CO-AUDICLE: A COLLABORATIVE AUDIO PROGRAMMING SPACE

Ge Wang Ananya Misra

Philip Davidson

Perry R. Cook!

Princeton University
Department of Computer Science (falso Music)

ABSTRACT

The Co-Audicle describes the next phase of the Audi-
cle’s development. We extend the Audicle to create a
collaborative, multi-user interaction space based around
the ChucK language. The Co-Audicle operates either in
client/server mode or as part of a peer-to-peer network.
We also describe new graphical and GUI-building func-
tionalities. We draw inspiration from both live interaction
software, as well as online gaming environments.

1. INTRODUCTION AND MOTIVATION

Co-Audicle describes the next phase of the Audicle’s de-
velopment. We extend the environment described in the
Audicle [8] to create a collaborative, multi-user interac-
tion space based around the ChucK language [6]. The Co-
Audicle operates either in client/server mode or as part
of a peer-to-peer network. We also describe new graphi-
cal and GUI-building functionalities. We draw inspiration
from both live interaction software, as well as online gam-
ing environments.

A rolled
o]e]

2
| 3 1
4 | unrolled

Figure 1. Faces of the Audicle. As shown on the top, the
Audicle is meant to be networked.

On-the-fly programming [7] sees code as an expressive
musical instrument and the act of programming as perfor-
mance. This framework and today’s fast networks provide
a unique opportunity to extend this practice to let many

people, across a wide geography, build and play one in-
strument. This is our primary motivation.

There have been various research projects looking at
aspects of this type of collaboration. [2, 5, 1]. The Co-
Audicle’s focus is code and the act of programming audio
in a real-time, distributed environment. It is concerned
with the topology of the collaboration and the levels of
guarantee about timing, synchronization, and interaction
associated with each.

The ChucK/Audicle framework provides a good plat-
form and starting point for the Co-Audicle. ChucK pro-
grams are strongly-timed, which means they can move to
a new operating environment on another host, and find out
and manipulate time appropriately. ChucK programs are
a concise way to describe sound synthesis very precisely.
The latter is useful in that many sounds or passages can
be transmitted in place of actual audio, greatly reducing
need for sustained bandwidth. The Audicle graphical pro-
gramming environment visualizes the timing and process-
ing in the programs and virtual machine, and already has a
context-sensitive editor for managing and creating ChucK
programs. These components are a good foundation for
the Co-Audicle.

2. MODEL 1: CLIENT / SERVER

In the client/server model, multiple client Co-Audicles con-
nect to a centralized Co-Audicle server. All computa-
tions, including audio synthesis, happen at the server. The
clients act as ”dumb” terminals that send code and control
requests to the server and also receive the synthesized au-
dio streams from the server. The server also returns statis-
tics and metadata with each frame of audio, such that the
VM state and shred timing can be visualized at the client
Co-Audicles. Furthermore, multiple clients can collabo-
ratively edit the same code module.

2.1. Co-Audicle Server

A Co-Audicle server can be instantiated by any user. The
person who started the server is by default the superuser
and moderator. Upon start-up, the moderator can also
set rules for the server, such as the maximum number of
clients, and security modes (such as disallowing certain
operations from shreds).

Once the server is running, clients can join. The client
can learn of the server’s existence and address in one of
several ways. The parties involved can agree beforehand

on the server host and connect to it by IP. It is also possi-
ble to automatically discover servers on the local area net-
work. Additionally, servers can optionally register them-
selves with an internet-wide directory.

Server

Client Client

Client Client

Client

Figure 2. Co-Audicle client/server model.

The server contains a ChucK virtual machine that runs
all the shreds and synthesizes audio. It also manages the
list of clients, as well as a list of active “edit rooms”,
where collaborative editing can take place. As the audio
is synthesized, it is broadcast back to the clients, but also
with the statistics of shred timing, and VM processes. The
statistics and other meta-data are associated with the au-
dio using ChucK timestamps. This allows the client Co-
Audicles to visualize the virtual machine as if it were run-
ning locally.

The server is a space where clients can move around
and discover other clients. By default, each client starts
in his/her own edit room. Clients can leave their own edit
room and move to other rooms to collaboratively edit code
(if the room owner approves) or to observe the editing in
real-time. Feedback can take place through separate ’chat’
windows or a real-time “annotation” function where a seg-
ment of code may be flagged with a comment from an-
other user.

