Study of Development Tools for Developing an
Interactive Graphical Optical Music Recognition
System

Michael Droettboom

April 26, 2000

First Draft

Abstract
This document examines four graphical user interface toolkits and as-
sesses their suitability to our needs: the development of interactive, graph-
ical optical music recognition system.

1 Introduction

There are many GUI toolkits available. On UNIX systems, a single standard
has yet to emerge, unlike proprietary operating systems such as Windows and
MacOS. Online, “The GUI Toolkit Framework Page” provides an exhaustive
list of toolkits: past, present and future [Tai].

I have selected four toolkits for intensive study: GTK and friends, Qt, Java
Swing and wxWindows. All of these toolkits are freely available, and some are
open-source. The overall quality is extremely good: All of them have been used
in the development of major applications. Graphical user interfaces have been
around long enough that the basic set of features a toolkit must provide is more
or less standard. It is therefore more useful to examine the fundamental issues
of each system, rather than to perform a widget-by-widget comparison.

1.1 Library hierarchy

Within the general category of graphics toolkits, there is a heirarchy of three
separate levels of libraries that this project requires.

1. Graphics drawing

This is the lowest-level of the three categories. It provides tools for build-
ing complex graphics out of graphics primitives, such as lines, arcs and
characters. This level should not be confused with very-low-level graph-
ics libraries, such as XLib, which deal merely with getting pixels on the
screen.

Since the present project will deal with the difficult and specific problem
of Common Music Notation (CMN), this level is the most critical.

Libraries at this level include Adobe Display Postscript,
GnomeCanvas, Java 2D, Libart, OpenGL (Mesa), QPainter,
TkCanvas and wxPostscriptDC.

All of these libraries can express roughly the same domain of graphics
as Postscript. Of these, only GnomeCanvas and TkCanvas support
structured graphics: treating graphics in terms of live objects rather than
static one-shot drawings on a grid of pixels.

2. Widgets

This is often referred to as the windows, icons, mouse and pull-down
menus (WIMP) level. This level provides the user-interface elements that
are consistent across virtually all GUI applications: listboxes, menus,
textboxes, checkboxes, radio buttons etc. WIMP interfaces have been
around long enough that there is a standard set of widgets that all of the
toolkits reported here provide.

Libraries at this level include GLUI, GTK+4, Qt, Swing, Tk,

wxWindows.

3. Application framework

This is the highest-level. Application framework libraries are designed to
minimize the work of creating complete GUTI applications. This often helps
applications conform to UI conventions, such as automatically creating
pull-down menus with the conventional names in the conventional order.
They may also provide compound widgets, such as wizards, calendars,
spreadsheets or standard dialog boxes for opening and saving files. Some
frameworks include facilities for printing, usually based on Postscript.
An “application command framework” can ease the implementation of
undo/redo. Lastly, application frameworks provide the means by which
applications can communicate to other applications, though often only to
applications created using the same application framework. Though not
strictly necessary for our needs, “if we got ’em, let’s use ’em.”

Application frameworks include GNOME, KDE, wxWindows, and

Java Platform.

While some libraries are “hard-wired” to other related libraries, many can
safely be mixed-and-matched. Tables 1 and 2 show the compatibilities of the
various tools.

1.2 Object-oriented programming and the model, view,
controller paradigm

While the jury on object-oriented vs. imperative languages is still out on some
issues, when it comes to GUI development, object-oriented programming (OOP)

|| GLUI GTK+ Qt Swing Tk wxWindows1|

Display Postscript . ° °
GnomeCanvas °

Java 2D °

Libart °

OpenGL (Mesa) . . o . .

QPainter °

TkCanvas °
wxPostscriptDC °

Table 1: Compatibility matrix of graphics drawing libraries to widget libraries.

| GNOME KDE wxWindows Java Platform |
GLUI ° °
GTK+ °
Qt °
Swing .
Tk
wxWindows °

Table 2: Compatibility matrix of widget libraries to application frameworks.

is the obvious choice: It is very natural for visual objects to inherit properties
from other visual objects.

Note that OOP is a programming style, not a language feature. One could
write in an object-oriented style in any language. However, for OOP to be truly
useful, the language syntax needs to be expressive and convenient [Swi93].

