from a female voice
to a cello. (a) The results of DDSP. (b) Our results. While
DDSP introduces synthetic noise in order to bridge the dif-
ferent characteristics of the two domains, our method suc-
cessfully manages to overcome and adapt the input signal
to cello’s articulation and timbre .

5. DISCUSSION

Recent music AI models vary in the number of parameters
and in the required size of the training data. The very re-
cently introduced jukebox model [22] was trained on over
a million songs using hundreds of GPUs, and include 7
billions parameters. The autoencoder-based music-domain
translator [5] was trained on hours of audio, using tens of
GPUs and includes 42M parameters. In comparison, mod-
els such as ours are trained on a single GPU, require min-
utes of audio, and have orders of magnitude less param-
eters, 1.4M on each scale in our case. The total number
of parameters is even smaller than the lean DDSP model,
which is of 6M parameters. Taking into account the fact
that each scale is trained separately, our model is much
more accessible to universities and other small-scale re-
search labs than the other models in the literature.

The method generates sound by shape-shifting a sine-
wave, which serves as the skeleton of the rich-timbre
painted output. Using scales reflects the inherent struc-
ture of the musical audio signal, which is composed of

harmonies on different pitch resolutions. The utilization
of this strong prior allows us to achieve state-of-the-art re-
sults much more efficiently.

The hierarchical structure, which is natural for music
generation, also exists in other methods, but in a different
way. In the jukebox model, the hierarchy is used sepa-
rately in the encoders and in the decoders, i.e., all encoder
scales are applied, followed by the decoder scales. In our
model, there is an interleaving structure in which genera-
tion is completed at the lowest scale (including both input
encoding and the WaveNet decoder), moving to the pro-
cesses of the next scale and so on.
Limitations The economic nature of the model is not
without limitations. Unlike the jukebox model, our model
does not produce a discrete encoding that can be used (to-
gether with an sizable transformer model) for composing
new music. In order to add a similar capability, we would
need to quantize the input encoding modules (Ej) using
techniques such as VQ-VAE [23] and to train an auto-
regressive model for each level of the hierarchy. Alter-
natively, any composition method can be used to generate
the bare-bones input signal of the network, which would
then add the articulation and the timbre to create a richer
musical experience.

In the current form, unlike both jukebox and the autoen-
coder music translator, our model does not share informa-
tion between different domains, and needs to be retrained
on each domain. It is not difficult, however, to modify it to
be conditioned on multiple target domains, a path that has
been followed many times in the past for other WaveNet-
based generators.

The current method relies on the f0 signal as extracted
by a pretrained network that has been trained on mono-
phonic instruments. Since the pitch tracker we employ
was trained on monophonic instruments [7], the results on
polyphonic instrument are mostly reasonable but not al-
ways. When successful, our method is successful in trans-
forming the melody to the learned monophonic target do-
mains. However, training polyphonic target instruments
remains a challenge since it relies on such a success across
the training samples. In the supplementary we present re-
sults obtained for polyphonic instruments (keyboard and
piano samples from MusicNet), for both our method and
DDSP. Both methods succeed to some degree with our
method presenting what we consider to be a slight advan-
tage (see supplementary samples). As future work, we
note that our method can be readily extended to employ
encoders, such as the ones of [5, 22], which were trained
on large collections of polyphonic music.

6. CONCLUSIONS

We present a novel method of music generation which re-
lies on neural source filtering and hierarchical generation.
The method achieves high quality audio generation despite
training on small training datasets. The generated input
is conditioned on loudness and pitch signals, which are
almost source-agnostic, and the characteristic articulation
and timbre of the target instrument are introduced through
a series of generators.
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ABSTRACT

This paper presents exploratory work investigating the
suitability of the Music Ontology [33] - the most widely
used formal specification of the music domain - for mod-
elling non-Western musical traditions. Four contrasting
case studies from a variety of musical cultures are anal-
ysed: Dutch folk song research, reconstructive perfor-
mance of rural Russian traditions, contemporary perfor-
mance and composition of Persian classical music, and
recreational use of a personal world music collection. We
propose semantic models describing the respective do-
mains and examine the applications of the Music Ontology
for these case studies: which concepts can be successfully
reused, where they need adjustments, and which parts of
the reality in these case studies are not covered by the Mu-
sic Ontology. The variety of traditions, contexts and mod-
elling goals covered by our case studies sheds light on the
generality of the Music Ontology and on the limits of gen-
eralisation “for all musics” that could be aspired for on the
Semantic Web.

