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CHAPTER 10 

Auditory Perception and Cognition 

STEPHEN McADAMS AND CAROLYN DRAKE 

The sound environment in which we live is ex­

traordinarily rich. As we scurry about in our 

little animal lives, we perceive sound sources 

and the sequences of events they emit and 

must adapt our behavior accordingly. How do 

we extract and make use of the information 

available in this highly structured acoustic 

array? 

Sounds arise in the environment from the 

mechanical excitation of bodies that are set 

into vibration. These bodies radiate some of 

their vibratory energy into the surrounding air 

( or water) through which this energy propa­

gates, getting bounced off some objects and 

partially absorbed by different materials. The 

nature of the acoustic wave arising from a 

source depends on the mechanical proper­

ties both of that source and of the interaction 

with other objects that set it into vibration. 

Many of these excitatory actions are extended 

through time, and this allows a listener to pick 

up important information concerning both the 

source and the action through an analysis of 

the sequences of events produced. Further, 

most environments contain several vibrating 

structures, and the acoustic waves impending 

on the eardrums represent the sum of many 

sources, some near, others farther away. 

To perceive what is happening in the envi­

ronment and adjust its behavior appropriately 

to the sound sources present, a listening organ­

ism must be able to disentangle the acoustic 

information from the many sources and eval­

uate the properties of individual events or se­

quences of events arising from a given source. 

At a more cognitive level, it is also useful to 

process the temporal relations among events 

in more lengthy sequences to understand the 

nature of actions on objects that are extended 

in time and that may carry important cultural 

messages such as in speech and music for hu­

mans. Finally, in many cases, with so much 

going on, listening must be focused on a given 

source of sound. Furthermore, this focusing 

process must possess dynamic characteristics 

that are tuned to the temporal evolution of the 

source that is being tracked in order to under­

stand its message. 

Aspects of these complex areas are ad­

dressed in this chapter to give a nonexhaus­

tive flavor for current work in auditory per­

ception and cognition. We focus on auditory 

scene analysis, timbre and sound source per­

ception, temporal pattern processing, and at­

tentional processes in hearing and finish with 

a consideration of developmental issues con­

cerning these areas. The reader may wish to 

consult several general texts for additional 

information and inspiration (Bregman, 1990; 

Handel, 1989; McAdams & Bigand, 1993; 

Warren, 1999, with an accompanying CD), 

as well as compact discs of audio demos 

(Bregman & Ahad, 1995; Deutsch, 1995; 

Houtsma, Rossing & Wagenaars, 1987). 
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AUDITORY SCENE ANALYSIS 

It is useful for an organism to build a mental 
representation of the acoustic environment in 
terms of the behavior of sound sources (ob­
jects set into vibration by actions upon them) 
in order to be able to structure its behavior in 
relation to them. We can hear in the same room 
and at the same time the noise of someone 
typing on a keyboard, the sound of someone 
walking, and the speech of someone talking 
in the next room. From a phenomenological 
point of view, we hear all of these sounds as if 
they arrive independently at our ears without 
distortion or interference among them, unless, 
of course, one source is much more intense 
than the others, in which case it would mask 
them, making them inaudible or at least less 
audible. 

The acoustic waves of all sources are com­
bined linearly in the atmosphere, and the com­
posite waveform is then analyzed as such by 
the peripheral auditory system (Figure 10.1 ; 

see Chap. 9, this volume). Sound events 
are not opaque like most visual objects are. 
The computational problem is thus to inter­
pret the complex waveform as a combina-

'"grandpere" 

tion of sound-producing events. This process 
is called auditory scene analysis (Bregman, 
1990) by analogy with the analysis of a vi­
sual scene in terms of objects (see Chap. 5, 
this volume, for a comparison of how these 
two sensory systems have come to solve anal­
ogous problems). Contrary to vision, in which 
a contiguous array of stimulation of the sen­
sory organ corresponds to an object (although 
this is not always the case, as with partially 
occluded or transparent objects), in hearing 
the stimulation is a distributed frequency ar­
ray mapped onto the basilar membrane. For a 
complex sound arising from a given source, 
the auditory system must thus reunite the 
sound components coming from the same 
source that have previously been channeled 
into separate auditory nerve fibers on the basis 
of their frequency content. Further, it must 
separate the information coming from dis­
tinct sources that contain close frequencies 
that would stimulate the same auditory nerve 
fibers . This is the problem of concurrent or­
ganization . The problem of sequential orga­
nization concerns perceptually connecting (or 
binding) over time successive events emitted 
by the same source and segregating events 

"grandpere" mixed with playground 
noises and ducks . . 

0-
Cl) ... '-

grand pere 
time 

Figure 10.1 Spectrogram of (a) a target sound-the word grandpere ("grandfather" in French)-and 
(b) the target sound embedded in a noisy environment (a children's playground with voices and ducks). 
NOTE: A spectrogram represents time on the horizontal axis and frequency on the vertical axis. The level 
at a given frequency is coded by the darkness of the spectrographic trace. Note that in many places in 
the mixture panel, the frequency information of the target sound is strongly overlapped by that of the 
noisy environment. In particular, the horizontal lines representing harmonic frequency components of 
the target word become intermingled with those of other voices in the mixture. 



coming from independent sources in order to 
follow the message of only one source at a 
time. 

This section examines the mechanisms that 
are brought into play by the auditory system 
to analyze the acoustic events and the be­
havior over time of sound sources. The ul­
timate goal of such a system would be to 
segregate perceptually actions that occur si­
multaneously; to detect new actions in the en­
vironment; to follow actions on a given ob­
ject over time; to compute the properties of 
sources to feed into categorization, recogni­
tion, identification, and comprehension pro­
cesses; and to use knowledge of derived 
attributes to track and extract sources and 
messages. We consider in order the processes 
involved in auditory event formation (concur­
rent grouping), the distinction of new event 
arrival from change of an ongoing event, audi­
tory stream formation (sequential grouping), 
the interaction of concurrent and sequential 
grouping factors, the problem posed by the 
transparency of auditory events, and, finally, 
the role of schema-based processes in audi­
tory organization. 

Auditory Event Formation 
(Concurrent Grouping) 

The processes of concurrent organization re­
sult either in the perceptual fusion or group­
ing of components of the auditory sensory 
representation into a single auditory event or 
in their perceptual segregation into two or 
more distinct events that overlap in time. The 
nature of these components of the sensory 
representation depends on the dual coding 
scheme in the auditory periphery. On the one 
hand, different parts of the acoustic frequency 
spectrum are represented in separate anatom­
ical locations at many levels of the auditory 
system, a representation that is called tono­
topic (see Chap. 9, this volume). On the other 
hand, even within a small frequency range in 
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which all the acoustic information is carried 
by a small number of adjacent auditory nerve 
fibers, different periodicities in the stimulat­
ing waveform can be discerned on the basis of 
the temporal pattern of neural discharges that 
are time-locked to the stimulating waveform 
(see Chap. 9, this volume). The term auditory 
event refers to the unity and limited temporal 
extent that are experienced when, for exam­
ple, a single sound source is set into vibration 
by a time-limited action on it. Some authors 
use the term auditory objects, but we pre­
fer to distinguish objects (as vibrating physi­
cal sources) from perceptual events. A single 
source can produce a series of events. 

