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To account for the formation of expectations during music 
listening, an extensive body of research on the perception 
of Western tonal music has adopted a top-down, cognitive 
view of musical processing (Collins, Tillmann, Barrett, 
Delbé, & Janata, 2014), whereby listeners learn the tempo-
ral relations characterising complex hierarchical organisa-
tional systems like tonality or metre over the course of 
exposure and then impose that knowledge on all subse-
quent musical experiences. From this point of view, com-
posers seem to exploit the brain’s predictive mechanisms 
by organising musical events to reflect the kinds of statisti-
cal regularities that listeners will learn and remember 
(Krumhansl, 1990). The tonal cadence is exemplary in this 
regard. As a highly recurrent harmonic and melodic for-
mula, the cadence provides perhaps the clearest instance of 
phrase-level schematic organisation in the tonal system. As 
a consequence, cadences serve as closing gestures in a vast 
number of genres and style periods, with the cluster of  
constituent features that characterise cadences—such as a 

conventionalised harmonic (chord) progression and a fall-
ing melody—alerting listeners to the impending end of the 
phrase, theme, or larger section that subsumes them.

According to Huron (2006) and Meyer (1956), cadences 
are the most predictable, probabilistic, and specifically 
envisaged temporal patterns in all of tonal music. For this 
reason, cadences are routinely employed in experimental 
contexts to investigate cognitive processes related to the 
storage of harmonic and tonal structure in long-term mem-
ory (Krumhansl & Kessler, 1982), the perception of dynamic 
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variations in tension (Bigand & Parncutt, 1999), and the 
priming of tones or chords from similar or identical tonal 
contexts (e.g., Koelsch, Gunter, Friederici, & Schröger, 
2000). These findings have led researchers to suggest that 
listeners with exposure to tonal music possess schematic 
representations for cadences and other recurrent temporal 
patterns (Eberlein, 1997; Eberlein & Fricke, 1992; 
Gjerdingen, 1988; Meyer, 1967; Rosner & Narmour, 1992; 
Sears, 2015, 2016; Sears, Caplin, & McAdams, 2014; 
Temperley, 2004).

Nevertheless, recent simulations of tonal priming effects 
using sensory models of echoic and auditory short-term 
memory have called into question the necessity of strictly 
cognitive accounts (Bigand, Delbé, Poulin-Charronnat, 
Leman, & Tillmann, 2014; Collins et al., 2014). From the 
sensory point of view, facilitation effects arise when the 
preceding context shares sensory features with the target 
event of the sequence. Whether cadences and other tempo-
ral patterns reflect processing mechanisms related to learn-
ing and memory is thus inconsequential to sensory accounts 
so long as the terminal events of the pattern share compo-
nent tones or overtones with the preceding context. What is 
more, studies examining the influence of sensory and cog-
nitive processes on the formation of tonal expectancies 
typically compose (or select) melodic or harmonic (chord) 
sequences that control for the psychoacoustic similarities 
between the preceding context and the terminal, target 
event (e.g., Tekman & Bharucha, 1998). As a result, eco-
logical validity tends to be low in the expectancy literature 
(Pearce, Ruiz, Kapasi, Wiggins, & Bhattacharya, 2010), as 
participants are less likely to encounter such artificially 
constructed stimuli in the natural environment.

To resolve these issues using ready examples of expec-
tancy violation derived from genuine musical materials, 
the present study compared the most common cadence pat-
terns from a representative corpus of tonal music against 
cadential deviations (Caplin, 1998, 2004; Sears et  al., 
2014), which initially promise the expected terminal 
events of a cadential formula but then replace those events 
with unexpected melodic tones or chords. To account for 
the sensory and cognitive mechanisms underlying tonal 
expectancies, we also simulated the reported findings 
using three sensory–cognitive models of musical process-
ing. The first is the echoic memory (EM) model (Leman, 
2000),1 a sensory model of auditory expectations that sim-
ulated the priming effects for stimulus sets from 18 sepa-
rate studies (Bigand et al., 2014). The second is the tonal 
space (TS) model (Janata et al., 2002), a sensory–cognitive 
priming model that has predicted the priming effects for 
the response-time (RT) data from seven separate studies 
(Collins et al., 2014). Finally, the third is the Information 
Dynamics of Music (IDyOM) model (Pearce, 2005), a 
finite-context (or n-gram) model simulating cognitive 
priming effects, which has been shown to predict behav-
ioural (Omigie, Pearce, & Stewart, 2012; Pearce, Ruiz, 

et al., 2010; Pearce & Wiggins, 2006), electrophysiologi-
cal (Egermann, Pearce, Wiggins, & McAdams, 2013), and 
neural evidence for melodic pitch expectations (Omigie, 
Pearce, Williamson, & Stewart, 2013; Pearce, Ruiz, et al., 
2010).

We first introduce the necessary music terminology and 
concepts, and then review explicit and implicit behav-
ioural methods for measuring tonal expectations, as well 
as the evidence obtained therefrom.

Tonal structure

Much of the world’s music relies on musical scales that 
divide the octave—a doubling in frequency—into a mod-
erate number of discrete and discriminable steps (Dowling 
& Harwood, 1986). In equal-tempered music, the octave 
is typically divided equally into 12 steps (or semitones) 
along a logarithmic scale, subsets of which form the most 
common scales associated with Western tonal music 
(e.g., major, minor, pentatonic). The vast majority of 
these scales also depend on the perceptual phenomenon 
known as octave equivalence (Deutsch, 1999)—pitches 
separated by a frequency interval representing a power of 
two are perceived as similar—to reduce the vocabulary 
of pitches to 12 pitch classes, each of which receives a 
letter designation in music theory nomenclature (C, C♯/
D♭, D, etc.).

For each of the 12 major and minor keys associated 
with the tonal system (one major and one minor for each 
pitch class), seven pitch classes (called diatonic) belong 
to the key and five (called chromatic) fall outside the key. 
Together, the diatonic pitch classes form the degrees of 
the scale and are represented numerically with a caret 
above each numeral (see Figure 1a). Thus, C and G are the 
first and fifth scale degrees in the key of C major, and so 
receive the values 1̂ and 5̂, respectively. Furthermore, two 
pitches presented simultaneously form a harmonic inter-
val, combinations of which form chords. 

The diatonic chords associated with tonal harmony 
typically consist of two or more scale degrees ordered 
such that their intervals feature superimposed thirds—
intervals that span three or four semitones—above the 
most perceptually stable scale degree of the chord, called 
the root (Parncutt, 1989; Rameau, 1722/1971). A chord 
featuring two superimposed thirds is called a triad, and 
the size of one or both of these intervals determines 
whether the triad is major (i.e., the lower interval spans 
four semitones, or a major third), minor (i.e., the lower 
interval spans three semitones, or a minor third), aug-
mented (i.e., both intervals feature major thirds), or dimin-
ished (i.e., both intervals feature minor thirds). Shown in 
Figure 1b, chords built in this way on each degree of the 
diatonic scale are represented using Roman numerals, 
with the letter case of the Roman numeral used to denote 
whether the chord features a major (uppercase) or minor 
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(lowercase) triad.2 In the key of C major, for example, an 
F major triad consists of the pitch classes F, A, and C, and 
given that F is the fourth degree of the scale, the chord 
receives the Roman numeral IV.

