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IRCAM	
  –	
  Research	
  and	
  crea0on	
  
Founded	
  in	
  1977	
  by	
  Pierre	
  Boulez	
  
Associated	
  with	
  the	
  Pompidou	
  Center	
  
Funded	
  by	
  the	
  French	
  Minstry	
  of	
  Culture	
  
Unique	
  insKtuKon	
  for	
  music	
  tech.	
  research.	
  	
  

	
  

Gathers	
  musicians,	
  scien0sts	
  and	
  engineers	
  for	
  	
  
–  r enew ing	
   con tempora ry	
   mus i c	
  

e xp res s i on	
   th rough	
   s c i ence	
   &	
  
technology	
  	
  

–  mulK-­‐disciplinary	
   research	
   applied	
   to	
  
sound	
  &	
  music	
  	
  

Four	
  main	
  departments	
  (~180	
  people)	
  
•  STMS	
   Sc.	
   &	
   Tech	
   research	
   Lab	
   :	
   100	
   persons	
   including	
   researchers,engineers,	
   techs,	
   PhD	
  

candidates	
  :	
  acousKcs,	
  signal	
  processing,	
  computer	
  science,	
  psychology,	
  musicology	
  	
  
•  Crea0on.	
  30+	
  works	
  /	
  year	
  using	
  the	
  latest	
  research	
  technologies.	
  
•  Higher	
   educa0on.	
   scien&fic	
   and	
   ar&s&c	
   courses,	
   both	
   hosted	
   inside	
   and	
   with	
  

insKtuKonal	
  partners	
  
•  Research/Crea0on	
  interface	
  department	
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R&D	
  Department	
  –	
  By	
  the	
  numbers	
  
Hosts	
  the	
  IRCAM-­‐CNRS-­‐UPMC	
  (joint	
  UMR	
  9919	
  STMS)	
  
–  140	
  persons/	
  year	
  :	
  100	
  researchers/engineers/PhD	
  and	
  40	
  interns/guests	
  
–  ScienKfic	
   topics	
   :	
   digital	
   audio	
   signal	
   processing,	
   computer	
   science,	
   acousKcs,	
   human	
   percepKon/	
  

cogniKon,	
  musicology	
  
–  20+	
  soawares	
  environments	
  distributed	
  –	
  forumnet.ircam.fr	
  
–  Very	
  acKve	
  in	
  R&D	
  collaboraKve	
  projects,	
  20	
  ongoing,	
  33%	
  as	
  Coordinator	
  
–  Technology	
  licenses	
  :	
  Several	
  dozens	
  ongoing	
  

Research	
  teams	
  
•  EAC 	
   	
  -­‐	
  AcousKcs	
  and	
  CogniKve	
  Spaces	
  
•  PDS 	
   	
  -­‐	
  PercepKon	
  and	
  Sound	
  Design	
  
•  AnaSyn 	
  -­‐	
  Analysis/Synthesis	
  
•  S3AM 	
  -­‐	
  Physical	
  modeling	
  and	
  synthesis	
  
•  RepMus 	
  -­‐	
  Musical	
  representaKons	
  and	
  learning	
  
•  APM	
   	
  -­‐	
  Musicology	
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  S3AM	
  
3	
  permanent	
  researchers	
  

Carlos	
  Agon	
   Gerard	
  Assayag	
   Philippe	
  Esling	
  

5	
  PhDs	
  and	
  1	
  developer	
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Automatic projective orchestration
Methodology

Mathieu Prang

Like mammals brain, machine learning algorithms
perform better with a good representation of input
datas.
Objective : find a continuous low-dimensional
space for musical symbolic (scores) that carries
semantic relationship between events.
2 approaches :

GloVe

State-of-the-art word embeddings
algorithm that encode the
co-occurrence probabilities of two
words.

