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ABSTRACT

This paper presents a new approach and prototype system
for karaoke vocal or instrument removal. The algorithm
estimates the singer’s location and spatial transfer func-
tion from a stereo recording, then mutes components in
the recording according to the estimated orientation. At
the current stage, estimation is obtained by analyzing solo
segments in the recording. This algorithm turns to be
robust against reverb and spatial acoustics. To compen-
sate low frequency loss that usually appears after vocal
removal, the original recording is low-pass filtered around
120Hz and mixed back with the processed mono sound to
generate a stereo karaoke track.

1. INTRODUCTION

In karaoke, a popular entertainment, the quality of the ac-
companying sound track directly affects the aesthetic ex-
perience of the “user singer”. Reproduction of an accom-
paniment requires lots of time and labor, yet the music is
probably not close enough to the original mix. Thus, re-
moving the vocal or lead instrument track from the origi-
nal recording remains an attractive topic.

Currently, the main method to achieve this goal, both
in hardware and software, is to generate a mono sound
track by subtracting the left and right channel of the orig-
inal recording, and hope that the vocal component will
disappear. This method is patented in 1996 [1]. Many
karaoke machines and software like the AnalogX Vocal
Remover, WinOKE, and the YoGen Vocal Remover work
in this way. This job can also be done in any sound edi-
tor. The results are usually not satisfying, because it only
works if the vocal component is identical at all times in
both channels of the stereo recording, i.e. a mono source
panned right at the center. This assumption doesn’t apply
to all situations especially live concert recordings where
the full stereo image is picked up only by a pair of micro-
phones. The singer isn’t necessarily standing in the cen-
ter, and room acoustics can make the vocal non-identical
in left and right channel, which means having different
amplitudes and delays in different frequency bands. Even
more, artificial reverb could also have been added to the
vocal component in the recording. All these conditions
will cause the subtraction method to fail. Another prob-
lem is that low frequency instruments are usually mixed in

the center position of a stereo mix, and this process could
completely eliminate the bass, which is also undesirable.
There are also other methods like applying EQs to the
original recording attenuating the vocal frequency bands
of the spectrum. This cannot remove the vocal completely
and the spectral composition of the original material is al-
tered a lot.

In our approach, we assume that the vocal component
is stabilized in a spatial location and recorded with a pair
of microphones. As soon as we can infer the transfer func-
tion associated with its location based on the stereo signal,
in theory we will be able to manipulate components in that
location according to different needs. The following sec-
tions will describe our model in detail and explain some
experimental results with existing stereo recordings. In
this paper, “vocal” could mean the lead singer or the lead
instrument that is to be removed in a stereo recording.

2. METHODOLOGY

2.1. System architecture and initial assumptions

The organization of the system is shown in Figure 1. First,
an algorithm tries to identify segments in the recording
where the vocal is playing solo, or at least contributes
most of the energy. These segments are analyzed for es-
timating the transfer function from the vocal’s location to
each of the microphones. After that, sound in the esti-
mated location can be canceled or suppressed by project-
ing the stereo recording on appropriate directions in differ-
ent frequency bands, resulting in a mono, vocal-suppressed
sound track. Some additional spectral corrections can be
done to this to further remove residual high frequency
components of the vocal, such as various consonants. Fi-
nally, the bass part in the original recording, which is not
overlapped with the vocal in frequency will be added back
to the mono file.

We assume the recording situation is a live stereo pro-
duction session where multiple instruments and the vocal-
ist are stabilized in separate locations. Reverb and station-
ary room noise are assumed as well. This scene is more
intuitively illustrated in Figure 2 where solid lines repre-
sent direct sound and dashed lines represent some of the
early reflections. With reasonable reverb time, our model
is robust to additive noise, room reverberation and other



Figure 1. System diagram of our vocal removal design

factors that will be considered in the discussion section.

2.2. Source separation model with transfer function

A typical model for blind source separation of an N -channel
sensor signal x(t) arise from M unknow scalar source sig-
nals s(t), in the case of instantaneous mixture, is described
by

x(t) = As(t) + v(t) (1)

where

x(t) =




x1(t)
...

xN (t)


 , s(t) =




s1(t)
...

sM (t)


 (2)

and A is a N×M linear mixing matrix and v(t) is a zero-
mean, white additive noise. In convolutive environment
such as the recording session situation, signals at different
locations will have different transfer functions:

xn(t) =
M∑

m=1

∫
anm(τ)sm(t− τ)dτ + vn(t)

n = 1, . . . , N (3)

where amn(τ) is the impulse response of the transfer
function from the mth source signal to the nth micro-
phone. Short Time Fourier Transform (STFT) of (3) turns
this into instantaneous mixture separately for every fre-
quency, giving

Xn(t, ω) =
M∑

m=1

Anm(ω)Sm(t, ω) + Vn(t, ω)

n = 1, . . . , N (4)
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Figure 2. Schematic of a live stereo recording session

where Sm(t, ω) and Vn(t, ω) are the STFTs of sm(t) and
vn(t), respectively. Here t denotes the STFT window po-
sition. The temporal transfer function of the mth source
signal to the microphone n is defined as