Broadly conceived, tonality refers to the systematic 
hierarchical organisation of pitch phenomena such that cer-
tain tones and/or chords are perceived as more stable and 
serve as better completions than others (Bharucha & 
Krumhansl, 1983). This tonal hierarchy is perhaps best 
illustrated in Krumhansl and Kessler’s (1982) seminal 
probe-tone studies, in which participants heard a short con-
text consisting of a harmonic cadence (IV–V–I) and then 
indicated how well each of the 12 members of the chro-
matic scale fit with the preceding context. In the major key 
profile obtained by Krumhansl and Kessler (see Figure 1a), 
the tonic (1̂) received the highest fit ratings, leading them to 
suggest that it serves as the most stable reference point in 
the tonal system (see also Bharucha, 1984; Krumhansl, 
1990). In descending order of fit, the tonic was then fol-
lowed by the dominant (5̂), the remaining diatonic mem-
bers (2̂, 3̂, 4̂, 6̂, and 7̂), and finally the other (chromatic) 
members (not labelled). In a subsequent study, Krumhansl, 
Bharucha, and Kessler (1982) also generalised these find-
ings to the chords of the diatonic scale, noting that more 
stable chords like the tonic (I) and dominant (V) serve as 
better continuations in two-chord progressions, and so 
appear at the top of the harmonic hierarchy. What is more, 
these chords receive higher continuation judgements when 
they follow, rather than precede, the remaining diatonic 
chords (Bharucha & Krumhansl, 1983), suggesting that 

they appear at the ends of cadences and other recurrent 
closing patterns in tonal music because they serve as cogni-
tive reference points (Rosch, 1975).

Measuring tonal expectations

To measure the formation of expectations during music lis-
tening, behavioural studies employ explicit and implicit 
measures. Explicit measures typically consist of retrospec-
tive rating tasks, in which participants hear a musical con-
text and then indicate the strength and specificity of their 
expectations for further continuation (Schmuckler, 1989), 
or they provide a measure of uncertainty for the range of 
possible future outcomes (Hansen & Pearce, 2014; Huron, 
2006, p. 46). However, explicit measures have been criti-
cised for conflating expectations derived from explicit 
training with those resulting from implicit exposure 
(Bigand, 2003), so experimental studies often employ 
implicit tasks using the priming paradigm, which assumes 
that the processing of incoming events is affected by the 
context in which they appear; related or repeated events 
are primed, thus facilitating processing (for a detailed dis-
cussion of experimental methods in studies examining 
tonal expectations, see Huron & Margulis, 2010).

To account for tonal priming effects, researchers typi-
cally control for the sensory or psychoacoustic similarities 
between the preceding context and the target by manipulat-
ing the experimental stimuli so that (1) the context and the 
target share no component tone or chord events (repetition 
priming) and/or (2) the selected timbre consists of a simple 

Figure 1.  Krumhansl and Kessler’s (1982) major key profile (a), and the seven diatonic triads for the key of C major, with pitch 
classes above and Roman numerals (b).
(a) Krumhansl and Kessler’s (1982) major key profile represents the goodness-of-fit ratings averaged across participants for the 12 pitch classes 
following an authentic cadence that consisted of the chord sequence, IV–V–I. The profile shown here applies to the key of C major, with the 12 
pitch classes and seven diatonic scale degrees provided below. Pitch classes represented by two note names (e.g., C♯/D♭) denote enharmonic 
equivalents (i.e., pitch classes that are in principle acoustically identical but notationally distinct). (b) Open (whole) notes indicate the degrees of the 
scale. Letter case represents whether the Roman numeral refers to a major (uppercase) or minor (lowercase) triad, and an open circle superscript 
refers to a diminished triad (see Note 2).
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periodic waveform like a sine tone to minimise the poten-
tial for shared overtones (sensory priming). In the last three 
decades, priming studies have demonstrated that after short 
contexts, targets from related tonal contexts were processed 
faster than unrelated targets even when the context and tar-
get did not share sensory information or were separated by 
a silent interval or a white noise burst (Bharucha & 
Stoeckig, 1987; Tekman & Bharucha, 1992). In longer con-
texts, participants also demonstrated facilitated processing 
for related targets compared with less related targets 
(Koelsch, Jentschke, Sammler, & Mietchen, 2007; Marmel, 
Tillmann, & Delbé, 2010), and this priming effect persisted 
even when the less related targets shared more tones with 
the context than related targets (Bigand, Poulin, Tillmann, 
Madurell, & D’Adamo, 2003). These schematic priming 
effects also remained unaffected by veridical knowledge 
about how each stimulus might proceed (Justus & Bharucha, 
2001; Tillmann & Poulin-Charronnat, 2010).

Nevertheless, disentangling low-level sensory influ-
ences from cognitive accounts of tonal expectancy remains 
a tremendous challenge, and appealing to the musical 
materials themselves tends to complicate rather than clar-
ify matters. Sensory or psychoacoustic accounts of tonal 
harmony are deeply rooted in the history of Western music 
theory (e.g., Rameau, 1722/1971), and they continue to 
find favour in contemporary scholarship (Large, Kim, 
Flaig, Bharucha, & Krumhansl, 2016; Leman, 2000; 
Parncutt, 1989). Bigand et  al. (2014) note, for example, 
that tonal syntax reflects psychoacoustic constraints like 
octave equivalence and harmonic overtones, as well as 
general auditory mechanisms related to the perception of 
acoustic dissonance (Plomp & Levelt, 1965; Sethares, 
1998), virtual pitch perception (Terhardt, 1974; Terhardt, 
Stoll, & Seewann, 1982), and principles of auditory stream 
analysis (Bregman, 1990; Wright & Bregman, 1987). Note 
and chord events associated with the tonic and dominant 
also feature strong overlaps in harmonic spectra, which 
suggests that properties of sounds could provide an “acous-
tic foundation” for tonal syntax (Bigand et al., 2014, p. 3).

Unfortunately, because tonal priming studies often fea-
ture rhythmically isochronous, chorale-like passages pre-
sented at relatively long inter-onset intervals (IOIs), with the 
target or the preceding context recomposed in the unex-
pected condition, these stimulus sets do not adequately 
reflect examples of expectancy violation derived from musi-
cal styles and genres to which listeners might be exposed 
(Pearce, Ruiz, et  al., 2010). To resolve this issue, recent 
studies have demonstrated melodic and harmonic priming 
effects for genuine musical materials using behavioural and 
psychophysiological measures (Aarden, 2003; Egermann 
et  al., 2013; Koelsch, Kilches, Steinbeis, & Schelinski, 
2008; Pearce, Ruiz, et  al., 2010; Steinbeis, Koelsch, & 
Sloboda, 2006). Only two of these studies extended the 
reported findings to multi-voiced chord progressions, how-
ever, and neither of these studies attempted to replicate their 

findings using existing computational models of auditory 
expectation. Finally, no study to date has attempted to stair-
case tonal expectations by comparing the most expected 
cadential sequences against their less expected (and thus 
less stable) cadential counterparts.

