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Recent experiments indicate that steady-state portion of an acoustic musical instrument may be sufficient for
timbre recognition. Here a computer-based classifier was used to recognize very short samples of steady-state
tones. Gregory Sandell’s SHARC database consisted of 39 different timbre (23 orchestral instruments, some with
different articulations) played at different pitches (total of 1338 spectra) were used as the samples for an
exemplar-based learning system that incorporates k-nearest neighbor classifier with genetic algorithm. The
latter is used to find the optimal set of weights for the features to improve the classification.

The features calculated from the spectral data of the steady-state portion of the instrumental sound included
centroid and other moments, such as skewness and kurtosis. As expected the centroid alone was the best single
feature with a recognition rate of 20%, which is much better than chance (2.5%). The best results were obtained
using seven features: the fundamental, the integral of the spectrum, the centroid, the standard deviation, the
skewness, and the first two harmonic partials. What was surprising was that the recognition varied greatly
between instruments. While the French horn and the muted trumpet were recognized over 90%, the recognition of
other instruments, such as the cello with martele (18%), and the violin pizzicato (14%) were very poor. The
average overall was 50.3%.

Introduction
A timbre recognition experiment to classify 39 different orchestral instrument timbres was conducted using an
exemplar-based learning system. The data consisted of the steady-state spectrum of each of the instruments played at
different pitches (Sandell 1994). It has been shown that the attack portion of a musical instrument is important for
identification tasks. Yet other studies show that steady-state portion is also significant (Grey 1978; Kendall and
Carterette 1986).

In addition to the spectral data, the moments of the spectrum, including the centroid, were considered as potential
features for the identification process. The implementation of the identification task is based on a combination of a
k-nearest neighbor (k-NN) classifier and a genetic algorithm, which is used for feature selection and feature
weighting. This paradigm, also known as the exemplar-based learning model (Aha 1997), is attractive because
training is not necessary, learning is extremely fast, algorithms are simple and intuitive, rules are not sought, and
learning is incremental. The major drawback has been the high memory requirement since all examples must be
stored, but the recent decrease in memory cost makes this model quite feasible.

Exemplar-based model
The exemplar-based learning model, analogous to “learning by examples,” is based on the idea that objects are
categorized by their similarity to one or more stored examples. This model differs both from rule-based or prototype-
based models of concept formation in that it assumes no abstraction or generalizations of concepts (Nosofsky 1984;
1986). The models have been successfully applied in many pattern recognition and classification tasks recognition
(e.g. Fujinaga, Pennycook, and Alphonce 1989; Cost and Salzberg 1993; Fujinaga 1996). Furthermore, cognitive
psychologists have found this model evident in human learning (Medin and Schaffer 1978). 

K-nearest-neighbor classifier
The exemplar-based model can be implemented by k-NN classifier (Cover and Hart 1967), which is a classification
scheme to determine the class of a given sample by its feature vector.  Distances between feature vectors of an
unclassified sample and previously classified samples are calculated. The class represented by the majority of k-
nearest neighbors is then assigned to the unclassified sample. Besides its simplicity and intuitive appeal, the
classifier can be easily modified, by continually adding new samples that it “encounters” into the database, to become
an incremental learning system. In fact, “the nearest neighbor algorithm is one of the simplest learning methods
known, and yet no other algorithm has been shown to outperform it consistently” (Cost and Salzberg 1993, 76). The
standard leave-one-out procedure was used to measure the performance of the system.

Moments and other features
The method of moments is a versatile tool for decomposing arbitrary shape into a finite set of character features. In
general, moments describe numeric quantities at some distance from a reference point or axis. Moments are



commonly used in statistics to characterize the random variable distribution and in mechanics to characterize bodies
by spatial distribution mass. Here, the spectral shape is considered to be a density distribution function. Moments
have a very interesting property in that the infinite sets of moments uniquely determine a function and vice versa.
What this means is that any shape can be completely described by an infinite series of numbers. In practice, the low-
order moments tend to describe more global shape characteristics than higher-order moments which tend to be noisy.
The features used in this experiment were: the mass or the integral of the curve (zeroth-order moment), the centroid
(first-order moment), the standard deviation (square root of the second-order central moment), the skewness (third-
order central moment), kurtosis (fourth-order central moment, higher-order central moments (up to tenth), the
fundamental frequency, and the amplitudes of the harmonic partials, which resulted in hundreds of features.

