
Musical Scales 

The individual parts of a melody reach the ear in succession. 
We cannot perceive them all at once. We cannot perceive 
backwards andforwards at pleasure. Hence for a clear and 
sure measurement o j  the change ojpitch, no means was left 
butprogresston by determinate degrees. This series of degrees 
is laid down in the musical scale. 

(Helmholtz. 1877/1954. p. 252) 

INTRODUCTION 

Of the perceptual dimensions used in music, pitch is unique in having a 
scale dividing it fairly rigidly into discrete steps. Steps of loudness are 
designated in musical scores with labels such as p, mp, mf, and so forth, 
but these are relative indicators whose meaning changes 'with context. 
Thetemporal continuum is divided into discrete beats, but the duration of 
the beat changes with tempo. Timbre is multidimensional, and all its 
dimensions admit of more or less continuous variation. Pitch alone is 
organized into discrete steps. This is true in almost all the cultures of the 
world. We say almost all because there are some cultures that often use 
chants on two pitch levels for which it is difficult to define a scale. For 
example, the Hawaiian oli chant (described by Roberts, 1967) is primarily 
monotonic, with wide latitude in the pitch separation of a lower secondary 
tone. Like the Hawaiian, several cultures in widely separated parts of the 
world use two-pitch chants, and it seems a matter of semantics whether 
we call the two pitches with their single discrete step a scale or. not. 
Further, there is some evidence that as such a chant becomes more in- 
tense and excited, the single melodic interval becomes expanded, perhaps 
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in continuous fashion (Sachs, 1965). Nevertheless, most of the world's 
music is based on scales having stable, discrete steps. The sizes of the 
steps vary from culture to culture, though virtually all use the octave as a 
basic interval. 

In our discussion, we first consider a set of cognitive constraints on 
scale construction that seem to operate through much of the world. We 
show how the application of those constraints in various combinations 
leads the various possible forms of scale in different cultures. Following 
that, we turn to a discussion of alternative ways psychologists and musi- 
cians have looked at pitch scales, leading to a discussion of contemporary 
multidimensional-scaling approaches. We conclude the chapter with an 
overview of the use of scales in a variety of cultures. 

It is a puzzle for psychology why the music of the world uses discrete 
steps from pitch to pitch rather than the continuous series of all possible 
pitches. In his discussion of this problem, Helmholtz (187711954, pp. 
250ff.) suggests that a scale of discrete pitch levels provides a psychologi- 
cal standard by which the listener can measure melodic motion. If melo- 
dies consisted of continuous changes of pitch like the wailing of a siren, 
the listener would still have to learn a scale in order to comprehend the 
amount of those changes. In that case, the listener would have a very 
difficult time learning the scale, since the actual notes of the scale would 
seldom occur (and seldom be marked) in the perceived music. The cogni- 
tive tasks of musician and listener are immensely simplified by restricting 
the set of pitches to the graduated degrees of a scale. Knowing a musical 
scale gives the listener an immediate basis for comparing the sizes of pitch 
intervals and judging the extent of melodic motion. (Helmholtz's argu- 
ment is a special case of a general argument concerning cognitive frame- 
works made by Kant, 178711933, pp. B xxxix f., footnote.) 

Beyond providing a measure of melodic motion, the scale provides a 
cognitive framework that facilitates the remembering of the pitches of a 
melody. This is especially important in nonliterate cultures where the 
human memory is the only vehicle by which melodies are preserved. 
Without culturally established scales, the reproduction of tunes and their 
transmission from generation to generation is a haphazard affair. We 
present evidence below that people's memory for familiar tunes using 
familiar scales is indeed very good. Some researchers go so far as to argue 
that because the scale is a mutually shared category system among per- 
formers and listeners, the listener "hears one and the same music, in 
different rooms, played on various instruments or sung, transposed, re- 
corded with various equipment with such and such distortion, etc." 
(Francbs, 1958, pp. 34-35). 

The pitch categories of a musical scale serve the same kind of psycho- 
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logical function as do discrete categories used in the recoding of many 
types of messages communicated across noisy channels. Languages use 
this kind of discrete categorization. There is a certain range of physical 
sounds which, in English, are heard asp (Lane, 1965; Liberman, Harris, 
Kinney, & Lane, 1961). Certain physical parameters can be changed 
along a continuum, and up to a point, the sound will remain p. However, 
at a certain point the sound will become a b for the listener. Speakers are 
given considerable latitude in the way they produce p's. They can gener- 
ate physical sounds anywhere along that part of the continuum mutually 
recognized as belonging to the p category and their listeners will under- 
stand them. Further, the listeners will be able to economize what they 
must store in memory in order to remember the message. Rather than 
remember all the acoustic parameters of the waveform the speaker actu- 
ally produced, all the listener must remember is the perceptual category 
into which those sounds fall. As in language, the categorization of both 
stimuli and responses afforded by musical scales reduces ambiguity and 
memory load in hearing, remembering, and producing music. As in most 
human communication systems, some indeterminacy within categories 
(intonation error) is allowed in order to achieve greater stability and clar- 
ity at the broader level of category identification. 

WESTERN SCALES AND EQUAL TEMPERAMENT 

Constraints on Scale Construction 

The structure of scales in Western music provides a convenient starting 
place to begin the description of musical scales of pitch. After describing 
Western scales, we go on to describe certain features of the scale systems 
of other cultures. Figure 4.1 shows a typical Western tonal scale (C major) 
along with the fundamental frequencies of the notes. There are several 
psychological constraints on tonal scale construction found all over the 
world. First, the pitches of a scale must be discriminable from one an- 
other when played in succession. In Western music, the smallest pitch 
interval between notes, called a semitone, represents a frequency differ- 
ence of about 5.9%. Such an interval can be found between E and F and 
between B and C in Figure 4.1. Since humans are capable of discriminat- 
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Figure 4.1 Standard fundamental frequencies of the Western C-major scale. 



Western Scales and Equal Temperament 93 

ing frequency differences of the order of 1.0% in this frequency range 
(Shower & Biddulph, 1931), intervals of a semitone would seem to be 
safely discriminable. The composer Harry Partch (1974), a long-time pro- 
ponent of microtonal scales, which have intervals smaller than the semi- 
tone, notes that the principal limitations on the smallness of intervals are 
not given by their psychophysical discriminability but by the cognitive 
systems of the listener-a set of constraints to which we return below. 

A second constraint is that tones whose fundamental frequencies stand 
in a 2 : 1 ratio (or nearly so; we discuss complications below) are treated as 
very similar to each other. The interval between frequencies in a 2: 1 ratio 
is called an octave. The two notes labeled C in Figure 4.1 are an octave 
apart. Tones an octave apart are perceived as similar not only by humans 
but also by white rats (Blackwell & Schlosberg, 1943). In cultures having 
labels for the pitches of the scale, tones an octave apart are given the 
same name. In Western music, for example, tones with fundamental fre- 
quencies of 32.75, 65.5, 131, 262, 524, 1048, 2096, and 4192 Hz are all 
called C. Further, in cultures with functional harmony like the western 
European tones of the same name have the same harmonic functions 
when combined simultaneously with other tones. The overwhelming ma- 
jority of cultures in the world make use of the equivalence of tones an 
octave apart. The only exceptions we have found are certain groups of 
Australian aborigines. In their cultures, melodic imitations at roughly 
octave intervals do not always use the same logarithmic scale intervals, 
and when men and women sing together, they do so in unison and not in 
octaves (Ellis, 1965). 

A third constraint is that when the octave is filled in with the intervals of 
the scale, there should only be a moderate number of different pitches, 
say five or seven. This constraint arises from the cognitive limitation on 
the number of different values along a psychological dimension people 
can handle without confusion. Miller (1956) argues that across various 
sensory modalities, the number of stimuli along a given dimension people 
can categorize consistently is typically 7 + 2. With more than seven or so 
different pitches, people begin to hear two or more pitches as falling in the 
same category and so defeat the purpose Helmholtz saw for the scale. 
Most cultures in the world use five to seven pitches in their tonal scales. 

