Study of Music Notation Description Languages

Michael Droettboom

April 26, 2000

First Draft

Abstract

This document compares two music notation description languages,
GUIDO and MUsic DEscription LAnguage (Mudela), and assesses their
suitability for long-term archiving of scanned sheet music. It does not
examine every detail of these languages, (they both have adequate refer-
ence manuals [HH97] [NNMb],) but instead compares their fundamental
concepts. Existing applications that support these languages are also ex-
plored.

1 Introduction

It has been argued that Common Music Notation (CMN) is one of the most
complex notations in existence [Byr94]. Representing the graphically complex
two-dimensional printed score as a one-dimensional string with a very limited
character set is such a difficult problem that, in nearly forty years of research,
a ubiquitous standard has not emerged. Therefore, compromise is inevitable
when selecting a musical representation language. Add to that the concreteness
of application and development support, and the compromises are even greater.
This document examines some of the shortfalls inherent in GUIDO and Mudela
and provides some possible solutions.

1.1 General resources

The book Beyond MIDI [SF97b] is an exhaustive survey of musical description
languages, (though it predates both GUIDO and Mudela). It also includes chap-
ters regarding issues [SF97a] and guidelines [Hal97] for musical codes. Dannen-
berg provides an exhaustive overview regarding music representation [Dan93].
As well, there are at least two good indices of musical codes available online
[Cas00] [Mou00].

2 Background

2.1 GUIDO

Holger H. Hoos originally developed GUIDO [HHRK98] out of the necessity for
a human-readable music description language for the music analysis package
SALIERI [HH99]. Because of its roots in computational musicology, its core
is very clean and free of the messiness of CMN. In partnership with Keith A.
Hamel, and others, GUIDO was extended to support features important to
CMN.

GUIDO is currently defined in two documents: The Basic and Advanced
GUIDO Specifications' [HH97] [HHR99]. The forthcoming Extended GUIDO
Specification is expected to cover unconventional music notation (eg. microtones,
absolute timing, hierarchies.)

2.2 Mudela

Mudela is more closely tied to the practical considerations of typesetting CMN.
It originated as the input language to the TEX-based “music compiler” LilyPond,
by Han-Wen Nienhuys et al [NNMb], and is now also the official language of
the GNU Music Project. Its original form borrowed heavily from the Tilia
representation used by the Lime music editor [CH97] [HB93].

Mudela does not have a formal specification, only a rough user’s guide
[NNMb].

3 An introduction to the basic syntax

Both GUIDO and Mudela are encoded as text and are therefore human-readable
and portable. While GUIDO syntax is somewhat eclectic, Mudela borrows
heavily from TgX.

3.1 GUIDO
GUIDO is elegantly simple. It defines only three categories of atoms:

3.1.1 Notes and rests

These simple atoms are used only for the most basic elements of music notation:
notes and rests. Based on the concept of representational adequacy, they are as
compact as possible: most redundant information can be left out. For example,
when they are ommitted, the octave and duration default to the value of the
previous note.

L At the time of this writing, the Advanced GUIDO Specification was not available. For this
reason, it is impossible to accurately assess the language. Assumptions about the language
are noted throughout this document.

d1*3/4 c#-1/8 h&/6 _*2 c2&&/2 cis/4 fal## sol&0 _8

3.1.2 Ordering

The ordering atoms place objects sequentially ([...]) or simultaneously
({ ... })- A minimal GUIDO file must be enclosed in square brackets to
indicate that the notes appear in sequential order.

eg. [cl/4defgabc2/2] % C major scale®

7 R — —— —
S ———— —

eg. {c e g} % C major triad

3.1.3 Tags

All other elements and properties that modify notes and rests are indicated
using tag syntax. Since tags begin with an escape-character (the backslash ‘\’),
it is always possible to distinguish tags from normal note elements. Tags have
an id (name), zero or more named arguments (in angled brackets ‘< >’) and,
optionally, an associated group of notes (in parentheses ‘()’).

[\repeatBegin c4 d e c \repeatEnd] J Frere Jacques

4l
£a
AN

ii

\clef<’’treble’’> Y, Insert a treble clef
[\beam(c8 d e c) 1 % Double-time and beamed

==

3.2 Mudela

While Mudela syntax is more complex, it should be natural to those familiar
with TEX or I’TEX. Groupings are formed with curly braces ‘{ }’, and escape
commands are preceded with a backslash ‘\’. Mudela makes extensive use of
bracketing: curly braces ‘{ }’ for sequencing, angle brackets ‘< >’ for simultane-
ity, parentheses ‘()’ for slurs and square brackets ‘[1’ for beams.

