
PIANO MASTER CLASSES VIA THE INTERNET

John P. Young and Ichiro Fujinaga

Peabody Conservatory of Music
Johns Hopkins University
1 East Mt. Vernon Place

Baltimore, MD 21202 USA
[jpyoung | ich]@peabody.jhu.edu

This paper describes the long-distance reproduction of professional-level piano performance by transmission of
redundant indexed UDP packets containing MIDI data over the Internet. Our project was developed with the
express intent of enabling remote instruction of piano Master Classes where highly accurate and subtle musical
gestures must be reproduced. With MIDI grand pianos on both ends of a network connection, the sound quality
of our system exceeds other means of performance reproduction. Regardless of the fidelity of live audio
streaming, no arrangement of microphones and speakers can reproduce the acoustics of a grand piano as
accurately as hammers striking the strings of a real, physical instrument.

1. Introduction

Everyone wants to do music over the Internet.
Schools of thought in transmitting musical
information converge towards two options: using
relatively high bandwidth to send digitized audio
samples, or using relatively low bandwidth to send
musical representations. Audio samples generally
have the advantage of fidelity to the source
material, while representations generally have the
disadvantage of timbral imprecision.
Considerations for transmitting live performance
over the Internet are well known, with high latency
and potential data loss among the most prominent
issues. Given these parameters, we reasoned that it
should be possible to have the best of all possible
worlds—low bandwidth and high fidelity over
almost any Internet connection—for the special
case of MIDI piano.

2. Background

Next to standard notation, MIDI is arguably the
most universal representation of musical gesture.
For many applications, MIDI is understood to be
an imperfect compromise. However, for capturing
the full range of possibilities in a piano
performance, MIDI can be quite faithful and
comprehensive. We realized, in fact, that sending
MIDI to a piano equipped to interpret and play
back the messages would result in exceptionally
realistic reproduction of remote performance.

There were, however, a host of small issues to
confront. First came the consideration of protocols.
Clearly the only choice of network protocol was IP
(Internet Protocol), but there remained the decision
between TCP (Transport Control Protocol) and
UDP (User Datagram Protocol) for transport. TCP
is designed for reliability, to minimize data

transmission errors by maintaining a constant
dialogue between sender and receiver,
acknowledging receipt of packets and adjusting for
variable network conditions. As a result, TCP
functions poorly in time-sensitive applications over
long distances with many routing hops. There are
basically three problems with TCP from a musical
viewpoint: (1) To guarantee delivery of all data,
TCP retransmits lost packets, causing music to stop
while dropped notes are re-sent. (2) TCP ensures
that packets arrive in the same order they were
sent, causing notes to back up waiting for the
arrival of differently routed notes. (3) TCP includes
slight extra bandwidth and processing overhead to
perform these error corrections (Comer 1995).

To avoid such problems, we chose UDP for packet
transmission. UDP is an “unreliable” protocol, with
nominal overhead, but no inherent compensation
for dropped and out-of-order packets. UDP is also
“connectionless”, meaning there is no dialogue
between sender and receiver, so UDP has no
provisions for “flow control” or response to
changing network conditions. The sender transmits
packets as fast as it can, and the receiver must be
equipped to process them as they arrive (Comer
1995). Thus, UDP forces the application to deal
with these issues when they occur. First, we
address packet loss by sending multiple copies of
each MIDI bundle, statistically ensuring that at
least one copy of each message arrives at the
recipient. MIDI data is so compact, even hundreds
of copies use minimal bandwidth. Second, by
adding index numbers to each bundle, we
guarantee that they play back in the proper
sequence, regardless of their order of arrival. These
indexes also easily identify which duplicate
packets can be discarded. Third, to allow for
inevitable network slow-downs, we incorporate a
mandatory buffer of a few seconds. This prohibits

two-way “jamming”, but the inherent delay of
Internet communication already makes
simultaneity nearly impossible (Eliens 1997). The
number of duplicates and buffer length can be
manually adjusted or allowed to periodically self-
calibrate to optimize for network conditions. It
should be noted that UDP, like TCP, incorporates a
packet-level checksum verification to ensure data
integrity, thus sparing the application from this
necessity (Comer 1995).

3. Implementation

Our initial plan for this project intended to exploit
Java’s networking and user interface strengths to
develop a cross-platform solution. However, even
with current releases of the Java Media Framework
and JavaSound APIs, there are no standard Java
classes for processing MIDI device input. Third-
party implementations of MIDI I/O exist, but there
seems to be general agreement that the current Java
VM (Virtual Machine) is not suitable for “on-the-
fly” event processing because of latency and timing
instability. Our testing confirmed these constraints.
We also observed general degradation in OS
stability, presumably introduced by the need to
constantly exchange data between Java code and
Native Interface drivers compiled in C. So,
abandoning cross-platform compatibility for the
time being, we chose instead to use Opcode’s Max
environment on MacOS, which has excellent
support for MIDI processing, but conspicuously
lacks any built-in networking objects. Fortunately,
in support of their Open Sound Control initiative,
CNMAT at Berkeley has made available exactly
what we needed—OTUDP (Open Transport UDP),
a Max object that transmits data over IP using UDP
(Wright 1998).

Once a platform and environment were chosen,
implementing the logic of our system was
relatively straightforward. Incoming MIDI events
are parsed and attached to a delta-time measured as
the number of milliseconds elapsed since the
previous MIDI event. These bundles are
subsequently attached to a numeric index that
counts every discrete parsed MIDI event (note on,
note off, controller message, etc.):

 Index ms | MIDI msg |

Each bundle is next fed through a duplication loop
based on the current level of redundancy derived
from measurement of network packet loss rates.
The replicated bundles are sent across the network
to the receiving station, where all but one of each
indexed duplicate is discarded, and that remaining

bundle is placed into a buffer. The buffer size is
derived from periodic measurement of network
latency. After the buffer duration has elapsed, each
bundle is sent out in numerical order, delayed by
the specified time value, and sent to MIDI output.