Feature selection
Feature selection involves deciding which subset of features best distinguishes among the various object types. The
procedure of selecting “good” features is not formalized. Cover and Van Campenhout (1977) rigorously showed that
in determining the best feature subset of size m  out of n features, one needs to examine all possible subsets of size
m . For practical consideration, some non-exhaustive feature selection methods must be employed. The current
system implements genetic algorithms for feature selection to make the process near optimal and efficient.

Genetic algorithms (GA)
Genetic algorithms (Holland 1975) are often used whenever exhaustive search of the solution space is impossible or
prohibitive, and are based on computational models of the evolution of individual structures via processes of
selection and reproduction.  The algorithm maintains a population of individuals that evolve according to specific
rules of selection and other operators, such as crossover and mutation. Each individual in the population receives a
measure of its fitness in the environment. Selection focuses attention on high-fitness individuals, thus exploiting the
available fitness information. Since the individual’s genetic information (chromosomes) is represented as arrays of
binary data, simple bit manipulations allow the implementation of mutation and crossover operations.

For the feature selection, the set of features is converted to “genes,” where each feature is represented by a bit in
the binary array. Therefore, each gene, having a different sequence of bits represents a subset of features to be used for
classification and those having high recognition rates are made to survive in this pseudo-biological environment.

Feature weights
In addition to selecting a good set of features, the k-NN classifiers can be further enhanced by modifying the feature
space, or equivalently, changing the weights in the distance measure (Kelly and Davis 1991). A commonly-used
weighted-Euclidean metric between two vectors X  and Y  in an N-dimensional feature space is defined as:
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By changing the weights, i , the shape of the feature space can be changed. The feature selection is a trivial

case of feature weighting where i  is binary.

Although feature weighting is a complex problem (Cash and Hatamian 1987), it can markedly improve the
recognition rate and can also provide insights into the relative importance of each feature. Thus, the optimal use of
features involves not only choosing the correct subset of the features, but also determining how much of each feature
should contribute to the final decision. In feature selection, the goal was to find a set of binary weights for the
features (0 or 1), but the problem now is to determine the weights that can be any real numbers. Since no known
deterministic method for finding the optimal solution exits, GA is again a useful tool for finding the near-optimal
set of weights from this infinite possibility (Wettschereck, Aha, and Mohri 1997).

Data
The data used in this experiment was based on Gregory Sandell’s SHARC database (Sandell 1994) consisted of 39
different timbre from 23 orchestral instruments, some with different articulations (see the left columns of Fig. 1 for
the complete list) played at different pitches (total of 1338 spectra). For each analyzed note, Sandell’s objective was
to locate a short portion of the tone that was maximally “representative” of the steady portion of the tone. Each
analysis consists of a list of amplitudes and phases for all the note’s harmonics up to 10 kHz (maximum of 340
harmonics). The length of each sample was four periods of the fundamental. The source of the musical notes was the
orchestral tones from the McGill University Master Samples, which are digital recordings of live musical
performers.



Timbre recognition
The initial analysis showed that, as expected, the centroid alone was the best single feature with the recognition rate
of 20% (k=57), which is much better than chance (2.5%). When the GA was used for feature selection, i.e. finding
the subset of 352 features that results in the best recognition score, the optimal results were obtained using seven
features: the fundamental, the integral of the spectrum, the centroid, the standard deviation, the skewness, and the
first two harmonics. The further application of GA resulted in the feature weights of {0.25, 0.25, 0.94, 0.62, 0.31,
0.19, 0.25}. The complete result is shown in Figure 1. What was surprising was that the recognition varied greatly
between instruments. While the French horn and the muted trumpet were recognized over 90%, the recognition of
other instruments, such as the violin with martele (15%) and the violin pizzicato (8%) were very poor. The average
overall was 50% (k=5). Using only four features (fundamental, centroid, standard deviation, and skewness) the system
scored 42% (k=3).