Anything between white space can be interpreted as an atom, and packages
can be loaded at run time to interpret atoms in new ways. This flexibility makes
the language quite convenient for authors, but very convoluted for language

2Due to problems with the freely-available GUIDO tools, all music notation figures are
produced with Mudela’s LilyPond unless otherwise noted.

implementors. It is essentially a moving target: never fully defined without
external libraries.
There are four “standard” ways in which atoms are interpreted:

3.2.1 Normal mode
A mode in which atoms have meaning only as strings. The purpose of this mode
is unclear.

3.2.2 Note mode

Each atom represents a pitch name. The exact keyword used for pitch names can
be changed by loading different language packages. As in GUIDO, redundant
information is omitted by passing along octave and duration values from one
note to the next.

d2. cs8 \times 1/6 {hf8} r2 c’ff2 cs4

3.2.3 Chord mode

Chords can be built automatically using notation similar to jazz chord notation.
The root of the major chord is followed by any additional, ommitted or modified
scale degrees.

eg. cl c:3- c:9-.56+.7+ c:7" 5.3 c/e c:7/e

3.2.4 Lyric mode

Lyrics mode views each atom as a syllable of lyrics followed by a durational
value.
eg. \lyrics Oh4 say, can you see2 by8. thel6

77—~ Po— —

Oh say, can you see by the

4 Extension framework

If musical information were well understood and fixed, music rep-
resentation would be a much simpler problem. In reality, we do
not know all there is to know and the game is constantly changing.
For both of these reasons, it is important that music representations
allow extensions to support new concepts and structures.

— Roger B. Dannenberg [Dan93]

Both GUIDO and Mudela have well-defined ways to extend the language.

4.1 GUIDO

GUIDO has an XML-like approach to extensions: new features can be added
by using new tags, but the underlying lexical syntax cannot be changed. This
allows legacy or domain-specific programs to ignore unrecognized or unimpor-
tant tags and utilize the remaining information in a GUIDO file. Since the tag
syntax is standardized, it is even possible, in many instances, for an applica-
tion to manipulate recognized elements while maintaining their relationship to
unrecognized tags.

For example, suppose a GUIDO author invented the tag \editorial to
handle editor’s notes.

[b8 e \editorial<’’Handel wrote D-sharp’’>(d2) el]

Now suppose the author wanted to run the file through a program, transpose,
that is unaware of \editorial tags. It might transpose the file up a semi-tone
as follows:

[c8 f \editorial<’’Handel wrote D-sharp’’>(ef2) f1]

Note that the original editorial comment remains intact, even though transpose
is unaware of its meaning.?

4.2 Mudela

Like TEX, Mudela allows the inclusion of macros to extend the language. Unlike
GUIDO’s tags, macros can add arbitrary tokens to the language, or even redefine
existing ones. In common use are the language packages that change the name
of pitches and keywords. For example, if the Mudela author loads the dutch
package, C-sharp is represented by cis, whereas with the english package it
is cs. More complex concepts such as percussion staves are also implemented
as macro packages. Packages are written in the Mudela language itself, (or
embedded Scheme,) meaning that any extension derived from existing elements
can be used by any program that supports Mudela extensions.

5 Human issues
GUIDO and Mudela’s different approaches to syntax affect their human-readability?.

5.1 Brevity vs. clarity

Mudela’s syntactic flexibility is exploited to make the language concise and at
times isomorphic (eg. slurs are ‘()’ and accents are ‘=>’). While this makes

3This this does create an odd error: the editorial comment no longer makes sense in the
context of the transposed key.

4While it is likely that our uses of these languages will be through graphical editors and
end users will never see the description code, the human usability of the language may be
important in future applications.

GUIDO Mudela

(a) Slurs \slur(c d e) c(d) e ﬁ
~

(b) Beams \beam(c8 d e f g) [c8defg] ﬁ

(c) Artic. \accent(c) \stacc(d) | c-> d-. e-- ﬁ
\ten(e) To-

(d) Ties \tie(c2 c8) c2 ~ c8 %
n__
. “——F "
(e) Dynamics | \intens<’’pp’’>(c) c-\pp e \< g P
\cresc(e g) \! c-\ff p<ff

\intens<’’ff’’>(c2)

Figure 1: Comparison of verbal GUIDO vs. isomorphic Mudela keywords.

the language very convenient for authors, it is somewhat opaque for readers.
For instance, it is difficult, without consulting the manual, to determine the
meaning of ‘\!” in Figure 1(d)°.

