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ABSTRACT

The similarity neighborhood is a paradigmatic model in-
vestigating similar melodies of equal length depending on
the number of appearances of them within a given piece.
In the present paper, we propose some extensions to the
similarity neighborhood model to identify also the subse-
quence relationships between melodies of different length.
These relations are considered in two directions called
the presence neighborhood and the content neighborhood.
The presence neighborhood of a given melody is a set
of longer melodies being similar to those containing the
given melody within. Strong presence further requires
that the corresponding short segments are similar as well
(inheritance property). The content neighborhood, on the
other hand, contains subsequences of a given melody.

1. INTRODUCTION

The similarity neighborhood model[1] is a paradigmatic
model searching a given piece exhaustively to find sig-
nificant melodies within. These melodies are determined
according to the number of appearances of them. Rather
than restricting the search into equality of melodies, the
similarity neighborhood model defines a similarity crite-
rion of melodies.

The method we propose in the present paper to rec-
ognize the subsequence relationships of melodies are in-
spired by the model presented by Buteau[2] and Maz-
zola [4]. Buteau and Mazzola proposed a topological mo-
del based on similarity of motives, which are arbitrary
subsets of a given piece. Because of the asymmetric na-
ture of this topology, i.e. neighborhoods contain motives
of different length, they introduced two functions called
presence and content to measure the presence of a motive
in others. If the roles are inversed, the content of a motive
is measured.

Within the similarity neighborhood model, we restrict
our domain to melodic segments, containing only consec-
utive notes, to get rid of the computational difficulties as
well as the difficulties to music-theoretically interpret the
results provided by the model of Buteau and Mazzola.

In order to investigate the presence and content of a
given melody within a given piece, we define two addi-
tional neighborhood concepts in Section 3, namely the
presence neighborhood and the content neighborhood.

2. THE SIMILARITY NEIGHBORHOOD MODEL

The similarity neighborhood model[1] uses the similari-
ties between melodies to identify the significant melodies
of a given piece. The significance of a melody depends on
the amount of repetition of the melody itself or any kind of
variation of it. In order to decide whether two melodies are
similar, we use a mathematical distance measure. There-
fore some musical concepts are defined in mathematical
terms.

2.1. Basic Definitions

The difference in pitch between two notes is called a me-
lodic interval. In the similarity neighborhood model, we
measure the intervals chromatically. Furthermore the note
onsets are ignored, and a melody is considered as a se-
quence of chromatical pitch values. This decision leads
us to the following definitions.

Definition 1 A melody m of length n is a sequence of
n + 1 integers (t0, t1, . . . , tn) ∈ Zn+1. Its coordinates
ti denote chromatic pitch.

Definition 2 A segment of a melody m is a subsequence
mn

′

i
= (ti, . . . , ti+n′) of m, where i + n′ <= n.

Melodies are considered as trivial segments of them-
selves, namely m = mn

0 . This allows us to consider seg-
ments of segments in a recursive way, depending on an
ambient melody M, which is the melodic encoding of a
piece.

In the melodic structure of a given piece, melodies ap-
pear in different variations. In our representation, the aug-
mentation and the diminution of a given melody are rep-
resented the same as the original melody. However, some
variations differ from the original melody. Therefore, we
need to define the shape of a melody, in order to distin-
guish these kinds of variations from mere chromatic trans-
positions.

Definition 3 The shape of the melody m is defined as:

µ : Zn+1 → Zn, (1)

µ(m) = (t1 − t0, t2 − t1, . . . , tn − tn−1). (2)



In the chromatical pitch representation, the major and
minor intervals are represented differently. For this rea-
son, translations do not always have the same shapes. Fur-
thermore, inversions and retrogrades do not have the same
shapes either. Hence, examining the equality of two mel-
odies does not suffice to recognize all possible variations
of melodies. In order to obtain satisfying results, the sim-
ilarity of melodies should be discussed.

2.2. The Similarity of Melodies

The mathematical definition of the shape of a melody en-
ables us to apply a mathematical distance measure to mea-
sure the similarity between two melodies. In the present
article, we used Pearson’s correlation coefficient [3] also
called Pearson’s r to measure the similarity of two shapes.
The correlation coefficient can detect similarities between
chromatic translation (max. positive correlation), chro-
matic inversion (max. negative correlation, because of
negative shape), diatonic translation and inversion (high
similarity) and melodic variations up to a chosen thresh-
old.

However, the retrograde cannot be detected by apply-
ing the correlation coefficient in its naive form, because
the order of the intervals are reversed. One would need
to consider the group action of shapes [4] to detect the
retrograde.