J =
VX

i,j=1

f (Xij)(w
>
i ŵj +bi + b̂j � logXij)

2

CNN-LSTM

Specially tailored for musical symbolic
datas : CNN for pitch-class invariant
and LSTM for time series sequence

J = min(
1
N

NX

i=1

(vwi � vw 0
i
)2)

Large	
  research	
  group	
  of	
  composers	
  
Bidon,	
  Carsault,	
  Cella	
  (Dev.),	
  Chemla,	
  Crestel,	
  Prang	
  

Y.	
  Maresz	
   D.	
  Ghisi	
   K.	
  Haddad	
   C.	
  Castellarnau	
  
(and	
  whole	
  GdR	
  OrchestraKon	
  =	
  ~30	
  composers)	
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A	
  historical	
  project	
  
•  Started	
  from	
  composers	
  discussion	
  ~2003,	
  first	
  proposal	
  by	
  Yan	
  Maresz	
  

•  Sample	
  Orchestrator	
  (ANR)	
  project	
  from	
  2008	
  
•  Lead	
  to	
  3	
  PhD	
  thesis	
  (Gregoire	
  CarpenKer,	
  Damien	
  Tardieu,	
  Philippe	
  Esling)	
  
•  Several	
  tools	
  developed	
  for	
  computer	
  assisted	
  orchestraKon	
  
•  Now	
  a	
  full-­‐Kme	
  associate	
  professor	
  devoted	
  to	
  the	
  topic	
  
•  Might	
  lead	
  to	
  the	
  creaKon	
  of	
  a	
  dedicated	
  team	
  (ACIDITEAM)	
  
•  OrchestraKon	
  has	
  all	
  the	
  ques0ons	
  !	
  

inharmonic partial analysis on the totality of the sound file in the same programme,
transcription of the given results into symbolic notation in OpenMusic and finally,
realization of the final score by hand. This somehow naïve technique allowed me to
approach my targets ‘harmonically’, and in some cases to break the more complex
and noisy sounds into nodal bands by observation of the overall frequency envelopes.
The choice of instruments to match the overall colours was done by analogy, in the
traditional manner (Figure 1).
Not being able to capture the quality of the timbre by analysis was obviously frus-

trating, since the multidimensional aspect of it was not taken into consideration.
Nevertheless, I still consider this orchestration quite successful. While writing the
work, I found many situations where I thought that my orchestration could have
been improved, especially in the realization of complex electronic timbres. In other
words, could the computer give me a higher starting point for my orchestration; a pro-
posal closer to the sound I needed to score for a given problem. My proposal to Ircam
happened at a time when many of the technologies needed to make such a system were
coming to maturity: large sample databases, analysis methods, computer-aided com-
position environments and so on.
I started by presenting a naïve draft vision for such a system, where the user could give

a sound target,2 and receive as a result, a proposal made out of mixtures of instrumental
sounds that spectrally ‘sound’ asmuch as possible like the input sound target (Figure 2).
A symbolic input of a pre-existing orchestration was also included as a possible target to
be processed by high-level descriptions of the desired result (i.e. transform into ‘met-
allic’, ‘thin’, ‘granular’, ‘dark’, etc.). These characteristics could be defined by the user
or ‘gradually learned’ by the system as the composers tagged his results while using
the software, since all composers may have different terms for their sonic palette.

Orchidée

Along with other composers and researchers, we started to narrow down this very
ambitious and complex problem into smaller units, as I was compiling the sound

Figure 2 First Schematic Draft of the Orchestration Software.
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Pressure	
  wave	
  (acous0c	
  raw	
  signal)	
  

Spectral	
  transform	
  (Fourier,	
  wavelet)	
  

Symbolic	
  score	
  (computer	
  music)	
  

s = {st, st+⌧ · · · , st+N⌧}

s(t) =
K�1X

k=0

↵kz
t
k + b(t)

f(!) =

Z +1

�1
s(t)e�i2⇡!tdt

M = {ni | i 2 [1, N ] , ni 2 G}
G = Z/nZ

< Tk | (Tk)
12 = T0 = 0 >

Acous0cs	
  

Signal	
  processing	
  

Computer	
  music	
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Space in Music Theory!

Speculum Musicum [Euler]!

Chicken Wire Torus [Douthett & Steinbach]!Tonality strip [Mazzola]!

Orbifolds [Tymoczko]!

3D Tonnetz [Gollin]!

Model Planet [Barouin]!

Spiral Array [Chew]!

Louis BIGO - Musical Symbolic Representations and Spatial Computing! 2!

Tonnetz [Oettingen, Riemann]!

P.	
  Esling	
  –	
  Data	
  structures	
  and	
  algorithms	
  

Music	
  as	
  symbols	
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Trajectory Transformations!

!  Isomorphism from a support space to another!
Transformation of the initial space of the trajectory!

Louis BIGO - Musical Symbolic Representations and Spatial Computing! 73!
J.-S.Bach - Choral BWV 256 

Ku
TI[3,4,5]! Ku

TI[2,3,7]!