These results are similar to human subject identification performance. In the experiment by Saldanha and Corso
(1964), the subjects, who coincidentally had 39 possible instruments to choose from, identified recorded sounds of
ten orchestral instruments with the average of 39%. Interestingly, as in this study, the accuracy varied widely,
ranging from 9% to 84%. The subjects in the Kendall’s (1986) experiment had three instruments to choose from and
the results using the same instruments are shown in Figure 2, which are comparable to Kendall’s results.

Conclusions
Using exemplar-based learning model, the computer was able to identify orchestral instruments comparable to human
performance using a very few features. This was achieved using a spectrum of very short steady-state portions of the
instrumental sound recorded at different pitches.

To improve the recognition rate, other features may be incorporated, such as attack transients (spectral flux),
linear spectral irregularity (Kendall 1996), mel-frequency cepstrum coefficients (De Poli and Prandoni 1997), cortical
representation (Ru and Shamma 1997), and polyspectra (Dubnov et al. 1997).

 
1 2 3 4 5 6 7 8 9101112131415161718192021222324252627282930313233343536373839

1 bassfl 26 69 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 015 4 0 0 0 4 0 0 4 0 0 0
2 altofl 30 0 83 10 0 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 flute 37 011 70 5 0 0 0 0 0 0 0 0 0 0 0 0 0 8 3 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0
4 piccolo 30 0 0 7 50 0 0 3 0 0 0 310 0 0 0 0 0 0 0 3 7 0 0 0 0 0 0 0 0 7 0 0 0 3 0 7 0 0 0
5 cbasson 32 6 6 0 0 59 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 3 3 0 0 0 0 0 0 0 3 0 0 0
6 bsn 32 3 0 3 0 9 78 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0
7 EHorn 30 017 3 0 0 0 63 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 3 0 0 3 0 0 0 0 0 3 0 0 3
8 oboe 32 0 0 0 3 0 016 44 0 0 3 3 0 6 0 0 6 0 0 3 6 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 3 3
9 cbcl 23 0 0 0 0 4 4 0 0 78 9 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 bcl 25 0 0 0 0 0 0 0 0 0 88 012 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 Bb cl 37 0 0 0 0 0 0 011 0 0 68 5 0 0 0 0 0 0 3 5 3 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0
12 Eb cl 32 0 3 0 3 0 0 3 3 0 919 50 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 3
13 FH 37 0 0 0 0 0 0 0 0 0 0 0 0 92 0 0 3 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0
14 FHmute 37 0 0 0 0 0 0 0 0 0 0 0 0 0 97 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 tuba 31 0 0 0 0 3 0 0 0 0 0 0 0 0 0 87 0 0 0 0 0 0 0 0 0 0 3 0 0 6 0 0 0 0 0 0 0 0 0 0
16 basstmb 25 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 72 024 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
17 altotmb 13 0 0 8 0 0 0 0 8 0 0 0 0 015 0 0 46 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 8 0 8 0 0