Anm(ω) =
∫

anm(τ)e−jωτdτ
.= ânm(ω)e−jωbδnm(ω)

(5)
where we define

ânm(ω) = ‖Anm(ω)‖; δ̂nm(ω) = 6 Anm(ω) (6)

In matrix notation, the model (1) can be written as

X(t, ω) = A(ω)S(t, ω) + V(t, ω) (7)

In our case, N = 2, so that (7) in detail looks like
[

X1(t, ω)
X2(t, ω)

]
=

[
â11(ω)e−jωbδ11(ω) · · · â1M (ω)e−jωbδ1M (ω)

â21(ω)e−jωbδ21(ω) · · · â2M (ω)e−jωbδ2M (ω)

]

·




S1(t, ω)
...

SM (t, ω)


 +

[
V1(t, ω)
V2(t, ω)

]
(8)

Without loss of generality, we can absorb the attenuation
and delay parameters for each frequency bin in the first
microphone signal x1(t) into the definition of the source.
In this way, (8) can be rewritten as

[
X1(t, ω)
X2(t, ω)

]
=

[
1 · · · 1

a1(ω)e−jωδ1(ω) · · · aM (ω)e−jωδM (ω)

]

·




S1(t, ω)
...

SM (t, ω)


 +

[
V1(t, ω)
V2(t, ω)

]
(9)

In (9), suppose the vocal component is the kth source,
which is associated with STFT Sk(t, ω), if we can esti-

mate the kth vector
[

1
ak(ω)e−jωδk(ω)

]
in A, then left



multiplying by a vector that is orthogonal to it will com-
pletely remove the kth source, achieving the initial goal.

2.3. Estimating the vocal component location

With solo segments of the vocal extracted and their STFT
time-frequency cells available, it is possible to estimate
the unstructured spatial transfer function for each frequency
[2]. Variety of methods to estimate the transfer function
are being explored. Considering equation (9) in case of
a single source allows estimation of the transfer function
parameters by division of the STFT’s of the left and right
channels, giving

ak(ω) =
∥∥∥∥

X2(ω)
X1(ω)

∥∥∥∥ (10)

and

δk(ω) = − 1
ω
=(log(

X2(ω)
X1(ω)

)) (11)

This simple method of STFT division [3] is not robust to
noise and gives unsatisfactory results. Here we describe
in detail an autocorrelation method that is robust to uncor-
related additive noise. The autocorrelation matrix of (7) at
a given time-frequency cell will be obtained by averaging
the following equation:

X(t, ω)X(t, ω)H = A(ω)S(t, ω)S(t, ω)HA(ω)H

+ A(ω)S(t, ω)V(t, ω)H

+ V(t, ω)S(t, ω)HA(ω)H

+ V(t, ω)V(t, ω)H (12)

We have assumed that signals and noise are uncorrelated.
Denoting Rx, Rs and Rv as the correlation matrices of
the microphones, source signals and noise respectively,
and considering signals as stationary, after averaging over
time window, we obtain

Rx(ω) = A(ω)Rs(ω)A(ω)H + Rv(ω) (13)

Here we assume that the noise is white, so that matrix
Rv(ω) is diagonal and Rv(ω) = σ2

vIN , ∀ω where IN is
an identity matrix of size N . In segments where only one
component sk exists, (13) becomes

Rx(ω) = σ2
sk

~Ak(ω)~Ak(ω)H + σ2
vIN (14)

where
~Ak(ω) =

[
1

ak(ω)e−jωδk(ω)

]
(15)

Right multiply (14) with ~Ak(ω), we get

Rx(ω)~Ak(ω) = (σ2
sk

~Ak(ω)H ~Ak(ω)+σ2
v)~Ak(ω) (16)

This means that ~Ak(ω) can be estimated from eigenvalues
of the rank-1 matrix Rx(ω). The corresponding eigen-
value is

λ = σ2
sk

~Ak(ω)H ~Ak(ω) + σ2
v (17)

One can note that in principle the transfer function can be
estimated by dividing the two components of the eigen-
vector. As will be discussed later, an advantage of our
method is that it is robust to added noise. The correlation
method can be easily extended for the case of higher order
statistics [4] by generalizing equation (12). For example,
for the case of 4th order cumulants, we construct a matrix
X(ω)X3(ω)H − 3X(ω)X(ω)H . It can be shown that for
the case of Gaussian signal, this matrix equals zero since
4th cumulant of a Gaussian signal equals three times the
2nd cumulant (correlation). This effectively eliminates the
additional noise matrix from equation (13). The eigenvec-
tors of the resulting matrix are same as for the correlation
case.