?!

2. RELATED WORK

Tonnetze may be implemented on a computer, enabling
musicians to use them for performances. For example, C-
Thru 2 , creates physical Tonnetz keyboard in which each
cell is a physical hexagonal button. The user can play in-
dividual notes by pressing one button at a time, or play
several simultaneously to create a chord.

Tablet-based systems such as Musix and IsoKey offer users
a customizable isomorphic layout on the screen. Like C-
Thru’s products, users can press the hexagonal cells to pro-
duce individual pitches, melodies and chord patterns. They
also allow users to switch among different Tonnetz layouts
during a performance. Maupin et al. [5] examined the har-
monic and melodic characteristics of different square and
hexagonal pitch layouts and identified which layouts are
better suited to different types of improvisation, within par-
ticular harmonic contexts.

Although these systems provide interesting performance
opportunities, they were not designed to support composi-
tion. Computer-based tools that are specifically intended
for composition are usually dedicated to the later stages
of the creative process [6], such as assigning sequences in
time, editing scores or experimenting with advanced forms
of sound synthesis. Most of these tools involve learning a
specific language, such as MAX/MSP 3 or OpenMusic [7],
although a few provide more direct methods, such as Bux-
ton et al.’s [8] techniques for interpreting hand-drawn mu-
sical notations.

Yet even composers with computer skills and access to
advanced composition systems prefer to sketch their early
creative ideas on paper [9, 10]. Paper helps creative pro-
fessionals externalize their ideas [11] and composers of-
ten create their own personal languages to express musical
ideas [12], which are difficult to translate into computer
terms.

One method for bridging the gap between physical paper
and composition software is interactive paper. The most
common approach uses Anoto technology [13], which uses
a digital pen to capture the precise location as the pen
moves on the paper. The pen contains an integrated video
camera in the tip. The paper is printed with tiny, almost in-
visible dots that create a unique, identifiable pattern. When
the user draws on this paper with the pen, the camera de-
tects the precise location of the pen on the page, as well
as the time it was written, the pen that was used and even
which page. This information can be processed by the pen,
for simple task such as playing a sound, or simultaneously
transmitted to a more sophisticated application on a com-
puter.

In previous work, we explored several techniques for in-
corporating interactive paper into the composition process.
For example, Musink allows composers to define their own
vocabulary of annotations on musical scores, which can
then be interpreted as functions in computer-aided music
composition software such as OpenMusic. Similarly, Ink-
Splorer [6] lets composers experiment with different curves
drawn on paper to control computer-based algorithms and

2 http://www.c-thru-music.com
3 http://www.cycling74.com

Fourth 
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Third 

Minor 
Third 

5 

4 3 

Figure 1. The neo-Riemannian Tonnetz frequently used to
visualize chord progressions because of its harmonic prop-
erties.

then use them as a resource for new compositions.
We are interested in allowing composers to use Tonnetz

as an aid to the composition process. This requires creating
a Tonnetz-based composition space, discussed in section
3, and an interactive paper-based system for letting com-
posers capture and modify musical expressions, described
in section 4.

3. TONNETZ AS A COMPOSITION SPACE

3.1 Composition example

Chouvel’s work, entitled Traversée [4], offers a compelling
example of how a Tonnetz can be used as a tool for ex-
ploring composition ideas. After creating and printing a
Tonnetz on paper, Chouvel drew differently colored paths
through the hexagonal cells, each representing a set of pitch
sequences. He called the resulting geometrical shapes ’con-
stellations’ because they look like the line drawings that
connect individual stars in a map of the night sky. Once
drawn, he was able to perform geometrical transformations
on the paths and examine the results, represented as notes
on a standard musical score. Figure 2 illustrates this pro-
cess: note that the paths that link different pitches may be
treated as a sequence, to create a melody, or in parallel, to
create a chord.

Le parcours des constellations est parfaitement arbitraire, mais absolument régulier, et 

dessine pour chaque lettre une figure différente. Ces parcours exploitent évidemment les 

propriétés de l’espace hexagonal et opèrent des transformations intervalliques importantes 

en conservant une sorte de logique qui n’a rien à voir avec la transposition. Le total 

chromatique permet de reconnaître d’autres parcours imbriqués et donc de définir des suites 

« négatives » de notes. Voici l’exemple de la lettre L qui est celle du premier temps de la 

pièce. 