1. INTRODUCTION

Non-Western musical traditions are of interest to MIR re-
search for several reasons: firstly, alongside Western clas-
sical and popular music, which have been studied exten-
sively in MIR, the musics of other cultures are analysed
in their own right [6, 13, 16, 25]; secondly, other musical
cultures often present difficult, non-standard datasets and
examples, showing the limits of existing MIR approaches
[22, 30, 39]; finally, including non-Western musical tradi-
tions allows for a broader view of music and leads to new,
more generally applicable technical solutions [24, 28, 40].
In this paper, we explore the latter avenue with the view
of generalising existing standards of semantic modelling
in music to include non-Western musical traditions.

Ontology in computer science is commonly defined as
an “explicit formal specification of a shared conceptualisa-
tion of a domain ” [15]. An ontology represents consen-

c© Polina Proutskova, Anja Volk, Peyman Heidarian,
György Fazekas. Licensed under a Creative Commons Attribution 4.0
International License (CC BY 4.0). Attribution: Polina Proutskova,
Anja Volk, Peyman Heidarian, György Fazekas. “From Music Ontology
towards Ethno-Music-Ontology”, 21st International Society for Music In-
formation Retrieval Conference, Montréal, Canada, 2020.

sual knowledge about the entities and their relationships in
an area, preferably expressed using a machine-processable
formal language that supports some form of inference [12].
This could be logic based, while more recently, ontologies
found their use in machine learning as a mechanism to help
structuring training data, formalise constraints, or become
an integral part of the inference process [42].

The Music Ontology (MO) [32, 33] is among the most
comprehensive ontologies for the music domain, with
broad ranging applications [9, 38] from recommendation
systems [49] to live performance [51], and numerous ex-
tensions covering music production [10, 11] and audio ef-
fects [53, 54], audio features [1], music theoretical con-
cepts [34, 43, 46], smart instruments and more generic or
other “Musical Things” [48]. The ontology is based upon
several broadly accepted domain models (see Section 2)
adopted to the music domain. Moreover, it has been ap-
plied successfully to model jazz [31], a tradition distinct
from Western classical and pop music; and it was found to
be beneficial for modelling Chinese musical tradition due
to its flexibility and layered structure [45]. This makes it a
primary candidate for our analyses.

The Music Ontology makes general claims about rep-
resenting discographic information, music creation, per-
formance, production and consumption. Yet it has so far
mainly been applied to Western music. MIR researchers
with expertise in ethnomusicology [29, 50] suggest that
computational approaches to non-Western music should all
be culture and use case specific. We therefore aim to an-
swer the following questions: Is the Music Ontology ca-
pable of representing the domains of non-Western musi-
cal traditions? What are the gaps that the Music Ontol-
ogy fails to model? Can or should the Music Ontology be
generalised to encompass many (or all) musical traditions?
What are the limits of such generalisation?

While political and geographic borders, language and
religion play an important role in forming musical tradi-
tions, modelling the domain of such a tradition goes far
beyond adding a geo location. For instance, Kurdish music
in northern Iraq is different from Kurdish music in Iran and
Turkey; Persian musics in Iran, Afghanistan and Tajikistan
are also different, even though people speak in the same
language (Persian); likewise Azerbaijan and Armenia have
different religions and languages, but their musics are very
close. Also, music of a diaspora sometimes adheres closely
to the original traditions and sometimes fuses with the mu-
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sic of the host community, importing new elements and
establishing new trends.

