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This rescarch examines the feasibility of implementing an optical music score recognition system on a
microcomputer. Projcction technique is the principal method employed inthe recognition process, assisted
by some of the structural rules governing musical notation. Musical examples, excerpted mostly from solo
repertoire for monophonic instruments and representing various publishers, are used as samples to develop
a computer program that recognizcs a sct of musical symbols. A final test of the system is undertaken, in-
volving additional samples of monophonic music which were not used in the development stage. With these
samples, an average recognition rate of 70% is attaincd without any operator intervention. On an IBM-AT-

compatiblc microcomputer, the total processing time including the scanning operation is about two minutes

per page.



Cette recherche étudic la possibilité d’'implanter un systéme de reconnaissance optique de partitions
sur micro-ordinateur. La projection constitue la principale méthode d’analyse, quoique guidée par cer-
taincs régles de notation musicale. Un logiciel a é1é développé permettant de reconnailtre les principaux
symboles musicaux rencontrés dans des picces publiées chez divers éditeurs et écrites, pour la plupart, pour
instruments monodiques. Des exemples musicaux non utilisés 4 la phase du développement ont permis
d’obtenir un taux de reconnaissance de 70%, et ce, sans intervention humaine. Le temps total d’analyse
d'unc partition, sur un micro-ordinatcur de type IBM-AT, est d’environ deux minutes par page, incluant le

temps de lecture optique (scanncr).



Chapter 1

Introduction

Current vigorous developments in the arcas of computer-assisted music composition and sound synthe-
sis, together with successful recent designs of generative grammars for music production, have proved the
applicability of computers to music. In one important arca, however, there have been severe limitations:
ever since its beginnings in the late 1940%, computer-assisted music score processing has been hampered by
the lack of a fast and reliable system for computer recognition of music scores. Most rescarch projects have
resorted to time-consuming and crror-prone hand methods of encoding musical notation. Experiments with
optical scanners in the late sixtics were successful in principle but never reached a stage where implemen-
tation would be practically or cconomically feasible Recent progress in Japan and Korea involves expen-

sive technology and is not expressly directed towards musicological rescarch.

A practical and relatively inexpensive optical music recognition (OMR) system would allow a revitali-
zation of computer-assisted rescarch in musicology and, at the same time, simplify many tasks in music cr-

formance. Potential application arcas include the cstablishment of large music databasces for information
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retricval and rescarch; scorc-based analysis of musical structure and style; score cditing for reprint, revi-

sion, and preparation of performance materials; and re-coding for Braille printing,

The basic task of an OMR system is to convert the score into a machine-readable format by means of
an optical scanncr, the digitized image 15 then analyzed to locate and identify the musical symbols. Deter-
mining the feasibility of implementing an OMR program on a microcomputer with an inexpensive desktop
optical scanner is the primary goal of the present rescarch. One major difficulty here is that, in general, ma-
chinc pattern recognition processes require large computer resources, for example, a single page of
scanncd music may contain more than one million bits of information. In order to analyze this data in a rea-
sonable amount of time using a small computer, stratcgics must be devised to reduce computation time.

The principal method proposcd and investigated in the present thesis is the use of projections.

Projections essentially transform the two-dimensional scanned image into onc-dimensional data, thus
reducing the amount of data to be exanuncd. The assumption is that, because of the distinctive features of
cach musical symbol, the reduced data retain sufficient information to locate and to help identify the target
symbols The use of projections for OMR has the additional advantage of minimizing the interference pro-
duced by the staff lines Since most musical symbols are superimposed on the staff, separation of the in-
dividual symbol from its bachground usually poses some difficultics (Prusslin 1966; Prerau 1970).
Projections have been used in other rescarch, such as Chinese character recognition; nevertheless, cxten-
sive use of projections for music recognition has not been reported. To further reduce computation time, a

prion structural knowledge of music notation is utilized.

Music scores rely on certain syntactical and semantic principles for cffective communication. Some of
these rules can be incorporated into the program to provide a more cfficient and reliable recognition sys-
tem. For example, the existence of a bar line is deducible from the total duration contributed by the notes

and rests contained in the bar, Conversely, bar lines may be used as error-detecting devices. Because ex-
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isting studics on the structural rules of notation as they apply to OMR are limited and fragmentary, only a

small subset of these rules is utilized in the current program,

Since the present rescarch is meant to serve as a pilot study, the current software implementation is
subject to other limitations. The ability of the program to differentiate symbols is restricted to a subscet of
the symbols found in common musical notation. This subsct includes clefs, accidentals, notes, and bar hines
While the section of the program that locates the staves on a page may be used for a wide variety of scores,
the main portion of the program, devoted to identifying individual symbols, currently works only for music
written for a single, monophonic instrument The latter restriction is not critical since a complete OMR sys-
tem will contain a number of subprograms, cach specifically designed to analyze a certain type of score,
furthermore, expericnce gained from monophonic scanning will be immediately applicable to the more

complex situation found in polyphonic scorcs.

The details of the recogmtion techmigues are explained in Chapter 3, various music printing methods as
they affect OMR arc studied in Chapter 4, and Chapter 5 contains a general deseription of the soltware
The results of software tests are given in Chapter 6. To provide some background, previous rescarch on

music input to computers and possible applications of the OMR system are reviewed in the next chapter,
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Chapter 2

Background

2.1 Non-optical input methods

Although the patential of computers in the ficld of music has been recognized since the late forties, the
difficultics associated with entering the music data into the machine have slowed the development of musi-
cal applications, Within the last thirty years, there have been several attempts to devise practical music input

systems; the most important of these are reviewed below.

2.1.1 Alphanumeric

The carliest approach was to encode music notation into alphanumeric codes; currently, the most
widely used among these appears to be Stefan Bauer-Mengelberg’s “Digital Alternate Representation of
Musical Scores” (DARMS; Erickson 1976). Development of the DARMS project has been slow since its in-
ception; nevertheless, the sysiem is capable of coding almost any type of standard musical notation. Two
major disadvantages of alphanumeric encoding systems are that they are extremely time-consuming, and

they are error-prone. A project of encoding 60¢ pages of Josquin Masses, undcrtaken at Princeton Univer-
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sity and using an input language called Intermediary Musical Language, was estimated to have tahen some
800 hours plus proofreading (Lockwood 1970, 20). Another drawback of these methods is that a certain
amount of training is required to learn the encoding system. Other major alphanumeric encoding, systems
include Pline and Easie code, MUSTRAN, Oxford Music Processor, and Leland Smith’s MSS (Brook

1965; Brook 1970; Hewlett and Sclfridge-Ficld 1987, 1-22; Smith 1973).

2.12 Graphic

The second method is graphic input, where the user selects the appropriate predefined music symbol
from a menu shown on thic computer screen, and places it on the stafl using a pointing device such as o
mouse. (Cantor 1971; Mcreuri 1981a; Mcercuri 1981h; Buxton ¢t al. 1981; Yavclow 1985) This method
works well if the music is relatively short and simple, otherwise the task can become very tedious. Yel, this
is probably the most practical method for inputting any new music that has not been printed Currently,
there is a wide varicty of commercial softwarc available for microcomputers, including Professional Com-
poscer, Jim Miller’s Personal Composer (Miller 1985), and Keith Hamel’s Musprint and MusScnbe,
Hamecl’s programs contain a time-saving option, whercby the user can “draw” simplificd musical symbols
with the mouse. Many of these programs allow the user to play back the score through MIDI (Musical In-

strument Digital Interface), which is an excellent means of error checking,

2.1.3 Clavier and MIDI

The use of a piano-like keyboard (clavicr) attached to a computer offers an apparently cificient method
of input (Raskin 1980a; Raskin 1980b; Talbot 1983). The user plays the music on the keyboard to transler
the information to the computer. With the advent of MIDI, input via instruments other than the keybourd,
such as guitars and wind instruments, is now possible. One disadvantage of this method is the loss of some
vital information such as chromatic orthography, slurs, stem directions, and voice assignments The rhythm
of the encoded music is often inaccurate since the process involves a human performer. In many systems of
this type the user can specify the types of durational values contained in the music to minimize thythmic cr-

rors.
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2.14 Combinations
Somec systcms cmploy a combination of the methods already described. Smith’s MSS, for instance, ac-

cepts alphanumeric codes which can be edited on the screen (Smith, 1973), and Xerox’s Mockingbird sys-
tem has clavier input but also allows interactive cditing (Maxwell 1984). Much microcomputer MIDI-based

softwarc also has capabilities for modifying scorcs generated by MIDI input.

2.5 Digitized sound
The use of a digitized audio signal as input has also becn attempted (Moore 1979; Piszczalski et al 1981;

Chafe ct al 1982; Foster ct al 1982; Imai 1984; Piszczalski 1986). There are reports of reasonable success
with monophonic music, but the task of decoding polyphonic music seems virtually impossible with present
technology. Should this approach eventually give rise to a functioning method of score-conversion, the
problems related to clavier input would still apply. Another disadvantage of this method is that it requires a

powerful computer to process the immense amounts of data involved (about one million bits per second).