The meaning of GUIDO keywords is more self-evident, at least to English
speakers: If one knows the widely accepted English term for a musical element,
one already knows the associated GUIDO keyword. This breaks down, however,
when keywords are abbreviated. While some abbreviations, such as \bm, have
equivalent full forms (\beam), others do not, eg. \stacc (staccato) and \oct.
By accepting both full and shortened versions for all keywords, the problem of
forgetting the correct abbreviations could be eliminated. As it stands, however,
GUIDO’s abbreviated keywords are inconsistent.

5.2 Representational adequacy and context-dependence

Both GUIDO and Mudela are based on the concept of representational adequacy.
This implies that the bare minimum of information is required to represent
scores. For example, since notes of a given duration tend to be followed by notes
of the same duration, when a duration value is not supplied, it will default to
the value of the previous note.

Representational adequacy is a great convenience for authors who are enter-
ing scores manually. It can also, in many cases, improve the readability of the
text representations because the reader does not have to wade through redun-
dant information. However, it ties the particular representation of phrases to
their context (location within the file.) Consider the string of GUIDO notes:

defg

5Answer: It ends the hairpin crescendo.

The appearance of these notes after either c4/8 or c2/4 results in an entirely
different interpretation. This makes copy-and-paste score writing precarious.
The problem is made worse in GUIDO by the absence of macro facilities, ne-
cessitating a copy-and-paste style. In Mudela, context dependance is an even
bigger mess because atom interpretation is also dependent on the syntax mode.

6 Implementation issues

The context-dependence of representational adequacy is not a problem for computer-
based parsing. The score can be normalized (fully specified) on input and dis-
tilled (redundancies removed) on output®. The core parser and data structures,
therefore, do not need to be concerned with representational adequacy.

6.1 Parsing

GUIDO’s syntactic simplicity makes parser implementations less complex and
more robust. Only a handful of atom types need to be recognized. This simplic-
ity also allows elegant extensions of the language (see Section 4) and handling
of undefined tags.

While macros add a lot of power to Mudela files, particularly for logical
abstraction (see Section 7), it makes implementation of the language much more
difficult. All packages must be available on the host machine. It would be
difficult to make a “white room” implementation of a Mudela parser since the
exact semantics of Mudela’s macro language is undefined outside of the LilyPond
source code.

7 Logical abstraction

7.1 Logical abstraction in text typesetting

Logical abstraction is commonplace in text typesetting. An author may specify
the logical structure of a document, such as chapter or section headings, without
specifying any visual attributes. This aids in two things:

1. Flexible presentation. The document can easily adapt to different for-
mats. For example, fonts may change if it is used in journals, in books,
on large CRT displays or small palmtop devices.

2. Meaningful searching. If the different parts of the text are marked by
logical meaning, automated searches through a large number of documents
can be more accurate. For instance, you may want to search for an author’s
name only in the “author” field of a number of documents.

6The terms ‘normalized’ and ‘distilled’ are my own. I'd be pleased to know if there are
standard terms for this process in the literature.

Examples of this paradigm in text formatting appear in the ITEX macro pack-
age for TEX [Knu99], style templates in Microsoft Word, the DocBook format
[WM99], Cascading Style Sheets in the HTML 4.0 definition [Bos], among oth-
ers.

7.2 Logical abstraction in music typesetting

Logical abstraction of common music notation is a thornier issue. Donald Byrd’s
PhD. thesis argues the “non-feasibility of fully-automatic high-quality music
notation” [Byr94]. This implies that one cannot leave all issues of visual for-
matting in the hands of the computer, as is often done in text formatting. For
long term archiving of a large number of musical scores, however, it would be
advantageous to store as much logical information as possible in addition to the
necessary visual formatting.

In most cases, GUIDO and Mudela already specify music logically, using
visual overrides only when needed. For example, notes are given as pitch names,
with facilities to move notes if the automatic placement is not adequate.