In addition to differences in musical systems and reper-
toires, how people create, perform and listen to music
varies between cultures. To account for this diversity, we
chose four case studies from a variety of musical traditions.
The use cases are representative of the chosen traditions,
based on authors’ expertise as practitioners, researchers
and consumers of those musical cultures. While by no
means exhaustive, this investigation employs a qualitative
approach to test the usefulness and representativeness of
the Music Ontology in a large variety of contexts outside
of Western classical and popular music.

First, we look at a Dutch state institution collecting folk
songs of a tradition now largely extinct and how research
on this collection is conducted (Sec. 3). Secondly, contem-
porary performance and composition in Iranian music are
explored, encompassing Persian classical art music, folk
music of many Iranian population groups and Western in-
fluences (Sec. 4). Thirdly, we take the genre of world mu-
sic into consideration, where recording and consumption
are broadly in line with Western popular music (Sec. 5).
Additionally, we turn to Russian village music and how it
is being actively revived through field research and perfor-
mance (see Supplement 1 ).

Dutch folk songs are a representative of folk music
traditions of Western Europe and North America in our
study; Russian village music is a polyphonic vocal tradi-
tion, which are common throughout Eastern Europe, and
are found in other parts of the world. Iranian music is a
maqamic tradition, strongly connected to the modal tradi-
tions encompassing the Near East, North Africa, and South
Asia. The world music genre does not represent any par-
ticular culture and can include all kinds of musical content
from around the world.

To illustrate how the Music Ontology (MO) classes and
properties can or cannot be used to model our case stud-
ies, we introduced a consistent form- and colour coding
throughout this paper: MO classes and their subclasses
have solid line borders while other classes have dashed line
borders; MO properties are thick blue arrows with straight
heads; properties not present in the Music Ontology are
thin red.

2. PREVIOUS WORK

The main standard for semantic modelling in cultural her-
itage is FRBR (Functional Requirements for Bibliographic
Records). It is a conceptual model for describing entities
and relationships in libraries, museums, and archives [47].
FRBR was developed by the International Federation of
Library Associations and Institutions (IFLA) and is widely
used by cultural institutions around the world, in particular
for electronic cataloguing of physical and digital objects.
It provides the basis for interoperability between holdings,
collections, and datasets [3].

FRBR Group 1 defines four main entities to represent
the products of intellectual or artistic endeavour: “Work

1 Supplementary material: https://osf.io/5qxdb/

Figure 1. FRBR conceptual model. The shape and colour
coding exemplified here is used throughout this paper to
indicate classes implementing FRBR concepts

(a distinct intellectual or artistic creation) and expression
(the intellectual or artistic realisation of a work) reflect in-
tellectual or artistic content. Manifestation (the physical
embodiment of an expression) and item (a single exem-
plar of a manifestation) reflect physical form.” Group 2
includes persons and corporate bodies responsible for the
custodianship of Group 1 intellectual or artistic endeavours
(e. g., creators, consumers). Group 3 includes events and
places [17] (Fig. 1).

The Music Ontology [32] provides a vocabulary for
publishing and linking a wide range of music-related data
on the Web 2 . It builds on four main ontologies: FRBR
Ontology 3 (Fig. 1), the Timeline Ontology 4 , the Event
Ontology 5 and FOAF 6 . Fig. 2 illustrates how the Mu-
sic Ontology classes implement FRBR. It has been ex-
tended to describe a variety of musical domains, such as
audio content (Audio Features Ontology 7 [1]), recording
sessions (Studio Ontology 8 [10]) and exploration, trans-
formation and redistribution of audio content (AudioCom-
mons Ontology 9 [4]). The Jazz Ontology [31] is a se-
mantic model successfully developed on the basis of MO.
It illustrates how the Music Ontology requires "tweaking"
with shortcuts, new or qualified properties and some addi-
tional concepts to describe a musical tradition other than
Western popular or classical music.

MusicBrainz 10 is the largest crowd-sourced collection
of music metadata online. It has its own semantic model
[18], focused on discographic information about published
CDs, therefore less suitable to musical traditions which are
not centred around published products.