A relatively small number of acoustic cues 
appear to signal either common behavior 
among acoustic components (usually arising 
from a single source) or incoherent behav­
ior between components arising from distinct 
sources. The relative contribution of a given 
cue for scene analysis, however, depends on 
the perceptual task in which the listener is en­
gaged: Some cues are more effective in signal­
ing grouping for one attribute, such as iden­
tifying the pitch or vowel quality of a sound, 
than for another attribute, such as judging its 
position in space. Furthermore, some cues are 
more resistant than are others to environmen­
tal transformations of the acoustic waves orig­
inating from a vibrating object (reflections, 
reverberation, filtering by selective absorp­
tion, etc.). 

Candidate cues for increasing segregation 
of concurrent sounds include inharmonicity, 
irregularity of spacing of frequency compo­
nents, asynchrony of onset or offset of com­
ponents, incoherence of change over time of 
level and frequency of components, and dif­
ferences in spatial position. 

Harmonicity 

In the environment two unrelated sounds 
rarely have frequency components that line up 
such that each frequency is an integer multiple 
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of the fundamental frequency (FO) , which 
is called a harmonic series. It is even less 
likely that they will maintain this relation with 
changes in frequency over time. A mechanism 
that is sensitive to deviations from harmonic­
ity and groups components having harmonic 
relations could be useful for grouping acous­
tic components across the spectrum that arise 
from a single source and for segregating those 
that arise from distinct sources. 

Two main classes of stimuli have been used 
to study the role of harmonicity in concur­
rent grouping: harmonic complexes with a 
single component mistuned from its purely 
harmonic relation and complexes composed 
of two or more sets of harmonic components 
with a difference in fundamental frequency 
(Figures 10.2a-b). 

Listeners report hearing out a single, mis­
tuned harmonic component from the rest of 
the complex tone if its harmonic rank is low 
and the mistuning is around 2% of its nominal 
frequency (Moore, Peters, & Glasberg, 1985). 
If mistuning is sufficient, listeners can match 
the pitch of the segregated harmonic, but this 
ability deteriorates at component frequencies 

above approximately 2000 Hz, where tempo­
ral information in the neural discharge pat­
tern is no longer reliably related to wave­
form periodicities (Hartmann, McAdams, & 
Smith, 1990). A mistuned harmonic can also 
affect the virtual pitch (see Chap. 11, this 
volume) of the whole complex, pulling it in 
the direction of mistuning. This pitch shift 
increases for mistunings up to 3% and then 
decreases beyond that, virtually disappear­
ing beyond about 8% (Hartmann, 1988; 
Hartmann et aI., 1990; Moore, Glasberg, & 
Peters, 1985). This relation between mis­
tuning and pitch shift suggests a harmonic­
template model with a tolerance function on 
the harmonic sieve (Duifhuis, Willems, & 

Sluyter, 1982) or a time-domain autocoinci­
dence processor (de Cheveigne, 1993) with a 
temporal margin of error. Harmonic mistun­
ing can also affect vowel perception by influ­
encing whether the component frequency is 
integrated into the computation of the spectral 
envelope that determines the vowel identity 
(Darwin & Gardner, 1986). By progressively 
mistuning this harmonic, a change in vowel 
percept has been recorded up to about 8% 

Figure 10.2 Stimuli used to test concurrent grouping cues. 
NOTE: a) Harmonicity tested with the mistuned harmonic paradigm. A harmonic stimulus without the 
fundamental frequency still gives a pitch at that frequency (dashed line). A shift of at least 2% but no 
more than 8% in the frequency of the fourth harmonic causes the harmonic to be heard separately but still 
contributes to a shift in the pitch of the complex sound. b) Harmonicity tested with the concurrent vowel 
paradigm. In the left column two vowels (indicated by the spectral envelopes with formant peaks) have 
the same fundamental frequency (FO). The resulting spectrum is the sum of the two, and the new spectral 
envelope does not correspond to either of the vowels, making them difficult to identify separately. In the 
right column, the FO of one of the vowels is shifted, and two separate groups of harmonics are repre­
sentedin the periodicity information in the auditory nerve, making the vowels more easily distinguished. 
c) Spectral spacing. An even harmonic in an odd-harmonic base, or vice versa, is easier to hear out than 
are the harmonics of the base. d) Onset/offset asynchrony. When harmonics start synchronously, they 
are fused perceptually into a single perceptual event. An asynchrony of the onset of at least 30-50 ms 
makes the harmonic easier to hear out. An asynchrony of the offset has a relatively weak effect on hearing 
out the harmonic. e) Level comodulation (comodulation masking release). The amplitude envelopes of a 
sine tone (black) and a narrow band noise with a modulating envelope (white) are shown. The masking 
threshold of the sine tone in the noise is measured. When flanking noise bands with amplitude envelopes 
identical to that of the on-signal band are added, the masked threshold of the sine tone decreases by about 
3 dB. f) Frequency comodulation. A set of harmonics that are coherently modulated in frequency (with a 
sinusoidal vibrato in this example) are heard as a single event. Making the modulation incoherent on one 
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mistuning, as for the pitch-shift effect. Note 
that above 2% mistuning, the component is 
heard as a separate event, but it continues to 
affect pitch and vowel perception up to a mis­
tuning of about 8%. 

A difference in fundamental frequency 
(~FO) of 2% across two sets of harmon­
ics forming different synthetic speech for­
mants 1 gives an impression of two sources 
with the same vowel identity (Cutting, 1976; 
Gardner, Gaskill, & Darwin, 1989), but much 
larger ~FOs are necessary to affect the identity 
of consonant-vowel (CV) syllables. In four­
formant CV syllables in which perceptual seg­
regation of the second formant (F2) changes 
the identity from fruf to /lil, a 58% ~FO on 
F2 gave /lil plus an additional buzz, whereas 
4% gave an impression of two sources, both 
being fruf (Darwin, 1981). Fundamental fre­
quency differences increase the intelligibil­
ity of a target speech stream mixed with a 
nonsense stream up to approximately 3%. In­
telligibility remains relatively constant there­
after, but with a drop at the octave (Brokx & 
Nooteboom, 1982). At this 2: 1 frequency 
ratio, the frequency components ofthe higher­
FO complex would coincide perfectly with 
the even-ranked components of the lower­
FO complex. In more controlled experiments 
in which pairs of synthesized vowels are 
mixed and must both be identified, perfor­
mance increases up to a 3% ~FO (Assmann & 
Summerfield, 1990; Scheffers, 1983). \~/ 

One question raised by these studies is how 
the harmonic structure of the source is ex­
ploited by a segregation mechanism. At the 
small differences in FO that give significant 
identification improvement, it is clear that 
cochlear frequency selectivity would be in-

I Formants are regions in the frequency spectrum where 
the energy is higher than in adjacent regions. They are 
due to the resonance properties of the vocal tract and 
determine many aspects of consonant and vowel identity 
(see Chap. 12, this volume). 

sufficient. A mechanism might be used that 
operates on the temporal fine structure of 
the neural discharge pattern in the auditory 
nerve fiber array. Two possibilities have been 
examined by experimentation and modeling 
(de Cheveigne, 1993). One proposes that the 
extraction process uses the harmonicity of the 
target event. The other hypothesizes inversely 
that the harmonicity of the backg round is used 
to cancel it out. In line with the cancellation 
hypothesis, results from concurrent double­
vowel experiments show that it is easier to 
identify periodic target vowels than inhar­
monic or noisy ones, but that the harmonic­
ity of the target vowel itself has no effect (de 
Cheveigne, Kawahara, Tsuzaki, & Aikawa, 
1997; de Cheveigne, McAdams, Laroche, & 
Rosenberg, 1995; de Cheveigne, McAdams, 
& Marin, 1997; Lea, 1992). The harmonic 
cancellation mechanism is extremely sensi­
tive because improvement in vowel identifi­
cation can be obtained with a ~FO as small as 
0.4% (de Cheveigne, 1999). 

