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ABSTRACT 

This paper presents a neural network approach for 
classification of musical instrument sounds through 
Radial and Elliptical Basic Functions. In particular, we 
discuss a novel automatic network fine-tuning method 
called Nearest Centroid Error Clustering (NCC) which 
determines a robust number of centroids for improved 
system performance. 829 monophonic sound examples 
from the string, brass, and woodwind families were 
used. A number of different performance techniques, 
dynamics, and pitches were utilized in training and 
testing the system resulting in 71% correct individual 
instrument classification (12 classes) and 88% correct 
instrument family (3 classes) classification.  

1. INTRODUCTION 

Examples of Radial Basis Functions can be readily 
found in pattern classification applications such speech 
recognition and prediction [14, 3], phoneme recognition 
[1], and face recognition [7]. However, they have not 
been sufficiently explored for automatic timbre 
recognition research. Considering that there exists only 
one study with RBFNs [6] and no studies of EBFNs that 
we know of in machine-based timbre classification, this 
paper may provide some insights on the prospect and 
possibilities for RBFN/EBFNs in automatic timbre 
classification. This paper does not elaborate on feature 
extraction algorithms or explain RBFN/EBFNs in depth 
(details can be found in [16]) but rather focuses on the 
NCC method which automatically fine-tunes the 
network by spawning additional finer centroids to 
improve performance of the system.  

2. SYSTEM OVERVIEW  

The architecture of the system is built around a bottom-
up model with a front-end feature extraction module and 
back-end neural network training and classification 
module. A sampling frequency of 22.05 kHz and 2 
second excerpts with attack and steady-state portions 
were used for each of the 829 monophonic samples 
(86% Siedlaczek Library [2], 14% personal collection). 
The 12 features that were used for the 12 instruments 
(elec. bass 30, violin 105, cello 102, viola 75, clarinet 
100, flute 99, oboe 55, bassoon 35, French horn 56, 
trumpet 82, tuba 32 examples) included spectral 
shimmer, spectral jitter, spectral spread, spectral 

centroid, LPC noise, inharmonicity, attack time, 
harmonic slope, harmonic expansion/contraction, 
spectral flux shift, temporal centroid, and zero-crossing 
rate (see [16] for details). Various performance 
articulations were present in the majority of the samples 
including pizzicato, spiccato, sordino, 
long/sustained/short, detaché, espressivo, vibrato/non-
vibrato, pianissimo, piano, mezzo-forte, forte, and 
fortissimo with pitches ranging between 1~3 octaves.  

3. RBFN/EBFN OVERVIEW     

3.1. RBFN/EBFN Characteristics 
 
The basic structure of a RBFN/EBFN system is shown 
in figure 1. Some of the main attributes of a 
RBFN/EBFN system are the location of the weights 
found at the output of the basis functions and the 
characteristic single hidden layer.  
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Figure 1. Basic RBF/EBF Network 

 
Exploiting the configuration of activation functions and 
weights, RBF/EBF networks can take non-linear input 
spaces and output linear activation outputs, effectively 
modeling complex patterns which Multi-Layered 
Perceptrons (MLP) can only achieve through multiple 
hidden layers [11]. Each basis function consists of a 
unique centroid, spread, and particular activation 
function (Gaussian type was used in this paper). The 
objective in the training phase is to adjust the weights 
and basis function parameters to reduce the error 
between the known network outputs and the actual 
computed outputs. This is determined via gradient 
descent and back-propagation (see [16] for details). 



  
 

 

3.2. Basis Functions  
 
The RBF basis function seen below is computed via 
Euclidian distance r where p is the sample number, iµ is 
the mean for cluster i, and N is the input dimension. 
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The difference between RBF and EBF is in the distance 
computation. That is, for EBFs the Mahalanobis distance 
is computed: 
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Figure 2 illustrates a 2-dimensional space with radial and 
elliptical activation functions.  
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Figure 2. EBF/RBF clustering patterns 

3.3. Network Initialization 

For network initialization we used k-means to compute 
the initial basis function parameters and 0=

w
E
∂
∂  to solve 

for initial weights w with respect to the total error 
squared E yielding (A is activation output, d is known 
output):  
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4. NEAREST CENTROID ERROR CLUSTERING 

The performance of any classification system depends 
largely on a robust fine-tuning algorithm. In this study 
the fine-tuning stage was designed through a novel 
method called “NCC” [16]. Figure 3 shows an example 
of misclassified data in a 3-class synthesized system 
after training (without NCC) at 94%. We note that the 
larger centroids encompass more area and at the same 
time are less “precise” and rougher than the smaller 
centroids which tend to evolve around class boundaries. 
It is also observable that errors occur mostly between 
class boundaries that are either overlapping or close 
together. By exploiting this tendency for multi-class 
systems and placing additional more localized, smaller 
and essentially “finer” centroids at those problematic 
areas, it may perhaps be possible to improve the 
performance of the network since these new finer 
centroids will have more flexibility in modeling more 

intricate pattern spaces due to their limited activation 
range.  
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Figure 3. Initial training with a 6 centroid RBFN 