Tian et al. [45] presented a detailed analysis of metadata
standards in existence in 2013, including the Music Ontol-
ogy, and their ability to model the domain of Chinese tra-
ditional music. They identified several aspects which were
not covered by existing standards: function (purpose of
creation, occasion of performance), performance practice
(vocal style, stage performance, cosmetics and props, per-

2 http://musicontology.com
3 http://vocab.org/frbr/core.html
4 http://purl.org/NET/c4dm/timeline.owl
5 http://purl.org/NET/c4dm/event.owl
6 Friend of a Friend ontology, describing relationships between

persons:http://xmlns.com/foaf/spec/
7 https://w3id.org/afo/onto/
8 http://isophonics.net/content/studio-ontology
9 https://w3id.org/ac-ontology/aco

10 https://musicbrainz.org
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Figure 2. A fragment of the Music Ontology: key concepts and selected properties describing the music production
workflow, showing the FRBR layers [12]

forming skills), musical characteristics (intonation, tem-
perament), historical context, ethnic group, etc.

Further to cultural heritage sector, Coladangelo [5] pro-
vides a comprehensive description of contemporary (2020)
semantic frameworks representing cultural heritage, in-
cluding those related to music. Goienetxea et al. [14] de-
scribe an ontology representing Basque folk songs based
on CIDOC Conceptual Reference Model (CIDOC CRM)
- a complimentary standard for cultural heritage used pri-
marily in the context of architecture and museum collec-
tions. FRBRoo is an object oriented model harmonising
FRBR and CIDOC CRM [36]. Strle and Marolt [41] mod-
elled Slovenian folk songs and chimes music based on FR-
BRoo. DOing REusable MUSical (DoReMus) Project [23]
developed a model, also based on FRBRoo, describing var-
ied collections from three French cultural institutions.

In this paper we conduct four diverse case studies origi-
nating from different musical traditions, analysing the abil-
ity of the Music Ontology to model their domains. The fol-
lowing sections describe the case studies: the cultural con-
text, the musical content to be modelled, specific domain
characteristics, providing diagrams of semantics models.
We wrap up with a discussion of commonalities and dif-
ferences displayed by the case studies and their application
of the Music Ontology, the advantages and the limits of a
generalised Ethno-Music-Ontology.

3. CASE STUDY: FOLK SONG RESEARCH ON
THE DUTCH FOLK SONG ARCHIVE

Figure 3. The oral transmission (songs learnt and passed
on through listening and participation) introduced continu-
ous changes, giving rise to the coexistence of TuneVariants

The history of Western European folk song collection
and research stretches back centuries: before the emer-
gence of audio recording, folklorists wrote down folk
songs performed by their informants or encountered in
the field, which were then released in printed collections.

Songbooks would often only contain the lyrics; later, more
research oriented editions would include a notated melody
transcription. The idea of TuneFamilies (Fig. 3) – clus-
ters of tunes descending from a common “ancestor” - was
in line with other disciplines such as linguistics [2,7]. This
line of inquiry was strengthened by the requirements of the
medium – the book – used to publish the songs: usually
only one representative of a tune family would be included
in a print collection to avoid repetition (Fig. 4).

Figure 4. A TuneFamily was represented in a print book
collection by only one of its member tunes.

The assignment of a tune to a family is performed man-
ually by experts. An annotation experiment [52] has shown
that the most salient feature for experts to assign songs to
the same tune family was the presence of common melodic
Motifs. It also confirmed the emergence of a prototypic
ReferenceMelody representing a tune family (Fig. 3).

Figure 5. Audio field recordings capture real-life perfor-
mances of folk songs and are stored in digital files.