 

Fig. 11. Suite de hauteurs associée à la lettre L. 

La cohérence harmonique est liée à la logique impliquée par l’espace sous!jacent, qui 

donne une représentation topologique de la notion de proximité harmonique. Ainsi pour la 

lettre L du début de la partition, on retrouve les notes sol# au piano, mais qui n’est pas 

comptée dans la durée, et do au violon 1, la au violon 2, les instruments désignés par le 

tableau de la figure 9. D’autre part, le fait que le L soit entouré "cf. figure 8# indique que la 

mélodie de la voix épouse le parcours de la constellation L. 

Nous venons d’expliquer en quelque sorte le « branchage » de l’arbre. Reste à 

comprendre ce qui en fait la frondaison. Un autre brouillon donne des indications 

importantes. Il se rapporte aussi au texte du poème en donnant à chaque paragraphe un rôle 

singulier, illustré par les signes présents à gauche du texte. D’une certaine manière, la forme 

de la pièce est résumée dans ces quelques notations qu’il convient de déchiffrer. Les lettres 

L, M et P sont prises pour Lettre, Mot et Paragraphe. Cela désigne le niveau auquel la 

Figure 2. Chouvel’s work on paper for his piece Traversée.
The composer translates drawn shapes in a score and oper-
ates geometrical transformations to create variations. Pic-
ture from Jean-Marc Chouvel.

Chouvel’s approach makes it possible to explore a wide
variety of geometrical transformations, including transla-
tions, rotations and homothetic transformations. His Ton-

P.	
  Esling	
  –	
  Data	
  structures	
  and	
  algorithms	
  

RepresenKng	
  symbolic	
  music	
  
•  MulKple	
  representaKons	
  of	
  music	
  exists	
  
•  Work	
  on	
  spaKal	
  structures	
  (Tonnetz)	
  by	
  Louis	
  Bigo	
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Methodology

Mathieu Prang

Like mammals brain, machine learning algorithms
perform better with a good representation of input
datas.
Objective : find a continuous low-dimensional
space for musical symbolic (scores) that carries
semantic relationship between events.
2 approaches :

GloVe

State-of-the-art word embeddings
algorithm that encode the
co-occurrence probabilities of two
words.

J =
VX

i,j=1

f (Xij)(w
>
i ŵj +bi + b̂j � logXij)

2

CNN-LSTM

Specially tailored for musical symbolic
datas : CNN for pitch-class invariant
and LSTM for time series sequence

J = min(
1
N

NX

i=1

(vwi � vw 0
i
)2)
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N
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MaWhieu	
  Prang,	
  Léopold	
  Crestel	
  (prang@ircam.fr)	
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Automatic projective orchestration

MaWhieu	
  Prang,	
  Léopold	
  Crestel	
  (prang@ircam.fr)	
  

•  Machine	
  learning	
  requires	
  loads	
  of	
  examples	
  
•  Defining	
  a	
  very	
  large	
  classical	
  MIDI	
  database	
  

•  Collected	
  from	
  10	
  independent	
  sources	
  
•  More	
  than	
  15,000	
  composers	
  
•  Above	
  90,000	
  MIDI	
  files	
  
•  Spanning	
  wide	
  eras	
  

•  SKll	
  needs	
  a	
  checking	
  /	
  safety	
  procedure	
  
•  Already	
  re-­‐defined	
  state-­‐of-­‐the-­‐art	
  in	
  inference	
  
•  Defined	
  first	
  state-­‐of-­‐the-­‐art	
  in	
  orchestral	
  predicKon	
  
•  Currently	
  developing	
  composiKon	
  from	
  these	
  spaces	
  
•  Also	
  working	
  on	
  interacKve	
  composiKon	
  



•  Art of writing musical pieces for orchestras (symbolic view)

•  Can be seen as the art of mixing instrumental properties. (signal view)

•  Discovering how the orchestra is used to achieve a musical thought.

•  At the crossroads between signal and symbolism (writing and timbre)

•  How to combine instrumental models (spectral properties)


Temporal	
  percepKon	
  (macro)	
  

Combinatorial	
  complexity	
  

Micro-­‐temporal	
  

MulKdimensional	
  
percepKon	
  

Neural	
  orchestraKon	
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Automatic projective orchestration

Léopold	
  Crestel	
  
(crestel@ircam.fr)	
  

Partition piano

Partition
orchestre

Orchestration

(v)

Orchestra
(time < t)

...
...