 
The NCC algorithm is built on this idea and 
automatically determines the locations of “problematic 
areas” and adds new centroids in those areas during the 
training phase. This is achieved using information from 
“mother” centroids (original 6 centroids in this example) 
and spawning new smaller “children” centroids by 
determining the nearest misclassified sample to a mother 
centroid (see figure 4). The mother centroids’ spreads 
are initially inherited by the children centroids and used 
as a guide as they are already “roughly tuned.” Although 
just blindly increasing the number of centroids is an 
option for possibly improving performance, there is no 
consideration of error feedback.  
 The NCC method can be summarized as follows i) 
selection of closest error pattern (p) to a mother centroid, 
ii) inheritance of the mother centroid’s spread (σj) by 
error sample (p), iii) finding any existing siblings  
(misclassified samples) encompassed by the inherited 
spread satisfying the general case hyperellipsoid (5), iv) 
computing new centroids and spreads for children via 
arithmetic mean (6) of its members (if no members are 
found spread is scaled according (7)), v) repeating the 
process until all error patterns are analyzed vi) 
reinitializing weights using (4).  
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Figure 4 depicts this idea – the new child centroid has 
one “sibling” and the original 6 centroid system becomes 
a 10 centroid system with 100% correct classification in 
figure 5. This additional fine-tuning method could be 
applied a number of times until a desired performance is 
achieved.  However, due to the characteristics of the 
algorithm, there will usually be an increase in the 
number of total centroids, resulting in over-fitting issues.  
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Figure 4. Spawning a new child centroid 
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Figure 5. Spawning of centroids and final result (100%) 
 
A partial solution to over-fitting the pattern space was to 
include the option to exclude “single-member” children 
centroids in the retraining process as these tended to 
address only very localized and specific error patterns. 
This methodology lessened the overall increase of 
centroids (generally desirable) by allowing only those 
new centroids to survive that had at least two error 
patterns members (one sibling) associated with it.   

5. CLASSIFICATION RESULTS 

The networks were trained using 80% of the total 829 
samples and cross-validation performance was assessed 
using 20% of the remaining samples. Each new 
training/classification session was subjected to a random 
pattern shuffling scheme.  

5.1. Family and Individual Instrument Classification 

The best performance for family recognition was 
approximately 88% for RBFNs (figure 6) and 85% for 
EBFNs. For individual instrument classification network 
performance for RBFNs and EBFNs were 71% and 67% 
respectively. The French horn was the main cause for 
performance degradation with a 32% success rate as 
shown in figure 7.  
 

St
rg

s.

W
w

in
ds

B
ra

ss
es

%

Strgs. 278 10 4 96

Wwinds 24 261 4 90

Brasses 22 24 202 81

 
Figure 6. Confusion matrix for instrument family  
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Figure 7. Confusion matrix for individual instruments  

6. DISCUSSION 

The initial studies with RBFN/EBFN when used with 
NCC present a possible approach to automatic timbre 
recognition with substantial increased performance – in 
some cases up by 25% when trained with NCC [16]. 
Generally speaking more centroids increase performance 
but at the same time decreases generality while larger 
centroids are most suitable for clustering larger pattern 
spaces and smaller centroids helpful in modeling finer 
pattern spaces. Furthermore, the location of each 
centroid is critical in obtaining satisfactory results which 
is extremely difficult to determine without fine-tuning 
and is often subject to guess-work during the network 
training phase. Hence, the number, choice, and location 
of a centroid is essential in improving RBF/EBF network 
performance which the NCC method achieves 
automatically by increasing the number of centroids and 
taking into consideration the characteristics of a pattern 
space as well as the roughly tuned centroids already in 
the system. 



  
 

 

Although other neural network-based systems 
reported higher success rates in the 90-percentile range 
such as one cited by Herrera-Boyer [12], the number of 
instruments (4) and examples (240) used to evaluate 
their system seems less-than-ideal. Another ANN study 
[6] reported seemingly impressive results with 94~100% 
accuracy for individual instruments but only 40 samples 
and 10 classes were employed. Yet another study with 
neural networks reported 97% accuracy for classifying 
bass trombone, trombone, English horn, and contra 
bassoon [13]. However, pitch information was provided 
to the system and training and cross-validation patterns 
came from the same stereo audio file – one channel for 
training the other for cross-validation. On the other hand 
other types of systems such as  k-NN based models [9, 
10, 15, 8] reported 50.3% (1338/23), 68% (1300/23), 
70% (1023/15), and 80% (1498/30) (samples/classes) 
respectively which are more akin to the rates obtained 
with this neural network model (pitch information was 
provided in [8]). 

Although the results have not yet been thoroughly 
analyzed, it can be clearly noted that the system does not 
excel with French horn timbres (32%) although on the 
average it performed better for brass instruments than 
strings and woodwinds. This trend has not been 
observed in other reports.  The deficiency may perhaps 
lay in the use of a number of new features (LPC noise, 
harmonic slope, harmonic expansion/contraction, 
spectral flux shift [16]) and a different sound library 
previously not used by other researchers. However, it 
can also be observed from the confusion matrix that the 
majority of errors for the French horn (76%) occur 
outside the brass family which is not necessarily an 
undesirable result as it is generally more difficult to 
differentiate “within-family” instruments from each 
other than “cross-family” instruments. Finally, this 
neural network system performs similarly or 
outperforms human counterparts in comparable testing 
environments reported in [17] (46%~67%), [5] (72%), 
and [4] (85%), for 27, 6, 4 instruments respectively.  
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