To address these issues, this study examined expectations 
for the terminal melodic tones and chords from the most 
common cadence patterns associated with tonal music. To 
that end, we adopted the stimulus-selection paradigm intro-
duced in Sears et al. (2014), in which participants provided 
completion ratings for passages from Mozart’s keyboard 
sonatas that terminated with cadences from one of the fol-
lowing five categories in contemporary tonal cadence typol-
ogies (e.g., Caplin, 1998, 2004; Schmalfeldt, 1992): perfect 
authentic cadence (PAC), imperfect authentic cadence (IAC), 
half cadence (HC), deceptive cadence (DC), and evaded 
cadence (EV). Shown in the first example of Figure 2, the 
PAC category, which features a final chord progression 
from a root-position dominant to a root-position tonic (i.e., 
a V–I progression with the root scale degree in the lowest 
voice in each chord), as well as the arrival of the melody on 
1̂, serves as the quintessential closing pattern for musical 
repertories spanning much of the history of Western music 
(Margulis, 2005; Sears, 2016) and also routinely appears in 
the expected condition in harmonic priming studies. The 
IAC category is a melodic variant of the PAC category that 
replaces 1̂ with 3̂ in the melody but retains the V–I chord 
progression. Like the PAC category, the IAC also typically 
appears at the ends of phrases or larger sections in tonal 
music. These two categories therefore constitute authentic 
cadences and appear at the top of the hierarchy of harmonic 
stability (Krumhansl et al., 1982). 

The HC category (third example in Figure 2) concludes 
with dominant triad in root position and any chord member 
in the melody (i.e., a V chord with 2̂, 5̂, or 7̂ in the melody). 
Unlike the PAC and IAC categories, the HC category con-
cludes with the less stable dominant chord, and thus appears 
below the authentic cadences in the harmonic hierarchy and 
presumably elicits weaker expectations in anticipation of its 
occurrence (Tillmann, Janata, Birk, & Bharucha, 2008). 
Finally, the remaining two categories represent cadential 
deviations of the authentic cadence, which is to say that they 
initially promise an authentic cadence, yet fundamentally 
deviate from the pattern’s terminal events. The DC category 
(fourth example in Figure 2) leaves the pattern somewhat 
open by closing with a nontonic chord, usually vi, but the 
melodic line resolves to a stable scale degree like 1̂ or 3̂. 
Finally, the EV category (final example in Figure 2) is char-
acterised by a sudden interruption in the harmonic and 
melodic events of the pattern: the melody, instead of resolv-
ing to 1̂, often leaps up to another scale degree (such as 5̂), 
and the final harmony may be replaced by an unexpected, 
nontonic chord (for further details, see Sears et al., 2014). 
Together, these categories would be expected to appear at the 
bottom of the harmonic hierarchy.
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To measure tonal expectancies, this study employs a 
converging-methods approach. In Experiment 1, partici-
pants were presented with a truncated stimulus that omits 
the final, target melodic tone and chord of the cadence; 
they then heard a nontruncated version of the stimulus that 
includes the final events. Following the truncated stimu-
lus, participants indicated the strength and specificity of 
their expectations for a musical continuation. Following 

the nontruncated stimulus, participants then indicated how 
well the final target melodic tone and chord fit with the 
expectations they had formed during the preceding con-
text. To measure expectancies implicitly, Experiment 2 
adopted the priming paradigm, in which participants indi-
cated as quickly as possible whether the target melodic 
tone and chord from each stimulus were in or out of tune 
relative to the preceding context. Accuracies and response 

Figure 2.  Five stimuli representing the five cadence categories.
The context passage appears on the left, and the target melodic tone and chord appear on the right with scale degree and Roman numeral annota-
tions. Köchel index for Mozart’s works is indicated with the movement in lowercase Roman numerals and measure numbers. PAC category: K. 281, i, 
mm. 5-8. IAC category: K. 311, i, mm. 1-4. HC category: K. 333, iii, mm. 60-64. DC category: K. 457, i, mm. 42-48. EV category: K. 281, ii, mm. 96-99.
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times (RTs) were then collected to determine whether the 
preceding context primed participants to expect tonally 
related or repeated (i.e., identical) target events. Finally, to 
account for the findings from these experiments, we simu-
lated the results using three sensory and/or cognitive com-
putational models of tonal expectation.

Experiment 1

Method

Participants.  Participants were 40 members (20 female) of 
the Montreal community recruited through the Schulich 
School of Music and the McGill University classified ads. 
Ages ranged from 18 to 46 (M = 24, SD = 6). Twenty par-
ticipants with musical training equivalent or superior to 
second-year-university level formed the musician group, 
and 20 participants with less than 1 year of musical train-
ing comprised the nonmusician group. To limit any effects 
caused by familiarity with the stimuli, no participant with 
more than 2 years of formal study on the piano was permit-
ted to take part. All participants provided informed con-
sent, and the study was certified for ethical compliance by 
the McGill University Research Ethics Board.

A questionnaire was administered to assess musical 
preferences and training. Musicians and nonmusicians 
reported listening to an average of 21 and 16 hr of music 
each week, respectively, and all but two participants self-
identified as music lovers. The musicians practised their 
primary instruments for an average of 20 hr each week and 
had been playing their primary instruments for an average 
of 6 years. All of the participants reported normal hearing, 
which was confirmed with a standard audiogram adminis-
tered before the experiment (ISO 389-8, 2004; Martin & 
Champlin, 2000).

Materials.  The stimuli consisted of 40 excerpts selected 
from Mozart’s keyboard sonatas containing an equal 
number for each cadence category (eight each; see Sup-
plemental Appendix A). To examine expectations both 
before and after the terminal harmonic and melodic 
events of the excerpt, two versions of each excerpt were 
created: a truncated version that omits the terminal tar-
get melodic tone and chord, and a nontruncated version 
that includes the target melodic tone and chord. Because 
these excerpts only present expected phrase endings, it 
was assumed that the selected stimuli would not repre-
sent the full range of the expectancy strength and speci-
ficity scales, as passages selected from the beginning or 
middle of a musical phrase could potentially generate 
weaker expectations (Escoffier & Tillmann, 2008; 
Pearce, Müllensiefen, & Wiggins, 2010; Tillmann & 
Marmel, 2013). So as not to bias ratings of expectation 
towards one end of the expectancy scales, eight foil 
stimuli that terminate in the middle of a musical phrase 

were also selected from Mozart’s keyboard sonatas, thus 
encouraging listeners to use the lower end of the scale.

Following the experimental design employed in Sears 
et al. (2014), performance features (such as dynamics and 
rubato) were neutralised and the tempo of each stimulus 
was determined by convention. The duration of the trun-
cated excerpts ranged from 5 to 15 s (M = 8.49, SD = 2.61). 
To ensure that unwanted differences concerning the ter-
minal harmonic and melodic events would not affect 
expectancy ratings while preserving the stylistic integrity 
of each excerpt, the durations of the target melodic tone 
and chord were recomposed to 900 ms and any melodic 
dissonances (such as a melodic suspension or appoggia-
tura) were removed. These steps ensured an optimal bal-
ance between ecological validity on one hand and 
stimulus control on the other (Sears, 2015). Each stimu-
lus was first created with the notation software Sibelius 
(Avid Technologies, Burlington, MA, USA) and then 
realised as a .wav sound file at a sampling rate of 44.1 kHz 
and 16-bit amplitude resolution using a piano physical 
model created by PianoTeq (Modartt S.A.S., Ramonville 
Saint Agne, France).

