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Introduction

❖ Western civilization’s emphasis on logic, verbalization, 
and generalization as signs of intelligence 

❖ Limitation of rule-based learning used in traditional 
Artificial Intelligence (AI) research 

❖ The lazy learning model is proposed here as an 
alternative approach to modeling many aspects of 
music cognition
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“We tend to think of what we ‘really’ know as what 
we can talk about, and disparage knowledge that 
we can’t  verbalize.”  (Dowling 1989, 252) 
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Traditional AI Research

❖ Rule-based approach in traditional AI research 

❖ Exemplar-based learning systems 

❖ Neural networks (greedy) 

❖ k-NN classifiers (lazy) 

❖ Adaptive system based on a k-nearest neighbour (k-NN) 
classifier and a genetic algorithm
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“In AI generally, and in AI and Music in particular, 
the acquisition of non-verbal, implicit knowledge is 
difficult, and no proven methodology exists.”  
(Laske 1992, 259) 
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Exemplar-based learning
❖ The exemplar-based learning model is based on the idea 

that objects are categorized by their similarity to one or 
more stored examples 

❖ There is much evidence from psychological studies to 
support exemplar-based categorization by humans  

❖ This model differs both from rule-based or prototype-
based (neural nets) models of concept formation in that it 
assumes no abstraction or generalizations of concepts 

❖ This model can be implemented using k-nearest 
neighbour (k-NN) classifier and is further enhanced by 
application of a genetic algorithm
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Applications of lazy learning model

❖ Optical music recognition (Fujinaga, Pennycook, and Alphonce 1989; 
MacMillan, Droettboom, and Fujinaga 2002) 

❖ Vehicle identification (Lu, Hsu, and Maldague 1992) 

❖ Pronunciation (Cost and Salzberg 1993) 

❖ Cloud identification (Aha and Bankert 1994) 

❖ Respiratory sounds classification (Sankur et al. 1994) 

❖ Wine analysis and classification (Latorre et al. 1994) 

❖ Robot scene analysis (Schaal et al. 2002) 

❖ Tomato classification (Indriani et al. 2017) 

❖ Wind turbine blade monitoring (Joshuva and Sugumaran 2020)
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Implementation of lazy learning
• The lazy learning model can be implemented by the k-nearest 

neighbour classifier (Cover and Hart 1967)

• A classification scheme to determine the class of a given 
sample by its feature vector

• The class represented by the majority of k-nearest neighbours 
(k-NN) is then assigned to the unclassified sample

• Besides its simplicity and intuitive appeal, the classifier can be 
easily modified, by continually adding new samples that it 
“encounters” into the database, to become an incremental 
learning system

• Criticisms: slow and high memory requirement
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K-nearest neighbour classifier

• The K-NN classifier is the simplest of all machine 
learning classifiers

• It is based on the principle that things that are 
similar, are close by
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“The nearest neighbor algorithm is one of the 
simplest learning methods known, and yet no 
other algorithm has been shown to outperform it 
consistently.” (Cost and Salzberg 1993)
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K-nearest neighbour classifier

• Determine the class of a given sample by its feature 
vector: 
• Distances between feature vectors of an unclassified 

sample and previously classified samples are calculated
• The class represented by the majority of k-nearest 

neighbours is then assigned to the unclassified sample
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“Many sophisticated classification algorithms have 
been proposed... According to our experiments on 
the popular datasets, k-NN with properly tuned 
parameters performs on average best.”  
(Kordos, Blachnik & Strzempa 2010)
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An example of k-NN classifier 
Basketball players and Sumo wrestlers
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https://www.flickr.com/photos/29650319@N06/3172412470 http://blogs.yahoo.co.jp/noa_kamiya/GALLERY/show_image.html?id=24844519&no=13
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An example of k-NN classifier

❖ 1
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Classification of atheletes by height and weight 
(Sumo wrestlers vs NBA basketball players)
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Classification of atheletes by height and weight 
(Sumo wrestlers vs NBA basketball players)
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Example of k-NN classifier 
Classifying Michael Jordan