...

Piano
(time t)

(h)

...

(x)

Factors

(z)

Orchestra
(time t)

Unknown
(randomly initialized)Clamped

Alternate Gibbs
Sampling

Figure 5: Sampling in a FGcRBM. Context and feature units
are respectively clamped to the last (t�1 to t�N ) orchestral
frames and the current (t) piano frame. Visible units are
randomly initialized. Then, several Gibbs sampling step are
performed until reaching the equilibrium distribution of the
model.

models because of the partition function. However, samples
from an approximate distribution can be reached through al-
ternate Gibbs sampling. After randomly setting the visible
units (for each index i, v

i

⇠ U(0, 1)), K Gibbs sampling
steps are performed to obtain a visible sample. The objec-
tive of these K steps is to reach the equilibrium distribution
of the model. Even though a theoretically infinite number
of steps is necessary, 20 to 100 steps are typically sufficient.
Note that, in practice, a threshold is applied on the activation
of the visible units before the last sampling step in the Gibbs
chain so that unlikely activations are set to zero.

Projective orchestration
In this section, we introduce and formalize the automatic
projective orchestration task presented in Figure 1 on page
1. In particular, we detail the database used, data representa-
tion, evaluation framework, and discuss the results obtained
by different models.

Database
We use a database of piano scores and their orchestration
by famous composers. The database consists of 76 excerpts
of orchestral pieces, and fourteen different instruments were
present in the database. This database has been collected by
orchestration teachers and are the transcription of famous
composers orchestration in the MusicXML format.

Data representation
In order to process the scores, we import them as matrices
called piano-roll, a data representation traditionally used to
model polyphonic music (see Figure 6 on page 5). The pi-
ano and orchestra scores are represented in two different
piano-rolls. The orchestral piano-roll is the concatenation
of piano-rolls from each instrument along the pitch dimen-
sion.

The rhythmic quantization is defined as the number of
time frame in the piano-roll per quarter note. When con-
structing the piano-rolls, we used a rhythmic quantization of
4.

In order to reduce the number of units, we systematically
remove, for each instrument, any pitch which is never played
in the training database. Hence, the dimension of the orches-
tral vector decreased from 2432 to 456 and the piano vector
dimension from 128 to 88. Also, we follow the classic or-
chestral simplifications used when writing orchestral scores
by grouping together all the instruments of the same sec-
tion. For instance, the violin section, which might be com-
posed by several instrumentalists, is written as a single part.
Finally, the velocity information is discarded, since we use
binary units which solely indicate if a note is on or off.
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Figure 6: From the score of an orchestral piece, a convenient
representation for computer processing named piano-roll is
extracted. A piano-roll pr is a matrix whose rows represent
pitches and columns represent a time frame depending on
the discretization of time. A pitch p at time t played with
an intensity i is represented by pr(p, t) = i, 0 being a note
off. This definition is extended to an orchestra by simply
concatenating the piano-rolls of every instruments along the
pitch dimension. Finally, each time frame in the piano-roll
matrix will be modelled by the visible units of the RBM, in
order to learn the probability distribution of the orchestral
process.

Model definition
For each orchestral piece, we define Orch(t) and Piano(t)
as the sequence of column vectors from the piano-roll of
the orchestra and piano part respectively, with t 2 [1, N
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MIDI Input

Audio rendering

OSC 
Client

Score rendering

OSC 
Server

Max/Msp MATLAB Pre-trained network
Real-time user input

Model Orchestral Event-level (%)
Random 0.5
Repeat 12.6
cRBM 23.2

FGcRBM 6.2

Table 1: Event-level accuracy for the orchestral inference
task. Even though the cRBM performances increase by a
factor 3 between the cRBM and the random model, the in-
clusion of features units provides a leap in the accuracy by
multiplying the performances by 4.

Live Orchestral Piano (LOP)
We introduce in this section the Live Orchestral Piano
(LOP) application, which is the first software able to pro-
vide a way to compose music with a full classical orchestra
in real-time by simply playing on a MIDI piano. The goal
of this framework is to rely on the knowledge learned by the
model introduced in the previous sections in order to per-
form the projection from a piano melody to the orchestra.