Regularity of Spectral Spacing 

The results from studies of harmonicity sug­
gest a role for temporal coding rather than 
spectral coding in concurrent grouping. This 
view is complicated, however, by results con­
cerning the regularity of spectral spacing, that 
is, the pattern of distribution of components 
along the frequency diinension. If a listener 
is presented with a base spectrum composed 
of only the odd harmonics plus one even 
harmonic, the even harmonic is more easily 
heard out than are its odd neighbors (Fig­
ure 1O.2c). This is true even at higher har­
monic numbers, where spectral resolution2 

2The frequency organization along the basilar membrane 
in the cochlea (see Chap. 9, this volume) is roughly loga­
rithmic, so higher harmonics are more closely spaced than 
are lower harmonics. At sufficiently high ranks, adjacent 
harmonics no longer stimulate separate populations of 
auditory nerve fibers and are thus "unresolved" in the 
tonotopic representation. 



is reduced. Note that the even harmonic sur­
rounded by odd harmonics would be less re­
solved on the basilar membrane than would ei­

ther of its neighbors. Contrary to the ~FO cue, 
harmonic sieve and autocoincidence models 
cannot account for these results (Roberts & 

Bregman, 1991). Nor does the underlying 
mechanism involve a cross-channel compari­

son of the amplitude modulation envelope in 

the output of the auditory filter bank, because 
minimizing the modulation depth or perturb­
ing the modulation pattern by adding noise 

does not markedly reduce the difference in 
hearing out even and odd harmonics (Roberts 

& Bailey, 1993). However, perturbing the reg­
ularity of the base spectrum by adding extra­
neous components or removing components 
reduces the perceptual "popout" of even har­

monics (Roberts & Bailey, 1996), confirming 

the spectral pattern hypothesis. 

Onset and Offset Asynchrony 

Unrelated sounds seldom start or stop at ex­
actly the same time. Therefore, the audi­
tory system assumes that synchronous com­

ponents are part of the same sound or were 
caused by the same environmental event. Fur­
thermore, the auditory system is extremely 

sensitive to small asynchronies in analyzing 

the auditory scene. A single frequency com­
ponent in a complex tone becomes audible on 
its own with an asynchrony as small as 35 ms 
(Rasch, 1978). Onset asynchronies are more 

effective than offset asynchronies are in cre­
ating segregation (Figure 1 0.2d; Dannenbring 
& Bregman, 1976; Zera & Green, 1993). 

When a component is made asynchronous, it 

also contributes less to the perceptual proper­

ties computed from the rest of the complex. 

For example, a 30-ms asynchrony can affect 
timbre judgments (Bregman & Pinker, 1978). 

Making a critical frequency component that 
affects the estimation of a vowel sound's spec­

tral envelope asynchronous by 40 ms changes 
the vowel identity (Darwin, 1984). Further-
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more, the asynchrony effect is abolished if 
the asynchronous portion of the component 
(i.e., the part that precedes the onset of the 

vowel complex) is grouped with another set 

of components that are synchronous with it 
alone and that have a common FO that is dif­
ferent from that of the vowel. This result sug­

gests that it is indeed a grouping effect, not 
the result of adaptation (Darwin & Sutherland, 
1984). 

The effect of a mistuned component on the 
pitch of the complex (discussed earlier) is in­
creasingly reduced for asynchronies from 80 

to 300 ms (Darwin & Ciocca, 1992). This 
latter effect is weakened if another compo­
nent groups with a preceding portion of the 
asynchronous component (Ciocca & Darwin, 
1993). Note that in these results the asyn­

chronies necessary to affect pitch percep­

tion are much greater than are those that 
affect vowel perception (Hukin & Darwin, 
1995a). 

Coherence of Change in Level 

From Gestalt principles such as common fate 
(see Chap. 5, this volume), one might ex­
pect that common direction of change in level 

would be a cue for grouping components to­

gether; inversely, independent change would 
signal that segregation was appropriate. The 
evidence that this factor is a grouping cue, 
however, is rather weak. In experiments by 

Hall and colleagues (e.g., Hall, Grose, & 

Mendoza, 1995), a phenomenon called co­

modulation masking release is created by 
placing a narrow-band noise masker centered 
on a target frequency component (sine tone) 

that is to be detected (Figure lO.2e). The 

masked threshold of the tone is measured in 

the presence of the noise. Then, noise bands 
with similar or different amplitude envelopes 
are placed in more distant frequency regions. 

The presence of similar envelopes (i.e., co­

modulation) makes it possible to detect the 

tone in the noise at a level of about 3 dB lower 
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than in their absence. The masking seems to be 
released to some extent by the presence of co­
modulation on the distant noise bands. Some 
authors have attributed this phenomenon to 
the grouping of the noise bands into a sin­
gle auditory image that then allows the noise 
centered on the tone to be interpreted as part 
of a different source, thus making detection 
of the tone easier (Bregman, 1990, chap. 3). 
Others, however, consider either that cross­
channel detection of the amplitude envelope 
simply gives a cue to the auditory system con­
cerning when the masking noise should be in 
a level dip, or that the flanking maskers sup­
press the on-signal masker (Hall et aI., 1995; 
McFadden & Wright, 1987). 

Coherence of Change in Frequency 

For sustained complex sounds that vary in fre­
quency, there is a tendency for all frequen­
cies to change synchronously and to main­
tain the frequency ratios. As such, one might 
imagine that frequency modulation coherence 
would be an important cue in source grouping 
(Figure 10.20. The effects of frequency mod­
ulation incoherence may have two origins: 
within-channel cues and cross-channel cues. 
Within-channel cues would result from the 
interactions of unresolved components that 
changed frequency incoherently over time, 
creating variations in beating or roughness in 
particular auditory channels. They could sig­
nal the presence of more than one source. Such 
cues are detectable for both harmonic and in­
harmonic stimuli (McAdams & Marin, 1990) 
but are easier to detect for the former because 
of the reliability of within-channel cues for 
periodic sounds. Frequency modulation co­
herence is not, however, detectable across au­
ditory channels (i.e., in distant frequency re­
gions) above and beyond the mistuning from 
harmonicity that they create (Carlyon, 1991, 
1992, 1994). Although frequency modulation 
increases vowel prominence when the ~FO 
is already large, there is no difference be-

tween coherent and incoherent modulation 
across the harmonics of several vowels ei­
ther on vowel prominence (McAdams, 1989) 
or on vowel identification (Summerfield & 
Culling, 1992). However, frequency modula­
tion can help group together frequency com­
ponents for computing pitch. In a mistuned 
harmonic stimulus, shifts in the perceived 
pitch of the harmonic complex continue to 
occur at greater mistunings when all com­
ponents are modulated coherently than when 
they are unmodulated (Darwin, Ciocca, & 
Sandell, 1994). 

Spatial Position 

It was thought early on that different spa­
tial positions should give rise to binaural 
cues that could be used to segregate tempo­
rally and spectrally overlapping sound events. 
Although work on speech comprehension 
in noisy environments (e.g., Cherry's 1953 
"cocktail party effect") emphasized spatial 
cues to allow listeners to ignore irrelevant 
sources, the evidence in support of such cues 
for grouping is in fact quite weak. An interau­
ral time difference (ITD) is clearly a power­
ful cue for direction (see Chap. 9, this vol­
ume), but it is remarkably ineffective as a 
cue for grouping simultaneous components 
that compose a particular source (Culling 
& Summerfield, 1995; Hukin & Darwin, 
1995b). 