A fourth constraint that operates in a few cultures of the world, among 
them the Western and the Chinese, is that the octave should be divided 
into a series of minimal intervals, all equal in size, which are added 
together to construct all the intervals used in melodic scales. Western 
tuning divides the octave into 12 semitones (a chromatic scale). One 
advantage of such a system is that a given melody can be transposed so.as 
to start on any note of the tuning system and be reproduced without 
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Figure 4.2 The frequencies of the chromatic scale on the piano keyboard. 

distortion. Each pitch interval in the transposition will contain the same 
number of semitones as the corresponding interval in the original. Figure 
4.2 shows the octave, beginning on middle C, divided into semitones, with 
the frequencies of the notes and their arrangement on the piano keyboard. 
Note that the major scale made up of the white keys (the C-major scale of 
Figure 4.1) has intervals between successive notes of either 1 or  2 semi- 
tones. You could construct a major scale beginning on any one of the keys 
in Figure 4.2 simply by preserving the same sequence of intervals as in the 
white-key scale-that is, 1-semitone intervals between the third and 
fourth and between the seventh and eighth notes of the scale and 2- 
semitone intervals elsewhere. And each melody with which you are famil- 
iar will remain the same melody whichever scale you use. In fact, unless 
you have absolute pitch, every time you sing "Happy Birthday" you are 
likely to sing it with a different set of pitches than the time before (that is, 
in a different key) without noticing the difference. You automatically 
reproduce the same intervals (measured in semitones) as the time before. 

The system of tuning in which all intervals are constructed by adding 
semitones is called equal temperament. It is important to realize that the 
notion that all scale intervals should be derivable by the combination of 
some minimal modular interval (the semitone) arose as a rationalization of 
the structure of tonal scales already in use. Melodies had been sung using 
the major scale for centuries (if not millennia) before people thought of the 
possibility of expressing its intervals in semitones of equal size. While 
practical approximations to equal temperament were developed over a 
long period of time both in China and in the West (Kuttner, 1975; Mc- 
Clain, 1979), the exact mathematics of the system were derived in China 
around 1580 by the scholar Chu Tsai-Yii (Needham, 1962). This discovery 
made its way to Europe by 1630, and over the next century, came into 
more and more common use. Bach wrote his Well-Tempered Clavier in 
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the 1720s and 1730s as a tour de force demonstration of its usefulness, 
systematically using major and minor scales beginning on all the 12 possi- 
ble notes. In what follows, we describe how the frequencies of the semi- 
tone intervals are derived. 

There is one more constraint that applies in conjunction with the fourth 
constraint, though it is usually just implicitly assumed. That is that when 
we apply the various constraints on scale construction that we have just 
discussed, then the scales we construct should consist of the intervals of 
scales and melodies already traditionally in use. 

Before proceeding to the algebraic derivation of the frequencies of the 
equal-tempered chromatic scale, let us pause for a brief overview of the 
musical and psychological requirements such a scale is designed to sat- 
isfy: 

1. discriminability of intervals, 
2. octave equivalence, 
3. a moderate number of pitches within the octave (usually about 

seven), and 
4. the use of a uniform modular pitch interval (the semitone) with 

which to construct approximations of all the intervals of scales tradi- 
tionally in use. 

Equal Temperament 

In deriving the equal-t&npered chromatic scale of pitches, we rely 
mainly on the requirements that all octaves (2: 1 frequency ratios) are of 
psychologically equal size and that each octave is divided into 12 equal 
pitch intervals. One consequence of taking tones separated by equal fre- 
quency ratios (e.g., 2 : 1) and placing them at psychologically equal inter- 
vals along the pitch scale (e.g., at octave intervals) is that the resulting 
psychophysical scale relating pitch to frequency will be logarithmic. Re- 
member from Chapter 2 the definition of logarithm-if 

then 

log, c = b. 

That is, the logarithm (b) of a number (c) is the power to which one must 
raise some base (a) to get that number. In Chapter 2, we used 10 as the 
base. Here we use 2, because of the 2: 1 ratio of the octave. Consider the 
following series of frequencies of pitches we call C: 
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The series of numbers 1, 2, 4, 8, 16, and so on are all powers of 2: 

Note that the exponent gives the number of octaves a given C lies above 
the lowest C at 32.75 Hz. These exponents can be written as logarithms 
using 2 as a base: 

Hence, 

log2 (32.75132.75) = log2 1 = 0 
log2 (65.5132.75) = log 2 = 1 
log2 (131132.75) = log2 4 = 2 

In general, the number of octaves between two pitches is given by the 
binary logarithm (that is, the logarithm with base 2) of the ratio of their 
frequencies. The pitch interval P in octaves between two frequencies fi 
and fi is given by 

Many graphs use a logarithmic coordinates for frequency, so that equal 
distances on the graph correspond to equal frequency ratios (or equal 
numbers of octaves) rather than equal frequency differences. Figure 4.3 
presents pitch in octaves as a function of frequency, first with a linear 
frequency coordinate (A) and then a logarithmic frequency coordinate 
(B). The piano keyboard resembles (B)-equal distances along the key- 
board represent equal frequency ratios, no matter where along the key- 
board one is. 
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Frequency (Hz) 

Figure 4.3 The pitch scale on linear (A) and logarithmic (B) coordinates. 

Since all the octaves represent equal ratios of frequency, then all the 
;emitones must represent equal ratios as well. This is because each oc- 
ave contains 12 equal semitones. If we start with an octave C-Ct and 
nove up 1 semitone to the octave d-C# ' ,  we still must have a 2: 1 
iequency ratio. Here we added a semitone at the top of the octave. In 
xder to preserve the 2: 1 ratio of the c#-dt octave, the semitone we 
tdded must have twice as large a frequency difference as the one we took 
iway, as can be seen in Figure 4.2. Both semitones represent a constant 
5.9% increase in frequency-to increase pitch by 1 semitone we multiply 
Yequency by 1.059. The number 1.059 arises because it is the twelfth root 
)f 2: 

[f we start on any pitch and go up to 12 semitones, we reach a pitch one 
xtave higher, a 2: 1 frequency ratio. This comes out even if for each 
;emitone increase, we multiply the frequency by 2*, since (2&)12 is just 2. 
For example, start with middle C (262 Hz) and multiply by 2* to get Cfl: 

fc = 262 Hz x 2h = 277 Hz. 

ro get D, multiply the frequency of C by 2h: 
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and so on. We reach C' after doing this twelve times, so 

fcl = 262 HZ X (2*)12 = 262 HZ X 2 = 524 HZ. 

You can work all this out on your handy pocket calculator, and we recom- 
mend playing with the calculation of various frequencies of pitches and 
intervals to familiarize yourself with the scale patterns involved. 

Most of the cultures of the world do not use equal-tempered tuning as a 
basis of their tonal scale systems; that is, they do not use the fourth 
constraint. They do, however, base their scales on the octave, and that is 
sufficient to produce a logarithmic scale of frequency. In the above argu- 
ment concerning the overlapping octaves C-C' and ~ g - ~ f l ' ,  we could 
replace C with any arbitrarily chosen pitch X between C and C' and get 
the same result. That is, the frequency ratio fx& has to equal the ratio fxl 
fc. This follows since the X's being one octave apart, fall in a 2: 1 fre- 
quency ratio. Thus, on a logarithmic scale of frequency, the interval X-X' 
will equal the interval C-C', and the interval C-X will equal the interval 
C'-X'. In most cultures, the note X will be at some interval to C that 
cannot be expressed as a whole number of semitones. 

There are further constraints that often operate on the selection of 
pitches in tonal scales whether the constraint of equal temperament is 
operating or not. (In what follows, we use the term scale to refer to the 
sort of tonal scale used in melodies, as distinct from the chromatic scale of 
all semitones, for example.) First, we might want a scale to contain a 
variety of intervals. Scales with only one logarithmic interval size be- 
tween successive pitches do not afford as much possibility for melodic 
variation as do scales with more different interval sizes. This is apparent 
in even a simple tune like "Three Blind Mice" (Figure 4.4). Note that the 
second pair of phrases repeats the contour of the first pair, but with a 
subtle change of logarithmic interval size (Figure 4.4a). If we were to 
make all the intervals of uniform size, it would destroy some of the inter- 
est of the tune (Figure 4.4b). In Western music, the scale in which all 
intervals are 2 semitones is called the whole-tone scale. Some composers 

Figure 4.4 "Three Blind Mice" with contour and semitone intervals: (A) familiar ver- 
sion; (B) version using whole tone scale, in which all intervals are equal to 2 semitones. 
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Figure 4.5 The opening of J. S. Bach's Contrapunctus XIV from The Art of the Fugue. 