2.2. Co-Audicle Client

The Co-Audicle client behaves as a dumb terminal that
does not perform VM computations or audio synthesis.
The client allows the programmer to edit code on the server.
It also receives data to be visualized, such as shred ac-
tivity, as well as synthesized audio from the server. The
client plays the audio synchronized with the visualiza-
tion, giving the impression that everything is happening
locally. The visualization at the client involves the totality
of shreds and timing at the server. Each client can observe
other users’ shreds and timing, or filter out the ones he/she
does not want to see.

In addition to editing commands, the client also sends
out of band messages for connection, user chat, and navi-
gation of the server space.

3. MODEL 2: PEER-TO-PEER

The Co-Audicle can also operate under a peer-to-peer mo-
del. Under this scheme, each Co-Audicle forms a node,
and every node runs a ChucK virtual machine and synthe-
sizes audio. The main idea in this model is that no audio
is transferred among the nodes, only code and meta-data.
ChucK code is directly mapped to time and synthesis, and
serves as a convenient and compact alternative to send-
ing audio. This allows the system to scale to hundreds or
more nodes that only need to replicate code. Of course,
there are many challenges to this:

Data consistency. Consistency across nodes is main-
tained in two ways. Since ChucK programs can find out
about time and act accordingly, the programs themselves
can adapt upon arriving at a new node. In this sense, the
same code behaves intelligently on different nodes. Also
there is a notion of a multi-environment shred syndicate
(or a mess) that can be internally sophisticated but does
not access data outside the mess, although it can access
time. A mess could be replicated across nodes without
worrying about data-dependency. In this way, a particular
sound or passage could migrate from node to node, and
share only timing with the rest of the system, with no side
effects on states.

Synchronization. Messes can be synchronized via the
timing mechanism in ChucK. Shreds in a mess can query
for the current time on the VM and act appropriately. How-
ever, a bigger problem is clock skew among all the nodes.
The ChucK virtual machine is data-driven by the number
of samples it computes and some soundcards may clock
slightly faster than others. In the long run, time-consistency
is hard to maintain across the system. In the Co-Audicle,
a global clock resynchronization propagates periodically,
paired with dynamic mess-level adjustments.

Security. The owner of each node can determine the
level of security for his/her node. A high security level
can mean denying access to operations outside of the vir-
tual machine. The mechanism is like the one used in Java
applets.

Node
Code +
. 4 VM L . Data
Node |vm [1vM | Node
— ——
(] (]
(] (]
(] (]
Node | VM | 1M Node
- VM >
T
Node

Figure 3. Co-Audicle peer to peer model. No audio is
transferred - only code and data.

4. CHUI : CHUCK USER INTERFACE

Since the Audicle is a graphical environment, we also in-
clude the ability to program real-time graphics and build
GUIs as part of the collaboration. The ChucK language
allows for programmatic control interaction, but in many
applications we also desire the ability to use a graphical
interface, or to provide a user-friendly ’front end” for the
performer. CHUI serves as a framework for dynamically
building user interfaces in code to allow rapid design and
experimentation. Ul elements are represented at the same
object level as audio ugens within ChucK code. By using
a Ul object in place of a standard variable (for example,
an int or float) we retain the flexibility of programmable
control in-code, but can switch to a graphic representation
for visual control as desired.

4.1. UI elements

CHUI implements an extensible set of interface elements.

e buttons trigger a specified function

e switches and toggles select or switch between objects
and modes

e sliders standard scalable slider implementations

e option box select from a preset list of options

e display waveform or spectrogram output from a partic-
ular ugen

e meters volume display

e group group a section of elements for positioning and
layout

e memory preserve the state of elements or groups.

4.2. Behaviors

Adaptive Rendering methods: Ul objects present a stan-
dardized interface to the ChucK environment, while al-
lowing their own display or interaction code to be ex-
tended through subclassing. CHUI objects could conceiv-
ably run within a variety of Ul systems (TCL/tk, GLUT,
SDL, etc) while presenting the same interface to code
UI elements are aware of whether the interface is cur-
rently active. If desired, user interactions can be set to
”override” programmable control through a simple toggle.
Object positioning and grouping may be modified pro-
grammatically, or through the UI interface. Ul elements
register with a “memory” Ul object to enable a particular
interface element to preserve UI state in successive exe-
cution sessions. Positioning properties are managed by
object name to simplify re-mapping and code alterations.

5. GLUCK : VISUAL TOOLKIT

ChucK’s precise timing mechanisms provide an ideal in-
tegration of audio and visual elements for live multime-
dia programming. GLucK provides OpenGL, GLU, and
GLUT functionality to shreds running in the ChucK VM.
In the Audicle, GLucK manages the interface to the 7ab-
ula Rasa face, used for spontaneous visual improvisation.

