
Karl MacMillan, Michael Droettboom, Ichiro Fujinaga

Peabody Institute of Johns Hopkins University
email: {karlmac, mdboom, ich}@peabody.jhu.edu

Abstract
Musicians currently have a wide variety of choices for
audio processing programs. Most of these systems include a
mechanism for users to create extensions in a low-level
language such as C or C++. These extensions, which are
conceptually unit generators and often called plugins, are
similar in design but practically different. These practical
differences prevent the interchange of unit generators
between systems. In this paper, we present RATL, a system
for automatically generating unit generators for different
systems from the same C++ source code.

1 Introduction
The number and variety of computer applications for

audio manipulation available to musicians is larger than
ever before. Most of these systems, though powerful and
flexible in their standard configuration, include some
method for users to create extensions in a low-level
language such as C or C++. These extensions, which are
conceptually unit generators (UG) and often called plugins,
are similar in design but practically different; though they
accomplish similar tasks in a consistent manner, the
specifics of the application programming interfaces (API)
are different.

It is certainly possible for programmers to target
multiple audio systems, called hosts, but this is a daunting
task. A non-exhaustive list of audio applications that accept
UGs includes Csound, RTCmix, Microsoft DirectShow-
c o m p a t i b l e h o s t s , j M a x , M a x / M S P , P u r e D a t a ,
SuperCollider, and Steinberg VST-compatible hosts. The
time and knowledge required to adapt UGs to all of these
hosts makes it impractical to do so, but this lack of
interoperability limits users and programmers alike.
Additionally, the task of creating a new UG host is
complicated by the need to produce a large body of UGs to
make the program generally useful.

This paper introduces RATL, a system to automatically
port UGs between audio DSP systems. By using a variety of
techniques, RATL assists programmers in creating high-
performance C++ UGs that can be automatically adapted to
a variety of audio systems. Additionally, RATL is an open
system that can be extended to support other audio systems.

This paper will present an overview of UGs, describe the
practical incompatibilities between UGs, present the RATL
system, and briefly compare the RATL approach to other
UG conversion systems.

2 Unit Generator Overview
UGs are software modules that produce and accept audio

and control signals. Max V. Mathews originally introduced
them in the Music III language developed at Bell Telephone
Laboratories in 1960 (Roads 1999, 89). The UG paradigm
provides considerable flexibility for the user; almost any
UG can be connected to other UGs, allowing the creation of
complex signal- and control-processing networks. Today
UGs are often referred to as opcodes, externals, and plugins.

In practice, a UG contains four features: instance data,
control input and output, an audio processing function, and
host-specific data and functions.

Instance Data. The instance data holds all of the variables
and data that are unique to a UG instance, allowing for
multiple active instances in an audio system.

Control Input and Output. The control input and output
provides a method to pass non-audio data in and out of a
UG instance. Systems often accept multiple types of control
data and have a corresponding mechanism for type
checking.

Audio Processing. The audio processing function is where
all of the audio data is accepted, processed, and output.

Host-Specific Functions and Data. The host-specific
functions and data register the UG in the host system,
describe to the system the types and number of inputs and
outputs, and provide a mechanism to initialize UG
instances.

3 Unit Generator Incompatibilities
The similarities in UGs are mostly conceptual, while the

differences are largely practical. Beyond the obvious host-
specific functions and data, the differences between UGs
can be found mostly in control data types, the availability of
control data output, and differences in audio processing.

Control Data Types. Most systems provide for either
integer or floating-point numeric types as control data, with
many systems allowing both. In addition, many systems
allow other types of data to be passed between UGs.

Control Data Output. Some UG systems do not provide a
mechanism for control data output. Generally, systems that
are designed to allow the creation of large UG graphs, like
Max-style languages, allow for control data outputs while
systems that use UGs primarily for the replacement of
traditional effects units, like those that use DirectShow
plugins, do not (Microsoft 2001).

