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The first computer experiments on musical composition were carried in the middle of the
Fifties. In 1956 R. C. Pinkerton suggested a stochastic composition system which he called the
" banal tunemaker ". He used 39 existing folk melodies, as a material that he submitted to
random choices by launching dices. This work, as well as an implementation of Mozart’s dice
game by D. A. Caplin in 1955, was a source of inspiration for J. Cohen and J. Sowa who
developed soon after their so-called " Machine to Compose Music ", a computer program,
which used in much the same way a set of simple piano pieces.

The machine of Olson and Belar, built at the beginning of the fifties and described in a paper
published in 1961, was not really a computer, but a set of electronic circuits comprising a
subsystem for sound generation and another one for stochastic composition.

The methodology followed for this first set of experiments may be described in three stages:

Probabilistic analysis of a corpus of existing music

Random generation using Markov tables derived from the first step

(human) choice among the results

One had to wait for L. Hiller however to actually talk about computerized composition. With L.
Isaacson, Hiller created in 1957 the first original musical piece made with a computer: " Illiac
Suite for String Quartet ". Hiller defended the idea of a " subtractive " approach, using the
language of information and system theory that was quite in the mood at the time: "... the
process of musical composition can be characterized by the extraction of order from a chaotic
multitude of available possibilities... ". The experiments that were led for the Illiac Suite were
not so far from Pinkerton’s paradigm; however Hiller proposed several innovations. The basic
material for the Illiac suite is generated dynamically and in great quantity by the use of the
Monte-Carlo algorithm. The latter products numbers which Hiller used to codify various
musical parameters, as pitches, dynamics, rhythmical groups, and even instrumental techniques.
These parameters were then subjected to a set of compositional rules (inspired by Fux’s works
on Palestrina). As a difference with the first works mentioned, where the choice was made by
looking into tables, here the rules determine the validity of the material. The rules were
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implemented by using the technique known as "Markov chains". Let us give an example to
illustrate the use of this technique in the musical field: suppose we take an existing melody and
we build a table in which, for each note, we calculate the probabilities that it is followed by any
other note of the dodecaphonic scale. Once the table has been built, we can produce various
melodies while respecting the established probabilities.

In a similar way, we can carry the experiment by creating the table and stuffing it with
coefficients without needing to analyse a given melody. This example shows a simple use of a
Markov Chain. Indeed, the example takes only the immediate predecessor of each new note into
account. One speaks then, of a Markov Chain of degree 1. Hiller’s rules used relations of degree
N > 1. Indeed, the higher the degree, the better the control.

Hiller’s research was a major breakthrough as it opened a new perspective for musical
engineering, even if the interest of the artistic result itself may be discussed. It initiated the
practice of algorithmic composition, which is still alive, especially in the United States.

The works undertaken by P. Barbaud and R. Blanchard in France at the beginning of the Sixties
also hold a significant place in the history of Computer Assisted Composition [Barb68]. " 7! ",
written in 1960, is acknowledged as the first computer music piece in France. Just as Hiller,
Barbaud uses stochastic techniques, arguing on the fact that music oscillates between order and
disorder. However he goes further in the formalization of the musical process in order to
translate his ideas in the language of the machines. The theoretical ground on which Barbaud
builds his system is the set theory, which he uses as a basis for the analysis of the tonal
language. He defines for example the set of pitches as Z/12, the set of remainders modulo 12,
and the operation of transposition as the addition in Z/12. Other actors of the tonal language like
scales and chords are reduced to sets or sets of sets. Automatic composition, for Barbaud, is the
result of the application of various types of rules on data expressed in the form of sets. The rules
are specified by finite-state automata or stochastic matrix. Using this tools, Barbaud may
generate counterpoint with harmonization and control, up to a certain point, the stylistic
imitation. In this set-theoretical vision, however, the problem of musical time remains
problematic, because the only way to speak about time is by the succession of events, which
implies a strictly linear and irreversible time.

The artistic step of Barbaud is important because it includes a general formalization of music
theory. Other precursors, like Philippot or Riotte, made it possible for this French school to
occupy an important place in the genesis of Computer Assisted Composition (CAC).