While the Ul elements described in CHUI may be embed-
ded within GLucK environments, they are a convenient in-
terface, rather than the sole interaction method. We allow
for a wide range of interactive modes for performance.

5.1. Basic Functionality

At its core, GlucK’s most basic use is as a simple wrap-
per to OpenGL, GLU, and GLUT library functions. These
libraries are dynamically loaded per shred, and once con-
text is established, users can call standard OpenGL and
GLU functions in synchrony with their audio code.

5.2. Core Use

Beyond basic GL functions, GLucK provides simplified
windowing calls for creating and managing separate win-
dows, and remaps the GLUT input functions to fit ChucK’s
event model.

5.3. High Level Function

We hope to extend GLucK to serve as a full *vgen’ based
scene graph system, modeled on the same calling expres-
sions used for audio chains. We will also extend support
for manipulation of both stored and live video input as a
media source and for vision-based control methods.

6. AUDIO CHAIN ANALYSIS

The ChucK VM manages a large number of shreds and
objects, many of which exchange data and audio through
objects in shared memory. The audio chain analysis pro-
vides a view of shred activity through the collection of
shared objects that constitute the audio chain.

6.1. Visualization

Figure 4. Visualizing shred activity emanating from re-
spective DACs (larger red and green boxes)

To view the structure of the audio processing chain
within a particular shred, we dynamically generate a graph

similar to those used in Pure Data and other visual pro-
gramming languages to indicate connections and direction
of data flow between unit generators.

For the VM to display activity in multiple shreds, we
manage the graph by considering the aura that would em-
anate from each shred’s particular DAC, as shown in Fig-
ure 4. We generate this aura by flagging a particular audio
element each time it is accessed through a particular shred.
This indication persists according to a decay rate and al-
lows us to render the activity around each element using
the assigned colors of the respective shreds. Control rates
are mapped logarithmically to an intensity scale to indi-
cate rates that could not be displayed or readily perceived
by eye.

6.2. Analysis

Figure 5. Viewing shred activity(red) and audio out-
put(blue) from a selected ugen element)

We can also view the state of a particular member of an
audio chain. In this mode, shown in Figure 5, we allow a
user to “peek” at the output of a particular ugen or group
of ugens. We use the connections from each ugen outlet
to display layers of real-time information, such as ugen
activity, waveform, or spectral information.

7. APPLICATIONS

The Co-Audicle can have a wide range of applications in
music programming, performance and education. In terms
of programming, it enables multiple users to carry out on-
the-fly audio programming together from separate work-
stations. This, in turn, can facilitate massively multi-user
distributed live coding, where users are physically spread
across the globe but programming different parts of the
same system in real-time.

Viewed as a performance, a Co-Audicle concert can be
considered a distributed band or orchestra, with each mu-
sician performing on his own laptop. On another level,
since individual Co-Audiclae are closely connected and
share code and data, the entire Co-Audicle system can be
seen as a single instrument that many performers building

and manipulate together. The resulting collaboration pat-
terns, or how each player contributes to the whole, may
serve as bases and platforms for experimentation in musi-
cal performance.

In addition to synthesizing sound, the Co-Audicle can
also be used for collaborative GUI building. This is re-
lated to both the performance and programming aspects,
as the GUI built in this way can provide the visual aspect
of the performance as well as programmatic control.

The distributed nature of the system also supports long-
distance music education. For example, the teacher and
students can pass code and audio back and forth for live
discussions on music and sound synthesis.

8. CONCLUSION

We have presented a preliminary framework for a collab-
orative audio programming system. The client server and
peer-to-peer paradigms are suitable for different types of
interactions. This is ongoing work. Our design only ad-
dresses a few of the challenges of collaborative audio pro-
gramming. Many challenges including security and better
consistency remain to be resolved.

http://audicle.cs.princeton.edu/

9. REFERENCES

[1] De Campo, A. and J. Rohrhuber. ”Waiting and Un-
certainty in Computer Music Networks”, Proceed-
ings of the International Computer Music Confer-
ence, 2004.

[2] Jorda, S. Faust Music On Line: (FMOL) An Ap-
proach to Real-Time Collective Composition on the
Internet, Leonardo Music Journal 9, 512, 1999.

[3] McCartney, J. ”SuperCollider: A New Real-time
Synthesis Language”, Proceedings of the Interna-
tional Computer Music Conference, 1996.

[4] Puckett, M. Pure Data, In Proceedings of Interna-
tional Computer Music Conference. 1996.