Audio Processing. UG audio processing functions differ in
the sample representation, buffer layout, and buffer access.
The different sample representations are important because
floating-point and integer math must often be handled in
different ways. Most current systems have standardized on
single- or double-precision floating-point, though integer
formats of varying precisions and compressed formats also
exist. The buffer layout differs between single-sample
processing, non-interleaved buffers, and interleaved buffers.
Within systems that process buffers (blocks) of samples,
audio systems either provide separate input and output
buffers (out-of-place processing) or unified buffers (in-place
processing). Furthermore, writing output to the buffer is
done either through simple assignment or through addition
with the existing buffer contents.

4 The RATL System
T h e R A T L s y s t e m i s d e s i g n e d t o s o l v e t h e

incompatibilities among different systems and provide a
convenient method for developing new UGs.

4.1 Overview
The RATL system provides a framework for the creation

of UGs with a common subset of the features found in most
UG hosts. It simplifies both the process of creating UGs and
provides portability between a wide range of UG systems by
a combination of advanced C++ features and code
generation.

From a programmers perspective, the creation of a
RATL UG is as simple as writing a C++ class that follows
certain conventions and contains special code comments. In
addition to reducing the learning curve for writing RATL
UGs, the objects that are created are normal C++ classes,
and can be used independently of a UG host.

The subset of UG features in RATL is sufficient to
implement a wide variety of UGs while reducing the
complexity of the system to a manageable level. The
intention is not to support all possible UGs, but to support
enough features to provide for a useful interchange of UGs.
More specifically, RATL UGs are limited to floating-point
format for both control and audio data. Control data output
is provided despite the fact that it is not supported in all

audio systems. The features of RATL, which address the
remaining incompatibilities between hosts, are:

• Conversion of single-sample to block processing.
• Buffer layout conversion.
• Buffer access methods (in- and out-of-place processing

and simple and additive assignment).
• Generation of system specific functions, data, and

compilation scripts from simple code comments.

4.2 Block Conversion
Many audio-processing systems require their UGs to

operate on blocks of samples, however many algorithms are
more easily expressed in terms of single samples. RATL
automatically converts from single-sample to block
processing. A straightforward approach would involve
calling the single-sample processing function with within a
block-processing loop. This, unfortunately, incurs a
function-call overhead with the processing of every sample.
To remove the function-call overhead, the C++ inline
feature can be used.

To create a natural object-oriented design, we would like
to have a base class containing a block-processing method
that calls a single-sample function in a subclass. In, C++ the
normal method for this would involve inheritance with
virtual functions. Unfortunately, current C++ compilers
cannot in l ine v i r tua l funct ions , meaning tha t the
performance of this solution is the same or worse than the
straightforward approach using a normal function call.

At the cost of some flexibility, it is possible to have fully
inlined functions in a subclass but still provide the clarity of
the inheritance-based approach (Veldhuizen 2000) (see
Figure 1). Preliminary testing shows this method to be
10–15% faster than the virtual function-based method.

Figure 1. Fast block conversion.

The conversion process also allows for UGs with an
arbitrary number of audio inputs and outputs. For
algorithms that require explicit block processing, it is
possible to circumvent the automatic block conversion.

template<class SubClass>
class FastBase {
public:
 void process_block(float* out, int n) {
 float* buf = out;
 for (int j = 0; j < n; j++, buf++)
 *buf = as_subclass()->tick(); }
 SubClass* as_subclass() {
 return static_cast<Sublass*>(this); }
};

class FastRand : public FastBase<FastRand> {
public:
 float tick() { return rand(); }
};

4.3 Buffer Layout Conversion
Host systems provide buffers either as interleaved

samples or separate buffers for each channel. A simple
solution to this incompatibility is to copy data from the host-
provided buffers into a standard buffer configuration and
then back into the host format after the UG has processed
the data. This is less than ideal, however, because of the
extra memory and CPU overhead required. Instead, RATL
changes how the data is accessed using the generic
programming features of C++ and the Standard Template
Library (STL) rather than changing the layout of the data
itself.