One of the areas where logical specification is weak is with text. In CMN
music notation, a number of different types of text are in common use: eg.
tempo markings, dynamic expressions, performance instructions, fingerings etc.
In most published music, each of these types of text are usually set in a different
typeface and in a different position on the staff. The exact typeface and place-
ment varies between publishers and between different types of scores from the
same publisher. Another use of logical abstraction in Lime’s Tilia representa-
tion is to specify which text appears on all extracted parts (eg. tempo markings)
and which text appears only with individual instruments (eg. performance in-
structions). For such things to happen, instead of saying something like “this
text ‘Allegro’ is in 12pt bold,” it would be better to say “this text ‘Allegro’ is
in 12pt bold because it is a tempo marking.” Using Mudela macros, this would
be easy: one could define a macro for tempo markings at the head and use it
for all tempo markings throughout the file. In GUIDO, the language could be
extended to support tempo markings, but applications with no knowledge of
them would not typeset them as text. Instead, one would have to use a dual
approach: specifying at both the logical and visual levels.

The advantages of such abstractions cannot be expected to be as great as
they are for text. Byrd has argued that fully-automatic flexible presentation
would be impossible: changing the typeface of all logical tempo markings would
likely break the manual visual layout of the page. Searching would be improved,
however: one could perform substring searches only in tempo markings, ignoring
all other markings. This would be a great asset to a large music database project.

7.3 Bibliographic information

It would also be convenient to store all bibliographic information related to
the score in the file itself. Mudela has a header group in which one can provide
information such as title, opus, composer and editor. An extension of this system

is used by the Mutopia Project [Saw], a database of scores in Mudela format, to
automatically generate web-based catalogues. The GUIDO specification as it
stands does not have such an advanced system”. It only defines tags for author
and title. However, it would be trivial for one to define tags for this purpose
and publish their definitions along side the standard GUIDO specifications.
These tags could even be based on an existing bibliographic file standard such
as BIBTEX to provide interchange with existing publishing and cataloguing
systems.

8 Tools

8.1 GUIDO
8.1.1 Applications

GUIDO NoteServer (Figure 2) [Ren99] displays GUIDO as common music no-
tation inside a web-browser using CGI or Java. At the time of this writing,
it supports most of the Basic GUIDO specification®. It can be used with any
modern web-browser at the Technische Universitét Darmstadt website [Ren99].

GUIDO NoteViewer is the stand-alone version of GUIDO NoteServer for
Microsoft Windows. It is freely available for download, but not open-source.
A present, both NoteServer and NoteViewer are very bug-ridden, producing
very innacurate scores, and their primitive layout abilities are useful only for
the previewing of very simple GUIDO scores.

Salieri is an algorithmic composition and analysis program that uses GUIDO
as its internal data representation [HH99].

NoteAbility is a professional commercial notation program developed by
Keith Hamel [Ham99] [Ham98]. NoteAbility Pro runs on OpenStep and Mac
0S-X and allows fully specified Advanced GUIDO to be imported and exported.
The scaled-down NoteAbility Lite runs on Microsoft Windows and Mac OS and
can export Advanced GUIDO. Importing is limited to Basic GUIDO.

Command-line converters between GUIDO and MIDI also exist.

8.1.2 Development Tools

According to the GUIDO website, last updated in March 1999, the GUIDO
Parser Kit will be available for free download, though the precise form of the
library (i.e. open-source or pre-compiled) is uncertain. The kit has already
been used to implement NoteServer, Note Viewer and NoteAbility’s GUIDO im-
port /export abilities [HHR99]. Almost all of the work of normalizing (i.e. fully-
specifying) a file, such as the automatic inference of bar tags from the meter

"Bibliographic information may be supported in the unreleased Advanced GUIDO Speci-
fication, however.

8Informal experience has shown that it is has creates many graphical errors. (See Figure
2.)

506]

(453 om & @ o
|H ™ Bookmarks . Location: [heep //mp3. 1ti. infornatik. tu-darmstade. de/seripts/salieri/noteserv. pl /| @7 what's Relatedt

v‘ o Wembers g webhail g Connections g BizJournal g SmariUpdate g Midplace
#

l D Music
Notation

[CuIDo + [CUIDO MoteServer Mews] - [NoteServer Samples] « [Mail

The GUIDO NoteServer — Result

[GUIDO Noteserver. Powered by the SALIERL-Project ©.
it ey informatik fu-darmstact. defAF SISALIERI

ping e tETr 2 L Eggt

PGt
W

o
m
Il\rl L)] A

& [H00%

Hear it - GMN-Data
Use this to generate the above picture directly on your website:

Corresponding GUIDO input:

{

[\title<"II"> \tempo<"Adagio">
\staff<1> \clef<"tenor"> \key<-5>
\meter<"4/4"> \i<"p"> \i<"espress'">
\s1(h&0/8 f1 d&2/4)

\grace(c/16 d&) \sl(c/8 h&l c2 d&)
| \meter<"5/4">

\s1(h&0/8 f1 d&2/8. c/32 d& e&/8 d&)
\grace(c/16 d&) \sl(c/8 h&l c2 \grace(e&) d&)

113

Figure 2: Output from GUIDO NoteServer displayed in Netscape Navigator.
Note that there are many errors in the output, despite the fact that this example

was provided by the authors.