Workflow
The software is implemented on a client/server paradigm.
This choice allows to separate the orchestral computation
part from the interface and sound rendering engine. That
way, multiple interfaces can easily be implemented. It
should also be noted that separating the computing and
rendering on different computers, can allow to use high-
quality and CPU-intensive orchestral rendering plugins.
This can allow a more realistic orchestral rendering with
heavy amounts of computation performed while ensuring
the real-time constraint on the overall system (preventing
degradation of the computing part). The complete imple-
mentation workflow is presented in Figure 7.

As we can see, the user can input a melody (single notes
or chords) through a MIDI keyboard, which is retrieved in-
side the Max/Msp interface. The interface transmits this
symbolic information (as a variable-length vector of active
notes) via OSC to the MATLAB server. The interface per-
forms a real-time transcription of the piano score to the
screen in parallel. The server uses this vector of events to
produce an 88 vector of binary input note activations (as de-
fined in the sub-section Data representation). This vector
is then processed by using the orchestration algorithms pre-
sented in sub-section Model definition in order to obtain a
projection of a specific symbolic piano melody to the full
orchestra (an operation defined as projective orchestration).
The resulting orchestration is then sent back to the client in-
terface which performs both the real-time audio rendering
and score transcription.

Interface
The interface has been developed in Max/Msp, to facilitate
both the score and audio rendering aspects in a real-time en-
vironment. The score rendering is handled by the Bach li-
brary environment. This interface provides a way to easily
switch between different orchestration models, while con-
troling other meta-parameters of the sampling. For instance

the cutoff probability gives a direct access to the density of
the generated orchestration (in terms of number of played
instruments). Indeed, a low cutoff probability implies that
most activation of notes will be taken into account in the
playback, while a high cutoff will produce more sparse or-
chestration.

Conclusion and future works
We have introduced a system for real-time projective orches-
tration of a midi piano input. In order to select the most
adapted model, we have proposed an evaluation framework
called orchestral inference which rely on an orchestral infer-
ence task. We have assessed the performance of the cRBM
and FGcRBM, and observed the better performances of the
cRBM model.

The general objective of building a generative model for
time series is one of the most prominent topic for the ma-
chine learning field. Orchestral inference sets a slightly
more specific framework where the generated time series
is conditioned by an other observed time series (the piano
score). Besides, being able to grasp the long range de-
pendencies structuring music appears as a challenging and
worthwhile task.

The high dimensionality of the data and their sparsity
are a major obstacle for learning algorithms. A first re-
mark is that a larger database would be required to train
any model sufficiently complex to properly represent the
underlying distribution of a projective orchestration. It is
important to build a reference database of piano scores and
their orchestration by acknowledge composers, with all in-
strument name indicated and velocity for the notes. Indeed,
we believe that taking the notes’ velocity into consideration
is crucial, since many orchestral effects are justified by in-
tensity variations in the original piano scores. Besides, the
sparse representation of the data suggests that a more com-
pact distributed representation might be found. Lowering
the dimensionality of the data would greatly improve the ef-
ficiency of the learning procedure. For instance, methods
close to the word-embedding techniques used in natural lan-
guage processing might be useful (Kiros et al. 2015).

Moreover, other models should be evaluated. The features
units of the FGcRBM model could be used to model dif-
ferent composing styles. The fundamental mechanisms in-
volved in recurrent models (LSTM (Hochreiter and Schmid-
huber 1997)) could also be augmented by a notion of condi-
tional dependence and used in an orchestral inference con-
text.

Finally, a better performance measure should be devel-
oped for the orchestral inference task. A solution could be
to derive estimators for the likelihood of sequences under
the proposed models. Recent work on methods such as An-
nealed Importance Sampling are promising.
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P R E D I C T I O N A N D A B S T R A C T S C E N A R I O
I N F E R E N C E

In this second part, we present our approach to the sce-
nario inference and prediction problem.

Prediction is performed through temporal analysis using
recurrent neural networks. Due to the high representation
power of these networks and their large number of param-
eters, we searched for a large dataset on which to train
them. This lead us to the choice of the Million Song

Dataset, which provides one million chromagrams.

A meta-optimization loop is implemented to devise an ap-
propriate architecture for this task, given the large dataset
at hand.

The abstraction step is done using clustering algorithms
on the available chromas, effectively turning a sequence
of chromas into a sequence of abstract labels.