All the works exposed up to now are linked to automatic or algorithmic composition. A prior
formalization makes it possible to program an automaton whose output is considered, without
final improvement, as the musical result. The basic argument is the division of the composition
act in its technical and creative aspects. It is then possible for an algorithm to reduce the
technical difficulties and facilitate creation. This separation is however questionable. In
addressing the issue of sharing the compositional process between machine and man, G. Koenig
[Koen71] advanced a step forward with its programs Project1 and Project2. Koenig’s programs
calculate musical structures, starting from a fixed specification of their global shape. Thus the
composer gives some parameter lists describing the durations, the tempi, the chords, etc and the
program computes the periodic or aperiodic distribution of theses elements to produce the



composition.

The musical work here is the result of some symbolic combinations (independent of the physical
phenomena) and of a deterministic specification at the level of the musical form. The
specification of the form is given a priori and is not controllable afterwards.

Algorithmic composition as described here still has a significant number of followers.
Composers like D. Cope or C. Ames, among others, undertake researches based on the idea to
establish musical parameter fields on which one imposes automatic control structures whose
execution generates the musical piece. Cope evolved recently to a model of databases
containing a great quantity of elementary musical gestures that capture elements of style.
Algorithmics focus then on the recombination of this " genetic " material according to
predetermined forms by solving local articulation problems and by imposing the necessary local
transformations.

Cope produced interesting simulations in the style of Bach, Mozart, or Beethoven; but Cope is
also a composer. In this case, the problem for him is to define the atoms of his own musical
style. There is here the implicit assumption that musical creation consists of the recombination
and working out of preexisting cognitive elements representing the non-formalizable part, the
absolute originality of a creator, in other words, the style. If this database-oriented approach
makes sense for musicology, it seems marked by a too naive idealism as far as contemporary
creation is concerned. It denies the idea of invention for which it substitutes that of combinative
discovery of the musical " self ", and, by there, seems not very likely to reach real innovation.

Of course in this historical survey of CAC we have to mention the work of I. Xenakis [Xena81]
who based its music in a completely original way on the principle of indeterminism. The
naturalness with which the music of Xenakis can make use of the computer comes from the fact
that the language of his ideas corresponds to the language of the machines. In the various
writings of Xenakis the desire to develop a language to handle sound events that would be
derived from mathematics, logic and physics is obvious. For this composer, the application of
serialism to other compositional parameters than pitches degenerates in the loss of coherence in
the polyphonic discourse. Taking note of this " death of the articulated musical discourse ", he
chooses to assume a non-syntactic paradigm of musical organization. The primitive elements in
his works are not any more the notes then, but clouds of sounds whose development in time is
controlled by probability distributions. Composition for Xenakis is held in the filling of a two-
dimensional time-frequency space by sets of sound primitives distributed in various areas with
various densities.

To finish this first historical stage we will speak about the software Musicomp (Music
Simulator Interpreter for Compositional Procedures), which is perhaps the first software
designed for assistance to the composition, in opposition to automatic composition. Musicomp
was written by Robert Baker a round 1963 with the expertise of L. Hiller and can be seen like
as a collection of tools for solving problems specific to musical composition, in the form of
sub-routines in the FORTRAN language. Musicomp includes three families of routines:
generation routines (mainly Markov Chains), serial and geometrical routines called modifiers
and a set of selection rules inspired from traditional harmony.



The three principal musical experiments carried out with Musicomp were: the resolution of
problems of rhythmic organization for percussion; the generation of serial music using the
model of "Structures pour deux pianos" by Boulez and in general the research of vertical and
horizontal structures in tempered scales [Hill69].

Let us quote finally works by B. Truax and S. Pope who tried in the Seventies and Eighties to
exploit the contribution of Artificial Intelligence [BAL92] by proposing representations inspired
from graph and language theory, and started to use modern programming environments such as
SmallTalk.

After this pioneer period, CAC suffered from the considerable development of digital audio
technologies. Massively attracting means and people, tempting by its immediate rendering of a
new sound world, researches in digital sound synthesis and processing also gave a more
scientific status to computer music and perhaps rang the bell for the likened " composer-
engineer " character who had been so often associated to former works. This powerful attraction
towards the world of digital sound created the same deficiency in terms of creativity as the one
noticed in the world of digital image synthesis and processing: these digital images, attractive
demonstrations of technological power, hardly showed a relevant thinking on the conditions of
emergence of a new artistic language.