The most powerful use of OOP in GUI progamming is to support the model,
view, controller (MVC) paradigm. In an MVC application, every object is either
a model (internal data representation), view (displays the model to the user) or
controller (allows the user to manipulate the model). When the user engages
a controller, it sends a message to its associated models. The models, in turn,
send messages to their associated views. The power of the system is in the ways
multiple models, views and controllers can be inter-related. In a music editor,
there might be two different views of the same score showing: one in full score
and one showing just an extracted part. Changes to one will automatically affect
the other. One could also have multiple controllers operating on the same model:
the MIDI keyboard, QWERTY keyboard and mouse could all manipulate the
same data.

One of the considerations in selecting a GUI toolkit is how well is supports
OOP and the MVC paradigm.

1.3 Programming methodologies

An increasingly common method of GUI development is to implement high-
level features in a high-level dynamic scripting language, such as Python or
Scheme, and implement low-level, performance-critical features in a system lan-
guage such as C. This is often referred to as Rapid Application Development
(RAD). Software developed in this style tends to be more flexible, have fewer
bugs and be delivered sooner [Lut97]. The penalty in performance is minor in
GUI front-ends, where most of the time is spent waiting for the user. In applica-
tions where the fundamental data structure is highly dynamic and heterogenous,
performance can often increase by using a well-implemented scripting language
[Lut97].

A real-world case study in this methodology is the UNIX vector graphics
program Sketch by Bernhard Herzog [Her|. “Sketch is written almost completely
in Python, an object oriented interpreted programming language. Python can
easily be extended by modules written in C to increase performance and Sketch
uses this fact to implement some time critical functions and Python objects in
C.” The original version used the Tkinter GUI toolkit, (which adds an additional
layer of Tcl scripting!) though the current development version is written for
GTK+. The program speaks for itself: it works and performs well. If that
isn’t enough, Herzog wrote an illuminating and convincing report about his
experiences with this methodology [Her].

A compromise to RAD, when performance is paramount over flexibility, is
Rapid Prototyping. In this methodology, a prototype of the system and its
important algorithms are first written in a flexible, dynamic scripting language
and then transitioned to a systems language. In this way, all logical bugs in
the algorithms can be found easily and without the complications of debugging
compiled code. Using a GUI toolkit that can be used identically in both settings
would greatly ease the transitioning.

Support for scripting languages would be a major asset to our choice of GUI
toolkit.

1.4 Building dialog boxes

All of the toolkits here have interactive dialog builders, some better than others.
The use of such tools is a matter of personal taste. Personally, I prefer coding
dialog boxes manually: I find it makes them easier to update. To aid in that
approach, all of the toolkits here also support automatic reformatting of dialog
boxes when they are resized.

2 The toolkits

This section examines each family of toolkits in turn, discussing history, licens-
ing, portability, documentation, support and language issues. A summary is
presented in Table 3.

2.1 GNU Tools

GNU Network Object Model Environment (GNOME) [GNO], Gimp Toolkit
(GTK) [GTK] and Libart are all officially part of the GNU’s Not Unix (GNU)
[GNU] project. GTK+ was originally developed for the widgets in the Photo-
shop clone, The GNU Image Manipulation Program (Gimp). It was later chosen
as the official widget library for the GNOME project. GNOME aims to create
an open-source desktop environment for UNIX2. Real-world applications devel-
oped using these tools include the Gnumeric spreadsheet, Gimp and Sketch. In
recent years it has become the standard among open-source afficianados.

While GTK+ has been ported to Microsoft Windows, GNOME and Libart
currently only compile under UNIX.

I’m running Microsoft Windows, can I get GNOME?

Currently the answer is no, GNOME hasn’t been ported to the Win-
dows platform, there is an effort going on to make such a port possi-
ble. If you really really need a version for Windows, count on doing
lots of work and coordinating with related efforts.

Tor Lillgvist has been porting several graphical libraries used
by GNOME to the Win32 (Microsoft Windows 95/98/NT)
platform. More info on his efforts can be found at
http://www.gimp.org/~ tml/gimp/win32. He’s already ported glib,
gtk+, gdk_imlib, and a few other libraries involved in generating
graphics to Win32.

His goal is to get Gimp working fully on the platform (it already
works partially), but his work brings GNOME much closer to being
portable to Windows. A number of GNOME applications need just
his libraries (possibly with some more debugging), libpng, gnome-
libs and ORBit. If someone were to port these, many GNOME
applications could be compiled and run on Windows. [From the
GNOME FAQ.]