Design and procedure.  Participants were presented with a 
randomised set of 40 stimuli and eight interspersed foils. 
After listening to the truncated version of each stimulus, 
participants rated the strength of their expectation that the 
music would continue (Expectancy Strength) and the spec-
ificity of their expectation for a musical continuation 
(Expectancy Specificity) on continuous analogue scales 
that were subdivided into seven discrete categories labelled 
from 1 to 7 (called analogical–categorical scales; Weber, 
1991). For the expectancy strength scale, participants were 
instructed that a value of 1 indicates that they had no 
expectations that the music would continue, whereas a 
value of 7 indicates that they had very strong expectations 
that the music would continue. On the expectancy speci-
ficity scale, a value of 1 indicates that they had no specific 
idea how the music would continue, whereas a value of 7 
indicates that they had a very specific idea how the music 
would continue. In addition to their expectancy ratings, 
participants also responded to the statement, “Following 
this excerpt, the end of the passage is imminent,” on a 
4-point Likert-type scale labelled from strongly agree to 
strongly disagree. Next, participants listened to the 
nontruncated version of the same stimulus and rated on a 
7-point analogical–categorical scale how well the target 
melodic tone and chord fit with the expectations they had 
formed when they heard the truncated version, with a rat-
ing of 1 indicating that the musical continuation fit very 
poorly, and a rating of 7 indicating that it fit very well. For 
every trial, the scales appeared on the screen from top to 
bottom in the following order: strength, specificity, immi-
nence, and fit. To familiarise the participants with the 
range of stimuli and the experimental task, the session 
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began with an exposure phase and a practice phase consist-
ing of 12 additional stimuli. After completing the experi-
ment, participants filled out a short questionnaire 
addressing their music background.

Analysis.  Data were analysed with a linear mixed effects 
model (LMM) approach (West, Welch, & Galecki, 2007), an 
alternative to conventional regression models (multiple linear 
regression [MLR], analysis of variance [ANOVA], etc.), that 
allows the researcher to control for random sources of vari-
ance without the loss of statistical power resulting from data 
aggregation across subjects or stimuli, which is a frequent 
preliminary step in repeated-measures designs (e.g., F1 and 
F2 ANOVAs, RM-ANOVA). As suggested by Baayen, 
Davidson, and Bates (2008), we included crossed random 
effects for participants and items (musical excerpts). All 
mixed effects analyses were conducted with the software R 
(2.15) using the packages lme4 (Bates, Maechler, & Bolker, 
2011) and languageR (Baayen, 2012). Following Barr, Levy, 
Scheepers, and Tily (2013), all models included a full random 
effects structure as specified by the design of the experiment, 
with intercepts for each participant and by-participant slopes 
for the within-subject fixed factor of cadence category (PAC, 
IAC, HC, DC, and EV), and with intercepts for each musical 
stimulus and by-stimulus slopes for the between-subjects fac-
tor of musical training (musicians, nonmusicians).3 To exam-
ine more specific hypotheses about the potential differences 
between cadence categories, we also included two planned 
comparisons using the lsmeans package (Lenth, 2014), cor-
rected with Bonferroni adjustment: the first to examine the 
predicted linear or quadratic trends for each rating scale using 
a polynomial contrast (Polynomial), and the second to deter-
mine whether authentic cadences elicit significantly higher 
expectancy fit ratings relative to cadential deviations (Authen-
tic vs. Deviations), as was demonstrated in Sears et al. (2014). 
Finally, to visualise the effects of the included fixed factors on 
participant ratings after controlling for the random variance in 
the dataset, the figures present the estimated means and stand-
ard errors determined by the model.

Results

Figure 3 displays line plots of the estimated mean expecta-
tion strength, specificity, and fit ratings of musicians and 
nonmusicians for each cadence category. Excerpts from 
the foil condition have also been plotted for comparison, 
but only responses to the cadence categories are presented 
in the analyses that follow, resulting in a preliminary data-
set of 1,600 trials (40 stimuli × 40 participants). Results 
are reported for expectation strength, expectation specific-
ity, and phrase completion for the truncated stimuli and 
then expectation fit for the nontruncated stimuli.

Shown in Table 1, Type III Wald F tests of a mixed 5 × 2 
LMM of the expectation strength ratings with Kenward–
Roger approximation for the denominator degrees of 

freedom revealed a significant effect of cadence category 
(Halekoh & Højsgaard, 2014). Because the authentic 
cadences (PAC, IAC) and the cadential deviations (DC, 
EV) only differ in their terminal harmonic and melodic 
events, it was predicted that the truncated stimuli from the 
HC category would receive the lowest expectancy strength 
ratings. As expected, a polynomial contrast of the cadence 
categories revealed a significant quadratic trend from the 
PAC to EV categories, B = 1.99, t = 3.37, p < .001, with the 
estimated means exhibiting a U shape from the outer 
cadence categories (PAC and EV) to the inner category 
(HC), and with the HC category receiving the lowest 
strength ratings overall (M = 5.04, SE = 0.21). The model 
estimates also suggested a main effect of training on expec-
tation strength, with nonmusicians providing lower ratings 
than musicians overall, but this effect was not significant, 
and there was no interaction between the two factors.

The expectation strength and specificity ratings aver-
aged across participants for each stimulus were highly cor-
related, r(38) = .85, p < .001, as was found in Schmuckler 
(1989). Type III Wald F tests revealed main effects of 
cadence category and training, as well as a significant 
interaction (see Table 1). The PAC and HC categories 
received the highest and lowest specificity ratings, respec-
tively, and polynomial contrasts revealed the same 
U-shaped quadratic trend in the ratings for both groups 
(musicians, B = 2.45, t = 2.65, p = .021; nonmusicians, 
B = 2.02, t = 2.43, p = .036). Musicians also provided sig-
nificantly higher specificity ratings than nonmusicians.

Table 1.  Analysis of deviance table for maximal linear mixed 
effects models predicting ratings of expectation strength, 
specificity, and fit.

df a Wald F p

Expectation strength
  Cadence category 41.88 3.01 .028*
  Training 38.00 2.77 .104
  Cadence Category × Training 27.25 1.57 .210
Expectation specificity
  Cadence category 40.70 3.57 .014*
  Training 39.23 17.38 <.001***
  Cadence Category × Training 32.02 3.01 .032*
Expectation fit
  Cadence category 8.62 10.44 .002**
  Training 44.43 1.54 .222
  Cadence Category × Training 51.82 2.12 .091

N = 1,600 (40 stimuli × 40 participants). Independent variables are 
factor variables with sum coding (e.g., musicians = 1, nonmusicians = –1). 
A maximum random effects structure was included, with a random in-
tercept for participants and by-participant slopes for cadence category, 
and a random intercept for musical stimuli and by-stimulus slopes for 
musical training.
aDenominator degrees of freedom for Type III Wald F tests reported 
with Kenward–Roger approximation.
*p < .05; **p < .01; ***p < .001.
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The 4-point Likert-type-scale ratings for the statement, 
“following this excerpt the end of the passage is imminent,” 
provided similar results to those observed for the analogical–
categorical scales of expectation strength and specificity (see 
Figure 3). Given the ordinal nature of the dependent variable, 
the ratings were entered into a proportional-odds mixed 
effects model (Christensen, 2015). To examine main effects 
and interactions, a likelihood ratio test was calculated for 
each fixed effect that compares the full fixed (and random) 
effects model with a reduced model that only excludes the 
effect of interest (West et  al., 2007). Model comparisons 
revealed a significant effect of cadence category, 
χ2(8) = 38.77, p < .001, and training, χ2(5) = 11.29, p = .046, 
and there was a significant interaction, χ2(4) = 11.29, p = .023. 
The PAC and HC categories again received the highest and 
lowest ratings, respectively, and a quadratic trend was 
observed in the ratings of both musicians, B = 10.52, z = 5.66, 
p < .001, and nonmusicians, B = 4.96, z = 3.36, p < .001. 
However, nonmusicians also demonstrated a bias to agree or 
strongly agree throughout the experimental session, as indi-
cated by the higher average ratings even for the foil stimuli, 
which ended in the middle of a musical phrase.