The other principal grouping cues gener­
ally override spatial cues. For example, the 
detection of changes in ITD on sine com­
ponents across two successive stimulus in­
tervals is similar when they are presented in 
isolation or embedded within an inharmonic 
complex. However, detection performance is 
much worse when they are embedded within 
a harmonic complex; thus harmonicity over­
rides spatial incoherence (Buell & Hafter, 
1991). Furthermore, mistuning a component 
can affect its lateralization (Hill & Darwin, 
1996), suggesting that grouping takes place on 



the basis of harmonicity, and only then is the 
spatial position computed on the basis of the 
lateralization cues for the set of components 

that have been grouped together (Darwin & 
Ciocca, 1992). 

Lateralization effects may be more sub­
stantial when the spatial position is attended 
to over an extended time, as would be the case 
in paying sustained attention to a given sound 

source in a complex environment (Darwin & 

Carlyon, 1995). Listeners can attend across 
time to one of two spoken sentences distin­
guished by small differences in ITD, but they 

do not use such continuity of ITD to deter­
mine which individual frequency components 

should form part of a sentence. These results 
suggest that ITD is computed on the periph­
eral representation of the frequency compo­
nents in parallel to a grouping of components 

on the basis of harmonicity and synchrony. 
Subsequently, direction is computed on the 
grouped components, and the listener attends 
to the direction of the grouped object (Darwin 

& Hukin, 1999). 

General Considerations Concerning 
Concurrent Grouping 

Note that there are several possible cues for 

grouping and segregation, which raises the 
possibility that what the various cues sig­

nal in terms of source structures in the en­
vironment can diverge. For example, many 
kinds of sound sources are not harmonic, but 

the acoustic components of the events pro­

duced by them would still start and stop at the 
same time and probably have a relatively fixed 
spatial position that could be attended to. In 

many cases, however, redundancy of segrega­

tion and integration cues works against am­

biguities in inferences concerning grouping 

on the basis of sensory information. Further­
more, the cues to scene analysis are not all­

or-none. The stronger they are, the more they 

affect grouping, and the final perceptual result 

is the best compromise on the basis of both the 
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strength of the evidence available and the per­
ceptual task in which the listener is engaged 
(Bregman, 1993). As many ofthe results cited 

earlier demonstrate, the grouping and segre­

gation of information in the auditory sensory 
representation precedes and thus determines 
the perceptual properties of a complex sound 
source, such as its spatial position, its pitch, 
or its timbre. However, the perceived prop­

erties can in turn become cues that facilitate 
sustained attending to, or tracking of, sound 
sources over time. 

New Event Detection versus Perception 
of a Changing Event 

The auditory system appears to be equipped 
with a mechanism that triggers event-related 

computation when a sudden change in the 
acoustic array is detected. The computation 
performed can be a resampling of some prop­
erty of the environment, such as the spatial 

position of the source, or a grouping process 
that results in the decomposition of an acous­
tic mixture (Bregman, 1991). This raises the 

questions of what constitutes a sudden change 
indicating the arrival of a new event and how 
it can be distinguished from a more gradual 

change that results from an evolution of an 
already present event. 

An example of this process is binaural 
adaptation and the recovery from such ad­

aptation when an acoustic discontinuity is 

detected. Hafter, Bue1l, & Richards (1988) 

presented a rapid (40/s) series of clicks bin­
aurally with an interaural time difference that 
gave a specific lateralization of the click train 

toward the leading ear (Figure 1O.3a). As one 

increases the number of clicks in the train, 

accuracy in discriminating the spatial posi­
tion between two successive click trains in­

creases, but the improvement is progressively 
less (according to a compressive power func­

tion) as the click train is extended in duration. 

The binaural system thus appears to become 
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Figure 10.3 Stimuli used to test the resetting of auditory sampling of the environment upon new event 
detection. 
NOTE: a) Binaural adapatation release. A train of clicks (interclick separation = 2.5 ms) is sent to the two 
ears with a small interaural time difference (ITD) that displaces the perceived lateralization of the sound 
toward the leading ear (the right ear in this example). The just noticeable ITD decreases as a function 
of the number of clicks in the train, but the relative contribution of later clicks is lesser than is that of 
the earlier clicks, indicating binaural adaptation. Release from adaptation is triggered by the detection 
of a new event, such as a discontinuity in the click train (e.g., a silent gap of 7.5 ms). b) Suddenness 
of change. The amplitude envelopes on harmonic components are shown. All harmonics are constant in 
level except one, which increases in level in the middle. A slow change in level (> 100 ms) is heard as 
a change in the timbre of the event, whereas a sudden change « 100 ms) is heard as a new (pure-tone) 
event. 

progressively quiet beyond stimulus onset for 
constant stimulation. However, if some kind 
of discontinuity is introduced in the click train 
(a longer or shorter gap between clicks, or a 
brief sound with a sudden onset in a remote 
spectral region, even of fairly low intensity), 
the spatial environment is suddenly resampled 
at the moment of the discontinuity. A com­
plete recovery from the process of binaural 
adaptation appears to occur in the face of such 
discontinuities and indicates that the auditory 
system is sensitive to perturbations of regular­
ity. Hafter and Buell (1985) proposed that at 
a fairly low level in the auditory system, mul­
tiple bands are monitored for changes in level 
that might accompany the start of a new signal 
or a variation in the old one. Sudden changes 
cause the system to res ample the binaural in-

puts and to update its spatial map at the time of 
the restart, suggesting that knowledge about 
the direction of a source may rely more on 
memory than on the continual processing of 
ongoing information. 

Similarly, an acoustic discontinuity can 
provoke the emergence of a new pitch in an 
otherwise continuous complex tone. A sud­
den interaural phase disparity or frequency 
disparity in one component of a complex 
tone can create successive-difference cues 
that make the component emerge (Kubovy, 
1981; Kubovy, Cutting, & McGuire, 1974). 
In this case, the successive disparity triggers 
a recomputation of which pitches are present. 
Thus, various sudden changes trigger res am­
pling. But how fast a change is "sudden"? If 
listeners must identify the direction of change 



in pitch for successive pure-tone events added 
in phase to a continuous harmonic complex 
(Figure 1 O.3b), performance is a monotone 
decreasing function of rise time; that is, the 
more sudden the change, the more the change 
is perceived as a new event with its own pitch, 
and the better is the performance. From these 
results Bregman, Ahad, Kim, and Melnerich 
(1994) proposed that "sudden" can be defined 
as basically less than 100 ms for onsets. 

Auditory Stream Formation 
(Sequential Grouping) 

The processes of sequential organization re­
sult in the perceptual integration of succes­
sive events into a single auditory stream or 
their perceptual segregation into two or more 
streams. Under everyday listening conditions, 
an auditory stream corresponds to a sequence 
of events emitted by a single sound source. 

General Considerations Concerning 
Sequelltial Grouping 

Several basic principles of auditory stream 
formation emerge from research on sequential 
grouping. These principles reflect regularities 
in the physical world that shaped the evolution 
of the auditory mechanisms that detect them. 

1. Source properties change slowly. Sound 
sources generally emit sequences of events 
that are transformed in a progressive man­
ner over time. Sudden changes in event 
properties are likely to signal the presence 
of several sources (Bregman, 1993). 