10

tag, is implemented as GUIDO-to-GUIDO transformations, greatly simplifying
the task of reading GUIDO files.

8.2 DMudela

8.2.1 Applications

Mudela is the official language of the ambitious GNU Music Project, which aims
to provide a complete suite of open-source music applications including notation
typesetting, sequencing and optical music recognition.

The only GNU Music Project application that currently exists in usable form
is the music typesetter LilyPond. It is a command-line application that converts
Mudela input to TEX [Knu99] output which can then be printed or viewed on-
screen using standard TEX tools. It currently runs on UNIX and Microsoft
Windows, though the Windows port requires large and complex applications
that are not commonly installed (TEX, Python). Unlike MusiXTpX [TME99]
[Ick97] [Sim00] and OpusTEX, which are implemented entirely as TEX macros,
LilyPond is implemented in a combination of C+4, Scheme, Python, TEX and
the Mudela language itself.

There is also an interactive graphical editor for Mudela, Denemo (Figure 3),
which is still in the very initial stages of development. Though graphical, the
music editing is entirely QWERTY keyboard-based. Interestingly, the keyboard
input bears some abstract resemblance to Mudela.

288
File Edit Staff Display Playback Help

n \-"|DiCE 1 & .

1 A 1 b
@‘Z‘ﬁ ™ o

Y

8

Figure 3: Denemo editor showing first bar of J.S. Bach, “Schlummert ein.”

Keyboard input of Figure 3:

g3 a2 g4 4 e2 [Alt]-3 3

Corresponding Mudela input:

g8 af4 gl6 f efd r8 ef

11

8.2.2 Development Tools

LilyPond’s source code is documented such that it could be used as the basis
for parsing Mudela. According to the LilyPond internals document [NNMa], its
parser may someday be distilled into its own library.

9 Conclusion

For the end user who wants to manually read or edit the language, the choice
is perhaps one of personal taste. Mudela’s concise syntax can be learned easily
and in the informal case study of preparing this document, I have found it to
work quite well. In a previous project involving preparing numerous GUIDO
scores, I found its verbose syntax cumbersome at times.

The end user is also influenced by the quality of supporting tools. At present
time, the freely available GUIDO tools are so buggy as to be useless, leaving the
thrifty user or open-source afficianado no choice but to use Mudela with Lily-
Pond. T have not evaluated the commercial GUIDO tools from Keith Hamel’s
Opus One software, but regardless of their design or usefulness, it may be prob-
lematic to embark on an open-source project whose only possible interchange is
with a commercial product.

From the point-of-view of an implementor, GUIDO is a much more elegant
and practical language than Mudela. It is clearly defined and its design ensures
a language stability even as new extensions are devised and enter common prac-
tice. It therefore represents a relatively small initial and continuing investment
from the programmer, especially if the GUIDO Parser Kit is available and works
as advertised.

From the available evidence, GUIDO is the best language for long-term
archiving of scores. The Advanced GUIDO Specification and the GUIDO Parser
Kit will need to be evaluated to ensure that this is in fact the case?. They
will also be required before any GUIDO development can begin. In an ideal
world, GUIDQ’s superior design should ensure that it receives wide-acceptance.
However, in the short term it may be necessary to implement a one-way GUIDO-
to-Mudela converter to provide output for users who do not own NoteAbility.
Some extensions to GUIDO may also be necessary to fully support bibliographic
information and logical abstraction. This may involve adding simple macro
support that does not break the existing extension system. I would also like to
encourage the inclusion of all full names for the abreviated tags in the language.

Due to the limited resources of our project (one programmer over a four
month period) choosing the simple, elegant solution, GUIDO, seems to make
sense, even if the short-term benefits of interoperability may be compromised.

91n a recent e-mail correspondence with Holger H. Hoos, he promised to contact me when
these were available.