In the field of musical sound, some famous exceptions must of course be mentioned: Jean-
Claude Risset and John Chowning for instance have maintained the tradition of the composer-
researcher and have known how to gain profit from their original scientific results in order to
work out a musical language integrating sound synthesis without any artistic compromise.

After a phase of sleep, the " modern " CAC has emerged since the middle of the Eighties. This
revival is conditioned by a certain number of factors: the availability of personal computers;
progress in graphical interfaces; creation of standards in inter-machine communication, among
which, since 1983, the MIDI standard (Music Instrument Digital Interfaces); and progresses in
programming languages, the most significant factor in our point of view. In the same way that
the choice of a programming language influences the programmer, it plays a role in the
formalization of a musical idea. Indeed, the use of a language can suggest expressions that
would not be favored in another context.

Advances in the field of programming languages was thus fundamental for CAC as the use of a
programming language forces the musician to reflect on the process of formalization and avoids
him to consider the computer as a black box which imposes its choices to him. The
programming languages offer the composer an enormous freedom of decision, in exchange of a
certain effort in formalization and design.

This contemporary CAC have been gradually defined by the contributions of people like S.
Pope [Pope91] who proposed several systems based on the Smalltalk language, with the
possibility for the composer to define its own objects and methods and to benefit from a high
level graphical interface, E. Taube [Taub91] who developed at Stanford a program for
composition by patterns called " Common Music ", F. Pachet who puts at work objects and
constraints in MusES [Pach94]. These environments are characterized by high-level
programming languages; modern programming concepts like objects and constraints, and



sophisticated graphical interfaces. These systems are opened, which means that the composer
may extend them if he accepts to get involved into some computer sciences.

The contribution of Ircam (Institut de Recherche et de Coordination Acoustique Musique) to the
emergence of CAC deserves a special treatment because it is one of the rare places which has
been implied institutionally and with perseverance since about fifteen years in the defense of
these ideas. Since the beginning of the Eighties several successive teams worked on the
difficulty to represent and handle musical structures and knowledge in a compositional
perspective.

Formes [RoCo85] was maybe the first CAC environment to be carried out at Ircam. It was
conceived by Xavier Rodet and Pierre Cointe and was implemented in VLisp between 1982 and
1985. Formes is an environment for Synthesis and Musical Composition that conceives the
sound as a logical production. However this type of application is only one particular case of
the great possibilities that this environment offers.

Formes is based on the idea to represent the musical objects by software actors, and the control
structures by a message sending mechanism. This language is directed towards the composition
and the scheduling of the temporal objects. The central concept is that of process. The structure
of a process is defined by a set of rules, a monitor, an environment and a set of child processes.
The behavior of a process is defined by the messages that it receives: a process can fall asleep,
awake, wait or be synchronized. Any process has a duration defined a priori, without it being
necessarily explicit; the duration of a process corresponds to the time during which it is active.
The process executes its rules at the time when it becomes active.

In general, activating a process comes down to launching a sound synthesis procedure. The
children of a process must satisfy certain conditions; mainly their duration must be contained in
the duration of the father-process. The monitor of a process indicates the mode according to
which its children are organized, in sequence or in parallel.

A program in Forms is initiated by the sending of an activation message to a root process. The
execution of the program consists of the repetition at successive times of the following steps:
update of the rules belonging to the computation tree, then execution of these rules. The
computation tree at time T is a list of rules belonging to the processes that are active at this
moment, ordered according to the position of each process in the hierarchy.

Integration between synthesis and composition, problematized for the first time in Formes,
remains a current problem. Unfortunately the major characteristic of Forms constitutes its
weakness from our point of view; we think indeed that continuous and irreversible time,
necessary for sound synthesis, is not the better paradigm for music composition in general.
Note however that, in Formes, one can speak of time, which is not the case in MAX, the well-
known real time sound processing by Miller Puckette and David Zicarelli, nor in its
descendants.

PreForm, implemented by Lee Boyton and Jacques Duthen in 1987, was an attempt to equip
Formes with a graphical interface on the Macintosh and to make it compatible with the Midi
world. One of the principal applications implemented on PreForm was Esquisse. Conceived by



P. F. Baisnee and J Duthen with the assistance of a group of musicians among which was
Tristan Murail. Esquisse starts from the composer’s need for multidimensional musical objects
as well as for functions to generate such objects or to transform them. These functions were
classified according to different types of musical knowledge: intervals, spectral harmony,
interpolations and the like. Though very simple Esquisse was one of the first CAC toolbox with
a real expertise coming from the actual actors in contemporary music and it remains very much
used today.