When audio recordings of Dutch folk songs and digi-
tal processing were introduced, there was no need to limit
the publication to just one representative of a family. A
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Figure 6. Traditional Iranian performance: The daràmad (opening section) comes at or near the beginning of the perfor-
mance, and the following gushés are organised according to a gradually ascending pitch scheme, until a forud (cadence)
leads a return to the original mode. During the modulations, the modal tonic gradually moves upwards. Usually, metered
gushés are played between non-metered gushés. [55]

contemporary database of the Dutch folk songs (the Dutch
Song Database [21]) contains metadata on 173K song oc-
currences from song books, manuscripts and field record-
ings from the 12th century to the present day. Songs from
the earlier printed collections are linked to audio Record-
ings of their Performances, the Lyrics, the Scans of the
book pages and Transcriptions in digital notation (Fig. 5).
The songs are linked to other songs with the same lyrics,
or the same ReferenceMelody, or the same MelodicIncipit.
A general melodic similarity search on the whole database
is a new tool that facilitates song relationship discovery.

The diagrams in Figs. 3, 4 and 5 show that all the in-
stances can be represented by MO classes or their sub-
classes (solid borders). Often MO properties (thick blue
arrows) can be used. Yet connections between Tunes
and TuneVariants from a TuneFamily (Fig. 3), which are
paramount in folk song research, are not represented in the
Music Ontology (red arrows). The relationships between
primary and derivative kinds of MusicalExpressions, e.g. a
melody and its transcription (Figs. 4 and 5), could be mod-
eled via an event of transcription, analogously to Sound ->
RecordingEvent -> Signal connections in the Music Ontol-
ogy (Fig. 2) . In contrast, the relationship between a Musi-
calWork and its Expression, which is similarly represented
via a composition event in the Music Ontology (Fig. 2),
cannot be used in the context of folk songs or traditional
music more generally: there is usually no composer and
no single event in which a song is created.

4. CASE STUDY: PERSIAN MUSIC -
CONTEMPORARY COMPOSITION AND

PERFORMANCE

Music in Iran is categorised, according to a scheme de-
vised by Farhat, into urban, ethnic and pop [8]. Urban
music, prevalently heard in the larger cities, includes both
classical art music and pop music. Classical Persian mu-
sic consists of free-rhythmic pieces (àvàz) and rhythmic
pieces, typically in 2/4, 4/4, or 6/8. Ethnic music, which is
in an Iranian form of maqàm, is that of the various ethnic
groups living in towns, villages, deserts, and in the moun-
tains. In addition to pieces in free and simple rhythms,
irregular rhythms such as 5/8 and 7/8 are more often en-
countered in ethnic music. Classical Persian music uses

more ornaments, complex melodies and free rhythms than
ethnic music. Iranian pop music, which has dominated the
music scene in Iran since the mid-twentieth century [8],
draws on either or both of the classical and ethnic tradi-
tions; it tends to simplify them and to reflect influences
from other cultures, notably Western pop music.

The process of creative performance, called bedàhe
navàzi (improvisation), which is at the heart of Persian mu-
sic, is different from improvisation in Western music, as it
involves both composition and new ways of rendering clas-
sical pieces (gushés); thus, there is no distinction between
the role of the performer and the composer [27]. A per-
formance is usually centred on a set of important gushés,
whose order is conventionally accepted (Fig. 6). The tex-
ture of Persian ensemble music is heterophonic, meaning
that the members of the ensemble play the melodic scheme
simultaneously in different ways, characterised by a high
degree of improvisation and ornamentation.

4.1 Persian modes and repertoire

Persian music is based on a modal system of seven main
modes and their five derivatives that are collectively called
the twelve dastgàhs [8, 16]. In a maqàm performance, dif-
ferent pieces are played in a single mode, while the perfor-
mance in a dastgàh comprises a certain sequence of mod-
ulations from an opening section in the main mode of a
dastgàh (daràmad), to derivative modes (àvàz) and finally
a return to the starting mode. (Fig. 6).

A student of Persian music studies a Radif - a body of
classical repertoire created by a Grandmaster (Fig. 7) - to
form the basis of their performance and composition. In
the past the transmission took place orally in a teacher-
student relationship that would last for many years; nowa-
days musicians refer to scores and recordings of classical
pieces performed by outstanding masters (Fig. 8).