Shown in Table 1, a mixed 5 × 2 LMM of the expecta-
tion fit ratings for the nontruncated stimuli revealed a sig-
nificant effect of cadence category, but musical training 

and the interaction were not significant. As expected, the 
authentic cadence categories (PAC, IAC) received signifi-
cantly higher fit ratings than the cadential deviations (DC, 
EV) for both groups (musicians, Mdiff = –2.00, t = 6.08, 
p < .001; nonmusicians, Mdiff = –1.18, t = 4.51, p = .008). 
What is more, polynomial contrasts revealed a significant 
decreasing linear trend from the PAC to the EV categories 
for the fit ratings of both musicians, B = –7.03, t = –6.84, 
p < .001, and nonmusicians, B = –4.16, t = –5.03, p < .008, 
a finding that replicates the ordering of cadence categories 
observed in previous studies (Sears et  al., 2014; Sears, 
Pearce, Caplin, & McAdams, 2018).

Discussion

As expected, ratings of expectation strength, specificity, and 
phrase completion exhibited a U-shaped pattern across the 
selected cadence categories, with the PAC and HC categories 
receiving the highest and lowest ratings, respectively. These 
findings from real musical examples support the view that 
tonic harmony elicits stronger and more specific expecta-
tions for its occurrence than does dominant harmony within 
the tonal system (Bharucha & Krumhansl, 1983; Sears, 
Spitzer, Caplin, & McAdams, 2018), and so appears at the 
top of the harmonic hierarchy (Krumhansl et  al., 1982). 

Figure 3.  Line plots of the estimated mean expectation strength, specificity, Likert-type-scale, and fit ratings of musicians (in blue 
online) and nonmusicians (in red online) for each cadence category and the foil category.
The bottom-left plot presents the estimated mean cumulative probabilities calculated from the Likert-type-scale ratings for the statement, “the 
ending is imminent.” Right y-axis presents thresholds of the response scale: strongly agree (SA), agree (A), disagree (D), and strongly disagree (SD). 
Whiskers represent ±1 standard error.
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When the stimuli included the terminal, target melodic and 
harmonic events in the nontruncated condition, however, 
ratings of expectation fit demonstrated the same descend-
ing linear trend observed in other experiments, with the 
HC category positioned not at the bottom of expectancy fit 
scale, but somewhere in the middle (Sears, 2016; Sears 
et al., 2014; Sears et al., 2018). Taken together, these two 
findings suggest that the HC serves as the weakest cate-
gory in prospect as a result of the relatively weak and 
unspecific expectations it affords, yet finds itself near the 
middle of the expectancy fit scale in retrospect by virtue of 
the fulfilment of those expectations, however weakly 
formed (Burstein, 2014). Finally, the cadential deviations 
received the lowest average fit ratings for both groups, 
suggesting that they violated listener expectations, and so 
appear at the bottom of the harmonic hierarchy.

Experiment 2

Method

Participants.  Just as in Experiment 1, participants were 40 
nonpianists (20 female) recruited using the same services, 
20 of whom were musicians. Ages ranged from 18 to 35 
(M = 23, SD = 4). Musicians and nonmusicians reported lis-
tening to an average of 17 and 14 hr of music each week, 
respectively, and all but four of them self-identified as 
music lovers. The musicians practised their primary instru-
ments for an average of 19 hr each week and had been 
playing their primary instruments for an average of 
12 years. All of the participants reported normal hearing. 
Four of the participants from Experiment 1 also partici-
pated in Experiment 2. The mean accuracies and response 
times across all stimuli for these participants did not sig-
nificantly differ from those of the remaining participants, 
however, and Experiment 2 was conducted six months 
after Experiment 1, so we elected to include their data.

Materials.  The stimuli were the same as those employed in 
Experiment 1, but all foil and truncated stimuli were omit-
ted, resulting in a set of 40 stimuli. To create the intonation 
task for Experiment 2, the terminal, target melodic and 

harmonic events in each stimulus were presented both in 
tune and out of tune (i.e., the final melodic tone and chord 
were tuned 40 cents sharp relative to the preceding musical 
context), resulting in 40 in-tune and 40 out-of-tune (foil) 
trials for the session.

Design and procedure.  The experimental session was 
divided into two phases. In the first training phase, partici-
pants were presented with a randomised set of 20 addi-
tional stimuli selected from Mozart’s keyboard sonatas 
and containing an equal number from each cadence cate-
gory. Given that the temporal duration from the beginning 
of the trial to the target melodic tone and chord varied for 
each stimulus (see Supplemental Appendix A), it was nec-
essary to provide a visual cue to alert the participants to the 
onset of the target (Pearce, Müllensiefen, & Wiggins, 
2010; Tillmann & Marmel, 2013). Shown in Figure 4, in 
each trial a yellow diamond playback cursor was provided 
at the top of the screen that moved from left to right along 
a playback bar, and a black vertical line was placed near 
the end of the playback bar with a black circle directly 
above it to mark the onset of the terminal target melodic 
tone and chord. When the playback cursor reached the 
black line, the circle turned green, at which point partici-
pants were instructed to judge as quickly and accurately as 
possible whether the chord marked by the black line was in 
or out of tune by pressing one of two buttons on the key-
board, labelled “in” and “out,” respectively. Following the 
completion of each trial in the training phase, visual feed-
back was provided on the screen to indicate whether the 
response was correct or incorrect. In the second experi-
mental phase, participants performed the in-tune/out-of-
tune judgement without feedback, and the 80 trials were 
randomised such that the target and foil conditions of each 
stimulus were not presented within five experimental trials 
of each other. After completing the experiment, partici-
pants filled out a short questionnaire addressing their 
music background.

Analysis.  As suggested by Jaeger (2008) and Quené and 
van den Bergh (2008), response accuracies were analysed 
with mixed effects logistic regression models (generalized 

Figure 4.  The display used to present the stimuli and collect behavioural responses in Experiment 2.
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linear mixed effects models [GLMMs]), with the accuracy 
of the response as a binomial dependent variable. To esti-
mate a linear regression model on proportion data, GLMMs 
transform proportions onto an unbounded log-odds scale, 
so all estimates in the following analyses are reported on 
the log-odds scale. For transparency, however, the plotted 
GLMM estimates were back-transformed onto a probabil-
ity scale (0-1). Correct RTs were analysed with LMMs.