The environment Crime [AsCa85], written in Lisp by Gerard Assayag in collaboration with
composer Claudy Malherbe, was the first attempt to carry out a general environment in which
the user could handle general musical formalisms with results displayed in the form of a
musical score using traditional notation. Crime provided the composers with formal languages
enabling them to define arbitrarily complex rhythmic, harmonic, and polyphonic structures.
Crime also included the first psycho-acoustical models to appear in a CAC environment,
namely the Terhardt analysis for pitch salience and virtual fundamental extraction from a
complex sound spectrum. This was used for a lot of musical works at the time, e.g. works by
Malherbe, Stroppa, Benjamin, Lindberg, Saariaho.

One of the first software adapted to the visualization of compositional syntax and processes was
Carla [Cour93]. Written in prolog II by Francis Courtot in 1989-1990 Carla is a graphical
interface for logical programming. Carla starts from the principle that "... if it is certain that it is
impossible to formalize all musical syntaxes in a universal representation, it must be possible to
formalize a language that makes it possible for each composer to define his own set of
syntaxes ".

The Carla environment consisted of: a set of basic types and a set of heuristic associated with
each type; a model and a graphical interface for formalizing the relations between types; and a
logical programming graphical environment. There are two classes of types in Carla: primitive
types, defined by using a first order logical language, and complex types. A primitive type is
defined by a set of attributes including a value domain. Complex types are built starting from
already existing types using 4 building tools: *Ho for construction in sequence; *ve for
construction in parallel; * nup for the union of attributes and *union for the union of types.

The composer can define a semantic structure by associating a semantic value with each type
and by establishing relations in the form of a conceptual graph. Carla produces a semantic value
by default for each type, which facilitates the task of the composer. The graphical interface
makes it possible to examine the conceptual graph, where the nodes correspond to the types and
the edges are binary relations between types.

The Music Representations team of Ircam, founded in 1992, profited from all the work exposed
above in its attempt to build a coherent research thread clearly identified under the name of
Computer Assisted Composition, with a particular accent on the concept of "écriture" (an
untranslatable French term which is the union of instrumental score writing and musical thought
in general — we will use here the term instrumental writing or simply writing). We try to
define here the general framework in which we situate our work.

The composition is present, in the state of project or realization, in all the sectors of computer



music research; consequently, why try to constitute Computer Assisted Composition as an
autonomous discipline? We propose this brief reply: the specificity of instrumental writing.

Instrumental writing seems to us a field of study which is at the same time precise and open: it
constitutes a still unequalled model of adequacy between combinatorial systems of operations
on sets of symbols on one hand and a sound universe having its own rules of perceptive and
cognitive operation on the other hand. Indeed, the notation operates a coherent link between
these two worlds. By there, it is also open to integration of new sound materials - extensions of
the instrumental world, synthesis and transformation of sound. Instrumental writing brings with
itself an almost ideal combination of formalization, codification, notation, and relation to the
physical and perceptive world. We will thus employ the term Computer Assisted Composition
while privileging, among all possible interpretations, the one that approaches at most the idea of
instrumental writing. CAC systems will have to be able to bring an effective help in the
specific case of instrumental writing; they will have to constitute a coherent link between the
latter and new (synthetic) sound fields. They will be able in the long term to constitute good
models for the control of pure synthesis. We now structure our conceptual framework around
three axes: language, notation and perception.

Language. First of all, it is necessary for us to put in adequacy two activities of a
symbolic and combinatorial nature: on a side, the search for new elements of musical
language and new ways of structuring them; on the other side, the specification and
interactive exploitation of algorithms allowing to actualize these ideas and to explore the
technical and artistic consequences involved by them.