In Fig. 6 a traditional Iranian performance is repre-
sented on a timeline (black line) using the Timeline On-
tology (black arrows). The modes are specific to Iranian
music and are not part of the Music Ontology, which only
provides a concept of a Western-centric major/minor Key,
though these could potentially be added and the concept
generalised to represent modes. Alongside mode the gushe
type also has to be documented (Fig. 7, for which there is
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Figure 7. Radif - the core repertoire of Iranian classical
music, a body of compositions by a Grandmaster from a
particular regional tradition.

Figure 8. Documenting Radif

no correspondence in the Music Ontology. A Grandmas-
ter is part of a Tradition, which provides the musical and
cultural context (grey trapezoid) to the performance - see
discussion to Fig. 1 of the Russian case study in the Sup-
plementary Material. In Fig. 8 all relationships can be
represented including the creation of a Score, with one ex-
ception: the belonging of a gushe to a particular radif. This
is similar to the within-repertoire relationships discussed in
Section 3 in relation to Dutch folk songs.

5. CASE STUDY: PERSONAL WORLD MUSIC
COLLECTION

Personal world music [44] collections are ubiquitous and
the exact specifics of their usage will differ between users.
They are put together for enjoyment, to create playlists,
share music with others, to have an overview of a variety
of genres and traditions. The difference to other case stud-
ies is that the owner of the collection is not an expert in the
majority of the styles represented in the collection. More-
over, a world music collection would be heterogeneous
and include a large variety of cultures, genres, languages,
instruments, contexts, etc. The authority of the sources
and the authenticity/expertise of the performers are not al-
ways clearly documented or known; all kinds of cultural
and stylistic mixtures can occur: for instance, a piece can
originate from one culture but be performed in a different
style; the musicians might have their roots in more than
one culture, including diasporas; music can be performed
using instruments not present in the culture of its origin; a
mixture of styles can be deliberate or accidental.

Because the consumer is not an expert, the artwork,
liner notes and other textual information play an impor-

tant role (Fig. 9). Tracks are commonly compiled into
playlists which can be devoted to a particular theme (love
songs), reflect or create a certain mood (chill out) or serve
a function (music for exercise) (Fig. 10).

Fig. 9 shows that, apart from the cultural context, the
Music Ontology is perfectly suitable to represent disco-
graphic information about world music collections. Yet we
observe in Fig. 10 that factors determining the content of a
playlist - aspects of cultural context or musical character-
istics - are beyond the domain of the Music Ontology.

6. DISCUSSION

The Music Ontology captures FRBR group 1 concepts in
all case studies, modelling the process of performance doc-
umentation from Expressions over Manifestations to Items
(Figs. 4, 5, 8, 9). It is also well suited, in combination with
the Timeline and the Event Ontologies, to document mu-
sical events (Figs. 6, 10). We identified three areas where
the Music Ontology lacks descriptions: cultural contexts,
musical characteristics and relationships within or between
repertoires.

Our case studies demonstrate how varied cultural con-
texts (grey downward trapezoid in the diagrams) can be:
function, social group and performance practice (Fig. 1 in
Supplement 11 ) in Russian traditional music; regional tra-
dition in Persian Music (Fig. 7); culture, function, mood
and theme in world music (Fig. 10). This is a very com-
plex area, which is often described and discussed differ-
ently depending on the language, organisation or school of
thought. It is not practical to construct a single taxonomy
to describe pagan rituals and music for exercise; wedding
songs alongside remembering sunrise; an Easter Vesper
as well as indecent humorous couplets. Therefore, Broad
categories could be offered like SocialFunction, Perfor-
mancePractice, Mood, whereas more detailed modelling
should be culture- and use case specific.