2.3. The Significance of a Melody

The significance is indicated by the occurrences of a given
melody within a given piece. These occurrences are de-
tected by measuring the similarities for the given melody
throughout the given piece. The similarity neighborhood
set of a given melody is constructed from the detected sim-
ilar melodies within a given piece, which is formally de-
fined as:

Definition 4 The similarity neighborhood of a given mel-
ody m within a given piece M is defined as:

Un

R(m, M) = {Mn

i : |r(µ(m), µ(Mn

i ))| > R} (3)

R = 2n
c1−1 where c1 is a constant. (4)

The similarity of two melodies are determined by com-
paring the distance value with the threshold R.

The similarity neighborhood of a given melody con-
tains all of the similar melodies to the given melody within
a given piece. In order to indicate the importance of the
given melody within a piece, we define the significance of
the given melody as follows:

Definition 5 The significance of a given melody m within
a given piece M is the ratio of the cardinality of the simil-
arity neighborhood set of the given melody to the normal-
ization ratio N

n
of the length N of the piece to the length n

of the melody:

Significancen(m, M) =
card(UR(m, M))

N

n

. (5)

This formula accounts for the number of occurrences
of similar melodies to the given melody, divided by a nor-
malization term, which enables us to compare the signi-
ficance values of different length melodies.

2.4. The Prototypes

The similarity neighborhood sets constructed, and the cor-
responding significance values are calculated for all of the
melodies within a given piece. However, we look for mel-
odies having relatively high significance values. In order
to identify these kinds of melodies, we define a new term.

Definition 6 A given melody m, whose significance value
is higher than the threshold T is called a prototype, which
is shown by

Prtn(T ) = {m|Significancen(m, M) > T}, (6)

T =
N

n

N − n
c2 where c2 is a constant. (7)

The set Prtn is the set of all prototypes of the length n.

The melodies with higher significance values are called
the prototypes of the given piece for a particular length n.

3. SEGMENT RELATIONS OF MELODIES

From the music-theoretical point of view, a melodic anal-
ysis of a given piece explains how the melodic material is
introduced and used throughout the given piece. There-
fore the segment relationships between melodies should
be identified as well. However, the similarity neighbor-
hood model cannot provide that kind of information, be-
cause only equal length melodies can be compared.

In order to investigate the segment relationships of mel-
odies two additional neighborhoods are defined.

3.1. Presence Neighborhood

A first account to what one may call the ’presence’ of a
melody m within a piece is given by its similarity neigh-
borhood. In the same way, we can consider the ’presence’
of a melody within subsequences of the piece. A particu-
lar interesting set of such subsegments are the prototypes
containing m. The idea is to include also the similarity
neighborhoods of these ambient segments.

Definition 7 The set of all segments of length n’ being
similar to a prototype m’ containing the given melody m
is called the weak presence n’-neighborhood of m. The
weak presence neighborhood of a given melody m is the
union of all of the weak presence n’-neighborhood sets
for:



Figure 1. The strong presence neighborhood relation be-
tween the long melodies m′ and m′′, and the short m and
m′′n

i .

n′ ∈]length(m), length(M)].

These two sets are defined as follows:

P̃ resn′

R
(m, M) =

⋃

m=m
′n

i

m
′
∈Pt

n
′

UR(m′, M), (8)

P̃ res(m, M) =
⋃

P̃ resn

R
(m, M). (9)

The weak presence neighborhood does not guanrantee
that similar melodies have the same weak presence neigh-
borhood sets, because two melodies containing two given
melodies does not always have the same melodies within
their similarity neighborhood sets. Therefore we calculate
the equivalence closure for the R-similarity relation, and
study the stability of the classes under inclusion of seg-
ments.

The segments that are contained within the weak pres-
ence neighborhood do not assure that a similar segments
to the given melody are contained within them at the cor-
responding positions. Hence, in general, the inheritance
property does not hold for the weak presence neighbor-
hood.

In order to assure the inheritance property (see Fig-
ure 1, we define the strong presence neighborhood as fol-
lows:

Definition 8 The strong presence n’-neighborhood of a
given melody m contains only those segments m” of length
n’ from the weak presence n’-neighborhood, which -in ad-
dition to being similar to a prominent segment m’ contain-
ing m- have the property that the analogous subsegment
in m” is also similar to m. The strong presence neighbor-
hood of a given melody m is the union of all of the strong
presence n’-neighborhood sets for:

n′ ∈]length(m), length(M)].

Presn
′

R (m, M) = (10)⋃

m=m
′n

i

m
′
∈Prt

n
′

{m′′ ∈ Un
′

R (m′, M)|m′′n

i ∈ Un

R(m, M)},

P res(m, M) =
⋃

{P n

R
(m, M)}. (11)

3.2. Content Neighborhood

Naively, the ’content’ of a given melody is the set of all
segments of the melody. These segments naturally appear
within the given melody, whereever the given melody lit-
erally appears. However, some of the segments of the
given melody also appear independently, and some sim-
ilar occurrences of a melody do not necessarily contain
similar subsegments. The content neighborhood aims to
identify particularly the segments of a given melody up to
similarity.