Notation. To build structures, to express computations has utility only insofar as data and
results can be interpreted and represented in musically significant dimensions, such as
pitches, duration, intensity, or timbre, if we limit ourselves to traditional categories. To
provide visual and audio interfaces which improve this interpretation is then an imperative
need. We give a great importance to traditional and extended musical notation. Notation
acts ideally in a CAC environment not only as a materialization of information going
around in the system but also as a medium where formal inventiveness lives. For this
reason, notation should be provided with the same flexibility, the same opening (in terms
of extensibility and programmability) than the programming language itself. Notation
should in the long term constitute the natural environment of experimentation. The levels
of language and notation will then tend to merge from the point of view of the user.

Perception. Handling compositional material is eminently combinatorial. All the work
could remain at the stage of formal speculation if a solid link were not established with
perception. Several principles can be applied for this purpose: constitution of audio tests
starting from the musical outputs, connection of the CAC software to analysis and
synthesis tools, or integration of acoustic and psycho-acoustic models in the system itself.
Such experiments were recently carried out in the PatchWork environment with models
for virtual fundamental and chord roughness computation.

Although many important advances have been recently achieved in the visual expressiveness of
CAC languages, the coherent representation of the language, notation, perception trinity still
remains an ideal to be reached. In particular, the level of the notation will have to tend to the



same modularity as that of the programming language in order constitute a programmable and
customizable interface for the musical constraints and knowledge. In order to achieve this ideal,
the original concepts developed in the field of visual programming will have to find their
counterpart in notation. Thus the composer will program with a complete freedom the
functional calculation which will determine the contours of his field of musical experimentation,
the constraints which will print a structure into it, the degrees of freedom which will allow a
navigation in the knowledge space thus made up. Finally he will be able to choose to mask all
the stages of development by defining a potential score where he will superimpose display of
the results, interactive controls, input of the musical parameters. This potential score will act as
a kind of white sheet " informed " by a hierarchy of constraints leading from the constraints of
elementary musical consistence up to those, of higher level, expressing the stylistics
characteristics that are personal to the composer.

Crucial to the idea of potential score is the concept of computer model of a musical structure,
more powerful and more general than that of a musical draft ("esquisse" in french) used
formerly. This concept is at the heart of current research in the field of music analysis as well as
in CAC. A. Riotte and M. Mesnage have thus produced several models for the Twentieth
Century repertoire, among which a model for the "First Piece for String Quartet by" Stravinsky
or another one for the "Variations for Piano opus 27" by Webern [MeRio88-89]. But what does
one mean exactly here by model? In general, a model is a formal device which, giving account,
at least partially, of the characteristics of a physical process, allows an experimental simulation
of that process for the purpose of checking, observing, or producing similar processes. Models
used in sound synthesis, like the physical models, additive synthesis or frequency modulation
work that way. Stylistic simulation, such as "Bach" chorals by K. Ebcioglu, quite fits with this
definition, since it is capable to produce an indefinite number of musical instances obeying the
laws of a style. But the models of scores by Mesnage and Riotte constitute an extreme case
insofar as they deal entirely with the restitution of a single object. They however do not
constitute a simple description of the latter. They generalize it insofar as they substitute a
collection of formal mechanisms to it, a collection whose particular parameterization will
provide the final object. It is then permissible to consider, by testing other sets of parameters,
the generation of alternatives to the analyzed text. A similar approach was employed recently by
Jean-Pierre Balpe in the field of literature. By this juggling act consisting in the exploitation of
the ambiguity of the term "model" (the model is the genetic source of the piece, the piece
constitutes the model intended to be imitated during simulation) modern analysis tends to play
in the category of creation; and the analyst using scientific tools is not any more very different
from the composer confronted with the same tools [Chem92-94].

It is in their action on the model that the two attitudes diverge however. In the analytical case,
the successive refining of the model tend to minimize the number of parameters -- the ideal case
being their complete disappearance, the values of the parameters of a level of formalization
being generated by a formalism of higher level. Thus, it is not so much the experimentation on
the model -- the simulation -- that prevails, than its progressive refinement since the stage of the
paraphrase until that of the explanation.

For the composer, on the contrary, only the productive experimentation counts. The model is
then handled according to two methods: on the one hand the objects which it produces serve as



structured musical materials which can be put aside progressively while experimenting. On the
other hand, the observation of these elements can lead to the calling into question of the
subjacent musical theory, which will be altered consequently, leading to the development of a
new model. One then finds the traditional concept of simulation as validation of the theory, with
this reservation (and it is a fundamental difference with the scientific posture): the reference
phenomenon which should lead the validating comparison does not exist except in the state of
an ideal in the composer’s imaginary. To the generalizing virtues of the scientific model, the
composer, using the computer, adds a teleonomic perspective, aiming at a singular if not single
musical work. That is not the least paradox in the articulation between music and sciences.

