Realtime Software Synthesis for Psychoacoustic Experiments
David S. Sullivan Jr., Stephan Moore, and Ichiro Fujinaga

Computer Music Department sullivan@peabody.jhu.edu
The Peabody Institute of the Johns Hopkins University stephan@peabody.jhu.edu
One East Mount Vernon Place ich@peabody.jhu.edu

Baltimore MD 21202 U.S.A.
Abstract

New realtime sound synthesis software will allow psychoacoustic researchers to efficiently
design and implement sophisticated test instruments that involve realtime interactivity
with test subjects. Such interaction in psychoacoustic experiments has historically been
constrained by the same limitations affecting realtime sound synthesis. A new model for
sound synthesis, made possible through recent advances in computer hardware, supports
software that synthesizes CD-quality audio in realtime and can base this synthesis on
realtime user interactivity. We demonstrate this new software-based model in experimental
settings, and discuss its nature and abilities.

Because of the large amount of information required to describe CD-quality sound, and the
time-sensitive nature of sound production, synthesis software for personal computers has
not been primarily designed to perform realtime sound synthesis. Continuous data have not
been easy to incorporate into current or subsequent stimuli. These limitations have made
multiple pieces of equipment necessary in most setups. In the new realtime software
synthesis model, all input, sound synthesis, and output are controlled by one device.

Because of recent advances in processor power and standard memory configurations,
realtime synthesis has become practical, and engineers are now designing for it. Three new
examples of realtime synthesis software are SuperCollider, MSP, and Pd (Pure Data). These
applications have the advantage of combining great processor power with a highly
configurable user interface, and can accomplish complex manipulation of sound in realtime.
The combination of powerful, relatively low-priced computers with this new software makes
possible a degree of control and flexibility not previously available to most researchers.

While experimenters are given new tools with these packages, the presence of these
instruments as software on a computer facilitates integration of standard experimental
techniques. With these new tools, researchers will have access to a new degree of flexibility
and precision, enabling them to create more subtle and replicable test instruments that can
interact with subjects in realtime.

Overview
New realtime sound synthesis software will allow psychoacoustic researchers to efficiently
design and implement sophisticated test instruments that involve realtime interactivity with
test subjects. Such interaction in psychoacoustic experiments has historically been
constrained by the same limitations affecting realtime sound synthesis. A new model for
sound synthesis, made possible through recent advances in computer hardware, supports
software that synthesizes CD-quality audio in realtime and can base this synthesis on
realtime user interactivity. We demonstrate this new software-based model in experimental
settings, and discuss its nature and abilities.

Because of the large amount of information required to describe CD-quality sound and
the time-sensitive nature of sound production, synthesis software for personal computers has



not been primarily designed to perform realtime sound synthesis. Continuous data have not
been easy to incorporate into current or subsequent stimuli. These limitations have made
multiple pieces of equipment necessary in most setups. In the new realtime software
synthesis model, all input, sound synthesis, and output are controlled by one device.

Several tools have been developed in the past to help manage audio and sound synthesis
in a computer environment. One tool developed in an effort to greatly reduce necessary data
flow is the Musical Instrument Digital Interface (MIDI). MIDI has several limitations,
however, and because no sound wave is described in the MIDI data, different synthesizers
will produce very different sounds when interpreting the same MIDI message, making it
difficult to replicate studies done with MIDI.

Some software tools, such as cmusic or Cmix, allow for elaborate descriptions of the
sounds produced, but are not designed for realtime synthesis based on continuous
interaction. Another piece of software, Csound, does have limited ability for realtime
manipulation, but was not specifically designed for that purpose. Because of recent advances
in processor power and standard memory configurations, realtime synthesis has become
practical, and engineers are now designing for it. Three new examples of realtime synthesis
software are SuperCollider (McCartney 1996), Max (Puckette 1988) with MSP, and Pd
(Pure Data) (Puckette 1997) with the Graphics Environment for Multimedia (GEM) (Danks
1997). These applications have the advantage of combining great processor power with a
highly configurable user interface, and can accomplish complex manipulation of sound in
realtime. Each allows exacting control over almost all aspects of output, such as waveshape
and frequency, based on user interaction. This provides for unprecedented flexibility in the
description of the stimuli, the selection of the stimuli altogether, and the degree of precision
in the calibration of responses. Researchers are also able to custom-design an instrument, and
hear the instrument in realtime as they create it, greatly streamlining the development
process.

Controlling sound synthesis in realtime is of great benefit to both the implementation
and flexibility of the resultant experimental instrument. These software packages can have a
great and immediate impact largely because of their intuitive interfaces, and relatively gentle
learning curves. Any previous attempts at manipulation of sound based on realtime
information would have required a great amount of programming on the part of the
experimenter, and would have been limited by the technology available. The complexity of
the synthesis algorithm determines the precision with which the sound can be controlled.
More complex algorithms can greatly increase the number of computations required to
produce one second of sound. The combination of powerful, relatively low-priced computers
with this new software makes possible a degree of control and flexibility not previously
available to most researchers.