Figure 8: Proposed prediction and symbolization architecure
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Figure 2.12: Log-magnitude constant-Q spectrogram of the audio
recording of an acoustic guitar shown in figure 2.6. The constant-Q
transforms are computed over logarithmically-spaced bins from C2 to
B5 (65.4 to 987.8 Hz), with 12 bins per octave.
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transform is the hop size. If the hop size R is larger than mink(Mk) (the window

size of the highest frequency bin), it is possible that a portion of the signal will not

be analyzed, and furthermore if R > mink(Mk)/2 then some distortion may result.

The simplest way to mitigate this is to set R < mink(Mk)/2. However, if mink(Mk)

is by necessity very small, this can result in excessive oversampling. An alternative,

advocated by (Schörkhuber and Klapuri, 2010), is to compute the high-frequency

CQT bins at multiple o↵sets within each window and aggregate the results.

As with the DFT, the CQT produces complex-valued coe�cients, and a more

more perceptually accurate transform can be obtained by computing a log-magnitude

CQT. For comparison, the log-magnitude CQT of the audio signal in figure 2.6 is

shown in figure 2.12.
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A common task in signal processing is measuring the similarity between two sequences

of feature vectors. For example, given a collection of recorded speech utterances with
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Orchids – Released and debugged 
Release of Orchids in late 2014, sold on Forumnet 
Already very used and proficient in musical productions (Matlab proto) 
Currently GdR/GdT Orchestration every month at IRCAM 

 

 
 

Participants : P. Esling,, D. Ghisi (residency), Y. Maresz, M. Vitorio Garcia, E. Daubresse 
External collaborations : McGill, Montreal (S. McAdams, CIRMMT) – HEMG, Geneva (E. Daubresse) 

27

Latest version delivered on Forumnet march 2016 
Improved accuracy and search heuristics 
Fully multi-threaded version 
Extended database 
Multiple bug corrections 
 
 2 years full-time C++ developer hired in july 2017  
Carmine Emanuele Cella work jointly at IRCAM and HEMG 
Temporal algorithms, deep learning and efficient spectral descriptors database handling 
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symbol and 
cognition

Understanding learning and 
knowledge extraction 

Deep learning and 
multiobjective time series 

Multiple time scales  
deep temporal 

granularities learning 

Joint signal-symbol 
embedding spaces and 

zero-shot learning

Multimodal regularities 
and semantic knowledge 

inference

Auxiliary task transfer, 
indirect knowledge 

inference
Knowledge extraction 

and semantic exploration

Epistemological 
loop into diverse 
scientific fields

Application
Amplicon sequencing 

and DNA biomonitoring

Application
Heart diseases

Application
Orchestration theory

Application
Automatic composition

Application
Generic time series 

mining tasks

Variational space-space 
multimodality learning

Representation of time 
series for learning

Understanding 
unsupervised learning



IRCAM  –  Before  ACTOR


EAC	
  PDS	
  

AnaSyn	
   APM	
  

RepMus	
  S3AM	
  
1	
  permanent	
  researcher	
  

Philippe	
  Esling	
  

1	
  PhD	
  +	
  1	
  intern	
  

1

Automatic projective orchestration

Research	
  group	
  of	
  composers	
  
Carsault,	
  Crestel,	
  Prang	
  

Y.	
  Maresz	
   D.	
  Ghisi	
  
(and	
  whole	
  GdR	
  OrchestraKon	
  =	
  ~30	
  composers)	
  

Methodology

Mathieu Prang

Like mammals brain, machine learning algorithms
perform better with a good representation of input
datas.
Objective : find a continuous low-dimensional
space for musical symbolic (scores) that carries
semantic relationship between events.
2 approaches :

GloVe

State-of-the-art word embeddings
algorithm that encode the
co-occurrence probabilities of two
words.

J =
VX

i,j=1

f (Xij)(w
>
i ŵj +bi + b̂j � logXij)

2

CNN-LSTM

Specially tailored for musical symbolic
datas : CNN for pitch-class invariant
and LSTM for time series sequence

J = min(
1
N

NX

i=1

(vwi � vw 0
i
)2)
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Automatic projective orchestration
Methodology

Mathieu Prang

Like mammals brain, machine learning algorithms
perform better with a good representation of input
datas.
Objective : find a continuous low-dimensional
space for musical symbolic (scores) that carries
semantic relationship between events.
2 approaches :

GloVe

State-of-the-art word embeddings
algorithm that encode the
co-occurrence probabilities of two
words.

