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ABSTRACT 

 

Computationally efficient oscillator and filtering 
algorithms for digital subtractive synthesis are 
discussed. The oscillators algorithms include the 
recently proposed differentiated parabolic waveform 
generator and its modification. The algorithm generates 
a signal that sounds similar to the analog sawtooth 
waveform, because it suppressed aliasing that occurs 
due to sampling of a non-bandlimited waveform. A 
modified version of the nonlinear digital Moog ladder 
filter is introduced. The new structure reduces the 
computational cost of the nonlinear digital Moog filter 
by using a single nonlinearity in the feedback loop 
instead of four nonlinear functions inside filter sections. 
The new digital Moog filter structure also decouples the 
cutoff and the resonance parameters and offers several 
response types by selecting a weighted sum of different 
output points.    

Figure 1. A typical block diagram of subtractive 
synthesis as it was implemented in the Prophet 5 
synthesizer in late 1970s. 

 
In this paper, we discuss new versions of oscillator 

and resonant filtering algorithms that can sound like old 
analog synthesizers. 

2. SUBTRACTIVE SYNTHESIS 

The electronic music modules introduced by Robert A. 
Moog in mid-1960s [6] are one of the most important 
innovations in music technology. A few years later, his 
company introduced products where the various 
modules, such as oscillators, filters, and amplifiers, 
were integrated into a single portable unit. Subtractive 
synthesis was the main principle used in these 
instruments. Minimoog was one of the most popular 
analog synthesizers in 1970s. 

1. INTRODUCTION 

Digital subtractive synthesis, which is also called virtual 
analog synthesis, refers to computational methods that 
imitate the sound generation principles of analog 
synthesizers of the 1960s and 1970s. The basic principle 
in subtractive synthesis is first to generate a signal with 
a rich spectral content, and then to filter that signal with 
a time-varying resonant filter. 

The Prophet 5 synthesizer introduced by Sequential 
Circuits in 1979 has microprocessor controlled 
electronics, but it is still an analog synthesizer. Its block 
diagram shown in Fig. 1 is today a classic example of 
the subtractive synthesis principle. It includes two 
oscillators, a resonant lowpass filter, and two envelope 
generators (ADSR). There are a couple of alternative 
waveforms available together with a noise source. 

Virtual analog synthesis became a popular and 
commercial term in about 1995, when Clavia introduced 
the Nord Lead 1 synthesizer, which was marketed as an 
analog-sounding digital synthesizer that uses no 
samples. Instead, all sounds were generated by 
simulating analog subtractive synthesis. Previously, the 
Roland D-50 synthesizer of the late 1980s worked in a 
similar way although it contained sampled sounds. An 
early example of an attempt to design a digital 
synthesizer that sounds analog was Synergy [4]. 

3. DIGITAL OSCILLATORS 

The sharp edges of geometric waveforms, such as the 
sawtooth or the square wave, cause aliasing, because 
such signals are not bandlimited. Three different classes 
of methods are known to avoid this problem: 

What makes digital subtractive synthesis more 
demanding than is generally understood is that imitating 
analog electronics with digital processing is not as easy 
as it may seem. One problem is aliasing caused by 
sampling of analog waveforms that have sharp edges. 
The spectra of such waveforms continue infinitely high, 
and the signals are thus not bandlimited. Another 
difficulty is that analog filters do not obey simple linear 
theory. With high signal levels they generate distortion. 
This does not naturally occur in digital processing, but it 
must be designed and implemented on purpose, see for 
example, references [8] and [3]. 

1. Bandlimited methods that generate harmonics 
only below the Nyquist limit, such as additive 
synthesis and its variants, e.g., wavetable 
synthesis and the discrete summation formulae; 

2. Quasi-bandlimited methods in which aliasing is 
low and its level can be adjusted by design to 
save computational costs, such as in the BLIT 
[9] and the minBLEP [1] techniques; 



  
 

3. Alias-suppressing methods in which it is 
accepted that some aliasing will occur but an 
attempt is made to attenuate it sufficiently. 
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In this work, we focus on the third category of methods. 
Two approaches are currently available: the distortion 
and filtering of sine waves, which we call Lane’s 
method [5], and the differentiated parabolic waveform 
(DPW) [11]. We discuss the latter one in the following. 