(e.g., Debussy in the 1890s) have experimented with its use, but the 
consensus among musicians is that it fails to offer enough intervallic 
variety to qualify as anything more than a novelty. 

The use of the variety of intervals that arise when a thematic contour is 
moved up and down the scale is particularly apparent in the relationship 
of a tonal answer to the initial subject in a fugue. The start of a fugue is 
constructed like the start of a canon or "round" (e.g., "Fr8re Jacques"), 
with one part starting out alone with the subject and then continuing with 
an accompanying line while a second part enters with the subject. Some- 
times this second part presents a literal transposition of the subject to a 
new key, preserving all its logarithmic interval sizes. But in other fugues, 
the second presentation of the subject is translated along the tonal scale in 
the same key as the initial presentation, preserving its contour but result- 
ing in a change of its logarithmic interval sizes. Figure 4.5 shows the 
beginning of "Contrapunctus XIV" from Bach's The Art of Fugue, in 
which the second appearance of the subject varies from the first in its 
intervallic detail, providing a certain amount of melodic interest. (In fact, 
the answer changes the mode from minor to major, a contrast Bach plays 
upon throughout the rest of the fugue.) 

Another aspect of the requirement of variety-one that appears only in 
an equal-tempered tuning system-is what we might call intervallic com- 
pleteness. Consider the pentatonic scale shown in Figure 4.6. (The inter- 
val pattern is the same as that of the black notes on the piano, and it is 
very similar to the scales used in Chinese, Tibetan, American Indian, and 
Celtic folksongs.) Under the scale, the possible intervals are diagrammed. 
Note that only 8 interval sizes (measured in semitones) smaller than an 
octave occur, out of the 11 intervals that are possible when all the pitches 
of the chromatic scale are used. There are intervals available in the tem- 
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Figure 4.6 A pentatonic scale, with instances of its possible interval sizes within the 
octave. 

pered tuning system of semitones that the pentatonic scale does not use 
(namely, intervals of 1, 6, and 11 semitones). Thus the pentatonic scale, 
though it provides considerable variety of intervals, does not provide the 
greatest variety possible in the semitone system. Balzano (1980) has 
shown that the smallest number of pitches that provide all of the possible 
intervals is seven. Figure 4.7 shows that, in fact, the major scale of seven 
pitches contains all the intervals. 

One possibly desirable property of a melodic scale that applies to all 
systems, equal-tempered or not, is what Balzano (1980) calls coherence. 
Note that for both the pentatonic and the major scale, all intervals of two 
scale steps (as measured in semitones) are larger than any interval of one 
scale step, all three-step intervals are larger than any two-step interval, 
and so on. Such scales are called coherent. In scales not based on semi- 
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Figure 4.7 The C-major scale, with instances of its possible interval sizes. 



Cross-Cultural Evidence 101 

J 
"sernitones": 3 I I 

Figure 4.8 The ancient Greek chromatic mode. 

tone intervals, coherence requires that logarithmic interval size increase 
with scale-step interval size with no reversals (namely, small logarithmic 
intervals containing more scale steps than larger logarithmic intervals). 
Most of the scales in the world exhibit coherence in this sense. Excep- 
tions occur in lyre tunings from ancient Greece (Boring, 1929; Grout, 
1960). Figure 4.8 shows the chromatic tuning system described by Aris- 
toxenus (a pupil of Aristotle in the fourth century B.c.). Note that the 
scale is not coherent in that there is a 3-semitone interval containing one 
scale step, and a 2-semitone interval containing two scale steps. Coher- 
ence seems to be desirable in terms of Helmholtz's "mental measurement 
of pitch changes" approach, but it is clearly not so essential as to be 
universally present. 

At this point, we can add two more optional constraints to our list of 
requirements that often figure in the determination of scale structure: 

5. maximizing intervallic variety (completeness), and 
6. preserving coherence of large and small interval sizes. 

CROSS-CULTURAL EVIDENCE 

The account given above of the relationship of the psychological dimen- 
sion of pitch to the physical dimension of frequency is the one that, after 
weighing the evidence, we prefer to the various alternatives. The main 
reason for preferring this logarithmic system is its basis in the octave. 
People are very precise at making octave judgments of successive tones. 
Further, both musicians and nonmusicians can transpose logarithmic in- 
tervals along the scale without distortion, so long as the intervals are part 
of a familiar tune such as the NBC chimes (Attneave and Olson, 1971). 
This precision in using octaves and other logarithmic intervals seems 
nearly universal to all the cultures of the world, even to the extent of 
agreement on particular kinds of deviation from exact 2: 1 frequency ra- 
tios for the octave. The evidence comes from both laboratory experi- 
ments and instrument tunings. 

When adjusting successive tones to a subjective octave, listeners pro- 
duce a "stretch" in the size of the octave, amounting to about 0.15 semi- 
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tone in the midrange, or a ratio of about 2.009: 1 .  The amount of stretch- 
ing increases markedly in the higher registers. In Ward's (1954) study, 
although listeners differed somewhat among themselves, each individual 
was quite self-consistent, and Ward was able to develop a coherent (and 
essentially logarithmic) pitch scale based on their stretched octaves. (All 
we need to do is to use a sernitone based on the twelfth root of 2.009). 
Figure 4.9 combines data from Ward (1954) and Walliser (1969) to show 
cumulative deviations of octaves from a 2: 1 ratio over a four-octave 
range. The best confirmation Ward got for this stretched-octave scale was 
from one of his listeners who had absolute pitch. That listener's scale, 
based on her octave matches, agreed almost perfectly with her scale 
based on adjustments of isolated tones to match her internalized scale of 
note names, 

Pianos are tuned with stretched octaves, but the stretch is only about 
half that found for subjective tuning of successive pitches. The stretch in 
piano tunings is due to the fact that piano strings, being somewhat stiff 
and not ideally flexible, have upper partials that are sharp (high in fre- 
quency) in comparison with integer-ratio harmonics. As would be ex- 
pected from the discussion of tonal consonance in Chapter 3, simulta- 
neous tone combinations on the piano sound best when the fundamentals 
of upper notes are tuned to coincide with the slightly sharp partials of 
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Figure 4.9 Data from octave judgments of Western listeners (solid line: from Ward, 
1954, & Walliser, 1969) plotted with tuning measurements from nowwestern instruments. 
XI  Burmese harp (Williamson, 1968); circles, gamelan slJndro, triangles, gamelan pklog; 
open symbols from Surjodiningrat, Suda tjana, and Susanto, 1969; filled symbols from Hood, 
1966. The abscissa represents deviations in cents (hundredths of a semitone) from octaves 
with 2: 1 frequency ratios. (After Dowling, 1978.) 
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lower notes. This stretch is most pronounced where the relative stiffness 
of the strings is greatest, due to relative large ratios of diameter to length, 
namely, in the highest and lowest octaves (Martin & Ward, 1961; Young, 
1952). That Western musicians adhere to the larger stretch of the subjec- 
tive octave described above, rather than gravitate toward the smaller 
stretch of the familiar piano, strongly supports the argument for the inher- 
ent nature of the stretched octave for successive tones. 

The adjustment of successive tones to stretched octaves has been repli- 
cated with non-Western listeners (Burns, 1974) and is reflected in numer- 
ous non-Western patterns of musical instrument tuning. Figure 4.9 shows 
data from all the precise measurements of tunings of instruments in actual 
use that we could find. The data definitely cluster around Ward's (1954) 
octave-judgment curve rather than the baseline. (The baseline represents 
octaves tuned to an exact 2: 1 ratio.) It is essential that data like these be 
drawn from instruments in current use. Much of the literature on non- 
Western tunings derives from measurements on museum instruments long 
out of use. It is obvious that the tunings of stringed instruments would 
deteriorate rapidly over time. What is not so obvious is that seemingly 
more robust instruments such as the marimba- and xylophone-like instru- 
ments of the Indonesian gamelan also lose their tuning over time. Bronze 
keys need continual tuning adjustment (by filing) as the molecular struc- 
ture of the metal gradually changes. Wooden keys can be tuned by filing 
or adding lumps of clay (adding and subtracting mass; see Chapter 2), 
with the obvious difficulty that the clay might fall off and disrupt the 
tuning. The resonator tubes of marimba-type (gender) instruments are 
tuned by changing the diameter of the hole in the top of the tube and by 
filling them with pebbles or sand to the appropriate length, an adjustment 
that is lost if the instrument is upended. 