2.4. Vocal removal

After obtaining ~Ak(ω), we find a vector orthogonal to it

~A⊥
k =

[ −ak(ω)e−jωδk(ω) 1
]

(18)

and then left multiply the microphone signal in (9) with
~A⊥

k to remove the kth component:

~A⊥
k

[
X1(t, ω)
X2(t, ω)

]
=

[
~A⊥

k
~A1 · · · 0(kth) · · · ~A⊥

k
~AM

]

·




S1(t, ω)
...

SM (t, ω)


 + ~A⊥

k

[
V1(t, ω)
V2(t, ω)

]
(19)

One special case of this is when only two components ex-
ist in the stereo recording, in which we can extract the two
sources individually. Both sides of (19) are one dimen-
sional, so that the resulting sound is mono.

2.5. Solo segment extraction

As the starting point of the estimation, solo segments in
a song carry all the information of the unknown trans-
fer functions. In order to use the algorithm described in
2.2, it’s important to have a good extraction algorithm for
the solo segments. There are several approaches avail-
able. We can use the Gaussian Mixture Model in [2] to
find time-frequency cells with only one source, or take the
W-disjoint assumption as indicated in [3] and and look for
clusters near the center of the stereo field. Voice activ-
ity detection (VAD) algorithms can be utilized as well [5].
Implementation for solo segment extraction is currently
manual.

2.6. Delay refinement and bass emphasis

Estimation accuracy will start to decrease in high frequency
bins as the wavelength of the signal becomes so short that
transfer functions become sensitive to movements of the
singer or instrument performer. This will result in some
residual transients (consonant attacks) of the vocal in the



processed sound. A method for delay refinement is be-
ing used on a frame by frame basis in order to search for a
value of optimal delay correction that might happen due to
minor movements of the sound source. By searching over
range of possible delay parameters around the theoretical
value we are looking for minimum energy of the resulting
signal, which will occur if the source is more precisely
removed.

Removing the vocal component in the manner described
in this paper usually remove a certain amount of bass from
the recording at the same time, since low frequency instru-
ments are often not very localized sources and their loca-
tions could coincide with the vocal. Another fact is that
vocal usually doesn’t occupy the same frequency band as
the bass. The fundamental frequency of voiced speech
varies according to a lot of factors like emotion and age.
Literature [6] shows that the typical range is 85-155Hz for
adult male and 165-255 for female. Taking this as a ref-
erence, we choose a cut-off frequency of 120Hz to low-
pass filter the original stereo material, and mix it with the
mono vocal-free track. The filtered material won’t con-
tain much of the vocal and still will contain most of the
bass information as well as preserve the stereo field in the
low frequencies. Simulated results shows that this method
is very effective for the compensation of low frequencies
and it increases some stereo feeling of the accompanying
track.

3. IMPLEMENTATION AND PROTOTYPE

This system design is implemented in Matlab. Several CD
recordings of different genres have been tested and com-
pared to the existing method (left-right subtraction). We
chose hamming window for the STFT and window lengths
of 1024 and 2048. For songs with heavy post productions
where the vocal is recorded mono and panned to the center
with few reverb, our system works similarly to the existing
method of vocal removal, but the bass emphasis enhances
the final sound quality noticeably. In recording situations
more similar to our initial assumptions as are mentioned
in 2.1, for example a concert recording of Billie Holiday
with a band, the existing method fails to remove the vocal
at all, while our system is as robust as the in the previous
situation. Some sound examples are available online. 1

4. DISCUSSION AND FUTURE RESEARCH

The prototype system turns out to be well functioning, es-
pecially when the real situation is close to the assump-
tions. As can be seen from equation (16), added noise
doesn’t compromise the accuracy of estimating ~Ak(ω)
from the eigenvector of Rx(ω). So, this algorithm is ro-
bust in a noisy environment. The model in the system
consider different attenuations and delays for different fre-
quencies, and transfer function is assumed, so it is also
robust to reverberant vocal sound, even artificial reverb, if

1 http://crca.ucsd.edu/˜pxiang/research/vocalremoval.html

it’s linear. For a typical live recording session, there are
usually close mics for individual instruments. Usually,
these mic signals are later added to the stereo recording
for the whole ensemble to boost certain instruments. This
is still a linear operation which well fits in our assumptions
for our model to work well in theory. We also have con-
sidered delay refinement in order to compensate for small
movements of the source. However, many more detailed
properties of the acoustics are yet to be investigated, such
as the geometrical conditions and spatial sampling dis-
tance between the microphones. STFT window types and
window sizes also matter. The window should at least be
suitable for perfect reconstruction with proper hop length
- a hamming window for example. The window length
should be longer than the longest possible reverb time so
that the transfer function model holds for most portion of
a window, instead of letting to much convoluted tails fall
into neighboring windows. On the other hand, lengthened
window will result in fewer STFT time slices for the au-
tocorrelation time average. As a result, the decision of
window length and shape should consider all these trade-
offs. Further more, solo segment extraction algorithms
are to be compared and tested to automate the extraction
process, and delay refinement and transient removal algo-
rithms are under development.
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