2.2 Previous research on OMR

A system involving an optical scanning device theoretically provides a complete, accurate and fast
mcthod for scorc input. The advantage of such a systcm was recognized as early as 1963 when Michael
Kassler designed an hypothetical OMR machine named M (Kassler 1970). Unfortunately, due probably to
the high price of scanncrs and a fairly small market, very little rescarch followed this initiative. Recent dra-
muatic reductions in the price of both computers and scanners, however have made the development of an
OMR system an catircly realistic prospect, especially since this method offers many advantages over other
types of input methods, and since there is a wide variety of applications which could benefit from these
advantages. The users of an idcal OMR system would need no special training, complex human-readable
cncoding schemes need not be devised, and the system would be able to acquire all the information needed

to reproduce the scorce faithfully.
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2.2.1 Prusslinand Prerau

Despite the extraordinary potential of optical recognition of music, research into this area has been
limited, until very recently, to two MIT doctoral dissertations: those by Prusslin (1966) and Prerau (1970),
Because both were committed to the use of contour-tracing technique to segment the symbols, the staff lines

became a considerable obstacle. Thus the bulk of their cnergy was devoted to solving this problem,

While Prusslin solved the staff line problem by removing all thin horizontal lines, his repertoire of sym-
bols was limited to quarter-notes and bcamed note groups. Also, the input to his system was restricted to

samples consisting of one mcasurc of rciatively simple piano music.

Unfortunately, as Prerau found out, Prusslin’s technique for removing the staff lines did not work when
a larger set of symbols was to be recognized (Prerau 1970, 42). In order to isolate the symbols Prerau effec-
tively removed the staff lines by contour-tracing the entire staff; this also meant crasing portions of the sym-
bols that intersect with the staff lincs. These “holes” were then filled in order (o restore the musical symbols,
After the segmentation process, the width and the height of symbols were used, along with musical syntax
rules, for identification. Prerau chose Mozart’s Twelve Duets for Two Wind Instruments K. 487, published by
Breitkopf & Hirtel, as his source music. Two to three measurcs of both parts were used as samples to
develop the program which recognized clefs, certain time signatures, rests, accidentals, and notes. The
music used for the test run consisted of a few samples (about twenty measures) taken from the same source
and containing a total of 137 symbols, which the system correctly recognized. The time required to process
each sample (cquivalent to four to six mcasurces of solo music) averaged about four minutes on an IBM
mainframe. In a 1972 review of these two disscriations, Kassler remarked that:

... as aresult from their work, the logic of a machine that “rcads” multiple parallel staffs

bearing polylyncar(sic] printed music in at Icast one “fount”[sic] and size can be scen to
be no further than another couple of M.LT. dissertation away. (Kassler 1972).

No such dissertation has appcarcd from M.LT. or clsewhere.
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222 Others
Morc recently, a few papers on computer recognition of music have appeared, originating from Japan

(Ohteru 1985; Tojo 1982) and Korea (Lee 1985). The most impressive of these describes the Tsukuba
Robot, which “rcads” a page of keyboard music in about fiftcen seconds, then performs it on an electronic
organ using mechanical fingers and fect. The total development cost of the robot is estimated to be over two

million dollars (Roads 1986).

The 1987 cdition of the Directory of Computer Assisted Research in Musicology reports, without much
detail, on rescarch related to OMR conducted by Nicholas Carter (University of Surrey, Guildford, UK),
Bernard Mont-Reynaud (Stanford University), Henry Baird (AT&T Bell Laboratories), Brad Rubenstein
{Sun Microsystems and University of California, Berkcley), Peter Preston Thomas (University of Ottawa),
Neil Martin (Thames Polytechnic, London), and Alastair Clarke (University of Cardiff) (Hewlctt and Self-

ridge-Ficld 1987, 81-84).

2.3 Applications

Oncc the music scores have been stored in the computer, the data can be used by a wide range of ap-
plications. For musicologists and theorists, the computer can perform various useful and interesting tasks.
These include scorc-based structure and style analysis, statistical validation of certain musical theories,
creation of indices, thematic or otherwise; and the publication of reprints, revised editions, and critical edi-
tions. 1t is likely that the system wilt also encourage researchers to develop new analytical methods, appli-

cable only with the assistance of computers.

There are also many possible applications for performers and conductors. Time-consuming tasks such

as transposing music, creating parts from a score, making a piano reduction, or customizing scores for opera
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production, would be facilitated by the usc of computers. If the system reaches a point where it can recog-
nize handwritten music, it can also assist composers in publishing high quality scores at a much lower cost

than presently possible.

Perhaps the most important conscquence of the present rescarch is that the OMR system makes
possible the establishment of large databascs of music. Such databases would become an essential resource
for most music research, including studics in pereeption and cognition. There is also an urgent need for an

inexpensive method of transcribing ordinary music notation into Braille.




Chapter 3

Pattern recognition

3.1 An Overview

The genceral goal of image pattern recognition is to analyze a given image, which may consist of text, pic-
turcs, biomedical imagcs, three-dimensional physical objects, or electrocardiograms, and recognize its con-
tent. There is no unifying theory available that can be applied to all kinds of pattern recognition problems,
most techniques being problem oriented. The overall process can usually be divided into four stages: pre-

processing, scgmentation, fcature extraction, and classification (figure 3.1).

Preprocessing Segmentation Ei;ter:tcl{{gn Classification

Figure 3.1 Ovcrall image processing system.

10
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Preprocessing involves the elimination of random noisc, voids, bumps, isolated pixels, breaks, and other
spurious components. Various equalization and filtering methods exist to perform the desired task, Al-
though preprocessing is a standard proccdure in other arcas of image processing, it is excluded from the
present recognition system in order to investigate the possibility of climinating this step altogether on OMR
systems. If this step can be climinated without degrading the recognition capability, the processing speed of
the system will be improved since preprocessing normally requires a large amount of compating time. The
removal of the preprocessor is not totally unrealistic, for scores are read accurately by performing musici-
ans, This suggests that the scores are sufficicntly clear of blemishes, and there already is a high contrast be-

tween the musical symbols and the background.

Image segmentation locates and bounds certain arcas that may contain the target objeets. The sepa-
rated components are then interpreted and recognized through higher-level processes. There are two major
approaches to image segmentation: cdge-based and region-based In edge-based methods, local discon-
tinuities (for example, a sudden change in the colour of the image) are detected first and then connected to
form completc boundaries. In region-bascd methods, arcas of the image that have homogencous propertics

are found, these in turn give boundarics.

For each boundcd arca, a sct of feature measurements and relations amongst these measurements are
extracted to establish the distinctive propertics of pattern classes. In certain applications, such as optical
character rccognition and OMR, it is best 1o extract those features which will enable the system to discrim-
inate correctly onc class of symbols from all other classes Examples of features include physical measure-
ments such as width and height, distribution of points, and symbol outline. In the present rescarch
projection technique is uscd both for segmentation (combining cdge-based and region-based methods) and

feature extraction.

"
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Once the distinguishing fcatures have been extracted, they are matched to a list of references or a
knowledge-base for classification. In addition, other techniques may be used, such as distance measure-
ments, shape deviation, shape matching, and hicrarchical feature matching in the form of decision trees.
Currently, a sct of decision trees is implemented in the software using a predetermined set of features. Some
theorctical background to the pattern recognition techniques used in the present research will be given

ncxt.

3.2 Projections

Projections arc widely used for medical applications to reconstruct an object, such as the brain, using
scrics of projections taken at diffcrent angles (Herman 1979). This reconstruction technique is also used in
other ficlds, including radio astronomy (Bracewell 1979) and pollution control (Stuck 1977). In addition,
projections have been used for shape analysis (Pavlidis 1977) and for segmentation, in particular fer
Chinese characters recognition (Nakao ct al. 1973; Ogawa and Taniguchi 1979) and face recognition

(Kanade 1977).

Since musical notation contains a relatively large, dark, and compact set of symbols of fixed size and
oricatation, projections become a powerful tool in the present recognition system. In addition, due to the
inscnsitivity of projections to uniformly distributed random noise, the problem of isolating symbols from

staff lincs is minimized. Projections arc used both for segmentation and for shape analysis of the symbols.

The generalized projection transform for the two-dimensional case is:

[Rg](s, 8) = [ g(s cosd-u sin@, s sin® + u cosd)duu.

12
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The so-called Radon transform of g (x, ¥) at (s, 8) is the integral of g along a linc which passes through the
point (s cos@, s sin8) with slope -ctn® (Herman 1979, 81-104). The two cases of special interest here arce

when 0 is 7 and &/2, which give the projection onto a line parallel to the x- and the y-axis, respectively:

[Rgl(s, 0) = fg (s, 1e)du and  [Rgl(sw/2) = fg (u, s)du.

In the discrete case, given P, j) of am x n digital image, the cquations above become

XG) ='_3:°P () O<ism and Y()=2PGj) 0 sj s n
The two forms will be referred to as x-projection and y-projection, respectively. If the image contains only
black and white pixels (bi-level), the projection is calculated simply by counting the number of black points
along a certain dircction. A program listing of a C-language function to calculate the x-projection of a rec-

tangular bi-level image arca is given in figure 3.2, Sce also figure 3.3 for a pictorial example.

void x_projection(
char**image,

int  *xproj,
int nw_row, int nw_col, /*top left corner */
int se_row, int se_col) /* bottom right corner *
/* returns the projection onto the x axis of area defined by */
/* (nw_col, nw_row) and (se_col, se_row) inclusive of the image */
/* WARNING: no boundary check 1s performed */
inti =0,
int row, col,

for (col = nw_col; col < = se_col; col+ +,i++)

xprojli}] = 0;

for (row = nw_row; row < = se_row; row+ +}
it (limage[row][col]) /*0 = black, 1 = white */
xproj [i] + +;

Figure 3.2 X-projection function

13



Chapter 3 — Pattern recognition

Figure 3.3. An cxample of x-projection

Whilc only these two values of 6 are used in this work, other values can be employed. Nakao (1973), for
example, uses diagonal projections, with @ = 5/4 and 37/4. Another variation of the technique, though not
implemented, is to keep track of the discontinuitics or the holes in the picture when taking the projection,

as investigated by Pavlidis (1977, 150-54).