The use of computers tends to unify the two instances, explanatory and generative, of the
model. Indeed, a computer program is initially a " text ", expressing a network of relations with
the conventions of a formal language. It gives place during its execution to the deployment in
time of a process whose form is regulated by these relations. It thus reproduces, by a kind of
"mise en abyme", the dialectics between model and simulation. The computer program,
implementing a compositional or analytical computation, thus occupies an ideal position, insofar
as it exhibits its logical components in an understandable form. It is this important step that was
crossed with the Visual Programming paradigm by which one substitutes diagrammatic charts
to the formal language mentioned above.

Because of the very great diversity of esthetical and formal (or anti-formal) models which
coexists in contemporary music, one cannot imagine any more a CAC environment as a rigid
application offering a finished collection of procedures for generation and transformation. On
the contrary, we conceive such an environment as a specialized computer language that
composers will use to build their own musical universe. Of course, the idea is not to provide
them with a traditional language, whose control requires a great technical expertise, but a
language arranged especially for their needs. This leads us to reflect on the various existing
programming models, as well as on the interfaces, preferably graphical, intuitive, which make it
possible to control this programming, and on the representations, internal and external, of the
musical structures, which will be built and transformed using this programming. The ideal is
thus a language that encapsulates in a consubstantial way the concept of notation, notation of
the result (a musical score) but also notation of the process leading to this result (a visual
program).

Several experimental environments for music production were carried out according to the
principles reported above in the Music Representation team, in particular, PatchWork and
OpenMusic. The PatchWork language [Laur96] developed at Ircam by M. Laurson, J. Duthen,
C. Rueda, C. Agon and G. Assayag, was the first stage of the visual integration mentioned
above. It was used and expertized by several important composers or musicologists (T. Murail,
B. Ferneyough, C. Malherbe, G. Grisey, M. fano among others) who gave considerable
feedback.

Recent research in our team led then to the development of the OpenMusic language [AADR98]
by G. Assayag, C. Agon, C. Rueda. Before approaching this language, recall that our problem
is not the performance in real time. The substance that our models will handle is writing
("écriture"), taken as a universe of forms, structures and relations.



Once this objective pointed out, the question of the notation emerges immediately. Indeed, who
talks about writing talks about notation. Let us risk a definition. Notation is a device with two
faces: on one hand a concrete and sensitive face made of signs that are materialized on the sheet
or on the screen; on the other hand an abstract face, a set of relations that constrain the use of
these signs and give them meaning. Music writing is the dynamic process of using notation to
format structures and relations of higher level. The first of these higher structuring levels is
directly discernible in the concrete substance of the notation : for example a repetition. By
analogy with the language, one will qualify this level of syntactical. The second level of
structuring is not directly perceivable : it is necessary for that to imagine in the sound space a
virtual execution of the score. For example, the evolution of a harmonic color. There is the need
here for a beyond-the-notation universe that proceeds from our knowledge and our imaginary.
Still by analogy we propose to qualify this level of semantic.

With the computer, the musical score is only one aspect among others. Indeed, the composer in
front of his screen handles various objects. Some of these objects are computational objects.
This is not new in itself: there always has been some calculation in music. But now, the degree
of interaction is such, between computed objects, literal fragments of music materials injected
into the system and formal structures, that the concept of score tends to fade out and leave the
place to the concept of dynamic model of a score, what we called above a potential score.

It is then on all these levels that notation intervenes. Notation of the programs computing
musical materials. Notation of the results of these programs, in mathematical form (e.g. curves)
or musical forms (e.g. notes). Notation of the formal structures which articulate these materials.
Notation of the programs which take as input these formal structures and again transform them.
One enters an infinite recursion which the creator decides to terminate at some point by gauging
the level of complexity he wishes (or he is able) to reach and control. In the case of visual
programming, the computer program becomes itself a notation since it is a logical diagram.

We have tried with OpenMusic to achieve a seamless integration of these various levels of
notation intervening in the musical design.