The STL separates the detai ls of the storage of
sequences of data (containers) and the access to the
elements of these sequences (iterators). This separation into
containers and iterators allows the creation of generic
algorithms that work on any container that provides
standard iterators (Stroustrup 1997, 549–78). This type of
generic programming is not new; what makes generic
programming in C++ attractive for audio signal processing
is the speed and similarity to existing practices. Figure 2
shows the transformation of the block conversion routine in
Figure 1 to a generic algorithm. This example shows that
iterators are an abstraction of pointers and programmers can
treat them as pointers in most circumstances. This provides
a familiar interface to programmers and facilitates the use of
existing code within RATL (in fact, if the buffers are an
array of floats, the iterators are C-style float pointers.)
Features of C++ classes allow the creation of iterators that
encapsulate a variety of conversion routines. RATL
currently includes an iterator designed to access interleaved
buffers. This iterator could be passed into a generic
function, like the one in Figure 2, allowing an algorithm
designed to work on non-interleaved buffers to work on
interleaved buffers without layout conversion. In addition,
because the specific type of iterators are known at compile-
time, their methods can be fully inlined, making this
solution as fast as hand coding the interleaved access. This
method can be extended to allow a variety of conversions to
the buffer layout or sample format.

Figure 2. Standard C function converted to the corres-
ponding generic version.

4.4 Buffer Access Methods
In addition to different buffer layouts, different audio

systems have different access methods to the data. In some
systems, assignment to the buffers is done with simple
assignment while in other systems the assigned value is
added (mixed) to the existing contents of the buffer. In

RATL, these issues are solved by having two automatically
generated block processing functions like those in Figure 3.
The method does simple assignment
while the method adds the output to what is
in the input.

Figure 3. Example block processing functions from a
RATL Ugen.

Furthermore, some systems provide separate input and
output buffers (out-of-place processing) while others
provide only one buffer for both input and output (in-place
processing). For each input and output, a separate iterator is
provided as an argument (see Figure 3). Because the UGs
are written without the assumption that these iterators refer
to unique data, in-place processing can be performed by
passing iterators to the same buffer, while out-of-place
processing can be done by passing iterators to different
buffers. This provides support for all four possible buffer
access methods.

4.5 Code Generation
In writing UGs for a variety of systems, one of the most

time-consuming tasks is writing the large amount of code
for interfacing with the host systems and generating UG
instances. This process can be expedited using RATL’s
automatic code-generation facilities. The code generation
has three steps. First, information about the UG is gathered
from specia l comments in the code . Second, th is
information is used to generate all of the necessary code for
each target UG system. Finally, any makefiles or project
files that are needed for compilation are created. All parts of
this process use a preprocessor based on the Python
programming language. Our preprocessor’s design was
inspired by Tobler (2001).

The RATL Preprocessor. The RATL preprocessor allows
the execution of Python code embedded in the C++ source
file. It supports three simple operations:

• Substitution – the result of any Python expression
enclosed in ‘ ’ is inserted into the text.

• Looped substitution – performs substitution over a
section of text multiple times using standard Python
loops.

• Inline Python – Python code can be written directly in
the C++ source. Standard statements will
insert text into the output source file.

We have found this minimal set of operations more than
adequate to generate complex code.

template<class T>
void gen_process_block(T out, const T end) {
 while(out != end)
 *out++ = as_subclass()->tick();
}

class UgenFilter {
public:
 template<class T>
 void run_replacing(T in, const T end, T out);
 template<class T>
 void run_adding(T in, const T end, T out);
};

Unit Generator Parsing. RATL UGs use special comments
to declare information about the UG that is then used to
generate the system-specific code. Figure 4 shows a typical
UG and the comments (in boldface) that provide the
necessary information about the number and types of input
and output. This method was chosen in favor of parsing the
C++ code because it is substantially simpler than parsing the
complex syntax of C++.