After the projection is obtained, it must be analyzed to extract useful information. There are many
methods available for this process since it falls within the domain of waveshape analysis (Pavlidis 1980).
Certain features such as width, height, and arca of the projection profiles (which can be easily calculated),
arc used to determine the presence and position of a symbol, and also to narrow the choices in identifying
the target symbol. To obtamn other features, a Fouricr transform ~an be taken to examine the amplitude
spectra (Nakano ct al. 1973) or derivatives can be calculated (Levine and Leemet 1975). The former tech-
niguc is not implemented because of the computation time required. The derivative, however, is used cxten-

sively to find the maxima in the projection.

14
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3.3 Locating the maxima

Two steps are required to locate the maxima. First, the derivative is calculated, then the points whers
the resulting function intersccets the x-axis, called the zero-crossings, are determined. To obtain the deriva-
tive a simple approximate diffcrentiation formula,

Df(x) =lf(x+ D)-f(x-1]/2,
which is widely used in practice, was found to be sufficient for the present needs. Next, the slope function is
scanned for a change in the sign. Since this method will focate both maxima and minima, an algorithm was
devised so that only those zero-crossings whose original functional value exceeded some threshold value

were retained (Sce figure 3.4). The suitable threshold values were determined by trial and crror.

int zerox_max(

int *slope, /* peaks are stored here */
int *proj, /*the original projection */
int size, /* the size of the array */
int min) /* minimum value for the maxima */

/* find zero crossings of maxima only */
/* returns # of peaks, indices stored in slope[] */

int i, j;

int count = 0, /* # of maxima */
int *temp, /* stores indices to proj{] of maxima */
temp = malloc_int(size / 2); /* assume no more than size / 2 maxima */
size—,

for (i = 0;i < size; i+ +) /* find zero crossings */

tor (j =i + 1; slope[j] = = 08&&j < size, j+ +) /* skip consecutive 0's */
if (slopeli] > O && slope[j] <= 0 && (proy[i] > min || projlt + 1] > min))
templcount+ +] = i;
for (i = 0;i < count, i+ +) /* store the results in slope{] */
slopeli] = temp|i],
free(temp),

return(count); /* # of peaks *

Figure 3.4. Zero-crossing function

-

15
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3.4 Syntax and semantics

The task of pattern classification may be expressed as finding a mapping from input patterns onto
possible pattern classes. One way to simplify the process is to reduce the number of possible pattern classes.

Syntactical information is uscd for this purposc.

By using some basic definitions of formal grammars and languages, a clcar representation of a music
notation system can be cstablished.

A grammar is a4-tuple G = (N, T, P, §),
where N s a finite sct of non-terminals
T isafinite sct of terminals (NN'T = ¢)

P isthe set of the finite number of productions of the form a — b;
where ae VNV, beV,V=NUT and V = VU {A}, \istheempty string
(the symbol = mcans “can be replaced by™)

S e Nisthe start symbol (Fu 1982, 53-54).
The language generated by a grammar G, denoted L(G), is the sct of sentences generated by G.

L(G) = {w | w e T and w can bc dcrived from S by applying onc or more productions from G}.

A context-free grammar has productions of the form:
A— b whercAeNand be V‘—{)\}.
Note that the replacement of the non-terminal A by the string b is independent of the context in which the
A appears (Fu 1982, 55). Furthermore, a conteat-free grammar is said to be LL(K) if the top-down parser
can be made to work deterministically by looking at k input symbols beyond its current position (Aho and
Ullman 1972; Fu 1982, 180-82). Music notation grammar is context-free and LL(K); this is in cffect what al-

lows musicians (top-down parsers) to read the music as efficiently as they do.

16
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> As an illustration of how formal grammars can be applicd to OMR, et {b, d, f, g, h, w} represent the
possible pattern classes for a sequence of input patterns {X(1), X(2)..., X(n)}. Note that for cach X(i),
there are six possible choices. Now define
G = (N, T,P, S), where
N= [SN,W,C},
T = {bd,fgh w},
andP: S - CNb N —NN|W|h
Wowlwd C - glf.

(Replace C with clef, N with note, W and w with whole note, d with dot, b with half
note, g with soprano clef, f with bass clet, and b with bar line, then the example can be
easily understood to represent a very simplificd grammar for an opening bar of music.)

Using G, assume X(1) = g | [, and X(2) = w | h. If X(3) i< found 1o be

1w, then X(@) = wld]|h|bor
2Yhord, then X(4) = w]h|hb

Thus G helps to limit the number of pattern classes to a maximum of four instead of the original six.

The reduction process can be augmented by another property of languages, namely, semantics The
motivation for developing a semantics-based technique arises from some of the limitations of a purcly syn-
tactic approach where context is not taken into account (Baird and Kelly 1974), and the fact that not all
structural information can be casily prt into the symbaol-oniented form of the productions The injection of
semantic considcrations into a context-free grammar is called semantic grammur (Tang and Huang, 1979),
or attributed grammar (Fu 1982, 116-23). The wdea s to reduce the large number of possible choees
derived from production rules by employing some higher-fevel rules which govern a particular Llanguage
Consider, for example, a sentence that begins with “The cat climbed up the .. " A simple grammar may
allow any noun to follow the sccond article One way to limit the number of possible nouns is to apply some

contextual rules.

One picce of semantic information uscful for OMR is the rule which states that the durational values of

- all notes and rests within a bar must add up to the value indicated by the meter signature. For example, a 4/4
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bar must contain ‘our quarter notcs or their cquivalent. (There are exceptions to this rule, especially in pre-
Baroquc music.) Using the grammar G above, define var(x) to indicate the durational value of symbol x and
let var(w) = 1.0, var(h) = 0.5, var(wd) = 1.5, and var(C) = 0.0. Assumc that an input string is partially
identificd as {gwwwd, X(6), X(7), ... } and let var(S) = 4.0, where S denotes the sequence of symbols al-
lowed between bar lines. Since var(gwwwd) = 3.5, it follows, by process of climination, that X(6) = hand
X(7) = b Thus the rule provides the system with information about the existence of both’h’ and °b’ in ad-

vance, requiring no further analysis.

In order to implement successfully the recognition techniques discussed in this chapter, it is necessary
to analyze carclully the objects to be recognized. The effects of music printing methods on pattern recogni-

tion are investigated in the next chapter,
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Chapter 4

Music Printing and OMR

4.1 Printing Methods

Music printing began in the late fiftecnth century. Typography, a method that ascs hundreds of small
moveable types, was the most common printing technique throughout most of the sixtcenth and scventecnth
centurics. Engraved copper plates became the preferred printing technique during the cighteenth century.
In the carly 1800s, lithography was introduced and adapted to music printing, These were, until the twen-

tieth century, the most common methods of printing music.

4.1.1 Typography
Typography involves combining a small block of metal or wood, called type, with a raiscd letter or sym-

bol. When inked and pressed on paper, the symbol leaves a priated impression (sce figure 4.1). Using type
to set music is problematic because many small pieces of type must be combined to give the impression that
the musical symbols are overlaid on top of continuous staff lines. This often results in broken staff lines, as

shown in figure 4.1. Despite the inferior quality of print, typesetting was used well into the twenticih century

19
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Figure 4.1 Example of music typesetting (Ross 1970, 11)

because it facilitated the combination of music and text for psalm books, hymnbooks, and music text books

(Poole 1980, 247). (Sec figure 4.2 for a set of nincteenth-century types.)

4,12 Engraving
Engraving is a technique of producing prints by making cuts or indentations in a metal plate. When this

technique was first developed, around 1550, all symbols were cut freehandedly (see figure 4.3). In the early

cightecnth century, punches became available to engrave the more important music symbols, such as note-
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heads and accidentals (see figure 4.4). A sct of punches for a given staff size usually consists of about fifty
punches. Figure 4.5 shows sets of punches of differcnt sizes. Symbols not represented in the set are still cut
by hand, including stems, beams, barlines, ledger lines, and ties. Text is struck with a sct of alphabet
punches. “Punches for such indications as cresc., dim., rall,, etc., and for ff, pp, mf arc obtainablc with all the
Ietters on one punch, but these arc not much used now, each letter being struck scparately.” (Gamble [1923]

1971, 140)

413 Lithography

Lithography is a printing process wherc the design, drawn on a flat surface, is treated to retainink while
the non-image areas are treated to repel ink. At first, the music was drawn frechandcdly using special ink,
but by the 1830s there were some special devices which deposited ink in the shape of the musical symbols;

notcheads, for example, could be printcd this way.

414 Modern Methods

With the introduction of the camera, it becamc possible to print music from an original written on or-
dinary paper. To improve the quality of print, several methods were devised to draw symbols on the page.
One of these involves stamping the paper with an inked steel punch, applying pressure by hand (see figure
4,6). A mcthod using stencils, called the Halstan process, is used for the musical examples of the New Grove
Dictionary of Music and Musicians, and by Faber Music (Poolc 1980, 258). Rub-off transfer sheets is yet
another method used for printing music; according to Poole, it is “cxtensively used by Barenrciter.” (Poole

1980, 258) Several types of music typewriters were. also invented.