Most of the data in Figure 4.9 are from Indonesian gamelan tunings. It  
should not be supposed that the variability around Ward's curve repre- 
sents a more or less ineffectual attempt by the Indonesian musician to 
match the stretched-octave pitch scale. The variability around the curve 
is intentional and results from the unique tunings of the various sets of 
instruments involving the stretching and compression of certain intervals 
in certain octaves, an effect we discuss below. It is clear from the account 
of vibrato-producing beats in the paired tunings of Balinese gamelans that 
the instrument makers are capable of achieving considerable precision in 
tuning. What is clear from Figure 4.9 is that, whatever tuning deviations 
are introduced, they occur as deviations from a stretched-octave curve 
and not from 2: 1 octaves. (These deviations are small relative to the 
intervals between pitches in the tonal scales and so do not violate the 
principle of repetition of scale pattern within each octave.) 
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Another difficulty with the literature on instrument tunings is a bias on 
the part of many early investigators to find octaves with 2: 1 frequency 
ratios. This, coupled with the imprecision of measuring instruments, led 
to more reports of 2: 1 octaves than we would expect just from the normal 
variability of tuning and measurement. Ellis' appendixes to his English 
translation of Helmholtz (187711954) are full of such observations. This 
bias is very similar to the bias we are about to discuss concerning the 
establishment of tuning systems on patterns of small-integer frequency 
ratios. 

ALTERNATIVE ACCOUNTS 

Along with our preferred logarithmic scale, we need to present two 
common alternative accounts of pitch scaling and our reasons for reject- 
ing them. One of these accounts comes from the psychophysical scaling 
tradition of psychology and claims that pitch is related to frequency, not 
by a logarithmic, but by a power function. The second comes from a 
numerological tradition in musicology and claims that all the intervals of a 
tonal scale are (or should be) derivable from small-integer ratios. 

Psychophysical Scales 

We are claiming that the relationship between pitch and frequency is 
logarithmic. The most serious alternative relationship, proposed by 
Stevens (Stevens & Volkmann, 1940), is that of a power function. While 
the logarithmic function describes correspondences between additive 
pitch increments (semitones and octaves) and frequency ratios (Figure 
4.3), the power function describes correspondences between pitch ratios 
and frequency ratios. In constructing his pitch scale, Stevens used scaling 
methods similar to those described in Chapter 2 for the sone scale of 
loudness. For example, he had listeners perform magnitude estimation 
tasks in which they judged pitch by estimating how many times higher one 
note sounded than another. (That is, a pitch twice as high should receive a 
number twice as large.) Stevens calls his unit of pitch the mel, and his me1 
scale is shown in Figure 4.10, in which both pitch and frequency coordi- 
nates are logarithmic. If a power function were really appropriate, then 
Figure 4.10 would show a straight line relating pitch ratios to frequency 
ratios. The function is more or less straight in the midrange but breaks 
down especially in the high register. But the fact that the me1 scale is not a 
power function should not bother us unduly. It might have been a useful 
function even if it curved (as it does). However, there are more serious 
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Figure 4.10 Stevens' me1 scale for pitch. 

reasons for rejecting the me1 scale in favor of the octave scale as a psy- 
chophysical scale for pitch. 

The main reason we prefer the logarithmic octave scale is that people 
are very precise at making octave judgments and very imprecise at the 
kinds of judgments required by magnitude estimation. As Ward (1970, p. 
412) comments, "Measuring pitch in mels . . . is analogous to pacing off 
a room for wall to wall carpeting when a steel measuring tape is handy." 
Both musicians and nonmusicians are precise in making octave judgments 
for tones presented successively. Further, even with methods very simi- 
lar to those used by Stevens, results emerge that support the logarithmic 
pitch scale, at least below 2000 Hz. Null (1974) used both the method of 
bisection (in which listeners adjust a comparison tone so that it falls 
midway in pitch between two standards) and a modified magnitude-esti- 
mation task. With both methods and both for musicians and for nonmusi- 
cians, the logarithmic scale gave a good fit to the data. (But for a dissent- 
ing view, see Schneider, Parker, & Upenieks, 1982). 

Integer Ratios 

A second source of doubts about the logarithmic pitch scale presented 
here is the musicologist who believes that the intervals of the scale derive 
from ratios of small whole numbers. For example, Bernstein (1976), in an 
otherwise admirable book, carries this approach to extremes. We reject 
this view for several reasons. First, musicians' intonation in practice is 
best described as an approximation of the tempered tuning system we 
have been describing (Ward, 1970). The exception to this rule is when 
small groups play or sing slow passages and have the opportunity to 
adjust their intonation to small-integer ratios, producing the effects of 
consonance discussed in Chapter 3. But that practice arose (in the West, 
at least) only after the development of polyphony and, hence, lo.ng after 
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the development of the scale systems. Further, expectations of melodic 
direction can override the requirements of integer-ratio tuning, as in the 
case of a sharpened leading tone (seventh scale degree) resolving to a 
tonic. Insisting on integer ratios Gust intonation) that run counter to such 
dynamic tendencies can be musically disastrous. Rosen (1972, p. 28) 
notes: "I once heard a quartet play [a certain passage] in just intonation 
with horrible effect. This is not to say that string players play, or should 
play, in strict equal temperament: pitch is always subtly altered, but for 
expressive reasons which have little to do with just intonation." 

A second reason to reject integer ratios as a basis of melodic scales is 
that the supposedly simplest ratio, the octave, does not occur in its pure 
2: 1 ratio in listeners' adjustments of successive tones. People all over the 
world stretch the octave by about the same amount, suggesting that the 
stretched, and not the 2: 1, octave is what is built into the human auditory 
system. Third, it is clear from the history of Western music since 1600 
that musicians have found that the advantages for musical practice af- 
forded by tempered tuning far outweigh the disadvantages. This would 
not be true if integer-ratio tuning had the overriding importance some- 
times claimed for it. 

It is important to realize that the approaches of both equal-tempera- 
ment and small-integer ratios arise from attempts to rationalize existing 
traditional melodic scales. Small-integer systems were the earlier of the 
two to arise, and equal temperament arose in turn as an answer to musical 
problems raised by small-integer systems. The importance of small-inte- 
ger ratios was realized more than 2000 years ago in both China and Greece 
(Boring, 1929; McClain, 1979), but, of course, the ratios that were mea- 
sured were not ratios of frequencies (since the ancients did not know 
about frequency) but rather ratios of the lengths of vibrating bodies: 
strings (in Greece) or air columns (in China). Musicians in those cultures 
noticed the practical value of tuning the pitches of the scale so that certain 
simultaneous combinations of them sounded especially consonant, as dis- 
cussed in Chapter 3. They noticed also that these consonant intervals 
arose from strings and pitch pipes having small-integer ratios of length 
(e.g., the fifth produced by a 3:2 ratio). They then tried to extend the 
system to derive the pitches of other keys than the one they started with. 
Such a project was important in second century B.C. China, for example, 
since each of the 12 keys had come to be associated with a month of the 
year (Nakaseko, 1957). 

Here the early acousticians ran into a problem. A pure 3 : 2 ratio for the 
fifth and a pure 2: 1 ratio for the octave cannot exist in the same scale. If 
we generate a cycle of fifths using 3 : 2 ratios, we use all 12 pitches without 
repeating: C-G-D-A-E-B-FI~ -cU-G@ -D# -A@ -EI~  (close to F). If we 
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carry that one step further, we should arrive on a C seven octaves above 
the one we started with. But unfortunately, the twelfth power of 3 :2 is 
larger than the seventh power of 2, and so the C arrived at by the cycle of 
fifths will have a different pitch from the C obtained by a cycle of octaves. 
The difference becomes gradually more pronounced as we progress 
around the cycle of fifths, so that intonation differences between instru- 
ments tuned to play in one key and those tuned to play in another become 
more noticeable. (Imagine an instrument with a scale based on the A N  in 
the above cycle of fifths playing a C simultaneously with an instrument 
tuned to the original C.) The compromise represented by equal tempera- 
ment can be seen as an agreement to hold firmly to the 2 : 1 ratio for the 
octave, making the frequency ratio for the fifth somewhat smaller than 
3 : 2, namely, 2A. 