While experimenters are given new tools with these packages, the presence of these
instruments as software on a computer facilitates integration of standard experimental
techniques. For example, experiments could be inexpensively stored on writeable CDs,
which allow for random access to data, and the software could draw on a vast number of
possible stimuli given the current state of interaction between the instrument and the subject.
It would also be easy to record subjects’ responses, and to access them randomly. Subjects



asked to describe sound could easily review their profile of a previous sound, to allow for a
more accurate relative description of a current sound, for example. Experimenters familiar
with MIDI could make use of a software implementation of MIDI, providing a virtual
synthesizer within the computer.

Other Software

There are several useful tools for software synthesis currently available that generate sound in
realtime. Even Csound, the venerable descendent of the first software synthesis programs
(Mathews 1969), has over time developed some realtime functionality. NetSound provides a
method of describing sound in a manner that requires low bandwidth, and uses client
software, such as Csound, to synthesize the sound locally. Common Music runs on several
platforms, including NeXT, Macintosh, SGI, and SUN. It allows a researcher or composer
to design a project in the Common Music environment, and then send it to a “target” for
realization. Current targets include: MIDI, Csound, Common Lisp Music, Music Kit,
Cmix, cmusic, M4C, RT, Mix, and Common Music Notation.

Cmix uses the MINC (MINC Is Not C) programming language to build instruction sets
that Cmix uses to drive its sound synthesis. It has an open architecture, which has fostered
the design of RTcmix, which adds realtime synthesis functionality to Cmix. Kyma is a
software synthesis language that uses sound objects, or streams of samples, as its building
blocks (Scaletti 1989). Roger Dannenberg helped create a series of tools that began in 1984
with Arctic, but required special hardware, and progressed through Canon, Fugue, and now
Nyquist, which runs on UNIX, Windows NT, Windows 95, and the Mac OS (Dannenberg
1997a). Cecilia 2.0 is a productivity-minded environment that uses Csound as its synthesis
engine, while not requiring the user to know how to program in Csound. Cecilia couples
with Cybil to generate scores, and runs on the Macintosh, SGI, and Linux. ObjektSynth
(BeOS) synthesizes sound in realtime, but only runs under the BeOS. JSyn allows Java
programmers to use methods written in the C programming language to generate sound in
realtime. Reality is a PC-based, realtime synthesis package capable of multi-timbral signal
generation using several simultaneous synthesis techniques (Smith 1998).

These software synthesis tools are part of a strong trend away from stand-alone synthesis
and effects modules towards multipurpose software for personal computers. The IRCAM
Musical Workstation is hybrid, and is described by Miller Puckette as a system using an
i860 chip, with its own operating system (Puckette 1991b). Dannenberg views this as
impressive, but still not enough to stop the move toward synthesis environments designed
for the personal computer (Dannenberg 1997b). We chose MSP, SuperCollider, and Pd with
GEM, because of their accessibility to non-programmers, (particularly true of MSP and
Pd/GEM), and because their design allows for realtime generation of sound on personal
computers, based on realtime user interactivity.

MAX/MSP, SuperCollider, and Pd/GEM

MSP, which runs only on the Macintosh, is a new set of externals (objects not included in
the original Max environment) that are designed to run within the Max environment. Max
uses a graphical programming interface with a very gentle learning curve making it possible



to create complex designs without knowing any programming language. The MSP externals
allow a user to influence the synthesized sound in realtime.

Our example of an instrument in MSP tests the affect of vibrato on subjects’ ability to
quickly determine pitch (Yoo et al. 1998). In this experiment, the subject is first presented
with either a straight pitch or a vibrato pitch, followed by a straight pitch. The subjects are
asked to determine if the second pitch is higher or lower than the first pitch. In the second
part of the experiment, the order is reversed, with subjects hearing either a straight or vibrato
tone for the second pitch. Max allowed for an intuitive user interface, which has visual
feedback for responses entered by selecting one of four choices from the keyboard (Figure 1).
Also, all of the stimuli were recordings of an acoustic violin stored as soundfiles on the hard
disk. These files are accessed in random order during the course of the experiment.

=[M:@:8=—————— Wlibratonator Deluie 1.4.2 =———1 =
k Start Test --» .
Definitely Passibly Passzibly Definitely Compar‘ison Mumber
Lower Lowrer Highet Higher
00 ®®
1 2 = 4

Figure 1. An example of a GUI in Max/MSP.

While Max and Pd both use a graphical programming environment, SuperCollider uses
a more traditional, but very powerful text-based programming paradigm, and is designed to
run only on the Macintosh. Its syntax is borrowed from the commonly-used programming
languages SmallTalk and C, and may initially be more difficult to master for a researcher
with little programming background, as compared to a programming environment that is
completely graphical. However, SuperCollider implements an easily configurable graphical
user interface that has intuitive controls such as buttons and sliders that can be assigned to
any parameter of the synthesis. This makes it very simple to not only have the synthesis
occur in realtime, but also to base that synthesis on a subject’s interaction with the
instrument. SuperCollider allows for the programming of synthesized instruments in a
higher-level language than has been widely available previously (McCartney 1996).