Since the 1970s, computers have been used increasingly to print music. In the 1980s, several commcr-
cial computer programs became available to print music with computer printers or plotters; some have the
ability to send their output to phototypesetters. Some of the major music publishers using this new tech-
nology are Belwin Mills, Barenreiter, and Oxford University Press (Hewlett and Sclfridge-Ficld 1987, 293

4).
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Figure 4.6. Examples of stamped music (Ross 1970, 35)

4.2 Music and OMR
Dcspite the many methods available to print music, for the purpose of OMR all symbols fall in one of

two categorics: those formed entircly by hand and those produced by some kind of tool or font. These tools
may be engraving punches, moveable types, dics on a music typewriter, symbols on a rub-off sheet, stencils,

or computcr-generated fonts. Oricntation, shape, size, and positioning are a symbol’s key features; the de-
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gree of uniformity in these features depends on the choice of printing method. The next scction examines

how and to what extent the symbols’ features are affected by printing, and how this in turn affects OMR.

42.1 Orientation

Most musical symbols are superimposed on the staff, therefore the OMR process must first determine
the orientation of the staves themsclves. Often, the staves are not parallel to the paper’s top edge; in some
cases, the staves on a page may not be parallel to each other. This is usually due to cach staff being ruled
manually, using a T-square. Carelessness during this operation results in non-parallcl staves. The engravers
possess a tool called the scorer, which has five evenly spaced tecth, to rule the staves. However “many cn-
gravers rule each individual line;” (Ross 1970, 70) “they say that they dislike the five-point tool because it re-
quires more force for ruling the five lines at one time and then it is often necessary to re-engrave some lines
that are badly ruled.” (Gamble [1923] 1971, 93). If such is the case, there is even a possibility that the lines

within a staff may not be parallel to each other.

Since ruling the staves and placing the symbols on the staff arc two unrclated steps, the orientation of
the symbols with respect to the staff is seldom perfect. Normally, the lines arc rulcd first, then the symbols
are placed individually on the staff. No guide other thana pair of traincd cyes can ensure their proper oricn-
tation. There are a few exceptions. Somc music typewriters have the capability to rule the staff lincs, thus
minimizing errors, yet there is always the possibility of slippage in the paper fecding mechanism. Note that,
owing to the nature of musical notation, there are far more vertical movements of the paper while typing
music than while typing ordinary text. On movable types, the appropriate portion of the staff is attached to
the symbol, ensuring a fixed relationship between the staff and cach symbol. In this casc, the symbols will be
oriented correctly provided that the types were cast properly. The only process that guarantees correct
orientation is computer printing, where the machine “knows” the exact position of both the stalf and sym-

bols.
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iskbidsisidei it

Figure 4.7. Various forms of treble clef

422 Shape and Size
Although the shape and size of musical symbols have remained relatively constant since the eightcenth

century, there are some differences depending on where and when the score was printed. (Figure 4.7 shows
a sample of diffcrent treble clefs that can be found in modern editions by various publishers.) Moreover, a
singlc publisher may choose to use different fonts or methods of printing as the company evolves (see figure

4.8).

Variations in size and shape can be found within a single page, even when printed using fixed “tools.”
Symbols placed by types should be uniform, since all types arc cast from a single mold. These fragile, small,
finccut types arc oftcn broken or chipped, however. When engraving punches are used, irregularitics may
be causced by varying depths of indentation, which “must not be more than 1/64 inch.” (Gamble [1932], 1973)
For cxample, the two whole notes on the top two staves in figure 4.5 were presumably engraved with the

samc punch, yct the top onc is 3.5 mm wide and the other 4 mm wide.

Obviously, symbols cut or drawn by hand vary even more in size and shape, the degree of consistency
being dependent upon the craftsmanship of the person preparing the score. For instance, the pressurc ap-
plicd with a cutting tool or pen to “draw” stems and beams will affect their widths; the sharpness of these

tools, which must be honed occasionally, will also influence the result.
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1931 1951 1068

Figure 4.8. Treble clefs used by A, Leduc (Pericr 1931; Brod 1951; Bozza 1968)

Finally, the inking process and the type of paper also affect the appcarance of the symbols. With
processes that require inking the individual “punches”, such as lithography, stamping, and stencils, varia-
tions in the amount of ink applied at each impression will alter the size and shape of the symbol. The cloth
ink ribbon used in typewriters and computer printers often results in smudged types, for example, filled
half-notes. Inconsistencies may also be the result of an unevenly coated inking roller on a printer, or inferior
paper not absorbing the ink uniformly over its surface. Furthermore, many old cditions have a problem of
print-through where some impressions are visible on the reverse side, as demonstrated in figure 4.4. This
figure also illustrates some symbols that are quite different from modern symbols, such as the sharps and

quarter-rests.

423 Positioning

The problems of placing the symbols at their correct position arc similar to those found in determining
the orientation of the symbol. This is because the process is almost always performed manually and relics
heavily on the ability and the experience of the individual preparing the score. Proper placement of the
notehead in the vertical dimension is particularly critical. Most engraving notchcad punches have a raised

line on the face to facilitate the placement of the note on a line. To place the note on a space, engravers use
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the staff line, which is indentced, as a tactile guide to placing the punch. Such aids are unavailable to other
types of punching methods. Only computers and well-aligned typewriters can ensure proper vertical place-

ment.

Horizontal spacing of thc symbols is determined solely by the person or the particular computer algo-
rithm placing the symbols on the staff. There arc no strict rules governing spacing between symbols; even
when rules are given, they differ in detail. For example, Gamble states that the distance between the left side
of the clef and the left side of the first note is four staffspaces (Gamble [1923] 1971, 129) (a staffspace is the
distance between two staff lincs), wherees Ross says this distance should be five and one-half staffspaces
(Ross 1970, 145). Gamble concludes that “the eye is often the best judge for the placing of each value prop-

crly; in fact, a good many engravers use no other guide.” (Gamble [1923] 1971, 132)

Onc standard rulc uscful for OMR prescribes that two symbols are not to touch. Unfortunately, this
rule is not strictly followed in practice, especially in the case of a note and its accidental (sec figure 4.9). In-
tcrestingly, this rule is particulary difficult for computer printing programs to comply with automatically
(Byrd 1984; 165 -71). Figurc 4.9, although atypical, demonstrates the wide range of possibilitics in position-
ing the symbols. Observe, for cxample, the flat underncath the meter signature (system 4) and the position

of the ledger lincs (systcm 7).

43 Conclusion
It is clcar from this bricf look at the potential problems facing the design of an OMR system that fairly

sophisticated and flexible techniques must be developed. Simple template-matching techniques, often used
in the recognition of ordinary machine-generated text, will not suffice to handle the wide variations found

in the shape and orientation of the symbols encountered in musical scores. As previous research shows, staff
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Figure 4.9. An example of various positioning (Saygun 1964)
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interference is a major obstacle to the contour-tracing method. Furthermore, contour-tracing would have
difficulty handling the symbols that are attached to cach other. (This problem was probably not en-

countered by the authors of the MULT. dissertations due to their limited samples.)

Because a musical score usually consists of a mixture of symbols formed by “tools” and symbols formed
by hand, the level of difficulty involved in OMR lies somewhere between that of recognition of machine-
gencrated text and of hand-written text. Although practical systems for the recognition of machine-
generated English characters have been available for some time, the fact that the recognition of
hand-written characters is still at an experimental stage might indicate that the design of an OMR system
will be very complex. This expectation is based on the assumption that similarities exist between optical

character recognition and OMR. There is, however, one trait which is unique to the set of musical symbols.

Whilc cach character in an alphabet has basically the same dimension as the other characters, most
musical symbols have significantly different shapes and sizes from those of other musical symbols. It is this
obscrvation that prompted the present research to use projections as its primary recognition tool. The pro-
jection technique was expressly chosen for its inability to deal with details. This technique cannot detcrmine
the precisc oricntation or the exact position of a symbol. It cannot ascertain whether two symbols are touch-
ing or not. In fact, it cannot even detect that the symbols are superimposed on staves. About all it can estab-

lish is the approximate shape and size of the symbols. But this is all that is required.

That the set of musical symbols has this peculiarity, not found in regular character sets, is certainly not
an accident. In rcading musical symbols, there arc requircments that are not imposed on reading ordinary
characters, namely, precision and speed. While reading a book it is not detrimental if some letters are
skippced or misrcad; playing a score demands that every symbol be read correctly, the first time. When re-
citing a written text, the pace in which it is read is usually determined by the reader; performing a piece of

music requires that the score be read at the speed dictated by the music, regardless of the complexity of the

32



&

Chapter 4 — Music Printing and OMR

notation. During the evolution of the music notation systcm, these requircments were taken into considera-

tion to ensure that music could be read accurately and cfficicntly.