In OpenMusic as in PatchWork, the computing unit is the function. A function is materialized
by an icon, which has inputs and outputs. The icons are interconnected to form a patch. The
patch is the unit of program. In its turn a patch may be collapsed into an icon, thus masking its
internal complexity. The collapsed patch becomes then an atom of computation in another
patch. This the first recursive aspect, which one will use to show or hide complexity.
Programming then becomes a graphical art by which one will try to make the syntactical and
semantic aspects obvious.

As a difference to PatchWork, functions are polymorphic [Cast98]. A function is then to be
seen as a set of methods, each of which carries out a computation dependent on the type of the
objects that it treats. Thus, the function "addition ", as applied to numbers, will calculate their
sum ; as applied to two musical voices, it will operate their rhythmic fusion, if this is what we
want. There is a considerable advantage here which is to support abstraction. The same icon
will be used in both cases, and in both cases an eyesight at the visual program will provide a
semantic indication on the type of operation concerned. One thus passes from the concept of
computation to the concept of class of computations by an artifice of notation based on visual



identity.

In addition to functions the concept of object has been introduced [Cast98]. An object is an
instance, an actualization, of another object called a class. A class is an abstract model
necessary to manufacture concrete instances. Examples of classes are integer, set, harmonic
structure, etc. A class may have subclasses: for example the class chord is a subclass of
harmonic structure. The objects created directly by the user or resulting from a computation can
be materialized : they literally appear at the surface of the patch, in the forms of new icons,
which become new sources of value or information storage places. An object in OpenMusic can
thus be a simple number, a text or a twenty-two-voice polyphony.

Objects, including the patches themselves, may be "immersed" in a maquette, which is a kind
of graphical surface whose horizontal dimension represents time. Thus we create, by
superposition and concatenation, the basic articulations between musical objects. A maquette
may be immersed in an other maquette and articulated in time with other objects. Thus, by
recursion, the successive levels of the formal organization will be embedded. A maquette may
be immersed in a patch, to become in its turn an atom of computation : the musical structure it
represents becomes a source of value, a simple parameter for a higher level computation. Once
again it is up to the creator to gauge the desired complexity, but the system itself does not
impose any limit.

It is clear that maquettes, patches, are indeed notations. In addition they may be recursively
embedded one into another. The contribution of computer science, at this stage, is not only
quantitative any more but also qualitative. Notation enters into a "mise en abyme".

 

 



Picture 1

In picture 1 we show an example of an OpenMusic patch (a visual program) in which one
harmonizes the beginning of Syrinx by Debussy. This fragment is illustrated in the top-right
part of the window in Midi notation (it is actually a Midi file recovered on the Internet and
dropped on the surface of the patch). This small melodic fragment will be imposed to the
soprano voice. The curve at the top, drawn by hand in a function editor, is a melodic profile that
we want to impose to the bass voice. Thus the bass will always go downward. The formula
(0_7 (4 3) 8_15 (4 6 10)) is an interval constraint on the chords. The first eight chords will
contain only successive major and minor thirds and the last eight chords will contain major
thirds, augmented fourths and tenth. Several other constraints relating to the profile of ambitus
and density of the chords were masked for the sake of simplicity. The module csolver, a
constraint propagation engine developed by C. Rueda [RuVa97] [RLBA98], combines the
constraints and computes all the harmonic sequences obeying the rules. One can see in picture 2
the beginning of a possible solution.



Picture 2.

In maquettes, the structures of hierarchical embedding and temporal scheduling [Pratt92], in
other words, the form, have an explicit visual representation. In the draft work for piano
presented in picture 3 and realized by composer Mikhail Malt, a certain number of temporal
blocks were dropped on the surface of the maquette.



Picture 3

Their position corresponds to dates in absolute time. Their horizontal extension corresponds to
their duration. Their vertical extension represents the intensity. Drawings were superimposed on
these blocks with an aim of elementary musical semiotics. Thus, the triangles correspond to
struck piano chords whose resonance decrease quickly. The saw-tooth blue drawings are
ostinato of repeated chords. The horizontal triangle and the bell shape represent fast trills whose
intensity grow or decrease continuously while following the drawing form.