Results

Bigand et  al. (2003) and Tillmann and Marmel (2013) 
excluded out-of-tune foils from the analysis under the 
assumption that they do not constitute lawful musical 
events. However, we first examine the impact of the into-
nation task on accuracies and response times before con-
sidering the effect of the cadence categories for the in-tune 
trials. Responses preceding the onset of the target melodic 
tone and chord were deemed too early (RT < 0 ms) and 
were excluded from the analysis (13 trials or .8%). 
Moreover, because RT data typically feature long-tailed 
distributions that violate assumptions of normality and 
homogeneity of variance in repeated-measures designs, 
Ratcliff (1993) recommends eliminating the top 5% of the 
RTs in the long tail (i.e., the slowest, outlier responses 
across participants and experimental conditions). This pro-
cedure excluded an additional 67 trials from the analysis 
(RT range: 4-1,000 ms).

Figure 5 displays line plots of the estimated mean accu-
racies and correct RTs of musicians and nonmusicians for 
the in-tune and out-of-tune trials. For response accuracies, 
a mixed 2 × 2 LMM for the factors of intonation (in tune, 
out of tune) and musical training (musicians, nonmusi-
cians) revealed a significant effect of training, χ2(1) = 31.90, 
p < .001, with the responses of musicians generally at ceil-
ing across the experiment. The effect of intonation and the 
interaction between training and intonation were not sig-
nificant, however. As expected, Type III Wald F tests for 

the correct RTs also did not reveal significant effects of 
intonation or training, or an interaction between the two.

To examine the effect of the cadence categories, the fol-
lowing analysis omits the out-of-tune foil trials following 
Bigand et  al. (2003). For response accuracies, Type III 
Wald chi-square tests revealed significant main effects of 
cadence category, χ2(4) = 14.78, p = .005, and training, 
χ2(1) = 21.15, p < .001, and a significant interaction, 
χ2(4) = 12.93, p = .012. Shown in Figure 6, the planned 
comparison between the authentic cadence categories 
(PAC, IAC) and the cadential deviations (DC, EV) revealed 
that for the nonmusician group, the estimated odds of cor-
rectly identifying the intonation of the target melodic tone 
and chord were higher for authentic cadences than for 
cadential deviations, B = 2.76, z = 5.03, p < .001. The same 
trend emerged for the musician group, but the effect was 
not significant, B = 0.42, z = 0.64, p > .05. Polynomial con-
trasts also revealed a significant decreasing linear trend 
from the PAC to EV categories for the nonmusician group, 
B = –9.40, z = –5.32, p < .001, but not for the musician 
group, B = –1.39, z = –0.67, p > .05.

Type III Wald F tests of the fixed effects from the 5 × 2 
LMM of the correct RTs revealed a significant effect of 
cadence category, F(4, 40.79) = 3.19, p = .023, but the 
main effect of training and the interaction were not sig-
nificant. The planned comparisons revealed that nonmusi-
cians responded more quickly to the terminal melodic 
tone and chord from the authentic cadence categories rela-
tive to the cadential deviations, Mdiff = –70.02 ms, t = –2.92, 
p = .018. The same trend emerged for musicians, but the 
effect was marginal, Mdiff = –53.38 ms, t = –2.45, p = .069. 
However, polynomial contrasts revealed a significant 
increasing linear trend in RTs for both groups (musicians, 
B = 182.67, df = 70.06, t = 2.61, p = .046; nonmusicians, 
B = 246.65, df = 73.52, t = 3.13, p = .010), which again cor-
responds to the ordering of cadence categories observed 
in Experiment 1 and in previous studies (Sears et  al., 
2014; Sears et al., 2018).

Figure 5.  Line plots of the estimated mean proportion correct and correct response times of musicians (in blue online) and 
nonmusicians (in red online) for in-tune and out-of-tune trials.
Whiskers represent ±1 standard error.
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Discussion

Participants were faster and more accurate for the terminal 
melodic and harmonic events from the authentic cadence cat-
egories (PAC, IAC) compared with the cadential deviations 
(DC, EV). These effects were weaker (or nonsignificant) for 
the musician group, however. This finding suggests either 
that musicians remained unaffected by the relatedness of the 
target melodic tone and chord to the preceding context—a 
hypothesis that contradicts the findings from Experiment 1—
or that the simplicity of the secondary task for the selected foil 
condition may have influenced the magnitude of the observed 
priming effect. Nevertheless, the correct RTs from both 
groups demonstrated a significant increasing linear trend 
from the PAC to the EV categories, thereby replicating the 
expectancy fit ratings from Experiment 1. For the HC cate-
gory, participant responses again appeared somewhere in the 
middle compared with the other categories, indicating a pro-
cessing benefit relative to the cadential deviations but a pro-
cessing cost relative to the authentic cadence categories.

Simulations

The purpose of the simulations is to determine whether the 
priming effects observed in Experiments 1 and 2 result 
from sensory processes accumulated over the duration of 
the EM model, from top-down, cognitive processes reflect-
ing implicit exposure over the course of many years (the 
IDyOM model), or from some combination of these two 
processes (the TS model).

EM

Leman’s (2000) model of echoic memory (EM) attempted 
to account for Krumhansl and Kessler’s (1982) tonal 
probe-tone judgements by comparing the immediate pitch 
percept with the integrated pitch image computed over the 
window of echoic memory (Krumhansl, 1990). The EM 
model determines the similarity (or tonal contextuality) 

between an immediate auditory image of the target tone 
and/or chord (the local pitch image, or LPI) with a more 
global auditory image of the preceding context integrated 
over the duration of EM (the global pitch image, or GPI) 
using the Pearson correlation coefficient r. According to 
Bigand et al. (2014), the tonal contextuality index there-
fore represents the tension of the LPI with respect to the 
GPI, with high values indicating high correlations, and 
thus low levels of tension (see Supplemental Appendix B 
for further details).

TS

Unlike the EM model, the TS model assumes that tonal 
contexts are maintained in regions of the brain mediating 
interactions between sensory, cognitive, and affective 
information (Janata et  al., 2002, p. 2169). Thus, the TS 
model was designed to account for both sensory and cog-
nitive priming effects by projecting the output pitch images 
from the EM model to the surface of a torus using a self-
organising map (SOM) algorithm (Kohonen, 1995). The 
authors trained the SOM using the pitch images from the 
EM model integrated with a 2-s time constant that were 
extracted from a melody that was explicitly composed to 
modulate through all 24 major and minor keys over the 
course of approximately 8 min (Collins et al., 2014, p. 42). 
Like the EM model, Janata et al. (2002) also integrate the 
activation patterns over time to incorporate the effects of 
EM. Thus, at any point during the stimulus input, the rela-
tive activations across the map that have been accumulated 
over EM represent the effects of long-term schematic 
knowledge on the tonal expectancies of listeners.