J =
VX

i,j=1

f (Xij)(w
>
i ŵj +bi + b̂j � logXij)

2

CNN-LSTM

Specially tailored for musical symbolic
datas : CNN for pitch-class invariant
and LSTM for time series sequence

J = min(
1
N

NX

i=1

(vwi � vw 0
i
)2)

Large	
  research	
  group	
  of	
  composers	
  
Bidon,	
  Carsault,	
  Cella	
  (Dev.),	
  Chemla,	
  Crestel,	
  Prang	
  

Y.	
  Maresz	
   D.	
  Ghisi	
   K.	
  Haddad	
   C.	
  Castellarnau	
  
(and	
  whole	
  GdR	
  OrchestraKon	
  =	
  ~30	
  composers)	
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Automatic projective orchestration
Methodology

Mathieu Prang

Like mammals brain, machine learning algorithms
perform better with a good representation of input
datas.
Objective : find a continuous low-dimensional
space for musical symbolic (scores) that carries
semantic relationship between events.
2 approaches :

GloVe

State-of-the-art word embeddings
algorithm that encode the
co-occurrence probabilities of two
words.

J =
VX

i,j=1

f (Xij)(w
>
i ŵj +bi + b̂j � logXij)

2

CNN-LSTM

Specially tailored for musical symbolic
datas : CNN for pitch-class invariant
and LSTM for time series sequence

J = min(
1
N

NX

i=1

(vwi � vw 0
i
)2)

1

Automatic projective orchestration



Implications in ACTOR project 

•  Fully	
  dedicated	
  research	
  team	
  for	
  ACI	
  and	
  orchestraKon	
  
•  1	
  permanent	
  researcher	
  
•  5	
  PhDs	
  (3	
  of	
  those	
  starKng	
  in	
  2017)	
  
•  1	
  C++	
  developer	
  

•  AddiKonnal	
  research	
  team	
  
•  6	
  permanent	
  researchers	
  
•  From	
  4	
  different	
  teams	
  at	
  IRCAM	
  

•  Full	
  research	
  group	
  in	
  orchestraKon	
  (GdR	
  OrchestraKon)	
  
•  Large	
  interest	
  in	
  the	
  IRCAM	
  composer	
  community	
  
•  In-­‐house	
  collaboraKon	
  with	
  composers	
  for	
  high-­‐level	
  user	
  

feedback	
  and	
  assessment	
  in	
  high-­‐impact	
  arKsKc	
  producKon	
  
•  Public	
  conferences	
  in	
  the	
  Manifeste	
  and	
  Forumnet	
  
•  Centre	
  Pompidou	
  :	
  large	
  exposure	
  to	
  public	
  and	
  media	
  
•  CreaKon	
  of	
  a	
  dedicated	
  research	
  team	
  



Technologies provided in ACTOR 

•  Sets	
  of	
  1st	
  of	
  kind	
  computer-­‐aided	
  orchestraKon	
  soawares	
  
•  Orchids:	
  automaKc	
  orchestraKon	
  from	
  sound	
  targets	
  
•  Live	
  Orchestral	
  Piano	
  (L.O.P)	
  for	
  real-­‐Kme	
  composiKon	
  

•  Newly	
  developed	
  ML	
  algorithms	
  
•  Orchestral	
  embedding	
  
•  MulKmodal	
  processing	
  

•  Future	
  TimeDB	
  development	
  
•  Several	
  newly	
  developed	
  databases	
  

•  Large	
  database	
  of	
  classical	
  MIDI	
  files	
  
•  ProjecKve	
  OrchestraKon	
  Database	
  (POD)	
  
•  Currently	
  collected	
  mulKmodal	
  database	
  

•  Access	
  to	
  the	
  instrumental	
  databases	
  
•  StudioOnLine	
  (SOL)	
  
•  Future	
  TICEL	
  project	
  

•  All	
  forumnet	
  technologies	
  



Thank	
  you	
  for	
  your	
  ques0ons	
  !	
  
esling@ircam.fr	
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Like mammals brain, machine learning algorithms
perform better with a good representation of input
datas.
Objective : find a continuous low-dimensional
space for musical symbolic (scores) that carries
semantic relationship between events.
2 approaches :

GloVe

State-of-the-art word embeddings
algorithm that encode the
co-occurrence probabilities of two
words.

J =
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f (Xij)(w
>
i ŵj +bi + b̂j � logXij)
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Specially tailored for musical symbolic
datas : CNN for pitch-class invariant
and LSTM for time series sequence
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