In the next chapter, an explanation is given as to how projections and other recognition techniques are

incorporated into the software to “rcad” music accurately and efficicntly.
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Software Design

5.1 Overview

In this chapter, a general description of the computer program designed to recognize a small set of
musical symbols on a page of music for a single, monophonic instrument is presented. The set of symbols
that the softwarc is programmed to recognize are: four rypes of clefs, half-notes, quarter-notes, beamed
notcs, flagged notes (no distinction is made between different types of flagged notes), accidentals (flat and
sharp/natural), quarter-rests, cighth-rests, dots of prolongation, and barlines. The flow chart of the overall
strategy is shown in figurc 5.1. First, given the matrix of a digitized bi-level image, the number and location
of the systems arc determined; each system is then parsed from left to right to locate and identify the sym-
bols it contains. (A system is defined here as anything that is related to a single staff, which consists of five
parallel lincs.) This operation is repeated until all the systems on the page have been analyzed. With one ex-
ception, all the algorithms are bascd on projections, since one of the major objectives of the present re-
scarch is to determine the effectiveness of using projections for OMR. Thus, even when other techniques

werc available, projections were used if they solved a particular problem.
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Binary image
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and the location of the
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Get the first system
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left to right

N

End of tho system ? Last system ?

N Y

Symbol found ? End

Y

Segment and classify
the symbol

Figure 5.1, Overall Process

5.2 Locating the system

The first step is locating the systems on the page. In order to locate the systems, a y-projection of the
entire page onto the vertical axis is taken (see figures 5.2-5.7). The assumption is that the staff will be rep-
resented by five peaks. Using the maximization technique described in Chapter 3 and using the mean of the
entire projection as the threshold value, groups of peaks that may represent the lines of a staff arc chosen.
The use of the mean as the threshold value was dictated by the results of experiments with various samples

of music, likewise for all other threshold values uscd.
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Figure §.2. Y-projection and system separation (Tromlitz 1976)
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Figure 5.6 Y-projection and system scparation (Ravel 1975)
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The distance between peaks is calculated next. A cluster of five or more peaks that is separated from
other clustcrs of peaks by a ccrtain distance is designated as the minimum boundary of a system. (The sep-
aration of systems in figures 5.2 to 5.7 is indicated by thin horizontal lines drawn by the program.) The rea-
son for including morc than five peaks is to embrace peaks gencrated by long horizontal beams (see figure
5.3) and ledger lines (sce figure 5.4), Note that this mcthod of separating the systems does not make any pre-
sumptions about the height of cach staff, therefore it successfully segments music with different sizes of
staves on a page (as shown in figure 5.6). On the other hand, it does assume that the staff has at least five
lincs, therefore the onc-line staff sometimes used for percussion instruments is overlooked (see figure 5.7).
This minor defect excepted, the method is extremely reliable since it makes very few assumptions. The
mcthod will work even if the stafflines are not perfectly parallel to each other or to the top edge of the page;
in fact, the lincs nced not even be cquidistant from each other. It also allows for some of the lines to be rela-

tively faint, or broken, as is often the case in typeset music.

The top and bottom boundarics of a system are identified either by searching for the first blank line
(very low projection value) above and below the minimum boundary, or, in the absencc of a blank line, by
using the minimum projection valuc between the neighbouring systems. The lack of a blank line may be due
to noisy input, but in most cascs it is due to overlapping symbols from two systems. This overlapping is often
found in dense orchestral scores (figure 5.5), in music for keyboard instruments, and in other settings where
onc instrument or a group of voices uses more than one staff (figures 5.3 and 5.4). In the latter case, the par-
titioning problem can be solved by specifying, beforchand, the number of staves to be considered together.
The separation of two onc-staff systems that overlap, however, is a complex problem and remains unsolved.
This problem was not cncountered in samples of music for a single, monophonic instrument, which is the

primary target of this project. The remainder of the recognition process applies to this type of music only.
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5.3 Analysis of a system

After the separation process, cach system is analyzed independently and scquentially to locate and

classify the symbols it contains. (Given a suitablc cnvironment, each system could be processed in parallel.)

5§3.1 Locating the stafl

The first step is to determine the exact location of the staff within the given system. Scries of y-projec-
tions are taken from a tall and narrow rectangle area, which moves inward starting at the right margin, until
five clear peaks appear. The width of the rectangle in the current implementation is 0.254cm (0. 1inch) and
its height is the same - ; that of the system. The rcason for starting at the end of the staff is that it is rare to
find anything to the right of the staff, whilc there may be spurious symbols to the left of the staft, such as the
name of the instrument. The routine for finding the beginning of the staff is similir, but it usces as an aid the
height of the staff, which was obtained when the end of the staff was located. It should be noted that, in
general, the vertical position of the staff is not the same at its left and right sides because the stalf is shewed;
see figure 5.2 for an example. Since some of the subscquent recognition algorithms arce sensitive to the posi-
tion of the staff, the cxact vertical position is updated periodically as the staff is scanned from lelt 1o right,
The height of the staff is also used to derive the staffspace, which is the distance between two adjacent staff
lines. It is assumed that the size of musical symbols is lincarly related to the staffspace, thus this value is used
as the normalization constant. The assumption that a lincar relationship holds between the size of the sym-
bols and the size of the staffspace is not rigorously cxamined. Informal obscrvations reveal, however, that al-
though there is a wide variance in the size of the symbols within a given staff size, the size of the symbols does
tend to increase lincarly as the staff sizc increases. This assumption was also made by Prerau in his experi-

ment.

532 Locating the symbols

The next step is to take the x-projection of the entire staff in order to locate the individual musical sym-
bols. Originally, a projection of the entire height of the system was taken, but it was found that interference

from such things as expression markings and mcasurc numbers made recognition difficult (sce the first and
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Figure §.8. X-projection of the entire system

Figure 5.9. X-projection of the staff only

the fifth mcasurc in figurc 5.8). Therefore, the rectangle used for the x-projection is defined by the staf and
not by the system, as shown in figure 5.9. This projection, used mainly to locate the symbols, will be referred
to as the staff projection. Although this modification solves the problem of interference, this represents only
a partial projcction of the symbols unless they lic entirely on the staff. For example, sce the second beam
group of mcasure 3 in figurc 5.9. (The solution to this problem will be given below.) Before the staff projcc-
tion can be uscd to locate the symbols, it is scanned for the global minimum, which is assumed to be the total
contribution from the staff lincs. This value will be considered as noise while searching for symbols in the

staff projection,

In gencral, the process of locating and scgmenting a symbol works as follows. The staff projection is
scanncd from left to right; where the projection value is greater than the noise plus one staffspace, it is con-
sidered a projection contributed by part of a symbol (see figure 5.10 for an illustration). At this point, a local
y-projection is taken, using the rectangle delimited at the top and bottom by the height of the entire system,

at the left side by (x - staffspacc), and at the right side by (x + 3 * staffspace), where x is the position located
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in the scanning process above (the tall rectangle in figurc
5.10). This projection is used to determinc if the symbol ex-
tends above and below the staff and thus compensates for
the limitation of the staff projcction, which doces not include

the entire symbol.

Once the vertical boundarics of the symbol are found,
a local x-projection is taken, using the samc rectangle but
with the new vertical limits (the cmbedded rectangle in
figure 5.10). Within this area, the projection contributcd by
the staff lines must be recalculated since this valuc tends to
vary across the page. The projection of the symbol alone
can now be determined by subtracting the projection of the
staff lines from the staff projection. With this final projec-
tion, it is simple to calculate the width, the maximum height,
and the number of vertical peaks using the maximization
routine; the area (the total projection valves) of the symbol

is determined by the resulting projcction profile.

5.3.3 Clef classification

]
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Rectangle used to
le— calculate the local
y-projection,

Rectangle used to
calculate the local
x-projection

.1 .sta"s.p‘ace

noise (staff)

Staff projection

Figure 5.10. Locating the symbols

The first symbol the program expects while parsing the staff projection is the clef” Currently, the treble

clef, the alto clef, the tenor clef, and the bass clef arc defined. Any other clef or symbol occupying the lefi-

most area of the staff will be mistaken for onc of the four clefs, or an crror message will appear indicating

an unrecognizable symbol. After the first symbol is scgmented, the classification scheme uses the maximum

height, the width, and the arca of the symbol, as reflected in the projection (sce figure 5.11). In some cases,
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where these features arc insufficient to distinguish be-

tween a treble and a bass clef, a y-projection is taken be- g ﬁ

tween the fourth and the fifth staff lines. This is very cffec-

tive since most bass clefs do not occupy this arca. ‘ “ II“

Figure 5.11. Projections of clefs

53.4 Kkey Signature Classification
To find the type (sharp or flat) and the number of accidentals in the key signature, the staff projection

is scanncd from the right side of the clef until an empty space larger than a staffspace is found. The assump-
tions here arc that the space between the accidentals within a key signature is less than a staffspace, and that
the space between the fast accidental in the key signature and the following symbol is at least a staffspace.
When peaks are found between the right side of the clef and the location of the empty space, the number of
peaks in the region thus defined is calculated with the maximization routine. Since a key signature involving
sharps will have twice the number of peaks than one involving flats, it is possible to deduce whether the key
signaturc compriscs flats or sharps, given the total width of the region and the predetermined minimum
width of accidentals. Assuming that the position in which accidentals appear in key signatures is fixed, no
further processing is needed. No suitable projection-bascd algorithm was found to recognize the meter sig-
natures because of the many different shapes of numerals found in the scores. Consequently, the use of
meter as part of the recognition strategy, described in Chapter 3, is not implemented in the current soft-

ware. Some type of template-matching method may solve the meter signature problem.