[5] Stelkens, J. peerSynth: A P2P Multi-User Software
Synthesizer with new techniques for integrating la-
tency in real time collaboration, Proceedings of the
International Computer Music Conference, 2003.

[6] Wang, G. and P. R. Cook. ”ChucK: A Concurrent,
On-the-fly Audio Programming Language”, Pro-
ceedings of the International Computer Music Con-
ference, 2003.

[7] Wang, G. and P. R. Cook. ”On-the-fly Programming:
Using Code as an Expressive Musical Instrument”,
Proceedings of the International Conference on New
Interfaces for Musical Expression, 2004.

[8] Wang, G. and P. R. Cook. The Audicle: a Context-
sensitive, On-the-fly Audio Programming Envi-
ron/mentality”, Proceedings of the International
Computer Music Conference, 2004.

	Index
	ICMC 2005

	Conference Info
	Welcome Messages
	Sponsors
	Committees
	Program Guide

	Sessions
	Monday 5, September 2005
	MonAmOR1-Paper Session 1: Frameworks
	MonAmPO1-Demo Session 1
	MonAmOR2-Paper Session 2: History of Electroacoustic Mu ...
	MonAmPO2-Poster Introduction Session
	MonAmPO3-Demo Session 2
	MonPmOR1-Paper Session 3: Automatic Performance Renderi ...
	MonPmOR2-Studio reports
	MonPmPO1-Demo Session 3
	MonPmOR3-Paper Session 4: Sound Synthesis and Analysis
	MonPmPO2-Demo Session 4

	Tuesday 6, September 2005
	TueAmOR1-Paper Session 1: Sound Synthesis and Analysis
	TueAmPO1-Demo Session 1
	TueAmOR2-Paper Session 2: Music Analysis and Representa ...
	TueAmPO2-Poster Introduction Session
	TueAmPO3-Demo Session 2
	TuePmOR1-Paper Session 3: Mathematical Music Theory
	TuePmPO1-Demo Session 3

	Wednesday 7, September 2005
	WedAmOR1-Paper Session 1: Sound Synthesis and Analysis
	WedAmPO1-Demo Session 1
	WedAmOR2-Paper Session 2: Psychoacoustics
	WedAmPO2-Poster Introduction Session
	WedAmPO3-Demo Session 2
	WedPmOR1-Paper Session 3: Systems for Composition and M ...
	WedPmOR2-Studio reports
	WedPmPO1-Demo Session 3
	WedPmOR3-Paper Session 4: Sound Processing and Synthesi ...
	WedPmPO2-Demo Session 4

	Thursday 8, September 2005
	ThuAmOR1-Paper Session 1: Music Information Retrieval a ...
	ThuAmOR2-Paper Session 2: Performance
	ThuAmPO1-Poster Introduction Session
	ThuAmPO2-Demo Session 2
	ThuPmOR1-Paper Session 3: Interactive Music
	ThuPmOR2-Studio reports
	ThuPmPO1-Demo Session 3
	ThuPmOR3-Paper Session 4: General Computer Music Topics
	ThuPmPO2-Demo Session 4

	Friday 9, September 2005
	FriAmOR1-Paper Session 1: Composition Systems
	FriAmOR2-Paper Session 2: Composition Systems
	FriAmPO1-Poster Introduction Session
	FriAmPO2-Demo Session 2
	FriPmOR1-Paper Session 3: Sound Synthesis and Analysis
	FriPmPO1-Demo Session 3
	FriPmOR2-Paper Session 4: Performance
	FriPmPO2-Demo Session 4

	Authors
	All authors
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Papers
	Papers by Session
	All papers
	Papers by Topic

	Topics
	Digital Audio Signal Processing
	Sound Synthesis and Analysis
	Music Analysis
	Music Information Retrieval
	Representation and Models for Computer Music
	Artificial Intelligence and Music
	Languages for Computer Music
	Mathematical Music Theory
	Psychoacoustics, Music Perception and Cognition
	Acoustics of Music
	Aesthetics, Philosophy and Criticism of Music
	History of Electroacoustic Music
	Computer Systems in Music Education
	Composition Systems and Techniques
	Interactive Performance Systems
	Software and Hardware Systems
	General and Miscellaneous Issues in Computer Music
	Studio Reports

	Search
	Help
	Browsing the Conference Content
	The Search Functionality
	Acrobat Query Language
	Using Acrobat Reader
	Configurations and Limitations

	About
	Current paper
	Presentation session
	Abstract
	Authors
	Perry Cook
	Philip Davidson
	Ananya Misra
	Ge Wang