3.1. DPW algorithm 

The simplest version of the DPW algorithm [11] 
generates the sawtooth waveform in four stages, as 
illustrated in Fig. 2: First generate the trivial sawtooth 
waveform using a modulo counter, then raise the 
waveform to the second power, differentiate the signal 
with a first difference filter with transfer function HD(z) 
= 1 – z–1, and, finally, scale the obtained waveform by 
factor c = fs/(4f), where f is the fundamental frequency 
of the sawtooth signal and fs is the sampling rate. 

Figure 4. The spectra of the waveforms shown in Fig. 
3: (a) the trivial sawtooth waveform, (b) the squared 
sawtooth wave, and (c) the differentiated parabolic 
waveform. The desired spectral components (2793.8 
Hz, 5587.6 Hz, 8381 Hz, …) are circled (o), while the 
rest of the spectral components are caused by aliasing 
and are heard as disturbance. 

The waveform produced by the modulo counter 
resembles the sawtooth waveform, as seen in Fig. 3(a), 
but it sounds badly distorted. The reason is that its 
spectrum decays slowly, about 6 dB per octave. When it 
is sampled, the spectral components above the Nyquist 
limit are mirrored down to the audible frequencies. This 
is clearly seen in Fig. 4(a), where the desired harmonics 
are indicated by circles and the rest of the peaks are 
aliased images. 

 

 
Figure 2. The DPW algorithm [11]. 
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Figure 5. (a) The waveform and (b) the spectrum of 
the signal obtained with the averaged differentiator. 
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Raising the signal to the second power modifies the 
waveform so that it now consists of pieces of parabola, 
see Fig. 3(b). The spectrum of this waveform decays 
about 12 dB per octave, and this is why aliasing is 
suppressed in Fig. 4(b) [11]. Finally, when the piecewise 
parabolic signal is differentiated and scaled, the signal 
again looks like the sawtooth waveform, see Fig. 3(b), 
but the aliased components are suppressed, as seen in 
Fig. 4(c). 

A remaining problem is that at high frequencies the 
level of aliased components is close to that of the 
harmonics. This may lead in some cases to beating. A 
solution of avoid this is to replace the differentiator with 
its averaged version HD(z) = 1 – z–2 = (1 + z–1)(1 – z–1). 
The resulting waveform and spectrum are shown in Fig. 
5. It is seen that in the discrete-time waveform in Fig. 
5(a) the transitions from the maximum value (near +1) to 
the minimum value (near –1) are smoother than in Fig. 
3(c). The corresponding spectrum, see Fig. 5(b), decays 
faster at high frequencies than that in Fig. 4(c). 

Figure 3. (a) The trivial sawtooth waveform, (b) the 
squared sawtooth wave, and (c) the differentiated 
parabolic waveform. The fundamental frequency is 
2793.8 Hz (MIDI note number 101), and the sampling 
rate is 44.1 kHz. 

 



  
 

4. DIGITAL RESONANT FILTERS 
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A musical filter differs from traditional IIR filters in 
mainly three ways: the parameters are changed at a 
rapid rate, the order is usually predetermined instead of 
matching to certain stopband attenuation specification 
and a controllable resonant peak is introduced near the 
cutoff frequency. Figure 6. Compromise one-pole section. 

A ”perfect” digital resonant filter then fulfills the 
following criteria:  
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1. Coefficient update should be fast. To avoid 
clicks, the coefficients should be updated on a 
per-sample basis [7]. 

2. The filter cutoff and resonance parameters 
should be decoupled. Change in one should not 
affect the other. 

3. The filter should stay unconditionally stable as 
long as parameters are inside the allowed 
range. Figure 7. Improved Moog-style filter. Each LP block 

contains the one-pole structure shown in Fig. 6. 
Coefficients A, B, C, D, and E can be used to select the 
type of output (lowpass, highpass, bandpass, or notch 
filter or one of their combinations). 

4. The filter should have a response similar to an 
existing analog resonant filter. Some analog 
filters have a characteristic sound that should 
be emulated, if possible. 

5. The filter should be capable of self-oscillation. 4.2. Improved Moog filter 
A number of filters trying to fill the criteria have been 
developed. We take a closer look at the Moog lowpass 
filter [6] in the following. 

While the Stilson and Smith Moog model is certainly 
useful and solves the problem of fast coefficient update, 
it becomes unstable with very large resonance values 
and it cannot self-oscillate. Furthermore, it does not 
emulate the characteristic distortion produced by the 
original transistor ladder circuit. 