§3.5 Classification of other symbols

Classification of the other symbols involves calculating their width and height by the process described

in 5.3.2. Using only these two featurces, the symbols can be subdivided into eight classes:
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5.0
Notes
Accidenta]s
4.0
I
H Bar lines
e
é 3.0
I
Quarter Rests
h
t’ 2.4
Eighth Rests
1.0
Ilflllllllllllillllllllllllllllllllllll lllll[l]l]llllllll
9.5 1.0 1.5 2.0 2.8
Width

Fig. 5.12. Height-Width Planc

Class 1. Not a symbol

Class 2. Barline

Class 3. Quarter-rest

Class 4. Eighth-rest

Class 5. Accidental

Class 6. Accidental or Quarter-Rcest
Class 7. Note

Class 8. Unknown symbol

Why such a classification is possible can be understood from figure 5.12, where the rectangulz: regions oc-
cupied by each of these symbols arc shown in the normalized height-width plane (scaled to onc staflspace).
Each rectangle represents the region in which the symbol or the group of symbols may be found according

to its height and width. The size of the rectangle for cach symbol was determined by surveying many scores
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from various publishers. For example, it was found that the dimensions of most eighth-rests are approxi-
matcly two staffspaces in height and one staffspace in width. (A similar method of classification was also
uscd by Prerau.) Note that, if the rectangle for a single symbol does not intersect with any other rectangles,
the classification of this symbol is trivial. If, on the other hand, the rectangles overlap, further analysis is

necded to differentiate the symbols.

If the width of a symbol is less than that of a barlinc, it is ignored, and the program resumes the scan-
ning of the staff projcction. If a rest is found (as in Class 3 and 4), the only thing left to do is to see if there
is a dot attached to it. The method of locating the dot will be described later. If the number of vertical peaks

of an accidcntal (Class 5) is one it is a flat, otherwisc it is classified as a sharp or a natural. No reliable tech-

nique using projections was found to distinguish be-
tween sharps and naturals. Within Class 6, if the
number of vertical peaks is two, the symbol is cither a
sharp or a natural. If there is only one peak, the posi-
tion of the peak with respect to the entire width of the

symbol is determined to decide whether it is a flat or

- N1
P | v

a quartcr-rest. If the peak is located in the left quar-

ter of the symbol width it is recognized as a flat; if Figure 5.13. Projections of flat & quarter-rest

nol, it is considercd a quarter-rest (see figure 5.13).

If the symbol is in Class 7 it may be a quarter-note, a half-note, a flagged note, or a beamed note. For
this group another feature is extracted to simplify the classification process: a y-projection on each side of
the stem is calculated to determine the number of horizontal peaks, ignoring the staff lines. These horizon-
tal peaks arc used to establish the presence of the notehead, flags, and beams. As shown in figure 5.14, the
number of horizontal peaks on the righ ' and left sides of the beam (abbreviated as R_Peak and L_Peak) is

uscd along with other information to further classify the symbols of Class 7. Although flags and beams are
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N

L_Peak = 1 &
R_Peak > 0?7

N

L_Peak = 0 &
R _Peak >= 17

Figure 5.14. Note Classificr

Half Note Get stem direction
Quarter Note
Stem Up
Flag
Stem Up
N
Very wide
Stem Down symbol?
Y
Get Note Head
Beamed Note Position
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always cvident as horizontal peaks, the notcheads of half-notes are lunpredictable, sometimes appearing as
peaks, other times not. Thus, in the absence of flags or beams, the distinction between quarter-notes and
half-notes is not madc until after the position of the notehead becomes available. Where no peaks are pre-
sent, the direction of the stem is determined by the location of the maximum peak (the stem) in the local x-

projection, with respect to the entire width of the symbol.

53.6 Beamed notes
If the symbol is found to have beams attached to it, a modified recognition strategy is used to process

the symbols within the beamed group. The beamed note groups are treated differently for two reasons.
First, because the staff projection used to locate the symbols excludes anything outside the staff, a note at-
tached to the beams and lying entirely above or below the staff will be missed in the regular symbol-locating
process. Second, the classification scheme can be made much simpler for beamed notes than for symbols
standing alonc. This is because, syntactically, the number of different symbols that can appear in the
beamed region s significantly reduced. For example, half-notes and flagged notes cannot be encountcered.
In the current program, the only symbols expected are notes and accidentals; the rests allowed in some no-

tational practices as part of becamed groups are not recognized.

Instcad of using the staff projection, an alternate x-projection is taken where the top and bottom boun-
darics of the previous note in the beamed group are used as vertical boundaries. This ensurcs that no
beamed symbols are bypassed. The rest of the recognition process is similar to that of the isolated symbols
cxcept that the classification process is modificd because of the reduced number of possible targets, and be-
causc the horizontal left and right pecaks arc now uscd to count the number of beams attached to the left and
right sides of the stem. When the number of beams on the right side is zero, this signals the end of the

beamed note group and the program reverts to normal processing.
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53.7 Determining the notehead position
The position of the notehead is determincd by taking a local y-projcction cither to the right or to the left

of the stem, depending on the stem direction (which is already known); then the position of the maximum
area on the projection profile is accepted as the location of the notchead. If the type of notehead, whether
filled or not filled, is not known by this stage, the area calculated above is used to determine the type. If the
area is above a certain threshold value it represents a filled notchead,; if it is below another threshold value
it represents a non-fillcd notehead. In the casec where the arca lies between the two threshold values, the
ratio of the number of black pixels over the number of white pixels in a small rectangle positioned near the
centre of the notehead is used to distinguish between the two types. This is the only place in the computer

program where projections arc not dircctly involved in the recognition process.

5§38 Locating the dot

Finally, if the symbol found is a note or a rest, check is made to sec if there is a dot of prolongation af-
fixed. A y-projection is taken from a small rectangle beside the symbol, where the dot may appear, I the
projection profile contains a small bump, it is considered a dot. There are two reasons for detecting the pre-
sence of the dot in this manner; first, any small symbol such as a dot can be casily buricd in the “noise” of
the staff projection, thus searching for it whilc scanning the projection is highly unreliable; and sceond, the
notational rule dictatcs that the only place where a dot of prolongation may appear isto the immediate right

of a note or rest, hence it is futile to look for dots anywhere clse.

At this point, the program will look for thc next symbol in the staff projection; when a possible candi-

date is found, the wholc process is repeated until the end of the staff is reached.

51



by

Chapter 6

Experiment and conclusions

In this final chapter, the actual implcmentation of the program described in the previous chapter and
the result of an experiment to test the program are described. Possible improvements to the program are

considered in the concluding section.

6.1 Hardware and software

The optical scanncr uscd for the development was a Datacopy 710 which has a resolution of 78.74 dots
per em (200 dots per inch). Most current desktop scanners work as follows: the percentage of light reflected
by the illuminated image is measured as a voltage level using a CCD (charged coupled device), then the
analog voltage levels are converted into digital bit patterns by an analog-to-digital converter. The program
was developed using the Microsoft C compiler versions 4.0 and 5.0 on various IBM-PC-type microcomput-

Crs.
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6.2 Music samples and development

The softwarc was developed in a scrics of trials using samples of music from various publishers, (The
complete list of music used is given in Appendix A.) Many differeat algorithms and threshold values were
tried until a satisfactory recogrition ratc was achicved with the training samples. The complete set of
samples was used for testing the system’s scgmentation process. 17 samples are monophonic, these were

used for the remaining stages of the rccognition process.

The basic strategy for building this progtam was trial and error. Duc to the complexity and the varicty
of the data, it was the only way of verifying the validity of a particular algorithm or threshold vatuce. At cach
trial, modifications were made to decrease the rate of misrccognition. If the modification did correct the
error, other samples were used to test the gencrality of the modification and to check for side-cffects (that

is, to ensure that the modification did not degrade the recognition of other symbols).

The most frustrating aspect of developing this system was the difficulty of monitoring progress. Because
there are several steps involved before any decision is made about the symbols, it was extremely hard to lo-
cate problem areas. It was particularly difficult to determine whether misrecognitions occurred because of

segmentation errors or because of classification crrors.

Given that a large body of literature exists to explain various classification methods, much of the cflort
was devoted to developing a reliable technique to segment the symbols. The premise was that, as long as the
symbols are segmeated correctly, more sophisticated classification methods can be implemented bister of the
current one turns out to be inadequatc. If, on the other hand, the segmentation is unrchiable, recognition will

fail no matter how sophisticated the classification scheme is.

Observing how the program is managing the data is complicated by the graphic nature of the data

Simple print statements, normally uscd to monitor the progress of a conventional program, were not very in-

53



y Ry

Chapter 8 — Experiment and conclusions

formative. To facilitatc monitoring, various subprograms were written to show graphically the state of the

program, including subroutines to plot the x- and y-projections.

As development progressed it became evident that it is relatively easy, albeit time-consuming, to fine-
tunc the program to achicve a ncar-100% rccognition rate with the training samples (for cxample, the pro-
gram can recognize all of the required symbols in figure 6.1); therefore, the final test was conducted using
four carcfully choscn samples that were not part of the development samples. Three of the four samples
were chosen to establish the worst-case performance of the program. The first two contain symbols that are
quite different in shape from those found in the development samples. The third is a hand-written score,
and the fourth was choscn to represent a typical scorc, The selection was made after the development of the
program and no changes were made to the program once the samples were chosen. Absolutely no informa-
tion rcgarding the score is supplicd at exccution time. in other words, the process is completely automatic

except for placing the scorc on the scanner.