2. Events are allocated exclusively to streams. 
A given event is assigned to one or another 
stream and cannot be perceived as belong­
ing to both simultaneously (Bregman & 

Campbell, 1971), although there appear to 
be exceptions to this principal in interac­
tions between sequential and concurrent 
grouping processes and in duplex percep­
tion (discussed later). 
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3. Streaming is cumulative. The auditory sys­
tem appears by default to assume that a 
sequence of events arises from a single 
source until enough evidence to the con­
trary can be accumulated, at which point 
segregation occurs (Bregman, 1978b). 
Also, if a cyclical sequence is presented 
over a long period of time (several tens 
of seconds), segregation tends to increase 
(Anstis & Saida, 1985). 

4. Sequential grouping precedes stream at­
tribute computation. The perceptual prop­
erties of sequences depend on what events 
are grouped into streams, as was shown for 
concurrent grouping and event attributes. 
A corollary of this point is the fact that 
the perception of the order of events de­
pends on their being assigned to the same 
stream: It is easier to judge temporal order 
on within-stream patterns than on across­
stream patterns that are perceptually frag­
mented (Bregman & Campbell, 1971; van 
Noorden, 1975). 

The cues that determine sequential auditory 
organization are closely related to the Gestalt 
principles of proximity and similarity (see 
Chap. 5, this volume). The notion of prox­
imity in audition is limited here to the tem­
poral distance between events, and similarity 
encompasses the acoustic similarity of suc­
cessive events. Given the intrinsically tem­
poral nature of acoustic events, grouping is 
considered in terms of continuity and rate of 
change in acoustic properties between succes­
sive events. In considering the acoustic factors 
that affect grouping in the following, keep 
in mind that not all acoustic differences are 
equally important in determining segregation 
(Hartmann & Johnson, 1991). 

Frequency Separation and Temporal 
Proximity 

A stimulus sequence composed of two al­
ternating frequencies in the temporal pattern 



408 Auditory Perception and Cognition 

ABA-ABA- (where "-" indicates a si­
lence) is heard as a galloping rhythm if the 
tones are integrated into a single stream and 
as two isochronous sequences (A-A-A­
A- and BB) if they are seg­
regated. At slower tempos and smaller fre­
quency separations, integration tends to occur, 
whereas at faster tempos and larger frequency 
separations, segregation tends to occur. Van 
Noorden (1975) measured the frequency sep­
aration at which the percept changes from in­
tegration to segregation or vice versa for vari­
ous event rates. Iflisteners are instructed to try 
to hear the gallop rhythm or conversely to fo­
cus on one of the isochronous sequences, tem­
poral coherence and fission boundaries are ob­
tained, respectively (see Figure 10.4). These 
functions do not have the same form. The fis­
sion boundary is limited by the frequency res­
olution of the peripheral auditory system and 
is relatively unaffected by the event rate. The 
temporal coherence boundary reflects the lim­
its of inevitable segregation and strongly de­
pends on tempo. Between the two is an am­
biguous region where the listener's perceptual 
intent plays a strong role. 

Streaming is not an all-or-none phe­
nomenon with clear boundaries between in­
tegration and segregation along a given sen­
sory continuum, however. In experiments in 
which the probability of a response related 
to the degree of segregation was measured 
(Brochard, Drake, Botte, & McAdams, 1999), 
the probability varied continuously as a func­
tion of frequency separation. This does not 
imply that the percept is ambiguous. It is ei­
ther one stream or two streams, but the prob­
ability of hearing one or the other varies for a 
given listener and across listeners. 

It is not the absolute frequency difference 
that determines which tones are bound to­
gether in the same stream, but rather the rela­
tive differences among the frequencies. Breg­
man (1978a), for example, used a sequential 
tone pattern ABXY. If A and B are within a 

critical band (i.e., they stimulate overlapping 
sets of auditory nerve fibers) in a high fre­
quency region, and if X and Y are within a 
critical band in a low frequency region, then 
A and B form one stream, and X and Y form 
another stream (see Figure 10.5). If X and Y 
are now moved to the same frequency region 
as A and B such that A and X are close and 
B and Y are close, without changing the fre­
quency ratios between A and B nor between X 
and Y, then the relative frequency differences 
predominate and streams of A-X and B-Y are 
obtained. 

The abruptness of transition from one fre­
quency to the next also has an effect on stream 
segregation. In the studies just cited, one tone 
stops on one frequency, and the next tone be­
gins at a different frequency. In many sound 
sources that produce sequences of events and 
vary the fundamental frequency, such as the 
voice, such changes may be more gradual. 
Bregman & Dannenbring (1973) showed that 
the inclusion of frequency ramps (going to­
ward the next tone at the end and com­
ing from the previous tone at the beginning) 
or even complete frequency glides between 
tones yielded greater integration of the se­
quence into a single stream. 

The Cumulative Bias toward Greater 
Segregation 

Anstis and Saida (1-985) showed that there is 
a tendency for reports of a segregated per­
cept to increase over time when listening to 
alternating-tone sequences. This stream bi­
asing decays exponentially when the stimu­
lus sequence is stopped and has a time con­
stant of around 4 s on average (Beauvois & 

Meddis, 1997). Anstis and Saida proposed a 
mechanism involving the fatigue of frequency 
jump detectors to explain this phenomenon, 
but Rogers and Bregman (1993a) showed that 
an inductor sequence with a single tone could 
induce a bias toward streaming in the absence 
of jumps. The biasing mechanism requires 
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Figure 10.4 Van Noorden's temporal coherence and fission boundaries. 
NOTE: A repeating "ABA-" pattern can give a percept of either a) a gallop rhythm or b) two isochronous 
sequences, depending on the presentation rate and AB frequency difference. c) To measure the temporal 
coherence boundary (TCB), the initial frequency difference is small and increases while the listener 
attempts to hold the gallop percept. d) To measure the fission boundary (FB), the initial difference is 
large and is decreased while the listener tries to focus on a single isochronous stream. In both cases, 
the frequency separation at which the percept changes is recorded. The whole procedure is repeated at 
different interonset intervals, giving the curves shown in (e). 
SOURCE: Adapted from van Noorden (1975, Figure 2.7). Copyright © 1975 by Leon van Noorden. 
Adapted with permission. 
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Figure 10.5 Two stimulus configurations of the type used by Bregman (1978) to investigate the effect 
of relative frequency difference on sequential grouping. 
NOTE: Time is on the horizontal axis, and frequency is on the vertical axis. On the left, pure tones A and 
B are isolated from pure tones X and Y and are heard in a single stream together. Dashed lines indicate 
stream organization. On the right, A and B have the same frequency relation, but the insertion of X and 
Y between them causes their reorganization into separate streams because the A-X and B-Y differences 
are proportionally much smaller than are the A-B and X-Y differences. 

the inductor stimulus to have the same spa­
tiallocation and loudness as the test sequence 
(Rogers & Bregman, 1998). When disconti­
nuities in these auditory attributes are present, 
the test sequence is more integrated-a sort 
of sequential counterpart to the resampling­
on-demand mechanism discussed previously. 
Such a mechanism would have the advantage 
of preventing the auditory system from accu­
mulating data across unrelated events. 