IDyOM

Although the TS model simulates the influence of sche-
matic knowledge on tonal expectancies, it fails to consider 
whether an SOM can account for tonal priming effects in 

Figure 6.  Line plots of the estimated mean proportion correct and correct response times of musicians (in blue online) and 
nonmusicians (in red online) for each cadence category.
Whiskers represent ±1 standard error.
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isolation. Furthermore, SOMs have been criticised in 
recent years because they generally do not represent the 
contextual relations between contiguous events on the 
musical surface (Collins et al., 2014). In this regard, the 
IDyOM model offers a suitable alternative, because it 
explicitly simulates long-term statistical learning of 
sequential dependencies between events in tonal music 
(Pearce, 2005). In short, IDyOM is a finite-context (or 
n-gram) modelling framework that predicts the next 
melodic tone or chord in a musical stimulus by acquiring 
knowledge through unsupervised statistical learning.

Method

Each model simulation predicted the target melodic tone 
and chord given the preceding context (i.e., the truncated 
condition) for each stimulus. For the EM and TS models, 
the LPI was set to 0.1 s to represent the immediate pitch 
percept (Leman, 2000), and the GPI was set to 4 s to cor-
respond with previously published evidence for the dura-
tion of EM (Darwin & Turvey, 1972). Following Collins 
et  al. (2014), for each stimulus from Experiment 2, we 
computed the correlation between the LPI and GPI as a 
continuous time series at a sampling rate of 26 Hz for both 
models. To obtain a single estimate for each stimulus com-
paring the target melodic tone and chord with the preced-
ing context, the correlation time series for the EM and TS 
models were averaged over the time window correspond-
ing to the duration of the target events.

For IDyOM, providing a suitable training corpus of 
Mozart’s keyboard sonatas was beyond the scope of the 
present study, so the model was trained to predict the tar-
get melodic tone and chord in each stimulus using a cor-
pus of 50 movements from Haydn’s string quartets (Sears 
et  al., 2018). In doing so, our assumption is that the 
sequential dependencies between melodic or harmonic 
events in a corpus of string quartets will roughly corre-
spond to those found in Mozart’s keyboard sonatas. 
Following Sears et  al. (2018), we included a melodic 
model that estimates the target note event from the upper-
voice melody in each stimulus (melody), a harmonic 
model that estimates the target chord event (harmony), 
and a composite model that combines the predictions 
from the melodic and harmonic models into a single prob-
ability estimate (composite), thereby representing pitch-
based expectations more generally (see Supplemental 
Appendix B).

Results

To examine the effect of the cadence categories individu-
ally, one-way ANOVAs were specified for each model 
simulation. However, Levene’s test revealed heteroscedas-
tic groups for two of the three models, so we report Welch’s 
F test and estimate effect size using estimated ω2 (Cohen, 
2008). Finally, to address whether the estimates from 

the model simulations correspond with the linear increase 
demonstrated in the fit ratings (Experiment 1) and correct 
RTs (Experiment 2), a polynomial contrast was also 
included that estimates the goodness-of-fit of the predicted 
trend without assuming equal variances.

Figure 7 presents line plots of the simulation estimates for 
the EM and TS models for each cadence category. The y-axis 
is inverted so that decreasing correlation estimates corre-
spond to increasing RTs. A one-way ANOVA for the correla-
tion estimates did not reveal a significant effect of cadence 
category for the EM model, F(4, 17.24) = 1.98, p = .142, esti-
mated ω2 = .09, and the polynomial contrast did not exhibit 
the linear trend that was observed in the fit ratings and RTs, 
B = –0.10, df = 15.33, t = –0.90, p = .381. For the TS model, 
however, the mean correlation estimates demonstrated a 
marginal effect of cadence category, F(4, 15.61) = 3.02, 
p = .050, estimated ω2 = .17, but with excerpts from the HC 
category receiving the lowest estimates on average, M = 0.61, 
SE = 0.12. As a consequence, the polynomial contrast was 
not significant, B = –0.35, df = 8.43, t = –1.90, p = .093.

Figure 8 presents line plots of the information content 
(IC) estimates from IDyOM for each cadence category. 
Probability estimates can become vanishingly small in 
n-gram models, so we report the IC estimates (Cleary & 
Witten, 1984). Given the probability of event ei, IC is 
1/p(ei), and so represents the degree of contextual unexpect-
edness or surprise associated with ei.

The simulation estimates from IDyOM revealed a sig-
nificant main effect of cadence category for all three 
viewpoint models: melody, F(4, 14.05) = 14.87, p < .001, 
estimated ω2 = .57; harmony, F(4, 17.31) = 9.41, p < .001, 
estimated ω2 = .46; and composite, F(4, 16.87) = 12.28, 
p < .001, estimated ω2 = .53. The polynomial contrast also 
exhibited a significant increasing linear trend from the 
PAC to the EV categories for each model (melody, 
B = 12.39, df = 7.53, t = 6.85, p < .001; harmony, B = 8.71, 
df = 16.31, t = 4.84, p < .001; composite, B = 21.11, 
df = 10.28, t = 6.96, p < .001). Thus, the cadence catego-
ries whose terminal melodic and harmonic events elicited 

Figure 7.  Line plots of the correlation estimates from the EM 
(in blue online) and TS (in red online) models for each cadence 
category.
The y-axis is inverted so that decreasing estimates correspond to 
increasing RTs in Figure 4. Whiskers represent ±1 standard error.
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lower fit ratings and slower responses times were also less 
predictable on average.

To examine the strength of this covariation, Table 2 pre-
sents the intercorrelations between the model simulations 
and the mean fit ratings and RTs collected in Experiments 
1 and 2, respectively. For the model simulations, the EM 
and TS models did not produce significant correlations 
with any of the participant responses. Conversely, IDyOM 
featured moderate-to-strong correlations with nearly every 
response variable (r range = .34-.79). In each case, partici-
pants were faster and provided higher fit ratings for target 
events that received lower IC estimates by IDyOM, with 
the composite model receiving the highest correlations 
compared with the other model simulations.

Discussion

Of the model simulations examined here, IDyOM provided 
the best fit with the experimental data from Experiments 1 and 
2, with the EM and TS models generally producing null 
results. What is more, the IC estimates shown in Figure 7 cor-
respond very closely with the IC estimates calculated for the 
cadences from a much larger dataset of Haydn’s string quar-
tets (Sears et al., 2018), suggesting that these findings may 
generalise to other classical composers and genres that fea-
ture similar melodic and harmonic organisational principles. 
In the melodic viewpoint model, the PAC, IAC, HC, and DC 
categories received much lower IC estimates on average than 
the EV category, presumably because the former categories 
conclude with stepwise motion into a stable scale degree in the 
melody (e.g., 1̂ or 3̂), whereas the latter category typically fea-
tures an unexpected leap. In the harmonic viewpoint model, 
the DC and EV categories—which conclude with unexpected 
terminal chords—received higher IC estimates than the 
remaining categories, resulting in the same linear trend that 
was previously observed in the average fit ratings and RTs. 
Finally, estimates from the composite viewpoint produced 
the strongest correlations with the behavioural responses 
from both experiments and from both training groups.