In summary, the tempered logarithmic tuning system used in Western 
music is the result of compromises among a variety of constraints arising 
from the human auditory system, people's cognitive capabilities, and the 
requirements of musical interest. We turn now to elaborations of the 
system that reflect further features of human cognition. 

MULTIDIMENSIONAL APPROACHES 

So far we have been considering the construction of a psychophysical 
scale for pitch in terms of the two dimensions of pitch and frequency. But 
there is good reason to believe that pitch is not well represented by just 
one subjective dimension. Miller's (1956) argument to which we alluded 
above under the third constraint suggests that along any psychological 
dimension, the greatest number of categories we can use reliably is about 
seven. But a musician working within a tonal framework can use many 
more pitch categories than that. The musician can label the notes of the 
tonal scale (do, re, mi, etc.) and also tell which octave they came from. 
Across five octaves, that amounts to using about 36 categories consist- 
ently. Thus, if Miller's magic number of 7 & 2 holds for pitch, there must 
be more than one cognitive dimension involved. 

The intuitions of musicians also suggest that there are at least two 
dimensions to musical pitch. Pitches can be similar in two principle ways: 
They can be near each other in pitch, falling in the same general frequency 
range, and they can be similar in occupying the same place in their respec- 
tive octaves. Two tones an octave apart (two C's, for example) are similar 
and are said to have the same chroma. A C and a D may lie next to each 
other in frequency and may be said to have similar pitch height. Figure 
4.11 represents these two kinds of similarity by means of a spiral. Tones 
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Figure 4.11 Helical model of the pitch scale. 

of similar chroma are arranged in the same vertical column, and each turn 
of the spiral represents an increase in pitch of one octave. Tones similar in 
pitch height are adjacent to each other along the spiral and project onto 
adjacent points on the spiral's axis. 

The independence of chroma and pitch height can be readily demon- 
strated with a piano. Start by playing the four highest C's on the piano. 
Then move down almost an octave and play four D's. Continue dropping 
by sevenths, playing the notes of an ascending C-major scale. You can 
hear both the descending series of pitch heights and the ascending series 
of chromas. Shepard (1964) constructed a more formal demonstration of 
this independence by creating a pattern in which chroma continuously 
changes while pitch height remains the same. Shepard's pattern (Figure 

4a 4.12 and Example 4a) consists of 10 sine-wave components spaced at 
octave intervals. The components in the middle of the frequency range 
are more intense than those on the ends-the top and bottom components 
would be barely audible if presented alone. Following presentation of 10 

f requency  

Figure 4.12 Shepard's auditory barber pole, illustrating a change of chroma without a 
change of tone height. Dashed lines indicate an upward shift in frequency of all components. 
(After Shepard, 1964.) 
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s, the pattern shifts to 10 d ' s  (dotted lines in the figure). As the compo- 
:nts shift up, those below the middle of the frequency range increase in 
tensity and those above the middle decrease, leaving the overall inten- 
y envelope centered on the same frequency. The pattern sounds as 
ough it has shifted up in pitch, though only the chromas have changed. 
ie distribution of intensities across the frequency range has not 
~anged. A succession of such changes sounds like a continuously rising 
tch, which can be continued indefinitely-a sort of auditory barber pole. 
le listener can follow the rising pitch only so far, of course, after which 
jumps down before starting up again. Burns (1981) has shown that this 
:monstration works even when the components are spaced at intervals 
lmewhat larger or smaller than the octave. Burns's finding does not 
cessarily mean that tones an octave apart are not equivalent, however, 
~t only that in such cases, pitch height is the overriding dimension. 
In his opera Wozzeck (act 3, scene 4), Alban Berg used an effect similar 
Shepard's-a continuously rising scale orchestrated so that as the 

,per instruments reached the top of their compass and dropped out, 
wer instruments entered at the bottom with the rising pattern. This 
eates an eery effect appropriate to the nightmare quality of the scene- 
ozzeck searching the dark pond for the murder weapon. Berg's effect is 
~t simply tacked on, but grows organically out of the musical structure 
the scene. Ascending scales play an important thematic role in this part 
the opera, leading to their striking use at the end of the scene. 
The spiral in Figure 4.11 represents two aspects that are important in 
ople's understanding of pitch: the close relationship of tones adjacent in 
e scale and the similarity of tones an octave apart. In accomplishing that 
presentation, we have allowed the physical dimension of frequency to 
~k into the background. In fact, we could eliminate the frequency di- 
mion entirely, and Figure 4.11 would still be a good representation of 
e psychological relationships among pitches. It would no longer be a 
ychophysical representation, but rather a multidimensional representa- 
In of mental structure. It could represent, for example, the pattern of 
Jgments that listeners produce when judging the similarity of pairs of 
nes. The similarity judgments could be used to generate a model of the 
tener's cognitive structure of pitch relationships by means of multidi- 
msional scaling techniques (discussed in Chapter 3). A computer pro- 
am would take the similarity judgments and try to find a spatial arrange- 
mt of the pitches such that more similar pitches would lie closer 
pether and less similar pitches farther apart. The program follows a 
al-and-error procedure to search for a pattern that does the least vio- 
Ice to the similarity judgments in the data. The theoretical question is, 
ill the results of multidimensional scaling correspond to our intuitions 
ncerning the mental structure as shown in Figure 4.1 l? 
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Krumhansl (1979) presents some evidence bearing on this issue. 
Krumhansl played listeners a major triad, establishing the framework of a 
tonality. Then she played them a pair of notes, and they judged the simi- 
larity of the two notes within the tonal framework. The pattern of similar- 
ity judgments led to a multidimensional scaling solution in which the 
pitches were grouped in three more or less concentric rings. The two 
inner rings contained the pitches of the major scale arranged in order of 
chroma around a half circle, and the outer ring contained the pitches not 
included in the major scale arranged so each was closest to its nearest 
neighbor in the scale. Similarity judgments thus lend partial support to the 
notion that one component of a multidimensional representation of pitch 
might be the ordered set of tone chromas arranged around a circle. 

Krumhansl and Shepard (1979) collected data of a somewhat different 
sort. They presented listeners with a major scale minus its last note-the 
tonic at either the bottom or top. Instead of the tonic, they ended the scale 
with another pitch in the octave beyond the end of the scale. The listener 
was asked to judge how good that pitch was as a completion of the scale. 
This data, too, could be analyzed by multidimensional scaling techniques. 
Listeners differed in the degree to which chroma (vs. tone height) influ- 
enced their judgments, with musically more experienced persons basing 
their judgments more on chroma. In this study, too, the circle of pitch 
chromas compatible with the helix of Figure 4.11 appeared. Shepard 
(1982b) derived a multidimensional scaling solution from this data in 
which (viewed from one direction) the pitches are arranged chromatically 
around a circle and in which the tone-height difference between the top 
and bottom notes is represented by a gap where the circle fails to close. 
The same solution viewed from another direction shows the pitches ar- 
ranged as a circle of fifths (C, G, D, A, E, B, Fd, ~ 8 ,  Gd, DI, ~ f l ,  F, c ')  
with the C's an octave apart occupying the same position. The circle of 
fifths represents some important structural properties in the organization 
of musical pitch. One reason for its importance arises from the central 
importance of the interval of the fifth itself within the scale, approximat- 
ing as it does a 3 : 2 frequency ratio. Another feature of the circle of fifths 
is that by slicing it through with a straight line, one can separate the seven 
pitches of a given major scale from the other five pitches. Thus it can be 
used to represent the close relationship of the pitches of a scale versus the 
extraneous pitches. 

Shepard (1982a, 1982b) took such considerations as the foregoing into 
account in constructing an idealized model of the psychological structure 
of musical pitch incorporating two intertwined spirals. This double helix 
model is shown in Figure 4.13A. In the double helix, each link along the 
curve of a spiral represents a whole step (2 semitones). Each link across 
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Figure 4.13 (A) Shepard's double helix representation of the cognitive structure of 
musical pitch. Note that the pattern projects downward onto the circle of fifths (B). (C) The 
double helix unwrapped onto a plane. (After Shepard, 1982.) 

the model from one spiral to the other represents a half step (1 semitone). 
The vertical dimension in the model is simply tone height, and one could 
climb an ascending chromatic scale by tracing the sequence of links back 
and forth between the spirals. Imagine that the model is standing on its 
end (just as shown) in the middle of the floor and we dropped a ribbon 
from each node to the floor, with the label of the node at the bottom. Each 
ribbon extended upward to the ceiling would pass through a series of 
tones having the same label and lying at octave intervals from each other. 
The pattern of node labels on the floor is the circle of fifths (Figure 4.13B). 
Just as noted above, we could draw a line through the circle of fifths 
dividing the seven notes of a major scale from the others. In Figure 4.13C 

. this has been done for the C-major scale. And the plane rising vertically 
from that line into the double helix (among the ribbons) would then slice 
off the notes of that scale. Such a plane also would separate out the 
pitches of the commonest sort of pentatonic scale as well. 