Timbre-Related Differences 

Sequences with alternating tones that have 
the same fundamental frequency (i.e., same 
virtual pitch) but that are composed of dif­
ferently ranked harmonics derived from that 
fundamental (i.e., different timbres) tend to 
segregate (Figure 1O.6a; van Noorden, 1975). 
Differences in spectral content can thus cause 
stream segregation (Hartmann & Johnson, 
1991; Iverson, 1995; McAdams & Bregman, 
1979). It is therefore not pitch per se that cre-

ates the streaming. Spectral differences can 
compete even with pitch-based patterns in de­
termining the melodies that are heard (Wessel, 
1979). Note that in music both pitch register 
and instrument changes produce discontinu­
ities in spectral content. 

Although other timbre-related differences 
can also induce segregation, not all percep­
tual attributes gathered under the term timbre 
(discussed later) do so. Listeners are unable to 
identify interleaved melodies any better when 
different amplitude envelopes are present on 
the tones of the two melodies than when they 
are absent, and differences in auditory rough­
ness are only weakly useful for melody segre­
gation, and only for some listeners (Hartmann 
& Johnson, 1991). However, dynamic (tem­
poral) cues can contribute to stream segre­
gation. Iverson (1995) played sequences that 
alternated between different musical instru­
ments at the same pitch and asked listen­
ers for ratings of the degree of segregation. 
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(b) Discontinuity in period 
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Figure 10.6 Stimuli used to test sequential grouping cues. 
NOTE: a) Spectral discontinuity. An alternating sequence of tones with identical fundamental frequencies 
gives rise to a perception of constant pitch but differing timbres when the spectral content of the tones are 
different. This discontinuity in spectral content also creates a perceptual segregation into two streams. 
b) Discontinuity in period. A harmonic complex that is filtered in the high-frequency region gives rise 
to a uniform pattern of excitation on the basilar membrane, even if the period of the waveform (the 
fundamental frequency) is changed. The upper diagram has a lower FO than has the lower diagram. There 
can be no cue of spectral discontinuity in a sequence of tones that alternates between these two sounds, 
yet segregation occurs on the basis of the difference in period, presumably carried by the temporal pattern 
of neural discharges in the auditory nerve. c) Discontinuity in level. A sequence of pure tones of constant 
frequency but alternating in level gives rise to several percepts depending on the relative levels. A single 
stream is heard if the levels are close. Two streams at half the tempo are heard if the levels differ by about 
5 dB . A roll effect in which a louder half-tempo stream is accompanied by a softer full-tempo stream is 
obtained at certain rapid tempi when the levels differ by about 10 dB. Finally, at higher tempi and large 
differences in level, a louder pulsing stream is accompanied by a softer continuous tone. 
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Multidimensional scaling analyses of these 
ratings revealed a perceptual dimension re­
lated to the temporal envelope of the sound 
in addition to a more spectrum-based di­
mension. The temporal coherence boundary 
for alternating-tone or gallop sequences is 
situated at a smaller frequency separation 
if differences in temporal envelope are also 
present, suggesting that dynamic cues can 
combine with spectrum- or frequency-based 
cues (Singh & Bregman, 1997). Listeners can 
also use voice-timbre continuity rather than 
FO continuity to disambiguate intersections 
in voices that cross in FO contour (Culling 
& Darwin, 1993). When there is no timbre 
difference between crossing glides, bouncing 
contours are perceived (a pitch similarity ef­
fect), but when there is a difference, crossing 
contours are perceived (a timbre-similarity 
effect). 

Differences in Period 

Several studies have led to the conclusion 
that local differences in excitation patterns on 
the basilar membrane and fine-grained tem­
poral information may also contribute interac­
tively to stream segregation (Bregman, Liao & 
Levitan, 1990; Singh, 1987), particularly 
when the harmonics of the stimuli are re­
solved on the basilar membrane. Vliegen and 
Oxenham (1999) used an interleaved melody 
recognition task in which the tones of a tar­
get melody were interleaved with those of a 
distractor sequence. If segregation does not 
occur at least partially, recognition of the tar­
get is nearly impossible. In one condition, 
they applied a band-pass filter that let unre­
solved harmonics through (Figure 1O.6b). Be­
cause the harmonics would not be resolved in 
the peripheral auditory system, there would 
be no cue based on the tonotopic representa­
tion that could be used to segregate the tones. 
However, segregation did occur, most likely 
on the basis of cues related to the periods of 
the waveforms carried in the temporal pat-

tern of neural discharges. In a study in which 
integration was required to succeed, a time 
shift was applied to the B tones in a gal­
lop sequence (ABA-ABA-), and listeners 
were required to detect the time shift. This 
task is more easily performed when the A and 
B tones are integrated and the gallop rhythm 
is heard than when they are segregated and 
two isochronous sequences are heard (Figure 
10.4; Vliegen, Moore, & Oxenham, 1999). 
It seems that whereas period-based cues in 
the absence of distinctive spectral cues can 
be used for segregation, as shown in the first 
study, they do not induce obligatory segre­
gation when the listener tries to achieve in­
tegration to perform the task. Period-based 
cues are thus much weaker than spectral cues 
(Grimault, Micheyl, Carlyon, Arthaud, & 
Collet, 2000), suggesting that temporal infor­
mation may be more useful in tasks in which 
selective attention can be used in addition to 
primitive scene-analysis processes. 

Differences in Level 

Level differences can also create segrega­
tion, although this effect is quite weak. Van 
N oorden (1977) found that alternating pure­
tone sequences with constant frequency but 
level differences on the order of 5 dB segre­
gated into loud and soft streams with identical 
tempi (Figure 1O.6c). Hartmann and 10hnson 
(1991) also found a weak effect of level dif­
ferences on interleaved melody recognition 
performance. When van Noorden increased 
the level difference and the sequence rate was 
relatively fast (greater than 13 tones/s), other 
perceptual effects began to emerge. For differ­
ences of around 10 dB, a percept of a louder 
stream at one tempo accompanied by a softer 
stream at twice that tempo was obtained. For 
even greater differences (> 18 dB), a louder in­
termittent stream was accompanied by a con­
tinuous softer stream. In both cases, the more 
intense event would seem to be interpreted 
as being composed of two events of identical 

~'. 



spectral content. These percepts are exam­
ples of what Bregman (1990, chap. 3) has 
termed the old-plus-new heuristic (discussed 
later). 

Differences in Spatial Location 

Dichotically presented alternating-tone se­
quences do not tend to integrate into a trill 
percept even for very small frequency separa­
tions (van Noorden, 1975). Similarly, listeners 
can easily identify interleaved melodies pre­
sented to separate ears (Hartmann & J ohnson, 
1991). Ear of presentation is not, however, a 
sufficient cue for segregation. Deutsch (1975) 
presented simultaneously ascending and de­
scending musical scales such that the notes 
alternated between ears; that is, the frequen­
cies sent to a given ear hopped around (Fig­
ure 10.7). Listeners reported hearing an up­
down pattern in one ear and a down-up pat­
tern in the other, demonstrating an organiza­
tion based on frequency proximity despite the 
alternating ear of presentation. An interaural 
time difference is slightly less effective in cre­
ating segregation than is dichotic presentation 
(Hartmann & Johnson, 1991). 