Definition 9 The set of all segments of length n’ similar to
a prominent subsegment m’ of a given melody m is called
the weak content n’-neighborhood of the given melody.
The weak content neighborhood of a given melody m is
the union of all of the content n’-neighborhood sets for:

n ∈ [minimum melody length, length(m)[.

These two sets are defined as follows:

C̃n′

R
(m, M) =

⋃

m
′
=m

n
′

i

m
′
∈P

n
′

UR(m′, M), (12)

C̃(m, M) =
⋃

C̃n

R
(m, M). (13)

We calculate also the higher order content neighbor-
hoods by unifying the weak content neighborhood sets. In
that way, we can identify also the melodies that are con-
tained within other melodies, similar to the given melody.

The weak content neighborhood contains only submel-
odies of a given melody and similar melodies to those sub-
melodies. However, it is not considered whether the mel-
odies containing those submelodies are similar in analogy
to the given melody m or not. In other words, the inheri-
tance property to m does generally not hold for the weak
content neighborhood set.

In order to guarantee that the inheritance property also
holds, we define the strong content neighborhood set of a
given melody as follows:

Definition 10 The strong content n’-neighborhood of a
given melody m contains only those similar segments from
the weak content n’-neighborhood, so that the melodies
analogously containing these segments are also similar to
the given melody. The strong content neighborhood of
the union set of a given melody m is the union of all of the
strong content n’-neighborhood sets for:

n ∈ [minimum melody length, length(m)[.

Conn
′

R
(m, M) = (14)

⋃

m
′
=m

n
′

i

m
′
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n
′

{m′′n
′
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′

R
(m′, M)|m′′ ∈ Un

R
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Con(m, M) =
⋃

{Conn

R
(m, M)}. (15)



Figure 2. Prototype Melodies from the Inventio 14 in B
flat Major

4. EXPERIMENTAL APPLICATION

We tested our model on the Two Part Inventions of J. S.
BACH [5].

In these experiments, the minimum length of a melody
has been chosen to be 4 notes. The constants has been
chosen to be the values 0.1 for c1 and 1.0 for c2.

To demonstrate the success of the model, we present
the results of the Inventio No. 14 in B-Flat Major in a
music-theoretical context.

4.1. Inventio 14 in B-Flat Major

The soprano part introduces the first prototype melody of
the piece, which lasts during the first three measures. This
melody appears twice within the whole piece, second ap-
pearance is in the sixth measure in the bass part.

A shorter prototype melody, which is a segment of the
melody mentioned in the previuos paragraph, is repeated
three times within the longer melody. The shorter melody
is further decomposed in its content neighborhood into a
nine notes long melody, and its inversion repeated imme-
diately.

The nine notes long melody is repeated six times in
the first three measures of the piece. These appearances
are alternating, ones in the original form, and ones in the
inversion. This melody contains in its presence neigh-
borhood sets the melodies mentioned in the previuos two
paragraphs.

At the beginning of the fourth measure, a six notes long
melody is introduced, which appears alternately in both
parts. This melody comes from the first six notes of the
nine notes melody. Therefore, it is an element of the con-
tent neighborhood of the nine notes melody.

The alternating movements are repeated in the begin-
ning of the fifth measure for the last time. The six notes
long melody appear then simultaneously in both parts, in
the bass part in its original from, and in the soprano in-
verted.

The sixth measure begins similar to the first measure.
However the roles of the soprano part and bass part are
reversed. The three consecutive measures beginning with
the sixth measure are analogous to the first three measures
of the piece, but the roles of the voices are exchanged.

The following measures repeat the six notes melody a
lot of times, both in an alternating manner and simultane-
ously.

In the sixteenth measure, the nine notes long melody
appears in both parts overlappingly. The nineteenth mea-
sure contains both the nine notes and the six notes melody,
and the piece ends in the twentieth measure.

Consequently, in the Inventio 14, we observe segment
relations in four levels. All of these levels are shown in
the Figure 2.

5. CONCLUSION

Using the domain of melodic segments enabled the sim-
ilarity neighborhood model as well as the extensions in-
troduced in the present paper provide music-theoretically
interpretable results.

The similarity neighborhood model extracts the sig-
nificant melodies, and the variations of these melodies
throughout a given piece. From the paradigmatic music
analysis point of view, identifying the similarities between
melodies is important.

From the music-theoretical viewpoint, the relations be-
tween the melodies of different length are explained to
understand the development of a composition. The pres-
ence neighborhood sets indicate the presence of melodies
within the longer melodies. The presence of a short mel-
ody within a long one, is the content of the long melody,
if the roles of the melodies are inverted. This relation is
explained by the content neighborhood sets of the long
melody. These roles are interchangeable as long as the
thresholds do not matter, i.e. R = 0. As soon as only
prototypes are taken into account, these concepts are no
longer interchangeable.
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