12

References

[Bos]
[Byr94]

[Cas00]

[CHO7]

[Dan93]

[Hal97]

[Ham98]

[Ham99]
[HB93]

[HH97]

[HH99]

[HHR99]

[HHRKOS]

[1ck97]

Bert Bos. Cascading style sheets. http://www.w3.org/Style/CSS.

Donald Byrd. Music notation software and intelligence. Computer
Music Journal, 18(1):17-20, 1994.

Gerd Castan. Common music notation and computers. 2000.
http://www.s-line.de/homepages/gerd_castan/compmus/index_e.html.

David Cottle and Lippold Haken. The LIME Tilia representation.
In Eleanor Selfridge-Field, editor, Beyond MIDI: The Handbook of
Musical Codes. MIT Press, 1997.

Roger B. Dannenberg. Music representation issues, techniques, and
systems. Computer Music Journal, 17(3):20-30, 1993.

David Halperin. Afterword: Guidelines for new codes. In Eleanor
Selfridge-Field, editor, Beyond MIDI: The Handbook of Musical
Codes. MIT Press, 1997.

Keith A. Hamel. NoteAbility - a comprehensive music notation
editor. International Computer Music Conference, 1998.

Keith A. Hamel. NoteAbility. Software application, June 1999.

Lippold Haken and Dorothea Blostein. The Tilia music representa-
tion: Extensibility, abstraction, and notation contexts for the lime
music editor. Computer Music Journal, 17(3):43-58, 1993.

Holger H. Hoos and Keith A. Hamel. The GUIDO mu-
sic notation format: Version 1.0. Technical Report 20/97,
Fachbereich Informatik, Technische Universitit Darmstadt, 1997.
http://www.informatik.tu-darmstadt.de/AFS/CM/GUIDO/.

Holger H. Hoos and Thomas Helbich. The SALIERI project. 1999.
http://www.informatik.tu-darmstadt.de/AFS/CM/SALIERI.

Holger H. Hoos, Keith A. Hamel, and Kai Renz. Using Advanced
GUIDO as a notation interchange format. In International Com-
puter Music Conference, pages 395-398, 1999.

Holger H. Hoos, Keith A. Hamel, Kai Renz, and Jiirgen Kilian.
A novel approach for adequately representing score-level music. In
International Computer Music Conference, pages 451-454, 1998.

Werner Icking. MuTgX, MusicTEX, and MusiXTEX. In Eleanor
Selfridge-Field, editor, Beyond MIDI: The Handbook of Musical
Codes. MIT Press, 1997.

13

[Knu99]

[Mou00]

[NNMa]

[NNMb)]

[Ren99]

[Saw]

[SF97a]

[SF97D]

[Sim00]

[TME99]

[WMO99]

Donald Knuth. Digital Typography. Center for the Study of Lan-
guage and Information, Stanford, CA, 1999.

Steve Mounce. Music encoding standards. 2000.
http://www.student.brad.ac.uk/srmounce/encoding.html.

Han-Wen Nienhuys, Jan Nieuwenhuizen, and Adrian Mariano. Lily-
Pond internals. http://www.cs.uu.nl/people/hanwen/lilypond/.

Han-Wen Nienhuys, Jan Nieuwenhuizen, and
Adrian Mariano. LilyPond reference manual.
http://www.cs.uu.nl/people/hanwen/lilypond/.

Kai Renz. GUIDO NoteViewer. Software application, August 1999.

Chris Sawyer. Mutopia project.
http://www.uwaterloo.ca/mutopia/.

Eleanor Selfridge-Field. Beyond codes: Issues in musical represen-
tation. In Eleanor Selfridge-Field, editor, Beyond MIDI: The Hand-
book of Musical Codes. MIT Press, 1997.

Eleanor Selfridge-Field, editor. Beyond MIDI: The Handbook of Mu-
sical Codes. MIT Press, 1997.

Don Simons. PMX: A preprocessor for MusiXTgX. Software appli-
cation, 2000. http://www.gmd.de/Misc/Music/.

Daniel Taupin, Ross Mitchell, and Andreas Egler. MusiXTEX:
Using TEX to write polyphonic or instrumental music. 1999.
http://www.gmd.de/Misc/Music/.

Norman Walsh and Leonard Muellner. DocBook: The Offi-
cial Guide. O’Reilly and Associates, Sebastopol, CA, 1999.
http://www.docbook.org/.

14