6.3 Results

With all four samples, system scparation was completely successful (see Figures 6.2 — 6.5). The sum-
mary of the results of the tests is shown in Figure 6.6 (see also figure 6.7 for partial output of the program
for cach of the test samples). The recognition rate is calculated as the total number of correctly identified
stock symbols (the sct of symbols that the program is designed to identify) divided by the total number of
stock symbols on the page. A note is considered correctly identified if and only if both the pitch and the du-
ration are correct. The scanncr takes about 30 scconds to read a page, and, on a IBM-AT-compatible mi-

crocomputer, the average processing time is approximately 15 seconds per system.
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Figure 6.1. A devclopment sample with staff projections (Telemann 1969)

55



)

Chapter 8 — Experiment and conclusions
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Figure 6.3. Samplc I (Cccilia 1960)
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Figure 6.5. Sample 1V (Haydn 1968)

59




¥

Chapter 6 — Experiment and conclusions

Number of symbols  Total number Percentage of
correctly identified of symbols  correct symbols
Samplc | 79 111 %
Sample 11 138 211 64%
Samplc 11 92 140 66%
Samplc IV 281 344 82%
Total 590 806 73%

Figure 6.6. The result of the cxperiment

Sample | — This page was chosen for its idiosyncratic collection of musical symbols: the bizarre treble
clef, the diamond-shaped notcheads, and a form of flags normally found in music set with tynes, although
the inaccuracy in the placement of notchcads indicates that it was not typeset. This sample also violates the
rulc that states that cvery system starts with a clef. Despite these obstacles, the program performed rela-
tively well, correctly identifying 71% of the symbols including the two treble clefs. Obviously, the program
was confused at the beginning of the second and fourth system, not being able to find the expected clef.
Other misrecognitions include the first quarter note in the first system, third bar (A-flat instead of B-flat)
and the two quarter notces in the third system, measure three (stems too short). Nevertheless, its ability to

dcal with the diamond-shaped notcheads and the short flags demonstrates the flexibility of the projection

technique.

Sample 11 - The relatively poor recognition rate of this sample results largely from the odd shape of
some of the music symbols used. Both the cighth- and quarter-rests are wider than usual and the treble clefs
have thinner strokes than those cncountered during program development. As a side effect, the program
also had difficulty locating the sharp in the key signature. If these symbols are disregarded, the recognition
rate is increased to 80%. The problems encountered in this sample are mainly due to limitations in the
classification stage, which basically cannot dcal with any symbol that it has not seen before, This can be re-

medicd by using a more sophisticated classificr, possibly with a database.




Sample |

TREBLE CLEF

3 FLAT(S)

FLAG_UP 1 SPACE 4
Dot

BEAM_UPLINE 3 BEAM 1
BEAM 1 SPACE 3 BEAMO
BAR UINE

UP BLACKLINE 4
pot

FLAG_UP 1 SPACE 4
UP LINE 5
FLAG_UP 1 LINE 3
FLAG_UP 1 SPACE 3
BAR UNE

FLAG_UP 1 SPACE 4
FLAG_UP 1 SPACE 3
FLAG_UP 1 SPACE 4
FLAG_UP 1 LINE 4
UP SPACES
FLAG_UPLINE 4
FLAG_UP SPACE 3
BAR UNE

DN BLACK SPACE 3
DN BLACKLINE 3
DN WHITE SPACE 1
BAR LINE

UNKNOWN CLEF

1 FLAT(S)

UP WHITE SPACE 4

BAR LINE

UNKNOWN SYMBOL
BFEAM DN 1 SPACE 2 BEAM 1
BE M2 SPACE 2 BEAM 1
BEAM 1 LINE 2 BEAM O
BLACK SPACE 1
BEAM_DN LINE 2 BEAM 1
BEAM 1 SPACE 2 BEAM O
BAR LINE

UNKNOWN SYMBOL
FLAG_UP 1 SPACE 3

UP BIACKLINE 4

UP BLACKLINE 5

BAR LINE

BEAM_UP LINE 4 BEAM 1
BEAM 1 SPACE 4 BEAMO
BEAM_UPUINE 5 BEAM 1
BEAM1 SPACE 4 BEAMO
UP BLACKLINE 5

UP BLACK SPACE 5
BAR LINE

UP WHITELINE 5
UNKNOWN SYMBOL

TREBLE CLEF

2 FLAT(S)

FLAG_UP 1 SPACE 4
BAR (NE

BAR LINE

UP BLACKLINE 3
BEAM_UP SPACE 3 BEAM 1
BEAM 1 LINE 3 BEAMO
DN BLACK SPACE 2
FLAG_UP 1LINE 3
FLAG_UP 1 SPACE 3
BAR UINE

DN BLACKLINE 2

UP BLACKLINE 4

UP WHITE SPACE 4

UP BLACK SPACE 4

UP BLACKLINE 5

BAR LINE

SHARP/NAT

SHARP/NAT

BEAM_DN SPACE 2 BEAM 1
BEAM 1 LINE 2 BEAM 2
BEAM 2 SPACE 1 BEAM 1
BEAM 1 LINE 2 BEAMO
SHARP/NAT

UNKNOWN SYMBOL
BAR LINE

TENORCLEF

Figure 6.7. Partial output of the test samples

Sample i

BASS CLEF
2FLAT(S)

FLAG_UP 1 LINE &
BAR LINE

UP BLACK LINE 4
SHARP/NAT

UP BLACK SPACE 3
UP BLACK LINE 3
FLAG_UP 1 LINE 5
BAR UINE

UP BLACK LINE 4
SHARP/NAT
FLAG_UP 1 SPACE 3
UP BLACK LINE 3
UP BLACK LINE 5
BAH LINE

BLACK SPACE 4
UNKNOWN SYMBOL
UP BLACK SPACE 3
FLAG_UP 1 SPACE 3
BAR LINE
UPBLACK LINE 4
UNKNOWN SYMBOL
UNKNOWN SYMBOL

BASS CLEF
FLAG_UP 1 LINE 4
BAR LINE

DN BLACK LINE 3
SHARP/NAT

DN DLACK SPACE 2
DN WHITE SPACE 1
FLAG_UP 1 LINE 4
BAR LINE

DN BLACK LINE 3
SHARP/NAT
UNKNOWN SYMBOL
DN BLACK LINE 2
FLAG_UP 1 LINE 4
BAR (INE
UNKNOWN SYMBOL
DN WHITE SPACE 2
Dot

DN WHITE SPACE 2
FLAG_DN 1 SPACE 2
BAR LINE

DN WHITE SPACE 2
UNKNOWN SYMBOL
UNKNOWN SYMBOL

BASS CLEF

FLAG_UP 1 SPACE3
BARLINE

UP BLACK LINE 3
FLAG_UP 1 SPACE 4

UP BLACK SPACE 4
FLAG_UP 1 LINE3
BARLINE

SHARP/NAT

BEAM_UP LINE 4 BEAM 2
BEAM 2 SPACE 4 BEAM ©
UP BLACK LINE 5
BEAM_UP LINE 5BEAM 1
BEAM -t SPACE 1 BEAM O
UP BLACK LINE 4

Dot

UP BLACK LINE 5
FLAG_UP 1 LINE 5

BAR LINE

UP BLACK LINE 4

DOT

UNKNOWN SYMBOL

BASS CLEF
1 SHARP(S)

DN WHITE SPACE 2
BAR LINE

DN BLACK SPACE
DN BLACK LINE 3
DN WHITE SPACE 2
DN BLACK SPACE 1

Chapter ¢

Sample Il

TREBLE CLEF

2 SHARP(S)
UNKNOWN SYMBOL
UNKNOWN SYMBOL
BEAM_UP SPACE 5 BEAM 1
BEAM 1 SPACE 4 BEAM 0
BAR LINE

FLAG_UP 1 SPACE 3
UP BLACK SPACE 3
poT

ON BLACK SPACE 2
UP BLACK SPACE 5
BAR LINE

FLAG_UP 1 SPACE 3
UP BUACK SPACE 4
FLAG_UP 1 SPACE 5
FLAG_UP 1 SPACE 6
UNKNOWN SYMBOL
UNKNOWN SYMBOL
UP BLACK SPACE 5
BAR LINE

TREBLE CLEF

4 FLAT(S)

UNKNOWN SYMBOL
FLAG_UP 1 SPACE 3

UP BIACK LINE 5
FLAG_UP 1 SPACE 4
FLAG_UP 1 SPACE 5
poT

FLAG_UP 2 SPACE 5
BEAM_UP SPACE 6 BEAM 2
por

BEAM 2LINE 7 BEAM 1
BEAM 1 SPACE 6 BEAM 0
BAR LINE

FLAG_UP 1 SPACE 5

UP BUACK SPACE &

poT

UNKNOWN SYMBOL

TREBLE CLEF

4 FLAT(S)

UNKNOWN SYMBOL
UNKNOWN SYMBOL
L'NKNOWN SYMBOL
FLAG_UP 1 SPACE 8
DoT

BAR UNE

FLAG_UP 1 SPACE §
UP BACK SPACE 5
FLAG UP 1 SPACE 4
BEAM UP SPACE 4 BEAM 2
BEAM2LINE 5 BEAM 1
BEAM 1 SPACE 5 BEAM 0
UP BLACK SPACE §
BARLINE