4.1. Digital Moog filter 

The Moog ladder filter [6] can be considered the first 
musical filter. It features independent voltage control of 
both the cutoff frequency and the resonance amount, 
while also having a characteristic sound of its own. The 
filter consists of four identical one-pole lowpass 
sections (implemented with an innovative transistor 
ladder circuit) in series with a global negative feedback 
to produce a resonant peak near the cutoff frequency. 

Huovilainen has developed an improved model that 
models the ladder circuit by inserting nonlinearities 
inside the one-pole sections [3]. This improved model 
more closely emulates the characteristic sound and is 
also capable of self-oscillation. A disadvantage is the 
need for five hyperbolic tangent (tanh) function 
evaluations per sample and oversampling by factor two 
at least. A digital model of the Moog filter was first presented 

by Stilson and Smith [10]. As in the analog prototype, it 
has four one-pole filters in series, and a global feedback 
is used to produce the resonance. To realize the filter, a 
unit delay has to be inserted in the feedback path, but 
this couples the cutoff and the resonance controls. 
Various ways of compensation have been examined, 
with the “compromise” version [10] being the most 
attractive. The “compromise” version inserts a zero at 

 inside each one-pole section, thus mostly 
decoupling the resonance and the cutoff parameters. The 
modified one-pole structure is shown in figure 6. 

3.0−=z

An alternative and extended model is shown in figure 
7. The embedded nonlinearities within sections are 
replaced by a single nonlinearity in the feedback loop, 
thus greatly reducing the computational cost of the filter. 
We have used the tanh function for the nonlinearity, but 
any smoothly saturating function may be used. There is a 
difference in the sound compared to the full nonlinear 
Moog filter model, but this model can emulate most of 
the behavior, such as self-oscillation. Its output is also 
always bounded. 

The new model also contains two additional 
improvements. The traditional Moog filter and similar 
cascaded one-pole filters suffer from decreasing the 
pass-band gain as the resonance is increased, because the 
resonance is produced with a global negative feedback. 
If some of the input is subtracted from the feedback 
signal before multiplying by the resonance amount, the 
pass-band gain change can be controlled [2]. A value of 

The coefficient g determines the cutoff frequency 
and is approximately g = 1 – exp(–2πfc/fs), where fc is the 
desired cutoff frequency and fs is the sampling rate. If 
exact tuning is desired, a tuning table can be 
incorporated. Practical implementations usually use an 
interpolated table lookup to evaluate g in any case. 



  
 
1.0 for the comp parameter keeps the pass-band gain 
constant. This, however, results in a large increase of the 
output amplitude as the resonance is increased. To keep 
the overall level approximately constant, comp should be 
set to 0.5 resulting in a 6 dB passband gain decrease at 
the maximum resonance (compared to a 12 dB decrease 
in the original Moog model). 

Another improvement is the addition of various 
frequency response modes besides the original 24 dB/oct 
lowpass mode. This can be easily achieved by mixing 
the individual section outputs with different weights. 
The concept was pioneered in the Oberheim Xpander 
and Matrix-12 synthesizers [7], but it was not widely 
used due to a large number of required components and 
the need for precision resistors. Accurate mixing is 
trivial in the digital domain, and a large number of 
different low-pass, band-pass, high-pass, and notch filter 
responses and their combinations can be realized. The 
response can be morphed between these modes by 
changing the coefficients at runtime, thus allowing 
interesting modulation possibilities. 

5. CONCLUSIONS 

Digital subtractive synthesis is a modern approach in 
which components of analog music synthesizers are 
modeled using signal processing methods. In this paper, 
we discussed new oscillator and resonant filtering 
algorithms. The DPW oscillator algorithm generates a 
sawtooth waveform approximation that has reduced 
aliasing with respect to the trivial sawtooth waveform 
(i.e., the modulo counter output). This new method is 
probably the simplest useful technique for this purpose, 
because only the trivial sawtooth is simpler, but it is 
practically useless due to its heavy aliasing. In this 
paper, an alternative form for the differentiator to be 
used in the DPW algorithm was proposed. 

The new nonlinear model of the Moog ladder filter is 
based on a cascade of four one-pole filters and a 
feedback loop that contains a memoryless nonlinearity. 
The proposed new Moog filter structure has nice 
advantages, such as a smaller computational cost than 
that of a recently proposed nonlinear filter structure, the 
decoupling of the cutoff frequency and the resonance 
parameters, and the possibility to obtain various types of 
filter responses by selecting a weighted sum of different 
output points. The proposed methods allow the synthesis 
of retro sounds with modern signal processing 
techniques. 
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