The circle of fifths is important for another reason that we explore more 
fully in Chapter 5: It expresses the psychological difference between mu- 
sical keys, or key distance. If we take the plane that divides the notes of a 
given scale from the other notes and rotate it around the vertical axis by 
one notch (adding one note and deleting one note), we get a scale in a new 
key that is very similar to the one we started with. That is, the new key 
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shares all but one of its pitches with the old key. However, if we rotate the 
plane several notches around the circle of fifths, we get a key that shares 
fewer notes with the first. Such a key is said to be distant from the first 
key. Krumhansl, Bharucha, and Castellano (1982) have demonstrated the 
psychological reality of key distance using listeners' judgments of chordal 
patterns. In Chapter 5, we present evidence that key distance is a very 
important factor in judgments of melodic similarity. 

Now imagine that the double helix is one of those cookie rollers that 
imprints a repeating pattern on a flat surface of cookie dough. As we roll it 
across the surface, the pattern of pitches is "unwrapped" onto the plane 
as shown in Figure 4.13b. Now the major scale that we sliced off with the 
vertical plane becomes a zig-zag path. The chromatic scale of half steps is 
a straight line, as is the whole-tone scale. In addition to capturing the 
significance of the octave, the circle of fifths, and the major scale, She- 
pard's model also captures the fact that in context, the different-sized 
intervals of the major scale are heard as psychologically equal. This is 
represented by equal distances for both half and whole steps, with the 
contextual difference represented by difference of direction. The beauty 
of Shepard's double helix lies in its success in capturing succinctly several 
important facts of pitch perception in one coherent structure. 

We want to emphasize that the structure in Figure 4.13 is a model 
designed to express certain relationships that listeners perceive among 
pitches. This does not mean the structure need literally be stored in the 
brain but only that the relationships it expresses have analogs in brain 
structure. Note also that a structure like this has no intrinsic implications 
for psychological processes such as perceiving, judging, and remember- 
ing. Different aspects of the structure will become dominant, depending 
on the task we give the listener in an experiment. We return in Chapter 5 ' 

to the effect of task on the listener's perception and behavior. 
Before we leave the multidimensional scaling of pitch, we quote 

Krumhansl and Shepard (1979) in a statement that expresses some signifi- 
cant truths concerning research with musical phenomena. They suggest 
that multidimensional scaling approaches can be used to disclose individ- 
ual differences among listeners as well as differences due to the auditory 
context in which judgments are made. 

To the extent that tones differing in frequency are not interpreted as musical 
stimuli-because they are presented in isolation from a musical context, because 
the tones themselves are stripped of harmonic content, or because they are played 
to musically unsophisticated listeners-the most potent factor governing their per- 
ceived relations is simply their separation along a one-dimensional continuum of 
pitch-height. To the extent that tones are interpreted musically-because they are 
embedded in a musical context, because they are rich in overtones, and because 
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they are played to musically sophisticated listeners-simple physical separation in 
log frequency gives way to structurally more complex factors, including octave 
equivalence or its psychological counterpart, tone chroma, and a hierarchy of tonal 
functions specific to the tonality induced by the context. (p. 529) 

SCALESINOTHERCULTURES 

The set of pitches in Shepard's model we have just discussed is specific 
to Western music. We cannot expect the details of its double helix to 
apply directly to non-Western scale systems. For example, the circle of 
fifths, a very strong structural element in Western music and a central 
component of the model, does not play nearly so great a role in non- 
Western musical systems. However, the more basic structural properties 
that went into the construction of the logarithmic psychophysical scale for 
pitch (Figure 4.3) and the single helix expressing octave equivalence (Fig- 
ure 4.1 1) seem to us to be quite generally applicable to most of the musical 
systems throughout the world. This is because nearly all cultures use 
logarithmic pitch scales in which octave equivalence plays a central role. 
Those cultures that cannot be said to use such a model do not use an 
alternative model, but rather use such restricted melodic patterns that the 
form of their scales beyond the range of one octave is moot. Thus, for 
nearly all the cultures of the world, the helix of Figure 4.11 represents the 
underlying psychophysical organization of pitch material. Pitches an oc- 
tave apart are treated as functionally equivalent in melodies, though each 
culture fills in the pattern of pitches within the octave in its own way. (In 
what follows, we discuss scale structure in terms of sets of pitches. For 
many purposes, the equivalent description in terms of intervals would be 
more appropriate, since in most cases the anchoring of a pitch label to a 
specific frequency (as in A = 440 Hz) is irrelevant to both the psychologi- 
cal structure and the culture being discussed. We simply use the pitch-set 
description for convenience.) 

There are certain regularities in the way a culture fills in the octave and 
in the way it uses pitches in melodies that are best disclosed by consider- 
ing melodic scales to be constructed out of the underlying tonal material 
through a process involving several levels of psychological analysis 
(Dowling, 1978b, 1982~). These levels, shown in Figure 4.14, are (1) the 
underlying psychophysical pitch function that assigns pitches to frequen- 
cies, (2) the tonal material consisting of all the possible pitches that could 
be used in melodies, (3) the tuning system consisting of a subset of the 
pitches in the tonal material that could be used as the basis of a variety of 
modal scales, and (4) the modal scale in which the pitches of a tuning 
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Figure 4.14 Levels of analysis of musical scales, using Western pitch labels. 

system .are hierarchically organized with a tonal center (tonic) and are 
used in actual melodies. (Hood, 1971, presents a similar approach that 
differs from this one in some details.) 

Each of these four levels of analysis is formed by making a selection of 
pitches out of the next higher level or by imposing some constraint on 
them. The levels progress from the highly abstract psychophysical scale, 
containing all possible pitches, to the very concrete modal scale, in which 
the pitches are the actual pitches of melodies. There is good evidence for 
the psychological reality of these levels, both from the analyses of music 
theorists in a number of cultures and from laboratory experiments in our 
own culture. We review these laboratory experiments in Chapter 5. Here 
we present the theoretical bases of this outline. 

Figure 4.14 is constructed in terms of the Western scale system, since 
that is the most familiar for us and is likely to be familiar to our readers. In 
it the tonal material consists of all the notes on the piano-the chromatic 
scale of 12 steps to the octave. The tuning system consists of a selection 
of 7 out of those 12 pitches-the white notes on the piano that can form 
the basis of various modal scales. The tuning system is more abstract than 
any of the modal scales formed from it in that it contains a cyclic pattern 
of intervals without any specified point of origin. Selecting a point of 
origin in the tuning system amounts to choosing a specific modal scale (C 
major in Figure 4.14). In some cultures, the construction of a modal scale 
out of the tuning system involves the omission of certain pitches as well. 
Modal scales are the most concrete level in the scheme and involve not 
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only the selection of the pitches of melodies, but also the imposition of a 
tonal hierarchy that shapes the listener's expectations. 

Tonal Material 

In many cultures, the number of pitches that are potentially available in 
all melodies exceeds the number that .might actually appear in a single 
melody. This larger set we call tonal material. Tonal material is the level 
at which the undifferentiated continuum of the psychophysical scale is 
divided into discrete categories. In Western music the tonal material con- 
sists of the pitches of the chromatic scale, as discussed above. North 
Indian music provides a good illustration of the use of a level for tonal 
material. The North Indian octave can be divided into 12 more or less 
equal steps, and the tonal material divides into a set of two pitches a 
perfect fifth apart that function as the first and fifth degrees of every modal 
scale, plus a set of five pitches each of which can appear in either a higher 
or a lower variant (Jairazbhoy , 1971). The pitches of the tonal material are 
shown in quasi-Western notation in Figure 4.15. C is used as a point of 
origin here, but that should not be taken as fixing the pitch level; nor 
should the Western pitches be taken as anything more than rough approx- 
imations of the actual pitches used. 