18 tmb 36 0 014 0 0 0 0 0 0 0 0 0 3 0 0 8 6 69 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
19 tmbmute 33 3 3 6 0 0 9 0 0 0 0 6 0 0 0 0 0 0 3 64 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 3 0 0
20 Bachtp 32 0 0 0 6 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 56 16 0 0 0 0 0 0 0 0 0 0 0 3 3 0 0 0 9 3
21 C tp 34 0 0 6 3 0 0 0 9 0 012 0 0 0 0 0 3 0 0 9 44 0 0 0 0 0 3 0 0 0 0 0 0 9 0 0 0 3 0
22 C tpmute 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 91 0 0 0 0 0 0 0 0 0 6 0 3 0 0 0 0 0
23 CB 38 5 0 0 016 0 3 0 5 3 0 0 0 0 0 0 0 0 3 0 0 0 37 316 0 3 8 0 0 0 0 0 0 0 0 0 0 0
24 CB mart 37 5 0 0 0 3 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 5 51 816 3 3 0 3 0 0 0 0 0 0 0 0 0
25 CB mute 39 5 3 0 0 8 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 02613 26 3 0 3 0 8 3 3 0 0 0 0 0 0 0
26 CB pizz 41 12 0 0 0 0 2 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 212 5 39 0 515 0 0 0 5 0 0 0 0 0 0
27 vlc mart 44 2 0 0 2 2 2 2 5 0 2 2 0 0 0 0 0 0 0 2 2 0 0 9 2 7 0 18 5 018 0 0 0 9 0 2 0 2 2
28 vlc mute 34 9 0 0 015 3 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 015 9 3 0 0 29 0 3 0 6 0 0 0 3 0 0 0
29 vlc pizz 39 3 0 5 0 0 0 0 0 0 0 0 0 0 015 0 3 3 3 0 0 0 0 0 310 0 0 49 3 0 0 0 0 0 0 5 0 0
30 vlc 44 0 0 0 5 0 2 0 2 0 2 0 5 0 0 0 0 0 0 2 0 7 0 9 7 2 011 0 2 23 2 2 2 5 0 0 0 7 2
31 vla mart 36 011 8 3 0 0 614 0 0 3 3 0 0 0 0 0 0 8 3 3 0 0 0 3 0 3 0 0 0 19 3 0 0 8 0 3 0 0
32 vla mute 39 0 3 0 0 0 0 3 3 0 5 0 3 0 0 0 0 0 0 3 3 0 0 0 3 3 0 5 0 0 5 0 44 010 3 3 0 3 3
33 vla pizz 34 6 3 3 0 0 3 0 6 0 0 6 6 0 0 3 0 0 0 3 0 3 0 0 6 0 6 0 0 6 3 0 0 35 0 0 0 0 0 3
34 vla 39 0 0 0 3 0 0 0 0 0 3 8 0 0 0 0 0 0 0 0 3 8 0 0 3 0 010 0 010 0 8 0 36 5 0 0 5 0
35 vln mart 34 0 0 0 6 0 0 6 3 0 0 0 0 0 0 0 0 3 0 0 6 9 0 0 0 0 0 3 3 0 0 612 021 15 3 0 6 0
36 vln mute 42 2 2 010 0 0 0 2 0 0 0 2 0 0 0 0 0 0 0 0 0 0 5 0 7 0 2 2 0 0 0 5 2 2 0 50 0 2 2
37 vln pizz 37 3 311 3 0 3 3 3 0 0 0 3 3 0 0 0 3 0 8 3 3 0 0 3 0 0 0 0 8 014 011 0 0 3 8 0 5
38 vln 42 0 0 010 0 0 0 5 0 2 0 0 0 0 0 0 2 0 0 5 0 0 0 0 0 0 0 0 0 5 014 012 214 0 21 7
39 vln ens 44 2 0 016 0 0 2 5 0 0 2 7 0 0 0 0 0 0 0 5 0 0 0 2 2 0 7 0 0 2 0 2 011 2 0 2 9 20

  Figure 1. Recognition rate (%) for each instrumental timbre with 7 features. The first column right
of the name indicates the number of pitches in each timbre. Average was 50.3%.
wt = {0.25, 0.25, 0.94, 0.62, 0.31, 0.19, 0.25}, k=5
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1 2 3 1 2 3

 1 Bb cl 37  84 14 3 1 Bb cl 37 62 24 14
 2 C tp 34   9 79 12 2 C tp 34   15 74 12

 3 vln 42 17 5 79 3 vln 42 7 24 69

Figure 2a. Recognition rate (%) for three instrumental Figure 2b. Recognition rate (%) for three instrumental
timbre with 7 features. Average was 80.5%. timbres with 4 features. Average was 68.1%
wt = {0.50, 0.06, 0.94, 0.50, 0.44, 0.25, wt={0.29, 1.00, 0.48, 0.25}, k=1
0.25}, k=3