Figure 4. A sample UG declaration.

Output. After the UG has been parsed, all of the target UG
types are generated from boilerplate files provided by
RATL (see Figure 5). By using the RATL preprocessor, it is
simple to convert an existing UG for a specific system into a
template from which other UGs for the same system can be
generated.

Figure 5a. An example of the PureData RATL template.

4.5.4 Compilation Scripts - In addition to generating the
code for each target UG type, makefiles, build scripts, or
project files are created for each UG.

Figure 5b. The result of sending Figure 5a through the
RATL preprocessor.

5 Other Approaches
Other approaches exist both for porting UGs between

systems and automatically generating UG code.
Run-time adaptors load UGs compiled for one system

into another system. Adaptors exist for using VST plugins
in DirectShow hosts (Spin Audio: www.spinaudio.com) and
the use of VST plugins to Max/MSP objects (Pluggo:
www.cycling74.com). These approaches can never have the
performance of a fully compiled approach due to the
conversion of the data formats and extra function-call
overhead.

Code generators exist to help developers write UGs for
particular host systems. For example, Nyquist includes a
translator that generates a C UG from simple specifications
(Dannenberg 2001, 69–75). There is also a DirectShow
plugin “wizard” for Microsoft Visual Studio (Twelve Tone
1996). These approaches, while useful for their specific
purpose, are not as flexible and portable as our more general
approach.

6 Conclusion
Using the RATL system, we have successfully generated

UGs for DirectShow, VST, PureData, and Max/MSP from a
common code base. RATL has proven to be a convenient
too l to maximize deve loper e f f ic iency , run- t ime
performance, and portability. We intend to extend the
system to support the UG models of other host systems in
the near future.

Reference
Dannenberg, R. B. 2001. Nyquist reference manual. Version 2.12.

Pittsburg, PA: Carnegie Mellon University.
Microsoft. 2001. DirectX 8 Software Development Kit

Documentation. Redmond WA: Microsoft Corporation.
Roads, C. 1999. The computer music tutorial. Cambridge, MA:

MIT Press.
Steinberg. 1999. Steinberg Virtual Studio Technology (VST)

Plug-in Specification. Hamburg: Steinberg Media
Technologies AG.

Stroustrup, B. 1997. The C++ programming language. 3rd ed.
Reading, MA: Addison-Wesley.

Tobler, R. F. 2001. PYM: A macro preprocessor based on Python.
In Proceedings of the Ninth Internation Python Conference,
23–8.

Twelve Tone. 1996. Cakewalk/DirectX Plug-In App Wizard
Documentation. Cambridge, MA: Twelve Tone Systems, Inc.

Twelve Tone. 2001. MFX and DXi: MIDI effects filters,
DirectX instruments, DirectShow filters. Cambridge, MA:
Twelve ToneSystems, Inc.

//@ Ugen(“RandUgen”)
class SomeUgen :public UgenFilter<SomeUgen> {
public:
 //@ inlet(“input_one”)
 void input_one(float x);
 //@ outlet(“output_one”)
 void output_one(float x);
 //@ tick(1, 1)
 sample tick(sample in);
};

//@inline
a variable for later use
pd_type = ugen.name + “_t”
//@end

// struct to hold UG instance data
typedef struct _@@ugen.name@@ {
 // this is a pd requirement
 t_object x_obj;
 // the c++ object
 @@ugen.name@@* object;
 // the outlets
 //@for x in ugen.outlets:
 t_outlet* x_outlet_@@x@@
 //@end for
} @@pd_type@@;

// struct to hold UG instance data
typedef struct _Rand {
 // this is a pd requirement
 t_object x_obj;
 // the c++ object
 Rand* object;
 // the outlets
 t_outlet* x_outlet_output_one;
} Rand_t;