Picture 4

In picture 4, connections between temporal blocks were revealed. They are carrying another
level of musical semantics. One can see here that the blocks are deduced one from another by
functional computations. For example, the third blue (starting from the left) ostinato is derived
from the first red chord. If one " opens " this ostinato (picture 5), one reaches a third level of
the musical organization, that could be qualified of syntactic : it is indeed in this place that
musical basic materials will become syntagmatic constructions by horizontal deployment.
Without being versed in the mysteries of visual programming, one can easily understand that the
chord which enters this patch by the arrow named "input" is transposed by an eleventh interval
(18 semitones, 1800 cents), then repeated 6 times, and sent in a chord sequence construction
module.

Let us return now to the red chord in bottom-left, which provides itself as a parameter to the
blue ostinato described above, and let us open it (picture 6). Here algorithmics are reduced to
the simpler expression since only the literal definition of a chord is found there, entered by hand
by the composer. We reach here the fourth and last level of organization, that of rough musical



material.

To finish, let us change the nature of the display using a command that switches to musical
notation (picture 7).

Picture 5

 

Picture 6



Picture 7

In this completely new tool that we call a maquette we have access in a fluid way to four
interdependent levels of musical organization:

The static level of the overall musical form, with the possibility to indicate arbitrary visual
semiotics markers.

The dynamic level of the overall musical form, namely the functional relations which bind
the blocks. This level is carrying semantic indications.

The syntactic level, i.e. the computational methods according to which the musical
discourse is built within each block

The level of basic musical materials.

These four dimensions of the musical organization are as many interrelated logical levels of
structuring. The major innovation here is to materialize this interrelation in order to provide the
composer with an interactive control over it. This control leads to new possibilities of
combinative experiments:



Recombination on the level of the form: the blocks are rearranged, dilated or compressed
in time. The other logical dimensions remain unchanged

Modification of the functional relations (the connections): the trajectories of musical data
inside the maquette are then changed without modifying the overall form.

Modifications of the algorithms contained inside the blocks. It is the syntactical form of
the discourse that changes, by preserving the formal pace and the high level temporal
organization.

Modifications in the musical material (change of the pitches in the red chord in our
example). The form is preserved in its static and dynamic dimensions, the syntactic
structure is preserved, but the sound substance is changed (the harmonic color in our
example).

These four experimental methods may obviously be combined.

CAC is very much used in Europe today and starts to diffuse back to the Anglo-American
sphere, closing a cycle that began there 40 years ago. Composers as different as Tristan Murail
and Gérard Grisey, who make use of it specially for the production of harmony and rhythm,
Brian Ferneyhough, which discovered there a challenge corresponding to his taste for extreme
complexity, Claudy Malherbe, who considers a tool accorded with his ideal of construction of
new models for each of his works, Magnus Lindberg, which aims to achieve vertical control
from the great form down to the syntactic elements.

Young Creators like Joshua Fineberg, Mikhail Malt, Fausto Romitelli, and others set up new
directions that would not have been even thinkable without CAC. OpenMusic was born from
confrontation with all these creators, who have each a different vision of the role of technology.
Our experiment of collaboration between scientists and creators taught us that CAC had deeply
overturned practices and methods in musical composition. Well beyond a quantitative profit, it
operates a qualitative calling into question of the methods used in creation.

CAC puts into a relative perspective some techniques, which were thought complex and were
only complicated. When a computer quickly computes all the combinatorial alternatives
resulting from a given formalism, for example the serial formalism, the musicological value
does not come anymore simply from this formal principle, but from its real adequacy to
perception. Correlatively, the computer makes it possible to explore experimental fields of a
real complexity and which were inaccessible before, such as the timbre field in its spectral
representation.

CAC provides the experimental environment that makes it possible to subject a very great
number of musical instances resulting from a formalism to the test of musical quality. More, it
authorizes the experimentation on formalisms themselves, which can be tested and in return
modified or given up if they do not fulfill their promises.

To the romantic concepts of uniqueness of the musical work and of its creator, it tends to
substitute the idea of a model for a work and of co-operation between creators and scientists.



This is where the more revolutionary and indeed the more polemic aspect of CAC resides.

To end with, CAC completely renews the idea of notation, which becomes dynamic, including
the genetic mechanisms of the work. Scores become potential scores, and constitute in a way
their own analytical descriptions, which is the seed for an upcoming outbreak in contemporary
musicology.

 

Gérard Assayag

October 18, 1998.
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