The GnomeCanvas, for structured graphics, is based on Libart, which would
be very difficult to port because it is so heavily optimised for the X-Windows
client/server model. Note also that no ports to MacOS have even been discussed.

GNOME and GTK+ are distributed under the Lesser GNU Public License
(LGPL)3. This allows developers to freely use its source-code for open-sourced
or commercial products. However, all modifications to the library itself must
remain open-source.

The documentation of is rather patchy. While a great tutorial introduction
exists [Pen99], The GNOME Reference Documentation Project is just getting
started. As with most open source projects, the only real source of information

21n this document, ‘UNIX’ refers to all UNIX variants currently in wide-spread use, Linux,
Solaris, AIX, IRIX etc., running X-Windows.
3T’m not a lawyer, so I stand corrected on any of this licensing stuff

is mailing lists and newsgroups. Commercial support is available from Helix
Code and RedHat Labs.

GTK+ and GNOME are written in a controversial proprietary object-
oriented style of C. Not only is this style a major coding headache compared to
proper object-oriented languages?, it is less efficient than C++ since all object
types are dynamically bound. The only advantage of the system is the ease with
which support for new languages can be added. In fact, the number of supported
languages is unparalleled: All the important ones are there, (C, C++, Python,
Scheme, Perl) as well as some more esoteric ones (Pike, Haskell, Ada95, Eiffel
etc.). Full GNOME, however, can currently only be used with C, C++, Python
and Scheme. GTK-, adds proper C++ object-orientivity to GTK. MVC is not
built-in to the system and would have to be implemented manually.

2.2 Qt and KDE

Q Toolkit (Qt) [Qt], from Troll Tech, began as a commercial toolkit for cross-
platform development. It is the official widget library of K Desktop Environment
(KDE), a project to create an open-source desktop environment for UNIX.

After years of pressure from users and heated competition with GNOME,
Troll Tech has released the UNIX version of the Qt source-code under a re-
stricted open-source license. The ‘QPL’ allows use of the Qt source-code by
developers of other open-source software. All modifications to the source code
become the property of Troll Tech. In the event that Troll Tech discontinues
their support of Qt, Qt will fall under the open BSD license. The Microsoft
Windows version of Qt remains a commercial product, costing $1550 USD.
Portability is achieved by drawing all widgets directly, rather than relying on
“native” widgets. Qt also abstracts non-graphical operating system features to
ease porting across platforms.

Real-world Qt applications include an entire office suite, KOffice, and
Netscape Communicator 4.x.

Since Qt is maintained by a private company, the documentation is clean
and thorough. Commercial support is also available.

Qt is written in C++, but requires a special preprocessor to handle its unique
and convenient event system. This is not a problem in UNIX, where it is easy to
preprocess source code before compiling, but adds some headaches when using
Microsoft Visual C+4. MVC is intergral to the design of Qt. PyQt adds Qt
support, to Python.

2.3 Java

Java [JFC] is very well-suited to networking and cross-platform development.
It’s original GUI API, the Abstract Windowing Toolkit (AWT), took a lowest-
common denominator approach to cross-platform compatibility, and thus was
not very powerful. The new Swing API, is one of the most powerful and flexible

4 A point was made on the on-line tech-news site, Slashdot, that one could write in object-
oriented assembler, but that doesn’t make it right.

GUI toolkits ever created. The lower-level API, Java 2D was developed jointly
by Adobe and Kodak. It runs identically, including look-and-feel, on all plat-
forms with a Java 1.2 virtual machine. This currently includes UNIX, Microsoft
Windows and MacOS.

All of the development tools necessary to use Java Swing are freely avail-
able. The source-code was recently made available after complaints that Sun
Microsystems was exercising too much control over Java.

A good example of a complex JFC application is Borland’s JBuilder 3 IDE,
written entirely in open-sourced Java.

The documentation is excellent, and there are loads of third-party books on
the subject. Support is available from Sun Microsystems and IBM.

The well-designed Java language itself is probably JFC’s biggest asset and
biggest liability. It is the most flexible of all the tools reviewed here because
of the ways Java allows you to build object heirarchies. MVC is fully utilized
throughout the system, but is optional. Scripting of JFC is also available by us-
ing JavaScript or JPython. However, interest in Java has wained in recent years
due to its poor performance and the increasing control of Sun Microsystems.