12

John Stewart / Associated Press
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Classification of atheletes by height and weight 
(Sumo wrestlers vs NBA basketball players)
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Example of k-NN classifier 
Classifying David Wesley
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http://www.stat-nba.com/image/playerImage/3930.jpg
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Example of k-NN classifier 
Reshaping the Feature Space
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Classification of atheletes by height and weight 
(Sumo wrestlers vs NBA basketball players)
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Distance measures
• The distance in a N-dimensional feature space 

between two vectors X and Y can be defined as: 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• A weighted distance can be defined as:

d = xi − yi
i=0

N −1

∑

d = wi
i=0

N −1

∑ xi − yi
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Genetic algorithms

• Optimization based on biological evolution

• Maintenance of population using selection, crossover, 
and mutation

• Chromosomes = weight vector

• Fitness function = recognition rate

• Leave-one-out cross validation

16
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Genetic Algorithm
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Crossover in Genetic Algorithm
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Applications of Genetic Algorithm  
in Music

• Instrument design (Horner et al. 1992, Horner et al. 1993, Takala et 
al. 1993, Vuori and Välimäki 1993, Poirson et al. 2007) 

• Compositional aid (Horner and Goldberg 1991, Biles 1994, Johanson 
and Poli 1998, Wiggins 1998, Geem et al. 2001)

• Expressive music performance (Ramirez and Hazan 2005)

• Granular synthesis regulation (Fujinaga and Vantomme 1994) 

• Optimal placement of microphones (Wang 1996)

• Music genre classification (Karkavitsas and Tsihrintzis 2011)

19



MUMT 621 Fujinaga /30

Realtime Timbre Recognition

• Original source: McGill Master Samples

• Up to over 1300 notes from 39 different timbres (23 
orchestral instruments)

• Spectrum analysis of first 232ms of attack (9 
overlapping windows)

• Each analysis window (46 ms) consists of a list of 
amplitudes and frequencies in the spectra

20



MUMT 621 Fujinaga /30

Features
• Static features (per window)

• pitch

• mass or the integral of the curve (zeroth-order moment)

• centroid (first-order moment)

• variance (second-order central moment)

• skewness (third-order central moment)

• amplitudes of the harmonic partials

• number of strong harmonic partials

• spectral irregularity

• tristimulus

• Dynamic features

• means and velocities of static features over time 
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Overall Architecture for  
Timbre Recognition
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Results
Recognition rate
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Human vs Computer

24

%
 c

or
re

ct

20

38

56

74

92

110

Kendall 3 Computer 3 Strong 8 Computer 7 Martin 27 Computer 39

70

46

96

85

100
95



MUMT 621 Fujinaga /30

Peabody experiment
• 88 subjects (undergrad, composition students and faculty)
• Source: McGill Master Samples
• 2-instruments (oboe, saxophones)
• 3-instruments (clarinet, trumpet, violin)
• 9-instruments (flute, oboe, clarinet, bassoon, saxophone, trombone, trumpet, violin, 

cello)
• 27-instruments: 

• violin, viola, cello, bass
• piccolo, flute, alto flute, bass flute
• oboe, english horn, bassoon, contrabassoon
• Eb clarinet, Bb clarinet, bass clarinet, contrabass clarinet
• saxes: soprano, alto, tenor, baritone, bass
• trumpet, french horn, tuba
• trombones: alto, tenor, bass

25
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Peabody vs 
other human groups
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The best Peabody subjects vs Computer
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Future Research for 
Timbre Recognition

❖ Performer identification 

❖ Speaker identification 

❖ Specific instrument ID 

❖ Steinway / Yamaha / Bösendorfer 

❖ Stratocaster / Telecaster / Les Paul 

❖ Tone-quality analysis 

❖ Multi-instrument recognition 

❖ Expert recognition of timbre
29
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Conclusions

❖ Realtime adaptive timbre recognition by k-NN 
classifier enhanced with genetic algorithm 

❖ A successful implementation of the exemplar-based 
learning system in a time-critical environment 

❖ Recent human experiments poses new challenges for 
machine recognition of isolated tones
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Recognition rate for different lengths of 
analysis window

32

20

40

60

80

100

1 2 3 4 5 6 7 8 9

3 instr
7 instr
39 instr