Musical characteristics (magenta upwards trapezoid in
the diagrams) are specific for each culture: traditions and
repertoires can differ greatly in the complexity and vari-
ation in modality, rhythm, harmony, ornamentation. Case
studies vary in which musical characteristics are important:
mode and rhythm type are crucial in Persian music (Figs.6,
7) but are less important in other case studies. Therefore,
it seems most viable to model musical characteristics sep-
arately for each musical tradition, choosing a subset of the
model relevant for the use case. MusicOWL [19] and the
Music Theory Ontology [34] offer a model for Western
music. Modelling for other traditions should be conducted
in collaboration with ethnomusicologists and tradition ex-
perts. It is important to keep in mind the gap between
theory and practice [16]. Related musical cultures, such
as maqamic traditions or Eastern European polyphonic vo-
cal styles, could possibly benefit from a systemic view and
a more generic modelling, which would facilitate cross-
cultural interoperability of the models.

Relationships within repertoires are crucial in some cul-
tures and contexts: the order and modulations of gushes in

11 Supplementary material: https://osf.io/5qxdb/
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Figure 9. A world music collection: TextualInformation captures the cultural affiliations and the social context of the
song/work performed as well as of the performance itself

Persian music (Figs. 6, 7) or the relationship between tunes
in a folk music tune family (Fig. 3); they are less impor-
tant in other cultures, like Russian village music. Cross-
repertoire relationships, such as between tune families or
Radifs, are of interest for comparative research. Such re-
lationships will differ between cultures, yet there might be
scope for generalisation within larger musical regions.

We also noticed that modelling musical instruments
(Fig. 1 of supplement, Fig. 10) will represent a chal-
lenge, due to their variety and linguistic barriers. While
a general instrument classification has long been estab-
lished [37] and the Music Ontology refers to an instrument
taxonomy [20], constructing a cross-cultural taxonomy of
musical instruments is a long-term task. Alongside instru-
ments, an addition of approximate dates (e.g. Figs. 1, 2
of supplement) as it was done in the Jazz Ontology [31]
would be beneficial, since references to periods of the past
and absence of exact dates are a common phenomenon in
many traditional musics.

Caution must be exercised when using the FRBR/MO
concept of MusicalWork. As Riley [35] noted, it is less
well suited to describe traditional and folk music. It is of-
ten difficult to delineate works: are highly similar tunes
one work or two? If a song has changed through oral trans-
mission, or has been transformed through improvisation, is
it still the same work? It is related to the problem of la-
belling works, when titles, lyrics and incipits vary between
localities or through improvisation, such as instrumental
tunes in our Russian example [26].

We conclude that the Music Ontology is a very useful

standard to implement for the domains of musical cultures
other than Western classical and popular music. However,
its further generalisation seems to offer few advantages,
since cultural contexts, musical characteristics, intra- and
inter-repertoire relationships are mostly culture specific:
small domain specific extensions would be more useful
than trying to build one big generic ontology.

In future work we suggest to investigate CIDOC Con-
cept Reference Model as a way to provide generalised cate-
gories for cultural context, to interface with the Music On-
tology. One option would be to adjust the Music Ontology
to implement FRBRoo, the object-oriented model harmon-
ising FRBR and CIDOC-CRM. This might allow to blend
the advantages of FRBR for modelling music creation and
consumption with the modelling of cultural contexts to
some extent, though the simplicity and transparency of
the Music Ontology’s current version would suffer. Simi-
larly, the usefulness of Hornbostel-Sachs categories to gen-
eralise musical instruments should be explored critically
through case studies.

This generalisation approach could be taken further in
relation to cross-cultural comparative research. We suggest
to concentrate on two or three loosely related repertoires
from a broad cultural area, for instance a Persian Radif, a
Turkish Makam and an Indian Raga. Modelling similar use
cases for such repertoires would allow to evaluate general-
isation opportunities and advantages (or the lack thereof)
in cultural context, musical characteristics, relationships
within and between repertoires and musical instruments.

Figure 10. World music playlists are often compiled for variety, each track from a new culture, with different instrumenta-
tion and texture. Tempo and mood may be kept constant or raised gradually, depending on the aim of the playlist.
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Zapata, José Ricardo 409
Zhang, Yixiao 368, 662
Zhang, Yiyi 38, 368
Zhao, Junbo 368
Zuidema, Willem 869

938