FLAG UP 1 SPACE 4
UP BLACK SPACE 4
FLAG UP 1 SPACE 4
UP BLACK SPACE 5
UP BLACK SPACE 5
BAR LINE

TREBLE CLEF
2 SHARP(S)

UNKNOWN SYMBOL

FLAG UP 1 SPACE 3

UP BLACK LINE &

FLAG UP 1 SPACE 4
FLAG UP 1 SPACE §

poT

FLAG UP 2 SPACE §

BEAM _UP SPACE 8 BEAM 2
BEAM3LINE 7 BEAM 1
BEAM 1 SPACE 8 BEAM 0
BAR LINE

FLAG_UP 1 SPACE 5

UP BLACK SPACE 5

poT

UNKNOWN SYMBOL

DN BLACK LINE 2

Experiment and conclusions

Sample IV

BASS CLEF
3SHARP(S)

UP WHITE SPACE 4
EIGHTH REST

BAR LINE

EIGHTH REST
EIGHTH REST

FLAG ON 1 LINE
DN BLACK SPACE 1
DN BLAGK SPACE 0
BARLINE

DN BLACK LINF 1
FLAG DN 1 LINE 1
DN BLACK SPACE 1
DN BLACK SPACE 0
BAR LINE

DN BLACK LINE 1
EIGHTH REST

Q REST

EIGHTH REST

BAR LINE

DN BLACK [ INE 3
SHARP/NAT

BAR LINE

DN BLACK [ INE 2
pot

DN BLACK SPACE 2

BAR LINE

DN BLACK LINF 3
SHARP/NAT

DN BLACK LINE 3
DN BLACK SPACE. 2
DoT

DAR LINE

BASS CLEF

3SHARP(S)

BEAM UP SPACE 4 BLAM 1
BEAM 1 SPACE 4 BLAM 1
BEAM 1 SPACE 4 BEAM 0
UP BLACK SPACF 4
EIGHTH RES!

EIGHTH REST

BAR LINE

FLAG UP 1 BIACK SPACE 4
UP BLACK LINE 5

FLAG UP 1 LINE 4

poT

BAR LINE

UP BLACK SPACK 4

FLAG UP 1 SPACE 4

UP BLACK LINE %

UP BLACK LINE 4

BAR LINE

UP BLACK SPACE 4
EIGHTH RESI

Q REST

EIGHTH REST

BAR LINE

DN BLACK SPACL 1

HAG DN 1LINF 1

DN BLACK SPACH 0
FLAG DN 1 LINL 1

BAR LINE

DN BLACK SPAGE 1

ot

DN BLACK LINE. 0

DOt

BAR LINE

BASS CLEF
3 SHARP(S)

DN BLACK SPACE 1
FLAG DN 1 LINEC 1
DN BLACK SPALE 0
FLAG DN 1 LINE 1
BARLINE

DN BLACK SPAGF 1
DoT

DN BLACK LINE 0
DOT
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Sample 11l — This is a good cxample of nicely hand-written music and the recognition rate was better than
cxpected, considering that no autographed music was included in the development samples. Most of the er-
rors were caused by flags too thin to be recognized, for example, the d’s in the fifth system, first bar. This
crror was predictable, since all the flags in the development samples had a minimum thickness that allowed
the projection to detect them. One possible way to detect these thin flags would be to take a diagonal pro-

jection. The rests were also unrecognized because of the inadequate classifier.

Sample IV — The high quality of print and the standard musical symbols of this sample, printed by the
famous Henle Verlag, have resulted in the best recognition performance with a test sample. It should be
mentioncd that although the symbols uscd in this sample are similar to many of those found in the develop-
ment samples, music published by Henle was not included in the development stage. Thus, the result prob-
ably reflects the performance level of the program when dealing with music printed by large music

publishcrs.

In genceral, the usc of projections provided an cfficicnt and reliable technique for segmentation, and to
acertain extent for classifization. Most of the crrors arise from the use of a fixed, rectangular height-width
planc to classify the symbols. There are two relatively simple steps to improve on the current method. First,
rather than using a rectangle, any shape should be allowed to represent a symbol in the plane, depending on
the distribution characteristics for each symbol. For example, an ellipsis or a circle can be used. The second

step, although more complex, is to allow a symbol to occupy disconnected regions on the plane.

6.4 Conclusions

Although the program is still in its infancy, the respectable recognition rate and speed achieved by

simple recognition techniques demonstrate that OMR can indeed be implemented on microcomputer-
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Chapter 6 — Experiment and conclusions

based systems. Another strength of the current program, not attained in previous rescarch, is its ability to

deal with scores other than those used for its development.

Of course, many improvements and refinements must be made to the program in order to develop prac-
tical software. Required enhancements include an increased vocabulary of symbols and some type of learn-
ing system. In a typical learning system, the various threshold values are stored in a modifiable database, not
hard-coded. When the system makes an error or encounters an unrccognizable symbol, the response pro-

vided by a human operator is used to updatc the database.

A utility should also be devised to allow for manual crror-checking of the output. The output can be
converted to music notation and comparcd with the original. This can be done by displaying both versions
on the screen or by producing a hardcopy via laser printer. With the latter method, or in a multi-tasking cn-
vironment, the system may continue to process subscquent pages while the user proofreads. In any case, #n
audio playback system will expedite the location of any gross crrors; this is cspecially usclul when the user
is already familiar with thc music. A MIDI interface attached to a synthesizer will probably sulfice for this

purpose, although dectails that cannot be reproduced through MIDI must still be checked visually.

While preprocessing the input was not required for the samples examined, some form of image restora-
tion must be provided to deal with distorted and noisy images. Finally, the recognition system must be able
to process other types of musical scttings including orchestral scores and keyboard music. Although all the
problems to be encountered in the recognition of polyphonic music cannot be anticipated, it is certain that

the projection-based technique can be exploited for this task as well.

Using the expericnce gained in the present rescarch as a strong starting point, these improvements can

be implemented in the ncar future to create a practical OMR system.
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Appendix A — List of Musical Examples

Bach, J. S. Six Suutes for Solo Cello (Bryn Mawr: Theodore Presser Company, Pennsylvania, 1964), 50.
Beckwith, J. Five Picces for Flute Duet V (Toronto: BMI Canada Ltd., 1962), 16.

Becethoven, L. v. Sonatas for Puanoforte and Violoncello. (New York: Schirmer, 1932), 25 (cello part).
Beethoven, L. v. Piano Soanta, Op. 111 (Frankfurt: Litolff/Pcters, 1978), 326.

Berg, A. Wozzeck (Vienna: Universal Edition, 1955), 479.

Bozza, E. Douze Capnces pour Basson (Paris: Alphonsc Leduc, 1968), 9.

Brahms, J Sonata for Prano and Violoncello in F major Op. 99 (Vienna: Wicner Urtext Edition, 1973), 1
(cello part).

Brod. H. Etudes ¢t Sonates pour Hautbors (Paris: Alphonse Leduc, 1951), 1.,

Ceciha, Sister, Sister John Yoseph, and Sister Rose Margarct. We Sing of Our Land (Boston: Ginn and
Company, 1960), 110,

Dcbussy, C. Svnnx (Paris: Jobert, 1954), 2,
Dcbussy, C. Prétudes, Second Book (Amsterdam Brockmans & van Poppel, 1968), 1.
Goss, J. ed. Ballads of Britain (London® John Lane The Bodley Head, 1937), 60.

Handcl, G. F. The Complete Sonatas for Flute and Basso Continuo (London: Faber Music Ltd., 1983), 6
(bass part).

Haydn, 1. Streichquanette. Heft 11 Op. 9. (Munchen-Duisburg: Henle Verlag, 1968), 24.
Hoffmceister, F. A Prétude ou Excercise Op. 35 Flilte Solo (Zurich: Amadeus Verlag, 1979), 10.
Hotteterre, 3. 48 Préludes in 24 Tonarten fur Altblockflote (Mainz: Schott, 1972), 21.

Lasocki, David. (c¢d ) A...r0logy: More Preludes and Voluntaries (England c. 1700) for Treble Recorder Solo
(London: Nova Music, 1981), 3

Movzart, W. A Tiurteen Early Stnng Quartets (Kassel' Barenrciter, 1966), 7 (violin I part).

Parrish, L. Stave Songs of Georgian Islands (New York: Creative Age Press, 1942), 155.

Péricr, A. Enscignement Complet de la Clannerte (Paris© Alphonse Leduc, 1931), 2.

Ravel, M. Sonate Posthume (Paris: Editions Salabert, 1975), 17,

Saygun, A. A Partita for Violn Alone, Op 36 (New York: Southern Music Publishing Co. Inc., 1964), 1.
Schoenberg, A Pelleas und Melisande (Wien® Universal Edition, 1939), 10,

Schubert, F. Das Hemuweh, Op 79/ 1 (Frankfurt: C.F. Peters, 1956), 149,

Telemann, G P String Quartet in A major (Kassel: Hortus Musicus, 1969), 2 (viola part).

Tippet, M. Svmphony No. 3 (Thetford, Norfolk: Schott & Co. Caligraving Ltd., 1974), 82.

Tromlitz, J. G. Sechs Partiten fur Flote (Frankfurt Litolff/Pcters, 1976), 6.

Wastall, Peter {ed) First Repertoire Preces for Flute (London: Booscy & Hawkes, 1982), 23.

Woll, H. duftrag: Monke Lieder Vol. S for High Voice (New York: Belwin Mills Publishing Corp.. n.d.), 63.
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