General discussion

The goal of this study was to explore the underlying 
mechanisms responsible for the formation of tonal expec-
tations during music listening using examples of expec-
tancy fulfilment (PAC, IAC, HC) and violation (DC, EV) 
derived from real music. Previous studies have typically 
employed specially composed (or selected) isochronous 
chord sequences terminating with an authentic (V–I) 
cadence in the expected condition and then simply 
recomposed the target (or context) events in the unex-
pected condition(s). We adopted an alternative approach 
by selecting genuine musical stimuli that terminate with 
one of the five most common cadence categories in tonal 
music. In Experiment 1, participants provided the lowest 
strength and specificity ratings for truncated stimuli from 
the HC category. When the terminal events followed the 
preceding context in the nontruncated condition, how-
ever, the authentic cadence categories received the high-
est fit ratings (PAC, IAC), followed by the HC category 
in the centre of the expectancy fit scale, and finally the 
cadential deviations (DC, EV), which received the lowest 
fit ratings overall. The correct RTs in Experiment 2 gen-
erally replicated these findings, with stimuli terminating 
with an authentic cadence eliciting facilitation effects for 
both musicians and nonmusicians, thereby suggesting 
that authentic cadential contexts prime listeners to 
expect a tonic chord with a stable scale degree like 1̂ or  
3̂ in the upper-voice melody. Moreover, the mean RTs 
across all five cadence categories demonstrated the 
same linear trend that was observed in Experiment 1, 
with the PAC, IAC, and HC categories eliciting the fast-
est and most accurate responses, followed by the DC 
and EV categories.

The cadence categories also elicited larger differences in 
the specificity and phrase completion ratings of musicians 
compared with nonmusicians in Experiment 1. In 
Experiment 2, however, this trend was not present, with  
the speed of responses showing no difference between 

Figure 8.  Line plots of the information content estimates from IDyOM for each cadence category.
Left: Melodies (in blue online) were predicted using an optimised combination of the viewpoint models melint and csd⊗cpitch, and harmonic (chord) 
progressions (in red online) were predicted with the viewpoint model vintcc (see Supplemental Appendix B). Right: Composite represents the joint 
probability of the melodic and harmonic viewpoint models. Whiskers represent ±1 standard error.
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musicians and nonmusicians, and accuracy demonstrating 
larger differences between cadence categories for nonmusi-
cians than musicians. The relatively weaker effects found in 
Experiment 1 for the nonmusician group may have been due 
to the musician group’s increased familiarity either with the 
experimental tasks (strength, specificity, phrase completion, 
and fit), with technical terms relating to the experiments, or 
with the stimuli, which were derived from a well-known 
repertoire associated with the common-practice period. 
Bigand (2003) has championed implicit behavioural tasks 
like the priming paradigm for precisely these reasons.

To compare sensory or psychoacoustic explanations of 
tonal priming effects with cognitive accounts, we simulated 
the findings from both experiments using the EM (sensory) 
model, the TS (sensory–cognitive) model, and IDyOM 
(cognitive). The EM and TS models provided few notable 
results and generally failed to explain the pattern of results. 
Instead, IDyOM provided the best fit to the data, replicat-
ing the linear trend observed in the expectancy fit ratings in 
Experiment 1 and the RTs in Experiment 2, and demon-
strating significant correlations between the experimental 
findings and the model predictions for the melody, the 
chord progression, and a composite probability estimate 
representing both musical parameters. These findings sug-
gest that listeners generate expectations for potential con-
tinuations as a consequence of the frequent (co-)occurrence 
of events on the musical surface. However, this is not to say 
that sensory or psychoacoustic explanations for the priming 

effects observed here—or reported elsewhere—play no 
role in expectancy formation; only that the models repre-
senting these explanations generally fail to account for the 
priming effects observed in the present experiments.

Taken together, the simulations reported in this study 
provide evidence in support of a functional interpretation 
of tonal processing, in which listeners with exposure to 
tonal music retain long-term, schematic knowledge about 
the statistical dependencies between contiguous events. 
This knowledge allows listeners to generate expectations 
during music listening, with the syntactic relationships 
between tonal events activating schematic representations 
that either facilitate or inhibit the processing of continua-
tions heard later. This is not to say that schematic knowl-
edge is fixed across a group of listeners; the depth (or 
specificity) of that knowledge will vary from one person to 
another (Margulis, 2005). When confronted with a PAC, 
for example, listeners with relatively little exposure to 
music of the high classical period may hear a V–I chord 
progression, while those with a great deal of experience in 
the instrumental repertories of Haydn, Mozart, and 
Beethoven may possess a schematic representation that is 
nearly isomorphic with the encountered exemplar. But in 
our view, many of the features that characterise these 
cadences also characterise the tonal system in general. To 
be sure, even in today’s vast musical landscape, listeners 
with exposure to tonal music might form schematic repre-
sentations for temporal patterns spanning a wide number 

Table 2.  Intercorrelations between the model simulations and the fit ratings (Experiment 1) and correct RTs (Experiment 2) of 
musicians and nonmusicians.

Fit ratings RTs Simulations

  Musicians Nonmusicians Pooled Musicians Nonmusicians Pooled EM TS IDyOM

  Melody Harmony Composite

Fit ratings
  Musicians .86*** .98*** −.59** −.34 −.55** .15 .16 −.64*** −.72*** −.78***
  Nonmusicians .95*** −.39 −.30 −.38 .14 .14 −.60** −.66*** −.73***
  Pooled −.54* −.33 −.51* .15 .16 −.64*** −.72*** −.79***
RTs
  Musicians .60** .92*** −.28 −.33 .71*** .46~ .71***
  Nonmusicians .88*** .18 .13 .41 .34 .46~
  Pooled −.18 −.24 .63*** .50* .67***
Simulations
  EM .66*** −.10 −.16 −.14
  TS −.30 −.12 −.27
  IDyOM
    Melody .45~ .91***
    Harmony .79***
    Composite  

RTs = response times; EM = echoic memory; TS = tonal space; IDyOM = Information Dynamics of Music.
N = 40. “Pooled” computes the average ratings or correct RTs across the corresponding ratings or RTs from musicians and nonmusicians; p values 
were adjusted with the Holm method.
~p < .10; *p < .05; **p < .01; ***p < .001 (two-tailed).
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of genres and style periods sharing similar characteristics 
(e.g., jazz, pop rock, classical). But no matter the manner 
or specificity of the representation, the important point 
here is that much of this knowledge lies beneath the con-
scious surface, reflects implicit rather than explicit learn-
ing strategies, and goes far beyond verbal description.
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Notes

1.	 In recent publications, this model has also been called the 
periodicity pitch model (Collins, Tillmann, Barrett, Delbé, 
& Janata, 2014; Leman, 2000) and the auditory short-term 
memory model (Bigand et al., 2014; Marmel, Tillmann, & 
Delbé, 2010). To avoid confusion, and given that we only 
apply this model to simulate the duration of echoic memory, 
we will prefer the Echoic Memory model.

2.	 Major triads are composed of a minor third on top of a major 
third, and minor triads have the reverse arrangement. None 
of the diatonic chords built on the Western major scale fea-
ture augmented triads (stacked major thirds). A diminished 
triad (stacked minor thirds) appears as the viio chord in 
Figure 1b, which consists of the pitch classes B, D, and F.

3.	 Unfortunately, there is currently no standard method for the 
inclusion and decomposition of the variance from the ran-
dom effects of a linear mixed effects model. Thus, meas-
ures of effect size for omnibus statistics (i.e., main effects 
and interactions) are not reported here, but we do report 
effect size measures for the planned comparisons using 
the estimated means of the fixed effects (B for polynomial 

contrasts and the unstandardised mean difference for all 
other comparisons).
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