2.4 wxWindows

Like Qt, wxWindows also aims to be a cross-platform solution. It began as an
experiment in 1992 by Julian Smart at the University of Edinburough [wxW].
Unlike Qt, it only provides thin wrappers around other widgets: Under UNIX,
it uses GTK+ widgets. On Microsoft Windows and MacOS it uses the standard
“native” widgets. In its initial release, wxWindows was plagued with the same
problem as Java’s AWT: it only supported widgets that were common across
all platforms and it was difficult to inherit from and modify them. Release
2 changes all that, with additional widgets implemented from scratch where
necessary. Like Qt, it also abstracts basic operating system features across
platforms.

wxWindows is fully open-sourced under the LGPL.

JAZZ, a MIDI sequencer for Linux, was implemented using wxWindows.

The documentation is complete, if at times too concise. There is no official
support available, only mailing lists.

wxWindows is written in and supports pure C++. It uses the Document-
View model, a Microsoft bastardisation of MVC. wxPython provides Python
support.

2.5 Side option: OpenGL

OpenGL[Ope] is a graphics library specification from Silicon Graphics. While
commonly used for 3D graphics, OpenGL can handle sophisticated 2D graphics
just as well.

Mesa is an open-source implementation of OpenGL licensed under the GNU
Public License (GPL).

GLUI is an open-source widget set that uses OpenGL as its rendering engine.

| || GNU | Qt | JFC | wxWindows
License LGPL QPL (UNIX); $ | Sun Source LGPL
(MSWin)
Platforms UNIX; MSWin | UNIX; MSWin UNIX; MSWin; | UNIX; MSWin;
(GTK+ only) MacOS MacOS
Case studies: Gnumeric, Gimp, | KOffice, Netscape | Borland JBuilder 3 | JAZZ
Sketch Communicator
Documentation Incomplete Superb Superb Adequate
Support
Mailing list YES YES YES YES
Newsgroup YES NO YES NO
Commercial Helix Code; Red- | Troll Tech Sun, IBM NO
Hat Labs
Language
Base language C with object- | C++ Java C++
oriented style
Systems languages Ada95, C, C++, | C++ (with propri- | Java C++
Eiffel, Objective-C, | etary preprocess-
Pascal ing)
Scripting languages || Scheme (Guile), | Scheme (Guile), | JavaScript, Python
JavaScript, Perl, | Python JPython
Python
MVC NO YES YES YES

Table 3: Summary of GUI Toolkits

As much as the potential is there, I could not find a single reference to a 2D
graphics application written using OpenGL.

3 Conclusion

If portability beyond UNIX is not required, GNOME/GTK is the best choice, if
only for GnomeCanvas’ structured graphics. Some annoyances remain, such as
poor documentation, a silly object-oriented syntax (which can be avoided with
GTK-), and lack of built-in MVC.

If portability is required®, JFC and wxWindows are both excellent choices.
Their lack of structured graphics, however, means a lot more effort would be
involved in implementing the core notation engine. Experiments with embed-
ding the GnomeCanvas in wxWindows look promising, but do not change the
fact that GnomeCanvas is inherently difficult to port.

Qt has no advantage over the other toolkits, particularly due to its price.

References

[GNO] Gnome website. http://www.gnome.org/.

[GNU]

Gnu project website. http://www.gnu.org/.

5MacOS$ support would be useful if we choose GUIDO as our music language and wish to
interface with NoteAbility Pro.

[GTK]
[Her]

[JFC]
[Lut97]

[Qt]
[Swi93]

[Tai]

[wxW]

Gtk+ website. http://www.gtk.org/.

Bernhard Herzog. Sketch drawing program.
http://sketch.sourceforge.net/.

Java foundation classes website. http://www.java.sun.com/jfc/.

Mark Lutz. Programming Python. O’Reilly and Associates, Sebastopol,
CA, 1997.

Opengl website. http://www.opengl.org.

Havoc Pennington. GTK+/Gnome Application Development. New
Rider, Indianapolis, IN, 1999. Open-source, available on-line.

Troll tech website (home of qt). http://www.troll-tech.com/.

Robert Switzer. Eiffel: An Introduction. Prentice Hall Object-Oriented
Series. Prentice Hall, 1993.

Andy Tai. The gui toolkit, framework page. web page.
http://www.geocities.com/SiliconValley/Vista/7184/guitool.htm.

wxwindows website. http://www.wxwindows.com/.