Tuning System 

In Western music, we use basically one tuning system corresponding to 
the interval pattern of the white notes on the piano (see Figure 4.2). This 
tuning system should not be thought of as having a fixed pitch, however, 
but rather as capable of sliding up and down. That is, we could recreate 
the same interval pattern by starting with any pitch on the piano. And we 
could also create it by singing the same interval pattern beginning with 
any pitch whatsoever, whether on the piano or not. The interval pattern 
between successive notes is, in semitones, 2, 2, 1, 2, 2, 2, 1 (see Figure 
4.7). 

In North Indian music, too, we should conceive of the tuning system as 
an interval set rather than as a series of fixed pitches. The five varying 

- I U  
Sa Re Go Ma Pa Dho NI So' 

Figure 4.15 The tonal material of North Indian music. Sa, Re, Ga . . . corresponds to 
do, re, mi. . . . Brackets denote pairs of pitches of which only one member typically 
appears in a scale. 
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Figure 4.16 Three North Indian tuning systems generated by making different selections 
from the tonal material. 

pitch categories from the tonal material (re, ga, ma, dha, ni), each of 
which can take one of two values, generate 25 = 32 possible scale frame- 
works or tuning systems. In addition, there are three patterns in which the 
F-ma-can appear in both natural and sharp forms, giving a total of 35 
possible tuning systems. Of these 35, 10 are in common use, and about 10 
more are used occasionally. Figure 4.16 gives some examples of tuning 
system scales (Sanskrit that, "framework," pronounced "taht") gener- 
ated from the tonal material of Figure 4.15. The level of tuning system is 
especially useful here, since the pitch series of a that does not typically 
appear intact as a modal scale. 

Modal Scales 

A modal scale is created from a tuning system by imposing a structural 
hierarchy on the set of pitches. In its simplest form, this structure desig- 
nates some tones as more important than others (some may drop out 
entirely) and establishes dynamic patterns of expectation concerning 
where pitches might not lead in a melodic sequence. At present, Western 
music relies primarily on two modal scales: major and minor. These are 
generated from the intervals of the tuning system by taking different 
starting points in the cycle of intervals (Figure 4.17). Any of the 12 pitches 
in the tonal material can be taken as a starting point for either mode, 
giving 24 major and minor keys. 

A complication arises in the case of the minor mode as it has been used 
since the seventeenth century. Melodies in the minor often use a different 
set of pitches for ascending and descending (Figure 4.18). The descending 
series is the same as in Figure 4.17, but the ascending series is more like 
the major mode starting on the same pitch in that the sixth and seventh 
degrees of the scale are raised. An intermediate form, in which only the 
seventh degree is raised both ascending and descending, also occurs. In 
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Figure 4.17 Major (A) and minor (B) modal scales in Western music, with intervals 
shown in semitones. (C) illustrates the generation of the minor mode starting on the pitch C 
using the interval sequence of (C). The flat (b) lowers the pitch by 1 semitone. 

terms of the conceptual scheme of Figure 4.14, it seems most convenient 
to introduce these alternate pitches by dipping directly into the tonal 
material, that is, not by including them in the tuning system. 

In Western music through the early 1600s, there were four additional 
modes available besides the major and minor: those beginning on the 
second, third, fourth, and fifth steps of the white-note pattern (Figure 
4.19). Of these modes, the Dorian and Phrygian are most likely to be 
encountered today. A common version of the tune "Greensleeves" (Fig- 
ure 4.20A) is largely in the Dorian, though this tune is often assimilated to 
the modern minor mode by lowering the sixth degree of the scale ( ~ b  far 
B in Figure 4.20A). Phrygian tunes are rarer. One of the more familiar is 
the old hymn "Oh Haupt voll Blut und Wunden," which appeared as a 
popular song in the 1960s. Bach used this tune extensively, but by the 
early eighteenth century, the Phrygian was a very old-fashioned mode. Of 
five harmonizations by Bach given in Riemenschneider (1941), only one 
takes the Phrygian tonic (E in Figure 4.20B) as the tonic for the harmoni- 
zation. Three take the sixth degree (C) as the tonic, letting the melody end 
on the third degree of the final chord. The remaining harmonization is a 
hybrid of those two approaches. 

Figure 4.18 Ascending (A) and descending (B) forms of the melodic minor mode. Ar- 
rows indicate chromatic alterations. 
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Figure 4.19 Four medieval Western modes. 

In turning to a consideration of modal scales in North Indian music, we 
encounter several complications that are not unusual in non-Western mu- 
sic. First, a mode (Sanskrit rdg) includes more than just the pitch series of 
a modal scale. A rdg is associated with a particular aesthetic-affective 
quality (rasa), includes particular melodic phrases and expectations (es- 
pecially cadence formulas), and is customarily performed at a particular 
time of day. Second, not only does the modal scale impose a structural 
hierarchy on the pitches, but modal scales are often "gapped," using only 
five or six of the pitches available in the that tuning system. Further, the 

Greensleeves 

Figure 4.20 Melodies in the keys of (A) D Dorian ("Greensleeves") and (B) E Phrygian 
("0 Haupt voll Blut und Wuden"). 
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raa Des 

raa Rarnkali  

Figure 4.21 Two North Indian scale patterns, based on Figure 4.16A and B, respec- 
tively. 

type of pattern used in the Western minor mode, where ascending and 
descending melodic lines use different sets of pitches, is common in North 
Indian music. In such cases, the descending line is usually taken as a more 
basic, being involved as it is in cadence patterns at the ends of phrases. 
Figure 4.21 gives two examples of modal scales, with characteristic direc- 
tional patterns of melodic lines in the rdgs indicated in a sort of shorthand 
notation, more important notes being given longer time values. Rdg Des 
(Figure 4.21A) is based on that of Figure 4.16A. Note that the descending 
pattern uses seven pitches and contains irregularities in which the first 
and fourth steps are approached by skips. The ascending pattern is penta- 
tonic (gapped), and the seventh degree is raised. More elaborate examples 
of chromatic alteration can be seen in Rdg Ramkali (Figure 4.21b), based 
on Figure 4.16b. The ascent is six-toned, while the descent has elaborate 
turns of phrase involving chromatic alteration of the fourth and seventh 
degrees. 

Indonesian music illustrates some of the same principles as Indian mu- 
sic in the relationship of tuning system and mode, though it possesses 
unique characteristics. Classical Javanese music has two tuning systems: 
ptlog (heptatonic) and sltndro (pentatonic). Different sets of instruments 
in the same gamelan are tuned to the two systems, which typically share 
only one pitch. (The common pitch is useful in occasional modulations 
from one system to the other in contemporary performances.) Modes in 
the pe'log system are created by selecting gapped pentatonic scales from 
the seven pitches in the system. The term closest to mode is pathet, but 
like the Indian rag, the Javanese pathet is as much characterized by 
particular melodic phrases as by the pitches of its scale (Becker, 1977). In 
fact, of the three pathet in the pe'log system, two share the same modal 
scale. All three pathet of the sle'ndro system simply use the pentatonic 
scale of the tuning system pitches. In those cases, characteristic melodic 
contours are the main distinguishing features of the modes. Unlike the 
Indian rag, a pathet is not associated with a specific rasa (affective 
tone)-there are not enough pathet for them to serve that function. 
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Rather, the classification of pathet (at least for the sle'ndro modes) seems 
to have arisen from the association of particular songs with particular 
phases of dramatic performances they accompany, in turn associated with 
particular time periods in the course of an all night performance. 

Not only are the two tuning systems of a gamelan different from each 
other, but (as we mentioned in connection with Figure 4.10) each gamelan 
uses different tuning systems from the next, and even within the same 
gamelan, the interval patterns of successive octaves differ in detail. 
These tuning variations are associated with specific aesthetic qualities. 
For example, when the interval between the first and second degrees of 
the tuning system is especially large, the effect is characterized as bright 
and cheerful, whereas if it is small, the effect is thought to be soft and 
gentle (Becker, 1977). A particular gamelan might thus be thought more 
apt for playing certain pathet than others. Many -gamelans have proper 
names that emphasize these affinities. for example, the gamelan at the 
University of Michigan is called Khyai Telaga Madu (Venerable Lake of 
Honey) because of its "sweet" tuning. 