Interactions between Concurrent 
and Sequential Grouping Processes 

Concurrent and sequential organization pro­
cesses are not independent. They can interact 
and even enter into competition, the final per­
ceptual result depending on the relative orga­
nizational strength of each one. In the physical 
environment, there is a fairly good consensus 
among the different concurrent and sequen­
tial grouping cues. However, under laboratory 
conditions or as a result of compositional arti­
fice in music, they can be made to conflict with 
one another: Bregman and Pinker (1978) de­
veloped a basic stimulus (Figure 10.8) for test­
ing the situation in which a concurrent organi­
zation (fusion or segregation of B and C) and 
a sequential organization (integration or seg-
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Figure 10.7 Melodic patterns of the kind used by 
Deutsch (1975). 
NOTE: a) Crossing scales are played simultane­
ously over headphones. In each scale, the tones 
alternate between left (L) and right eR) earpieces. 
b) The patterns that would be heard if the listener 
focused on a given ear. c) The patterns reported by 
listeners. 

regation of A and B) were in competition for 
the same component (B). When the sequential 
organization is reinforced by the frequency 
proximity of A and B and the concurrent or­
ganization is weakened by the asynchrony of 
Band C, A and B form a single stream, and C 
is perceived with a pure timbre. If the concur­
rent organization is reinforced by synchrony 
while the sequential organization is weakened 
by separating A and B in frequency, A forms 
a stream by itself, and B fuses with C to form 
a second stream with a richer timbre. 

The Transparency of Auditory Events 

In line with the belongingness principle of 
the Gestalt psychologists, Bregman (1990, 
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A & B are distant in frequency 
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A & B are segregated 
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Figure 10.8 Schematic representative of some of the stimulus configurations used by Bregman and 
Pinker (1978) to study the competition between concurrent and sequential grouping processes. 
NOTE: Pure tone A alternates with a complex tone composed of pure tones Band C. The relative frequency 
proximity of A and B and the asynchrony of Band C are varied. When A and B are close in frequency 
and Band C are sufficiently asynchronous (left diagram), an AB stream is formed, and C is perceived 
as having a pure timbre. When A and B are distant in frequency and Band C are synchronous (right 
diagram), A forms a stream by itself, and Band C fuse into a single event with a richer timbre. 

chap. 7) has proposed the principle of exclu­
sion allocation: A given bit of sensory infor­
mation cannot belong to two separate percep­
tual entities simultaneously. In general, this 
principle seems to hold: Parts of a spectrum 
that do not start at the same time are exhaus­
tively segregated into temporally overlapping 
events, and tones presented sequentially are 
exhaustively segregated into streams. There 
are, however, several examples of both speech 
and nonspeech sounds that appear to violate 
this principle. 

Duplex Perception of Speech 

If the formant transition specifying a stop con­
sonant such as /bl (see Chap. 12, this vol­
ume) is excised from a consonant-vowel syl­
lable and is presented by itself, a brief chirp 
sound is heard. The remaining base part of the 
original sound without the formant transition 
gives a Ida/ sound. If the base and transition 

are remixed in the same ear, a /ba/ sound re­
sults. However, when the form ant transition 
and base sounds are presented to opposite 
ears, listeners hear both a /ba/ sound in the 
ear with the base (integration of information 
from the two ears to form the syllable) and a 
simultaneous chirp in the other ear (Cutting, 
1976; Rand, 1974). The formant transition 
thus contributes both to the chirp and to the 
/ba/-hence the term duplex. It is not likely 
that this phenomenon can be explained by 
presuming that speech processing is uncon­
strained by primitive scene analysis mecha­
nisms (Darwin, 1991). 

To account for this apparent paradox, 
Bregman (1990, chap. 7) proposes a two­
component theory that distinguishes sensory 
evidence from perceptual descriptions. One 
component involves primitive scene analysis 
processes that assign links of variable strength 
among parts of the sensory evidenCe". The link 



strength depends both on the sensory evidence 
(e.g., the amount of asynchrony or mistun­
ing for concurrent grouping, or the degree of 
temporal proximity and spectral dissimilar­
ity for sequential grouping) and on compe­
tition among the cues. The links are evidence 
for belongingness but do not necessarily cre­
ate disjunct sets of sensory information; that 
is, they do not provide an all-or-none parti­
tioning. A second component then 1?uilds de­
scriptions from the sensory evidence that are 
exhaustive partitionings for a given percep­
tual situation. Learned schemas can intervene 
in this process, making certain descriptions 
more likely than others, perhaps as a function 
of their frequency of occurrence in the envi­
ronment. It is at this latter level that evidence 
can be interpreted as belonging to more than 
one event in the global description. But why 
should one allow for this possibility in au­
ditory processing? The reason is that acous­
tic events do not occlude other events in the 
way that most (but not all) objects occlude 
the light reflected from other objects that are 
farther from the viewer. The acoustic signal 
arriving at the ears is the weighted sum of 
the waveforms radiating from different vibrat­
ing objects, where the weighting is a function 
of distance and of various transformations of 
the original waveform due to the properties 
of the environment (reflections, absorption, 
etc.). It is thus possible that the frequency con­
tent of one event coincides partially with that 
of another event. To analyze the properties 
of the events correctly, the auditory system 
must be able to take into account this prop­
erty of sound, which, by analogy with vision, 
Bregman has termed transparency. 

This theory presumes · (a) that primitive 
scene analysis is performed on the sensory 
input prior to the operation of more com­
plex pattern-recognition processes, (b) that 
the complex processes that build perceptual 
descriptions are packaged in schemas em­
bodying various regularities in the sensory ev-
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idence, (c) that higher-level schemas can build 
from regularities detected in the descriptions 
built by lower-level schemas, (d) that the de­
scriptions are constrained by criteria of con­
sistency and noncontradiction, and (e) that 
when schemas (including speech schemas) 
make use of the information that they need 
from a mixture, they do not remove it from 
the array of information that other description­
building processes can use (which may give 
rise to duplex-type phenomena). Although 
many aspects of this theory have yet to be 
tested empirically, some evidence is consis­
tent with it, such as the fact that duplex per­
ception of speech can be influenced by prim­
itive scene-analysis processes. For example, 
sequential organization of the chirp compo­
nent can remove it from concurrent grouping 
with the base stimulus, suggesting that duplex 
perception occurs in the presence of conflict­
ing cues for the segregation and the integration 
of the isolated transition with the base (Ciocca 
& Bregman, 1989). 

Auditory Continuity 

A related problem concerns the partitioning 
on the basis of the surrounding context of 
sensory information present within overlap­
ping sets of auditory channels. The auditory 
continuity phenomenon, also called auditory 
induction, is involved in perceptual restora­
tion of missing or masked sounds in speech 
and music interrupted by a brief louder sound 
or by an intermittent sequence of brief, loud 
sound bursts (for reviews, see Bregman, 1990, 
chap. 3; Warren, 1999, chap. 6). If the wave­
form of a speech stream is edited such that 
chunks of it are removed and other chunks 
are left, the speech is extremely difficult to 
understand (Figure 1O.9a). If the silent pe­
riods are replaced with noise that is loud 
enough to have masked the missing speech, 
were it present, and whose spectrum includes 
that of the original speech, listeners claim to 
hear continuous speech (Warren, Obusek, & 
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a) Perceptual restoration of interrupted speech 

Interrupted speech Continuous speech plus pulsing noise 

~ ~ 
~ ~ 
~ ~ - -

time time 

b) Auditory continuity of a pulsed sine tone 

~ 
~ 
~ -

~ 
~ 
~ -

~ 
~ 
~ -

Continuous tone 

< + 
Pulsing noise 

time 
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Pulsing 

tone 

noise 

time 

1_1_1_1_1 < PUls;n: tone 
Pulsing noise 

time 

Figure 10.9 Stimuli used to test the auditory continuity phenomenon. 
NOTE: a) Speech that is interrupted by silences is heard as such and is difficult to understand. If the silences 
are filled with a noise of bandwidth and level sufficient to have masked the absent speech signal, a pUlsing 
noise is heard accompanied by an apparently continuous speech stream. b) Auditory continuity can be 
demonstrated also with a pulsed sine tone. When the silent gaps are filled with noise, a continuous tone 
is heard along with the pulsing noise. However, if small silent gaps of several milliseconds separate the 
tone and noise bursts, indicating to the auditory system that the tone actually ceased, then no continuity 
is obtained. Furthermore, the continuity effect does not occur if the noise does not have any energy in 
the frequency region of the tone . 