In our trial FM matching experiment using SuperCollider, the subject is asked to
manipulate two sliders to match the pitch and timbre of a frequency-modulated test tone
(Figure 2). The sliders correspond to the carrier frequency and index of the FM tone
produced. The subject may ask to hear the tone they are being asked to match, hear the tone
that results from their slider settings, and change that tone in realtime as they listen and
move the sliders. Additionally, subjects finalize their response, return to a previous test,
advance to the next test, or end the testing session. The results of the test may then be
recovered as text. The subject never has to interact with the program other than through the
GULI.



‘FM Matching' Panel

Figure 2. An example of a simple GUI in SuperCollider

Pd continues and updates Max’s visual programming paradigm. Pd is available for the
SGI IRIX and Windows/NT, and support for the integration of graphics with sound has been
added in the form of the GEM. GEM also uses a visual programming language, and can
operate within the Pd environment, processing video and images in realtime, and
manipulating polygonal graphics. This allows for the easy integration of aural and visual
stimuli into a test instrument.

Here we demonstrate a test instrument designed to determine if visual cues aid in
memory of melodic patterns. Additionally, this instrument should give some indication of
whether melodies based on the smallest interval that the subject can distinguish are more
difficult to remember. In the first part of this experiment, the subject is asked if they are able
to distinguish between two successive sine tones, based on pitch height (frequency). The
pitches are played in pairs in various proximities in frequency to each other until the subject
is unable to correctly distinguish between the pitches. The subject is then asked to follow a
similar pattern in distinguishing between colors. Colors are shown in a simple box, with a
gradient showing the range of colors displayed next to the box. In the second part of the
experiment, subjects are asked to recall melodies with and without visual cues.
Additionally, they are asked to recall melodies that are constructed of intervals that are
relatively widely spaced, as well as melodies constructed using the subject’s individual
minimum threshold interval. The visual cues are also given in both wide and minimum
threshold spacings.

In addition to describing the color of an object by determining its constituent red, green,
and blue components, GEM uses a fourth variable, a, that describes the translucence of an
object. Objects can range anywhere from transparent to opaque. It would be easy to design a
similar experiment that would test subjects’ tolerance of interfering noise in both the audio
and visual components of this instrument.

Conclusion

Pd/GEM, SuperCollider, and MSP are some of the first examples of a new generation of
software synthesis tools that take advantage of new processing power and flexibility. They



increase the user’s ability to design instruments that can not only generate audio in realtime,
but also react to realtime input, and in the case of Pd and GEM, as realtime video tools as
well. The trend is expected to continue.

Superscalar architectures are expected to compute 500 to 1,000 million instructions

per second (MIPS) by the end of the decade. Software synthesis on superscalars will

offer greater speed, flexibility, simplicity, and integration than today’s systems based

on digital signal processing (DSP) chips (Dannenberg 1997b, 83).

Because of these new tools, researchers will have a new degree of flexibility and
precision, enabling them to create more subtle and replicable test instruments that can
interact with subjects in realtime.

Bibliography
Danks, M. 1997. Real-time image and video processing in GEM. Proceedings of the
International Computer Music Conference. 220-3.

Dannenberg, R. B. 1997a. Machine Tongues X1X: Nyquist, a language for composition and sound
synthesis. Computer Music Journal 21 (3): 50-60.

Dannenberg, R. B., and N. Thompson. 1997b. Real-time software synthesis on superscalar
architectures. Computer Music Journal 21 (3): 83-94.

Lansky, P. 1990. Cmix release notes and manuals. Department of Music, Princeton University.
Princeton, New Jersey: Princeton University.

Lindemann, E., F. Dechelle, B. Smith, and M. Starkier. 1991. The architecture of the IRCAM
Musical Workstation. Computer Music Journal 15 (3): 41-9.

Mathews, M. V. 1969. The technology of computer music. Cambridge, Massachusetts: MIT Press.

MccCartney, J. 1996. SuperCollider: A realtime sound synthesis programming language. Austin,
Texas.

Puckette, M. 1997. Pure Data. Proceedings of the International Computer Music Conference.
224-17.

Puckette, M. 1991a. Combining event and signal processing in the Max graphical programming
environment. Computer Music Journal 15 (3): 68-77.

Puckette, M. 1991b. FTS: A real-time monitor for multiprocessor music synthesis. Computer
Music Journal 15 (3): 58-67.

Puckette, M. 1988. The Patcher. Proceedings of the International Computer Music Conference.

Scaletti, C. 1989. The Kyma/Platypus computer music workstation. Computer Music Journal 13
(2): 23-38.

Smith, D. 1998. Real-time software synthesis. Computer Music Journal 22 (1): 5-6.

Vercoe, B., and D. Ellis. 1990. Real-time Csound: Software synthesis with sensing and control.
Proceedings of the International Computer Music Conference. 209-11.

Yoo, L., D. S. Sullivan Jr., S. Moore, and |. Fujinaga. 1998. The effect of vibrato on response time in
determining the pitch relationship of violin tones. Proceedings of the International
Conference of Music Perception and Cognition.