In addition to the stream of MIDI data traveling
from sender to receiver, we bounce a small amount
of return traffic back to the sender, which allows
for the monitoring of network latency and packet
loss, and consequent adjustment of buffer size and
level of redundancy. Sender and receiver agree that
every nth bundle will be monitored upon sending
and echoed upon receipt, for calculation of round-
trip time. The percentage of echoed bundles that do
not return successfully is assumed to approximate
levels of packet loss.

Of course, a master class involves more than just
musical information; it also requires interaction
between teacher and student(s). Our expectation is
that current and future videoconferencing
technology will be sufficient for this purpose.
Inexpensive cameras and free software are already
used for many types of distance education, and the
quality and affordability of these solutions should
only continue to improve.

4. Technical Discussion

We continue to test, refine, and optimize the
system, as there are many parameters that can be
independently modified. For example, OTUDP
itself allows adjustment of the size and number of
internal UDP buffers for both outgoing and
incoming data. Aligning the UDP buffer size with
the underlying network MTU (Maximum Transfer
Unit) size should increase efficiency, although in
practice this is difficult over a heterogeneous
network where MTUs may vary (Comer 1995).

We tested Internet UDP performance within the
U.S. over a range of times and endpoints, and
observed the following behavior:

Route Latency: Min/Max/Avg Peak Loss
In-State ~ 10 / 220 / 25 ms ~ 1%
National ~ 270 / 2600 / 350 ms ~ 4%

Currently, our resolution of delta-time between
MIDI events is roughly 5 ms, which has provided
acceptable performance. Rather than choose an
arbitrary maximum-load scenario such as has been
done with MIDI over an Ethernet LAN, we have
instead used transmission of an actual piece of
music for our “worst-case” evaluation (Foss 1996).

Using our measurements as a guideline, we can
calculate the appropriate parameters for
transmitting, for example, Liszt's Piano Sonata in B
Minor, a 25-minute piece with approximately

40,000 MIDI events. Achieving a 1/8000
probability of a dropped event, or one every five
minutes, implies 80 duplicates for the in-state
connection, and 320 duplicates for the national
connection. A buffer equal to or slightly greater
than the maximum latency should produce an
uninterrupted performance, even during periods of
peak musical density. Upon execution of these
parameters, we have so far been pleased with the
fidelity of the Liszt received.

However, optimal system parameters are difficult
to determine, for a variety of reasons. Conditions
on the Internet can change dramatically from
moment to moment, so effective on-the-fly
adjustment can become complex and challenging,
as demonstrated by the array of tactics used to
make TCP reliable. A large sudden latency
increase can leave the receiver stranded with no
data before the sender is even aware of the
problem. And because packet losses occur in
clusters, mainly due to overloaded routers that
simply drop everything until congestion declines,
statistical certainties based on average drop rates
don’t guarantee success (Bolot 1993).

We will soon begin (or may be underway by the
time you read this) setting up demonstrations with
conservatory musicians to tune usability and
performance of the system, and will incorporate
their feedback into the design where appropriate.

The Max code will be freely available, and any
suggestions or improvements will be welcomed.

Currently, OTUDP requires a destination IP
address or hostname and port number to be hard-
coded into the patch. This restriction has been
inconvenient for distributing the receiving client
for use with MaxPlay, as the patch needs to be
modified for each destination. Hopefully we can
work with CNMAT to change this requirement in
an upcoming version of OTUDP.

To enhance our error-correction schemes, we are
experimenting with algorithms to gracefully release
stuck notes if the expected note off message does
not arrive.

Once the theoretical basis of our system has proven
robust, we will once again pursue a cross-platform
strategy to encourage maximum dissemination and
usefulness to the music and education community.

Updates will be periodically posted to the Web at
http://www.peabody.jhu.edu/~jpyoung.

We would like to thank Matt Wright and The
University of California at Berkeley CNMAT for
providing the public with their Max objects
OpenSoundControl and OTUDP, and for providing
the authors with feedback on their use.

References
Bolot, J.-C. 1993. End-to-end packet delay and loss behavior in the Internet. Computer Communication Review

23 (4): 289-98.
Comer, D. 1995. Internetworking with TCP/IP. 3d ed. Vol. 1, Principles, Protocols, and Architecture. New

Jersey: Prentice-Hall.
Eliens, A., M. van Welie, J. van Ossenbruggen, and B. Schonhage. 1997. Jamming (on) the Web. Computer

Networks and ISDN Systems 29 (8-13): 897-903.
Foss, R., and Thabo Mosala. 1996. Routing MIDI messages over Ethernet. Journal of the Audio Engineering

Society 44 (5):406-15.
Wright, M. 1998. Implementation and performance issues with OpenSound Control. Proceedings of the

International Computer Music Conference. 224-7. Ann Arbor, MI: ICMA.

Resources
Third-party implementations of MIDI I/O in Java, free for non-commercial use:

JavaMIDI (SoftSynth) – http://www.softsynth.com/javamidi/
MIDIShare/Java (Grame) – http://www.grame.fr/MidiShare/Develop/Java.html
NoSuch MIDI (Tim Thompson) – http://209.233.20.72/nosuchmidi/
Java MIDI Kit (Michael McNabb) – http://www.mcnabb.com/software/fantasia/index.html
MIDIChat (Niels Gorisse) – http://www.bonneville.nl/software/MidiChat/