Ackroff, 1972). Speech intelligibility can 
even improve if contextual information that 
facilitates identification of key words is 
present (Warren, Hainsworth, Brubaker, 
Bashford, & Healy, 1997). 

Similar effects of continuity can be demon­
strated with nonspeech stimuli, such as a sine 
tone interrupted by noise (Figure 1 0.9b) or by 
a higher-level sine-tone of similar frequency. 
An intermittent sequence superimposed on a 
continuous sound is heard, as if the more in­
tense event were being partitioned into two 
entities, one that was the continuation of the 
lower-level sound preceding and following 
the higher-level event and another that was 
a sound burst. This effect works with pure 
tones, which indicates that it can be a com­
pletely within-channel operation. However, if 
any evidence exists that the lower-level sound 
stopped (such as short, silent gaps between 
the sounds), two series of intermittent sounds 
are heard. Furthermore, the spectrum of the 
interrupting sound must cover that of the in­
terrupted sound for the phenomenon to oc­
cur; that is, the auditory system must have ev­
idence that the interrupting sound could have 
masked the softer sound (Figure 10.9). 

The partitioning mechanism has been con­
ceived by Bregman (1990) in terms of an 
"old-plus-new" heuristic. The auditory sys­
tem performs a subtraction operation on the 
high-level sound. A portion of the energy 
equivalent to that in the lower-level sound is 
assigned to the continuous stream, and the rest 
is left to form the intermittent stream. Indeed, 
the perceived levels of the continuous sound 
and intermittent sequence depend on the rel­
ative level change and are consistent with a 
mechanism that partitions the energy (Warren, 
Bashford, Healy, & Brubaker, 1994). How­
ever, the perceived levels are not consistent 
with a subtraction performed either in units of 
loudness (sones) or in terms of physical pres­
sure or power (McAdams, Botte, & Drake, 
1998). Furthermore, changes occur in the tim-
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bre of the high-level sounds in the presence of 
the low-level sounds compared to when these 
are absent (Warren et al., 1994). The relative 
durations of high- and low-level sounds are 
crucial to the phenomenon. The continuity ef­
fect is much stronger when the interrupting 
event is short compared to the uninterrupted 
portion. The perceived loudness is also a func­
tion of the relative levels of high and low por­
tions, their relative durations, and the percep­
tual stream to which attention is being directed 
(Drake & McAdams, 1999). Once again, this 
continuity phenomenon demonstrates the ex­
istence of a heuristic for partitioning acous­
tic mixtures (if there is sufficient sensory evi­
dence that a mixture indeed exists). It provides 
the listener with the ability to deal efficiently 
and veridically with the stimulus complexity 
resulting from the transparency of auditory 
events. 

Schema-Based Organization 

Much mention has been made of the possibil­
ity that auditory stream formation is affected 
by conscious, controlled processes, such as 
searching for a given source or event in the 
auditory scene. Bregman (1990) proposed 
a component that he termed schema-based 

scene anaLysis in which specific information 
is selected on the basis of attentional focus 
and previously acquired knowledge, resulting 
in the popout of previously activated events 
or the extraction of sought-after events. Along 
these lines, van Noorden's (1975) ambiguous 
region is an example in which what is heard 
depends in part on what one tries to hear. Fur­
ther, in his interleaved melody recognition ex­
periments, Dowling (1973a) observed that a 
verbal priming of an interleaved melody in­
creased identification performance. 

Other top-down effects in scene analysis 
include the role of pattern context (good con­
tinuation in Gestalt terms) and the use of pre­
vious knowledge to select target information 
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from the scene. For example, a competition 
between good continuation and frequency 
proximity demonstrates that melodic pattern 
can affect the degree of streaming (Heise 
& Miller, 1951). Frequency proximity alone 
cannot explain these results. 

Bey (1999; Bey & McAdams, in press) 
used an interleaved melody recognition 
paradigm to study the role of schema-based 
organization. In one interval an interleaved 
mixture of target melody and distractor se­
quence was presented, and in another in­
terval an isolated comparison melody was 
presented. Previous presentation of the iso­
lated melody gave consistently better per­
formance than when the mixture sequence 
was presented before the comparison melody. 
Furthermore, if the comparison melody was 
transposed by 12, 13, or 14 semitones­
requiring the listener to use a pitch-interval­
based representation instead of an absolute­
pitch representation to perform the task­
performance was similar to when the isolated 
comparison melody was presented after the 
mixture. These results suggest that in this task 
an absolute-pitch representation constitutes 
the "knowledge" used to extract the melody. 
However, performance varied as a function of 
the frequency separation of the target melody 
and distractor sequence, so performance de­
pended on both sensory-based organizational 
constraints and schema-based information 
selection. 

TIMBRE PERCEPTION 

Early work on timbre perception paved the 
way to the exploration of sound source per­
ception. The word timbre gathers together a 
number of auditory attributes that until re­
cently have been defined only by what they 
are not: Timbre is what distinguishes two 
sounds coming from the same position in 
space and having the same pitch, loudness, 

and subjective duration. Thus, an oboe and 
a trumpet playing the same note, for exam­
ple, would be distinguished by their timbres. 
This definition indeed leaves everything to 
be defined. The perceptual qualities grouped 
under this term are multiple and depend on 
several acoustic properties (for reviews,see 
Hajda, Kendall, Carterette, & Harshberger, 
1997; McAdams, 1993; Risset & Wessel, 
1999). In this section, we examine spec­
tral profile analysis, the perception of au­
ditory roughness, and the multidimensional 
approach to timbre perception. 

Spectral Profile Analysis 

The sounds that a listener encounters in the 
environment have quite diverse spectral prop­
erties. Those produced by resonating struc­
tures of vibrating objects have more energy 
near the natural frequencies of vibration of 
the object (string, plate, air cavity, etc.) than 
at more distant frequencies. In a frequency 
spectrum in which amplitude is plotted as a 
function of frequency, one would see peaks 
in some frequency regions and dips in others. 
The global form of this spectrum is called the 
spectral envelope. The extraction of the spec­
tral envelope by the auditory system would 
thus be the basis for the evaluation of constant 
resonance structure despite varying funda­
mental frequency (Plomp & Steeneken, 1971; 
Slawson, 1968) and may possibly contribute 
to source recognition. This extraction is surely 
strongly involved in vowel perception, the 
quality of which is related to the position in 
the spectrum of resonance regions called for­

mants (see Chap. 12, this volume). Spiegel 
and Green (1982) presented listeners with 
complex sounds in which the amplitudes were 
equal on all components except one. The level 
of this component was increased to create a 
bump in the spectral envelope. They showed 
that a listener is able to discriminate these 
spectral envelopes despite random variations 
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complementary fields in the hopes that the 
resulting juxtaposition of ideas will facilitate 
and enable future research to fill in the gaps. 
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