Ornament Tones 

There is one remaining class of pitches from the level of tonal material 
that we have not yet mentioned. Members of this class are what we might 
call ornament tones. In the music of India especially, there are clusters of 
small intervals around the notes of the modal scale that can be used to 
ornament the principle scale pitches with trills and grace notes. The use of 
these tones, illustrated in Example 4b, has led some to think of Indian 
music as using microtonal intervals in musical scales. However, as we 
have seen, the North Indian system of modal scales uses at most seven 
pitches to the octave, and the additional pitches (15 more in some analy- 
ses) appear in a strictly subsidiary role. 

Ornament tones also appear in the music of Indonesia. Most instru- 
ments of the gamelan have a fixed set of five or six or seven pitches to the 
octave. Vocal soloists, however, are not so restricted. The vocalist can 
use, as passing tones, pitches from the tuning system omitted from'a 
gapped pentatonic scale by the instruments, as well as introduce micro- 
tonal intervals by way of ornament (surupan). Players of the bowed two- 
string spike-fiddle (rebab) also follow this practice. 

The above outline of levels, going from the abstract and general level of 
the psychophysical relationship of pitch and frequency to the very spe- 
cific and concrete level of the selection of actual pitches that occur in 
actual melodies is found in enough musical cultures to justify according it 
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a certain amount of psychological reality. Additional evidence bearing on 
this issue appears in Chapter 5. But before leaving pitch scales, we must 
attend to one more topic. 

ABSOLUTE PITCH 

No chapter on pitch perception in music would be complete without 
mention of the phenomenon of absolute pitch-the ability of some indi- 
viduals to identify the notes of the chromatic scale by name when pre- 
sented in isolation from other pitches. This ability is a relatively recent 
development, specific to Western culture, since it is only in the last few 
hundred years that anything like standard pitches (such as an A of 440 Hz) 
have come into general use. Ellis (Helmholtz, 1877/1954, Appendix 20, 
Section H) presents evidence for a fairly wide range of pitch standards in 
Europe even in the nineteenth century. (Of course pitch standards were in 
use throughout the history of ancient China, but the standards were cus- 
tomarily changed with the ascent of each new emperor (Needham, 1962). 
The phenomena associated with absolute pitch cast additional light on 
some of the main themes of discussion in this chapter: the importance of 
the octave, the importance of an internalized framework of the scale, and 
the hierarchical nature of that framework. 

The phenomena of absolute pitch have been the focus of heated debate 
over whether the ability is innate or acquired through musical experience. 
As Cuddy (1968) points out, the tendency to put the question in all-or- 
nothing nature-nurture terms gravitates toward the scientifically mean- 
ingless, since no matter what experiences a person has, it is impossible to 
prove that the emergence of absolute pitch was not due to maturation in 
favorable circumstances rather than to more ordinary processes of learn- 
ing. In any case, "one can always choose to define absolute pitch so as to 
exclude all cases where some kind of formal training can be detected" 
(Cuddy, 1968, p. 1069). It is clear that some factors involved in pitch 
judgment, both absolute and relative, are very likely innate. (Relative 
pitch involves proficiency at interval recognition and production.) The 
evidence on the importance and pervasiveness of octave generalization 
suggests such innateness for the primacy of octaves in pitch scales. How- 
ever, some aspects of absolute pitch abilities cannot be innate, for exam- 
ple, the pairing of note names with frequencies. Although it is clear from 
the excellent reviews of the subject that are available that absolute pitch is 
more easily acquired at an early age (Shuter-Dyson & Gabriel, 1981; 
Ward, 1963), evidence has been accumulating on adults' success in ac- 
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quiring the ability. This evidence also bears on the question of the psycho- 
logical structure of pitch scales. 

It seems unlikely to us that the ability for absolute pitch is bimodally 
distributed in the population, that is, that some have it and others do not. 
It seems more consonant with our experience that people possess the 
ability in varying degrees and that whether the ability shows up depends 
on the particular task demands the person faces. Certainly, some of the 
component abilities necessary to the naming of pitches are present in 
greater or lesser degree throughout the population (Hurni-Schlegel & 
Lang, 1978). Terhardt and Ward (1982) found that musicians could dis- 
criminate alterations in key of 5-sec excerpts from Bach's Well-Tempered 
Clavier. Their listeners performed well above chance in telling whether 
each excerpt had been transposed up or down from the original key 
shown in a score printed on the answer sheet. And nearly everyone pos- 
sesses a temporally local absolute pitch. That is, after the age of 5 or 6 
people are generally able to sing familiar tunes maintaining the same tonic 
reference pitch throughout; and when the pitch shifts, it is generally to a 
new consistent frame of reference (Dowling, 1982b). Choir members learn 
to remember the pitch they just finished singing through all sorts of con- 
fusing context in order to enter on that pitch again 20 or 30 sec later. And 
persons possessing long-term absolute pitch differ in their labeling accu- 
racy, the frequency range over which they can succeed in the labeling 
task, and the variety of musical instruments for which they can identify 
pitches. Individuals with good absolute pitch seem to have "stored a 
limited number of points along the frequency continuum in long-term 
memory and . . . use this information for classifying current pitch in- 
puts" (Siegel, 1972, p. 86). 

It has been clear for many years that training can improve note-naming 
performance (Ward, 1963), and since the 1960s, more dramatic results 
have been obtained in adults' acquisition of absolute pitch. Brady (1970) 
reports his experience teaching himself absolute pitch at the age of 32. He 
programmed his laboratory computer to produce tapes consisting of a 
succession of sine waves tuned to different pitches in the chromatic scale. 
The earlier tapes in the sequence contained high proportions of the pitch 
C, providing a stable reference point. Brady practiced naming the notes 
on the tape a half hour a day for two months, receiving feedback after 
each trial. He avoided trying to solve the task by figuring the relative pitch 
intervals between successive notes. His conscious task throughout was to 
retain just the one pitch, the C. After two months, Brady's error rate was 
negligible and his experience was that "the 'chroma' dimension so over- 
whelmingly overrode the high-low dimension that most of the tasks, with 
practice, became very easy" (Brady, 1970, p. 884). Sounds in the environ- 
ment began to take on codable pitch qualities-the B refrigerator, the 
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child's pull-toy in A. This is not to say that absolute pitch is not easier to 
learn in infancy, just that it can be acquired by some adults. 

In his learning of absolute pitch, Brady took advantage of- a method 
explored by Cuddy (1968, 1970, 1971) in a series of experiments. Cuddy 
found that training methods that emphasized the acquisition of a frame- 
work of reference tones among all the notes of the scale led to better pitch 
identification than training methods in which all the scale notes received 
equal attention. This was true even when persons of moderate musical 
experience were learning to label pitch sets defined by intervals of equal 
numbers of mels rather than by equal musical intervals (Cuddy, 1970). 
And when the framework for which labels are learned is already a familiar 
pattern-for example, the F-major triad in the case of music students- 
performance was especially good (Cuddy, 1971). All of this gives further 
support to the notion that the scale schemata that are internalized are well 
characterized as frameworks with definite focal points, hierarchically ar- 
ranged. This is a theme we return to in Chapter 5. 

SUMMARY 

Musical pitch is uniquely represented by scales with discrete steps, 
which function as perceptual categories for hearing, remembering, and 
producing music. These musical scales appear to be governed by a few 
major constraints: (1) discriminability of intervals, (2) octave equivalence, 
and (3) a moderate number of pitches within the octave. This psychologi- 
cal structuring of the pitch dimension is related to the physical dimension 
of frequency logarithmically, and we have presented theoretical and ex- 
perimental evidence to support this view. We have also argued that the 
tempered logarithmic tuning system used in Western music is a product of 
compromises of these constraints and of performance practice. 

We described recent studies that indicate that pitch is more than a 
unidimensional subjective experience. Pitch adjacency and pitch height 
(or chroma) can be represented by an idealized model incorporating a 
double helix, suggesting important relationships for musical cognitive 
processing. An examination of the Western tempered tuning and scale 
systems from other cultures supports the hypothesis that people construct 
scales through several levels of processing: (1) the underlying psychophy- 
sical pitch function, (2) the tonal material, (3) the tuning system, and (4) 
the modal scale. The psychological reality of this anslysis draws face 
validity from the many traditions of musical pitch systems it describes and 
is the basis for the study of melodic organization processes in the next 
chapter. 


